Lab book Fluotracify

1 Technical Notes

1.1 README

1.1.1 General:

  • This file corresponds to my lab book for my doctoral thesis tackling artifact correction in Fluorescence Correlation Spectroscopy (FCS) measurements using Deep Neural Networks. It also contains notes taken during the process of setting up this workflow for reproducible research.
  • This file contains explanations of how things are organized, of the workflow for doing experiments, changes made to the code, and the observed behavior in the “* Data” section.
  • The branching model used is described in this paper. Therefore: if you are interested in the “* Data” section, you have to git clone the data branch of the repository. The main branch is clean from any results, it contains only source code and the analysis.
  • This project is my take on Open-notebook science. The idea was postulated in a blog post in 2006:

    … there is a URL to a laboratory notebook that is freely available and indexed on common search engines. It does not necessarily have to look like a paper notebook but it is essential that all of the information available to the researchers to make their conclusions is equally available to the rest of the world —Jean-Claude Bradley

  • Proposal on how to deal with truly private data (e.g. notes from a confidential meeting with a colleague), which might otherwise be noted in a normal Lab notebook: do not include them here. Only notes relevant to the current project should be taken

1.1.2 Code block languages used in this document

     # This is a sh block for shell / bash scripting. In the context of this file,
     # these blocks are mainly used for operations on my local computer.
     # In the LabBook.html rendering of this document, these blocks will have a
     # light green colour (#F0FBE9)
     # This block can open and access tmux sessions, used for shell scripting on
     # remote computing clusters.
     # In the LabBook.html rendering of this document, these blocks will have a
     # distinct light green colour (#E1EED8)
     # This is a python block. In the context of this file, it is seldomly used
     # (only for examplary scripts.)
     # In the LabBook.html rendering of this document, these blocks will have a
     # light blue colour (#E6EDF4)
     # This is a jupyter-python block. The code is sent to a jupyter kernel running
     # on a remote high performance computing cluster. Most of my jupyter code is
     # executed this way.
     # In the LabBook.html rendering of this document, these blocks will have a
     # light orange colour (#FAEAE1)
     ;; This is a emacs-lisp block, the language used to customize Emacs, which is
     ;; sometimes necessary, since the reproducible workflow of this LabBook is
     ;; tightly integrated with Emacs and org-mode.
     ;; In the LabBook.html rendering of this document, these blocks will have a
     ;; light violet colour (#F7ECFB)
     This is a literal example block. It can be used very flexibly - in the context
     of this document the output of most code blocks is displayed this way.
     In the LabBook.html rendering of this document, these blocks will have a light
     yellow colour (#FBFBBF)
     This is a literal example block enclosed in a details block. This is useful to
     make the page more readable by collapsing large amounts of output.
     In the Labbook.html rendering of this document, the details block will have a
     light grey colour (#f0f0f0) and a pink color when hovering above it.

1.1.3 Experiments workflow:

  1. Create a new branch from main
  2. Print out the git log from the latest commit and the metadata
  3. Call the analysis scripts, follow the principles outlined in Organization of code
  4. All machine learning runs are saved in data/mlruns, all other data in data/#experiment-name
  5. Add a ** exp-<date>-<name>“ section to this file under Data
  6. Commit/push the results of this separate branch
  7. Merge this new branch with the remote data branch

1.1.4 Example for experimental setup procedure

1.1.4.1 Setting starting a jupyter kernel from a remote jupyter session using emacs-jupyter in org babel

1.1.5 tools used (notes)

1.1.5.1 Emacs magit
1.1.5.2 jupyter

1.2 Template for data entry and setup notes:

1.2.1 exp-#date-#title

1.2.1.1 git:
    git log -1
1.2.1.2 System Metadata:
      import os
      import pprint

      ramlist = os.popen('free -th').readlines()[-1].split()[1:]

      print('No of CPUs in system:', os.cpu_count())
      print('No of CPUs the current process can use:',
            len(os.sched_getaffinity(0)))
      print('load average:', os.getloadavg())
      print('os.uname(): ', os.uname())
      print('PID of process:', os.getpid())
      print('RAM total: {}, RAM used: {}, RAM free: {}'.format(
          ramlist[0], ramlist[1], ramlist[2]))

      !echo the current directory: $PWD
      !echo My disk usage:
      !df -h
      if _long:
          %conda list
          pprint.pprint(dict(os.environ), sort_dicts=False)

1.2.1.3 Tmux setup and scripts
    rm ~/.tmux-local-socket-remote-machine
    REMOTE_SOCKET=$(ssh ara 'tmux ls -F "#{socket_path}"' | head -1)
    echo $REMOTE_SOCKET
    ssh ara -tfN \
        -L ~/.tmux-local-socket-remote-machine:$REMOTE_SOCKET
rm: cannot remove home/lex.tmux-local-socket-remote-machine’: No such file or directory
ye53nis@ara-login01.rz.uni-jena.de’s password:              
/tmp/tmux-67339/default                
> ye53nis@ara-login01.rz.uni-jena.de’s password:            
1.2.1.4 SSH tunneling

Different applications can be run on the remote compute node. If I want to access them at the local machine, and open them with the browser, I use this tunneling script.

    ssh -t -t ara -L $port:localhost:$port ssh $node -L $port:Localhost:$port

Apps I use that way:

  • Jupyter lab for running Python 3-Kernels
  • TensorBoard
  • Mlflow ui
1.2.1.5 jupyter scripts

Starting a jupyter instance on a server where the necessary libraries are installed is easy using this script:

    conda activate tf
    export PORT=9999
    export XDG_RUNTIME_DIR=''
    export XDG_RUNTIME_DIR=""
    jupyter lab --no-browser --port=$PORT

On the compute node of the HPC, the users’ environment is managed through module files using the system Lmod. The export XDG_RUNTIME_DIR statements are needed because of a jupyter bug which did not let it start. Right now, ob-tmux does not support a :var header like normal org-babel does. So the $port variable has to be set here in the template.

Now this port has to be tunnelled on our local computer (See SSH tunneling). While the tmux session above keeps running, no matter if Emacs is running or not, this following ssh tunnel needs to be active locally to connect to the notebook. If you close Emacs, it would need to be reestablished

1.2.2 Setup notes

1.2.2.1 Setting up a tmux connection from using ob-tmux in org-babel
  • prerequisite: tmux versions need to be the same locally and on the server. Let’s verify that now.
    • the local tmux version:
              tmux -V
      
      tmux 3.0a
      
    • the remote tmux version:
              ssh ara tmux -V
      
      ye53nis@ara-login01.rz.uni-jena.de’s password:
      tmux 3.0a
  • as is described in the ob-tmux readme, the following code snippet creates a socket on the remote machine and forwards this socket to the local machine (note that socket_path was introduced in tmux version 2.2)
          REMOTE_SOCKET=$(ssh ara 'tmux ls -F "#{socket_path}"' | head -1)
          echo $REMOTE_SOCKET
          ssh ara -tfN \
              -L ~/.tmux-local-socket-remote-machine:$REMOTE_SOCKET
    
    ye53nis@ara-login01.rz.uni-jena.de’s password:  
    /tmp/tmux-67339/default    
    > ye53nis@ara-login01.rz.uni-jena.de’s password:
  • now a new tmux session with name ob-NAME is created when using a code block which looks like this: #+BEGIN_SRC tmux :socket ~/.tmux-local-socket-remote-machine :session NAME
  • Commands can be sent now to the remote tmux session, BUT note that the output is not printed yet
  • there is a workaround for getting output back to our LabBook.org: A script which allows to print the output from the tmux session in an #+begin_example-Block below the tmux block by pressing C-c C-o or C-c C-v C-o when the pointer is inside the tmux block.
1.2.2.2 emacs-jupyter Setup

Emacs-jupyter aims to be an API for a lot of functionalities of the jupyter project. The documentation can be found on GitHub.

  1. For the whole document: connect to a running jupyter instance
    1. M-x jupyter-server-list-kernels
      1. set server URL, e.g. http://localhost:8889
      2. set websocket URL, e.g. http://localhost:8889
    2. two possibilities
      1. kernel already exists \(\to\) list of kernels and kernel-ID is displayed
      2. kernel does not exist \(\to\) prompt asks if you want to start one \(\to\) yes \(\to\) type kernel you want to start, e.g. Python 3
  2. In the subtree where you want to use jupyter-python blocks with org babel
    1. set the :header-args:jupyter-python :session /jpy:localhost#kernel:8889-ID
    2. customize the output folder using the following org-mode variable:
                  (setq org-babel-jupyter-resource-directory "./data/exp-test/plots")
      
      ./data/exp-test/plots
      
  3. For each individual block, the following customizations might be useful
    1. jupyter kernels can return multiple kinds of rich output (images, html, …) or scalar data (plain text, numbers, lists, …). To force a plain output, use :results scalar. To show the output in the minibuffer only, use :results silent
    2. to change the priority of different rich outputs, use :display header argument, e.g. :display text/plain text/html prioritizes plain text over html. All supported mimetypes in default order:
      1. text/org
      2. image/svg+xml, image/jpeg, image/png
      3. text/html
      4. text/markdown
      5. text/latex
      6. text/plain
    3. We can set jupyter to output pandas DataFrames as org tables automatically using the source block header argument :pandoc t
    4. useful keybindings
      • M-i to open the documentation for wherever your pointer is (like pressing Shift-TAB in Jupyter notebooks)
      • C-c C-i to interrupt the kernel, C-c C-r to restart the kernel

1.2.3 Notes on archiving

1.2.3.1 Exporting the LabBook.org to html in a twbs style
  • I am partial to the twitter bootstrap theme of html, since I like it’s simple design, but clear structure with a nice table of contents at the side → the following org mode extension supports a seemless export to twitter bootstrap html: https://github.com/marsmining/ox-twbs
  • when installed, the export can be triggered via the command (org-twbs-export-as-html) or via the keyboard shortcut for export C-c C-e followed by w for Twitter bootstrap and h for saving the .html
  • Things to configure:
    • in general, there are multiple export options: https://orgmode.org/manual/Export-Settings.html
    • E.g. I set 2 #+OPTIONS keywords at the begin of the file: toc:4 and H:4 which make sure that in my export my sidebar table of contents will show numbered headings till a depth of 4.
    • I configured my code blocks so that they will not be evaluated when exporting (I would recommend this especially if you only export for archiving) and that both the code block and the output will be exported with the keyword: #+PROPERTY: header-args :eval never-export :exports both
    • To discriminate between code blocks for different languages I gave each of them a distinct colour using #+HTML_HEAD_EXTRA: <style... (see above)
    • I had to configure a style for table, so that the
      • display: block; overflow-x: auto; gets the table to be restricted to the width of the text and if it is larger, activates scrolling
      • white-space: nowrap; makes it that there is no wrap in a column, so it might be broader, but better readable if you have scrolling anyway
  • Things to do before exporting / Troubleshooting while exporting:
    • when using a dark theme for you emacs, the export of the code blocks might show some ugly dark backgrounds from the theme. If this becomes an issue, change to a light theme for the export with M-x (load-theme) and choose solarized-light
    • only in the data branch you set the git tags after merging. If you want to show them here, execute the corresponding function in Git TAGs
    • make sure your file links work properly! I recommend referencing your files relatively (e.g. [ [ f ile:./data/exp-XXXXXX-test/test.png]] without spaces). Otherwise there will be errors in your Messages buffer
    • There might be errors with your code blocks
      • e.g. the export function expects you to assign a default variable to your functions
      • if you call a function via the #+CALL mechanism, it wants you to include two parentheses for the function, e.g. #+CALL: test()
    • check indentation of code blocks inside lists
    • add a details block around large output cells. This makes them expandable. I added some #+HTML_HEAD_EXTRA: <style... inspired by alhassy. That’s how the details block looks like:
               #+begin_details
      
               #+end_details
      
    • If you reference a parameter with an underscore in the name, use the org markdown tricks to style them like code (== or ~~), otherwise the part after the underscore will be rendered like a subscript: under_score vs underscore
  • Things to do after exporting:
    • In my workflow, the exported LabBook.html with the overview of all experiments is in the data folder. If you move the file, you will have to fix the file links for the new location, e.g. via “Find and replace” M-%:
      • if you move the org file → in the org file find [[file:./data/ and replace with [[file:./ → then export with C-c C-e w h
      • if you export first with C-c C-e w h and move the html file to data → in the html file find ./data and replace with .

1.3 Organization of git

1.3.1 remote/origin/main branch:

  • contains all the source code in folder src/ which is used for experiments.
  • contains the LabBook.org template
  • contains setup- and metadata files such as MLproject or conda.yaml
  • the log contains only lasting alterations on the folders and files mentioned above, which are e.g. used for conducting experiments or which introduce new features. Day-to-day changes in code

1.3.2 remote/origin/exp### branches:

  • if an experiment is done, the code and templates will be branched out from main in an #experiment-name branch, ### meaning some meaningful descriptor.
  • all data generated during the experiment (e.g. .csv files, plots, images, etc), is stored in a folder with the name data/#experiment-name, except machine learning-specific data and metadata from `mlflow` runs, which are saved under data/mlruns (this allows easily comparing machine learning runs with different experimental settings)
  • The LabBook.org file is essential
    • If possible, all code is executed from inside this file (meaning analysis scripts or calling the code from the scr/ directory).
    • All other steps taken during an experiment are noted down, as well as conclusions or my thought process while conducting the experiment
    • Provenance data, such as metadata about the environment the code was executed in, the command line output of the code, and some plots

1.3.3 remote/origin/develop branch:

  • this is the branch I use for day to day work on features and exploration. All of my current activity can be followed here.

1.3.4 remote/origin/data branch:

  • contains a full cronicle of the whole research process
  • all #experiment-name branches are merged here. Afterwards the original branch is deleted and on the data branch there is a Git tag which shows the merge commit to make accessing single experiments easy.
  • the develop branch is merged here as well.

1.3.5 Git TAGs

1.3.5.1 Stable versions:
1.3.5.2 All tags from git:
    git push origin --tags
    git tag -n1
exp-200402-test Merge branch 'exp-200402-test' into data
exp-200520-unet Merge branch 'exp-310520-unet' into data
exp-200531-unet Merge branch 'heads/exp-310520-unet' into data
exp-201231-clustsim exp-201231-clustsim
exp-210204-unet Add exp-210204-unet LabBook part 3
exp-310520-unet move exp-310520-unet to data branch manually

1.4 Organization of code

1.4.1 scripts:

1.4.2 src/

1.4.2.1 fluotracify/
  1. imports/
  2. simulations/
  3. training/
  4. applications/
  5. doc/
1.4.2.2 nanosimpy/
  • cloned from dwaithe with refactoring for Python 3-compatibility

1.5 Changes in this repository (without “* Data” in this file)

1.5.1 Changes in LabBook.org (without “* Data”)

1.5.1.1 2022-02-19
  • Add #+HTML_HEAD_EXTRA: <style... for table to enable scrolling if the table overflows
1.5.1.2 2021-12-16
  • Add details blocks, corresponding #+HTML_HEAD_EXTRA: <style... and documentation in Notes on archiving
1.5.1.3 2021-08-05
  • Rename master branch to main branch
1.5.1.4 2021-04-04
  • Add #+OPTIONS: H:4 and #+OPTIONS: toc:4 to show up to 4 levels of depth in the html (twbs) export of this LabBook in the table of contents at the side
  • I added Notes on archiving
1.5.1.5 2020-11-04
1.5.1.6 2020-05-31
  • extend general documentation in README
  • Add code block examples
  • extend documentation on experiment workflow
  • move setup notes from README to “Template for data entry and setup notes”
  • remove emacs-lisp code for custom tmux block functions (not relevant enough)
  • change named “jpt-tmux” from starting a jupyter notebook to starting jupyter lab. Load a conda environment instead of using Lmod’s module load
1.5.1.7 2020-05-07
  • extend documentation on git model
  • extend documentation on jupyter setup
1.5.1.8 2020-04-22
  • added parts of README which describe the experimental process
  • added templates for system metadata, tmux, jupyter setup
  • added organization of code
1.5.1.9 2020-03-30
  • set up lab book and form git repo accoring to setup by Luka Stanisic et al

1.5.2 Changes in src/fluotracify

2 Data

2.1 exp-310520-unet

2.1.1 Connect

2.1.1.1 Tmux on Ara
ye53nis@ara-login01.rz.uni-jena.de’s password:  
/tmp/tmux-67339/default    
> ye53nis@ara-login01.rz.uni-jena.de’s password:

Test:

  pwd
  (tensorflow_nightly) [ye53nis@login01 drmed-git]$ pwd
  /beegfs/ye53nis/drmed-git
  pwd
2.1.1.2 Compute node for script execution
  srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
  (base) [ye53nis@node151 drmed-git]$
2.1.1.3 Jupyter on Ara
  1. Request compute node via tmux
         srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
    
         (base) [ye53nis@node189 drmed-git]$
    
         cd /home/ye53nis/DOKTOR
    
  1. Start Jupyter Lab
         [I 10:54:50.672 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/jupyterlab
         [I 10:54:50.673 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tensorflow_nightly/share/jupyter/lab
         [I 10:54:50.678 LabApp] Serving notebooks from local directory: /home/ye53nis/DOKTOR
         [I 10:54:50.678 LabApp] The Jupyter Notebook is running at:
         [I 10:54:50.678 LabApp] http://localhost:8889/?token=b210da5d453ac75f8f246e3c23917c94578c516ecfe0d95b
         [I 10:54:50.678 LabApp]  or http://127.0.0.1:8889/?token=b210da5d453ac75f8f246e3c23917c94578c516ecfe0d95b
         [I 10:54:50.678 LabApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
         [C 10:54:50.724 LabApp]
    
             To access the notebook, open this file in a browser:
                 file:///home/ye53nis/.local/share/jupyter/runtime/nbserver-365563-open.html
             Or copy and paste one of these URLs:
                 http://localhost:8889/?token=b210da5d453ac75f8f246e3c23917c94578c516ecfe0d95b
              or http://127.0.0.1:8889/?token=b210da5d453ac75f8f246e3c23917c94578c516ecfe0d95b
    
sh-5.0$ ye53nis@ara-login01.rz.uni-jena.de’s password:              
ye53nis@node020’s password: channel 3: open failed: connect failed: Connection refused
channel 3: open failed: connect failed: Connection refused    
Last login: Sun Jul 5 09:52:47 2020 from login01.ara  

I started a Python3 kernel using jupyter-server-list-kernels. Then I added the kernel ID to the :PROPERTIES: drawer of this (and following) subtrees.

python3           7fe3d66b-d802-4f0f-b105-9536a917b816   a few seconds ago    starting   0

Test:

  No of CPUs in system: 72
  No of CPUs the current process can use: 24
  load average: (1.06, 1.01, 0.97)
  os.uname():  posix.uname_result(sysname='Linux', nodename='node218', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64')
  PID of process: 10254
  RAM total: 199G, RAM used: 6.0G, RAM free: 181G
  the current directory: /home/ye53nis/DOKTOR
  My disk usage:
  Filesystem           Size  Used Avail Use% Mounted on
  /dev/sda1             50G  3.2G   47G   7% /
  devtmpfs              94G     0   94G   0% /dev
  tmpfs                 94G  725M   94G   1% /dev/shm
  tmpfs                 94G   75M   94G   1% /run
  tmpfs                 94G     0   94G   0% /sys/fs/cgroup
  nfs02-ib:/data01      88T   61T   27T  70% /data01
  nfs03-ib:/pool/work  100T   79T   22T  79% /nfsdata
  nfs01-ib:/home        80T   61T   20T  76% /home
  nfs01-ib:/cluster    2.0T  316G  1.7T  16% /cluster
  /dev/sda3            6.0G  412M  5.6G   7% /var
  /dev/sda6            169G  2.8G  166G   2% /local
  /dev/sda5            2.0G   34M  2.0G   2% /tmp
  beegfs_nodev         524T  453T   72T  87% /beegfs
  tmpfs                 19G     0   19G   0% /run/user/67339
  /bin/sh: conda: command not found
  {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint',
   'SLURM_NODELIST': 'node218',
   'SLURM_JOB_NAME': 'bash',
   'XDG_SESSION_ID': '8541',
   'SLURMD_NODENAME': 'node218',
   'SLURM_TOPOLOGY_ADDR': 'node218',
   'SLURM_NTASKS_PER_NODE': '24',
   'HOSTNAME': 'login01',
   'SLURM_PRIO_PROCESS': '0',
   'SLURM_SRUN_COMM_PORT': '45911',
   'SHELL': '/bin/bash',
   'TERM': 'xterm-color',
   'SLURM_JOB_QOS': 'qstand',
   'SLURM_PTY_WIN_ROW': '52',
   'HISTSIZE': '1000',
   'TMPDIR': '/tmp',
   'SLURM_TOPOLOGY_ADDR_PATTERN': 'node',
   'SSH_CLIENT': '10.231.190.186 48592 22',
   'CONDA_SHLVL': '2',
   'CONDA_PROMPT_MODIFIER': '(tensorflow_nightly) ',
   'GSETTINGS_SCHEMA_DIR_CONDA_BACKUP': '',
   'WINDOWID': '0',
   'OLDPWD': '/beegfs/ye53nis/drmed-git',
   'QTDIR': '/usr/lib64/qt-3.3',
   'QTINC': '/usr/lib64/qt-3.3/include',
   'SSH_TTY': '/dev/pts/57',
   'QT_GRAPHICSSYSTEM_CHECKED': '1',
   'SLURM_NNODES': '1',
   'USER': 'ye53nis',
   'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
   'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:',
   'CONDA_EXE': '/cluster/miniconda3/bin/conda',
   'SLURM_STEP_NUM_NODES': '1',
   'SLURM_JOBID': '392142',
   'SRUN_DEBUG': '3',
   'SLURM_NTASKS': '24',
   'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5',
   'SLURM_STEP_ID': '0',
   'TMUX': '/tmp/tmux-67339/default,47311,2',
   '_CE_CONDA': '',
   'CONDA_PREFIX_1': '/cluster/miniconda3',
   'SLURM_STEP_LAUNCHER_PORT': '45911',
   'SLURM_TASKS_PER_NODE': '24',
   'MAIL': '/var/spool/mail/ye53nis',
   'PATH': '/home/ye53nis/.conda/envs/tensorflow_nightly/bin:/home/lex/Programme/miniconda3/envs/tensorflow_env/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/home/lex/Programme/miniconda3/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin',
   'GSETTINGS_SCHEMA_DIR': '/home/ye53nis/.conda/envs/tensorflow_nightly/share/glib-2.0/schemas',
   'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448',
   'SLURM_JOB_ID': '392142',
   'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tensorflow_nightly',
   'SLURM_JOB_USER': 'ye53nis',
   'SLURM_STEPID': '0',
   'PWD': '/home/ye53nis/DOKTOR',
   'SLURM_SRUN_COMM_HOST': '192.168.192.5',
   'LANG': 'en_US.UTF-8',
   'SLURM_PTY_WIN_COL': '206',
   'SLURM_UMASK': '0022',
   'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles',
   'SLURM_JOB_UID': '67339',
   'LOADEDMODULES': '',
   'SLURM_NODEID': '0',
   'TMUX_PANE': '%2',
   'SLURM_SUBMIT_DIR': '/beegfs/ye53nis/drmed-git',
   'SLURM_TASK_PID': '696',
   'SLURM_NPROCS': '24',
   'SLURM_CPUS_ON_NODE': '24',
   'SLURM_DISTRIBUTION': 'block',
   'https_proxy': 'https://internet4nzm.rz.uni-jena.de:3128',
   'SLURM_PROCID': '0',
   'HISTCONTROL': 'ignoredups',
   '_CE_M': '',
   'SLURM_JOB_NODELIST': 'node218',
   'SLURM_PTY_PORT': '37811',
   'HOME': '/home/ye53nis',
   'SHLVL': '3',
   'SLURM_LOCALID': '0',
   'SLURM_JOB_GID': '13280',
   'SLURM_JOB_CPUS_PER_NODE': '24',
   'SLURM_CLUSTER_NAME': 'hpc',
   'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23',
   'SLURM_SUBMIT_HOST': 'login01',
   'SLURM_JOB_PARTITION': 's_standard',
   'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3',
   'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python',
   'LOGNAME': 'ye53nis',
   'SLURM_STEP_NUM_TASKS': '24',
   'QTLIB': '/usr/lib64/qt-3.3/lib',
   'SLURM_JOB_ACCOUNT': 'iaob',
   'SLURM_JOB_NUM_NODES': '1',
   'MODULESHOME': '/usr/share/Modules',
   'CONDA_DEFAULT_ENV': 'tensorflow_nightly',
   'LESSOPEN': '||/usr/bin/lesspipe.sh %s',
   'SLURM_STEP_TASKS_PER_NODE': '24',
   'PORT': '8889',
   'SLURM_STEP_NODELIST': 'node218',
   'DISPLAY': ':0',
   'XDG_RUNTIME_DIR': '',
   'XAUTHORITY': '/tmp/xauth-1000-_0',
   'BASH_FUNC_module()': '() {  eval `/usr/bin/modulecmd bash $*`\n}',
   '_': '/home/ye53nis/.conda/envs/tensorflow_nightly/bin/jupyter',
   'KERNEL_LAUNCH_TIMEOUT': '40',
   'JPY_PARENT_PID': '7566',
   'CLICOLOR': '1',
   'PAGER': 'cat',
   'GIT_PAGER': 'cat',
   'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
2.1.1.4 Tensorboard tunnel, Mlflow ui tunnel
sh-5.0$ ye53nis@ara-login01.rz.uni-jena.de’s password:            
ye53nis@node171’s password:              
Last login: Sun May 31 15:29:02 2020 from login01.ara

2.1.2 git exp 1

    git status
    git log -1
      (tensorflow_nightly) [ye53nis@node171 drmed-git]$ git status
      # On branch exp-310520-unet
      # Untracked files:
      #   (use "git add <file>..." to include in what will be committed)
      #
      #       data/
      #       experiment_params.csv
      #       mlruns/
      #       tramp.YDPCnB
      nothing added to commit but untracked files present (use "git add" to track)

      (tensorflow_nightly) [ye53nis@node171 drmed-git]$ git log -1
      commit 2225d6fa18cca9044960b6e86a56ec9fb4362d5d
      Author: Apoplex <oligolex@vivaldi.net>
      Date:   Sun May 31 21:34:12 2020 +0200

          Change learning rate

2.1.3 mlflow environment variables

  conda activate tensorflow_nightly
  cd /beegfs/ye53nis/drmed-git
  export MLFLOW_EXPERIMENT_NAME=exp-310520-unet
  export MLFLOW_TRACKING_URI=file:./data/mlruns
  mkdir data/exp-310520-unet
  (tensorflow_nightly) [ye53nis@node171 drmed-git]$

2.1.4 Learning rate schedule

learning_rate = 0.2
        if epoch > 10:
            learning_rate = 0.02
        if epoch > 20:
            learning_rate = 0.01
        if epoch > 40:
            learning_rate = 0.001
        if epoch > 60:
            learning_rate = 0.0001
        if epoch > 80:
            learning_rate = 0.00001

2.1.5 test runs

2.1.5.1 no 1 - experiment creation failed
  mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=2 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Mar2020 -P steps_per_epoch=400 -P validation_steps=200
(tensorflow_nightly) [ye53nis@node171 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=2 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Mar2020 -P
   steps_per_epoch=400 -P validation_steps=200
  WARNING:root:Malformed experiment '1'. Detailed error Yaml file './data/mlruns/1/meta.yaml' does not exist.
  Traceback (most recent call last):
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 197, in list_experiments
      experiment = self._get_experiment(exp_id, view_type)
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 260, in _get_experiment
      meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME)
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 167, in read_yaml
      raise MissingConfigException("Yaml file '%s' does not exist." % file_path)
  mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/1/meta.yaml' does not exist.
  INFO: 'exp-310520-unet' does not exist. Creating a new experiment
  WARNING:root:Malformed experiment '1'. Detailed error Yaml file './data/mlruns/1/meta.yaml' does not exist.
  Traceback (most recent call last):
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 197, in list_experiments
      experiment = self._get_experiment(exp_id, view_type)
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 260, in _get_experiment
      meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME)
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 167, in read_yaml
      raise MissingConfigException("Yaml file '%s' does not exist." % file_path)
  mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/1/meta.yaml' does not exist.
  WARNING:root:Malformed experiment '1'. Detailed error Yaml file './data/mlruns/1/meta.yaml' does not exist.
  Traceback (most recent call last):
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 197, in list_experiments
      experiment = self._get_experiment(exp_id, view_type)
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 260, in _get_experiment
      meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME)
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 167, in read_yaml
      raise MissingConfigException("Yaml file '%s' does not exist." % file_path)
  mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/1/meta.yaml' does not exist.
  2020/05/31 14:00:34 INFO mlflow.projects: === Created directory /tmp/tmpfhabm3p4 for downloading remote URIs passed to arguments of type 'path' ===
  2020/05/31 14:00:34 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/f
  luotracify/training/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 2 /beegfs/ye53nis/saves/firstartifact_Mar2020 400 200' in run with ID 'b37371694a004638a6cd7a94d4d2e77f' ===
  2020-05-31 14:00:38.667018: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No
   such file or directory
  2020-05-31 14:00:38.667107: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favo
  ur of importlib; see the module's documentation for alternative uses
    import imp
  2.3.0-dev20200527
  2020-05-31 14:00:42.422965: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file
   or directory
  2020-05-31 14:00:42.422998: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
  2020-05-31 14:00:42.423020: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node171): /proc/driver/nvidia/version does not exist
  GPUs:  []
  train 0 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set027.csv
  train 1 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set087.csv
  train 2 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set003.csv
  train 3 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set056.csv
  train 4 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set076.csv
  train 5 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set094.csv
  train 6 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set017.csv
  train 7 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set074.csv
  train 8 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set055.csv
  train 9 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set096.csv
  train 10 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set054.csv
  train 11 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set093.csv
  train 12 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set079.csv
  train 13 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set014.csv
  train 14 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set008.csv
  train 15 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set031.csv
  train 16 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set023.csv
  train 17 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set025.csv
  train 18 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set034.csv
  train 19 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set009.csv
  train 20 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set044.csv
  train 21 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set063.csv
  train 22 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set004.csv
  train 23 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set072.csv
  train 24 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set046.csv
  train 25 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set049.csv
  train 26 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set007.csv
  train 27 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set100.csv
  train 28 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set083.csv
  train 29 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set077.csv
  train 30 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set061.csv
  train 31 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set081.csv
  train 32 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set091.csv
  train 33 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set069.csv
  train 34 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set052.csv
  train 35 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set028.csv
  train 36 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set019.csv
  train 37 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set057.csv
  train 38 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set064.csv
  train 39 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set075.csv
  train 40 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set002.csv
  train 41 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set062.csv
  train 42 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set043.csv
  train 43 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set042.csv
  train 44 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set005.csv
  train 45 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set016.csv
  train 46 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set018.csv
  train 47 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set041.csv
  train 48 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set039.csv
  train 49 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set006.csv
  train 50 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set092.csv
  train 51 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set060.csv
  train 52 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set001.csv
  train 53 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set035.csv
  train 54 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set029.csv
  train 55 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set051.csv
  train 56 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set012.csv
  train 57 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set036.csv
  train 58 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set024.csv
  train 59 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set053.csv
  train 60 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set011.csv
  train 61 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set032.csv
  train 62 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set067.csv
  train 63 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set058.csv
  train 64 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set080.csv
  train 65 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set086.csv
  train 66 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set033.csv
  train 67 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set085.csv
  train 68 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set015.csv
  train 69 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set090.csv
  train 70 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set020.csv
  train 71 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set030.csv
  train 72 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set050.csv
  train 73 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set098.csv
  train 74 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set099.csv
  train 75 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set070.csv
  train 76 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set021.csv
  train 77 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set095.csv
  train 78 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set073.csv
  train 79 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set078.csv
  test 80 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set026.csv
  test 81 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set038.csv
  test 82 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set082.csv
  test 83 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set047.csv
  test 84 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set040.csv
  test 85 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set066.csv
  test 86 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set059.csv
  test 87 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set013.csv
  test 88 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set089.csv
  test 89 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set071.csv
  test 90 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set088.csv
  test 91 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set037.csv
  test 92 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set022.csv
  test 93 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set084.csv
  test 94 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set010.csv
  test 95 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set097.csv
  test 96 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set068.csv
  test 97 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set065.csv
  test 98 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set048.csv
  test 99 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set045.csv
  shapes of feature dataframe: (16384, 8000) and label dataframe: (16384, 8000)
  shapes of feature dataframe: (16384, 2000) and label dataframe: (16384, 2000)

  for each 20,000 timestap trace there are the following numbers of corrupted timesteps:
   label001_1    16384
  label001_1    16384
  label001_1    16384
  label001_1    16384
  label001_1    16384
  dtype: int64
  2020-05-31 14:05:15.534482: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical opera
  tions:  AVX2 AVX512F FMA
  To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
  2020-05-31 14:05:15.544530: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz
  2020-05-31 14:05:15.545867: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x557b10ed44b0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
  2020-05-31 14:05:15.545896: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
  number of training examples: 6400, number of validation examples: 1600

  ------------------------
  number of test examples: 2000

  input - shape:   (None, 16384, 1)
  output - shape:  (None, 16384, 1)
  2020-05-31 14:05:22.334555: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the A
  BCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
    if not isinstance(wrapped_dict, collections.Mapping):
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Pytho
  n 3.0, use inspect.signature() or inspect.getfullargspec()
    all_param_names, _, _, all_default_values = inspect.getargspec(fn)  # pylint: disable=W1505
  Epoch 1/2
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from
  'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
    if not isinstance(values, collections.Sequence):
    1/400 [..............................] - ETA: 0s - loss: 0.7153 - tp: 66972.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 14948.0000 - precision: 1.0000 - recall: 0.8175 - accuracy: 0.8175 - auc: 0.0000e+0
  02020-05-31 14:05:34.823955: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
  WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager
  .profiler) is deprecated and will be removed after 2020-07-01.
  Instructions for updating:
  use `tf.profiler.experimental.stop` instead.
  2020-05-31 14:05:36.334154: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_14_05_36
  2020-05-31 14:05:36.348656: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.trace.json.gz
  2020-05-31 14:05:36.375326: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_14_05_36
  2020-05-31 14:05:36.375452: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.memory
  _profile.json.gz
  2020-05-31 14:05:36.377489: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_14_05_36Dumped tool data for xplane.pb to /tmp/tb/trai
  n/plugins/profile/2020_05_31_14_05_36/node171.xplane.pb
  Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.overview_page.pb
  Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.input_pipeline.pb
  Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.tensorflow_stats.pb
  Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.kernel_stats.pb

  400/400 [==============================] - 651s 2s/step - loss: 0.0019 - tp: 32753052.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 14948.0000 - precision: 1.0000 - recall: 0.9995 - accuracy: 0.9995 - auc: 0
  .0000e+00 - val_loss: 7.3428e-23 - val_tp: 16384000.0000 - val_fp: 0.0000e+00 - val_tn: 0.0000e+00 - val_fn: 0.0000e+00 - val_precision: 1.0000 - val_recall: 1.0000 - val_accuracy: 1.0000 - val_auc: 0.0000e
  +00
  Epoch 2/2
  400/400 [==============================] - 645s 2s/step - loss: 2.1658e-09 - tp: 32768000.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 0.0000e+00 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - au
  c: 0.0000e+00 - val_loss: 8.7165e-23 - val_tp: 16384000.0000 - val_fp: 0.0000e+00 - val_tn: 0.0000e+00 - val_fn: 0.0000e+00 - val_precision: 1.0000 - val_recall: 1.0000 - val_accuracy: 1.0000 - val_auc: 0.0
  000e+00
  400/400 [==============================] - 119s 298ms/step - loss: 9.0078e-23 - tp: 32768000.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 0.0000e+00 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 -
   auc: 0.0000e+00
  2020/05/31 14:29:15 INFO mlflow.projects: === Run (ID 'b37371694a004638a6cd7a94d4d2e77f') succeeded ===
  (tensorflow_nightly) [ye53nis@node171 drmed-git]$ Regard
  mlflow ui
  (tensorflow_nightly) [ye53nis@node171 drmed-git]$ mlflow ui
  [2020-05-31 15:27:54 +0200] [200865] [INFO] Starting gunicorn 20.0.4
  [2020-05-31 15:27:54 +0200] [200865] [INFO] Listening at: http://127.0.0.1:5000 (200865)
  [2020-05-31 15:27:54 +0200] [200865] [INFO] Using worker: sync
  [2020-05-31 15:27:54 +0200] [200871] [INFO] Booting worker with pid: 200871
2.1.5.2 no 2
  mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=2 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Mar2020 -P steps_per_epoch=10 -P validation_steps=10
  (tensorflow_nightly) [ye53nis@node171 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=2 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Mar2020 -P
   steps_per_epoch=10 -P validation_steps=10
  INFO: 'exp-310520-unet' does not exist. Creating a new experiment
  2020/05/31 15:45:30 INFO mlflow.projects: === Created directory /tmp/tmp2vv5kiic for downloading remote URIs passed to arguments of type 'path' ===
  2020/05/31 15:45:30 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/f
  luotracify/training/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 2 /beegfs/ye53nis/saves/firstartifact_Mar2020 10 10' in run with ID '7f23f6ba7a244914b3cbbebd731d50a1' ===
  2020-05-31 15:45:31.886019: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No
   such file or directory
  2020-05-31 15:45:31.886068: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favo
  ur of importlib; see the module's documentation for alternative uses
    import imp
  2.3.0-dev20200527
  2020-05-31 15:45:35.151500: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file
   or directory
  2020-05-31 15:45:35.151549: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
  2020-05-31 15:45:35.151589: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node171): /proc/driver/nvidia/version does not exist
  GPUs:  []
  train 0 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set027.csv
  train 1 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set087.csv
  train 2 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set003.csv
  train 3 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set056.csv
  train 4 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set076.csv
  train 5 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set094.csv
  train 6 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set017.csv
  train 7 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set074.csv
  train 8 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set055.csv
  train 9 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set096.csv
  train 10 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set054.csv
  train 11 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set093.csv
  train 12 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set079.csv
  train 13 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set014.csv
  train 14 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set008.csv
  train 15 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set031.csv
  train 16 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set023.csv
  train 17 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set025.csv
  train 18 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set034.csv
  train 19 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set009.csv
  train 20 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set044.csv
  train 21 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set063.csv
  train 22 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set004.csv
  train 23 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set072.csv
  train 24 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set046.csv
  train 25 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set049.csv
  train 26 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set007.csv
  train 27 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set100.csv
  train 28 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set083.csv
  train 29 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set077.csv
  train 30 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set061.csv
  train 31 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set081.csv
  train 32 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set091.csv
  train 33 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set069.csv
  train 34 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set052.csv
  train 35 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set028.csv
  train 36 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set019.csv
  train 37 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set057.csv
  train 38 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set064.csv
  train 39 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set075.csv
  train 40 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set002.csv
  train 41 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set062.csv
  train 42 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set043.csv
  train 43 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set042.csv
  train 44 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set005.csv
  train 45 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set016.csv
  train 46 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set018.csv
  train 47 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set041.csv
  train 48 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set039.csv
  train 49 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set006.csv
  train 50 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set092.csv
  train 51 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set060.csv
  train 52 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set001.csv
  train 53 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set035.csv
  train 54 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set029.csv
  train 55 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set051.csv
  train 56 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set012.csv
  train 57 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set036.csv
  train 58 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set024.csv
  train 59 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set053.csv
  train 60 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set011.csv
  train 61 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set032.csv
  train 62 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set067.csv
  train 63 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set058.csv
  train 64 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set080.csv
  train 65 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set086.csv
  train 66 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set033.csv
  train 67 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set085.csv
  train 68 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set015.csv
  train 69 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set090.csv
  train 70 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set020.csv
  train 71 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set030.csv
  train 72 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set050.csv
  train 73 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set098.csv
  train 74 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set099.csv
  train 75 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set070.csv
  train 76 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set021.csv
  train 77 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set095.csv
  train 78 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set073.csv
  train 79 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set078.csv
  test 80 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set026.csv
  test 81 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set038.csv
  test 82 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set082.csv
  test 83 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set047.csv
  test 84 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set040.csv
  test 85 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set066.csv
  test 86 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set059.csv
  test 87 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set013.csv
  test 88 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set089.csv
  test 89 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set071.csv
  test 90 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set088.csv
  test 91 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set037.csv
  test 92 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set022.csv
  test 93 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set084.csv
  test 94 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set010.csv
  test 95 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set097.csv
  test 96 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set068.csv
  test 97 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set065.csv
  test 98 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set048.csv
  test 99 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set045.csv
  shapes of feature dataframe: (16384, 8000) and label dataframe: (16384, 8000)
  shapes of feature dataframe: (16384, 2000) and label dataframe: (16384, 2000)

  for each 20,000 timestap trace there are the following numbers of corrupted timesteps:
   label001_1    16384
  label001_1    16384
  label001_1    16384
  label001_1    16384
  label001_1    16384
  dtype: int64
  2020-05-31 15:49:25.643578: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical opera
  tions:  AVX2 AVX512F FMA
  To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
  2020-05-31 15:49:25.653635: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz
  2020-05-31 15:49:25.655125: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x556ab2694730 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
  2020-05-31 15:49:25.655169: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
  number of training examples: 6400, number of validation examples: 1600

  ------------------------
  number of test examples: 2000

  input - shape:   (None, 16384, 1)
  output - shape:  (None, 16384, 1)
  2020-05-31 15:49:32.395226: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the A
  BCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
    if not isinstance(wrapped_dict, collections.Mapping):
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Pytho
  n 3.0, use inspect.signature() or inspect.getfullargspec()
    all_param_names, _, _, all_default_values = inspect.getargspec(fn)  # pylint: disable=W1505
  Epoch 1/2
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from
  'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
    if not isinstance(values, collections.Sequence):
   1/10 [==>...........................] - ETA: 0s - loss: 0.5648 - tp: 72554.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 9366.0000 - precision: 1.0000 - recall: 0.8857 - accuracy: 0.8857 - auc: 0.0000e+0020
  20-05-31 15:49:44.598769: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
  WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager
  .profiler) is deprecated and will be removed after 2020-07-01.
  Instructions for updating:
  use `tf.profiler.experimental.stop` instead.
  2020-05-31 15:49:46.123954: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_15_49_46
  2020-05-31 15:49:46.137599: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.trace.json.gz
  2020-05-31 15:49:46.163428: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_15_49_46
  2020-05-31 15:49:46.163531: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.memory
  _profile.json.gz
  2020-05-31 15:49:46.165569: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_15_49_46Dumped tool data for xplane.pb to /tmp/tb/trai
  n/plugins/profile/2020_05_31_15_49_46/node171.xplane.pb
  Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.overview_page.pb
  Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.input_pipeline.pb
  Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.tensorflow_stats.pb
  Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.kernel_stats.pb

  10/10 [==============================] - 23s 2s/step - loss: 0.0638 - tp: 809834.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 9366.0000 - precision: 1.0000 - recall: 0.9886 - accuracy: 0.9886 - auc: 0.0000e
  +00 - val_loss: 0.0000e+00 - val_tp: 819200.0000 - val_fp: 0.0000e+00 - val_tn: 0.0000e+00 - val_fn: 0.0000e+00 - val_precision: 1.0000 - val_recall: 1.0000 - val_accuracy: 1.0000 - val_auc: 0.0000e+00
  Epoch 2/2
  10/10 [==============================] - 18s 2s/step - loss: 6.4955e-17 - tp: 819200.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 0.0000e+00 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - auc: 0.
  0000e+00 - val_loss: 0.0000e+00 - val_tp: 819200.0000 - val_fp: 0.0000e+00 - val_tn: 0.0000e+00 - val_fn: 0.0000e+00 - val_precision: 1.0000 - val_recall: 1.0000 - val_accuracy: 1.0000 - val_auc: 0.0000e+00
  400/400 [==============================] - 120s 300ms/step - loss: 0.0000e+00 - tp: 32768000.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 0.0000e+00 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 -
   auc: 0.0000e+00
  2020/05/31 15:52:36 INFO mlflow.projects: === Run (ID '7f23f6ba7a244914b3cbbebd731d50a1') succeeded ===

These two test runs used the wrong dataset! the firstartifact_Mar2020 dataset is bright clusters, but the label is the uncorrupted trace, not just the artifact information. This dataset is meant for a Variational Autoencoder-Training.

2.1.6 experimental run

  mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=70 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=400 -P validation_steps=200
  (tensorflow_nightly) [ye53nis@node171 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=70 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -
  P steps_per_epoch=400 -P validation_steps=200
  2020/05/31 21:39:53 INFO mlflow.projects: === Created directory /tmp/tmpnc10f5ut for downloading remote URIs passed to arguments of type 'path' ===
  2020/05/31 21:39:53 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/f
  luotracify/training/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 70 /beegfs/ye53nis/saves/firstartefact_Sep2019 400 200' in run with ID '1aefda1366f04f5da5d1fc2241ad9208' ===
  2020-05-31 21:39:54.753597: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No
   such file or directory
  2020-05-31 21:39:54.753646: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favo
  ur of importlib; see the module's documentation for alternative uses
    import imp
  2.3.0-dev20200527
  2020-05-31 21:39:57.636018: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file
   or directory
  2020-05-31 21:39:57.636052: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
  2020-05-31 21:39:57.636075: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node171): /proc/driver/nvidia/version does not exist
  GPUs:  []
  train 0 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set027.csv
  train 1 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set087.csv
  train 2 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set003.csv
  train 3 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set056.csv
  train 4 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set076.csv
  train 5 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set094.csv
  train 6 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set017.csv
  train 7 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set074.csv
  train 8 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set055.csv
  train 9 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set096.csv
  train 10 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set054.csv
  train 11 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set093.csv
  train 12 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set079.csv
  train 13 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set014.csv
  train 14 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set008.csv
  train 15 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set031.csv
  train 16 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set023.csv
  train 17 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set025.csv
  train 18 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set034.csv
  train 19 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set009.csv
  train 20 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set044.csv
  train 21 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set063.csv
  train 22 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set004.csv
  train 23 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set072.csv
  train 24 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set046.csv
  train 25 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set049.csv
  train 26 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set007.csv
  train 27 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set100.csv
  train 28 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set083.csv
  train 29 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set077.csv
  train 30 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set061.csv
  train 31 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set081.csv
  train 32 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set091.csv
  train 33 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set069.csv
  train 34 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set052.csv
  train 35 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set028.csv
  train 36 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set019.csv
  train 37 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set057.csv
  train 38 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set064.csv
  train 39 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set075.csv
  train 40 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set002.csv
  train 41 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set062.csv
  train 42 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set043.csv
  train 43 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set042.csv
  train 44 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set005.csv
  train 45 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set016.csv
  train 46 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set018.csv
  train 47 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set041.csv
  train 48 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set039.csv
  train 49 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set006.csv
  train 50 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set092.csv
  train 51 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set060.csv
  train 52 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set001.csv
  train 53 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set035.csv
  train 54 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set029.csv
  train 55 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set051.csv
  train 56 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set012.csv
  train 57 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set036.csv
  train 58 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set024.csv
  train 59 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set053.csv
  train 60 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set011.csv
  train 61 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set032.csv
  train 62 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set067.csv
  train 63 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set058.csv
  train 64 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set080.csv
  train 65 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set086.csv
  train 66 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set033.csv
  train 67 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set085.csv
  train 68 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set015.csv
  train 69 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set090.csv
  train 70 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set020.csv
  train 71 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set030.csv
  train 72 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set050.csv
  train 73 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set098.csv
  train 74 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set099.csv
  train 75 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set070.csv
  train 76 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set021.csv
  train 77 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set095.csv
  train 78 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set073.csv
  train 79 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set078.csv
  test 80 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set026.csv
  test 81 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set038.csv
  test 82 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set082.csv
  test 83 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set047.csv
  test 84 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set040.csv
  test 85 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set066.csv
  test 86 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set059.csv
  test 87 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set013.csv
  test 88 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set089.csv
  test 89 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set071.csv
  test 90 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set088.csv
  test 91 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set037.csv
  test 92 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set022.csv
  test 93 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set084.csv
  test 94 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set010.csv
  test 95 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set097.csv
  test 96 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set068.csv
  test 97 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set065.csv
  test 98 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set048.csv
  test 99 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set045.csv
  shapes of feature dataframe: (20000, 8000) and label dataframe: (20000, 8000)
  shapes of feature dataframe: (20000, 2000) and label dataframe: (20000, 2000)

  for each 20,000 timestap trace there are the following numbers of corrupted timesteps:
   label001_1    6286
  label001_1    2568
  label001_1    4495
  label001_1    4414
  label001_1    1105
  dtype: int64
  2020-05-31 21:44:15.811359: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical opera
  tions:  AVX2 AVX512F FMA
  To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
  2020-05-31 21:44:15.820877: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz
  2020-05-31 21:44:15.822374: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55acbe3932e0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
  2020-05-31 21:44:15.822402: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
  number of training examples: 6400, number of validation examples: 1600

  ------------------------
  number of test examples: 2000

  input - shape:   (None, 16384, 1)
  output - shape:  (None, 16384, 1)
  2020-05-31 21:44:19.667769: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the A
  BCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
    if not isinstance(wrapped_dict, collections.Mapping):
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Pytho
  n 3.0, use inspect.signature() or inspect.getfullargspec()
    all_param_names, _, _, all_default_values = inspect.getargspec(fn)  # pylint: disable=W1505
  Epoch 1/70
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from
  'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
    if not isinstance(values, collections.Sequence):
    1/400 [..............................] - ETA: 0s - loss: 1.5974 - tp: 3783.0000 - fp: 23102.0000 - tn: 47580.0000 - fn: 7455.0000 - precision: 0.1407 - recall: 0.3366 - accuracy: 0.6270 - auc: 0.51772020-
  05-31 21:44:31.349376: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
  WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager
  .profiler) is deprecated and will be removed after 2020-07-01.
  Instructions for updating:
  use `tf.profiler.experimental.stop` instead.
  2020-05-31 21:44:32.843703: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_21_44_32
  2020-05-31 21:44:32.857345: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.trace.json.gz
  2020-05-31 21:44:32.882350: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_21_44_32
  2020-05-31 21:44:32.882475: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.memory
  _profile.json.gz
  2020-05-31 21:44:32.884516: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_21_44_32Dumped tool data for xplane.pb to /tmp/tb/trai
  n/plugins/profile/2020_05_31_21_44_32/node171.xplane.pb
  Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.overview_page.pb
  Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.input_pipeline.pb
  Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.tensorflow_stats.pb
  Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.kernel_stats.pb

  400/400 [==============================] - 648s 2s/step - loss: 1.2332 - tp: 3788781.0000 - fp: 1219922.0000 - tn: 24049440.0000 - fn: 3709858.0000 - precision: 0.7564 - recall: 0.5053 - accuracy: 0.8496 -
  auc: 0.8489 - val_loss: 322.0566 - val_tp: 3646493.0000 - val_fp: 12737507.0000 - val_tn: 0.0000e+00 - val_fn: 0.0000e+00 - val_precision: 0.2226 - val_recall: 1.0000 - val_accuracy: 0.2226 - val_auc: 0.500
  0
  Epoch 2/70
  400/400 [==============================] - 644s 2s/step - loss: 1.0109 - tp: 5005706.0000 - fp: 1436756.0000 - tn: 23682896.0000 - fn: 2642650.0000 - precision: 0.7770 - recall: 0.6545 - accuracy: 0.8755 -
  auc: 0.8979 - val_loss: 606.1023 - val_tp: 3756979.0000 - val_fp: 12626343.0000 - val_tn: 645.0000 - val_fn: 33.0000 - val_precision: 0.2293 - val_recall: 1.0000 - val_accuracy: 0.2293 - val_auc: 0.5000
  Epoch 3/70
  400/400 [==============================] - 628s 2s/step - loss: 0.8285 - tp: 5051785.0000 - fp: 1374618.0000 - tn: 23855938.0000 - fn: 2485671.0000 - precision: 0.7861 - recall: 0.6702 - accuracy: 0.8822 -
  auc: 0.9026 - val_loss: 10.0331 - val_tp: 3878641.0000 - val_fp: 12500019.0000 - val_tn: 4304.0000 - val_fn: 1036.0000 - val_precision: 0.2368 - val_recall: 0.9997 - val_accuracy: 0.2370 - val_auc: 0.5000
  Epoch 4/70
  400/400 [==============================] - 629s 2s/step - loss: 0.6738 - tp: 5537594.0000 - fp: 1337082.0000 - tn: 23959264.0000 - fn: 1934060.0000 - precision: 0.8055 - recall: 0.7411 - accuracy: 0.9002 -
  auc: 0.9303 - val_loss: 1.2653 - val_tp: 3303018.0000 - val_fp: 1870945.0000 - val_tn: 10869556.0000 - val_fn: 340481.0000 - val_precision: 0.6384 - val_recall: 0.9066 - val_accuracy: 0.8650 - val_auc: 0.92
  24
  Epoch 5/70
  400/400 [==============================] - 631s 2s/step - loss: 0.5958 - tp: 5587069.0000 - fp: 1162314.0000 - tn: 24313792.0000 - fn: 1704840.0000 - precision: 0.8278 - recall: 0.7662 - accuracy: 0.9125 -
  auc: 0.9409 - val_loss: 1.2564 - val_tp: 2402186.0000 - val_fp: 760086.0000 - val_tn: 11788196.0000 - val_fn: 1433532.0000 - val_precision: 0.7596 - val_recall: 0.6263 - val_accuracy: 0.8661 - val_auc: 0.84
  39
  Epoch 6/70
  400/400 [==============================] - 632s 2s/step - loss: 0.5248 - tp: 6187578.0000 - fp: 1102970.0000 - tn: 24040936.0000 - fn: 1436530.0000 - precision: 0.8487 - recall: 0.8116 - accuracy: 0.9225 -
  auc: 0.9536 - val_loss: 3.8886 - val_tp: 3699587.0000 - val_fp: 5786776.0000 - val_tn: 6872632.0000 - val_fn: 25005.0000 - val_precision: 0.3900 - val_recall: 0.9933 - val_accuracy: 0.6453 - val_auc: 0.8590
  Epoch 7/70
  400/400 [==============================] - 629s 2s/step - loss: 0.5417 - tp: 6075103.0000 - fp: 1198710.0000 - tn: 23976388.0000 - fn: 1517805.0000 - precision: 0.8352 - recall: 0.8001 - accuracy: 0.9171 -
  auc: 0.9507 - val_loss: 0.6575 - val_tp: 3549691.0000 - val_fp: 1710464.0000 - val_tn: 10816997.0000 - val_fn: 306848.0000 - val_precision: 0.6748 - val_recall: 0.9204 - val_accuracy: 0.8769 - val_auc: 0.95
  25
  Epoch 8/70
  400/400 [==============================] - 630s 2s/step - loss: 0.5261 - tp: 6041081.0000 - fp: 1000532.0000 - tn: 24306236.0000 - fn: 1420140.0000 - precision: 0.8579 - recall: 0.8097 - accuracy: 0.9261 -
  auc: 0.9527 - val_loss: 21.2177 - val_tp: 3715793.0000 - val_fp: 9558636.0000 - val_tn: 3103000.0000 - val_fn: 6571.0000 - val_precision: 0.2799 - val_recall: 0.9982 - val_accuracy: 0.4162 - val_auc: 0.6830
  Epoch 9/70
  400/400 [==============================] - 634s 2s/step - loss: 0.5777 - tp: 5925253.0000 - fp: 1206548.0000 - tn: 23980040.0000 - fn: 1656156.0000 - precision: 0.8308 - recall: 0.7816 - accuracy: 0.9126 -
  auc: 0.9467 - val_loss: 1.4550 - val_tp: 2525888.0000 - val_fp: 1794119.0000 - val_tn: 10974268.0000 - val_fn: 1089725.0000 - val_precision: 0.5847 - val_recall: 0.6986 - val_accuracy: 0.8240 - val_auc: 0.8
  157
  Epoch 10/70
  400/400 [==============================] - 633s 2s/step - loss: 0.4670 - tp: 6137276.0000 - fp: 1085998.0000 - tn: 24173720.0000 - fn: 1370997.0000 - precision: 0.8497 - recall: 0.8174 - accuracy: 0.9250 -
  auc: 0.9596 - val_loss: 0.4228 - val_tp: 3267331.0000 - val_fp: 512452.0000 - val_tn: 12134530.0000 - val_fn: 469687.0000 - val_precision: 0.8644 - val_recall: 0.8743 - val_accuracy: 0.9401 - val_auc: 0.958
  6
  Epoch 11/70
  400/400 [==============================] - 636s 2s/step - loss: 0.4183 - tp: 6387249.0000 - fp: 950432.0000 - tn: 24334356.0000 - fn: 1095980.0000 - precision: 0.8705 - recall: 0.8535 - accuracy: 0.9375 - a
  uc: 0.9662 - val_loss: 2.5835 - val_tp: 3791404.0000 - val_fp: 10983628.0000 - val_tn: 1606117.0000 - val_fn: 2851.0000 - val_precision: 0.2566 - val_recall: 0.9992 - val_accuracy: 0.3294 - val_auc: 0.9205
  Epoch 12/70
  400/400 [==============================] - 633s 2s/step - loss: 0.3622 - tp: 6622657.0000 - fp: 875498.0000 - tn: 24381258.0000 - fn: 888583.0000 - precision: 0.8832 - recall: 0.8817 - accuracy: 0.9462 - au
  c: 0.9716 - val_loss: 0.3789 - val_tp: 3055309.0000 - val_fp: 146845.0000 - val_tn: 12452879.0000 - val_fn: 728967.0000 - val_precision: 0.9541 - val_recall: 0.8074 - val_accuracy: 0.9465 - val_auc: 0.9659
  Epoch 13/70
  400/400 [==============================] - 631s 2s/step - loss: 0.3590 - tp: 6660677.0000 - fp: 869994.0000 - tn: 24335574.0000 - fn: 901756.0000 - precision: 0.8845 - recall: 0.8808 - accuracy: 0.9459 - au
  c: 0.9722 - val_loss: 0.4284 - val_tp: 2585078.0000 - val_fp: 26120.0000 - val_tn: 12713922.0000 - val_fn: 1058880.0000 - val_precision: 0.9900 - val_recall: 0.7094 - val_accuracy: 0.9338 - val_auc: 0.9595
  Epoch 14/70
  400/400 [==============================] - 631s 2s/step - loss: 0.3391 - tp: 6632643.0000 - fp: 838058.0000 - tn: 24461996.0000 - fn: 835290.0000 - precision: 0.8878 - recall: 0.8881 - accuracy: 0.9489 - au
  c: 0.9747 - val_loss: 0.3533 - val_tp: 3003363.0000 - val_fp: 127052.0000 - val_tn: 12492719.0000 - val_fn: 760866.0000 - val_precision: 0.9594 - val_recall: 0.7979 - val_accuracy: 0.9458 - val_auc: 0.9766
  Epoch 15/70
  400/400 [==============================] - 634s 2s/step - loss: 0.3422 - tp: 6682203.0000 - fp: 861078.0000 - tn: 24351496.0000 - fn: 873232.0000 - precision: 0.8858 - recall: 0.8844 - accuracy: 0.9471 - au
  c: 0.9741 - val_loss: 0.3630 - val_tp: 2919284.0000 - val_fp: 89104.0000 - val_tn: 12597566.0000 - val_fn: 778046.0000 - val_precision: 0.9704 - val_recall: 0.7896 - val_accuracy: 0.9471 - val_auc: 0.9763
  Epoch 16/70
  400/400 [==============================] - 632s 2s/step - loss: 0.3356 - tp: 6670288.0000 - fp: 818050.0000 - tn: 24453228.0000 - fn: 826432.0000 - precision: 0.8908 - recall: 0.8898 - accuracy: 0.9498 - au
  c: 0.9748 - val_loss: 0.7556 - val_tp: 1874704.0000 - val_fp: 1072.0000 - val_tn: 12589343.0000 - val_fn: 1918881.0000 - val_precision: 0.9994 - val_recall: 0.4942 - val_accuracy: 0.8828 - val_auc: 0.9213
  Epoch 17/70
  400/400 [==============================] - 629s 2s/step - loss: 0.3260 - tp: 6760875.0000 - fp: 795293.0000 - tn: 24413246.0000 - fn: 798585.0000 - precision: 0.8947 - recall: 0.8944 - accuracy: 0.9514 - au
  c: 0.9761 - val_loss: 0.4649 - val_tp: 2671759.0000 - val_fp: 36166.0000 - val_tn: 12592753.0000 - val_fn: 1083322.0000 - val_precision: 0.9866 - val_recall: 0.7115 - val_accuracy: 0.9317 - val_auc: 0.9546
  Epoch 18/70
  400/400 [==============================] - 631s 2s/step - loss: 0.3309 - tp: 6559233.0000 - fp: 790466.0000 - tn: 24604904.0000 - fn: 813389.0000 - precision: 0.8924 - recall: 0.8897 - accuracy: 0.9511 - au
  c: 0.9751 - val_loss: 0.4767 - val_tp: 2812359.0000 - val_fp: 90282.0000 - val_tn: 12389838.0000 - val_fn: 1091521.0000 - val_precision: 0.9689 - val_recall: 0.7204 - val_accuracy: 0.9279 - val_auc: 0.9586
  Epoch 19/70
  400/400 [==============================] - 631s 2s/step - loss: 0.3375 - tp: 6783791.0000 - fp: 866853.0000 - tn: 24263056.0000 - fn: 854305.0000 - precision: 0.8867 - recall: 0.8882 - accuracy: 0.9475 - au
  c: 0.9752 - val_loss: 0.3983 - val_tp: 2551077.0000 - val_fp: 35530.0000 - val_tn: 12721430.0000 - val_fn: 1075963.0000 - val_precision: 0.9863 - val_recall: 0.7033 - val_accuracy: 0.9322 - val_auc: 0.9710
  Epoch 20/70
  400/400 [==============================] - 632s 2s/step - loss: 0.3254 - tp: 6564303.0000 - fp: 830891.0000 - tn: 24563264.0000 - fn: 809541.0000 - precision: 0.8876 - recall: 0.8902 - accuracy: 0.9499 - au
  c: 0.9757 - val_loss: 0.5314 - val_tp: 2046949.0000 - val_fp: 3561.0000 - val_tn: 12714086.0000 - val_fn: 1619404.0000 - val_precision: 0.9983 - val_recall: 0.5583 - val_accuracy: 0.9009 - val_auc: 0.9545
  Epoch 21/70
  400/400 [==============================] - 640s 2s/step - loss: 0.3196 - tp: 6686380.0000 - fp: 775563.0000 - tn: 24496560.0000 - fn: 809502.0000 - precision: 0.8961 - recall: 0.8920 - accuracy: 0.9516 - au
  c: 0.9765 - val_loss: 0.4055 - val_tp: 2871943.0000 - val_fp: 218969.0000 - val_tn: 12467101.0000 - val_fn: 825987.0000 - val_precision: 0.9292 - val_recall: 0.7766 - val_accuracy: 0.9362 - val_auc: 0.9714
  Epoch 22/70
  400/400 [==============================] - 625s 2s/step - loss: 0.3154 - tp: 6756372.0000 - fp: 777461.0000 - tn: 24450556.0000 - fn: 783609.0000 - precision: 0.8968 - recall: 0.8961 - accuracy: 0.9524 - au
  c: 0.9770 - val_loss: 0.3362 - val_tp: 3143955.0000 - val_fp: 135752.0000 - val_tn: 12411791.0000 - val_fn: 692502.0000 - val_precision: 0.9586 - val_recall: 0.8195 - val_accuracy: 0.9494 - val_auc: 0.9754
  Epoch 23/70
  400/400 [==============================] - 633s 2s/step - loss: 0.3294 - tp: 6975026.0000 - fp: 773797.0000 - tn: 24208046.0000 - fn: 811140.0000 - precision: 0.9001 - recall: 0.8958 - accuracy: 0.9516 - au
  c: 0.9760 - val_loss: 0.3650 - val_tp: 2827380.0000 - val_fp: 88109.0000 - val_tn: 12626725.0000 - val_fn: 841786.0000 - val_precision: 0.9698 - val_recall: 0.7706 - val_accuracy: 0.9432 - val_auc: 0.9697
  Epoch 24/70
  400/400 [==============================] - 629s 2s/step - loss: 0.3184 - tp: 6701853.0000 - fp: 767247.0000 - tn: 24524388.0000 - fn: 774508.0000 - precision: 0.8973 - recall: 0.8964 - accuracy: 0.9529 - au
  c: 0.9767 - val_loss: 0.5394 - val_tp: 2252899.0000 - val_fp: 4050.0000 - val_tn: 12590875.0000 - val_fn: 1536176.0000 - val_precision: 0.9982 - val_recall: 0.5946 - val_accuracy: 0.9060 - val_auc: 0.9528
  Epoch 25/70
  400/400 [==============================] - 633s 2s/step - loss: 0.3189 - tp: 6642243.0000 - fp: 777194.0000 - tn: 24527812.0000 - fn: 820758.0000 - precision: 0.8952 - recall: 0.8900 - accuracy: 0.9512 - au
  c: 0.9762 - val_loss: 0.3377 - val_tp: 3281478.0000 - val_fp: 329375.0000 - val_tn: 12262368.0000 - val_fn: 510779.0000 - val_precision: 0.9088 - val_recall: 0.8653 - val_accuracy: 0.9487 - val_auc: 0.9760
  Epoch 26/70
  400/400 [==============================] - 636s 2s/step - loss: 0.3137 - tp: 6689776.0000 - fp: 788613.0000 - tn: 24505860.0000 - fn: 783748.0000 - precision: 0.8945 - recall: 0.8951 - accuracy: 0.9520 - au
  c: 0.9772 - val_loss: 0.4429 - val_tp: 2772106.0000 - val_fp: 45921.0000 - val_tn: 12444722.0000 - val_fn: 1121251.0000 - val_precision: 0.9837 - val_recall: 0.7120 - val_accuracy: 0.9288 - val_auc: 0.9625
  Epoch 27/70
  400/400 [==============================] - 632s 2s/step - loss: 0.3110 - tp: 6754135.0000 - fp: 761746.0000 - tn: 24463904.0000 - fn: 788220.0000 - precision: 0.8986 - recall: 0.8955 - accuracy: 0.9527 - au
  c: 0.9778 - val_loss: 0.3217 - val_tp: 3322329.0000 - val_fp: 341816.0000 - val_tn: 12309980.0000 - val_fn: 409875.0000 - val_precision: 0.9067 - val_recall: 0.8902 - val_accuracy: 0.9541 - val_auc: 0.9829
  Epoch 28/70
  400/400 [==============================] - 632s 2s/step - loss: 0.3143 - tp: 6711103.0000 - fp: 764757.0000 - tn: 24512308.0000 - fn: 779835.0000 - precision: 0.8977 - recall: 0.8959 - accuracy: 0.9529 - au
  c: 0.9772 - val_loss: 0.5518 - val_tp: 2137267.0000 - val_fp: 8417.0000 - val_tn: 12762333.0000 - val_fn: 1475983.0000 - val_precision: 0.9961 - val_recall: 0.5915 - val_accuracy: 0.9094 - val_auc: 0.9459
  Epoch 29/70
  400/400 [==============================] - 636s 2s/step - loss: 0.3172 - tp: 6808597.0000 - fp: 762146.0000 - tn: 24410300.0000 - fn: 786963.0000 - precision: 0.8993 - recall: 0.8964 - accuracy: 0.9527 - au
  c: 0.9773 - val_loss: 0.3880 - val_tp: 3284429.0000 - val_fp: 149353.0000 - val_tn: 12279814.0000 - val_fn: 670404.0000 - val_precision: 0.9565 - val_recall: 0.8305 - val_accuracy: 0.9500 - val_auc: 0.9824
  Epoch 30/70
  400/400 [==============================] - 636s 2s/step - loss: 0.3119 - tp: 6732407.0000 - fp: 734825.0000 - tn: 24527008.0000 - fn: 773770.0000 - precision: 0.9016 - recall: 0.8969 - accuracy: 0.9540 - au
  c: 0.9770 - val_loss: 0.3304 - val_tp: 3197972.0000 - val_fp: 378897.0000 - val_tn: 12377137.0000 - val_fn: 429994.0000 - val_precision: 0.8941 - val_recall: 0.8815 - val_accuracy: 0.9506 - val_auc: 0.9788
  Epoch 31/70
  400/400 [==============================] - 639s 2s/step - loss: 0.3172 - tp: 6584008.0000 - fp: 749012.0000 - tn: 24635250.0000 - fn: 799720.0000 - precision: 0.8979 - recall: 0.8917 - accuracy: 0.9527 - au
  c: 0.9763 - val_loss: 0.4527 - val_tp: 3349009.0000 - val_fp: 338939.0000 - val_tn: 12288817.0000 - val_fn: 407235.0000 - val_precision: 0.9081 - val_recall: 0.8916 - val_accuracy: 0.9545 - val_auc: 0.9822
  Epoch 32/70
  400/400 [==============================] - 632s 2s/step - loss: 0.3146 - tp: 6690763.0000 - fp: 766270.0000 - tn: 24531178.0000 - fn: 779790.0000 - precision: 0.8972 - recall: 0.8956 - accuracy: 0.9528 - au
  c: 0.9763 - val_loss: 0.3255 - val_tp: 2945281.0000 - val_fp: 103765.0000 - val_tn: 12623298.0000 - val_fn: 711656.0000 - val_precision: 0.9660 - val_recall: 0.8054 - val_accuracy: 0.9502 - val_auc: 0.9761
  Epoch 33/70
  400/400 [==============================] - 632s 2s/step - loss: 0.2975 - tp: 6744548.0000 - fp: 747413.0000 - tn: 24547794.0000 - fn: 728248.0000 - precision: 0.9002 - recall: 0.9025 - accuracy: 0.9550 - au
  c: 0.9787 - val_loss: 0.3461 - val_tp: 2865337.0000 - val_fp: 80568.0000 - val_tn: 12713439.0000 - val_fn: 724656.0000 - val_precision: 0.9727 - val_recall: 0.7981 - val_accuracy: 0.9509 - val_auc: 0.9780
  Epoch 34/70
  400/400 [==============================] - 635s 2s/step - loss: 0.3060 - tp: 6610739.0000 - fp: 717355.0000 - tn: 24665928.0000 - fn: 773982.0000 - precision: 0.9021 - recall: 0.8952 - accuracy: 0.9545 - au
  c: 0.9768 - val_loss: 0.3895 - val_tp: 2875845.0000 - val_fp: 64187.0000 - val_tn: 12593693.0000 - val_fn: 850275.0000 - val_precision: 0.9782 - val_recall: 0.7718 - val_accuracy: 0.9442 - val_auc: 0.9762
  Epoch 35/70
  400/400 [==============================] - 632s 2s/step - loss: 0.3131 - tp: 6658644.0000 - fp: 787948.0000 - tn: 24555564.0000 - fn: 765835.0000 - precision: 0.8942 - recall: 0.8968 - accuracy: 0.9526 - au
  c: 0.9770 - val_loss: 0.3298 - val_tp: 3291381.0000 - val_fp: 128257.0000 - val_tn: 12266428.0000 - val_fn: 697934.0000 - val_precision: 0.9625 - val_recall: 0.8250 - val_accuracy: 0.9496 - val_auc: 0.9787
  Epoch 36/70
  400/400 [==============================] - 631s 2s/step - loss: 0.3076 - tp: 6714273.0000 - fp: 757539.0000 - tn: 24536108.0000 - fn: 760070.0000 - precision: 0.8986 - recall: 0.8983 - accuracy: 0.9537 - au
  c: 0.9776 - val_loss: 0.3586 - val_tp: 2828629.0000 - val_fp: 70731.0000 - val_tn: 12691571.0000 - val_fn: 793069.0000 - val_precision: 0.9756 - val_recall: 0.7810 - val_accuracy: 0.9473 - val_auc: 0.9764
  Epoch 37/70
  400/400 [==============================] - 630s 2s/step - loss: 0.3019 - tp: 6673190.0000 - fp: 759238.0000 - tn: 24567992.0000 - fn: 767563.0000 - precision: 0.8978 - recall: 0.8968 - accuracy: 0.9534 - au
  c: 0.9783 - val_loss: 0.3614 - val_tp: 3049928.0000 - val_fp: 93276.0000 - val_tn: 12445161.0000 - val_fn: 795635.0000 - val_precision: 0.9703 - val_recall: 0.7931 - val_accuracy: 0.9457 - val_auc: 0.9755
  Epoch 38/70
  400/400 [==============================] - 631s 2s/step - loss: 0.3022 - tp: 6902334.0000 - fp: 772344.0000 - tn: 24353052.0000 - fn: 740273.0000 - precision: 0.8994 - recall: 0.9031 - accuracy: 0.9538 - au
  c: 0.9785 - val_loss: 0.3220 - val_tp: 2932889.0000 - val_fp: 104394.0000 - val_tn: 12669356.0000 - val_fn: 677361.0000 - val_precision: 0.9656 - val_recall: 0.8124 - val_accuracy: 0.9523 - val_auc: 0.9783
  Epoch 39/70
  400/400 [==============================] - 632s 2s/step - loss: 0.2978 - tp: 6800883.0000 - fp: 734721.0000 - tn: 24491858.0000 - fn: 740536.0000 - precision: 0.9025 - recall: 0.9018 - accuracy: 0.9550 - au
  c: 0.9785 - val_loss: 0.3295 - val_tp: 3082233.0000 - val_fp: 128611.0000 - val_tn: 12542874.0000 - val_fn: 630282.0000 - val_precision: 0.9599 - val_recall: 0.8302 - val_accuracy: 0.9537 - val_auc: 0.9799
  Epoch 40/70
  400/400 [==============================] - 634s 2s/step - loss: 0.3083 - tp: 6769252.0000 - fp: 762049.0000 - tn: 24472648.0000 - fn: 764043.0000 - precision: 0.8988 - recall: 0.8986 - accuracy: 0.9534 - au
  c: 0.9771 - val_loss: 0.3593 - val_tp: 2826188.0000 - val_fp: 59581.0000 - val_tn: 12671875.0000 - val_fn: 826356.0000 - val_precision: 0.9794 - val_recall: 0.7738 - val_accuracy: 0.9459 - val_auc: 0.9756
  Epoch 41/70
  400/400 [==============================] - 630s 2s/step - loss: 0.2953 - tp: 6718090.0000 - fp: 747344.0000 - tn: 24561188.0000 - fn: 741388.0000 - precision: 0.8999 - recall: 0.9006 - accuracy: 0.9546 - au
  c: 0.9793 - val_loss: 0.3628 - val_tp: 2996938.0000 - val_fp: 97647.0000 - val_tn: 12518986.0000 - val_fn: 770429.0000 - val_precision: 0.9684 - val_recall: 0.7955 - val_accuracy: 0.9470 - val_auc: 0.9774
  Epoch 42/70
  400/400 [==============================] - 629s 2s/step - loss: 0.3039 - tp: 6654758.0000 - fp: 731543.0000 - tn: 24611838.0000 - fn: 769861.0000 - precision: 0.9010 - recall: 0.8963 - accuracy: 0.9542 - au
  c: 0.9775 - val_loss: 0.3282 - val_tp: 2923757.0000 - val_fp: 81924.0000 - val_tn: 12615035.0000 - val_fn: 763284.0000 - val_precision: 0.9727 - val_recall: 0.7930 - val_accuracy: 0.9484 - val_auc: 0.9759
  Epoch 43/70
  400/400 [==============================] - 636s 2s/step - loss: 0.2937 - tp: 6435979.0000 - fp: 733398.0000 - tn: 24870358.0000 - fn: 728270.0000 - precision: 0.8977 - recall: 0.8983 - accuracy: 0.9554 - au
  c: 0.9781 - val_loss: 0.3116 - val_tp: 3021625.0000 - val_fp: 126888.0000 - val_tn: 12599400.0000 - val_fn: 636087.0000 - val_precision: 0.9597 - val_recall: 0.8261 - val_accuracy: 0.9534 - val_auc: 0.9791
  Epoch 44/70
  400/400 [==============================] - 638s 2s/step - loss: 0.3207 - tp: 6810749.0000 - fp: 779963.0000 - tn: 24383824.0000 - fn: 793469.0000 - precision: 0.8972 - recall: 0.8957 - accuracy: 0.9520 - au
  c: 0.9763 - val_loss: 0.3609 - val_tp: 3046190.0000 - val_fp: 96429.0000 - val_tn: 12529182.0000 - val_fn: 712199.0000 - val_precision: 0.9693 - val_recall: 0.8105 - val_accuracy: 0.9506 - val_auc: 0.9784
  Epoch 45/70
  400/400 [==============================] - 631s 2s/step - loss: 0.3025 - tp: 7086768.0000 - fp: 750575.0000 - tn: 24182492.0000 - fn: 748166.0000 - precision: 0.9042 - recall: 0.9045 - accuracy: 0.9543 - au
  c: 0.9790 - val_loss: 0.3397 - val_tp: 2823520.0000 - val_fp: 64000.0000 - val_tn: 12722924.0000 - val_fn: 773556.0000 - val_precision: 0.9778 - val_recall: 0.7849 - val_accuracy: 0.9489 - val_auc: 0.9768
  Epoch 46/70
  400/400 [==============================] - 639s 2s/step - loss: 0.3029 - tp: 6575419.0000 - fp: 752434.0000 - tn: 24679216.0000 - fn: 760935.0000 - precision: 0.8973 - recall: 0.8963 - accuracy: 0.9538 - au
  c: 0.9777 - val_loss: 0.3449 - val_tp: 3214822.0000 - val_fp: 77887.0000 - val_tn: 12327207.0000 - val_fn: 764084.0000 - val_precision: 0.9763 - val_recall: 0.8080 - val_accuracy: 0.9486 - val_auc: 0.9800
  Epoch 47/70
  400/400 [==============================] - 638s 2s/step - loss: 0.2988 - tp: 7041341.0000 - fp: 779154.0000 - tn: 24212120.0000 - fn: 735391.0000 - precision: 0.9004 - recall: 0.9054 - accuracy: 0.9538 - au
  c: 0.9794 - val_loss: 0.3507 - val_tp: 2992658.0000 - val_fp: 83764.0000 - val_tn: 12550469.0000 - val_fn: 757109.0000 - val_precision: 0.9728 - val_recall: 0.7981 - val_accuracy: 0.9487 - val_auc: 0.9795
  Epoch 48/70
  400/400 [==============================] - 633s 2s/step - loss: 0.3015 - tp: 6740728.0000 - fp: 737863.0000 - tn: 24521192.0000 - fn: 768220.0000 - precision: 0.9013 - recall: 0.8977 - accuracy: 0.9540 - au
  c: 0.9781 - val_loss: 0.3456 - val_tp: 3135590.0000 - val_fp: 126895.0000 - val_tn: 12407028.0000 - val_fn: 714487.0000 - val_precision: 0.9611 - val_recall: 0.8144 - val_accuracy: 0.9486 - val_auc: 0.9755
  Epoch 49/70
  400/400 [==============================] - 630s 2s/step - loss: 0.2965 - tp: 6929622.0000 - fp: 773455.0000 - tn: 24334720.0000 - fn: 730210.0000 - precision: 0.8996 - recall: 0.9047 - accuracy: 0.9541 - au
  c: 0.9793 - val_loss: 0.3253 - val_tp: 2923894.0000 - val_fp: 87045.0000 - val_tn: 12668721.0000 - val_fn: 704340.0000 - val_precision: 0.9711 - val_recall: 0.8059 - val_accuracy: 0.9517 - val_auc: 0.9786
  Epoch 50/70
  400/400 [==============================] - 631s 2s/step - loss: 0.3053 - tp: 6698368.0000 - fp: 772097.0000 - tn: 24544316.0000 - fn: 753212.0000 - precision: 0.8966 - recall: 0.8989 - accuracy: 0.9535 - au
  c: 0.9778 - val_loss: 0.3687 - val_tp: 2958570.0000 - val_fp: 52523.0000 - val_tn: 12513477.0000 - val_fn: 859430.0000 - val_precision: 0.9826 - val_recall: 0.7749 - val_accuracy: 0.9443 - val_auc: 0.9771
  Epoch 51/70
  400/400 [==============================] - 635s 2s/step - loss: 0.2971 - tp: 6664028.0000 - fp: 737094.0000 - tn: 24626012.0000 - fn: 740867.0000 - precision: 0.9004 - recall: 0.8999 - accuracy: 0.9549 - au
  c: 0.9786 - val_loss: 0.3459 - val_tp: 3029844.0000 - val_fp: 116426.0000 - val_tn: 12539360.0000 - val_fn: 698370.0000 - val_precision: 0.9630 - val_recall: 0.8127 - val_accuracy: 0.9503 - val_auc: 0.9793
  Epoch 52/70
  400/400 [==============================] - 633s 2s/step - loss: 0.3026 - tp: 6753347.0000 - fp: 678789.0000 - tn: 24527348.0000 - fn: 808513.0000 - precision: 0.9087 - recall: 0.8931 - accuracy: 0.9546 - au
  c: 0.9785 - val_loss: 0.3330 - val_tp: 2851126.0000 - val_fp: 109294.0000 - val_tn: 12699895.0000 - val_fn: 723685.0000 - val_precision: 0.9631 - val_recall: 0.7976 - val_accuracy: 0.9492 - val_auc: 0.9762
  Epoch 53/70
  400/400 [==============================] - 636s 2s/step - loss: 0.2980 - tp: 6803599.0000 - fp: 685524.0000 - tn: 24488690.0000 - fn: 790195.0000 - precision: 0.9085 - recall: 0.8959 - accuracy: 0.9550 - au
  c: 0.9786 - val_loss: 0.3384 - val_tp: 2978082.0000 - val_fp: 84198.0000 - val_tn: 12570606.0000 - val_fn: 751114.0000 - val_precision: 0.9725 - val_recall: 0.7986 - val_accuracy: 0.9490 - val_auc: 0.9782
  Epoch 54/70
  400/400 [==============================] - 636s 2s/step - loss: 0.3008 - tp: 6617352.0000 - fp: 660115.0000 - tn: 24672528.0000 - fn: 818008.0000 - precision: 0.9093 - recall: 0.8900 - accuracy: 0.9549 - au
  c: 0.9776 - val_loss: 0.3487 - val_tp: 3069049.0000 - val_fp: 100663.0000 - val_tn: 12450296.0000 - val_fn: 763992.0000 - val_precision: 0.9682 - val_recall: 0.8007 - val_accuracy: 0.9472 - val_auc: 0.9767
  Epoch 55/70
  400/400 [==============================] - 634s 2s/step - loss: 0.3041 - tp: 6727196.0000 - fp: 696140.0000 - tn: 24540392.0000 - fn: 804270.0000 - precision: 0.9062 - recall: 0.8932 - accuracy: 0.9542 - au
  c: 0.9781 - val_loss: 0.3201 - val_tp: 2941382.0000 - val_fp: 99527.0000 - val_tn: 12647545.0000 - val_fn: 695546.0000 - val_precision: 0.9673 - val_recall: 0.8088 - val_accuracy: 0.9515 - val_auc: 0.9784
  Epoch 56/70
  400/400 [==============================] - 636s 2s/step - loss: 0.2960 - tp: 6826521.0000 - fp: 708283.0000 - tn: 24472022.0000 - fn: 761183.0000 - precision: 0.9060 - recall: 0.8997 - accuracy: 0.9552 - au
  c: 0.9793 - val_loss: 0.3209 - val_tp: 2942017.0000 - val_fp: 95854.0000 - val_tn: 12658328.0000 - val_fn: 687801.0000 - val_precision: 0.9684 - val_recall: 0.8105 - val_accuracy: 0.9522 - val_auc: 0.9787
  Epoch 57/70
  400/400 [==============================] - 638s 2s/step - loss: 0.2978 - tp: 6648554.0000 - fp: 686959.0000 - tn: 24654000.0000 - fn: 778489.0000 - precision: 0.9064 - recall: 0.8952 - accuracy: 0.9553 - au
  c: 0.9782 - val_loss: 0.3418 - val_tp: 3047748.0000 - val_fp: 90564.0000 - val_tn: 12482669.0000 - val_fn: 763019.0000 - val_precision: 0.9711 - val_recall: 0.7998 - val_accuracy: 0.9479 - val_auc: 0.9784
  Epoch 58/70
  400/400 [==============================] - 637s 2s/step - loss: 0.3043 - tp: 6628231.0000 - fp: 693416.0000 - tn: 24639726.0000 - fn: 806627.0000 - precision: 0.9053 - recall: 0.8915 - accuracy: 0.9542 - au
  c: 0.9777 - val_loss: 0.3313 - val_tp: 3159765.0000 - val_fp: 106822.0000 - val_tn: 12398325.0000 - val_fn: 719088.0000 - val_precision: 0.9673 - val_recall: 0.8146 - val_accuracy: 0.9496 - val_auc: 0.9780
  Epoch 59/70
  400/400 [==============================] - 637s 2s/step - loss: 0.3006 - tp: 6652559.0000 - fp: 718848.0000 - tn: 24625476.0000 - fn: 771096.0000 - precision: 0.9025 - recall: 0.8961 - accuracy: 0.9545 - au
  c: 0.9786 - val_loss: 0.3533 - val_tp: 3040082.0000 - val_fp: 82199.0000 - val_tn: 12530147.0000 - val_fn: 731572.0000 - val_precision: 0.9737 - val_recall: 0.8060 - val_accuracy: 0.9503 - val_auc: 0.9795
  Epoch 60/70
  400/400 [==============================] - 634s 2s/step - loss: 0.3137 - tp: 6891311.0000 - fp: 715443.0000 - tn: 24333106.0000 - fn: 828145.0000 - precision: 0.9059 - recall: 0.8927 - accuracy: 0.9529 - au
  c: 0.9774 - val_loss: 0.3250 - val_tp: 2930627.0000 - val_fp: 99442.0000 - val_tn: 12670646.0000 - val_fn: 683285.0000 - val_precision: 0.9672 - val_recall: 0.8109 - val_accuracy: 0.9522 - val_auc: 0.9785
  Epoch 61/70
  400/400 [==============================] - 641s 2s/step - loss: 0.3028 - tp: 6738706.0000 - fp: 737970.0000 - tn: 24529770.0000 - fn: 761545.0000 - precision: 0.9013 - recall: 0.8985 - accuracy: 0.9542 - au
  c: 0.9783 - val_loss: 0.3347 - val_tp: 3211606.0000 - val_fp: 100010.0000 - val_tn: 12350882.0000 - val_fn: 721502.0000 - val_precision: 0.9698 - val_recall: 0.8166 - val_accuracy: 0.9499 - val_auc: 0.9791
  Epoch 62/70
  400/400 [==============================] - 635s 2s/step - loss: 0.3047 - tp: 6492872.0000 - fp: 710243.0000 - tn: 24764572.0000 - fn: 800309.0000 - precision: 0.9014 - recall: 0.8903 - accuracy: 0.9539 - au
  c: 0.9771 - val_loss: 0.3868 - val_tp: 3110246.0000 - val_fp: 71777.0000 - val_tn: 12369449.0000 - val_fn: 832528.0000 - val_precision: 0.9774 - val_recall: 0.7888 - val_accuracy: 0.9448 - val_auc: 0.9764
  Epoch 63/70
  400/400 [==============================] - 633s 2s/step - loss: 0.3033 - tp: 6979600.0000 - fp: 720858.0000 - tn: 24300348.0000 - fn: 767184.0000 - precision: 0.9064 - recall: 0.9010 - accuracy: 0.9546 - au
  c: 0.9788 - val_loss: 0.3340 - val_tp: 3093435.0000 - val_fp: 85835.0000 - val_tn: 12442850.0000 - val_fn: 761880.0000 - val_precision: 0.9730 - val_recall: 0.8024 - val_accuracy: 0.9483 - val_auc: 0.9784
  Epoch 64/70
  400/400 [==============================] - 637s 2s/step - loss: 0.2992 - tp: 6684955.0000 - fp: 717935.0000 - tn: 24597880.0000 - fn: 767241.0000 - precision: 0.9030 - recall: 0.8970 - accuracy: 0.9547 - au
  c: 0.9787 - val_loss: 0.3498 - val_tp: 2864609.0000 - val_fp: 82878.0000 - val_tn: 12711063.0000 - val_fn: 725450.0000 - val_precision: 0.9719 - val_recall: 0.7979 - val_accuracy: 0.9507 - val_auc: 0.9786
  Epoch 65/70
  400/400 [==============================] - 637s 2s/step - loss: 0.2992 - tp: 6881058.0000 - fp: 713083.0000 - tn: 24387492.0000 - fn: 786363.0000 - precision: 0.9061 - recall: 0.8974 - accuracy: 0.9542 - au
  c: 0.9792 - val_loss: 0.3161 - val_tp: 3129890.0000 - val_fp: 123769.0000 - val_tn: 12482708.0000 - val_fn: 647633.0000 - val_precision: 0.9620 - val_recall: 0.8286 - val_accuracy: 0.9529 - val_auc: 0.9799
  Epoch 66/70
  400/400 [==============================] - 638s 2s/step - loss: 0.2998 - tp: 6513297.0000 - fp: 696712.0000 - tn: 24803000.0000 - fn: 754991.0000 - precision: 0.9034 - recall: 0.8961 - accuracy: 0.9557 - au
  c: 0.9779 - val_loss: 0.3222 - val_tp: 3039732.0000 - val_fp: 95061.0000 - val_tn: 12541210.0000 - val_fn: 707997.0000 - val_precision: 0.9697 - val_recall: 0.8111 - val_accuracy: 0.9510 - val_auc: 0.9783
  Epoch 67/70
  400/400 [==============================] - 635s 2s/step - loss: 0.3011 - tp: 6869971.0000 - fp: 709956.0000 - tn: 24396884.0000 - fn: 791177.0000 - precision: 0.9063 - recall: 0.8967 - accuracy: 0.9542 - au
  c: 0.9787 - val_loss: 0.3435 - val_tp: 3137473.0000 - val_fp: 93385.0000 - val_tn: 12425599.0000 - val_fn: 727543.0000 - val_precision: 0.9711 - val_recall: 0.8118 - val_accuracy: 0.9499 - val_auc: 0.9791
  Epoch 68/70
  400/400 [==============================] - 632s 2s/step - loss: 0.3034 - tp: 6640807.0000 - fp: 757137.0000 - tn: 24604356.0000 - fn: 765698.0000 - precision: 0.8977 - recall: 0.8966 - accuracy: 0.9535 - au
  c: 0.9781 - val_loss: 0.3824 - val_tp: 3081203.0000 - val_fp: 98009.0000 - val_tn: 12448722.0000 - val_fn: 756066.0000 - val_precision: 0.9692 - val_recall: 0.8030 - val_accuracy: 0.9479 - val_auc: 0.9776
  Epoch 69/70
  400/400 [==============================] - 636s 2s/step - loss: 0.2988 - tp: 6698533.0000 - fp: 734236.0000 - tn: 24588786.0000 - fn: 746437.0000 - precision: 0.9012 - recall: 0.8997 - accuracy: 0.9548 - au
  c: 0.9788 - val_loss: 0.3604 - val_tp: 2967778.0000 - val_fp: 93005.0000 - val_tn: 12540155.0000 - val_fn: 783062.0000 - val_precision: 0.9696 - val_recall: 0.7912 - val_accuracy: 0.9465 - val_auc: 0.9780
  Epoch 70/70
  400/400 [==============================] - 638s 2s/step - loss: 0.2996 - tp: 6725869.0000 - fp: 711970.0000 - tn: 24565164.0000 - fn: 765019.0000 - precision: 0.9043 - recall: 0.8979 - accuracy: 0.9549 - au
  c: 0.9786 - val_loss: 0.3505 - val_tp: 3050870.0000 - val_fp: 101786.0000 - val_tn: 12476995.0000 - val_fn: 754349.0000 - val_precision: 0.9677 - val_recall: 0.8018 - val_accuracy: 0.9477 - val_auc: 0.9771
  400/400 [==============================] - 121s 301ms/step - loss: 0.3684 - tp: 6266358.0000 - fp: 308665.0000 - tn: 24781578.0000 - fn: 1411378.0000 - precision: 0.9531 - recall: 0.8162 - accuracy: 0.9475
  - auc: 0.9778
  2020/06/01 10:07:50 INFO mlflow.projects: === Run (ID '1aefda1366f04f5da5d1fc2241ad9208') succeeded ===
  (tensorflow_nightly) [ye53nis@node171 drmed-git]$
  mlflow ui
  (tensorflow_nightly) [ye53nis@node171 drmed-git]$ mlflow ui
  [2020-06-01 10:38:40 +0200] [298787] [INFO] Starting gunicorn 20.0.4
  [2020-06-01 10:38:40 +0200] [298787] [INFO] Listening at: http://127.0.0.1:5000 (298787)
  [2020-06-01 10:38:40 +0200] [298787] [INFO] Using worker: sync
  [2020-06-01 10:38:40 +0200] [298793] [INFO] Booting worker with pid: 298793

2.1.7 read out logs

2.1.7.1 read out mlflow logs using CLI
  conda activate tensorflow_env
  cd Programme/drmed-git
  export MLFLOW_EXPERIMENT_NAME=exp-devtest
  export MLFLOW_TRACKING_URI=file:./data/mlruns
  mlflow experiments list
  mlflow runs list --experiment-id 1
  mlflow artifacts list -r 47b870b8fdcb4445956635c6758caff3
  mlflow artifacts list -r 47b870b8fdcb4445956635c6758caff3 -a model
  mlflow artifacts list -r 47b870b8fdcb4445956635c6758caff3 -a model_summary.txt
  mlflow artifacts list -r 47b870b8fdcb4445956635c6758caff3 -a tensorboard_logs/train/
  mlflow artifacts download -r 47b870b8fdcb4445956635c6758caff3
  mlflow artifacts download -r 47b870b8fdcb4445956635c6758caff3 -a model
  mlflow artifacts download -r 47b870b8fdcb4445956635c6758caff3 -a model_summary.txt
  mlflow artifacts download -r 47b870b8fdcb4445956635c6758caff3 -a tensorboard_logs
  mlflow runs describe --run-id 47b870b8fdcb4445956635c6758caff3
  tensorboard --logdir=data/mlruns/1/47b870b8fdcb4445956635c6758caff3/artifacts/tensorboard_logs
  mlflow ui --backend-store-uri file:///home/lex/Programme/drmed-git/data/mlruns
2.1.7.2 Reading out mlflow logs with Python API

I started local machine:

  import mlflow
  import pprint
  %cd /home/lex/Programme/drmed-git/
/home/lex/Programme/drmed-git
  uri = 'file:///home/lex/Programme/drmed-git/data/mlruns'
  mlflow.set_tracking_uri(uri)
  runs = mlflow.search_runs(experiment_ids='0')
  print('run_id of first in list: ', runs.iloc[0].run_id)
  print('no of runs in list: ', len(runs))
  print()
  runs
run_id of first in list:  1aefda1366f04f5da5d1fc2241ad9208
no of runs in list:  1
  run\id experiment\id status artifact\uri start\time end\time metrics.val\recall metrics.tn metrics.auc metrics.val\loss tags.mlflow.log-model.history tags.mlflow.source.type tags.mlflow.user tags.mlflow.project.entryPoint tags.mlflow.source.git.repoURL tags.mlflow.source.name tags.mlflow.source.git.commit tags.mlflow.project.backend tags.mlflow.gitRepoURL tags.mlflow.project.env
0 1aefda1366f04f5da5d1fc2241ad9208 0 FINISHED ./data/mlruns/0/1aefda1366f04f5da5d1fc224 2020-05-31 19:39:51.905000+00:00 2020-06-01 08:07:51.011000+00:00 0.801759 24565164.0 0.978632 0.350498 [{“run\id”: “1aefda1366f04f5da5d1fc2241ad9208”… PROJECT ye53nis main https://github.com/aseltmann/fluotracify file:///beegfs/ye53nis/drmed-git 2225d6fa18cca9044960b6e86a56ec9fb4362d5d local https://github.com/aseltmann/fluotracify conda

1 rows × 52 columns

  client = mlflow.tracking.MlflowClient(tracking_uri=uri)
  run_idx = 0

  # mlflow.entities.Experiment
  print('client.get_experiment()\n', exp.to_proto())
  # mlflow.entities.Metric
  # metent = client.get_metric_history(run_id=runs.iloc[run_idx].run_id, key='loss')
  # for i in metent:
      # print(i)

  print('- - - mlflow.entities.Run - - -')
  run = client.get_run(runs.iloc[run_idx].run_id)
  print('run.info.to_proto\n', run.info.to_proto())
  pprint.pprint(run.data.metrics, sort_dicts=False)

  model_path = client.download_artifacts(
      run_id=runs.iloc[run_idx].run_id,
      path='model')
  tensorboard_path = client.download_artifacts(
      run_id=runs.iloc[run_idx].run_id,
      path='tensorboard_logs')



  print('\nmodel_path\n', model_path)
  print('\nMLmodel file')
  %cat $model_path/MLmodel
  print('\nconda.yaml')
  %cat $model_path/conda.yaml
  print('\nkeras_module.txt')
  %cat $model_path/data/keras_module.txt
  client.get_experiment()
   experiment_id: "0"
  name: "exp-310520-unet"
  artifact_location: "file:./data/mlruns/0"
  lifecycle_stage: "active"

  - - - mlflow.entities.Run - - -
  run.info.to_proto
   run_uuid: "1aefda1366f04f5da5d1fc2241ad9208"
  experiment_id: "0"
  user_id: "ye53nis"
  status: FINISHED
  start_time: 1590953991905
  end_time: 1590998871011
  artifact_uri: "file:./data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts"
  lifecycle_stage: "active"
  run_id: "1aefda1366f04f5da5d1fc2241ad9208"

  {'learning rate': 1e-05,
   'val_loss': 0.3504984378814697,
   'precision': 0.9042773246765137,
   'fp': 711970.0,
   'loss': 0.2996121346950531,
   'val_tp': 3050870.0,
   'recall': 0.8978734016418457,
   'accuracy': 0.9549258947372437,
   'val_precision': 0.9677141904830933,
   'val_recall': 0.8017593622207642,
   'lr': 1e-05,
   'fn': 765019.0,
   'auc': 0.9786317348480225,
   'val_fp': 101786.0,
   'val_accuracy': 0.947745680809021,
   'val_tn': 12476995.0,
   'val_auc': 0.977130651473999,
   'val_fn': 754349.0,
   'tn': 24565164.0,
   'tp': 6725869.0}

  model_path
   /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/model

  MLmodel file
  artifact_path: model
  flavors:
    keras:
      data: data
      keras_module: tensorflow.keras
      keras_version: 2.2.4-tf
    python_function:
      data: data
      env: conda.yaml
      loader_module: mlflow.keras
      python_version: 3.8.3
  run_id: 1aefda1366f04f5da5d1fc2241ad9208
  utc_time_created: '2020-06-01 08:05:46.358978'

  conda.yaml
  channels:
  - defaults
  dependencies:
  - python=3.8.3
  - pip
  - pip:
    - mlflow
    - tensorflow==2.3.0-dev20200527
  name: mlflow-env

  keras_module.txt
  tensorflow.keras

  summary_path
   /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/model_summary.txt

  tensorboard_path
   /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/tensorboard_logs
  summary_path = client.download_artifacts(
      run_id=runs.iloc[run_idx].run_id,
      path='model_summary.txt')

  print('summary_path\n', summary_path, '\n')
  %cat $summary_path
  summary_path
   /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/model_summary.txt

  Model: "functional_1"
  __________________________________________________________________________________________________
  Layer (type)                    Output Shape         Param #     Connected to
  ==================================================================================================
  input_1 (InputLayer)            [(None, 16384, 1)]   0
  __________________________________________________________________________________________________
  encode0 (Sequential)            (None, 16384, 64)    13120       input_1[0][0]
  __________________________________________________________________________________________________
  mp_encode0 (MaxPooling1D)       (None, 8192, 64)     0           encode0[0][0]
  __________________________________________________________________________________________________
  encode1 (Sequential)            (None, 8192, 128)    75008       mp_encode0[0][0]
  __________________________________________________________________________________________________
  mp_encode1 (MaxPooling1D)       (None, 4096, 128)    0           encode1[0][0]
  __________________________________________________________________________________________________
  encode2 (Sequential)            (None, 4096, 256)    297472      mp_encode1[0][0]
  __________________________________________________________________________________________________
  mp_encode2 (MaxPooling1D)       (None, 2048, 256)    0           encode2[0][0]
  __________________________________________________________________________________________________
  encode3 (Sequential)            (None, 2048, 512)    1184768     mp_encode2[0][0]
  __________________________________________________________________________________________________
  mp_encode3 (MaxPooling1D)       (None, 1024, 512)    0           encode3[0][0]
  __________________________________________________________________________________________________
  encode4 (Sequential)            (None, 1024, 512)    1577984     mp_encode3[0][0]
  __________________________________________________________________________________________________
  mp_encode4 (MaxPooling1D)       (None, 512, 512)     0           encode4[0][0]
  __________________________________________________________________________________________________
  encode5 (Sequential)            (None, 512, 512)     1577984     mp_encode4[0][0]
  __________________________________________________________________________________________________
  mp_encode5 (MaxPooling1D)       (None, 256, 512)     0           encode5[0][0]
  __________________________________________________________________________________________________
  encode6 (Sequential)            (None, 256, 512)     1577984     mp_encode5[0][0]
  __________________________________________________________________________________________________
  mp_encode6 (MaxPooling1D)       (None, 128, 512)     0           encode6[0][0]
  __________________________________________________________________________________________________
  encode7 (Sequential)            (None, 128, 512)     1577984     mp_encode6[0][0]
  __________________________________________________________________________________________________
  mp_encode7 (MaxPooling1D)       (None, 64, 512)      0           encode7[0][0]
  __________________________________________________________________________________________________
  encode8 (Sequential)            (None, 64, 512)      1577984     mp_encode7[0][0]
  __________________________________________________________________________________________________
  mp_encode8 (MaxPooling1D)       (None, 32, 512)      0           encode8[0][0]
  __________________________________________________________________________________________________
  two_conv_center (Sequential)    (None, 32, 1024)     4728832     mp_encode8[0][0]
  __________________________________________________________________________________________________
  conv_transpose_decoder8 (Sequen (None, 64, 512)      1051136     two_conv_center[0][0]
  __________________________________________________________________________________________________
  decoder8 (Concatenate)          (None, 64, 1024)     0           encode8[0][0]
                                                                   conv_transpose_decoder8[0][0]
  __________________________________________________________________________________________________
  two_conv_decoder8 (Sequential)  (None, 64, 512)      2364416     decoder8[0][0]
  __________________________________________________________________________________________________
  conv_transpose_decoder7 (Sequen (None, 128, 512)     526848      two_conv_decoder8[0][0]
  __________________________________________________________________________________________________
  decoder7 (Concatenate)          (None, 128, 1024)    0           encode7[0][0]
                                                                   conv_transpose_decoder7[0][0]
  __________________________________________________________________________________________________
  two_conv_decoder7 (Sequential)  (None, 128, 512)     2364416     decoder7[0][0]
  __________________________________________________________________________________________________
  conv_transpose_decoder6 (Sequen (None, 256, 512)     526848      two_conv_decoder7[0][0]
  __________________________________________________________________________________________________
  decoder6 (Concatenate)          (None, 256, 1024)    0           encode6[0][0]
                                                                   conv_transpose_decoder6[0][0]
  __________________________________________________________________________________________________
  two_conv_decoder6 (Sequential)  (None, 256, 512)     2364416     decoder6[0][0]
  __________________________________________________________________________________________________
  conv_transpose_decoder5 (Sequen (None, 512, 512)     526848      two_conv_decoder6[0][0]
  __________________________________________________________________________________________________
  decoder5 (Concatenate)          (None, 512, 1024)    0           encode5[0][0]
                                                                   conv_transpose_decoder5[0][0]
  __________________________________________________________________________________________________
  two_conv_decoder5 (Sequential)  (None, 512, 512)     2364416     decoder5[0][0]
  __________________________________________________________________________________________________
  conv_transpose_decoder4 (Sequen (None, 1024, 512)    526848      two_conv_decoder5[0][0]
  __________________________________________________________________________________________________
  decoder4 (Concatenate)          (None, 1024, 1024)   0           encode4[0][0]
                                                                   conv_transpose_decoder4[0][0]
  __________________________________________________________________________________________________
  two_conv_decoder4 (Sequential)  (None, 1024, 512)    2364416     decoder4[0][0]
  __________________________________________________________________________________________________
  conv_transpose_decoder3 (Sequen (None, 2048, 512)    526848      two_conv_decoder4[0][0]
  __________________________________________________________________________________________________
  decoder3 (Concatenate)          (None, 2048, 1024)   0           encode3[0][0]
                                                                   conv_transpose_decoder3[0][0]
  __________________________________________________________________________________________________
  two_conv_decoder3 (Sequential)  (None, 2048, 512)    2364416     decoder3[0][0]
  __________________________________________________________________________________________________
  conv_transpose_decoder2 (Sequen (None, 4096, 256)    263424      two_conv_decoder3[0][0]
  __________________________________________________________________________________________________
  decoder2 (Concatenate)          (None, 4096, 512)    0           encode2[0][0]
                                                                   conv_transpose_decoder2[0][0]
  __________________________________________________________________________________________________
  two_conv_decoder2 (Sequential)  (None, 4096, 256)    592384      decoder2[0][0]
  __________________________________________________________________________________________________
  conv_transpose_decoder1 (Sequen (None, 8192, 128)    66176       two_conv_decoder2[0][0]
  __________________________________________________________________________________________________
  decoder1 (Concatenate)          (None, 8192, 256)    0           encode1[0][0]
                                                                   conv_transpose_decoder1[0][0]
  __________________________________________________________________________________________________
  two_conv_decoder1 (Sequential)  (None, 8192, 128)    148736      decoder1[0][0]
  __________________________________________________________________________________________________
  conv_transpose_decoder0 (Sequen (None, 16384, 64)    16704       two_conv_decoder1[0][0]
  __________________________________________________________________________________________________
  decoder0 (Concatenate)          (None, 16384, 128)   0           encode0[0][0]
                                                                   conv_transpose_decoder0[0][0]
  __________________________________________________________________________________________________
  two_conv_decoder0 (Sequential)  (None, 16384, 64)    37504       decoder0[0][0]
  __________________________________________________________________________________________________
  conv1d_38 (Conv1D)              (None, 16384, 1)     65          two_conv_decoder0[0][0]
  ==================================================================================================
  Total params: 33,185,985
  Trainable params: 33,146,689
  Non-trainable params: 39,296
  __________________________________________________________________________________________________
  print('\ntensorboard_path\n', tensorboard_path)
  !ls $tensorboard_path

# https://stackoverflow.com/questions/41074688/how-do-you-read-tensorboard-files-programmatically
from tensorboard.backend.event_processing import event_accumulator
path = str(tensorboard_path) + '/train'
path2 = str()
print(path)
ea = event_accumulator.EventAccumulator(path=path,
    size_guidance={ # see below regarding this argument
        event_accumulator.COMPRESSED_HISTOGRAMS: 500,
        event_accumulator.IMAGES: 4,
        event_accumulator.AUDIO: 4,
        event_accumulator.SCALARS: 0,
        event_accumulator.HISTOGRAMS: 1,
    })

ea.Reload() # loads events from file
tensorboard_path
 /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/tensorboard_logs
image  metrics	train  validation
/home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/tensorboard_logs/train
<tensorboard.backend.event_processing.event_accumulator.EventAccumulator at 0x7fdb70770c70>
  ea.Tags()
{'images': ['encode0/conv1d/kernel_0/image/0',
    'encode0/conv1d/bias_0/image/0',
    'encode0/batch_normalization/gamma_0/image/0',
    'encode0/batch_normalization/beta_0/image/0',
    'encode0/batch_normalization/moving_mean_0/image/0',
    'encode0/batch_normalization/moving_variance_0/image/0',
    'encode0/conv1d_1/kernel_0/image/0',
    'encode0/conv1d_1/kernel_0/image/1',
    'encode0/conv1d_1/kernel_0/image/2',
    'encode0/conv1d_1/bias_0/image/0',
    'encode0/batch_normalization_1/gamma_0/image/0',
    'encode0/batch_normalization_1/beta_0/image/0',
    'encode0/batch_normalization_1/moving_mean_0/image/0',
    'encode0/batch_normalization_1/moving_variance_0/image/0',
    'encode1/conv1d_2/kernel_0/image/0',
    'encode1/conv1d_2/kernel_0/image/1',
    'encode1/conv1d_2/kernel_0/image/2',
    'encode1/conv1d_2/bias_0/image/0',
    'encode1/batch_normalization_2/gamma_0/image/0',
    'encode1/batch_normalization_2/beta_0/image/0',
    'encode1/batch_normalization_2/moving_mean_0/image/0',
    'encode1/batch_normalization_2/moving_variance_0/image/0',
    'encode1/conv1d_3/kernel_0/image/0',
    'encode1/conv1d_3/kernel_0/image/1',
    'encode1/conv1d_3/kernel_0/image/2',
    'encode1/conv1d_3/bias_0/image/0',
    'encode1/batch_normalization_3/gamma_0/image/0',
    'encode1/batch_normalization_3/beta_0/image/0',
    'encode1/batch_normalization_3/moving_mean_0/image/0',
    'encode1/batch_normalization_3/moving_variance_0/image/0',
    'encode2/conv1d_4/kernel_0/image/0',
    'encode2/conv1d_4/kernel_0/image/1',
    'encode2/conv1d_4/kernel_0/image/2',
    'encode2/conv1d_4/bias_0/image/0',
    'encode2/batch_normalization_4/gamma_0/image/0',
    'encode2/batch_normalization_4/beta_0/image/0',
    'encode2/batch_normalization_4/moving_mean_0/image/0',
    'encode2/batch_normalization_4/moving_variance_0/image/0',
    'encode2/conv1d_5/kernel_0/image/0',
    'encode2/conv1d_5/kernel_0/image/1',
    'encode2/conv1d_5/kernel_0/image/2',
    'encode2/conv1d_5/bias_0/image/0',
    'encode2/batch_normalization_5/gamma_0/image/0',
    'encode2/batch_normalization_5/beta_0/image/0',
    'encode2/batch_normalization_5/moving_mean_0/image/0',
    'encode2/batch_normalization_5/moving_variance_0/image/0',
    'encode3/conv1d_6/kernel_0/image/0',
    'encode3/conv1d_6/kernel_0/image/1',
    'encode3/conv1d_6/kernel_0/image/2',
    'encode3/conv1d_6/bias_0/image/0',
    'encode3/batch_normalization_6/gamma_0/image/0',
    'encode3/batch_normalization_6/beta_0/image/0',
    'encode3/batch_normalization_6/moving_mean_0/image/0',
    'encode3/batch_normalization_6/moving_variance_0/image/0',
    'encode3/conv1d_7/kernel_0/image/0',
    'encode3/conv1d_7/kernel_0/image/1',
    'encode3/conv1d_7/kernel_0/image/2',
    'encode3/conv1d_7/bias_0/image/0',
    'encode3/batch_normalization_7/gamma_0/image/0',
    'encode3/batch_normalization_7/beta_0/image/0',
    'encode3/batch_normalization_7/moving_mean_0/image/0',
    'encode3/batch_normalization_7/moving_variance_0/image/0',
    'encode4/conv1d_8/kernel_0/image/0',
    'encode4/conv1d_8/kernel_0/image/1',
    'encode4/conv1d_8/kernel_0/image/2',
    'encode4/conv1d_8/bias_0/image/0',
    'encode4/batch_normalization_8/gamma_0/image/0',
    'encode4/batch_normalization_8/beta_0/image/0',
    'encode4/batch_normalization_8/moving_mean_0/image/0',
    'encode4/batch_normalization_8/moving_variance_0/image/0',
    'encode4/conv1d_9/kernel_0/image/0',
    'encode4/conv1d_9/kernel_0/image/1',
    'encode4/conv1d_9/kernel_0/image/2',
    'encode4/conv1d_9/bias_0/image/0',
    'encode4/batch_normalization_9/gamma_0/image/0',
    'encode4/batch_normalization_9/beta_0/image/0',
    'encode4/batch_normalization_9/moving_mean_0/image/0',
    'encode4/batch_normalization_9/moving_variance_0/image/0',
    'encode5/conv1d_10/kernel_0/image/0',
    'encode5/conv1d_10/kernel_0/image/1',
    'encode5/conv1d_10/kernel_0/image/2',
    'encode5/conv1d_10/bias_0/image/0',
    'encode5/batch_normalization_10/gamma_0/image/0',
    'encode5/batch_normalization_10/beta_0/image/0',
    'encode5/batch_normalization_10/moving_mean_0/image/0',
    'encode5/batch_normalization_10/moving_variance_0/image/0',
    'encode5/conv1d_11/kernel_0/image/0',
    'encode5/conv1d_11/kernel_0/image/1',
    'encode5/conv1d_11/kernel_0/image/2',
    'encode5/conv1d_11/bias_0/image/0',
    'encode5/batch_normalization_11/gamma_0/image/0',
    'encode5/batch_normalization_11/beta_0/image/0',
    'encode5/batch_normalization_11/moving_mean_0/image/0',
    'encode5/batch_normalization_11/moving_variance_0/image/0',
    'encode6/conv1d_12/kernel_0/image/0',
    'encode6/conv1d_12/kernel_0/image/1',
    'encode6/conv1d_12/kernel_0/image/2',
    'encode6/conv1d_12/bias_0/image/0',
    'encode6/batch_normalization_12/gamma_0/image/0',
    'encode6/batch_normalization_12/beta_0/image/0',
    'encode6/batch_normalization_12/moving_mean_0/image/0',
    'encode6/batch_normalization_12/moving_variance_0/image/0',
    'encode6/conv1d_13/kernel_0/image/0',
    'encode6/conv1d_13/kernel_0/image/1',
    'encode6/conv1d_13/kernel_0/image/2',
    'encode6/conv1d_13/bias_0/image/0',
    'encode6/batch_normalization_13/gamma_0/image/0',
    'encode6/batch_normalization_13/beta_0/image/0',
    'encode6/batch_normalization_13/moving_mean_0/image/0',
    'encode6/batch_normalization_13/moving_variance_0/image/0',
    'encode7/conv1d_14/kernel_0/image/0',
    'encode7/conv1d_14/kernel_0/image/1',
    'encode7/conv1d_14/kernel_0/image/2',
    'encode7/conv1d_14/bias_0/image/0',
    'encode7/batch_normalization_14/gamma_0/image/0',
    'encode7/batch_normalization_14/beta_0/image/0',
    'encode7/batch_normalization_14/moving_mean_0/image/0',
    'encode7/batch_normalization_14/moving_variance_0/image/0',
    'encode7/conv1d_15/kernel_0/image/0',
    'encode7/conv1d_15/kernel_0/image/1',
    'encode7/conv1d_15/kernel_0/image/2',
    'encode7/conv1d_15/bias_0/image/0',
    'encode7/batch_normalization_15/gamma_0/image/0',
    'encode7/batch_normalization_15/beta_0/image/0',
    'encode7/batch_normalization_15/moving_mean_0/image/0',
    'encode7/batch_normalization_15/moving_variance_0/image/0',
    'encode8/conv1d_16/kernel_0/image/0',
    'encode8/conv1d_16/kernel_0/image/1',
    'encode8/conv1d_16/kernel_0/image/2',
    'encode8/conv1d_16/bias_0/image/0',
    'encode8/batch_normalization_16/gamma_0/image/0',
    'encode8/batch_normalization_16/beta_0/image/0',
    'encode8/batch_normalization_16/moving_mean_0/image/0',
    'encode8/batch_normalization_16/moving_variance_0/image/0',
    'encode8/conv1d_17/kernel_0/image/0',
    'encode8/conv1d_17/kernel_0/image/1',
    'encode8/conv1d_17/kernel_0/image/2',
    'encode8/conv1d_17/bias_0/image/0',
    'encode8/batch_normalization_17/gamma_0/image/0',
    'encode8/batch_normalization_17/beta_0/image/0',
    'encode8/batch_normalization_17/moving_mean_0/image/0',
    'encode8/batch_normalization_17/moving_variance_0/image/0',
    'two_conv_center/conv1d_18/kernel_0/image/0',
    'two_conv_center/conv1d_18/kernel_0/image/1',
    'two_conv_center/conv1d_18/kernel_0/image/2',
    'two_conv_center/conv1d_18/bias_0/image/0',
    'two_conv_center/batch_normalization_18/gamma_0/image/0',
    'two_conv_center/batch_normalization_18/beta_0/image/0',
    'two_conv_center/batch_normalization_18/moving_mean_0/image/0',
    'two_conv_center/batch_normalization_18/moving_variance_0/image/0',
    'two_conv_center/conv1d_19/kernel_0/image/0',
    'two_conv_center/conv1d_19/kernel_0/image/1',
    'two_conv_center/conv1d_19/kernel_0/image/2',
    'two_conv_center/conv1d_19/bias_0/image/0',
    'two_conv_center/batch_normalization_19/gamma_0/image/0',
    'two_conv_center/batch_normalization_19/beta_0/image/0',
    'two_conv_center/batch_normalization_19/moving_mean_0/image/0',
    'two_conv_center/batch_normalization_19/moving_variance_0/image/0',
    'conv_transpose_decoder8/conv1d_transpose/kernel_0/image/0',
    'conv_transpose_decoder8/conv1d_transpose/kernel_0/image/1',
    'conv_transpose_decoder8/conv1d_transpose/kernel_0/image/2',
    'conv_transpose_decoder8/conv1d_transpose/bias_0/image/0',
    'conv_transpose_decoder8/batch_normalization_20/gamma_0/image/0',
    'conv_transpose_decoder8/batch_normalization_20/beta_0/image/0',
    'conv_transpose_decoder8/batch_normalization_20/moving_mean_0/image/0',
    'conv_transpose_decoder8/batch_normalization_20/moving_variance_0/image/0',
    'two_conv_decoder8/conv1d_20/kernel_0/image/0',
    'two_conv_decoder8/conv1d_20/kernel_0/image/1',
    'two_conv_decoder8/conv1d_20/kernel_0/image/2',
    'two_conv_decoder8/conv1d_20/bias_0/image/0',
    'two_conv_decoder8/batch_normalization_21/gamma_0/image/0',
    'two_conv_decoder8/batch_normalization_21/beta_0/image/0',
    'two_conv_decoder8/batch_normalization_21/moving_mean_0/image/0',
    'two_conv_decoder8/batch_normalization_21/moving_variance_0/image/0',
    'two_conv_decoder8/conv1d_21/kernel_0/image/0',
    'two_conv_decoder8/conv1d_21/kernel_0/image/1',
    'two_conv_decoder8/conv1d_21/kernel_0/image/2',
    'two_conv_decoder8/conv1d_21/bias_0/image/0',
    'two_conv_decoder8/batch_normalization_22/gamma_0/image/0',
    'two_conv_decoder8/batch_normalization_22/beta_0/image/0',
    'two_conv_decoder8/batch_normalization_22/moving_mean_0/image/0',
    'two_conv_decoder8/batch_normalization_22/moving_variance_0/image/0',
    'conv_transpose_decoder7/conv1d_transpose_1/kernel_0/image/0',
    'conv_transpose_decoder7/conv1d_transpose_1/kernel_0/image/1',
    'conv_transpose_decoder7/conv1d_transpose_1/kernel_0/image/2',
    'conv_transpose_decoder7/conv1d_transpose_1/bias_0/image/0',
    'conv_transpose_decoder7/batch_normalization_23/gamma_0/image/0',
    'conv_transpose_decoder7/batch_normalization_23/beta_0/image/0',
    'conv_transpose_decoder7/batch_normalization_23/moving_mean_0/image/0',
    'conv_transpose_decoder7/batch_normalization_23/moving_variance_0/image/0',
    'two_conv_decoder7/conv1d_22/kernel_0/image/0',
    'two_conv_decoder7/conv1d_22/kernel_0/image/1',
    'two_conv_decoder7/conv1d_22/kernel_0/image/2',
    'two_conv_decoder7/conv1d_22/bias_0/image/0',
    'two_conv_decoder7/batch_normalization_24/gamma_0/image/0',
    'two_conv_decoder7/batch_normalization_24/beta_0/image/0',
    'two_conv_decoder7/batch_normalization_24/moving_mean_0/image/0',
    'two_conv_decoder7/batch_normalization_24/moving_variance_0/image/0',
    'two_conv_decoder7/conv1d_23/kernel_0/image/0',
    'two_conv_decoder7/conv1d_23/kernel_0/image/1',
    'two_conv_decoder7/conv1d_23/kernel_0/image/2',
    'two_conv_decoder7/conv1d_23/bias_0/image/0',
    'two_conv_decoder7/batch_normalization_25/gamma_0/image/0',
    'two_conv_decoder7/batch_normalization_25/beta_0/image/0',
    'two_conv_decoder7/batch_normalization_25/moving_mean_0/image/0',
    'two_conv_decoder7/batch_normalization_25/moving_variance_0/image/0',
    'conv_transpose_decoder6/conv1d_transpose_2/kernel_0/image/0',
    'conv_transpose_decoder6/conv1d_transpose_2/kernel_0/image/1',
    'conv_transpose_decoder6/conv1d_transpose_2/kernel_0/image/2',
    'conv_transpose_decoder6/conv1d_transpose_2/bias_0/image/0',
    'conv_transpose_decoder6/batch_normalization_26/gamma_0/image/0',
    'conv_transpose_decoder6/batch_normalization_26/beta_0/image/0',
    'conv_transpose_decoder6/batch_normalization_26/moving_mean_0/image/0',
    'conv_transpose_decoder6/batch_normalization_26/moving_variance_0/image/0',
    'two_conv_decoder6/conv1d_24/kernel_0/image/0',
    'two_conv_decoder6/conv1d_24/kernel_0/image/1',
    'two_conv_decoder6/conv1d_24/kernel_0/image/2',
    'two_conv_decoder6/conv1d_24/bias_0/image/0',
    'two_conv_decoder6/batch_normalization_27/gamma_0/image/0',
    'two_conv_decoder6/batch_normalization_27/beta_0/image/0',
    'two_conv_decoder6/batch_normalization_27/moving_mean_0/image/0',
    'two_conv_decoder6/batch_normalization_27/moving_variance_0/image/0',
    'two_conv_decoder6/conv1d_25/kernel_0/image/0',
    'two_conv_decoder6/conv1d_25/kernel_0/image/1',
    'two_conv_decoder6/conv1d_25/kernel_0/image/2',
    'two_conv_decoder6/conv1d_25/bias_0/image/0',
    'two_conv_decoder6/batch_normalization_28/gamma_0/image/0',
    'two_conv_decoder6/batch_normalization_28/beta_0/image/0',
    'two_conv_decoder6/batch_normalization_28/moving_mean_0/image/0',
    'two_conv_decoder6/batch_normalization_28/moving_variance_0/image/0',
    'conv_transpose_decoder5/conv1d_transpose_3/kernel_0/image/0',
    'conv_transpose_decoder5/conv1d_transpose_3/kernel_0/image/1',
    'conv_transpose_decoder5/conv1d_transpose_3/kernel_0/image/2',
    'conv_transpose_decoder5/conv1d_transpose_3/bias_0/image/0',
    'conv_transpose_decoder5/batch_normalization_29/gamma_0/image/0',
    'conv_transpose_decoder5/batch_normalization_29/beta_0/image/0',
    'conv_transpose_decoder5/batch_normalization_29/moving_mean_0/image/0',
    'conv_transpose_decoder5/batch_normalization_29/moving_variance_0/image/0',
    'two_conv_decoder5/conv1d_26/kernel_0/image/0',
    'two_conv_decoder5/conv1d_26/kernel_0/image/1',
    'two_conv_decoder5/conv1d_26/kernel_0/image/2',
    'two_conv_decoder5/conv1d_26/bias_0/image/0',
    'two_conv_decoder5/batch_normalization_30/gamma_0/image/0',
    'two_conv_decoder5/batch_normalization_30/beta_0/image/0',
    'two_conv_decoder5/batch_normalization_30/moving_mean_0/image/0',
    'two_conv_decoder5/batch_normalization_30/moving_variance_0/image/0',
    'two_conv_decoder5/conv1d_27/kernel_0/image/0',
    'two_conv_decoder5/conv1d_27/kernel_0/image/1',
    'two_conv_decoder5/conv1d_27/kernel_0/image/2',
    'two_conv_decoder5/conv1d_27/bias_0/image/0',
    'two_conv_decoder5/batch_normalization_31/gamma_0/image/0',
    'two_conv_decoder5/batch_normalization_31/beta_0/image/0',
    'two_conv_decoder5/batch_normalization_31/moving_mean_0/image/0',
    'two_conv_decoder5/batch_normalization_31/moving_variance_0/image/0',
    'conv_transpose_decoder4/conv1d_transpose_4/kernel_0/image/0',
    'conv_transpose_decoder4/conv1d_transpose_4/kernel_0/image/1',
    'conv_transpose_decoder4/conv1d_transpose_4/kernel_0/image/2',
    'conv_transpose_decoder4/conv1d_transpose_4/bias_0/image/0',
    'conv_transpose_decoder4/batch_normalization_32/gamma_0/image/0',
    'conv_transpose_decoder4/batch_normalization_32/beta_0/image/0',
    'conv_transpose_decoder4/batch_normalization_32/moving_mean_0/image/0',
    'conv_transpose_decoder4/batch_normalization_32/moving_variance_0/image/0',
    'two_conv_decoder4/conv1d_28/kernel_0/image/0',
    'two_conv_decoder4/conv1d_28/kernel_0/image/1',
    'two_conv_decoder4/conv1d_28/kernel_0/image/2',
    'two_conv_decoder4/conv1d_28/bias_0/image/0',
    'two_conv_decoder4/batch_normalization_33/gamma_0/image/0',
    'two_conv_decoder4/batch_normalization_33/beta_0/image/0',
    'two_conv_decoder4/batch_normalization_33/moving_mean_0/image/0',
    'two_conv_decoder4/batch_normalization_33/moving_variance_0/image/0',
    'two_conv_decoder4/conv1d_29/kernel_0/image/0',
    'two_conv_decoder4/conv1d_29/kernel_0/image/1',
    'two_conv_decoder4/conv1d_29/kernel_0/image/2',
    'two_conv_decoder4/conv1d_29/bias_0/image/0',
    'two_conv_decoder4/batch_normalization_34/gamma_0/image/0',
    'two_conv_decoder4/batch_normalization_34/beta_0/image/0',
    'two_conv_decoder4/batch_normalization_34/moving_mean_0/image/0',
    'two_conv_decoder4/batch_normalization_34/moving_variance_0/image/0',
    'conv_transpose_decoder3/conv1d_transpose_5/kernel_0/image/0',
    'conv_transpose_decoder3/conv1d_transpose_5/kernel_0/image/1',
    'conv_transpose_decoder3/conv1d_transpose_5/kernel_0/image/2',
    'conv_transpose_decoder3/conv1d_transpose_5/bias_0/image/0',
    'conv_transpose_decoder3/batch_normalization_35/gamma_0/image/0',
    'conv_transpose_decoder3/batch_normalization_35/beta_0/image/0',
    'conv_transpose_decoder3/batch_normalization_35/moving_mean_0/image/0',
    'conv_transpose_decoder3/batch_normalization_35/moving_variance_0/image/0',
    'two_conv_decoder3/conv1d_30/kernel_0/image/0',
    'two_conv_decoder3/conv1d_30/kernel_0/image/1',
    'two_conv_decoder3/conv1d_30/kernel_0/image/2',
    'two_conv_decoder3/conv1d_30/bias_0/image/0',
    'two_conv_decoder3/batch_normalization_36/gamma_0/image/0',
    'two_conv_decoder3/batch_normalization_36/beta_0/image/0',
    'two_conv_decoder3/batch_normalization_36/moving_mean_0/image/0',
    'two_conv_decoder3/batch_normalization_36/moving_variance_0/image/0',
    'two_conv_decoder3/conv1d_31/kernel_0/image/0',
    'two_conv_decoder3/conv1d_31/kernel_0/image/1',
    'two_conv_decoder3/conv1d_31/kernel_0/image/2',
    'two_conv_decoder3/conv1d_31/bias_0/image/0',
    'two_conv_decoder3/batch_normalization_37/gamma_0/image/0',
    'two_conv_decoder3/batch_normalization_37/beta_0/image/0',
    'two_conv_decoder3/batch_normalization_37/moving_mean_0/image/0',
    'two_conv_decoder3/batch_normalization_37/moving_variance_0/image/0',
    'conv_transpose_decoder2/conv1d_transpose_6/kernel_0/image/0',
    'conv_transpose_decoder2/conv1d_transpose_6/kernel_0/image/1',
    'conv_transpose_decoder2/conv1d_transpose_6/kernel_0/image/2',
    'conv_transpose_decoder2/conv1d_transpose_6/bias_0/image/0',
    'conv_transpose_decoder2/batch_normalization_38/gamma_0/image/0',
    'conv_transpose_decoder2/batch_normalization_38/beta_0/image/0',
    'conv_transpose_decoder2/batch_normalization_38/moving_mean_0/image/0',
    'conv_transpose_decoder2/batch_normalization_38/moving_variance_0/image/0',
    'two_conv_decoder2/conv1d_32/kernel_0/image/0',
    'two_conv_decoder2/conv1d_32/kernel_0/image/1',
    'two_conv_decoder2/conv1d_32/kernel_0/image/2',
    'two_conv_decoder2/conv1d_32/bias_0/image/0',
    'two_conv_decoder2/batch_normalization_39/gamma_0/image/0',
    'two_conv_decoder2/batch_normalization_39/beta_0/image/0',
    'two_conv_decoder2/batch_normalization_39/moving_mean_0/image/0',
    'two_conv_decoder2/batch_normalization_39/moving_variance_0/image/0',
    'two_conv_decoder2/conv1d_33/kernel_0/image/0',
    'two_conv_decoder2/conv1d_33/kernel_0/image/1',
    'two_conv_decoder2/conv1d_33/kernel_0/image/2',
    'two_conv_decoder2/conv1d_33/bias_0/image/0',
    'two_conv_decoder2/batch_normalization_40/gamma_0/image/0',
    'two_conv_decoder2/batch_normalization_40/beta_0/image/0',
    'two_conv_decoder2/batch_normalization_40/moving_mean_0/image/0',
    'two_conv_decoder2/batch_normalization_40/moving_variance_0/image/0',
    'conv_transpose_decoder1/conv1d_transpose_7/kernel_0/image/0',
    'conv_transpose_decoder1/conv1d_transpose_7/kernel_0/image/1',
    'conv_transpose_decoder1/conv1d_transpose_7/kernel_0/image/2',
    'conv_transpose_decoder1/conv1d_transpose_7/bias_0/image/0',
    'conv_transpose_decoder1/batch_normalization_41/gamma_0/image/0',
    'conv_transpose_decoder1/batch_normalization_41/beta_0/image/0',
    'conv_transpose_decoder1/batch_normalization_41/moving_mean_0/image/0',
    'conv_transpose_decoder1/batch_normalization_41/moving_variance_0/image/0',
    'two_conv_decoder1/conv1d_34/kernel_0/image/0',
    'two_conv_decoder1/conv1d_34/kernel_0/image/1',
    'two_conv_decoder1/conv1d_34/kernel_0/image/2',
    'two_conv_decoder1/conv1d_34/bias_0/image/0',
    'two_conv_decoder1/batch_normalization_42/gamma_0/image/0',
    'two_conv_decoder1/batch_normalization_42/beta_0/image/0',
    'two_conv_decoder1/batch_normalization_42/moving_mean_0/image/0',
    'two_conv_decoder1/batch_normalization_42/moving_variance_0/image/0',
    'two_conv_decoder1/conv1d_35/kernel_0/image/0',
    'two_conv_decoder1/conv1d_35/kernel_0/image/1',
    'two_conv_decoder1/conv1d_35/kernel_0/image/2',
    'two_conv_decoder1/conv1d_35/bias_0/image/0',
    'two_conv_decoder1/batch_normalization_43/gamma_0/image/0',
    'two_conv_decoder1/batch_normalization_43/beta_0/image/0',
    'two_conv_decoder1/batch_normalization_43/moving_mean_0/image/0',
    'two_conv_decoder1/batch_normalization_43/moving_variance_0/image/0',
    'conv_transpose_decoder0/conv1d_transpose_8/kernel_0/image/0',
    'conv_transpose_decoder0/conv1d_transpose_8/kernel_0/image/1',
    'conv_transpose_decoder0/conv1d_transpose_8/kernel_0/image/2',
    'conv_transpose_decoder0/conv1d_transpose_8/bias_0/image/0',
    'conv_transpose_decoder0/batch_normalization_44/gamma_0/image/0',
    'conv_transpose_decoder0/batch_normalization_44/beta_0/image/0',
    'conv_transpose_decoder0/batch_normalization_44/moving_mean_0/image/0',
    'conv_transpose_decoder0/batch_normalization_44/moving_variance_0/image/0',
    'two_conv_decoder0/conv1d_36/kernel_0/image/0',
    'two_conv_decoder0/conv1d_36/kernel_0/image/1',
    'two_conv_decoder0/conv1d_36/kernel_0/image/2',
    'two_conv_decoder0/conv1d_36/bias_0/image/0',
    'two_conv_decoder0/batch_normalization_45/gamma_0/image/0',
    'two_conv_decoder0/batch_normalization_45/beta_0/image/0',
    'two_conv_decoder0/batch_normalization_45/moving_mean_0/image/0',
    'two_conv_decoder0/batch_normalization_45/moving_variance_0/image/0',
    'two_conv_decoder0/conv1d_37/kernel_0/image/0',
    'two_conv_decoder0/conv1d_37/kernel_0/image/1',
    'two_conv_decoder0/conv1d_37/kernel_0/image/2',
    'two_conv_decoder0/conv1d_37/bias_0/image/0',
    'two_conv_decoder0/batch_normalization_46/gamma_0/image/0',
    'two_conv_decoder0/batch_normalization_46/beta_0/image/0',
    'two_conv_decoder0/batch_normalization_46/moving_mean_0/image/0',
    'two_conv_decoder0/batch_normalization_46/moving_variance_0/image/0',
    'conv1d_38/kernel_0/image/0'],
   'audio': [],
   'histograms': ['encode0/conv1d/kernel_0',
    'encode0/conv1d/bias_0',
    'encode0/batch_normalization/gamma_0',
    'encode0/batch_normalization/beta_0',
    'encode0/batch_normalization/moving_mean_0',
    'encode0/batch_normalization/moving_variance_0',
    'encode0/conv1d_1/kernel_0',
    'encode0/conv1d_1/bias_0',
    'encode0/batch_normalization_1/gamma_0',
    'encode0/batch_normalization_1/beta_0',
    'encode0/batch_normalization_1/moving_mean_0',
    'encode0/batch_normalization_1/moving_variance_0',
    'encode1/conv1d_2/kernel_0',
    'encode1/conv1d_2/bias_0',
    'encode1/batch_normalization_2/gamma_0',
    'encode1/batch_normalization_2/beta_0',
    'encode1/batch_normalization_2/moving_mean_0',
    'encode1/batch_normalization_2/moving_variance_0',
    'encode1/conv1d_3/kernel_0',
    'encode1/conv1d_3/bias_0',
    'encode1/batch_normalization_3/gamma_0',
    'encode1/batch_normalization_3/beta_0',
    'encode1/batch_normalization_3/moving_mean_0',
    'encode1/batch_normalization_3/moving_variance_0',
    'encode2/conv1d_4/kernel_0',
    'encode2/conv1d_4/bias_0',
    'encode2/batch_normalization_4/gamma_0',
    'encode2/batch_normalization_4/beta_0',
    'encode2/batch_normalization_4/moving_mean_0',
    'encode2/batch_normalization_4/moving_variance_0',
    'encode2/conv1d_5/kernel_0',
    'encode2/conv1d_5/bias_0',
    'encode2/batch_normalization_5/gamma_0',
    'encode2/batch_normalization_5/beta_0',
    'encode2/batch_normalization_5/moving_mean_0',
    'encode2/batch_normalization_5/moving_variance_0',
    'encode3/conv1d_6/kernel_0',
    'encode3/conv1d_6/bias_0',
    'encode3/batch_normalization_6/gamma_0',
    'encode3/batch_normalization_6/beta_0',
    'encode3/batch_normalization_6/moving_mean_0',
    'encode3/batch_normalization_6/moving_variance_0',
    'encode3/conv1d_7/kernel_0',
    'encode3/conv1d_7/bias_0',
    'encode3/batch_normalization_7/gamma_0',
    'encode3/batch_normalization_7/beta_0',
    'encode3/batch_normalization_7/moving_mean_0',
    'encode3/batch_normalization_7/moving_variance_0',
    'encode4/conv1d_8/kernel_0',
    'encode4/conv1d_8/bias_0',
    'encode4/batch_normalization_8/gamma_0',
    'encode4/batch_normalization_8/beta_0',
    'encode4/batch_normalization_8/moving_mean_0',
    'encode4/batch_normalization_8/moving_variance_0',
    'encode4/conv1d_9/kernel_0',
    'encode4/conv1d_9/bias_0',
    'encode4/batch_normalization_9/gamma_0',
    'encode4/batch_normalization_9/beta_0',
    'encode4/batch_normalization_9/moving_mean_0',
    'encode4/batch_normalization_9/moving_variance_0',
    'encode5/conv1d_10/kernel_0',
    'encode5/conv1d_10/bias_0',
    'encode5/batch_normalization_10/gamma_0',
    'encode5/batch_normalization_10/beta_0',
    'encode5/batch_normalization_10/moving_mean_0',
    'encode5/batch_normalization_10/moving_variance_0',
    'encode5/conv1d_11/kernel_0',
    'encode5/conv1d_11/bias_0',
    'encode5/batch_normalization_11/gamma_0',
    'encode5/batch_normalization_11/beta_0',
    'encode5/batch_normalization_11/moving_mean_0',
    'encode5/batch_normalization_11/moving_variance_0',
    'encode6/conv1d_12/kernel_0',
    'encode6/conv1d_12/bias_0',
    'encode6/batch_normalization_12/gamma_0',
    'encode6/batch_normalization_12/beta_0',
    'encode6/batch_normalization_12/moving_mean_0',
    'encode6/batch_normalization_12/moving_variance_0',
    'encode6/conv1d_13/kernel_0',
    'encode6/conv1d_13/bias_0',
    'encode6/batch_normalization_13/gamma_0',
    'encode6/batch_normalization_13/beta_0',
    'encode6/batch_normalization_13/moving_mean_0',
    'encode6/batch_normalization_13/moving_variance_0',
    'encode7/conv1d_14/kernel_0',
    'encode7/conv1d_14/bias_0',
    'encode7/batch_normalization_14/gamma_0',
    'encode7/batch_normalization_14/beta_0',
    'encode7/batch_normalization_14/moving_mean_0',
    'encode7/batch_normalization_14/moving_variance_0',
    'encode7/conv1d_15/kernel_0',
    'encode7/conv1d_15/bias_0',
    'encode7/batch_normalization_15/gamma_0',
    'encode7/batch_normalization_15/beta_0',
    'encode7/batch_normalization_15/moving_mean_0',
    'encode7/batch_normalization_15/moving_variance_0',
    'encode8/conv1d_16/kernel_0',
    'encode8/conv1d_16/bias_0',
    'encode8/batch_normalization_16/gamma_0',
    'encode8/batch_normalization_16/beta_0',
    'encode8/batch_normalization_16/moving_mean_0',
    'encode8/batch_normalization_16/moving_variance_0',
    'encode8/conv1d_17/kernel_0',
    'encode8/conv1d_17/bias_0',
    'encode8/batch_normalization_17/gamma_0',
    'encode8/batch_normalization_17/beta_0',
    'encode8/batch_normalization_17/moving_mean_0',
    'encode8/batch_normalization_17/moving_variance_0',
    'two_conv_center/conv1d_18/kernel_0',
    'two_conv_center/conv1d_18/bias_0',
    'two_conv_center/batch_normalization_18/gamma_0',
    'two_conv_center/batch_normalization_18/beta_0',
    'two_conv_center/batch_normalization_18/moving_mean_0',
    'two_conv_center/batch_normalization_18/moving_variance_0',
    'two_conv_center/conv1d_19/kernel_0',
    'two_conv_center/conv1d_19/bias_0',
    'two_conv_center/batch_normalization_19/gamma_0',
    'two_conv_center/batch_normalization_19/beta_0',
    'two_conv_center/batch_normalization_19/moving_mean_0',
    'two_conv_center/batch_normalization_19/moving_variance_0',
    'conv_transpose_decoder8/conv1d_transpose/kernel_0',
    'conv_transpose_decoder8/conv1d_transpose/bias_0',
    'conv_transpose_decoder8/batch_normalization_20/gamma_0',
    'conv_transpose_decoder8/batch_normalization_20/beta_0',
    'conv_transpose_decoder8/batch_normalization_20/moving_mean_0',
    'conv_transpose_decoder8/batch_normalization_20/moving_variance_0',
    'two_conv_decoder8/conv1d_20/kernel_0',
    'two_conv_decoder8/conv1d_20/bias_0',
    'two_conv_decoder8/batch_normalization_21/gamma_0',
    'two_conv_decoder8/batch_normalization_21/beta_0',
    'two_conv_decoder8/batch_normalization_21/moving_mean_0',
    'two_conv_decoder8/batch_normalization_21/moving_variance_0',
    'two_conv_decoder8/conv1d_21/kernel_0',
    'two_conv_decoder8/conv1d_21/bias_0',
    'two_conv_decoder8/batch_normalization_22/gamma_0',
    'two_conv_decoder8/batch_normalization_22/beta_0',
    'two_conv_decoder8/batch_normalization_22/moving_mean_0',
    'two_conv_decoder8/batch_normalization_22/moving_variance_0',
    'conv_transpose_decoder7/conv1d_transpose_1/kernel_0',
    'conv_transpose_decoder7/conv1d_transpose_1/bias_0',
    'conv_transpose_decoder7/batch_normalization_23/gamma_0',
    'conv_transpose_decoder7/batch_normalization_23/beta_0',
    'conv_transpose_decoder7/batch_normalization_23/moving_mean_0',
    'conv_transpose_decoder7/batch_normalization_23/moving_variance_0',
    'two_conv_decoder7/conv1d_22/kernel_0',
    'two_conv_decoder7/conv1d_22/bias_0',
    'two_conv_decoder7/batch_normalization_24/gamma_0',
    'two_conv_decoder7/batch_normalization_24/beta_0',
    'two_conv_decoder7/batch_normalization_24/moving_mean_0',
    'two_conv_decoder7/batch_normalization_24/moving_variance_0',
    'two_conv_decoder7/conv1d_23/kernel_0',
    'two_conv_decoder7/conv1d_23/bias_0',
    'two_conv_decoder7/batch_normalization_25/gamma_0',
    'two_conv_decoder7/batch_normalization_25/beta_0',
    'two_conv_decoder7/batch_normalization_25/moving_mean_0',
    'two_conv_decoder7/batch_normalization_25/moving_variance_0',
    'conv_transpose_decoder6/conv1d_transpose_2/kernel_0',
    'conv_transpose_decoder6/conv1d_transpose_2/bias_0',
    'conv_transpose_decoder6/batch_normalization_26/gamma_0',
    'conv_transpose_decoder6/batch_normalization_26/beta_0',
    'conv_transpose_decoder6/batch_normalization_26/moving_mean_0',
    'conv_transpose_decoder6/batch_normalization_26/moving_variance_0',
    'two_conv_decoder6/conv1d_24/kernel_0',
    'two_conv_decoder6/conv1d_24/bias_0',
    'two_conv_decoder6/batch_normalization_27/gamma_0',
    'two_conv_decoder6/batch_normalization_27/beta_0',
    'two_conv_decoder6/batch_normalization_27/moving_mean_0',
    'two_conv_decoder6/batch_normalization_27/moving_variance_0',
    'two_conv_decoder6/conv1d_25/kernel_0',
    'two_conv_decoder6/conv1d_25/bias_0',
    'two_conv_decoder6/batch_normalization_28/gamma_0',
    'two_conv_decoder6/batch_normalization_28/beta_0',
    'two_conv_decoder6/batch_normalization_28/moving_mean_0',
    'two_conv_decoder6/batch_normalization_28/moving_variance_0',
    'conv_transpose_decoder5/conv1d_transpose_3/kernel_0',
    'conv_transpose_decoder5/conv1d_transpose_3/bias_0',
    'conv_transpose_decoder5/batch_normalization_29/gamma_0',
    'conv_transpose_decoder5/batch_normalization_29/beta_0',
    'conv_transpose_decoder5/batch_normalization_29/moving_mean_0',
    'conv_transpose_decoder5/batch_normalization_29/moving_variance_0',
    'two_conv_decoder5/conv1d_26/kernel_0',
    'two_conv_decoder5/conv1d_26/bias_0',
    'two_conv_decoder5/batch_normalization_30/gamma_0',
    'two_conv_decoder5/batch_normalization_30/beta_0',
    'two_conv_decoder5/batch_normalization_30/moving_mean_0',
    'two_conv_decoder5/batch_normalization_30/moving_variance_0',
    'two_conv_decoder5/conv1d_27/kernel_0',
    'two_conv_decoder5/conv1d_27/bias_0',
    'two_conv_decoder5/batch_normalization_31/gamma_0',
    'two_conv_decoder5/batch_normalization_31/beta_0',
    'two_conv_decoder5/batch_normalization_31/moving_mean_0',
    'two_conv_decoder5/batch_normalization_31/moving_variance_0',
    'conv_transpose_decoder4/conv1d_transpose_4/kernel_0',
    'conv_transpose_decoder4/conv1d_transpose_4/bias_0',
    'conv_transpose_decoder4/batch_normalization_32/gamma_0',
    'conv_transpose_decoder4/batch_normalization_32/beta_0',
    'conv_transpose_decoder4/batch_normalization_32/moving_mean_0',
    'conv_transpose_decoder4/batch_normalization_32/moving_variance_0',
    'two_conv_decoder4/conv1d_28/kernel_0',
    'two_conv_decoder4/conv1d_28/bias_0',
    'two_conv_decoder4/batch_normalization_33/gamma_0',
    'two_conv_decoder4/batch_normalization_33/beta_0',
    'two_conv_decoder4/batch_normalization_33/moving_mean_0',
    'two_conv_decoder4/batch_normalization_33/moving_variance_0',
    'two_conv_decoder4/conv1d_29/kernel_0',
    'two_conv_decoder4/conv1d_29/bias_0',
    'two_conv_decoder4/batch_normalization_34/gamma_0',
    'two_conv_decoder4/batch_normalization_34/beta_0',
    'two_conv_decoder4/batch_normalization_34/moving_mean_0',
    'two_conv_decoder4/batch_normalization_34/moving_variance_0',
    'conv_transpose_decoder3/conv1d_transpose_5/kernel_0',
    'conv_transpose_decoder3/conv1d_transpose_5/bias_0',
    'conv_transpose_decoder3/batch_normalization_35/gamma_0',
    'conv_transpose_decoder3/batch_normalization_35/beta_0',
    'conv_transpose_decoder3/batch_normalization_35/moving_mean_0',
    'conv_transpose_decoder3/batch_normalization_35/moving_variance_0',
    'two_conv_decoder3/conv1d_30/kernel_0',
    'two_conv_decoder3/conv1d_30/bias_0',
    'two_conv_decoder3/batch_normalization_36/gamma_0',
    'two_conv_decoder3/batch_normalization_36/beta_0',
    'two_conv_decoder3/batch_normalization_36/moving_mean_0',
    'two_conv_decoder3/batch_normalization_36/moving_variance_0',
    'two_conv_decoder3/conv1d_31/kernel_0',
    'two_conv_decoder3/conv1d_31/bias_0',
    'two_conv_decoder3/batch_normalization_37/gamma_0',
    'two_conv_decoder3/batch_normalization_37/beta_0',
    'two_conv_decoder3/batch_normalization_37/moving_mean_0',
    'two_conv_decoder3/batch_normalization_37/moving_variance_0',
    'conv_transpose_decoder2/conv1d_transpose_6/kernel_0',
    'conv_transpose_decoder2/conv1d_transpose_6/bias_0',
    'conv_transpose_decoder2/batch_normalization_38/gamma_0',
    'conv_transpose_decoder2/batch_normalization_38/beta_0',
    'conv_transpose_decoder2/batch_normalization_38/moving_mean_0',
    'conv_transpose_decoder2/batch_normalization_38/moving_variance_0',
    'two_conv_decoder2/conv1d_32/kernel_0',
    'two_conv_decoder2/conv1d_32/bias_0',
    'two_conv_decoder2/batch_normalization_39/gamma_0',
    'two_conv_decoder2/batch_normalization_39/beta_0',
    'two_conv_decoder2/batch_normalization_39/moving_mean_0',
    'two_conv_decoder2/batch_normalization_39/moving_variance_0',
    'two_conv_decoder2/conv1d_33/kernel_0',
    'two_conv_decoder2/conv1d_33/bias_0',
    'two_conv_decoder2/batch_normalization_40/gamma_0',
    'two_conv_decoder2/batch_normalization_40/beta_0',
    'two_conv_decoder2/batch_normalization_40/moving_mean_0',
    'two_conv_decoder2/batch_normalization_40/moving_variance_0',
    'conv_transpose_decoder1/conv1d_transpose_7/kernel_0',
    'conv_transpose_decoder1/conv1d_transpose_7/bias_0',
    'conv_transpose_decoder1/batch_normalization_41/gamma_0',
    'conv_transpose_decoder1/batch_normalization_41/beta_0',
    'conv_transpose_decoder1/batch_normalization_41/moving_mean_0',
    'conv_transpose_decoder1/batch_normalization_41/moving_variance_0',
    'two_conv_decoder1/conv1d_34/kernel_0',
    'two_conv_decoder1/conv1d_34/bias_0',
    'two_conv_decoder1/batch_normalization_42/gamma_0',
    'two_conv_decoder1/batch_normalization_42/beta_0',
    'two_conv_decoder1/batch_normalization_42/moving_mean_0',
    'two_conv_decoder1/batch_normalization_42/moving_variance_0',
    'two_conv_decoder1/conv1d_35/kernel_0',
    'two_conv_decoder1/conv1d_35/bias_0',
    'two_conv_decoder1/batch_normalization_43/gamma_0',
    'two_conv_decoder1/batch_normalization_43/beta_0',
    'two_conv_decoder1/batch_normalization_43/moving_mean_0',
    'two_conv_decoder1/batch_normalization_43/moving_variance_0',
    'conv_transpose_decoder0/conv1d_transpose_8/kernel_0',
    'conv_transpose_decoder0/conv1d_transpose_8/bias_0',
    'conv_transpose_decoder0/batch_normalization_44/gamma_0',
    'conv_transpose_decoder0/batch_normalization_44/beta_0',
    'conv_transpose_decoder0/batch_normalization_44/moving_mean_0',
    'conv_transpose_decoder0/batch_normalization_44/moving_variance_0',
    'two_conv_decoder0/conv1d_36/kernel_0',
    'two_conv_decoder0/conv1d_36/bias_0',
    'two_conv_decoder0/batch_normalization_45/gamma_0',
    'two_conv_decoder0/batch_normalization_45/beta_0',
    'two_conv_decoder0/batch_normalization_45/moving_mean_0',
    'two_conv_decoder0/batch_normalization_45/moving_variance_0',
    'two_conv_decoder0/conv1d_37/kernel_0',
    'two_conv_decoder0/conv1d_37/bias_0',
    'two_conv_decoder0/batch_normalization_46/gamma_0',
    'two_conv_decoder0/batch_normalization_46/beta_0',
    'two_conv_decoder0/batch_normalization_46/moving_mean_0',
    'two_conv_decoder0/batch_normalization_46/moving_variance_0',
    'conv1d_38/kernel_0',
    'conv1d_38/bias_0'],
   'scalars': ['epoch_loss',
    'epoch_tp',
    'epoch_fp',
    'epoch_tn',
    'epoch_fn',
    'epoch_precision',
    'epoch_recall',
    'epoch_accuracy',
    'epoch_auc'],
   'distributions': ['encode0/conv1d/kernel_0',
    'encode0/conv1d/bias_0',
    'encode0/batch_normalization/gamma_0',
    'encode0/batch_normalization/beta_0',
    'encode0/batch_normalization/moving_mean_0',
    'encode0/batch_normalization/moving_variance_0',
    'encode0/conv1d_1/kernel_0',
    'encode0/conv1d_1/bias_0',
    'encode0/batch_normalization_1/gamma_0',
    'encode0/batch_normalization_1/beta_0',
    'encode0/batch_normalization_1/moving_mean_0',
    'encode0/batch_normalization_1/moving_variance_0',
    'encode1/conv1d_2/kernel_0',
    'encode1/conv1d_2/bias_0',
    'encode1/batch_normalization_2/gamma_0',
    'encode1/batch_normalization_2/beta_0',
    'encode1/batch_normalization_2/moving_mean_0',
    'encode1/batch_normalization_2/moving_variance_0',
    'encode1/conv1d_3/kernel_0',
    'encode1/conv1d_3/bias_0',
    'encode1/batch_normalization_3/gamma_0',
    'encode1/batch_normalization_3/beta_0',
    'encode1/batch_normalization_3/moving_mean_0',
    'encode1/batch_normalization_3/moving_variance_0',
    'encode2/conv1d_4/kernel_0',
    'encode2/conv1d_4/bias_0',
    'encode2/batch_normalization_4/gamma_0',
    'encode2/batch_normalization_4/beta_0',
    'encode2/batch_normalization_4/moving_mean_0',
    'encode2/batch_normalization_4/moving_variance_0',
    'encode2/conv1d_5/kernel_0',
    'encode2/conv1d_5/bias_0',
    'encode2/batch_normalization_5/gamma_0',
    'encode2/batch_normalization_5/beta_0',
    'encode2/batch_normalization_5/moving_mean_0',
    'encode2/batch_normalization_5/moving_variance_0',
    'encode3/conv1d_6/kernel_0',
    'encode3/conv1d_6/bias_0',
    'encode3/batch_normalization_6/gamma_0',
    'encode3/batch_normalization_6/beta_0',
    'encode3/batch_normalization_6/moving_mean_0',
    'encode3/batch_normalization_6/moving_variance_0',
    'encode3/conv1d_7/kernel_0',
    'encode3/conv1d_7/bias_0',
    'encode3/batch_normalization_7/gamma_0',
    'encode3/batch_normalization_7/beta_0',
    'encode3/batch_normalization_7/moving_mean_0',
    'encode3/batch_normalization_7/moving_variance_0',
    'encode4/conv1d_8/kernel_0',
    'encode4/conv1d_8/bias_0',
    'encode4/batch_normalization_8/gamma_0',
    'encode4/batch_normalization_8/beta_0',
    'encode4/batch_normalization_8/moving_mean_0',
    'encode4/batch_normalization_8/moving_variance_0',
    'encode4/conv1d_9/kernel_0',
    'encode4/conv1d_9/bias_0',
    'encode4/batch_normalization_9/gamma_0',
    'encode4/batch_normalization_9/beta_0',
    'encode4/batch_normalization_9/moving_mean_0',
    'encode4/batch_normalization_9/moving_variance_0',
    'encode5/conv1d_10/kernel_0',
    'encode5/conv1d_10/bias_0',
    'encode5/batch_normalization_10/gamma_0',
    'encode5/batch_normalization_10/beta_0',
    'encode5/batch_normalization_10/moving_mean_0',
    'encode5/batch_normalization_10/moving_variance_0',
    'encode5/conv1d_11/kernel_0',
    'encode5/conv1d_11/bias_0',
    'encode5/batch_normalization_11/gamma_0',
    'encode5/batch_normalization_11/beta_0',
    'encode5/batch_normalization_11/moving_mean_0',
    'encode5/batch_normalization_11/moving_variance_0',
    'encode6/conv1d_12/kernel_0',
    'encode6/conv1d_12/bias_0',
    'encode6/batch_normalization_12/gamma_0',
    'encode6/batch_normalization_12/beta_0',
    'encode6/batch_normalization_12/moving_mean_0',
    'encode6/batch_normalization_12/moving_variance_0',
    'encode6/conv1d_13/kernel_0',
    'encode6/conv1d_13/bias_0',
    'encode6/batch_normalization_13/gamma_0',
    'encode6/batch_normalization_13/beta_0',
    'encode6/batch_normalization_13/moving_mean_0',
    'encode6/batch_normalization_13/moving_variance_0',
    'encode7/conv1d_14/kernel_0',
    'encode7/conv1d_14/bias_0',
    'encode7/batch_normalization_14/gamma_0',
    'encode7/batch_normalization_14/beta_0',
    'encode7/batch_normalization_14/moving_mean_0',
    'encode7/batch_normalization_14/moving_variance_0',
    'encode7/conv1d_15/kernel_0',
    'encode7/conv1d_15/bias_0',
    'encode7/batch_normalization_15/gamma_0',
    'encode7/batch_normalization_15/beta_0',
    'encode7/batch_normalization_15/moving_mean_0',
    'encode7/batch_normalization_15/moving_variance_0',
    'encode8/conv1d_16/kernel_0',
    'encode8/conv1d_16/bias_0',
    'encode8/batch_normalization_16/gamma_0',
    'encode8/batch_normalization_16/beta_0',
    'encode8/batch_normalization_16/moving_mean_0',
    'encode8/batch_normalization_16/moving_variance_0',
    'encode8/conv1d_17/kernel_0',
    'encode8/conv1d_17/bias_0',
    'encode8/batch_normalization_17/gamma_0',
    'encode8/batch_normalization_17/beta_0',
    'encode8/batch_normalization_17/moving_mean_0',
    'encode8/batch_normalization_17/moving_variance_0',
    'two_conv_center/conv1d_18/kernel_0',
    'two_conv_center/conv1d_18/bias_0',
    'two_conv_center/batch_normalization_18/gamma_0',
    'two_conv_center/batch_normalization_18/beta_0',
    'two_conv_center/batch_normalization_18/moving_mean_0',
    'two_conv_center/batch_normalization_18/moving_variance_0',
    'two_conv_center/conv1d_19/kernel_0',
    'two_conv_center/conv1d_19/bias_0',
    'two_conv_center/batch_normalization_19/gamma_0',
    'two_conv_center/batch_normalization_19/beta_0',
    'two_conv_center/batch_normalization_19/moving_mean_0',
    'two_conv_center/batch_normalization_19/moving_variance_0',
    'conv_transpose_decoder8/conv1d_transpose/kernel_0',
    'conv_transpose_decoder8/conv1d_transpose/bias_0',
    'conv_transpose_decoder8/batch_normalization_20/gamma_0',
    'conv_transpose_decoder8/batch_normalization_20/beta_0',
    'conv_transpose_decoder8/batch_normalization_20/moving_mean_0',
    'conv_transpose_decoder8/batch_normalization_20/moving_variance_0',
    'two_conv_decoder8/conv1d_20/kernel_0',
    'two_conv_decoder8/conv1d_20/bias_0',
    'two_conv_decoder8/batch_normalization_21/gamma_0',
    'two_conv_decoder8/batch_normalization_21/beta_0',
    'two_conv_decoder8/batch_normalization_21/moving_mean_0',
    'two_conv_decoder8/batch_normalization_21/moving_variance_0',
    'two_conv_decoder8/conv1d_21/kernel_0',
    'two_conv_decoder8/conv1d_21/bias_0',
    'two_conv_decoder8/batch_normalization_22/gamma_0',
    'two_conv_decoder8/batch_normalization_22/beta_0',
    'two_conv_decoder8/batch_normalization_22/moving_mean_0',
    'two_conv_decoder8/batch_normalization_22/moving_variance_0',
    'conv_transpose_decoder7/conv1d_transpose_1/kernel_0',
    'conv_transpose_decoder7/conv1d_transpose_1/bias_0',
    'conv_transpose_decoder7/batch_normalization_23/gamma_0',
    'conv_transpose_decoder7/batch_normalization_23/beta_0',
    'conv_transpose_decoder7/batch_normalization_23/moving_mean_0',
    'conv_transpose_decoder7/batch_normalization_23/moving_variance_0',
    'two_conv_decoder7/conv1d_22/kernel_0',
    'two_conv_decoder7/conv1d_22/bias_0',
    'two_conv_decoder7/batch_normalization_24/gamma_0',
    'two_conv_decoder7/batch_normalization_24/beta_0',
    'two_conv_decoder7/batch_normalization_24/moving_mean_0',
    'two_conv_decoder7/batch_normalization_24/moving_variance_0',
    'two_conv_decoder7/conv1d_23/kernel_0',
    'two_conv_decoder7/conv1d_23/bias_0',
    'two_conv_decoder7/batch_normalization_25/gamma_0',
    'two_conv_decoder7/batch_normalization_25/beta_0',
    'two_conv_decoder7/batch_normalization_25/moving_mean_0',
    'two_conv_decoder7/batch_normalization_25/moving_variance_0',
    'conv_transpose_decoder6/conv1d_transpose_2/kernel_0',
    'conv_transpose_decoder6/conv1d_transpose_2/bias_0',
    'conv_transpose_decoder6/batch_normalization_26/gamma_0',
    'conv_transpose_decoder6/batch_normalization_26/beta_0',
    'conv_transpose_decoder6/batch_normalization_26/moving_mean_0',
    'conv_transpose_decoder6/batch_normalization_26/moving_variance_0',
    'two_conv_decoder6/conv1d_24/kernel_0',
    'two_conv_decoder6/conv1d_24/bias_0',
    'two_conv_decoder6/batch_normalization_27/gamma_0',
    'two_conv_decoder6/batch_normalization_27/beta_0',
    'two_conv_decoder6/batch_normalization_27/moving_mean_0',
    'two_conv_decoder6/batch_normalization_27/moving_variance_0',
    'two_conv_decoder6/conv1d_25/kernel_0',
    'two_conv_decoder6/conv1d_25/bias_0',
    'two_conv_decoder6/batch_normalization_28/gamma_0',
    'two_conv_decoder6/batch_normalization_28/beta_0',
    'two_conv_decoder6/batch_normalization_28/moving_mean_0',
    'two_conv_decoder6/batch_normalization_28/moving_variance_0',
    'conv_transpose_decoder5/conv1d_transpose_3/kernel_0',
    'conv_transpose_decoder5/conv1d_transpose_3/bias_0',
    'conv_transpose_decoder5/batch_normalization_29/gamma_0',
    'conv_transpose_decoder5/batch_normalization_29/beta_0',
    'conv_transpose_decoder5/batch_normalization_29/moving_mean_0',
    'conv_transpose_decoder5/batch_normalization_29/moving_variance_0',
    'two_conv_decoder5/conv1d_26/kernel_0',
    'two_conv_decoder5/conv1d_26/bias_0',
    'two_conv_decoder5/batch_normalization_30/gamma_0',
    'two_conv_decoder5/batch_normalization_30/beta_0',
    'two_conv_decoder5/batch_normalization_30/moving_mean_0',
    'two_conv_decoder5/batch_normalization_30/moving_variance_0',
    'two_conv_decoder5/conv1d_27/kernel_0',
    'two_conv_decoder5/conv1d_27/bias_0',
    'two_conv_decoder5/batch_normalization_31/gamma_0',
    'two_conv_decoder5/batch_normalization_31/beta_0',
    'two_conv_decoder5/batch_normalization_31/moving_mean_0',
    'two_conv_decoder5/batch_normalization_31/moving_variance_0',
    'conv_transpose_decoder4/conv1d_transpose_4/kernel_0',
    'conv_transpose_decoder4/conv1d_transpose_4/bias_0',
    'conv_transpose_decoder4/batch_normalization_32/gamma_0',
    'conv_transpose_decoder4/batch_normalization_32/beta_0',
    'conv_transpose_decoder4/batch_normalization_32/moving_mean_0',
    'conv_transpose_decoder4/batch_normalization_32/moving_variance_0',
    'two_conv_decoder4/conv1d_28/kernel_0',
    'two_conv_decoder4/conv1d_28/bias_0',
    'two_conv_decoder4/batch_normalization_33/gamma_0',
    'two_conv_decoder4/batch_normalization_33/beta_0',
    'two_conv_decoder4/batch_normalization_33/moving_mean_0',
    'two_conv_decoder4/batch_normalization_33/moving_variance_0',
    'two_conv_decoder4/conv1d_29/kernel_0',
    'two_conv_decoder4/conv1d_29/bias_0',
    'two_conv_decoder4/batch_normalization_34/gamma_0',
    'two_conv_decoder4/batch_normalization_34/beta_0',
    'two_conv_decoder4/batch_normalization_34/moving_mean_0',
    'two_conv_decoder4/batch_normalization_34/moving_variance_0',
    'conv_transpose_decoder3/conv1d_transpose_5/kernel_0',
    'conv_transpose_decoder3/conv1d_transpose_5/bias_0',
    'conv_transpose_decoder3/batch_normalization_35/gamma_0',
    'conv_transpose_decoder3/batch_normalization_35/beta_0',
    'conv_transpose_decoder3/batch_normalization_35/moving_mean_0',
    'conv_transpose_decoder3/batch_normalization_35/moving_variance_0',
    'two_conv_decoder3/conv1d_30/kernel_0',
    'two_conv_decoder3/conv1d_30/bias_0',
    'two_conv_decoder3/batch_normalization_36/gamma_0',
    'two_conv_decoder3/batch_normalization_36/beta_0',
    'two_conv_decoder3/batch_normalization_36/moving_mean_0',
    'two_conv_decoder3/batch_normalization_36/moving_variance_0',
    'two_conv_decoder3/conv1d_31/kernel_0',
    'two_conv_decoder3/conv1d_31/bias_0',
    'two_conv_decoder3/batch_normalization_37/gamma_0',
    'two_conv_decoder3/batch_normalization_37/beta_0',
    'two_conv_decoder3/batch_normalization_37/moving_mean_0',
    'two_conv_decoder3/batch_normalization_37/moving_variance_0',
    'conv_transpose_decoder2/conv1d_transpose_6/kernel_0',
    'conv_transpose_decoder2/conv1d_transpose_6/bias_0',
    'conv_transpose_decoder2/batch_normalization_38/gamma_0',
    'conv_transpose_decoder2/batch_normalization_38/beta_0',
    'conv_transpose_decoder2/batch_normalization_38/moving_mean_0',
    'conv_transpose_decoder2/batch_normalization_38/moving_variance_0',
    'two_conv_decoder2/conv1d_32/kernel_0',
    'two_conv_decoder2/conv1d_32/bias_0',
    'two_conv_decoder2/batch_normalization_39/gamma_0',
    'two_conv_decoder2/batch_normalization_39/beta_0',
    'two_conv_decoder2/batch_normalization_39/moving_mean_0',
    'two_conv_decoder2/batch_normalization_39/moving_variance_0',
    'two_conv_decoder2/conv1d_33/kernel_0',
    'two_conv_decoder2/conv1d_33/bias_0',
    'two_conv_decoder2/batch_normalization_40/gamma_0',
    'two_conv_decoder2/batch_normalization_40/beta_0',
    'two_conv_decoder2/batch_normalization_40/moving_mean_0',
    'two_conv_decoder2/batch_normalization_40/moving_variance_0',
    'conv_transpose_decoder1/conv1d_transpose_7/kernel_0',
    'conv_transpose_decoder1/conv1d_transpose_7/bias_0',
    'conv_transpose_decoder1/batch_normalization_41/gamma_0',
    'conv_transpose_decoder1/batch_normalization_41/beta_0',
    'conv_transpose_decoder1/batch_normalization_41/moving_mean_0',
    'conv_transpose_decoder1/batch_normalization_41/moving_variance_0',
    'two_conv_decoder1/conv1d_34/kernel_0',
    'two_conv_decoder1/conv1d_34/bias_0',
    'two_conv_decoder1/batch_normalization_42/gamma_0',
    'two_conv_decoder1/batch_normalization_42/beta_0',
    'two_conv_decoder1/batch_normalization_42/moving_mean_0',
    'two_conv_decoder1/batch_normalization_42/moving_variance_0',
    'two_conv_decoder1/conv1d_35/kernel_0',
    'two_conv_decoder1/conv1d_35/bias_0',
    'two_conv_decoder1/batch_normalization_43/gamma_0',
    'two_conv_decoder1/batch_normalization_43/beta_0',
    'two_conv_decoder1/batch_normalization_43/moving_mean_0',
    'two_conv_decoder1/batch_normalization_43/moving_variance_0',
    'conv_transpose_decoder0/conv1d_transpose_8/kernel_0',
    'conv_transpose_decoder0/conv1d_transpose_8/bias_0',
    'conv_transpose_decoder0/batch_normalization_44/gamma_0',
    'conv_transpose_decoder0/batch_normalization_44/beta_0',
    'conv_transpose_decoder0/batch_normalization_44/moving_mean_0',
    'conv_transpose_decoder0/batch_normalization_44/moving_variance_0',
    'two_conv_decoder0/conv1d_36/kernel_0',
    'two_conv_decoder0/conv1d_36/bias_0',
    'two_conv_decoder0/batch_normalization_45/gamma_0',
    'two_conv_decoder0/batch_normalization_45/beta_0',
    'two_conv_decoder0/batch_normalization_45/moving_mean_0',
    'two_conv_decoder0/batch_normalization_45/moving_variance_0',
    'two_conv_decoder0/conv1d_37/kernel_0',
    'two_conv_decoder0/conv1d_37/bias_0',
    'two_conv_decoder0/batch_normalization_46/gamma_0',
    'two_conv_decoder0/batch_normalization_46/beta_0',
    'two_conv_decoder0/batch_normalization_46/moving_mean_0',
    'two_conv_decoder0/batch_normalization_46/moving_variance_0',
    'conv1d_38/kernel_0',
    'conv1d_38/bias_0'],
   'tensors': ['batch_2'],
   'graph': False,
   'meta_graph': False,
   'run_metadata': []}
  ea.Scalars('epoch_loss')

2.1.8 Load model from mlflow logs and predict separately loaded data

First, check if the model file has to be downloaded via git lfs

  cd /home/lex/Programme/drmed-git/
  git lfs ls-files
  git lfs checkout
  (base) [lex@Topialex drmed-git]$ git lfs ls-files
  6526c5abca - data/mlruns/1/47b870b8fdcb4445956635c6758caff3/artifacts/model/data/model.h5

  (base) [lex@Topialex drmed-git]$ git lfs checkout
  Skipped checkout for
  "data/mlruns/1/47b870b8fdcb4445956635c6758caff3/artifacts/model/data/model.h5",
  content not local. Use fetch to download.
  Checking out LFS objects: 100% (1/1), 399 MB | 0 B/s, done.
  git lfs pull
  fetch: Fetching reference refs/heads/develop
  Username for 'https://github.com': aseltmann B/s
  Password for 'https://aseltmann@github.com':
  (base) [lex@Topialex drmed-git]$ 1), 399 MB | 1.9 MB/s

Note: after these downloads, the GitHub-Version of git lfs didn’t work for me anymore without a payment for download/upload. Initially I thought of git lfs as a distributed way of storing files without the need of a central storage. GitHub does not seem to support that, which is sad - I will move away from it in the future. See here.

  import mlflow.keras
  import mlflow.tensorflow
  import sys
  import numpy as np
  import tensorflow as tf

  project_path = '/home/lex/Programme/drmed-git'
  fluotracify_path = '{}/src/'.format(project_path)
  sys.path.append(fluotracify_path)

  from fluotracify.simulations import import_simulation_from_csv as isfc
  from fluotracify.training import build_model as bm, preprocess_data as ppd

  %cd /home/lex/Programme/drmed-git
  print(tf.__version__)
/home/lex/Programme/drmed-git
2.3.0-dev20200519
  mlflow.set_tracking_uri('file://{}/data/mlruns'.format(project_path))
  client = mlflow.tracking.MlflowClient(tracking_uri=mlflow.get_tracking_uri())
  model_path = client.download_artifacts(
      run_id='1aefda1366f04f5da5d1fc2241ad9208',
      path='model')
  print(model_path)
/home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/model
  bm.binary_ce_dice_loss()
<function fluotracify.training.build_model.binary_ce_dice_loss.<locals>.binary_ce_dice(y_true, y_pred)>
  # mlflow.keras module
  model_keras = mlflow.keras.load_model(model_uri=model_path,
                                        custom_objects={'binary_ce_dice': bm.binary_ce_dice_loss()})
  model_keras
<tensorflow.python.keras.engine.functional.Functional at 0x7f3afa29d0a0>
  data, _, nsamples, experiment_params = isfc.import_from_csv(
      path='/home/lex/Programme/Jupyter/DOKTOR/saves/firstartefact/subsample_rand/',
      header=12,
      frac_train=1,
      col_per_example=2,
      dropindex=None,
      dropcolumns='Unnamed: 200')
train 0 /home/lex/Programme/Jupyter/DOKTOR/saves/firstartefact/subsample_rand/traces_brightclust_rand_Sep2019_set003.csv
train 1 /home/lex/Programme/Jupyter/DOKTOR/saves/firstartefact/subsample_rand/traces_brightclust_rand_Sep2019_set002.csv
train 2 /home/lex/Programme/Jupyter/DOKTOR/saves/firstartefact/subsample_rand/traces_brightclust_rand_Sep2019_set001.csv
input - shape:	 (None, 16384, 1)
output - shape:	 (None, 16384, 1)
Model: "model"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to
==================================================================================================
input_1 (InputLayer)            [(None, 16384, 1)]   0
__________________________________________________________________________________________________
encode0 (Sequential)            (None, 16384, 64)    13120       input_1[0][0]
__________________________________________________________________________________________________
mp_encode0 (MaxPooling1D)       (None, 8192, 64)     0           encode0[0][0]
__________________________________________________________________________________________________
encode1 (Sequential)            (None, 8192, 128)    75008       mp_encode0[0][0]
__________________________________________________________________________________________________
mp_encode1 (MaxPooling1D)       (None, 4096, 128)    0           encode1[0][0]
__________________________________________________________________________________________________
encode2 (Sequential)            (None, 4096, 256)    297472      mp_encode1[0][0]
__________________________________________________________________________________________________
mp_encode2 (MaxPooling1D)       (None, 2048, 256)    0           encode2[0][0]
__________________________________________________________________________________________________
encode3 (Sequential)            (None, 2048, 512)    1184768     mp_encode2[0][0]
__________________________________________________________________________________________________
mp_encode3 (MaxPooling1D)       (None, 1024, 512)    0           encode3[0][0]
__________________________________________________________________________________________________
encode4 (Sequential)            (None, 1024, 512)    1577984     mp_encode3[0][0]
__________________________________________________________________________________________________
mp_encode4 (MaxPooling1D)       (None, 512, 512)     0           encode4[0][0]
__________________________________________________________________________________________________
encode5 (Sequential)            (None, 512, 512)     1577984     mp_encode4[0][0]
__________________________________________________________________________________________________
mp_encode5 (MaxPooling1D)       (None, 256, 512)     0           encode5[0][0]
__________________________________________________________________________________________________
encode6 (Sequential)            (None, 256, 512)     1577984     mp_encode5[0][0]
__________________________________________________________________________________________________
mp_encode6 (MaxPooling1D)       (None, 128, 512)     0           encode6[0][0]
__________________________________________________________________________________________________
encode7 (Sequential)            (None, 128, 512)     1577984     mp_encode6[0][0]
__________________________________________________________________________________________________
mp_encode7 (MaxPooling1D)       (None, 64, 512)      0           encode7[0][0]
__________________________________________________________________________________________________
encode8 (Sequential)            (None, 64, 512)      1577984     mp_encode7[0][0]
__________________________________________________________________________________________________
mp_encode8 (MaxPooling1D)       (None, 32, 512)      0           encode8[0][0]
__________________________________________________________________________________________________
two_conv_center (Sequential)    (None, 32, 1024)     4728832     mp_encode8[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder8 (Sequen (None, 64, 512)      1051136     two_conv_center[0][0]
__________________________________________________________________________________________________
decoder8 (Concatenate)          (None, 64, 1024)     0           encode8[0][0]
                                                                 conv_transpose_decoder8[0][0]
__________________________________________________________________________________________________
two_conv_decoder8 (Sequential)  (None, 64, 512)      2364416     decoder8[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder7 (Sequen (None, 128, 512)     526848      two_conv_decoder8[0][0]
__________________________________________________________________________________________________
decoder7 (Concatenate)          (None, 128, 1024)    0           encode7[0][0]
                                                                 conv_transpose_decoder7[0][0]
__________________________________________________________________________________________________
two_conv_decoder7 (Sequential)  (None, 128, 512)     2364416     decoder7[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder6 (Sequen (None, 256, 512)     526848      two_conv_decoder7[0][0]
__________________________________________________________________________________________________
decoder6 (Concatenate)          (None, 256, 1024)    0           encode6[0][0]
                                                                 conv_transpose_decoder6[0][0]
__________________________________________________________________________________________________
two_conv_decoder6 (Sequential)  (None, 256, 512)     2364416     decoder6[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder5 (Sequen (None, 512, 512)     526848      two_conv_decoder6[0][0]
__________________________________________________________________________________________________
decoder5 (Concatenate)          (None, 512, 1024)    0           encode5[0][0]
                                                                 conv_transpose_decoder5[0][0]
__________________________________________________________________________________________________
two_conv_decoder5 (Sequential)  (None, 512, 512)     2364416     decoder5[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder4 (Sequen (None, 1024, 512)    526848      two_conv_decoder5[0][0]
__________________________________________________________________________________________________
decoder4 (Concatenate)          (None, 1024, 1024)   0           encode4[0][0]
                                                                 conv_transpose_decoder4[0][0]
__________________________________________________________________________________________________
two_conv_decoder4 (Sequential)  (None, 1024, 512)    2364416     decoder4[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder3 (Sequen (None, 2048, 512)    526848      two_conv_decoder4[0][0]
__________________________________________________________________________________________________
decoder3 (Concatenate)          (None, 2048, 1024)   0           encode3[0][0]
                                                                 conv_transpose_decoder3[0][0]
__________________________________________________________________________________________________
two_conv_decoder3 (Sequential)  (None, 2048, 512)    2364416     decoder3[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder2 (Sequen (None, 4096, 256)    263424      two_conv_decoder3[0][0]
__________________________________________________________________________________________________
decoder2 (Concatenate)          (None, 4096, 512)    0           encode2[0][0]
                                                                 conv_transpose_decoder2[0][0]
__________________________________________________________________________________________________
two_conv_decoder2 (Sequential)  (None, 4096, 256)    592384      decoder2[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder1 (Sequen (None, 8192, 128)    66176       two_conv_decoder2[0][0]
__________________________________________________________________________________________________
decoder1 (Concatenate)          (None, 8192, 256)    0           encode1[0][0]
                                                                 conv_transpose_decoder1[0][0]
__________________________________________________________________________________________________
two_conv_decoder1 (Sequential)  (None, 8192, 128)    148736      decoder1[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder0 (Sequen (None, 16384, 64)    16704       two_conv_decoder1[0][0]
__________________________________________________________________________________________________
decoder0 (Concatenate)          (None, 16384, 128)   0           encode0[0][0]
                                                                 conv_transpose_decoder0[0][0]
__________________________________________________________________________________________________
two_conv_decoder0 (Sequential)  (None, 16384, 64)    37504       decoder0[0][0]
__________________________________________________________________________________________________
conv1d_38 (Conv1D)              (None, 16384, 1)     65          two_conv_decoder0[0][0]
==================================================================================================
Total params: 33,185,985
Trainable params: 33,146,689
Non-trainable params: 39,296
__________________________________________________________________________________________________
None
  prediction = model_keras.predict(np.array(data.iloc[:16384, 0]).reshape(1, -1, 1))

I noticed one problem: directly outputting the prediction array for large predictions (e.g. 16384 time steps), will freeze emacs. Especially with my setup with conversion to org tables. It is possible to output it in the REPL, or print it using print(prediction), because there the output gets truncated, e.g. like this:

array([[[1.],
        [1.],
        [1.],
        ...,
        [1.],
        [1.],
        [1.]]], dtype=float32)

While here it tries to print everything (I guess). Maybe I should test the :pandoc t argument instead of the OrgFormatter class

Basically, no matter if I choosnpe the :results header argument, it always gets printed with :display org like this.

log_dir="logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(
    log_dir=log_dir,
    histogram_freq=5,
    write_images=True,
    update_freq='batch')

epochs = 50

history = model.fit(x=dataset_train,
                    epochs=epochs,
                    steps_per_epoch=400,
                    validation_data=dataset_val,
                    validation_steps=tf.math.ceil(num_val_examples / batch_size),
                    callbacks=[tensorboard_callback])
WARNING: Logging before flag parsing goes to stderr.
W0413 03:23:05.926374 47620222508736 summary_ops_v2.py:1132] Model failed to serialize as JSON. Ignoring... Layers with arguments in `__init__` must override `get_config`.
Train for 400 steps, validate for 534.0 steps
Epoch 1/50
  8/400 [..............................] - ETA: 1:05:18 - loss: 1.4586 - mean_io_u: 0.4039 - precision: 0.2347 - recall: 0.1408
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
  prediction
  0 1 2 3 4 5 6 7 8 9 10 11 2043 2044 2045 2046 2047
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

To make the output work the desired way (like in the REPL or print() and without freezing emacs for large tables), use :display plain

  prediction
array([[[1.],
        [1.],
        [1.],
        ...,
        [1.],
        [1.],
        [1.]]], dtype=float32)

2.1.9 git exp 2

      git status
      git log -1
      (tensorflow_nightly) [ye53nis@node151 drmed-git]$ git status
      # On branch exp-310520-unet
      # Untracked files:
      #   (use "git add <file>..." to include in what will be committed)
      #  ...
      nothing added to commit but untracked files present (use "git add" to track)

      (tensorflow_nightly) [ye53nis@node151 drmed-git]$ git log -1
      commit 09c1d2a1bc083695026b46c74ea175c9168bb5f2
      Author: Apoplex <oligolex@vivaldi.net>
      Date:   Fri Jun 12 14:17:14 2020 +0200

          New learning rate schedule

current learning rate schedule:

       learning_rate = 0.1
        if epoch > 10:
            learning_rate = 0.01
        if epoch > 20:
            learning_rate = 0.001
        if epoch > 30:
            learning_rate = 0.0001
        if epoch > 40:
            learning_rate = 0.00001
        if epoch > 50:
            learning_rate = 0.000001
        if epoch > 60:
            learning_rate = 0.00000001
        if epoch > 70:
            learning_rate = 0.0000000001
        if epoch > 80:
            learning_rate = 0.000000000001
        if epoch > 90:
            learning_rate = 0.00000000000001

2.1.10 experimental run 2 - full dataset

This time new learning rate

      mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=100 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=1280 -P validation_steps=320
      (tensorflow_nightly) [ye53nis@node151 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=100 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=1280 -P val
      idation_steps=320
      2020/06/12 14:20:34 INFO mlflow.projects: === Created directory /tmp/tmp2s79px_z for downloading remote URIs passed to arguments of type 'path' ===
      2020/06/12 14:20:34 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/fluotracify/training/train.py /
      beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 100 /beegfs/ye53nis/saves/firstartefact_Sep2019 1280 320' in run with ID '037e1d9e4ad74784974f4aaac11138cc' ===
      2020-06-12 14:20:53.286502: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory
      2020-06-12 14:20:53.286593: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favour of importlib; see the modul
      e's documentation for alternative uses
        import imp
      2.3.0-dev20200527
      2020-06-12 14:21:33.782337: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2020-06-12 14:21:33.782422: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
      2020-06-12 14:21:33.782480: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node151): /proc/driver/nvidia/version does not exist
      GPUs:  []
      train 0 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set027.csv
      train 1 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set087.csv
      train 2 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set003.csv
      train 3 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set056.csv
      train 4 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set076.csv
      train 5 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set094.csv
      train 6 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set017.csv
      train 7 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set074.csv
      train 8 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set055.csv
      train 9 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set096.csv
      train 10 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set054.csv
      train 11 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set093.csv
      train 12 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set079.csv
      train 13 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set014.csv
      train 14 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set008.csv
      train 15 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set031.csv
      train 16 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set023.csv
      train 17 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set025.csv
      train 18 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set034.csv
      train 19 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set009.csv
      train 20 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set044.csv
      train 21 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set063.csv
      train 22 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set004.csv
      train 23 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set072.csv
      train 24 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set046.csv
      train 25 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set049.csv
      train 26 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set007.csv
      train 27 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set100.csv
      train 28 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set083.csv
      train 29 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set077.csv
      train 30 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set061.csv
      train 31 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set081.csv
      train 32 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set091.csv
      train 33 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set069.csv
      train 34 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set052.csv
      train 35 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set028.csv
      train 36 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set019.csv
      train 37 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set057.csv
      train 38 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set064.csv
      train 39 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set075.csv
      train 40 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set002.csv
      train 41 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set062.csv
      train 42 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set043.csv
      train 43 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set042.csv
      train 44 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set005.csv
      train 45 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set016.csv
      train 46 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set018.csv
      train 47 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set041.csv
      train 48 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set039.csv
      train 49 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set006.csv
      train 50 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set092.csv
      train 51 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set060.csv
      train 52 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set001.csv
      train 53 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set035.csv
      train 54 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set029.csv
      train 55 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set051.csv
      train 56 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set012.csv
      train 57 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set036.csv
      train 58 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set024.csv
      train 59 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set053.csv
      train 60 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set011.csv
      train 61 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set032.csv
      train 62 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set067.csv
      train 63 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set058.csv
      train 64 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set080.csv
      train 65 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set086.csv
      train 66 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set033.csv
      train 67 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set085.csv
      train 68 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set015.csv
      train 69 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set090.csv
      train 70 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set020.csv
      train 71 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set030.csv
      train 72 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set050.csv
      train 73 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set098.csv
      train 74 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set099.csv
      train 75 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set070.csv
      train 76 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set021.csv
      train 77 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set095.csv
      train 78 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set073.csv
      train 79 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set078.csv
      test 80 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set026.csv
      test 81 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set038.csv
      test 82 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set082.csv
      test 83 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set047.csv
      test 84 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set040.csv
      test 85 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set066.csv
      test 86 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set059.csv
      test 87 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set013.csv
      test 88 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set089.csv
      test 89 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set071.csv
      test 90 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set088.csv
      test 91 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set037.csv
      test 92 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set022.csv
      test 93 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set084.csv
      test 94 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set010.csv
      test 95 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set097.csv
      test 96 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set068.csv
      test 97 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set065.csv
      test 98 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set048.csv
      test 99 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set045.csv
      shapes of feature dataframe: (20000, 8000) and label dataframe: (20000, 8000)
      shapes of feature dataframe: (20000, 2000) and label dataframe: (20000, 2000)

      for each 20,000 timestap trace there are the following numbers of corrupted timesteps:
       label001_1    6286
      label001_1    2568
      label001_1    4495
      label001_1    4414
      label001_1    1105
      dtype: int64
      2020-06-12 14:26:49.734444: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      2020-06-12 14:26:49.744132: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz
      2020-06-12 14:26:49.745558: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55721c34af40 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
      2020-06-12 14:26:49.745586: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
      number of training examples: 6400, number of validation examples: 1600

      ------------------------
      number of test examples: 2000

      input - shape:   (None, 16384, 1)
      output - shape:  (None, 16384, 1)
      2020-06-12 14:26:53.653730: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the ABCs from 'collections' instead
       of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
        if not isinstance(wrapped_dict, collections.Mapping):
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Python 3.0, use inspect.signature()
       or inspect.getfullargspec()
        all_param_names, _, _, all_default_values = inspect.getargspec(fn)  # pylint: disable=W1505
      Epoch 1/100
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from
      'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
        if not isinstance(values, collections.Sequence):
         1/1280 [..............................] - ETA: 0s - loss: 1.5430 - tp: 5048.0000 - fp: 18093.0000 - tn: 50755.0000 - fn: 8024.0000 - precision: 0.2181 - recall: 0.3862 - accuracy: 0.6812 - auc: 0.58482020-06-12 14:27:06.190184: I ten
      sorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
      WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and w
      ill be removed after 2020-07-01.
      Instructions for updating:
      use `tf.profiler.experimental.stop` instead.
      2020-06-12 14:27:07.670394: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_12_14_27_07
      2020-06-12 14:27:07.684980: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.trace.json.gz
      2020-06-12 14:27:07.711539: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_12_14_27_07
      2020-06-12 14:27:07.711638: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.memory_profile.json.gz
      2020-06-12 14:27:07.713732: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_06_12_14_27_07Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2020_06_12_1
      4_27_07/node151.xplane.pb
      Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.overview_page.pb
      Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.input_pipeline.pb
      Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.tensorflow_stats.pb
      Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.kernel_stats.pb

      1280/1280 [==============================] - 2053s 2s/step - loss: 0.9576 - tp: 14931613.0000 - fp: 6406557.0000 - tn: 74369864.0000 - fn: 9149518.0000 - precision: 0.6998 - recall: 0.6201 - accuracy: 0.8516 - auc: 0.8805 - val_loss: 1.
      1981 - val_tp: 3451021.0000 - val_fp: 465330.0000 - val_tn: 19870236.0000 - val_fn: 2427812.0000 - val_precision: 0.8812 - val_recall: 0.5870 - val_accuracy: 0.8896 - val_auc: 0.8828
      Epoch 2/100
       679/1280 [==============>...............] - ETA: 14:47 - loss: 0.6900 - tp: 9867994.0000 - fp: 2756931.0000 - tn: 40089676.0000 - fn: 2909066.0000 - precision: 0.7816 - recall: 0.7723 - accuracy: 0.8981 - auc: 0.9307
      1280/1280 [==============================] - 1998s 2s/step - loss: 0.6748 - tp: 18707488.0000 - fp: 4980630.0000 - tn: 75750952.0000 - fn: 5418544.0000 - precision: 0.7897 - recall: 0.7754 - accuracy: 0.9008 - auc: 0.9335 - val_loss: 1.
      8923 - val_tp: 1511411.0000 - val_fp: 71511.0000 - val_tn: 20387136.0000 - val_fn: 4244342.0000 - val_precision: 0.9548 - val_recall: 0.2626 - val_accuracy: 0.8354 - val_auc: 0.8004
      Epoch 3/100
      1280/1280 [==============================] - 1974s 2s/step - loss: 0.6086 - tp: 19388796.0000 - fp: 4672424.0000 - tn: 76028144.0000 - fn: 4768219.0000 - precision: 0.8058 - recall: 0.8026 - accuracy: 0.9100 - auc: 0.9440 - val_loss: 4.
      4772 - val_tp: 497608.0000 - val_fp: 47.0000 - val_tn: 20133974.0000 - val_fn: 5582775.0000 - val_precision: 0.9999 - val_recall: 0.0818 - val_accuracy: 0.7870 - val_auc: 0.6095
      Epoch 4/100
      1280/1280 [==============================] - 2036s 2s/step - loss: 0.5105 - tp: 20225824.0000 - fp: 3816004.0000 - tn: 76833904.0000 - fn: 3981872.0000 - precision: 0.8413 - recall: 0.8355 - accuracy: 0.9256 - auc: 0.9568 - val_loss: 1.
      5316 - val_tp: 1395128.0000 - val_fp: 5102.0000 - val_tn: 20164212.0000 - val_fn: 4649960.0000 - val_precision: 0.9964 - val_recall: 0.2308 - val_accuracy: 0.8224 - val_auc: 0.7861
      Epoch 5/100
      1280/1280 [==============================] - 1961s 2s/step - loss: 0.4310 - tp: 20871492.0000 - fp: 3257518.0000 - tn: 77358976.0000 - fn: 3369640.0000 - precision: 0.8650 - recall: 0.8610 - accuracy: 0.9368 - auc: 0.9655 - val_loss: 0.
      6155 - val_tp: 4878880.0000 - val_fp: 1771345.0000 - val_tn: 18827236.0000 - val_fn: 736940.0000 - val_precision: 0.7336 - val_recall: 0.8688 - val_accuracy: 0.9043 - val_auc: 0.9524
      Epoch 6/100
      1280/1280 [==============================] - 1934s 2s/step - loss: 0.3911 - tp: 20849656.0000 - fp: 2983615.0000 - tn: 77906056.0000 - fn: 3118252.0000 - precision: 0.8748 - recall: 0.8699 - accuracy: 0.9418 - auc: 0.9695 - val_loss: 13
      .7751 - val_tp: 5829853.0000 - val_fp: 12729657.0000 - val_tn: 7490981.0000 - val_fn: 163909.0000 - val_precision: 0.3141 - val_recall: 0.9727 - val_accuracy: 0.5081 - val_auc: 0.7568
      Epoch 7/100
      1280/1280 [==============================] - 1954s 2s/step - loss: 0.3763 - tp: 20945158.0000 - fp: 2869675.0000 - tn: 78062216.0000 - fn: 2980532.0000 - precision: 0.8795 - recall: 0.8754 - accuracy: 0.9442 - auc: 0.9712 - val_loss: 1.
      4221 - val_tp: 2763303.0000 - val_fp: 537658.0000 - val_tn: 19870444.0000 - val_fn: 3042995.0000 - val_precision: 0.8371 - val_recall: 0.4759 - val_accuracy: 0.8634 - val_auc: 0.8209
      Epoch 8/100
      1280/1280 [==============================] - 1959s 2s/step - loss: 0.3565 - tp: 21224852.0000 - fp: 2648995.0000 - tn: 78077912.0000 - fn: 2905816.0000 - precision: 0.8890 - recall: 0.8796 - accuracy: 0.9470 - auc: 0.9734 - val_loss: 4.
      1428 - val_tp: 671439.0000 - val_fp: 5.0000 - val_tn: 19926294.0000 - val_fn: 5616654.0000 - val_precision: 1.0000 - val_recall: 0.1068 - val_accuracy: 0.7857 - val_auc: 0.6147
      Epoch 9/100
      1280/1280 [==============================] - 1959s 2s/step - loss: 0.3532 - tp: 21099540.0000 - fp: 2612022.0000 - tn: 78277824.0000 - fn: 2868197.0000 - precision: 0.8898 - recall: 0.8803 - accuracy: 0.9477 - auc: 0.9736 - val_loss: 0.
      4181 - val_tp: 5276605.0000 - val_fp: 1364866.0000 - val_tn: 19070268.0000 - val_fn: 502655.0000 - val_precision: 0.7945 - val_recall: 0.9130 - val_accuracy: 0.9288 - val_auc: 0.9733
      Epoch 10/100
      1280/1280 [==============================] - 1964s 2s/step - loss: 0.3303 - tp: 21854000.0000 - fp: 2601074.0000 - tn: 77778032.0000 - fn: 2624482.0000 - precision: 0.8936 - recall: 0.8928 - accuracy: 0.9502 - auc: 0.9758 - val_loss: 0.
      8186 - val_tp: 4852372.0000 - val_fp: 1259191.0000 - val_tn: 19046032.0000 - val_fn: 1056801.0000 - val_precision: 0.7940 - val_recall: 0.8212 - val_accuracy: 0.9117 - val_auc: 0.9279
      Epoch 11/100
      1280/1280 [==============================] - 1954s 2s/step - loss: 0.3367 - tp: 21247744.0000 - fp: 2633337.0000 - tn: 78318176.0000 - fn: 2658349.0000 - precision: 0.8897 - recall: 0.8888 - accuracy: 0.9495 - auc: 0.9748 - val_loss: 14
      .1746 - val_tp: 5315183.0000 - val_fp: 9292374.0000 - val_tn: 10878559.0000 - val_fn: 728284.0000 - val_precision: 0.3639 - val_recall: 0.8795 - val_accuracy: 0.6177 - val_auc: 0.7350
      Epoch 12/100
      1280/1280 [==============================] - 1962s 2s/step - loss: 0.3097 - tp: 21383088.0000 - fp: 2165215.0000 - tn: 78747360.0000 - fn: 2561919.0000 - precision: 0.9081 - recall: 0.8930 - accuracy: 0.9549 - auc: 0.9777 - val_loss: 0.
      3274 - val_tp: 4925695.0000 - val_fp: 165902.0000 - val_tn: 20004090.0000 - val_fn: 1118702.0000 - val_precision: 0.9674 - val_recall: 0.8149 - val_accuracy: 0.9510 - val_auc: 0.9759
      Epoch 13/100
      1280/1280 [==============================] - 1969s 2s/step - loss: 0.2912 - tp: 21857506.0000 - fp: 2213488.0000 - tn: 78446488.0000 - fn: 2340152.0000 - precision: 0.9080 - recall: 0.9033 - accuracy: 0.9566 - auc: 0.9793 - val_loss: 0.
      4428 - val_tp: 4338892.0000 - val_fp: 35099.0000 - val_tn: 20239610.0000 - val_fn: 1600799.0000 - val_precision: 0.9920 - val_recall: 0.7305 - val_accuracy: 0.9376 - val_auc: 0.9713
      Epoch 14/100
      1280/1280 [==============================] - 1957s 2s/step - loss: 0.2883 - tp: 21882504.0000 - fp: 2239269.0000 - tn: 78431648.0000 - fn: 2304140.0000 - precision: 0.9072 - recall: 0.9047 - accuracy: 0.9567 - auc: 0.9796 - val_loss: 0.
      2957 - val_tp: 5289461.0000 - val_fp: 449961.0000 - val_tn: 19835942.0000 - val_fn: 639032.0000 - val_precision: 0.9216 - val_recall: 0.8922 - val_accuracy: 0.9585 - val_auc: 0.9820
      Epoch 15/100
      1280/1280 [==============================] - 2044s 2s/step - loss: 0.2825 - tp: 21866824.0000 - fp: 2177254.0000 - tn: 78541248.0000 - fn: 2272316.0000 - precision: 0.9094 - recall: 0.9059 - accuracy: 0.9576 - auc: 0.9802 - val_loss: 0.
      3209 - val_tp: 5233737.0000 - val_fp: 520949.0000 - val_tn: 19784424.0000 - val_fn: 675290.0000 - val_precision: 0.9095 - val_recall: 0.8857 - val_accuracy: 0.9544 - val_auc: 0.9800
      Epoch 16/100
      1280/1280 [==============================] - 1957s 2s/step - loss: 0.2769 - tp: 21749612.0000 - fp: 2170557.0000 - tn: 78722872.0000 - fn: 2214598.0000 - precision: 0.9093 - recall: 0.9076 - accuracy: 0.9582 - auc: 0.9802 - val_loss: 0.
      3247 - val_tp: 5660332.0000 - val_fp: 828589.0000 - val_tn: 19303372.0000 - val_fn: 422111.0000 - val_precision: 0.8723 - val_recall: 0.9306 - val_accuracy: 0.9523 - val_auc: 0.9859
      Epoch 17/100
      1280/1280 [==============================] - 1949s 2s/step - loss: 0.2774 - tp: 21816756.0000 - fp: 2164372.0000 - tn: 78635128.0000 - fn: 2241237.0000 - precision: 0.9097 - recall: 0.9068 - accuracy: 0.9580 - auc: 0.9806 - val_loss: 0.
      3148 - val_tp: 4953313.0000 - val_fp: 118813.0000 - val_tn: 20032204.0000 - val_fn: 1110073.0000 - val_precision: 0.9766 - val_recall: 0.8169 - val_accuracy: 0.9531 - val_auc: 0.9788
      Epoch 18/100
      1280/1280 [==============================] - 1944s 2s/step - loss: 0.2725 - tp: 21678578.0000 - fp: 2114671.0000 - tn: 78865952.0000 - fn: 2198422.0000 - precision: 0.9111 - recall: 0.9079 - accuracy: 0.9589 - auc: 0.9807 - val_loss: 0.
      3363 - val_tp: 4425577.0000 - val_fp: 55980.0000 - val_tn: 20363536.0000 - val_fn: 1369309.0000 - val_precision: 0.9875 - val_recall: 0.7637 - val_accuracy: 0.9456 - val_auc: 0.9739
      Epoch 19/100
      1280/1280 [==============================] - 1947s 2s/step - loss: 0.2757 - tp: 22040606.0000 - fp: 2177952.0000 - tn: 78420008.0000 - fn: 2218997.0000 - precision: 0.9101 - recall: 0.9085 - accuracy: 0.9581 - auc: 0.9805 - val_loss: 0.
      3061 - val_tp: 5376668.0000 - val_fp: 295874.0000 - val_tn: 19715332.0000 - val_fn: 826533.0000 - val_precision: 0.9478 - val_recall: 0.8668 - val_accuracy: 0.9572 - val_auc: 0.9796
      Epoch 20/100
      1280/1280 [==============================] - 1953s 2s/step - loss: 0.2758 - tp: 21804466.0000 - fp: 2129789.0000 - tn: 78704432.0000 - fn: 2218904.0000 - precision: 0.9110 - recall: 0.9076 - accuracy: 0.9585 - auc: 0.9805 - val_loss: 0.
      3864 - val_tp: 4404185.0000 - val_fp: 40930.0000 - val_tn: 20226700.0000 - val_fn: 1542578.0000 - val_precision: 0.9908 - val_recall: 0.7406 - val_accuracy: 0.9396 - val_auc: 0.9670
      Epoch 21/100
      1280/1280 [==============================] - 1956s 2s/step - loss: 0.2715 - tp: 21833378.0000 - fp: 2128388.0000 - tn: 78697688.0000 - fn: 2198099.0000 - precision: 0.9112 - recall: 0.9085 - accuracy: 0.9587 - auc: 0.9812 - val_loss: 0.
      3215 - val_tp: 4933923.0000 - val_fp: 100047.0000 - val_tn: 20044032.0000 - val_fn: 1136392.0000 - val_precision: 0.9801 - val_recall: 0.8128 - val_accuracy: 0.9528 - val_auc: 0.9780
      Epoch 22/100
      1280/1280 [==============================] - 1957s 2s/step - loss: 0.2685 - tp: 22131982.0000 - fp: 2123964.0000 - tn: 78455072.0000 - fn: 2146571.0000 - precision: 0.9124 - recall: 0.9116 - accuracy: 0.9593 - auc: 0.9811 - val_loss: 0.
      2843 - val_tp: 5065657.0000 - val_fp: 196579.0000 - val_tn: 20093300.0000 - val_fn: 858874.0000 - val_precision: 0.9626 - val_recall: 0.8550 - val_accuracy: 0.9597 - val_auc: 0.9806
      Epoch 23/100
      1280/1280 [==============================] - 1974s 2s/step - loss: 0.2667 - tp: 21803614.0000 - fp: 2090465.0000 - tn: 78828520.0000 - fn: 2134989.0000 - precision: 0.9125 - recall: 0.9108 - accuracy: 0.9597 - auc: 0.9811 - val_loss: 0.
      3048 - val_tp: 5024525.0000 - val_fp: 147570.0000 - val_tn: 20040236.0000 - val_fn: 1002069.0000 - val_precision: 0.9715 - val_recall: 0.8337 - val_accuracy: 0.9561 - val_auc: 0.9796
      Epoch 24/100
      1280/1280 [==============================] - 1969s 2s/step - loss: 0.2636 - tp: 21975042.0000 - fp: 2062614.0000 - tn: 78687080.0000 - fn: 2132792.0000 - precision: 0.9142 - recall: 0.9115 - accuracy: 0.9600 - auc: 0.9817 - val_loss: 0.
      2889 - val_tp: 5170852.0000 - val_fp: 206375.0000 - val_tn: 19954888.0000 - val_fn: 882289.0000 - val_precision: 0.9616 - val_recall: 0.8542 - val_accuracy: 0.9585 - val_auc: 0.9811
      Epoch 25/100
      1280/1280 [==============================] - 1966s 2s/step - loss: 0.2654 - tp: 21864694.0000 - fp: 2102611.0000 - tn: 78755144.0000 - fn: 2135188.0000 - precision: 0.9123 - recall: 0.9110 - accuracy: 0.9596 - auc: 0.9815 - val_loss: 0.
      2742 - val_tp: 5232587.0000 - val_fp: 220712.0000 - val_tn: 19933466.0000 - val_fn: 827639.0000 - val_precision: 0.9595 - val_recall: 0.8634 - val_accuracy: 0.9600 - val_auc: 0.9812
      Epoch 26/100
      1280/1280 [==============================] - 1968s 2s/step - loss: 0.2665 - tp: 21870048.0000 - fp: 2112301.0000 - tn: 78741728.0000 - fn: 2133559.0000 - precision: 0.9119 - recall: 0.9111 - accuracy: 0.9595 - auc: 0.9816 - val_loss: 0.
      3169 - val_tp: 4986570.0000 - val_fp: 130988.0000 - val_tn: 20053542.0000 - val_fn: 1043297.0000 - val_precision: 0.9744 - val_recall: 0.8270 - val_accuracy: 0.9552 - val_auc: 0.9802
      Epoch 27/100
      1280/1280 [==============================] - 1952s 2s/step - loss: 0.2678 - tp: 21893164.0000 - fp: 2085167.0000 - tn: 78709264.0000 - fn: 2170034.0000 - precision: 0.9130 - recall: 0.9098 - accuracy: 0.9594 - auc: 0.9813 - val_loss: 0.
      2900 - val_tp: 5054986.0000 - val_fp: 200466.0000 - val_tn: 20084900.0000 - val_fn: 874040.0000 - val_precision: 0.9619 - val_recall: 0.8526 - val_accuracy: 0.9590 - val_auc: 0.9804
      Epoch 28/100
      1280/1280 [==============================] - 1958s 2s/step - loss: 0.2650 - tp: 22049098.0000 - fp: 2106978.0000 - tn: 78571512.0000 - fn: 2130046.0000 - precision: 0.9128 - recall: 0.9119 - accuracy: 0.9596 - auc: 0.9817 - val_loss: 0.
      2835 - val_tp: 4962208.0000 - val_fp: 180333.0000 - val_tn: 20181980.0000 - val_fn: 889878.0000 - val_precision: 0.9649 - val_recall: 0.8479 - val_accuracy: 0.9592 - val_auc: 0.9790
      Epoch 29/100
      1280/1280 [==============================] - 1966s 2s/step - loss: 0.2624 - tp: 21985904.0000 - fp: 2088019.0000 - tn: 78675856.0000 - fn: 2107816.0000 - precision: 0.9133 - recall: 0.9125 - accuracy: 0.9600 - auc: 0.9818 - val_loss: 0.
      2769 - val_tp: 5178520.0000 - val_fp: 252398.0000 - val_tn: 20002776.0000 - val_fn: 780712.0000 - val_precision: 0.9535 - val_recall: 0.8690 - val_accuracy: 0.9606 - val_auc: 0.9797
      Epoch 30/100
      1280/1280 [==============================] - 1938s 2s/step - loss: 0.2616 - tp: 21893676.0000 - fp: 2096355.0000 - tn: 78765992.0000 - fn: 2101589.0000 - precision: 0.9126 - recall: 0.9124 - accuracy: 0.9600 - auc: 0.9820 - val_loss: 0.
      2931 - val_tp: 5091699.0000 - val_fp: 180837.0000 - val_tn: 20020972.0000 - val_fn: 920891.0000 - val_precision: 0.9657 - val_recall: 0.8468 - val_accuracy: 0.9580 - val_auc: 0.9803
      Epoch 31/100
      1280/1280 [==============================] - 1932s 2s/step - loss: 0.2629 - tp: 21900190.0000 - fp: 2102823.0000 - tn: 78738360.0000 - fn: 2116254.0000 - precision: 0.9124 - recall: 0.9119 - accuracy: 0.9598 - auc: 0.9818 - val_loss: 0.
      2833 - val_tp: 5068565.0000 - val_fp: 190985.0000 - val_tn: 20068752.0000 - val_fn: 886105.0000 - val_precision: 0.9637 - val_recall: 0.8512 - val_accuracy: 0.9589 - val_auc: 0.9797
      Epoch 32/100
      1280/1280 [==============================] - 1936s 2s/step - loss: 0.2656 - tp: 21855648.0000 - fp: 2070417.0000 - tn: 78781648.0000 - fn: 2149897.0000 - precision: 0.9135 - recall: 0.9104 - accuracy: 0.9598 - auc: 0.9816 - val_loss: 0.
      3086 - val_tp: 5081221.0000 - val_fp: 145540.0000 - val_tn: 20010884.0000 - val_fn: 976755.0000 - val_precision: 0.9722 - val_recall: 0.8388 - val_accuracy: 0.9572 - val_auc: 0.9796
      Epoch 33/100
      1280/1280 [==============================] - 1896s 1s/step - loss: 0.2601 - tp: 21847706.0000 - fp: 2017783.0000 - tn: 78866344.0000 - fn: 2125796.0000 - precision: 0.9155 - recall: 0.9113 - accuracy: 0.9605 - auc: 0.9820 - val_loss: 0.
      3225 - val_tp: 5136058.0000 - val_fp: 129931.0000 - val_tn: 19900672.0000 - val_fn: 1047735.0000 - val_precision: 0.9753 - val_recall: 0.8306 - val_accuracy: 0.9551 - val_auc: 0.9803
      Epoch 34/100
      1280/1280 [==============================] - 1883s 1s/step - loss: 0.2647 - tp: 21866856.0000 - fp: 2063199.0000 - tn: 78792768.0000 - fn: 2134767.0000 - precision: 0.9138 - recall: 0.9111 - accuracy: 0.9600 - auc: 0.9815 - val_loss: 0.
      2877 - val_tp: 5081384.0000 - val_fp: 183837.0000 - val_tn: 20092414.0000 - val_fn: 856762.0000 - val_precision: 0.9651 - val_recall: 0.8557 - val_accuracy: 0.9603 - val_auc: 0.9819
      Epoch 35/100
      1280/1280 [==============================] - 1909s 1s/step - loss: 0.2644 - tp: 21793352.0000 - fp: 2043704.0000 - tn: 78858192.0000 - fn: 2162348.0000 - precision: 0.9143 - recall: 0.9097 - accuracy: 0.9599 - auc: 0.9813 - val_loss: 0.
      2804 - val_tp: 5229124.0000 - val_fp: 199996.0000 - val_tn: 19913378.0000 - val_fn: 871912.0000 - val_precision: 0.9632 - val_recall: 0.8571 - val_accuracy: 0.9591 - val_auc: 0.9811
      Epoch 36/100
      1280/1280 [==============================] - 1926s 2s/step - loss: 0.2624 - tp: 21694132.0000 - fp: 2078119.0000 - tn: 78982728.0000 - fn: 2102522.0000 - precision: 0.9126 - recall: 0.9116 - accuracy: 0.9601 - auc: 0.9816 - val_loss: 0.
      2822 - val_tp: 5091321.0000 - val_fp: 163063.0000 - val_tn: 20040276.0000 - val_fn: 919745.0000 - val_precision: 0.9690 - val_recall: 0.8470 - val_accuracy: 0.9587 - val_auc: 0.9807
      Epoch 37/100
      1280/1280 [==============================] - 1904s 1s/step - loss: 0.2629 - tp: 21760348.0000 - fp: 2034859.0000 - tn: 78921984.0000 - fn: 2140485.0000 - precision: 0.9145 - recall: 0.9104 - accuracy: 0.9602 - auc: 0.9816 - val_loss: 0.
      3176 - val_tp: 5181435.0000 - val_fp: 158434.0000 - val_tn: 19879032.0000 - val_fn: 995505.0000 - val_precision: 0.9703 - val_recall: 0.8388 - val_accuracy: 0.9560 - val_auc: 0.9790
      Epoch 38/100
      1280/1280 [==============================] - 1894s 1s/step - loss: 0.2660 - tp: 21873788.0000 - fp: 2074315.0000 - tn: 78773216.0000 - fn: 2136309.0000 - precision: 0.9134 - recall: 0.9110 - accuracy: 0.9598 - auc: 0.9814 - val_loss: 0.
      2881 - val_tp: 4927277.0000 - val_fp: 173887.0000 - val_tn: 20220536.0000 - val_fn: 892705.0000 - val_precision: 0.9659 - val_recall: 0.8466 - val_accuracy: 0.9593 - val_auc: 0.9789
      Epoch 39/100
      1280/1280 [==============================] - 1899s 1s/step - loss: 0.2622 - tp: 21838440.0000 - fp: 2067724.0000 - tn: 78836336.0000 - fn: 2115209.0000 - precision: 0.9135 - recall: 0.9117 - accuracy: 0.9601 - auc: 0.9818 - val_loss: 0.
      2978 - val_tp: 4918815.0000 - val_fp: 143772.0000 - val_tn: 20190378.0000 - val_fn: 961431.0000 - val_precision: 0.9716 - val_recall: 0.8365 - val_accuracy: 0.9578 - val_auc: 0.9807
      Epoch 40/100
      1280/1280 [==============================] - 1888s 1s/step - loss: 0.2648 - tp: 21872584.0000 - fp: 2050789.0000 - tn: 78773392.0000 - fn: 2160846.0000 - precision: 0.9143 - recall: 0.9101 - accuracy: 0.9598 - auc: 0.9816 - val_loss: 0.
      2909 - val_tp: 5274649.0000 - val_fp: 191573.0000 - val_tn: 19822700.0000 - val_fn: 925468.0000 - val_precision: 0.9650 - val_recall: 0.8507 - val_accuracy: 0.9574 - val_auc: 0.9799
      Epoch 41/100
      1280/1280 [==============================] - 1910s 1s/step - loss: 0.2648 - tp: 21696836.0000 - fp: 2093251.0000 - tn: 78944688.0000 - fn: 2122855.0000 - precision: 0.9120 - recall: 0.9109 - accuracy: 0.9598 - auc: 0.9814 - val_loss: 0.
      2811 - val_tp: 5266549.0000 - val_fp: 194645.0000 - val_tn: 19876088.0000 - val_fn: 877120.0000 - val_precision: 0.9644 - val_recall: 0.8572 - val_accuracy: 0.9591 - val_auc: 0.9805
      Epoch 42/100
      1280/1280 [==============================] - 1912s 1s/step - loss: 0.2653 - tp: 21816640.0000 - fp: 2044165.0000 - tn: 78832952.0000 - fn: 2163912.0000 - precision: 0.9143 - recall: 0.9098 - accuracy: 0.9599 - auc: 0.9813 - val_loss: 0.
      2983 - val_tp: 4907063.0000 - val_fp: 162204.0000 - val_tn: 20208222.0000 - val_fn: 936914.0000 - val_precision: 0.9680 - val_recall: 0.8397 - val_accuracy: 0.9581 - val_auc: 0.9799
      Epoch 43/100
      1280/1280 [==============================] - 1898s 1s/step - loss: 0.2646 - tp: 22222472.0000 - fp: 2064761.0000 - tn: 78412904.0000 - fn: 2157526.0000 - precision: 0.9150 - recall: 0.9115 - accuracy: 0.9597 - auc: 0.9817 - val_loss: 0.
      2900 - val_tp: 5266505.0000 - val_fp: 189111.0000 - val_tn: 19834046.0000 - val_fn: 924743.0000 - val_precision: 0.9653 - val_recall: 0.8506 - val_accuracy: 0.9575 - val_auc: 0.9807
      Epoch 44/100
      1280/1280 [==============================] - 1937s 2s/step - loss: 0.2625 - tp: 21883992.0000 - fp: 2040394.0000 - tn: 78792808.0000 - fn: 2140429.0000 - precision: 0.9147 - recall: 0.9109 - accuracy: 0.9601 - auc: 0.9817 - val_loss: 0.
      3128 - val_tp: 4872292.0000 - val_fp: 140248.0000 - val_tn: 20261372.0000 - val_fn: 940479.0000 - val_precision: 0.9720 - val_recall: 0.8382 - val_accuracy: 0.9588 - val_auc: 0.9805
      Epoch 45/100
      1280/1280 [==============================] - 1931s 2s/step - loss: 0.2641 - tp: 21804156.0000 - fp: 2047906.0000 - tn: 78877472.0000 - fn: 2128092.0000 - precision: 0.9141 - recall: 0.9111 - accuracy: 0.9602 - auc: 0.9814 - val_loss: 0.
      2983 - val_tp: 5262537.0000 - val_fp: 177583.0000 - val_tn: 19827930.0000 - val_fn: 946346.0000 - val_precision: 0.9674 - val_recall: 0.8476 - val_accuracy: 0.9571 - val_auc: 0.9792
      Epoch 46/100
      1280/1280 [==============================] - 1941s 2s/step - loss: 0.2640 - tp: 21923374.0000 - fp: 2080069.0000 - tn: 78717264.0000 - fn: 2136918.0000 - precision: 0.9133 - recall: 0.9112 - accuracy: 0.9598 - auc: 0.9816 - val_loss: 0.
      2822 - val_tp: 5087710.0000 - val_fp: 182249.0000 - val_tn: 20063030.0000 - val_fn: 881411.0000 - val_precision: 0.9654 - val_recall: 0.8523 - val_accuracy: 0.9594 - val_auc: 0.9803
      Epoch 47/100
      1280/1280 [==============================] - 1944s 2s/step - loss: 0.2620 - tp: 21961636.0000 - fp: 2068701.0000 - tn: 78701112.0000 - fn: 2126225.0000 - precision: 0.9139 - recall: 0.9117 - accuracy: 0.9600 - auc: 0.9818 - val_loss: 0.
      2982 - val_tp: 5201830.0000 - val_fp: 170225.0000 - val_tn: 19876590.0000 - val_fn: 965741.0000 - val_precision: 0.9683 - val_recall: 0.8434 - val_accuracy: 0.9567 - val_auc: 0.9799
      Epoch 48/100
      1280/1280 [==============================] - 1948s 2s/step - loss: 0.2631 - tp: 21971392.0000 - fp: 2056324.0000 - tn: 78695536.0000 - fn: 2134300.0000 - precision: 0.9144 - recall: 0.9115 - accuracy: 0.9600 - auc: 0.9818 - val_loss: 0.
      2906 - val_tp: 5083102.0000 - val_fp: 170364.0000 - val_tn: 20046178.0000 - val_fn: 914747.0000 - val_precision: 0.9676 - val_recall: 0.8475 - val_accuracy: 0.9586 - val_auc: 0.9792
      Epoch 49/100
      1280/1280 [==============================] - 1937s 2s/step - loss: 0.2629 - tp: 21911328.0000 - fp: 2071634.0000 - tn: 78755200.0000 - fn: 2119426.0000 - precision: 0.9136 - recall: 0.9118 - accuracy: 0.9600 - auc: 0.9818 - val_loss: 0.
      2839 - val_tp: 5050322.0000 - val_fp: 183661.0000 - val_tn: 20111232.0000 - val_fn: 869193.0000 - val_precision: 0.9649 - val_recall: 0.8532 - val_accuracy: 0.9598 - val_auc: 0.9806
      Epoch 50/100
      1280/1280 [==============================] - 1964s 2s/step - loss: 0.2634 - tp: 21943356.0000 - fp: 2042601.0000 - tn: 78728936.0000 - fn: 2142696.0000 - precision: 0.9148 - recall: 0.9110 - accuracy: 0.9601 - auc: 0.9816 - val_loss: 0.
      2906 - val_tp: 5176414.0000 - val_fp: 195927.0000 - val_tn: 19950280.0000 - val_fn: 891781.0000 - val_precision: 0.9635 - val_recall: 0.8530 - val_accuracy: 0.9585 - val_auc: 0.9800
      Epoch 51/100
      1280/1280 [==============================] - 1949s 2s/step - loss: 0.2619 - tp: 21905776.0000 - fp: 2054187.0000 - tn: 78790400.0000 - fn: 2107240.0000 - precision: 0.9143 - recall: 0.9122 - accuracy: 0.9603 - auc: 0.9818 - val_loss: 0.
      2845 - val_tp: 5128164.0000 - val_fp: 168438.0000 - val_tn: 19986128.0000 - val_fn: 931667.0000 - val_precision: 0.9682 - val_recall: 0.8463 - val_accuracy: 0.9580 - val_auc: 0.9810
      Epoch 52/100
      1280/1280 [==============================] - 1959s 2s/step - loss: 0.2638 - tp: 21870924.0000 - fp: 2087711.0000 - tn: 78782424.0000 - fn: 2116607.0000 - precision: 0.9129 - recall: 0.9118 - accuracy: 0.9599 - auc: 0.9817 - val_loss: 0.
      3062 - val_tp: 5273162.0000 - val_fp: 169306.0000 - val_tn: 19832368.0000 - val_fn: 939566.0000 - val_precision: 0.9689 - val_recall: 0.8488 - val_accuracy: 0.9577 - val_auc: 0.9815
      Epoch 53/100
      1280/1280 [==============================] - 1958s 2s/step - loss: 0.2648 - tp: 21947556.0000 - fp: 2065779.0000 - tn: 78702432.0000 - fn: 2141837.0000 - precision: 0.9140 - recall: 0.9111 - accuracy: 0.9599 - auc: 0.9816 - val_loss: 0.
      2945 - val_tp: 5204859.0000 - val_fp: 153095.0000 - val_tn: 19890892.0000 - val_fn: 965553.0000 - val_precision: 0.9714 - val_recall: 0.8435 - val_accuracy: 0.9573 - val_auc: 0.9800
      Epoch 54/100
      1280/1280 [==============================] - 1937s 2s/step - loss: 0.2635 - tp: 21905812.0000 - fp: 2049643.0000 - tn: 78761584.0000 - fn: 2140551.0000 - precision: 0.9144 - recall: 0.9110 - accuracy: 0.9600 - auc: 0.9816 - val_loss: 0.
      3064 - val_tp: 5062076.0000 - val_fp: 149992.0000 - val_tn: 20054216.0000 - val_fn: 948115.0000 - val_precision: 0.9712 - val_recall: 0.8422 - val_accuracy: 0.9581 - val_auc: 0.9815
      Epoch 55/100
      1280/1280 [==============================] - 1958s 2s/step - loss: 0.2653 - tp: 22046804.0000 - fp: 2122362.0000 - tn: 78569416.0000 - fn: 2119021.0000 - precision: 0.9122 - recall: 0.9123 - accuracy: 0.9596 - auc: 0.9818 - val_loss: 0.
      2913 - val_tp: 5030327.0000 - val_fp: 162722.0000 - val_tn: 20130282.0000 - val_fn: 891077.0000 - val_precision: 0.9687 - val_recall: 0.8495 - val_accuracy: 0.9598 - val_auc: 0.9812
      Epoch 56/100
      1280/1280 [==============================] - 1946s 2s/step - loss: 0.2644 - tp: 21869356.0000 - fp: 2060246.0000 - tn: 78783952.0000 - fn: 2144064.0000 - precision: 0.9139 - recall: 0.9107 - accuracy: 0.9599 - auc: 0.9814 - val_loss: 0.
      2816 - val_tp: 5105422.0000 - val_fp: 167571.0000 - val_tn: 20081292.0000 - val_fn: 860105.0000 - val_precision: 0.9682 - val_recall: 0.8558 - val_accuracy: 0.9608 - val_auc: 0.9805
      Epoch 57/100
      1280/1280 [==============================] - 1921s 2s/step - loss: 0.2642 - tp: 22001298.0000 - fp: 2070341.0000 - tn: 78641616.0000 - fn: 2144355.0000 - precision: 0.9140 - recall: 0.9112 - accuracy: 0.9598 - auc: 0.9816 - val_loss: 0.
      3304 - val_tp: 4955272.0000 - val_fp: 133108.0000 - val_tn: 20129192.0000 - val_fn: 996829.0000 - val_precision: 0.9738 - val_recall: 0.8325 - val_accuracy: 0.9569 - val_auc: 0.9802
      Epoch 58/100
      1280/1280 [==============================] - 1919s 1s/step - loss: 0.2644 - tp: 21756178.0000 - fp: 2097986.0000 - tn: 78861704.0000 - fn: 2141728.0000 - precision: 0.9120 - recall: 0.9104 - accuracy: 0.9596 - auc: 0.9815 - val_loss: 0.
      2800 - val_tp: 5173984.0000 - val_fp: 172737.0000 - val_tn: 19995672.0000 - val_fn: 872006.0000 - val_precision: 0.9677 - val_recall: 0.8558 - val_accuracy: 0.9601 - val_auc: 0.9811
      Epoch 59/100
      1280/1280 [==============================] - 1937s 2s/step - loss: 0.2639 - tp: 21965856.0000 - fp: 2104414.0000 - tn: 78670312.0000 - fn: 2117059.0000 - precision: 0.9126 - recall: 0.9121 - accuracy: 0.9597 - auc: 0.9817 - val_loss: 0.
      2969 - val_tp: 5288252.0000 - val_fp: 187540.0000 - val_tn: 19831520.0000 - val_fn: 907092.0000 - val_precision: 0.9658 - val_recall: 0.8536 - val_accuracy: 0.9582 - val_auc: 0.9792
      Epoch 60/100
      1280/1280 [==============================] - 1942s 2s/step - loss: 0.2652 - tp: 21972316.0000 - fp: 2103459.0000 - tn: 78666280.0000 - fn: 2115554.0000 - precision: 0.9126 - recall: 0.9122 - accuracy: 0.9598 - auc: 0.9817 - val_loss: 0.
      2818 - val_tp: 5166245.0000 - val_fp: 190846.0000 - val_tn: 19971494.0000 - val_fn: 885813.0000 - val_precision: 0.9644 - val_recall: 0.8536 - val_accuracy: 0.9589 - val_auc: 0.9810
      Epoch 61/100
      1280/1280 [==============================] - 1925s 2s/step - loss: 0.2651 - tp: 21878652.0000 - fp: 2066501.0000 - tn: 78782176.0000 - fn: 2130193.0000 - precision: 0.9137 - recall: 0.9113 - accuracy: 0.9600 - auc: 0.9814 - val_loss: 0.
      2793 - val_tp: 5085499.0000 - val_fp: 194718.0000 - val_tn: 20060124.0000 - val_fn: 874059.0000 - val_precision: 0.9631 - val_recall: 0.8533 - val_accuracy: 0.9592 - val_auc: 0.9805
      Epoch 62/100
      1280/1280 [==============================] - 1922s 2s/step - loss: 0.2645 - tp: 21871498.0000 - fp: 2095977.0000 - tn: 78758960.0000 - fn: 2131121.0000 - precision: 0.9125 - recall: 0.9112 - accuracy: 0.9597 - auc: 0.9816 - val_loss: 0.
      3215 - val_tp: 5111082.0000 - val_fp: 129336.0000 - val_tn: 19952116.0000 - val_fn: 1021864.0000 - val_precision: 0.9753 - val_recall: 0.8334 - val_accuracy: 0.9561 - val_auc: 0.9808
      Epoch 63/100
      1280/1280 [==============================] - 1938s 2s/step - loss: 0.2653 - tp: 21667542.0000 - fp: 2040165.0000 - tn: 78980168.0000 - fn: 2169717.0000 - precision: 0.9139 - recall: 0.9090 - accuracy: 0.9599 - auc: 0.9811 - val_loss: 0.
      2935 - val_tp: 5105651.0000 - val_fp: 157582.0000 - val_tn: 19997984.0000 - val_fn: 953187.0000 - val_precision: 0.9701 - val_recall: 0.8427 - val_accuracy: 0.9576 - val_auc: 0.9795
      Epoch 64/100
      1280/1280 [==============================] - 1922s 2s/step - loss: 0.2621 - tp: 21566260.0000 - fp: 2041653.0000 - tn: 79126792.0000 - fn: 2122825.0000 - precision: 0.9135 - recall: 0.9104 - accuracy: 0.9603 - auc: 0.9816 - val_loss: 0.
      2868 - val_tp: 5295960.0000 - val_fp: 181316.0000 - val_tn: 19817780.0000 - val_fn: 919349.0000 - val_precision: 0.9669 - val_recall: 0.8521 - val_accuracy: 0.9580 - val_auc: 0.9802
      Epoch 65/100
      1280/1280 [==============================] - 1930s 2s/step - loss: 0.2618 - tp: 21803380.0000 - fp: 2046884.0000 - tn: 78875232.0000 - fn: 2132114.0000 - precision: 0.9142 - recall: 0.9109 - accuracy: 0.9601 - auc: 0.9818 - val_loss: 0.
      2655 - val_tp: 4998172.0000 - val_fp: 220002.0000 - val_tn: 20208396.0000 - val_fn: 787827.0000 - val_precision: 0.9578 - val_recall: 0.8638 - val_accuracy: 0.9616 - val_auc: 0.9810
      Epoch 66/100
      1280/1280 [==============================] - 1940s 2s/step - loss: 0.2621 - tp: 21715956.0000 - fp: 2060856.0000 - tn: 78976016.0000 - fn: 2104835.0000 - precision: 0.9133 - recall: 0.9116 - accuracy: 0.9603 - auc: 0.9817 - val_loss: 0.
      2934 - val_tp: 4858098.0000 - val_fp: 162111.0000 - val_tn: 20270832.0000 - val_fn: 923350.0000 - val_precision: 0.9677 - val_recall: 0.8403 - val_accuracy: 0.9586 - val_auc: 0.9797
      Epoch 67/100
      1280/1280 [==============================] - 1936s 2s/step - loss: 0.2641 - tp: 22101508.0000 - fp: 2096796.0000 - tn: 78514056.0000 - fn: 2145167.0000 - precision: 0.9133 - recall: 0.9115 - accuracy: 0.9595 - auc: 0.9819 - val_loss: 0.
      2935 - val_tp: 5311098.0000 - val_fp: 189758.0000 - val_tn: 19779840.0000 - val_fn: 933704.0000 - val_precision: 0.9655 - val_recall: 0.8505 - val_accuracy: 0.9571 - val_auc: 0.9804
      Epoch 68/100
      1280/1280 [==============================] - 1929s 2s/step - loss: 0.2639 - tp: 21973892.0000 - fp: 2058296.0000 - tn: 78690816.0000 - fn: 2134585.0000 - precision: 0.9144 - recall: 0.9115 - accuracy: 0.9600 - auc: 0.9816 - val_loss: 0.
      3021 - val_tp: 5393303.0000 - val_fp: 200762.0000 - val_tn: 19679066.0000 - val_fn: 941275.0000 - val_precision: 0.9641 - val_recall: 0.8514 - val_accuracy: 0.9564 - val_auc: 0.9795
      Epoch 69/100
      1280/1280 [==============================] - 1928s 2s/step - loss: 0.2632 - tp: 21797492.0000 - fp: 2054212.0000 - tn: 78874840.0000 - fn: 2131042.0000 - precision: 0.9139 - recall: 0.9109 - accuracy: 0.9601 - auc: 0.9816 - val_loss: 0.
      2970 - val_tp: 5102175.0000 - val_fp: 191344.0000 - val_tn: 19995848.0000 - val_fn: 925037.0000 - val_precision: 0.9639 - val_recall: 0.8465 - val_accuracy: 0.9574 - val_auc: 0.9797
      Epoch 70/100
      1280/1280 [==============================] - 1936s 2s/step - loss: 0.2629 - tp: 21925510.0000 - fp: 2063262.0000 - tn: 78733408.0000 - fn: 2135445.0000 - precision: 0.9140 - recall: 0.9112 - accuracy: 0.9600 - auc: 0.9818 - val_loss: 0.
      2835 - val_tp: 5162856.0000 - val_fp: 228043.0000 - val_tn: 19969488.0000 - val_fn: 854014.0000 - val_precision: 0.9577 - val_recall: 0.8581 - val_accuracy: 0.9587 - val_auc: 0.9802
      Epoch 71/100
      1280/1280 [==============================] - 1930s 2s/step - loss: 0.2606 - tp: 21986884.0000 - fp: 2118880.0000 - tn: 78684536.0000 - fn: 2067241.0000 - precision: 0.9121 - recall: 0.9141 - accuracy: 0.9601 - auc: 0.9822 - val_loss: 0.
      2809 - val_tp: 5176839.0000 - val_fp: 235191.0000 - val_tn: 19977128.0000 - val_fn: 825244.0000 - val_precision: 0.9565 - val_recall: 0.8625 - val_accuracy: 0.9595 - val_auc: 0.9812
      Epoch 72/100
      1280/1280 [==============================] - 1952s 2s/step - loss: 0.2618 - tp: 22038310.0000 - fp: 2056830.0000 - tn: 78655040.0000 - fn: 2107382.0000 - precision: 0.9146 - recall: 0.9127 - accuracy: 0.9603 - auc: 0.9820 - val_loss: 0.
      2895 - val_tp: 5367415.0000 - val_fp: 210844.0000 - val_tn: 19760872.0000 - val_fn: 875261.0000 - val_precision: 0.9622 - val_recall: 0.8598 - val_accuracy: 0.9586 - val_auc: 0.9801
      Epoch 73/100
      1280/1280 [==============================] - 1931s 2s/step - loss: 0.2642 - tp: 22040244.0000 - fp: 2079148.0000 - tn: 78597176.0000 - fn: 2140976.0000 - precision: 0.9138 - recall: 0.9115 - accuracy: 0.9598 - auc: 0.9817 - val_loss: 0.
      3093 - val_tp: 5018548.0000 - val_fp: 149682.0000 - val_tn: 20096504.0000 - val_fn: 949668.0000 - val_precision: 0.9710 - val_recall: 0.8409 - val_accuracy: 0.9581 - val_auc: 0.9804
      Epoch 74/100
      1280/1280 [==============================] - 1891s 1s/step - loss: 0.2648 - tp: 21823536.0000 - fp: 2026553.0000 - tn: 78842960.0000 - fn: 2164550.0000 - precision: 0.9150 - recall: 0.9098 - accuracy: 0.9600 - auc: 0.9815 - val_loss: 0.
      2941 - val_tp: 5138005.0000 - val_fp: 183811.0000 - val_tn: 19970134.0000 - val_fn: 922446.0000 - val_precision: 0.9655 - val_recall: 0.8478 - val_accuracy: 0.9578 - val_auc: 0.9795
      Epoch 75/100
      1280/1280 [==============================] - 1896s 1s/step - loss: 0.2599 - tp: 21797956.0000 - fp: 2051529.0000 - tn: 78902288.0000 - fn: 2105822.0000 - precision: 0.9140 - recall: 0.9119 - accuracy: 0.9604 - auc: 0.9820 - val_loss: 0.
      2866 - val_tp: 5237317.0000 - val_fp: 179478.0000 - val_tn: 19883768.0000 - val_fn: 913840.0000 - val_precision: 0.9669 - val_recall: 0.8514 - val_accuracy: 0.9583 - val_auc: 0.9806
      Epoch 76/100
      1280/1280 [==============================] - 1920s 2s/step - loss: 0.2644 - tp: 21883500.0000 - fp: 2043967.0000 - tn: 78765848.0000 - fn: 2164260.0000 - precision: 0.9146 - recall: 0.9100 - accuracy: 0.9599 - auc: 0.9815 - val_loss: 0.
      2969 - val_tp: 4856771.0000 - val_fp: 158534.0000 - val_tn: 20318780.0000 - val_fn: 880306.0000 - val_precision: 0.9684 - val_recall: 0.8466 - val_accuracy: 0.9604 - val_auc: 0.9810
      Epoch 77/100
      1280/1280 [==============================] - 1950s 2s/step - loss: 0.2649 - tp: 21977528.0000 - fp: 2098101.0000 - tn: 78653504.0000 - fn: 2128494.0000 - precision: 0.9129 - recall: 0.9117 - accuracy: 0.9597 - auc: 0.9816 - val_loss: 0.
      2794 - val_tp: 5248088.0000 - val_fp: 201804.0000 - val_tn: 19923706.0000 - val_fn: 840800.0000 - val_precision: 0.9630 - val_recall: 0.8619 - val_accuracy: 0.9602 - val_auc: 0.9806
      Epoch 78/100
      1280/1280 [==============================] - 1951s 2s/step - loss: 0.2630 - tp: 21619006.0000 - fp: 2054910.0000 - tn: 79065992.0000 - fn: 2117649.0000 - precision: 0.9132 - recall: 0.9108 - accuracy: 0.9602 - auc: 0.9815 - val_loss: 0.
      2924 - val_tp: 5121101.0000 - val_fp: 170363.0000 - val_tn: 20022854.0000 - val_fn: 900073.0000 - val_precision: 0.9678 - val_recall: 0.8505 - val_accuracy: 0.9592 - val_auc: 0.9811
      Epoch 79/100
      1280/1280 [==============================] - 1956s 2s/step - loss: 0.2646 - tp: 21744384.0000 - fp: 2060624.0000 - tn: 78899240.0000 - fn: 2153398.0000 - precision: 0.9134 - recall: 0.9099 - accuracy: 0.9598 - auc: 0.9814 - val_loss: 0.
      2982 - val_tp: 4993843.0000 - val_fp: 185702.0000 - val_tn: 20120108.0000 - val_fn: 914746.0000 - val_precision: 0.9641 - val_recall: 0.8452 - val_accuracy: 0.9580 - val_auc: 0.9797
      Epoch 80/100
      1280/1280 [==============================] - 1953s 2s/step - loss: 0.2669 - tp: 22055420.0000 - fp: 2135651.0000 - tn: 78526352.0000 - fn: 2140199.0000 - precision: 0.9117 - recall: 0.9115 - accuracy: 0.9592 - auc: 0.9815 - val_loss: 0.
      2787 - val_tp: 4984180.0000 - val_fp: 197102.0000 - val_tn: 20178072.0000 - val_fn: 855046.0000 - val_precision: 0.9620 - val_recall: 0.8536 - val_accuracy: 0.9599 - val_auc: 0.9800
      Epoch 81/100
      1280/1280 [==============================] - 1956s 2s/step - loss: 0.2622 - tp: 21705808.0000 - fp: 2077811.0000 - tn: 78966440.0000 - fn: 2107549.0000 - precision: 0.9126 - recall: 0.9115 - accuracy: 0.9601 - auc: 0.9817 - val_loss: 0.
      2877 - val_tp: 4988818.0000 - val_fp: 163659.0000 - val_tn: 20154334.0000 - val_fn: 907589.0000 - val_precision: 0.9682 - val_recall: 0.8461 - val_accuracy: 0.9591 - val_auc: 0.9802
      Epoch 82/100
      1280/1280 [==============================] - 1945s 2s/step - loss: 0.2660 - tp: 22038244.0000 - fp: 2055404.0000 - tn: 78596896.0000 - fn: 2167084.0000 - precision: 0.9147 - recall: 0.9105 - accuracy: 0.9597 - auc: 0.9813 - val_loss: 0.
      2860 - val_tp: 4915941.0000 - val_fp: 173380.0000 - val_tn: 20253348.0000 - val_fn: 871720.0000 - val_precision: 0.9659 - val_recall: 0.8494 - val_accuracy: 0.9601 - val_auc: 0.9808
      Epoch 83/100
      1280/1280 [==============================] - 1960s 2s/step - loss: 0.2620 - tp: 21828352.0000 - fp: 2096385.0000 - tn: 78818296.0000 - fn: 2114614.0000 - precision: 0.9124 - recall: 0.9117 - accuracy: 0.9598 - auc: 0.9819 - val_loss: 0.
      2882 - val_tp: 5181476.0000 - val_fp: 172365.0000 - val_tn: 19932176.0000 - val_fn: 928376.0000 - val_precision: 0.9678 - val_recall: 0.8481 - val_accuracy: 0.9580 - val_auc: 0.9790
      Epoch 84/100
      1280/1280 [==============================] - 1956s 2s/step - loss: 0.2650 - tp: 21972974.0000 - fp: 2043197.0000 - tn: 78688096.0000 - fn: 2153339.0000 - precision: 0.9149 - recall: 0.9107 - accuracy: 0.9600 - auc: 0.9815 - val_loss: 0.
      2884 - val_tp: 5125310.0000 - val_fp: 199354.0000 - val_tn: 20006488.0000 - val_fn: 883247.0000 - val_precision: 0.9626 - val_recall: 0.8530 - val_accuracy: 0.9587 - val_auc: 0.9792
      Epoch 85/100
      1280/1280 [==============================] - 1932s 2s/step - loss: 0.2665 - tp: 21841062.0000 - fp: 2087044.0000 - tn: 78779464.0000 - fn: 2150003.0000 - precision: 0.9128 - recall: 0.9104 - accuracy: 0.9596 - auc: 0.9813 - val_loss: 0.
      2990 - val_tp: 4966995.0000 - val_fp: 155834.0000 - val_tn: 20153514.0000 - val_fn: 938068.0000 - val_precision: 0.9696 - val_recall: 0.8411 - val_accuracy: 0.9583 - val_auc: 0.9797
      Epoch 86/100
      1280/1280 [==============================] - 1950s 2s/step - loss: 0.2613 - tp: 21989296.0000 - fp: 2028370.0000 - tn: 78716320.0000 - fn: 2123700.0000 - precision: 0.9155 - recall: 0.9119 - accuracy: 0.9604 - auc: 0.9819 - val_loss: 0.
      3127 - val_tp: 5106508.0000 - val_fp: 142899.0000 - val_tn: 19982462.0000 - val_fn: 982530.0000 - val_precision: 0.9728 - val_recall: 0.8386 - val_accuracy: 0.9571 - val_auc: 0.9803
      Epoch 87/100
      1280/1280 [==============================] - 1949s 2s/step - loss: 0.2652 - tp: 21800292.0000 - fp: 2065815.0000 - tn: 78849960.0000 - fn: 2141540.0000 - precision: 0.9134 - recall: 0.9106 - accuracy: 0.9599 - auc: 0.9813 - val_loss: 0.
      2862 - val_tp: 5040894.0000 - val_fp: 182758.0000 - val_tn: 20103008.0000 - val_fn: 887735.0000 - val_precision: 0.9650 - val_recall: 0.8503 - val_accuracy: 0.9592 - val_auc: 0.9799
      Epoch 88/100
      1280/1280 [==============================] - 1920s 2s/step - loss: 0.2629 - tp: 21758816.0000 - fp: 2035708.0000 - tn: 78916872.0000 - fn: 2146157.0000 - precision: 0.9144 - recall: 0.9102 - accuracy: 0.9601 - auc: 0.9815 - val_loss: 0.
      2883 - val_tp: 5067502.0000 - val_fp: 156913.0000 - val_tn: 20054418.0000 - val_fn: 935565.0000 - val_precision: 0.9700 - val_recall: 0.8442 - val_accuracy: 0.9583 - val_auc: 0.9804
      Epoch 89/100
      1280/1280 [==============================] - 1902s 1s/step - loss: 0.2661 - tp: 21907896.0000 - fp: 2077818.0000 - tn: 78708656.0000 - fn: 2163245.0000 - precision: 0.9134 - recall: 0.9101 - accuracy: 0.9596 - auc: 0.9814 - val_loss: 0.
      3095 - val_tp: 5120703.0000 - val_fp: 137657.0000 - val_tn: 19965744.0000 - val_fn: 990302.0000 - val_precision: 0.9738 - val_recall: 0.8379 - val_accuracy: 0.9570 - val_auc: 0.9806
      Epoch 90/100
      1280/1280 [==============================] - 1920s 1s/step - loss: 0.2652 - tp: 21984496.0000 - fp: 2114012.0000 - tn: 78621976.0000 - fn: 2137152.0000 - precision: 0.9123 - recall: 0.9114 - accuracy: 0.9595 - auc: 0.9815 - val_loss: 0.
      2829 - val_tp: 5208131.0000 - val_fp: 193268.0000 - val_tn: 19946136.0000 - val_fn: 866871.0000 - val_precision: 0.9642 - val_recall: 0.8573 - val_accuracy: 0.9596 - val_auc: 0.9809
      Epoch 91/100
      1280/1280 [==============================] - 1917s 1s/step - loss: 0.2631 - tp: 21814944.0000 - fp: 2037460.0000 - tn: 78857032.0000 - fn: 2148231.0000 - precision: 0.9146 - recall: 0.9104 - accuracy: 0.9601 - auc: 0.9817 - val_loss: 0.
      2921 - val_tp: 4988873.0000 - val_fp: 154974.0000 - val_tn: 20127408.0000 - val_fn: 943141.0000 - val_precision: 0.9699 - val_recall: 0.8410 - val_accuracy: 0.9581 - val_auc: 0.9797
      Epoch 92/100
      1280/1280 [==============================] - 1920s 1s/step - loss: 0.2641 - tp: 21926682.0000 - fp: 2066839.0000 - tn: 78722320.0000 - fn: 2141742.0000 - precision: 0.9139 - recall: 0.9110 - accuracy: 0.9599 - auc: 0.9816 - val_loss: 0.
      3016 - val_tp: 5074157.0000 - val_fp: 161845.0000 - val_tn: 20024836.0000 - val_fn: 953570.0000 - val_precision: 0.9691 - val_recall: 0.8418 - val_accuracy: 0.9575 - val_auc: 0.9794
      Epoch 93/100
      1280/1280 [==============================] - 1915s 1s/step - loss: 0.2639 - tp: 21858124.0000 - fp: 2086217.0000 - tn: 78785032.0000 - fn: 2128289.0000 - precision: 0.9129 - recall: 0.9113 - accuracy: 0.9598 - auc: 0.9817 - val_loss: 0.
      3349 - val_tp: 5110189.0000 - val_fp: 138626.0000 - val_tn: 19910190.0000 - val_fn: 1055394.0000 - val_precision: 0.9736 - val_recall: 0.8288 - val_accuracy: 0.9545 - val_auc: 0.9781
      Epoch 94/100
      1280/1280 [==============================] - 1932s 2s/step - loss: 0.2661 - tp: 21972080.0000 - fp: 2067147.0000 - tn: 78645520.0000 - fn: 2172891.0000 - precision: 0.9140 - recall: 0.9100 - accuracy: 0.9596 - auc: 0.9814 - val_loss: 0.
      3010 - val_tp: 5379887.0000 - val_fp: 190356.0000 - val_tn: 19720614.0000 - val_fn: 923543.0000 - val_precision: 0.9658 - val_recall: 0.8535 - val_accuracy: 0.9575 - val_auc: 0.9800
      Epoch 95/100
      1280/1280 [==============================] - 1925s 2s/step - loss: 0.2641 - tp: 21773760.0000 - fp: 2069301.0000 - tn: 78892664.0000 - fn: 2121866.0000 - precision: 0.9132 - recall: 0.9112 - accuracy: 0.9600 - auc: 0.9814 - val_loss: 0.
      2834 - val_tp: 5148394.0000 - val_fp: 196890.0000 - val_tn: 20004664.0000 - val_fn: 864450.0000 - val_precision: 0.9632 - val_recall: 0.8562 - val_accuracy: 0.9595 - val_auc: 0.9803
      Epoch 96/100
      1280/1280 [==============================] - 1924s 2s/step - loss: 0.2620 - tp: 21883636.0000 - fp: 2083221.0000 - tn: 78785256.0000 - fn: 2105458.0000 - precision: 0.9131 - recall: 0.9122 - accuracy: 0.9601 - auc: 0.9819 - val_loss: 0.
      3238 - val_tp: 5063114.0000 - val_fp: 150917.0000 - val_tn: 20012972.0000 - val_fn: 987390.0000 - val_precision: 0.9711 - val_recall: 0.8368 - val_accuracy: 0.9566 - val_auc: 0.9792
      Epoch 97/100
      1280/1280 [==============================] - 1926s 2s/step - loss: 0.2629 - tp: 21759104.0000 - fp: 2051085.0000 - tn: 78912920.0000 - fn: 2134447.0000 - precision: 0.9139 - recall: 0.9107 - accuracy: 0.9601 - auc: 0.9815 - val_loss: 0.
      2802 - val_tp: 5228317.0000 - val_fp: 190075.0000 - val_tn: 19926608.0000 - val_fn: 869396.0000 - val_precision: 0.9649 - val_recall: 0.8574 - val_accuracy: 0.9596 - val_auc: 0.9809
      Epoch 98/100
      1280/1280 [==============================] - 1929s 2s/step - loss: 0.2630 - tp: 21930218.0000 - fp: 2067388.0000 - tn: 78741992.0000 - fn: 2117977.0000 - precision: 0.9139 - recall: 0.9119 - accuracy: 0.9601 - auc: 0.9817 - val_loss: 0.
      3097 - val_tp: 4899275.0000 - val_fp: 135668.0000 - val_tn: 20163436.0000 - val_fn: 1016018.0000 - val_precision: 0.9731 - val_recall: 0.8282 - val_accuracy: 0.9561 - val_auc: 0.9789
      Epoch 99/100
      1280/1280 [==============================] - 1957s 2s/step - loss: 0.2648 - tp: 21993828.0000 - fp: 2052826.0000 - tn: 78663616.0000 - fn: 2147339.0000 - precision: 0.9146 - recall: 0.9111 - accuracy: 0.9599 - auc: 0.9816 - val_loss: 0.
      2889 - val_tp: 5106607.0000 - val_fp: 161956.0000 - val_tn: 20025448.0000 - val_fn: 920399.0000 - val_precision: 0.9693 - val_recall: 0.8473 - val_accuracy: 0.9587 - val_auc: 0.9814
      Epoch 100/100
      1280/1280 [==============================] - 1941s 2s/step - loss: 0.2598 - tp: 21924942.0000 - fp: 2029354.0000 - tn: 78777592.0000 - fn: 2125714.0000 - precision: 0.9153 - recall: 0.9116 - accuracy: 0.9604 - auc: 0.9819 - val_loss: 0.
      3001 - val_tp: 5185959.0000 - val_fp: 162584.0000 - val_tn: 19884838.0000 - val_fn: 981025.0000 - val_precision: 0.9696 - val_recall: 0.8409 - val_accuracy: 0.9564 - val_auc: 0.9800
      400/400 [==============================] - 121s 302ms/step - loss: 0.3130 - tp: 6560497.0000 - fp: 267592.0000 - tn: 24822684.0000 - fn: 1117239.0000 - precision: 0.9608 - recall: 0.8545 - accuracy: 0.9577 - auc: 0.9801
      2020/06/14 20:28:16 INFO mlflow.projects: === Run (ID '037e1d9e4ad74784974f4aaac11138cc') succeeded ===

2.1.11 read out logs experiment 2

2.1.11.1 read out mlflow logs using CLI
  conda activate tensorflow_env
  cd Programme/drmed-git
  export MLFLOW_EXPERIMENT_NAME=exp-310520-unet
  export MLFLOW_TRACKING_URI=file:./data/mlruns
  mlflow experiments list
    Experiment Id  Name             Artifact Location
  ---------------  ---------------  --------------------
                0  exp-310520-unet  file:./data/mlruns/0
                1  exp-devtest      file:./data/mlruns/1
  mlflow runs list --experiment-id 0
  Date                      Name    ID
  ------------------------  ------  --------------------------------
  2020-06-12 14:20:30 CEST          037e1d9e4ad74784974f4aaac11138cc
  2020-05-31 21:39:51 CEST          1aefda1366f04f5da5d1fc2241ad9208
  export EXP2=037e1d9e4ad74784974f4aaac11138cc

I have accidentally run the model with the wrong experiment ID. I’ll check if I can change the experiment. I will do it later with mlflow.tracking.MlflowClient().rename_experiment()

  mlflow artifacts list -r $EXP2
  mlflow artifacts list -r $EXP2 -a model
  mlflow artifacts list -r $EXP2 -a model_summary.txt
  mlflow artifacts list -r $EXP2 -a tensorboard_logs/train/
  (tensorflow_env) [lex@Topialex drmed-git]$ mlflow artifacts list -r $EXP2
  [{
    "path": "model",
    "is_dir": true
  }, {
    "path": "model_summary.txt",
    "is_dir": false,
    "file_size": "10895"
  }, {
    "path": "tensorboard_logs",
    "is_dir": true
  }]

  (tensorflow_env) [lex@Topialex drmed-git]$ mlflow artifacts list -r $EXP2 -a model
  [{
    "path": "model/MLmodel",
    "is_dir": false,
    "file_size": "317"
  }, {
    "path": "model/conda.yaml",
    "is_dir": false,
    "file_size": "125"
  }, {
    "path": "model/data",
    "is_dir": true
  }]
  (tensorflow_env) [lex@Topialex drmed-git]$ mlflow artifacts list -r $EXP2 -a model_summary.txt
  []

  (tensorflow_env) [lex@Topialex drmed-git]$ mlflow artifacts list -r $EXP2 -a tensorboard_logs/train/
  [{
    "path": "tensorboard_logs/train/events.out.tfevents.1591964813.node151.309868.9202.v2",
    "is_dir": false,
    "file_size": "20270485"
  }, {
    "path": "tensorboard_logs/train/events.out.tfevents.1591964827.node151.profile-empty",
    "is_dir": false,
    "file_size": "40"
  }, {
    "path": "tensorboard_logs/train/plugins",
    "is_dir": true
  }]
  mlflow artifacts download -r $EXP2
  mlflow artifacts download -r $EXP2 -a model
  mlflow artifacts download -r $EXP2 -a model_summary.txt
  mlflow artifacts download -r $EXP2 -a tensorboard_logs
  /home/lex/Programme/drmed-git/data/mlruns/0/037e1d9e4ad74784974f4aaac11138cc/artifacts
  /home/lex/Programme/drmed-git/data/mlruns/0/037e1d9e4ad74784974f4aaac11138cc/artifacts/model
  /home/lex/Programme/drmed-git/data/mlruns/0/037e1d9e4ad74784974f4aaac11138cc/artifacts/model_summary.txt
  /home/lex/Programme/drmed-git/data/mlruns/0/037e1d9e4ad74784974f4aaac11138cc/artifacts/tensorboard_logs
  mlflow runs describe --run-id $EXP2
  {
      "info": {
          "artifact_uri": "file:./data/mlruns/0/037e1d9e4ad74784974f4aaac11138cc/artifacts",
          "end_time": 1592159296429,
          "experiment_id": "0",
          "lifecycle_stage": "active",
          "run_id": "037e1d9e4ad74784974f4aaac11138cc",
          "run_uuid": "037e1d9e4ad74784974f4aaac11138cc",
          "start_time": 1591964430233,
          "status": "FINISHED",
          "user_id": "ye53nis"
      },
      "data": {
          "metrics": {
              "learning rate": 1e-14,
              "val_loss": 0.3001052141189575,
              "precision": 0.9152822494506836,
              "fp": 2029354.0,
              "loss": 0.2597578763961792,
              "val_tp": 5185959.0,
              "recall": 0.9116151332855225,
              "accuracy": 0.9603750705718994,
              "val_precision": 0.9696021676063538,
              "val_recall": 0.8409230709075928,
              "lr": 1e-14,
              "fn": 2125714.0,
              "auc": 0.9819398522377014,
              "val_fp": 162584.0,
              "val_accuracy": 0.9563749432563782,
              "val_tn": 19884838.0,
              "val_auc": 0.9799740314483643,
              "val_fn": 981025.0,
              "tn": 78777592.0,
              "tp": 21924942.0
          },
          "params": {
              "opt_beta_1": "0.9",
              "validation_steps": "320",
              "opt_learning_rate": "0.001",
              "fluotracify_path": "/beegfs/ye53nis/drmed-git/src/",
              "opt_amsgrad": "False",
              "frac_val": "0.2",
              "batch_size": "5",
              "epochs": "100",
              "opt_decay": "0.0",
              "steps_per_epoch": "1280",
              "length_delimiter": "16384",
              "opt_name": "Adam",
              "opt_beta_2": "0.999",
              "csv_path": "/beegfs/ye53nis/saves/firstartefact_Sep2019",
              "learning_rate": "None",
              "opt_epsilon": "1e-07"
          },
          "tags": {
              "mlflow.source.git.repoURL": "https://github.com/aseltmann/fluotracify",
              "mlflow.source.type": "PROJECT",
              "mlflow.source.name": "file:///beegfs/ye53nis/drmed-git",
              "mlflow.user": "ye53nis",
              "mlflow.source.git.commit": "09c1d2a1bc083695026b46c74ea175c9168bb5f2",
              "mlflow.gitRepoURL": "https://github.com/aseltmann/fluotracify",
              "mlflow.project.backend": "local",
              "mlflow.project.env": "conda",
              "mlflow.project.entryPoint": "main",
              "mlflow.log-model.history": "[{
                  \"run_id\": \"037e1d9e4ad74784974f4aaac11138cc\",
                  \"artifact_path\": \"model\",
                  \"utc_time_created\": \"2020-06-14 18:26:02.386982\",
                  \"flavors\": {
                      \"keras\": {
                          \"keras_module\": \"tensorflow.keras\",
                          \"keras_version\": \"2.2.4-tf\",
                          \"data\": \"data\"
                      },
                      \"python_function\": {
                          \"loader_module\": \"mlflow.keras\",
                          \"python_version\": \"3.8.3\",
                          \"data\": \"data\",
                          \"env\": \"conda.yaml\"
                      }
                  }
              }]"
          }
      }
  }
  tensorboard --logdir=data/mlruns/0/$EXP2/artifacts/tensorboard_logs
  mlflow ui --backend-store-uri file:///home/lex/Programme/drmed-git/data/mlruns
2.1.11.2 plots via mlflow ui, comparing run 1 and 2

AUC: run2_auc.png Loss: run2_loss.png Precision / Recall: run2_prec_recall.png

2.1.11.3 plots via tensorboard ui

Prediction 03 prediction_03.png Prediction 20 prediction_20.png Prediction 24 prediction_24.png Prediction 32 prediction_32.png Prediction 99 prediction_99.png Distribution of Conv1D-Kernel (final layer) distribution_conv1d-kernel_finallayer.png Histograms of Conv1D-Kernel (final layer) histograms_conv1d-kernel_finallayer.png

2.1.11.4 for next runs
  • more steps = good: better recall
  • strong fluctuation of validation metrics in beginning and already convergence after ~30 Epochs for the second run → maybe use learning rate a bit more gently and start the lr schedule with lower rates
  • judging from the tensorboard histograms, the model architecture can clearly be made simpler
  • doing some background reading: in this SO thread it is argued that while using Adam, an extensive learning rate schedule, as I used, should not really be necessary.
    • Adam (adaptive moment estimation) updates any parameter with an individual learning rate
    • every learning rate can vary from 0 (no update) to the given learning rate as an upper limit
    • others argue, that it definitely helps (or that you have to start with a very low lr, which I can confirm from own experience) and that it especially could help reducing the loss in the late steps of training
    • finding optimal lr:
      • start with very very low lr, than increase till loss stops decreasing, and look at where the slope of the loss curve and pick the learning rate that is associated with the fastest decrease
  1. effect of batch size
    • see effect of batch size
    • from pracitcal point: larger batch size → computational speedups from parallelism of GPUs. In theory, using a batch equal to the entire dataset guarantees convergence to global optima of objective function - hower on cost of slower, empirical convergence
    • well known: too large of a batch size → poor generalization (hoffer, hubara, soudry argue here that this is not inherently true).
      • why poor gen: competing gradients of different training examples → sequential optimization is easier than simultaneous optimization in complex, high dimensional parameter spaces
    • smaller batch size pro: faster convergence to “good” solutions
    • smaller batch size con: model not guaranteed to converge to global optima, will bounce around, staying outside some \(\epsilon\) - ball of the optima, where \(\epsilon\) depends on the ratio of the batch size to the data size
    • if no computational constraints: start at small batch size, steadily grow batch size through training.
    • non-convex models: “sweet spot” between batch size of 1 (bad, “noisy”, nn prone to overfitting) and entire training dataset.
    • on other hand: “noise” in small batch size might be good → “tug-and-pull” dynamic which might prevent nn from overfitting
    • what is “large number of epochs” → number of epochs such that any further training provides little to no boost in test accuracy → difficult to determine → best guess
    • example MNIST: bs=64 gets test acc of 98%, bs=1024 gets test acc of 95% → increasing learning rate can compensate for larger batch sizes (for bs=1024 from 0.01 to 0.1 → problem solved) → could be more difficult in more complex datasets
    • example MNIST: starting with large batch size does not “get the model stuck” in bad local optimums, better test accuracy can be achieved anytime by switching to lower batch size or higher learning rate
    • investigation of how stuff is updated with large batch size:
      • larger batch sizes make larger gradient steps than smaller batch sizes for the same number of samples seen
      • for same average euclidean norm distance from initial weights of the model, larger batch sizes have larger variance in the distance → if smaller batch sizes are more “noisy”, this would be the other way around
      • conclusion:
        • large batch size → model makes very large gradient updates and very small gradient updates → size depends on which particular samples are drawn.
        • Small batch size → model makes updates of about the same size → weakly dependend on which particular samples are drawn.
    • better solutions can be far away from inital weights → if loss is averaged over the batch then large batch sizes simply do not allow the model to travel far enough to reach the better solutions for the same number of training epochs → you take fewer steps → increasing lr makes steps larger → and then they can even move further after seeing the same number of samples
    • Adam vs SGD
      • Adam claims: insensitivity to weight initialization and initial learning rate choice
      • finding: adam finds solutions with much larger weights, which might explain why it has lower test accuracy and is not generalizing as well → this is why weight decay is recommended with Adam
      • in SGD the weights are initialized to approx the magnitude you want them to be and most of the learning is shuffling the weights along the hyper-sphere of the initial radius
      • in Adam, the model ignores the initialization
    • hoffer et al
      • propose that in SGD, initial learning phase can be described using high-dimensional “random walk on a random potential” process, with an “ultra-slow” logarithmic increase in the distance of the weights from their initialization (observed empirically)
      • remedies
        1. Use SGD with momentum, gradient clipping, and a decreasing learning rate schedule
        2. adapt learning rate with batch size (e.g. square root scaling)
        3. compute batch-norm statistics over several partitions (“ghost batch-norm”)
        4. use sufficient number of high learning rate training iterations
      • the “generalization gap” problem is not related to the batch size but rather the amount of updates
    • Smith et al, Google Brain
      • instead of learning rate decay, increase batch size with training → works with Adam, Nesterov momentum, SGD with momentum, SGD → reaches equivalent test accuracies after same no of epochs, but with fewer parameter updates → greater parallelism (good for GPU), shorter training time
  2. using dropout layers with Unet
    • Bartolome et al did it in DeepCell for automatic nuclei detection
      • encoding block:
        • maxpool
        • 2 times conv+ELU+batchnorm
      • decoding block:
        • upsample
        • dropout (0.3)
        • 2 times conv+ELU
      • last block
        • 1x1 conv
        • sigmoid
    • from this reddit
      • Srivastava/Hinton dropout paper: additional gain in performacne obtained by adding dropout in conv layers is worth noting (3% to 2.55%). Dropout in lower layers help, because it provides noisy inputs for the higher fully connected layers which prevents them from overfitting → they use 0.7 prob for conv dropout and 0.5 for FC

2.1.12 use model from run 2 to correct data

2.1.12.1 simulated data from the test set

brightbursts_correction_by_unet_histogram_050_tt_200702.svg

2.1.12.2 experimental data from Pablo (structured experiment)

ptu_brightbursts_correction_by_unet_histogram_010_tt_200704_400traces.svg

  1. biological metadata
    • Who took the data: Pablo Carravilla in November 2019 in Oxford
    • a bit of 400 “dirty” and 400 “clean” curves
    • AF488: small dye, homogeneous signal
    • “clean”
      • in folders GroupMeas_5“ and GroupMeas_6
      • Hs-PEX5-eGFP - PEX5 from Homo sapiens, labelled with eGFP
      • typical filename: 20 nM AF488147_T1754s_1.ptu
    • “dirty”
      • in folders GroupMeas_1 to GroupMeas_4_4
      • Tp-PEX5-eGFP - PEX5 from Trypanosoma brucei, labelled with eGFP
      • typical filename: DiO LUV 10uM in 20 nM AF48816_T197s_1.ptu
      • Dio LUV: big vesicles, spikes
  2. TODO microscope metadata - paste from pickled pandas dfs
  3. anecdotal, semi-structured plotting of correlation curves
    • first: “clean” data of Hs-PEX5-eGFP
    • from plotting 10 traces with the respective binning windows using correct_correlation_by_unet_prediction:
      • prediction didn’t find anything - awesome! So no values were removed and correlations are “pure”
      • for correlation at \(1ms\) binning window:
        • transit time ~\(0.25...0.5ms\)
        • diffusion coefficient ~\(22.5...45 \mu m^2 / s\)
    • run2_hs-pex5-egfp_1mscorr_1.png
      • for correlation at \(100\mu s\) binning window:
        • transit time ~\(0.4...0.53ms\)
        • diffusion coefficient ~\(21...29 \mu m^2 / s\)
        • This is probably the most accurate!
    • run2_hs-pex5-egfp_100uscorr_1.png
      • for correlation at \(10\mu s\) and at 1us binning window:
        • transit time ~\(0.09ms\)
        • diffusion coefficient ~\(120...133\mu m^2 / s\)
        • fit didn’t look too good - probably something is not working correctly here with multipletau. Looks like the start of the correlation curve is flattening, but multipletau fits an increase
    • run2_hs-pex5-egfp_10uscorr_1.png
    • second: “dirty” data of Tb-PEX5-eGFP
    • from plotting 10 traces with the respective binning windows using correct_correlation_by_unet_prediction:
      • for correlation at \(1ms\) binning wnidow:
        • transit time
          • without correction: ~\(6...20ms\)
          • with correction: ~\(2...5ms\)
        • diffusion coefficients:
          • without correction: ~\(0.6...1.9\mu m^2 / s\)
          • with correction: ~\(2...6.3 \mu m^2 / s\)
    • run2_tb-pex5-egfp_1mscorr_2.png
      • for correlation at \(100 \mu s\) binninw window:
        • transit time
          • without correction: ~\(43...149ms\)
          • with correction: ~\(1.6...42ms\)
        • diffusion coefficients:
          • without correction: ~\(0.08...0.26\mu m^2/s\)
          • with correction: ~\(0.3...7\mu m^2 / s\)
    • run2_tb-pex5-egfp_100uscorr_1.png
      • for correlation at \(10\mu s\) binning window:
        • fitting looks HORRIBLE for the traces corrected by prediction, while looking “okayish” for traces without correction - even though the values are bad.
        • transit time
          • without correction: ~\(153...1329ms\)
          • with correction: ~\(0.2...346ms\)
        • diffusion coefficients:
          • without correction: ~\(0.008...0.07 \mu m^2 / s\)
          • with correction: ~\(0.03...52\mu m^2 / s\)
    • run2_tb-pex5-egfp_10uscorr_3.png
      • for correlation at \(1\mu s\) binning window (only 3 traces, because ):
        • fits have to be better!
    • run2_tb-pex5-egfp_1uscorr_1.png

2.1.13 git exp 3

      git status
      git log -1
      (base) [ye53nis@node161 drmed-git]$ git status
      # On branch exp-310520-unet
      # Untracked files:
      # ...
      nothing added to commit but untracked files present (use "git add" to track)

      (base) [ye53nis@node161 drmed-git]$ git log -1
      commit 193d9e3f8d126828b253121e613ddaf5363d7c3d
      Author: Apoplex <oligolex@vivaldi.net>
      Date:   Wed Jun 17 12:09:44 2020 +0200

          Move experiment to correct mlflow id

2.1.14 experimental run 3 - bs=3

  conda activate tensorflow_nightly
  cd /beegfs/ye53nis/drmed-git
  export MLFLOW_EXPERIMENT_NAME=exp-310520-unet
  export MLFLOW_TRACKING_URI=file:./data/mlruns
      mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src -P batch_size=3 -P epochs=40 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=2100 -P validation_steps=320
      2020/06/20 00:43:51 INFO mlflow.projects: === Created directory /tmp/tmpxwtlwi2b for downloading remote URIs passed to arguments of type 'path' ===
      2020/06/20 00:43:51 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/fluotracify/training/train.py /
      beegfs/ye53nis/drmed-git/src 3 0.2 16384 None 40 /beegfs/ye53nis/saves/firstartefact_Sep2019 2100 320' in run with ID '1e98b3ed2e1d421da9592058bd5587a8' ===
      2020-06-20 00:44:08.580506: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory
      2020-06-20 00:44:08.580645: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favour of importlib; see the modul
      e's documentation for alternative uses
        import imp
      2.3.0-dev20200527
      2020-06-20 00:44:36.776071: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2020-06-20 00:44:36.776132: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
      2020-06-20 00:44:36.776174: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node161): /proc/driver/nvidia/version does not exist
      GPUs:  []
      train 0 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set027.csv
      train 1 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set087.csv
      train 2 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set003.csv
      train 3 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set056.csv
      train 4 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set076.csv
      train 5 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set094.csv
      train 6 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set017.csv
      train 7 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set074.csv
      train 8 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set055.csv
      train 9 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set096.csv
      train 10 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set054.csv
      train 11 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set093.csv
      train 12 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set079.csv
      train 13 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set014.csv
      train 14 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set008.csv
      train 15 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set031.csv
      train 16 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set023.csv
      train 17 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set025.csv
      train 18 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set034.csv
      train 19 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set009.csv
      train 20 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set044.csv
      train 21 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set063.csv
      train 22 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set004.csv
      train 23 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set072.csv
      train 24 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set046.csv
      train 25 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set049.csv
      train 26 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set007.csv
      train 27 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set100.csv
      train 28 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set083.csv
      train 29 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set077.csv
      train 30 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set061.csv
      train 31 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set081.csv
      train 32 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set091.csv
      train 33 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set069.csv
      train 34 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set052.csv
      train 35 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set028.csv
      train 36 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set019.csv
      train 37 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set057.csv
      train 38 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set064.csv
      train 39 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set075.csv
      train 40 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set002.csv
      train 41 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set062.csv
      train 42 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set043.csv
      train 43 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set042.csv
      train 44 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set005.csv
      train 45 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set016.csv
      train 46 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set018.csv
      train 47 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set041.csv
      train 48 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set039.csv
      train 49 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set006.csv
      train 50 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set092.csv
      train 51 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set060.csv
      train 52 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set001.csv
      train 53 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set035.csv
      train 54 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set029.csv
      train 55 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set051.csv
      train 56 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set012.csv
      train 57 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set036.csv
      train 58 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set024.csv
      train 59 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set053.csv
      train 60 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set011.csv
      train 61 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set032.csv
      train 62 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set067.csv
      train 63 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set058.csv
      train 64 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set080.csv
      train 65 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set086.csv
      train 66 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set033.csv
      train 67 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set085.csv
      train 68 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set015.csv
      train 69 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set090.csv
      train 70 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set020.csv
      train 71 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set030.csv
      train 72 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set050.csv
      train 73 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set098.csv
      train 74 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set099.csv
      train 75 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set070.csv
      train 76 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set021.csv
      train 77 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set095.csv
      train 78 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set073.csv
      train 79 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set078.csv
      test 80 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set026.csv
      test 81 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set038.csv
      test 82 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set082.csv
      test 83 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set047.csv
      test 84 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set040.csv
      test 85 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set066.csv
      test 86 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set059.csv
      test 87 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set013.csv
      test 88 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set089.csv
      test 89 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set071.csv
      test 90 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set088.csv
      test 91 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set037.csv
      test 92 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set022.csv
      test 93 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set084.csv
      test 94 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set010.csv
      test 95 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set097.csv
      test 96 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set068.csv
      test 97 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set065.csv
      test 98 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set048.csv
      test 99 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set045.csv
      shapes of feature dataframe: (20000, 8000) and label dataframe: (20000, 8000)
      shapes of feature dataframe: (20000, 2000) and label dataframe: (20000, 2000)

      for each 20,000 timestap trace there are the following numbers of corrupted timesteps:
       label001_1    6286
      label001_1    2568
      label001_1    4495
      label001_1    4414
      label001_1    1105
      dtype: int64
      2020-06-20 00:49:48.824441: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      2020-06-20 00:49:48.834205: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz
      2020-06-20 00:49:48.835707: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5643aca77c10 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
      2020-06-20 00:49:48.835736: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
      number of training examples: 6400, number of validation examples: 1600

      ------------------------
      number of test examples: 2000

      input - shape:   (None, 16384, 1)
      output - shape:  (None, 16384, 1)
      2020-06-20 00:49:53.167773: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the ABCs from 'collections' instead
       of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
        if not isinstance(wrapped_dict, collections.Mapping):
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Python 3.0, use inspect.signature()
       or inspect.getfullargspec()
        all_param_names, _, _, all_default_values = inspect.getargspec(fn)  # pylint: disable=W1505
      Epoch 1/40
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from
      'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
        if not isinstance(values, collections.Sequence):
         1/2100 [..............................] - ETA: 0s - loss: 1.4336 - tp: 11096.0000 - fp: 13747.0000 - tn: 16434.0000 - fn: 7875.0000 - precision: 0.4466 - recall: 0.5849 - accuracy: 0.5601 - auc: 0.59502020-06-20 00:50:06.341154: I te
      nsorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
      WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and w
      ill be removed after 2020-07-01.
      Instructions for updating:
      use `tf.profiler.experimental.stop` instead.
      2020-06-20 00:50:07.661012: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_20_00_50_07
      2020-06-20 00:50:07.677958: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.trace.json.gz
      2020-06-20 00:50:07.711562: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_20_00_50_07
      2020-06-20 00:50:07.711709: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.memory_profile.json.gz
      2020-06-20 00:50:07.713980: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_06_20_00_50_07Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2020_06_20_0
      0_50_07/node161.xplane.pb
      Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.overview_page.pb
      Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.input_pipeline.pb
      Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.tensorflow_stats.pb
      Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.kernel_stats.pb

      2100/2100 [==============================] - 2619s 1s/step - loss: 1.1651 - tp: 14036256.0000 - fp: 5361485.0000 - tn: 74321616.0000 - fn: 9499881.0000 - precision: 0.7236 - recall: 0.5964 - accuracy: 0.8560 - auc: 0.8712 - val_loss: 6.
      7480 - val_tp: 3658812.0000 - val_fp: 7608396.0000 - val_tn: 4305440.0000 - val_fn: 155992.0000 - val_precision: 0.3247 - val_recall: 0.9591 - val_accuracy: 0.5064 - val_auc: 0.7199
      Epoch 2/40
      2100/2100 [==============================] - 2616s 1s/step - loss: 0.7522 - tp: 16978660.0000 - fp: 4731235.0000 - tn: 74935072.0000 - fn: 6574314.0000 - precision: 0.7821 - recall: 0.7209 - accuracy: 0.8905 - auc: 0.9195 - val_loss: 2.
      3699 - val_tp: 1583199.0000 - val_fp: 169213.0000 - val_tn: 11937019.0000 - val_fn: 2039209.0000 - val_precision: 0.9034 - val_recall: 0.4371 - val_accuracy: 0.8596 - val_auc: 0.7654
      Epoch 3/40
      2100/2100 [==============================] - 2615s 1s/step - loss: 0.5253 - tp: 19558076.0000 - fp: 3583985.0000 - tn: 75779848.0000 - fn: 4297304.0000 - precision: 0.8451 - recall: 0.8199 - accuracy: 0.9236 - auc: 0.9546 - val_loss: 20
      .3139 - val_tp: 3551544.0000 - val_fp: 6920318.0000 - val_tn: 5181055.0000 - val_fn: 75723.0000 - val_precision: 0.3392 - val_recall: 0.9791 - val_accuracy: 0.5552 - val_auc: 0.7820
      Epoch 4/40
      2100/2100 [==============================] - 2593s 1s/step - loss: 0.4607 - tp: 19722116.0000 - fp: 3070380.0000 - tn: 76557328.0000 - fn: 3869410.0000 - precision: 0.8653 - recall: 0.8360 - accuracy: 0.9328 - auc: 0.9621 - val_loss: 0.
      6783 - val_tp: 2809999.0000 - val_fp: 1055013.0000 - val_tn: 11273173.0000 - val_fn: 590455.0000 - val_precision: 0.7270 - val_recall: 0.8264 - val_accuracy: 0.8954 - val_auc: 0.9256
      Epoch 5/40
      2100/2100 [==============================] - 2579s 1s/step - loss: 0.4347 - tp: 20035524.0000 - fp: 2906267.0000 - tn: 76615392.0000 - fn: 3662016.0000 - precision: 0.8733 - recall: 0.8455 - accuracy: 0.9364 - auc: 0.9644 - val_loss: 0.
      9250 - val_tp: 2881407.0000 - val_fp: 1446289.0000 - val_tn: 10683025.0000 - val_fn: 717919.0000 - val_precision: 0.6658 - val_recall: 0.8005 - val_accuracy: 0.8624 - val_auc: 0.9110
      Epoch 6/40
      2100/2100 [==============================] - 2587s 1s/step - loss: 0.3938 - tp: 20159010.0000 - fp: 2640041.0000 - tn: 77171896.0000 - fn: 3248240.0000 - precision: 0.8842 - recall: 0.8612 - accuracy: 0.9430 - auc: 0.9692 - val_loss: 0.
      9069 - val_tp: 3350060.0000 - val_fp: 2334741.0000 - val_tn: 9777228.0000 - val_fn: 266611.0000 - val_precision: 0.5893 - val_recall: 0.9263 - val_accuracy: 0.8346 - val_auc: 0.9424
      Epoch 7/40
      2100/2100 [==============================] - 2596s 1s/step - loss: 0.3898 - tp: 20604918.0000 - fp: 2623827.0000 - tn: 76744272.0000 - fn: 3246144.0000 - precision: 0.8870 - recall: 0.8639 - accuracy: 0.9431 - auc: 0.9700 - val_loss: 1.
      1869 - val_tp: 2154011.0000 - val_fp: 161830.0000 - val_tn: 11907682.0000 - val_fn: 1505117.0000 - val_precision: 0.9301 - val_recall: 0.5887 - val_accuracy: 0.8940 - val_auc: 0.8640
      Epoch 8/40
      2100/2100 [==============================] - 2585s 1s/step - loss: 0.3615 - tp: 20559308.0000 - fp: 2451944.0000 - tn: 77195760.0000 - fn: 3012324.0000 - precision: 0.8934 - recall: 0.8722 - accuracy: 0.9471 - auc: 0.9725 - val_loss: 2.
      2166 - val_tp: 457245.0000 - val_fp: 0.0000e+00 - val_tn: 12111846.0000 - val_fn: 3159549.0000 - val_precision: 1.0000 - val_recall: 0.1264 - val_accuracy: 0.7991 - val_auc: 0.7373
      Epoch 9/40
      2100/2100 [==============================] - 2575s 1s/step - loss: 0.3614 - tp: 20474248.0000 - fp: 2479592.0000 - tn: 77192832.0000 - fn: 3072574.0000 - precision: 0.8920 - recall: 0.8695 - accuracy: 0.9462 - auc: 0.9720 - val_loss: 1.
      6778 - val_tp: 3153657.0000 - val_fp: 3799634.0000 - val_tn: 8459831.0000 - val_fn: 315518.0000 - val_precision: 0.4535 - val_recall: 0.9091 - val_accuracy: 0.7384 - val_auc: 0.8806
      Epoch 10/40
      2100/2100 [==============================] - 2574s 1s/step - loss: 0.3525 - tp: 20915356.0000 - fp: 2417250.0000 - tn: 76968064.0000 - fn: 2918540.0000 - precision: 0.8964 - recall: 0.8775 - accuracy: 0.9483 - auc: 0.9734 - val_loss: 0.
      7001 - val_tp: 3011358.0000 - val_fp: 1423566.0000 - val_tn: 10810936.0000 - val_fn: 482780.0000 - val_precision: 0.6790 - val_recall: 0.8618 - val_accuracy: 0.8788 - val_auc: 0.9191
      Epoch 11/40
      2100/2100 [==============================] - 2583s 1s/step - loss: 0.3536 - tp: 20693556.0000 - fp: 2409057.0000 - tn: 77110336.0000 - fn: 3006188.0000 - precision: 0.8957 - recall: 0.8732 - accuracy: 0.9475 - auc: 0.9731 - val_loss: 0.
      8146 - val_tp: 3341267.0000 - val_fp: 1466467.0000 - val_tn: 10619280.0000 - val_fn: 301626.0000 - val_precision: 0.6950 - val_recall: 0.9172 - val_accuracy: 0.8876 - val_auc: 0.9452
      Epoch 12/40
      2100/2100 [==============================] - 2559s 1s/step - loss: 0.3165 - tp: 21370760.0000 - fp: 2314648.0000 - tn: 77018928.0000 - fn: 2514801.0000 - precision: 0.9023 - recall: 0.8947 - accuracy: 0.9532 - auc: 0.9771 - val_loss: 0.
      3977 - val_tp: 2929496.0000 - val_fp: 337784.0000 - val_tn: 11799466.0000 - val_fn: 661894.0000 - val_precision: 0.8966 - val_recall: 0.8157 - val_accuracy: 0.9364 - val_auc: 0.9624
      Epoch 13/40
      2100/2100 [==============================] - 2555s 1s/step - loss: 0.2959 - tp: 21260244.0000 - fp: 2183093.0000 - tn: 77404592.0000 - fn: 2371187.0000 - precision: 0.9069 - recall: 0.8997 - accuracy: 0.9559 - auc: 0.9785 - val_loss: 0.
      4174 - val_tp: 2796648.0000 - val_fp: 277583.0000 - val_tn: 11853440.0000 - val_fn: 800969.0000 - val_precision: 0.9097 - val_recall: 0.7774 - val_accuracy: 0.9314 - val_auc: 0.9595
      Epoch 14/40
      2100/2100 [==============================] - 2567s 1s/step - loss: 0.2983 - tp: 21268994.0000 - fp: 2193443.0000 - tn: 77331256.0000 - fn: 2425591.0000 - precision: 0.9065 - recall: 0.8976 - accuracy: 0.9552 - auc: 0.9784 - val_loss: 0.
      3715 - val_tp: 3222237.0000 - val_fp: 299190.0000 - val_tn: 11646772.0000 - val_fn: 560441.0000 - val_precision: 0.9150 - val_recall: 0.8518 - val_accuracy: 0.9453 - val_auc: 0.9688
      Epoch 15/40
      2100/2100 [==============================] - 2562s 1s/step - loss: 0.2919 - tp: 21573232.0000 - fp: 2138857.0000 - tn: 77160424.0000 - fn: 2346711.0000 - precision: 0.9098 - recall: 0.9019 - accuracy: 0.9565 - auc: 0.9791 - val_loss: 0.
      4316 - val_tp: 3028795.0000 - val_fp: 656530.0000 - val_tn: 11568012.0000 - val_fn: 475303.0000 - val_precision: 0.8219 - val_recall: 0.8644 - val_accuracy: 0.9280 - val_auc: 0.9580
      Epoch 16/40
      2100/2100 [==============================] - 2544s 1s/step - loss: 0.2915 - tp: 21637290.0000 - fp: 2191368.0000 - tn: 77039000.0000 - fn: 2351546.0000 - precision: 0.9080 - recall: 0.9020 - accuracy: 0.9560 - auc: 0.9792 - val_loss: 0.
      4676 - val_tp: 2601966.0000 - val_fp: 397290.0000 - val_tn: 12006863.0000 - val_fn: 722521.0000 - val_precision: 0.8675 - val_recall: 0.7827 - val_accuracy: 0.9288 - val_auc: 0.9455
      Epoch 17/40
      2100/2100 [==============================] - 2550s 1s/step - loss: 0.2894 - tp: 21593576.0000 - fp: 2107461.0000 - tn: 77151016.0000 - fn: 2367164.0000 - precision: 0.9111 - recall: 0.9012 - accuracy: 0.9566 - auc: 0.9796 - val_loss: 0.
      5073 - val_tp: 2723777.0000 - val_fp: 267464.0000 - val_tn: 11851181.0000 - val_fn: 886218.0000 - val_precision: 0.9106 - val_recall: 0.7545 - val_accuracy: 0.9267 - val_auc: 0.9421
      Epoch 18/40
      2100/2100 [==============================] - 2565s 1s/step - loss: 0.2915 - tp: 21220710.0000 - fp: 2089500.0000 - tn: 77529384.0000 - fn: 2379606.0000 - precision: 0.9104 - recall: 0.8992 - accuracy: 0.9567 - auc: 0.9792 - val_loss: 0.
      4440 - val_tp: 3014233.0000 - val_fp: 194294.0000 - val_tn: 11773351.0000 - val_fn: 746762.0000 - val_precision: 0.9394 - val_recall: 0.8014 - val_accuracy: 0.9402 - val_auc: 0.9537
      Epoch 19/40
      2100/2100 [==============================] - 2555s 1s/step - loss: 0.2859 - tp: 21497494.0000 - fp: 2128539.0000 - tn: 77269760.0000 - fn: 2323349.0000 - precision: 0.9099 - recall: 0.9025 - accuracy: 0.9569 - auc: 0.9798 - val_loss: 0.
      4337 - val_tp: 2842516.0000 - val_fp: 264846.0000 - val_tn: 11878934.0000 - val_fn: 742344.0000 - val_precision: 0.9148 - val_recall: 0.7929 - val_accuracy: 0.9360 - val_auc: 0.9550
      Epoch 20/40
      2100/2100 [==============================] - 2618s 1s/step - loss: 0.2902 - tp: 21548910.0000 - fp: 2102526.0000 - tn: 77221952.0000 - fn: 2345775.0000 - precision: 0.9111 - recall: 0.9018 - accuracy: 0.9569 - auc: 0.9791 - val_loss: 0.
      5074 - val_tp: 2805182.0000 - val_fp: 105571.0000 - val_tn: 11861966.0000 - val_fn: 955921.0000 - val_precision: 0.9637 - val_recall: 0.7458 - val_accuracy: 0.9325 - val_auc: 0.9465
      Epoch 21/40
      2100/2100 [==============================] - 2633s 1s/step - loss: 0.2838 - tp: 21355176.0000 - fp: 2103115.0000 - tn: 77459040.0000 - fn: 2301871.0000 - precision: 0.9103 - recall: 0.9027 - accuracy: 0.9573 - auc: 0.9797 - val_loss: 0.
      5292 - val_tp: 2876840.0000 - val_fp: 499247.0000 - val_tn: 11594560.0000 - val_fn: 757993.0000 - val_precision: 0.8521 - val_recall: 0.7915 - val_accuracy: 0.9201 - val_auc: 0.9410
      Epoch 22/40
      2100/2100 [==============================] - 2623s 1s/step - loss: 0.2770 - tp: 21105648.0000 - fp: 2105094.0000 - tn: 77782320.0000 - fn: 2226166.0000 - precision: 0.9093 - recall: 0.9046 - accuracy: 0.9580 - auc: 0.9804 - val_loss: 0.
      4563 - val_tp: 2796040.0000 - val_fp: 290458.0000 - val_tn: 11870456.0000 - val_fn: 771686.0000 - val_precision: 0.9059 - val_recall: 0.7837 - val_accuracy: 0.9325 - val_auc: 0.9511
      Epoch 23/40
      2100/2100 [==============================] - 2604s 1s/step - loss: 0.2779 - tp: 21230712.0000 - fp: 2051525.0000 - tn: 77688872.0000 - fn: 2248134.0000 - precision: 0.9119 - recall: 0.9042 - accuracy: 0.9583 - auc: 0.9800 - val_loss: 0.
      4772 - val_tp: 2839169.0000 - val_fp: 344193.0000 - val_tn: 11784262.0000 - val_fn: 761016.0000 - val_precision: 0.8919 - val_recall: 0.7886 - val_accuracy: 0.9297 - val_auc: 0.9486
      Epoch 24/40
      2100/2100 [==============================] - 2607s 1s/step - loss: 0.2831 - tp: 21599932.0000 - fp: 2114749.0000 - tn: 77206248.0000 - fn: 2298204.0000 - precision: 0.9108 - recall: 0.9038 - accuracy: 0.9572 - auc: 0.9799 - val_loss: 0.
      4515 - val_tp: 3000318.0000 - val_fp: 428123.0000 - val_tn: 11603006.0000 - val_fn: 697193.0000 - val_precision: 0.8751 - val_recall: 0.8114 - val_accuracy: 0.9285 - val_auc: 0.9539
      Epoch 25/40
      2100/2100 [==============================] - 2608s 1s/step - loss: 0.2802 - tp: 21684768.0000 - fp: 2090639.0000 - tn: 77166856.0000 - fn: 2276865.0000 - precision: 0.9121 - recall: 0.9050 - accuracy: 0.9577 - auc: 0.9803 - val_loss: 0.
      4666 - val_tp: 2881923.0000 - val_fp: 449549.0000 - val_tn: 11719217.0000 - val_fn: 677951.0000 - val_precision: 0.8651 - val_recall: 0.8096 - val_accuracy: 0.9283 - val_auc: 0.9492
      Epoch 26/40
      2100/2100 [==============================] - 2601s 1s/step - loss: 0.2817 - tp: 21424128.0000 - fp: 2071632.0000 - tn: 77450872.0000 - fn: 2272584.0000 - precision: 0.9118 - recall: 0.9041 - accuracy: 0.9579 - auc: 0.9798 - val_loss: 0.
      4771 - val_tp: 2777236.0000 - val_fp: 523426.0000 - val_tn: 11747034.0000 - val_fn: 680944.0000 - val_precision: 0.8414 - val_recall: 0.8031 - val_accuracy: 0.9234 - val_auc: 0.9473
      Epoch 27/40
      2100/2100 [==============================] - 2557s 1s/step - loss: 0.2761 - tp: 21149424.0000 - fp: 2050887.0000 - tn: 77759664.0000 - fn: 2259208.0000 - precision: 0.9116 - recall: 0.9035 - accuracy: 0.9582 - auc: 0.9802 - val_loss: 0.
      4809 - val_tp: 2766963.0000 - val_fp: 356057.0000 - val_tn: 11830343.0000 - val_fn: 775277.0000 - val_precision: 0.8860 - val_recall: 0.7811 - val_accuracy: 0.9281 - val_auc: 0.9473
      Epoch 28/40
      2100/2100 [==============================] - 2572s 1s/step - loss: 0.2787 - tp: 21614004.0000 - fp: 2105764.0000 - tn: 77265320.0000 - fn: 2234175.0000 - precision: 0.9112 - recall: 0.9063 - accuracy: 0.9580 - auc: 0.9804 - val_loss: 0.
      4297 - val_tp: 2776882.0000 - val_fp: 304747.0000 - val_tn: 11905345.0000 - val_fn: 741666.0000 - val_precision: 0.9011 - val_recall: 0.7892 - val_accuracy: 0.9335 - val_auc: 0.9558
      Epoch 29/40
      2100/2100 [==============================] - 2592s 1s/step - loss: 0.2759 - tp: 21330060.0000 - fp: 2032687.0000 - tn: 77600192.0000 - fn: 2256365.0000 - precision: 0.9130 - recall: 0.9043 - accuracy: 0.9584 - auc: 0.9805 - val_loss: 0.
      4579 - val_tp: 2999477.0000 - val_fp: 494545.0000 - val_tn: 11578967.0000 - val_fn: 655651.0000 - val_precision: 0.8585 - val_recall: 0.8206 - val_accuracy: 0.9269 - val_auc: 0.9534
      Epoch 30/40
      2100/2100 [==============================] - 2581s 1s/step - loss: 0.2724 - tp: 21130112.0000 - fp: 2033978.0000 - tn: 77848336.0000 - fn: 2206652.0000 - precision: 0.9122 - recall: 0.9054 - accuracy: 0.9589 - auc: 0.9804 - val_loss: 0.
      4905 - val_tp: 2843808.0000 - val_fp: 315711.0000 - val_tn: 11777024.0000 - val_fn: 792097.0000 - val_precision: 0.9001 - val_recall: 0.7821 - val_accuracy: 0.9296 - val_auc: 0.9485
      Epoch 31/40
      2100/2100 [==============================] - 2600s 1s/step - loss: 0.2785 - tp: 21125680.0000 - fp: 2037613.0000 - tn: 77795080.0000 - fn: 2260802.0000 - precision: 0.9120 - recall: 0.9033 - accuracy: 0.9584 - auc: 0.9796 - val_loss: 0.
      4386 - val_tp: 2841391.0000 - val_fp: 466262.0000 - val_tn: 11790714.0000 - val_fn: 630273.0000 - val_precision: 0.8590 - val_recall: 0.8185 - val_accuracy: 0.9303 - val_auc: 0.9549
      Epoch 32/40
      2100/2100 [==============================] - 2569s 1s/step - loss: 0.2780 - tp: 21701982.0000 - fp: 2120334.0000 - tn: 77174816.0000 - fn: 2221998.0000 - precision: 0.9110 - recall: 0.9071 - accuracy: 0.9579 - auc: 0.9802 - val_loss: 0.
      4458 - val_tp: 2760528.0000 - val_fp: 256875.0000 - val_tn: 11974282.0000 - val_fn: 736955.0000 - val_precision: 0.9149 - val_recall: 0.7893 - val_accuracy: 0.9368 - val_auc: 0.9520
      Epoch 33/40
      2100/2100 [==============================] - 2558s 1s/step - loss: 0.2798 - tp: 21431360.0000 - fp: 2104855.0000 - tn: 77436496.0000 - fn: 2246416.0000 - precision: 0.9106 - recall: 0.9051 - accuracy: 0.9578 - auc: 0.9799 - val_loss: 0.
      4787 - val_tp: 2902400.0000 - val_fp: 434973.0000 - val_tn: 11637810.0000 - val_fn: 753457.0000 - val_precision: 0.8697 - val_recall: 0.7939 - val_accuracy: 0.9244 - val_auc: 0.9494
      Epoch 34/40
      2100/2100 [==============================] - 2540s 1s/step - loss: 0.2773 - tp: 21209216.0000 - fp: 2046492.0000 - tn: 77703984.0000 - fn: 2259570.0000 - precision: 0.9120 - recall: 0.9037 - accuracy: 0.9583 - auc: 0.9800 - val_loss: 0.
      4282 - val_tp: 2892899.0000 - val_fp: 378247.0000 - val_tn: 11801593.0000 - val_fn: 655901.0000 - val_precision: 0.8844 - val_recall: 0.8152 - val_accuracy: 0.9343 - val_auc: 0.9564
      Epoch 35/40
      2100/2100 [==============================] - 2548s 1s/step - loss: 0.2784 - tp: 21515622.0000 - fp: 2084525.0000 - tn: 77370184.0000 - fn: 2248908.0000 - precision: 0.9117 - recall: 0.9054 - accuracy: 0.9580 - auc: 0.9804 - val_loss: 0.
      4553 - val_tp: 3086603.0000 - val_fp: 467495.0000 - val_tn: 11473592.0000 - val_fn: 700950.0000 - val_precision: 0.8685 - val_recall: 0.8149 - val_accuracy: 0.9257 - val_auc: 0.9544
      Epoch 36/40
      2100/2100 [==============================] - 2541s 1s/step - loss: 0.2708 - tp: 20892576.0000 - fp: 2005985.0000 - tn: 78121936.0000 - fn: 2198694.0000 - precision: 0.9124 - recall: 0.9048 - accuracy: 0.9593 - auc: 0.9805 - val_loss: 0.
      4393 - val_tp: 2703510.0000 - val_fp: 394771.0000 - val_tn: 11969160.0000 - val_fn: 661199.0000 - val_precision: 0.8726 - val_recall: 0.8035 - val_accuracy: 0.9329 - val_auc: 0.9538
      Epoch 37/40
      2100/2100 [==============================] - 2552s 1s/step - loss: 0.2788 - tp: 21802620.0000 - fp: 2101735.0000 - tn: 77067912.0000 - fn: 2246918.0000 - precision: 0.9121 - recall: 0.9066 - accuracy: 0.9579 - auc: 0.9805 - val_loss: 0.
      4474 - val_tp: 2806677.0000 - val_fp: 219556.0000 - val_tn: 11887825.0000 - val_fn: 814582.0000 - val_precision: 0.9274 - val_recall: 0.7751 - val_accuracy: 0.9343 - val_auc: 0.9537
      Epoch 38/40
      2100/2100 [==============================] - 2545s 1s/step - loss: 0.2769 - tp: 21191620.0000 - fp: 2046041.0000 - tn: 77717744.0000 - fn: 2263741.0000 - precision: 0.9120 - recall: 0.9035 - accuracy: 0.9582 - auc: 0.9801 - val_loss: 0.
      4414 - val_tp: 2927919.0000 - val_fp: 286995.0000 - val_tn: 11783958.0000 - val_fn: 729768.0000 - val_precision: 0.9107 - val_recall: 0.8005 - val_accuracy: 0.9354 - val_auc: 0.9544
      Epoch 39/40
      2100/2100 [==============================] - 2545s 1s/step - loss: 0.2785 - tp: 21171298.0000 - fp: 2047544.0000 - tn: 77738952.0000 - fn: 2261357.0000 - precision: 0.9118 - recall: 0.9035 - accuracy: 0.9583 - auc: 0.9798 - val_loss: 0.
      4576 - val_tp: 2779792.0000 - val_fp: 346642.0000 - val_tn: 11869174.0000 - val_fn: 733032.0000 - val_precision: 0.8891 - val_recall: 0.7913 - val_accuracy: 0.9314 - val_auc: 0.9517
      Epoch 40/40
      2100/2100 [==============================] - 2538s 1s/step - loss: 0.2811 - tp: 21804190.0000 - fp: 2110823.0000 - tn: 77014800.0000 - fn: 2289448.0000 - precision: 0.9117 - recall: 0.9050 - accuracy: 0.9574 - auc: 0.9803 - val_loss: 0.
      4445 - val_tp: 2933937.0000 - val_fp: 327429.0000 - val_tn: 11730665.0000 - val_fn: 736609.0000 - val_precision: 0.8996 - val_recall: 0.7993 - val_accuracy: 0.9324 - val_auc: 0.9543
      667/667 [==============================] - 163s 244ms/step - loss: 0.5248 - tp: 6207113.0000 - fp: 1521051.0000 - tn: 23569214.0000 - fn: 1470623.0000 - precision: 0.8032 - recall: 0.8085 - accuracy: 0.9087 - auc: 0.9439
      2020/06/21 05:32:13 INFO mlflow.projects: === Run (ID '1e98b3ed2e1d421da9592058bd5587a8') succeeded ===

2.1.15 git exp 4

      git status
      git log -1
      (tensorflow_nightly) [ye53nis@node161 drmed-git]$ git status
      git log -1
      # On branch exp-310520-unet
      # Untracked files:
      #   (use "git add <file>..." to include in what will be committed)
      #   ...
      nothing added to commit but untracked files present (use "git add" to track)

      (tensorflow_nightly) [ye53nis@node161 drmed-git]$ git log -1
      commit 8adaca82d8e092997828338bc2b730568c3ff74b
      Author: Alex Seltmann <seltmann@posteo.de>
      Date:   Mon Jun 22 00:45:48 2020 +0200

          exp-310520-unet run 3 bs=3

2.1.16 experimental run 4 - bs=7

      mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src -P batch_size=7 -P epochs=40 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=910 -P validation_steps=225
      2020/06/22 01:46:18 INFO mlflow.projects: === Created directory /tmp/tmpbqom5l09 for downloading remote URIs passed to arguments of type 'path' ===
      2020/06/22 01:46:18 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/fluotracify/training/train.py /
      beegfs/ye53nis/drmed-git/src 7 0.2 16384 None 40 /beegfs/ye53nis/saves/firstartefact_Sep2019 910 225' in run with ID '306234c75c9c48058cbd694579eff31b' ===
      2020-06-22 01:46:38.397450: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory
      2020-06-22 01:46:38.397497: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favour of importlib; see the modul
      e's documentation for alternative uses
        import imp
      2.3.0-dev20200527
      2020-06-22 01:47:08.147584: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2020-06-22 01:47:08.147650: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
      2020-06-22 01:47:08.147696: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node161): /proc/driver/nvidia/version does not exist
      GPUs:  []
      train 0 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set027.csv
      train 1 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set087.csv
      train 2 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set003.csv
      train 3 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set056.csv
      train 4 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set076.csv
      train 5 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set094.csv
      train 6 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set017.csv
      train 7 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set074.csv
      train 8 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set055.csv
      train 9 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set096.csv
      train 10 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set054.csv
      train 11 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set093.csv
      train 12 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set079.csv
      train 13 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set014.csv
      train 14 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set008.csv
      train 15 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set031.csv
      train 16 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set023.csv
      train 17 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set025.csv
      train 18 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set034.csv
      train 19 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set009.csv
      train 20 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set044.csv
      train 21 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set063.csv
      train 22 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set004.csv
      train 23 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set072.csv
      train 24 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set046.csv
      train 25 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set049.csv
      train 26 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set007.csv
      train 27 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set100.csv
      train 28 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set083.csv
      train 29 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set077.csv
      train 30 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set061.csv
      train 31 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set081.csv
      train 32 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set091.csv
      train 33 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set069.csv
      train 34 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set052.csv
      train 35 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set028.csv
      train 36 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set019.csv
      train 37 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set057.csv
      train 38 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set064.csv
      train 39 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set075.csv
      train 40 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set002.csv
      train 41 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set062.csv
      train 42 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set043.csv
      train 43 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set042.csv
      train 44 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set005.csv
      train 45 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set016.csv
      train 46 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set018.csv
      train 47 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set041.csv
      train 48 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set039.csv
      train 49 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set006.csv
      train 50 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set092.csv
      train 51 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set060.csv
      train 52 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set001.csv
      train 53 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set035.csv
      train 54 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set029.csv
      train 55 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set051.csv
      train 56 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set012.csv
      train 57 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set036.csv
      train 58 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set024.csv
      train 59 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set053.csv
      train 60 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set011.csv
      train 61 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set032.csv
      train 62 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set067.csv
      train 63 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set058.csv
      train 64 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set080.csv
      train 65 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set086.csv
      train 66 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set033.csv
      train 67 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set085.csv
      train 68 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set015.csv
      train 69 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set090.csv
      train 70 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set020.csv
      train 71 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set030.csv
      train 72 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set050.csv
      train 73 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set098.csv
      train 74 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set099.csv
      train 75 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set070.csv
      train 76 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set021.csv
      train 77 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set095.csv
      train 78 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set073.csv
      train 79 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set078.csv
      test 80 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set026.csv
      test 81 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set038.csv
      test 82 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set082.csv
      test 83 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set047.csv
      test 84 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set040.csv
      test 85 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set066.csv
      test 86 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set059.csv
      test 87 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set013.csv
      test 88 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set089.csv
      test 89 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set071.csv
      test 90 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set088.csv
      test 91 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set037.csv
      test 92 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set022.csv
      test 93 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set084.csv
      test 94 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set010.csv
      test 95 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set097.csv
      test 96 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set068.csv
      test 97 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set065.csv
      test 98 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set048.csv
      test 99 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set045.csv
      shapes of feature dataframe: (20000, 8000) and label dataframe: (20000, 8000)
      shapes of feature dataframe: (20000, 2000) and label dataframe: (20000, 2000)

      for each 20,000 timestap trace there are the following numbers of corrupted timesteps:
       label001_1    6286
      label001_1    2568
      label001_1    4495
      label001_1    4414
      label001_1    1105
      dtype: int64
      2020-06-22 01:52:37.438938: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      2020-06-22 01:52:37.449993: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz
      2020-06-22 01:52:37.451959: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5592ec827380 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
      2020-06-22 01:52:37.451991: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
      number of training examples: 6400, number of validation examples: 1600

      ------------------------
      number of test examples: 2000

      input - shape:   (None, 16384, 1)
      output - shape:  (None, 16384, 1)
      2020-06-22 01:52:41.793790: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the ABCs from 'collections' instead
       of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
        if not isinstance(wrapped_dict, collections.Mapping):
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Python 3.0, use inspect.signature()
       or inspect.getfullargspec()
        all_param_names, _, _, all_default_values = inspect.getargspec(fn)  # pylint: disable=W1505
      Epoch 1/40
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from
      'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
        if not isinstance(values, collections.Sequence):
        1/910 [..............................] - ETA: 0s - loss: 1.5123 - tp: 3489.0000 - fp: 12945.0000 - tn: 73461.0000 - fn: 24793.0000 - precision: 0.2123 - recall: 0.1234 - accuracy: 0.6710 - auc: 0.49312020-06-22 01:52:55.410673: I tens
      orflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
      WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and w
      ill be removed after 2020-07-01.
      Instructions for updating:
      use `tf.profiler.experimental.stop` instead.
      2020-06-22 01:52:57.883904: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_22_01_52_57
      2020-06-22 01:52:57.900920: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.trace.json.gz
      2020-06-22 01:52:57.938257: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_22_01_52_57
      2020-06-22 01:52:57.938413: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.memory_profile.json.gz
      2020-06-22 01:52:57.941154: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_06_22_01_52_57Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2020_06_22_0
      1_52_57/node161.xplane.pb
      Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.overview_page.pb
      Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.input_pipeline.pb
      Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.tensorflow_stats.pb
      Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.kernel_stats.pb

      910/910 [==============================] - 2234s 2s/step - loss: 1.1284 - tp: 16644571.0000 - fp: 5060115.0000 - tn: 75211888.0000 - fn: 7449514.0000 - precision: 0.7669 - recall: 0.6908 - accuracy: 0.8801 - auc: 0.9092 - val_loss: 44.1
      496 - val_tp: 5991771.0000 - val_fp: 19810554.0000 - val_tn: 2354.0000 - val_fn: 117.0000 - val_precision: 0.2322 - val_recall: 1.0000 - val_accuracy: 0.2323 - val_auc: 0.5235
      Epoch 2/40
      910/910 [==============================] - 2228s 2s/step - loss: 0.6506 - tp: 18676100.0000 - fp: 3725706.0000 - tn: 76768256.0000 - fn: 5196001.0000 - precision: 0.8337 - recall: 0.7823 - accuracy: 0.9145 - auc: 0.9421 - val_loss: 4.02
      94 - val_tp: 5567715.0000 - val_fp: 7766004.0000 - val_tn: 12285671.0000 - val_fn: 185410.0000 - val_precision: 0.4176 - val_recall: 0.9678 - val_accuracy: 0.6919 - val_auc: 0.8550
      Epoch 3/40
      910/910 [==============================] - 2209s 2s/step - loss: 0.4869 - tp: 19773668.0000 - fp: 3339711.0000 - tn: 77156064.0000 - fn: 4096586.0000 - precision: 0.8555 - recall: 0.8284 - accuracy: 0.9287 - auc: 0.9571 - val_loss: 15.0
      428 - val_tp: 5964847.0000 - val_fp: 16182339.0000 - val_tn: 3635866.0000 - val_fn: 21748.0000 - val_precision: 0.2693 - val_recall: 0.9964 - val_accuracy: 0.3721 - val_auc: 0.6686
      Epoch 4/40
      910/910 [==============================] - 2196s 2s/step - loss: 0.4160 - tp: 20489738.0000 - fp: 2947256.0000 - tn: 77507616.0000 - fn: 3421442.0000 - precision: 0.8742 - recall: 0.8569 - accuracy: 0.9390 - auc: 0.9659 - val_loss: 1.94
      92 - val_tp: 5844006.0000 - val_fp: 12298817.0000 - val_tn: 7631163.0000 - val_fn: 30814.0000 - val_precision: 0.3221 - val_recall: 0.9948 - val_accuracy: 0.5222 - val_auc: 0.9445
      Epoch 5/40
      910/910 [==============================] - 2197s 2s/step - loss: 0.3808 - tp: 20651254.0000 - fp: 2753622.0000 - tn: 77775072.0000 - fn: 3186176.0000 - precision: 0.8823 - recall: 0.8663 - accuracy: 0.9431 - auc: 0.9697 - val_loss: 0.48
      60 - val_tp: 5068080.0000 - val_fp: 972440.0000 - val_tn: 19094874.0000 - val_fn: 669407.0000 - val_precision: 0.8390 - val_recall: 0.8833 - val_accuracy: 0.9364 - val_auc: 0.9722
      Epoch 6/40
      910/910 [==============================] - 2186s 2s/step - loss: 0.3788 - tp: 20770170.0000 - fp: 2708911.0000 - tn: 77787896.0000 - fn: 3099100.0000 - precision: 0.8846 - recall: 0.8702 - accuracy: 0.9444 - auc: 0.9703 - val_loss: 0.86
      28 - val_tp: 5389513.0000 - val_fp: 2524440.0000 - val_tn: 17394656.0000 - val_fn: 496188.0000 - val_precision: 0.6810 - val_recall: 0.9157 - val_accuracy: 0.8829 - val_auc: 0.9492
      Epoch 7/40
      910/910 [==============================] - 2187s 2s/step - loss: 0.3621 - tp: 21038052.0000 - fp: 2650316.0000 - tn: 77692112.0000 - fn: 2985530.0000 - precision: 0.8881 - recall: 0.8757 - accuracy: 0.9460 - auc: 0.9724 - val_loss: 0.90
      81 - val_tp: 5562172.0000 - val_fp: 3465595.0000 - val_tn: 16430461.0000 - val_fn: 346572.0000 - val_precision: 0.6161 - val_recall: 0.9413 - val_accuracy: 0.8523 - val_auc: 0.9356
      Epoch 8/40
      910/910 [==============================] - 2193s 2s/step - loss: 0.3553 - tp: 20964808.0000 - fp: 2536411.0000 - tn: 77880080.0000 - fn: 2984777.0000 - precision: 0.8921 - recall: 0.8754 - accuracy: 0.9471 - auc: 0.9726 - val_loss: 1.75
      52 - val_tp: 5773672.0000 - val_fp: 6575655.0000 - val_tn: 13365159.0000 - val_fn: 90314.0000 - val_precision: 0.4675 - val_recall: 0.9846 - val_accuracy: 0.7417 - val_auc: 0.9457
      Epoch 9/40
      910/910 [==============================] - 2191s 2s/step - loss: 0.3477 - tp: 20855856.0000 - fp: 2530233.0000 - tn: 78070912.0000 - fn: 2908993.0000 - precision: 0.8918 - recall: 0.8776 - accuracy: 0.9479 - auc: 0.9732 - val_loss: 5.37
      18 - val_tp: 5639818.0000 - val_fp: 10545935.0000 - val_tn: 9573186.0000 - val_fn: 45861.0000 - val_precision: 0.3484 - val_recall: 0.9919 - val_accuracy: 0.5895 - val_auc: 0.8627
      Epoch 10/40
      910/910 [==============================] - 2198s 2s/step - loss: 0.3453 - tp: 20967864.0000 - fp: 2537372.0000 - tn: 77932464.0000 - fn: 2928327.0000 - precision: 0.8921 - recall: 0.8775 - accuracy: 0.9476 - auc: 0.9739 - val_loss: 6.18
      03 - val_tp: 5843714.0000 - val_fp: 6972956.0000 - val_tn: 12840040.0000 - val_fn: 148090.0000 - val_precision: 0.4559 - val_recall: 0.9753 - val_accuracy: 0.7240 - val_auc: 0.8662
      Epoch 11/40
      910/910 [==============================] - 2199s 2s/step - loss: 0.3386 - tp: 21061526.0000 - fp: 2493371.0000 - tn: 77979232.0000 - fn: 2831932.0000 - precision: 0.8941 - recall: 0.8815 - accuracy: 0.9490 - auc: 0.9744 - val_loss: 1.93
      77 - val_tp: 5141006.0000 - val_fp: 5024287.0000 - val_tn: 14889905.0000 - val_fn: 749602.0000 - val_precision: 0.5057 - val_recall: 0.8727 - val_accuracy: 0.7762 - val_auc: 0.8851
      Epoch 12/40
      910/910 [==============================] - 2189s 2s/step - loss: 0.3032 - tp: 21443394.0000 - fp: 2244059.0000 - tn: 78197192.0000 - fn: 2481465.0000 - precision: 0.9053 - recall: 0.8963 - accuracy: 0.9547 - auc: 0.9782 - val_loss: 0.41
      02 - val_tp: 4447303.0000 - val_fp: 81983.0000 - val_tn: 19938508.0000 - val_fn: 1337008.0000 - val_precision: 0.9819 - val_recall: 0.7689 - val_accuracy: 0.9450 - val_auc: 0.9689
      Epoch 13/40
      910/910 [==============================] - 2190s 2s/step - loss: 0.2934 - tp: 21384318.0000 - fp: 2224470.0000 - tn: 78382704.0000 - fn: 2374534.0000 - precision: 0.9058 - recall: 0.9001 - accuracy: 0.9559 - auc: 0.9790 - val_loss: 0.39
      33 - val_tp: 4709935.0000 - val_fp: 185454.0000 - val_tn: 19874024.0000 - val_fn: 1035376.0000 - val_precision: 0.9621 - val_recall: 0.8198 - val_accuracy: 0.9527 - val_auc: 0.9764
      Epoch 14/40
      910/910 [==============================] - 2191s 2s/step - loss: 0.2891 - tp: 21659198.0000 - fp: 2221361.0000 - tn: 78137264.0000 - fn: 2348280.0000 - precision: 0.9070 - recall: 0.9022 - accuracy: 0.9562 - auc: 0.9795 - val_loss: 0.34
      77 - val_tp: 4962272.0000 - val_fp: 238349.0000 - val_tn: 19698052.0000 - val_fn: 906131.0000 - val_precision: 0.9542 - val_recall: 0.8456 - val_accuracy: 0.9556 - val_auc: 0.9784
      Epoch 15/40
      910/910 [==============================] - 2190s 2s/step - loss: 0.2855 - tp: 21305984.0000 - fp: 2168209.0000 - tn: 78570984.0000 - fn: 2320894.0000 - precision: 0.9076 - recall: 0.9018 - accuracy: 0.9570 - auc: 0.9794 - val_loss: 0.42
      92 - val_tp: 5448927.0000 - val_fp: 691788.0000 - val_tn: 19190140.0000 - val_fn: 473948.0000 - val_precision: 0.8873 - val_recall: 0.9200 - val_accuracy: 0.9548 - val_auc: 0.9843
      Epoch 16/40
      910/910 [==============================] - 2206s 2s/step - loss: 0.2860 - tp: 21768336.0000 - fp: 2197317.0000 - tn: 78071472.0000 - fn: 2328913.0000 - precision: 0.9083 - recall: 0.9034 - accuracy: 0.9566 - auc: 0.9798 - val_loss: 0.38
      76 - val_tp: 5178300.0000 - val_fp: 782337.0000 - val_tn: 19316320.0000 - val_fn: 527843.0000 - val_precision: 0.8687 - val_recall: 0.9075 - val_accuracy: 0.9492 - val_auc: 0.9825
      Epoch 17/40
      910/910 [==============================] - 2195s 2s/step - loss: 0.2846 - tp: 21434488.0000 - fp: 2169029.0000 - tn: 78438552.0000 - fn: 2324017.0000 - precision: 0.9081 - recall: 0.9022 - accuracy: 0.9570 - auc: 0.9797 - val_loss: 0.30
      14 - val_tp: 5075497.0000 - val_fp: 245322.0000 - val_tn: 19617398.0000 - val_fn: 866585.0000 - val_precision: 0.9539 - val_recall: 0.8542 - val_accuracy: 0.9569 - val_auc: 0.9784
      Epoch 18/40
      910/910 [==============================] - 2194s 2s/step - loss: 0.2779 - tp: 21615928.0000 - fp: 2131081.0000 - tn: 78362064.0000 - fn: 2257103.0000 - precision: 0.9103 - recall: 0.9055 - accuracy: 0.9580 - auc: 0.9802 - val_loss: 0.35
      91 - val_tp: 5315886.0000 - val_fp: 630662.0000 - val_tn: 19377184.0000 - val_fn: 481064.0000 - val_precision: 0.8939 - val_recall: 0.9170 - val_accuracy: 0.9569 - val_auc: 0.9853
      Epoch 19/40
      910/910 [==============================] - 2199s 2s/step - loss: 0.2810 - tp: 21823838.0000 - fp: 2154952.0000 - tn: 78086368.0000 - fn: 2300819.0000 - precision: 0.9101 - recall: 0.9046 - accuracy: 0.9573 - auc: 0.9804 - val_loss: 0.29
      36 - val_tp: 5247304.0000 - val_fp: 327869.0000 - val_tn: 19475176.0000 - val_fn: 754455.0000 - val_precision: 0.9412 - val_recall: 0.8743 - val_accuracy: 0.9581 - val_auc: 0.9805
      Epoch 20/40
      910/910 [==============================] - 2192s 2s/step - loss: 0.2764 - tp: 21738176.0000 - fp: 2123769.0000 - tn: 78235688.0000 - fn: 2268399.0000 - precision: 0.9110 - recall: 0.9055 - accuracy: 0.9579 - auc: 0.9807 - val_loss: 0.31
      80 - val_tp: 5172404.0000 - val_fp: 301019.0000 - val_tn: 19568382.0000 - val_fn: 762993.0000 - val_precision: 0.9450 - val_recall: 0.8715 - val_accuracy: 0.9588 - val_auc: 0.9816
      Epoch 21/40
      910/910 [==============================] - 2198s 2s/step - loss: 0.2753 - tp: 21565306.0000 - fp: 2109464.0000 - tn: 78441872.0000 - fn: 2249478.0000 - precision: 0.9109 - recall: 0.9055 - accuracy: 0.9582 - auc: 0.9805 - val_loss: 0.32
      99 - val_tp: 4898108.0000 - val_fp: 133276.0000 - val_tn: 19742242.0000 - val_fn: 1031169.0000 - val_precision: 0.9735 - val_recall: 0.8261 - val_accuracy: 0.9549 - val_auc: 0.9758
      Epoch 22/40
      910/910 [==============================] - 2194s 2s/step - loss: 0.2705 - tp: 21872064.0000 - fp: 2096978.0000 - tn: 78186784.0000 - fn: 2210292.0000 - precision: 0.9125 - recall: 0.9082 - accuracy: 0.9587 - auc: 0.9812 - val_loss: 0.32
      48 - val_tp: 5379907.0000 - val_fp: 361207.0000 - val_tn: 19421612.0000 - val_fn: 642071.0000 - val_precision: 0.9371 - val_recall: 0.8934 - val_accuracy: 0.9611 - val_auc: 0.9833
      Epoch 23/40
      910/910 [==============================] - 2192s 2s/step - loss: 0.2693 - tp: 21757518.0000 - fp: 2089232.0000 - tn: 78320768.0000 - fn: 2198508.0000 - precision: 0.9124 - recall: 0.9082 - accuracy: 0.9589 - auc: 0.9810 - val_loss: 0.29
      60 - val_tp: 5305212.0000 - val_fp: 364327.0000 - val_tn: 19508656.0000 - val_fn: 626605.0000 - val_precision: 0.9357 - val_recall: 0.8944 - val_accuracy: 0.9616 - val_auc: 0.9831
      Epoch 24/40
      910/910 [==============================] - 2182s 2s/step - loss: 0.2644 - tp: 21582250.0000 - fp: 2055042.0000 - tn: 78581192.0000 - fn: 2147551.0000 - precision: 0.9131 - recall: 0.9095 - accuracy: 0.9597 - auc: 0.9816 - val_loss: 0.31
      56 - val_tp: 5259415.0000 - val_fp: 362064.0000 - val_tn: 19527056.0000 - val_fn: 656259.0000 - val_precision: 0.9356 - val_recall: 0.8891 - val_accuracy: 0.9605 - val_auc: 0.9826
      Epoch 25/40
      910/910 [==============================] - 2182s 2s/step - loss: 0.2646 - tp: 21752094.0000 - fp: 2060925.0000 - tn: 78391832.0000 - fn: 2161242.0000 - precision: 0.9135 - recall: 0.9096 - accuracy: 0.9595 - auc: 0.9816 - val_loss: 0.30
      17 - val_tp: 5312792.0000 - val_fp: 398301.0000 - val_tn: 19491284.0000 - val_fn: 602422.0000 - val_precision: 0.9303 - val_recall: 0.8982 - val_accuracy: 0.9612 - val_auc: 0.9832
      Epoch 26/40
      910/910 [==============================] - 2111s 2s/step - loss: 0.2703 - tp: 21731022.0000 - fp: 2103277.0000 - tn: 78346144.0000 - fn: 2185602.0000 - precision: 0.9118 - recall: 0.9086 - accuracy: 0.9589 - auc: 0.9811 - val_loss: 0.31
      48 - val_tp: 5491565.0000 - val_fp: 401219.0000 - val_tn: 19289576.0000 - val_fn: 622446.0000 - val_precision: 0.9319 - val_recall: 0.8982 - val_accuracy: 0.9603 - val_auc: 0.9844
      Epoch 27/40
      910/910 [==============================] - 2066s 2s/step - loss: 0.2638 - tp: 21622916.0000 - fp: 2036434.0000 - tn: 78564656.0000 - fn: 2142006.0000 - precision: 0.9139 - recall: 0.9099 - accuracy: 0.9600 - auc: 0.9815 - val_loss: 0.28
      12 - val_tp: 5310123.0000 - val_fp: 347345.0000 - val_tn: 19514636.0000 - val_fn: 632692.0000 - val_precision: 0.9386 - val_recall: 0.8935 - val_accuracy: 0.9620 - val_auc: 0.9826
      Epoch 28/40
      910/910 [==============================] - 2084s 2s/step - loss: 0.2644 - tp: 21746928.0000 - fp: 2054824.0000 - tn: 78423840.0000 - fn: 2140490.0000 - precision: 0.9137 - recall: 0.9104 - accuracy: 0.9598 - auc: 0.9815 - val_loss: 0.29
      02 - val_tp: 5105988.0000 - val_fp: 301224.0000 - val_tn: 19705344.0000 - val_fn: 692246.0000 - val_precision: 0.9443 - val_recall: 0.8806 - val_accuracy: 0.9615 - val_auc: 0.9816
      Epoch 29/40
      910/910 [==============================] - 2091s 2s/step - loss: 0.2657 - tp: 21903456.0000 - fp: 2055350.0000 - tn: 78244200.0000 - fn: 2163118.0000 - precision: 0.9142 - recall: 0.9101 - accuracy: 0.9596 - auc: 0.9816 - val_loss: 0.29
      28 - val_tp: 5111563.0000 - val_fp: 355341.0000 - val_tn: 19707988.0000 - val_fn: 629909.0000 - val_precision: 0.9350 - val_recall: 0.8903 - val_accuracy: 0.9618 - val_auc: 0.9825
      Epoch 30/40
      910/910 [==============================] - 2097s 2s/step - loss: 0.2663 - tp: 22007504.0000 - fp: 2072930.0000 - tn: 78112200.0000 - fn: 2173470.0000 - precision: 0.9139 - recall: 0.9101 - accuracy: 0.9593 - auc: 0.9816 - val_loss: 0.30
      39 - val_tp: 5361046.0000 - val_fp: 369167.0000 - val_tn: 19426364.0000 - val_fn: 648220.0000 - val_precision: 0.9356 - val_recall: 0.8921 - val_accuracy: 0.9606 - val_auc: 0.9831
      Epoch 31/40
      910/910 [==============================] - 2092s 2s/step - loss: 0.2670 - tp: 21883968.0000 - fp: 2114417.0000 - tn: 78182464.0000 - fn: 2185257.0000 - precision: 0.9119 - recall: 0.9092 - accuracy: 0.9588 - auc: 0.9816 - val_loss: 0.29
      74 - val_tp: 5307833.0000 - val_fp: 308903.0000 - val_tn: 19507264.0000 - val_fn: 680801.0000 - val_precision: 0.9450 - val_recall: 0.8863 - val_accuracy: 0.9616 - val_auc: 0.9830
      Epoch 32/40
      910/910 [==============================] - 2168s 2s/step - loss: 0.2678 - tp: 21697564.0000 - fp: 2002839.0000 - tn: 78462496.0000 - fn: 2203202.0000 - precision: 0.9155 - recall: 0.9078 - accuracy: 0.9597 - auc: 0.9811 - val_loss: 0.29
      81 - val_tp: 4991380.0000 - val_fp: 318033.0000 - val_tn: 19848366.0000 - val_fn: 647024.0000 - val_precision: 0.9401 - val_recall: 0.8852 - val_accuracy: 0.9626 - val_auc: 0.9819
      Epoch 33/40
      910/910 [==============================] - 2143s 2s/step - loss: 0.2641 - tp: 21608556.0000 - fp: 2029292.0000 - tn: 78569336.0000 - fn: 2158886.0000 - precision: 0.9142 - recall: 0.9092 - accuracy: 0.9599 - auc: 0.9815 - val_loss: 0.30
      89 - val_tp: 5377773.0000 - val_fp: 383774.0000 - val_tn: 19419054.0000 - val_fn: 624197.0000 - val_precision: 0.9334 - val_recall: 0.8960 - val_accuracy: 0.9609 - val_auc: 0.9835
      Epoch 34/40
      910/910 [==============================] - 2148s 2s/step - loss: 0.2636 - tp: 21989192.0000 - fp: 2079253.0000 - tn: 78164408.0000 - fn: 2133219.0000 - precision: 0.9136 - recall: 0.9116 - accuracy: 0.9596 - auc: 0.9818 - val_loss: 0.28
      72 - val_tp: 5242507.0000 - val_fp: 383622.0000 - val_tn: 19573328.0000 - val_fn: 605341.0000 - val_precision: 0.9318 - val_recall: 0.8965 - val_accuracy: 0.9617 - val_auc: 0.9836
      Epoch 35/40
      910/910 [==============================] - 2156s 2s/step - loss: 0.2642 - tp: 21771006.0000 - fp: 2059886.0000 - tn: 78393632.0000 - fn: 2141526.0000 - precision: 0.9136 - recall: 0.9104 - accuracy: 0.9597 - auc: 0.9816 - val_loss: 0.30
      80 - val_tp: 5192984.0000 - val_fp: 352885.0000 - val_tn: 19633610.0000 - val_fn: 625321.0000 - val_precision: 0.9364 - val_recall: 0.8925 - val_accuracy: 0.9621 - val_auc: 0.9832
      Epoch 36/40
      910/910 [==============================] - 2114s 2s/step - loss: 0.2641 - tp: 21936120.0000 - fp: 2076747.0000 - tn: 78200080.0000 - fn: 2153085.0000 - precision: 0.9135 - recall: 0.9106 - accuracy: 0.9595 - auc: 0.9818 - val_loss: 0.29
      62 - val_tp: 5151439.0000 - val_fp: 372261.0000 - val_tn: 19674524.0000 - val_fn: 606575.0000 - val_precision: 0.9326 - val_recall: 0.8947 - val_accuracy: 0.9621 - val_auc: 0.9835
      Epoch 37/40
      910/910 [==============================] - 2083s 2s/step - loss: 0.2591 - tp: 21745408.0000 - fp: 2014129.0000 - tn: 78506376.0000 - fn: 2100146.0000 - precision: 0.9152 - recall: 0.9119 - accuracy: 0.9606 - auc: 0.9821 - val_loss: 0.28
      98 - val_tp: 5332435.0000 - val_fp: 349131.0000 - val_tn: 19493176.0000 - val_fn: 630050.0000 - val_precision: 0.9386 - val_recall: 0.8943 - val_accuracy: 0.9621 - val_auc: 0.9841
      Epoch 38/40
      910/910 [==============================] - 2067s 2s/step - loss: 0.2677 - tp: 22040308.0000 - fp: 2034232.0000 - tn: 78099864.0000 - fn: 2191664.0000 - precision: 0.9155 - recall: 0.9096 - accuracy: 0.9595 - auc: 0.9813 - val_loss: 0.30
      58 - val_tp: 5293916.0000 - val_fp: 364251.0000 - val_tn: 19503016.0000 - val_fn: 643618.0000 - val_precision: 0.9356 - val_recall: 0.8916 - val_accuracy: 0.9609 - val_auc: 0.9818
      Epoch 39/40
      910/910 [==============================] - 2088s 2s/step - loss: 0.2665 - tp: 21782964.0000 - fp: 2071501.0000 - tn: 78364600.0000 - fn: 2146992.0000 - precision: 0.9132 - recall: 0.9103 - accuracy: 0.9596 - auc: 0.9812 - val_loss: 0.28
      94 - val_tp: 5190450.0000 - val_fp: 358739.0000 - val_tn: 19624484.0000 - val_fn: 631125.0000 - val_precision: 0.9354 - val_recall: 0.8916 - val_accuracy: 0.9616 - val_auc: 0.9823
      Epoch 40/40
      910/910 [==============================] - 2093s 2s/step - loss: 0.2610 - tp: 21703476.0000 - fp: 2048057.0000 - tn: 78489664.0000 - fn: 2124881.0000 - precision: 0.9138 - recall: 0.9108 - accuracy: 0.9600 - auc: 0.9819 - val_loss: 0.28
      97 - val_tp: 5014376.0000 - val_fp: 339650.0000 - val_tn: 19831600.0000 - val_fn: 619172.0000 - val_precision: 0.9366 - val_recall: 0.8901 - val_accuracy: 0.9628 - val_auc: 0.9828
      286/286 [==============================] - 134s 469ms/step - loss: 0.3156 - tp: 6887079.0000 - fp: 534559.0000 - tn: 24555692.0000 - fn: 790657.0000 - precision: 0.9280 - recall: 0.8970 - accuracy: 0.9596 - auc: 0.9821
      2020/06/23 01:58:39 INFO mlflow.projects: === Run (ID '306234c75c9c48058cbd694579eff31b') succeeded ===




2.1.17 git exp 5

      git status
      git log -1
      (base) [ye53nis@node011 drmed-git]$ git status
      git log -1
      # On branch exp-310520-unet
      # ...
      no changes added to commit (use "git add" and/or "git commit -a")

      (base) [ye53nis@node011 drmed-git]$ git log -1
      commit 8811f54920c7089b8a27d7f39a50acede5be64c9
      Author: Apoplex <oligolex@vivaldi.net>
      Date:   Fri Jul 3 00:51:59 2020 +0200

          Incorporate unet prediction in plotting function

2.1.18 experimental run 5 - full dataset, length=2**13=8192

      mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src -P batch_size=5 -P length_delimiter=8192 -P epochs=40 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=1280 -P validation_steps=320
      (tensorflow_nightly) [ye53nis@node011 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src -P batch_size=5 -P length_delimiter=8192 -P epochs=40 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact
      _Sep2019 -P steps_per_epoch=1280 -P validation_steps=320
      2020/07/03 13:45:30 INFO mlflow.projects: === Created directory /tmp/tmpqf8ewz0u for downloading remote URIs passed to arguments of type 'path' ===
      2020/07/03 13:45:30 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/fluotracify/training/train.py /
      beegfs/ye53nis/drmed-git/src 5 0.2 8192 None 40 /beegfs/ye53nis/saves/firstartefact_Sep2019 1280 320' in run with ID 'd9b44dc2e3d44ea1a71129808b642af6' ===
      2020-07-03 13:45:57.151501: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory
      2020-07-03 13:45:57.151600: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favour of importlib; see the modul
      e's documentation for alternative uses
        import imp
      2.3.0-dev20200527
      2020-07-03 13:46:34.363762: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2020-07-03 13:46:34.363823: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
      2020-07-03 13:46:34.363865: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node011): /proc/driver/nvidia/version does not exist
      GPUs:  []
      train 0 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set027.csv
      train 1 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set087.csv
      train 2 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set003.csv
      train 3 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set056.csv
      train 4 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set076.csv
      train 5 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set094.csv
      train 6 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set017.csv
      train 7 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set074.csv
      train 8 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set055.csv
      train 9 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set096.csv
      train 10 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set054.csv
      train 11 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set093.csv
      train 12 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set079.csv
      train 13 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set014.csv
      train 14 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set008.csv
      train 15 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set031.csv
      train 16 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set023.csv
      train 17 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set025.csv
      train 18 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set034.csv
      train 19 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set009.csv
      train 20 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set044.csv
      train 21 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set063.csv
      train 22 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set004.csv
      train 23 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set072.csv
      train 24 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set046.csv
      train 25 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set049.csv
      train 26 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set007.csv
      train 27 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set100.csv
      train 28 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set083.csv
      train 29 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set077.csv
      train 30 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set061.csv
      train 31 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set081.csv
      train 32 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set091.csv
      train 33 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set069.csv
      train 34 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set052.csv
      train 35 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set028.csv
      train 36 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set019.csv
      train 37 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set057.csv
      train 38 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set064.csv
      train 39 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set075.csv
      train 40 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set002.csv
      train 41 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set062.csv
      train 42 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set043.csv
      train 43 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set042.csv
      train 44 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set005.csv
      train 45 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set016.csv
      train 46 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set018.csv
      train 47 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set041.csv
      train 48 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set039.csv
      train 49 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set006.csv
      train 50 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set092.csv
      train 51 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set060.csv
      train 52 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set001.csv
      train 53 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set035.csv
      train 54 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set029.csv
      train 55 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set051.csv
      train 56 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set012.csv
      train 57 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set036.csv
      train 58 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set024.csv
      train 59 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set053.csv
      train 60 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set011.csv
      train 61 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set032.csv
      train 62 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set067.csv
      train 63 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set058.csv
      train 64 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set080.csv
      train 65 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set086.csv
      train 66 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set033.csv
      train 67 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set085.csv
      train 68 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set015.csv
      train 69 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set090.csv
      train 70 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set020.csv
      train 71 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set030.csv
      train 72 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set050.csv
      train 73 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set098.csv
      train 74 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set099.csv
      train 75 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set070.csv
      train 76 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set021.csv
      train 77 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set095.csv
      train 78 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set073.csv
      train 79 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set078.csv
      test 80 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set026.csv
      test 81 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set038.csv
      test 82 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set082.csv
      test 83 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set047.csv
      test 84 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set040.csv
      test 85 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set066.csv
      test 86 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set059.csv
      test 87 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set013.csv
      test 88 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set089.csv
      test 89 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set071.csv
      test 90 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set088.csv
      test 91 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set037.csv
      test 92 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set022.csv
      test 93 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set084.csv
      test 94 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set010.csv
      test 95 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set097.csv
      test 96 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set068.csv
      test 97 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set065.csv
      test 98 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set048.csv
      test 99 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set045.csv
      shapes of feature dataframe: (20000, 8000) and label dataframe: (20000, 8000)
      shapes of feature dataframe: (20000, 2000) and label dataframe: (20000, 2000)

      for each 20,000 timestap trace there are the following numbers of corrupted timesteps:
       label001_1    6286
      label001_1    2568
      label001_1    4495
      label001_1    4414
      label001_1    1105
      dtype: int64
      2020-07-03 13:52:37.767508: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      2020-07-03 13:52:37.782937: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2194930000 Hz
      2020-07-03 13:52:37.784247: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55e467051fe0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
      2020-07-03 13:52:37.784290: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
      number of training examples: 6400, number of validation examples: 1600

      ------------------------
      number of test examples: 2000

      input - shape:   (None, 8192, 1)
      output - shape:  (None, 8192, 1)
      2020-07-03 13:52:43.215627: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the ABCs from 'collections' instead
       of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
        if not isinstance(wrapped_dict, collections.Mapping):
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Python 3.0, use inspect.signature()
       or inspect.getfullargspec()
        all_param_names, _, _, all_default_values = inspect.getargspec(fn)  # pylint: disable=W1505
      Epoch 1/40
      /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from
      'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
        if not isinstance(values, collections.Sequence):
         1/1280 [..............................] - ETA: 0s - loss: 1.2862 - tp: 16168.0000 - fp: 12373.0000 - tn: 7437.0000 - fn: 4982.0000 - precision: 0.5665 - recall: 0.7644 - accuracy: 0.5763 - auc: 0.63882020-07-03 13:52:58.138783: I ten
      sorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
      WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and w
      ill be removed after 2020-07-01.
      Instructions for updating:
      use `tf.profiler.experimental.stop` instead.
      2020-07-03 13:52:59.481566: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_07_03_13_52_59
      2020-07-03 13:52:59.501564: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.trace.json.gz
      2020-07-03 13:52:59.538369: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_07_03_13_52_59
      2020-07-03 13:52:59.538526: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.memory_profile.json.gz
      2020-07-03 13:52:59.541206: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_07_03_13_52_59Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2020_07_03_1
      3_52_59/node011.xplane.pb
      Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.overview_page.pb
      Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.input_pipeline.pb
      Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.tensorflow_stats.pb
      Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.kernel_stats.pb

      1280/1280 [==============================] - 1780s 1s/step - loss: 1.1858 - tp: 7339984.0000 - fp: 2874113.0000 - tn: 37719448.0000 - fn: 4495237.0000 - precision: 0.7186 - recall: 0.6202 - accuracy: 0.8594 - auc: 0.8832 - val_loss: 2.1
      472 - val_tp: 2536431.0000 - val_fp: 7204421.0000 - val_tn: 3012796.0000 - val_fn: 353552.0000 - val_precision: 0.2604 - val_recall: 0.8777 - val_accuracy: 0.4234 - val_auc: 0.7624
      Epoch 2/40
      1280/1280 [==============================] - 1779s 1s/step - loss: 1.0617 - tp: 7423177.0000 - fp: 2931677.0000 - tn: 37621800.0000 - fn: 4452150.0000 - precision: 0.7169 - recall: 0.6251 - accuracy: 0.8592 - auc: 0.8778 - val_loss: 3.9
      428 - val_tp: 2825884.0000 - val_fp: 7982935.0000 - val_tn: 2238761.0000 - val_fn: 59620.0000 - val_precision: 0.2614 - val_recall: 0.9793 - val_accuracy: 0.3864 - val_auc: 0.8231
      Epoch 3/40
      1280/1280 [==============================] - 1777s 1s/step - loss: 0.7857 - tp: 8301792.0000 - fp: 2630361.0000 - tn: 37976972.0000 - fn: 3519672.0000 - precision: 0.7594 - recall: 0.7023 - accuracy: 0.8827 - auc: 0.9097 - val_loss: 66.
      2140 - val_tp: 3034899.0000 - val_fp: 9956908.0000 - val_tn: 115041.0000 - val_fn: 352.0000 - val_precision: 0.2336 - val_recall: 0.9999 - val_accuracy: 0.2403 - val_auc: 0.5115
      Epoch 4/40
      1280/1280 [==============================] - 1760s 1s/step - loss: 0.6022 - tp: 9369523.0000 - fp: 2098170.0000 - tn: 38477736.0000 - fn: 2483339.0000 - precision: 0.8170 - recall: 0.7905 - accuracy: 0.9126 - auc: 0.9419 - val_loss: 1.4
      866 - val_tp: 2661698.0000 - val_fp: 4816937.0000 - val_tn: 5366742.0000 - val_fn: 261823.0000 - val_precision: 0.3559 - val_recall: 0.9104 - val_accuracy: 0.6125 - val_auc: 0.8933
      Epoch 5/40
      1280/1280 [==============================] - 1771s 1s/step - loss: 0.5592 - tp: 9674903.0000 - fp: 1962418.0000 - tn: 38513608.0000 - fn: 2277853.0000 - precision: 0.8314 - recall: 0.8094 - accuracy: 0.9191 - auc: 0.9488 - val_loss: 1.0
      996 - val_tp: 565756.0000 - val_fp: 6305.0000 - val_tn: 10145255.0000 - val_fn: 2389884.0000 - val_precision: 0.9890 - val_recall: 0.1914 - val_accuracy: 0.8172 - val_auc: 0.9230
      Epoch 6/40
      1280/1280 [==============================] - 1774s 1s/step - loss: 0.5210 - tp: 9808780.0000 - fp: 1924251.0000 - tn: 38545780.0000 - fn: 2149975.0000 - precision: 0.8360 - recall: 0.8202 - accuracy: 0.9223 - auc: 0.9528 - val_loss: 1.9
      950 - val_tp: 2773239.0000 - val_fp: 6335919.0000 - val_tn: 3933010.0000 - val_fn: 65032.0000 - val_precision: 0.3044 - val_recall: 0.9771 - val_accuracy: 0.5116 - val_auc: 0.9026
      Epoch 7/40
      1280/1280 [==============================] - 1767s 1s/step - loss: 0.4799 - tp: 9927548.0000 - fp: 1743956.0000 - tn: 38779680.0000 - fn: 1977563.0000 - precision: 0.8506 - recall: 0.8339 - accuracy: 0.9290 - auc: 0.9587 - val_loss: 0.4
      051 - val_tp: 2537115.0000 - val_fp: 260830.0000 - val_tn: 9808854.0000 - val_fn: 500401.0000 - val_precision: 0.9068 - val_recall: 0.8353 - val_accuracy: 0.9419 - val_auc: 0.9654
      Epoch 8/40
      1280/1280 [==============================] - 1771s 1s/step - loss: 0.4655 - tp: 9972310.0000 - fp: 1610651.0000 - tn: 38928064.0000 - fn: 1917779.0000 - precision: 0.8609 - recall: 0.8387 - accuracy: 0.9327 - auc: 0.9611 - val_loss: 1.6
      014 - val_tp: 1146828.0000 - val_fp: 2196.0000 - val_tn: 10286639.0000 - val_fn: 1671537.0000 - val_precision: 0.9981 - val_recall: 0.4069 - val_accuracy: 0.8723 - val_auc: 0.7663
      Epoch 9/40
      1280/1280 [==============================] - 1770s 1s/step - loss: 0.4410 - tp: 9975626.0000 - fp: 1547724.0000 - tn: 39046088.0000 - fn: 1859375.0000 - precision: 0.8657 - recall: 0.8429 - accuracy: 0.9350 - auc: 0.9628 - val_loss: 0.6
      413 - val_tp: 2584588.0000 - val_fp: 554056.0000 - val_tn: 9603651.0000 - val_fn: 364905.0000 - val_precision: 0.8235 - val_recall: 0.8763 - val_accuracy: 0.9299 - val_auc: 0.9693
      Epoch 10/40
      1280/1280 [==============================] - 1761s 1s/step - loss: 0.4217 - tp: 10018262.0000 - fp: 1432905.0000 - tn: 39172740.0000 - fn: 1804910.0000 - precision: 0.8749 - recall: 0.8473 - accuracy: 0.9382 - auc: 0.9649 - val_loss: 0.
      6441 - val_tp: 1928738.0000 - val_fp: 27586.0000 - val_tn: 10052344.0000 - val_fn: 1098532.0000 - val_precision: 0.9859 - val_recall: 0.6371 - val_accuracy: 0.9141 - val_auc: 0.9337
      Epoch 11/40
      1280/1280 [==============================] - 1767s 1s/step - loss: 0.4095 - tp: 10121675.0000 - fp: 1466373.0000 - tn: 39131704.0000 - fn: 1709053.0000 - precision: 0.8735 - recall: 0.8555 - accuracy: 0.9394 - auc: 0.9669 - val_loss: 1.
      0952 - val_tp: 2779103.0000 - val_fp: 2929574.0000 - val_tn: 7332225.0000 - val_fn: 66298.0000 - val_precision: 0.4868 - val_recall: 0.9767 - val_accuracy: 0.7714 - val_auc: 0.9444
      Epoch 12/40
      1280/1280 [==============================] - 1766s 1s/step - loss: 0.3508 - tp: 10558538.0000 - fp: 1308014.0000 - tn: 39148768.0000 - fn: 1413463.0000 - precision: 0.8898 - recall: 0.8819 - accuracy: 0.9481 - auc: 0.9727 - val_loss: 0.
      4481 - val_tp: 2197978.0000 - val_fp: 77726.0000 - val_tn: 10018559.0000 - val_fn: 812937.0000 - val_precision: 0.9658 - val_recall: 0.7300 - val_accuracy: 0.9320 - val_auc: 0.9684
      Epoch 13/40
      1280/1280 [==============================] - 1768s 1s/step - loss: 0.3459 - tp: 10634920.0000 - fp: 1277214.0000 - tn: 39126304.0000 - fn: 1390329.0000 - precision: 0.8928 - recall: 0.8844 - accuracy: 0.9491 - auc: 0.9732 - val_loss: 0.
      4022 - val_tp: 2391272.0000 - val_fp: 184993.0000 - val_tn: 9955529.0000 - val_fn: 575406.0000 - val_precision: 0.9282 - val_recall: 0.8060 - val_accuracy: 0.9420 - val_auc: 0.9744
      Epoch 14/40
      1280/1280 [==============================] - 1771s 1s/step - loss: 0.3308 - tp: 10495827.0000 - fp: 1232895.0000 - tn: 39364996.0000 - fn: 1335085.0000 - precision: 0.8949 - recall: 0.8872 - accuracy: 0.9510 - auc: 0.9745 - val_loss: 0.
      3876 - val_tp: 2364208.0000 - val_fp: 159464.0000 - val_tn: 9940852.0000 - val_fn: 642676.0000 - val_precision: 0.9368 - val_recall: 0.7863 - val_accuracy: 0.9388 - val_auc: 0.9704
      Epoch 15/40
      1280/1280 [==============================] - 1778s 1s/step - loss: 0.3349 - tp: 10513378.0000 - fp: 1247874.0000 - tn: 39301756.0000 - fn: 1365808.0000 - precision: 0.8939 - recall: 0.8850 - accuracy: 0.9501 - auc: 0.9742 - val_loss: 0.
      4307 - val_tp: 2108827.0000 - val_fp: 89619.0000 - val_tn: 10175358.0000 - val_fn: 733396.0000 - val_precision: 0.9592 - val_recall: 0.7420 - val_accuracy: 0.9372 - val_auc: 0.9676
      Epoch 16/40
      1280/1280 [==============================] - 1774s 1s/step - loss: 0.3307 - tp: 10595335.0000 - fp: 1236928.0000 - tn: 39255112.0000 - fn: 1341378.0000 - precision: 0.8955 - recall: 0.8876 - accuracy: 0.9508 - auc: 0.9744 - val_loss: 0.
      4616 - val_tp: 2311103.0000 - val_fp: 115583.0000 - val_tn: 10000757.0000 - val_fn: 679757.0000 - val_precision: 0.9524 - val_recall: 0.7727 - val_accuracy: 0.9393 - val_auc: 0.9704
      Epoch 17/40
      1280/1280 [==============================] - 1767s 1s/step - loss: 0.3289 - tp: 10535633.0000 - fp: 1223924.0000 - tn: 39330720.0000 - fn: 1338507.0000 - precision: 0.8959 - recall: 0.8873 - accuracy: 0.9511 - auc: 0.9748 - val_loss: 0.
      4047 - val_tp: 2225304.0000 - val_fp: 97248.0000 - val_tn: 10022325.0000 - val_fn: 762323.0000 - val_precision: 0.9581 - val_recall: 0.7448 - val_accuracy: 0.9344 - val_auc: 0.9659
      Epoch 18/40
      1280/1280 [==============================] - 1772s 1s/step - loss: 0.3248 - tp: 10613594.0000 - fp: 1201191.0000 - tn: 39285904.0000 - fn: 1328110.0000 - precision: 0.8983 - recall: 0.8888 - accuracy: 0.9518 - auc: 0.9753 - val_loss: 0.
      5139 - val_tp: 2072016.0000 - val_fp: 36763.0000 - val_tn: 10080347.0000 - val_fn: 918074.0000 - val_precision: 0.9826 - val_recall: 0.6930 - val_accuracy: 0.9272 - val_auc: 0.9530
      Epoch 19/40
      1280/1280 [==============================] - 1774s 1s/step - loss: 0.3211 - tp: 10667086.0000 - fp: 1209967.0000 - tn: 39238632.0000 - fn: 1313139.0000 - precision: 0.8981 - recall: 0.8904 - accuracy: 0.9519 - auc: 0.9753 - val_loss: 0.
      3749 - val_tp: 2493058.0000 - val_fp: 176033.0000 - val_tn: 9926603.0000 - val_fn: 511506.0000 - val_precision: 0.9340 - val_recall: 0.8298 - val_accuracy: 0.9475 - val_auc: 0.9723
      Epoch 20/40
      1280/1280 [==============================] - 1771s 1s/step - loss: 0.3176 - tp: 10604079.0000 - fp: 1175083.0000 - tn: 39349048.0000 - fn: 1300586.0000 - precision: 0.9002 - recall: 0.8907 - accuracy: 0.9528 - auc: 0.9758 - val_loss: 0.
      4352 - val_tp: 2225431.0000 - val_fp: 169949.0000 - val_tn: 9987117.0000 - val_fn: 724703.0000 - val_precision: 0.9291 - val_recall: 0.7543 - val_accuracy: 0.9317 - val_auc: 0.9660
      Epoch 21/40
      1280/1280 [==============================] - 1777s 1s/step - loss: 0.3183 - tp: 10753725.0000 - fp: 1207924.0000 - tn: 39171120.0000 - fn: 1296058.0000 - precision: 0.8990 - recall: 0.8924 - accuracy: 0.9522 - auc: 0.9760 - val_loss: 0.
      5143 - val_tp: 1923402.0000 - val_fp: 8402.0000 - val_tn: 10080301.0000 - val_fn: 1095095.0000 - val_precision: 0.9957 - val_recall: 0.6372 - val_accuracy: 0.9158 - val_auc: 0.9559
      Epoch 22/40
      1280/1280 [==============================] - 1772s 1s/step - loss: 0.3155 - tp: 10593298.0000 - fp: 1171798.0000 - tn: 39369164.0000 - fn: 1294568.0000 - precision: 0.9004 - recall: 0.8911 - accuracy: 0.9530 - auc: 0.9766 - val_loss: 0.
      3698 - val_tp: 2362795.0000 - val_fp: 98123.0000 - val_tn: 10020849.0000 - val_fn: 625433.0000 - val_precision: 0.9601 - val_recall: 0.7907 - val_accuracy: 0.9448 - val_auc: 0.9722
      Epoch 23/40
      1280/1280 [==============================] - 1770s 1s/step - loss: 0.3081 - tp: 10733583.0000 - fp: 1175054.0000 - tn: 39255684.0000 - fn: 1264464.0000 - precision: 0.9013 - recall: 0.8946 - accuracy: 0.9535 - auc: 0.9772 - val_loss: 0.
      4154 - val_tp: 2216921.0000 - val_fp: 66152.0000 - val_tn: 10061258.0000 - val_fn: 762869.0000 - val_precision: 0.9710 - val_recall: 0.7440 - val_accuracy: 0.9368 - val_auc: 0.9674
      Epoch 24/40
      1280/1280 [==============================] - 1773s 1s/step - loss: 0.3108 - tp: 10737070.0000 - fp: 1185865.0000 - tn: 39247804.0000 - fn: 1258035.0000 - precision: 0.9005 - recall: 0.8951 - accuracy: 0.9534 - auc: 0.9769 - val_loss: 0.
      4095 - val_tp: 2189914.0000 - val_fp: 65716.0000 - val_tn: 10122627.0000 - val_fn: 728943.0000 - val_precision: 0.9709 - val_recall: 0.7503 - val_accuracy: 0.9394 - val_auc: 0.9691
      Epoch 25/40
      1280/1280 [==============================] - 1778s 1s/step - loss: 0.3092 - tp: 10574009.0000 - fp: 1168082.0000 - tn: 39411864.0000 - fn: 1274842.0000 - precision: 0.9005 - recall: 0.8924 - accuracy: 0.9534 - auc: 0.9769 - val_loss: 0.
      3740 - val_tp: 2271238.0000 - val_fp: 99057.0000 - val_tn: 10104250.0000 - val_fn: 632655.0000 - val_precision: 0.9582 - val_recall: 0.7821 - val_accuracy: 0.9442 - val_auc: 0.9706
      Epoch 26/40
      1280/1280 [==============================] - 1772s 1s/step - loss: 0.3127 - tp: 10661534.0000 - fp: 1178414.0000 - tn: 39303136.0000 - fn: 1285691.0000 - precision: 0.9005 - recall: 0.8924 - accuracy: 0.9530 - auc: 0.9766 - val_loss: 0.
      4100 - val_tp: 2160141.0000 - val_fp: 93000.0000 - val_tn: 10111722.0000 - val_fn: 742337.0000 - val_precision: 0.9587 - val_recall: 0.7442 - val_accuracy: 0.9363 - val_auc: 0.9656
      Epoch 27/40
      1280/1280 [==============================] - 1772s 1s/step - loss: 0.3054 - tp: 10663139.0000 - fp: 1174175.0000 - tn: 39348628.0000 - fn: 1242863.0000 - precision: 0.9008 - recall: 0.8956 - accuracy: 0.9539 - auc: 0.9770 - val_loss: 0.
      3826 - val_tp: 2295025.0000 - val_fp: 98538.0000 - val_tn: 10045922.0000 - val_fn: 667715.0000 - val_precision: 0.9588 - val_recall: 0.7746 - val_accuracy: 0.9415 - val_auc: 0.9695
      Epoch 28/40
      1280/1280 [==============================] - 1766s 1s/step - loss: 0.3101 - tp: 10638913.0000 - fp: 1161985.0000 - tn: 39375784.0000 - fn: 1252135.0000 - precision: 0.9015 - recall: 0.8947 - accuracy: 0.9540 - auc: 0.9766 - val_loss: 0.
      3907 - val_tp: 2166669.0000 - val_fp: 37875.0000 - val_tn: 10143155.0000 - val_fn: 759501.0000 - val_precision: 0.9828 - val_recall: 0.7404 - val_accuracy: 0.9392 - val_auc: 0.9686
      Epoch 29/40
      1280/1280 [==============================] - 1773s 1s/step - loss: 0.3063 - tp: 10554201.0000 - fp: 1162046.0000 - tn: 39456136.0000 - fn: 1256420.0000 - precision: 0.9008 - recall: 0.8936 - accuracy: 0.9539 - auc: 0.9767 - val_loss: 0.
      3597 - val_tp: 2286152.0000 - val_fp: 91290.0000 - val_tn: 10085049.0000 - val_fn: 644709.0000 - val_precision: 0.9616 - val_recall: 0.7800 - val_accuracy: 0.9438 - val_auc: 0.9718
      Epoch 30/40
      1280/1280 [==============================] - 1777s 1s/step - loss: 0.3054 - tp: 10552880.0000 - fp: 1163086.0000 - tn: 39473676.0000 - fn: 1239134.0000 - precision: 0.9007 - recall: 0.8949 - accuracy: 0.9542 - auc: 0.9771 - val_loss: 0.
      4182 - val_tp: 2195277.0000 - val_fp: 32841.0000 - val_tn: 10111337.0000 - val_fn: 767745.0000 - val_precision: 0.9853 - val_recall: 0.7409 - val_accuracy: 0.9389 - val_auc: 0.9704
      Epoch 31/40
      1280/1280 [==============================] - 1779s 1s/step - loss: 0.3083 - tp: 10553649.0000 - fp: 1149510.0000 - tn: 39466480.0000 - fn: 1259216.0000 - precision: 0.9018 - recall: 0.8934 - accuracy: 0.9541 - auc: 0.9765 - val_loss: 0.
      4366 - val_tp: 2167915.0000 - val_fp: 58039.0000 - val_tn: 10066034.0000 - val_fn: 815212.0000 - val_precision: 0.9739 - val_recall: 0.7267 - val_accuracy: 0.9334 - val_auc: 0.9673
      Epoch 32/40
      1280/1280 [==============================] - 1768s 1s/step - loss: 0.3090 - tp: 10850631.0000 - fp: 1193472.0000 - tn: 39117152.0000 - fn: 1267532.0000 - precision: 0.9009 - recall: 0.8954 - accuracy: 0.9531 - auc: 0.9774 - val_loss: 0.
      3760 - val_tp: 2399785.0000 - val_fp: 89881.0000 - val_tn: 9935425.0000 - val_fn: 682109.0000 - val_precision: 0.9639 - val_recall: 0.7787 - val_accuracy: 0.9411 - val_auc: 0.9706
      Epoch 33/40
      1280/1280 [==============================] - 1770s 1s/step - loss: 0.3075 - tp: 10591815.0000 - fp: 1173635.0000 - tn: 39401344.0000 - fn: 1261969.0000 - precision: 0.9002 - recall: 0.8935 - accuracy: 0.9535 - auc: 0.9770 - val_loss: 0.
      3749 - val_tp: 2266851.0000 - val_fp: 113739.0000 - val_tn: 10069260.0000 - val_fn: 657350.0000 - val_precision: 0.9522 - val_recall: 0.7752 - val_accuracy: 0.9412 - val_auc: 0.9685
      Epoch 34/40
      1280/1280 [==============================] - 1774s 1s/step - loss: 0.3046 - tp: 10617309.0000 - fp: 1139098.0000 - tn: 39400540.0000 - fn: 1271864.0000 - precision: 0.9031 - recall: 0.8930 - accuracy: 0.9540 - auc: 0.9772 - val_loss: 0.
      4175 - val_tp: 2241531.0000 - val_fp: 87208.0000 - val_tn: 10047153.0000 - val_fn: 731308.0000 - val_precision: 0.9626 - val_recall: 0.7540 - val_accuracy: 0.9376 - val_auc: 0.9662
      Epoch 35/40
      1280/1280 [==============================] - 1773s 1s/step - loss: 0.3112 - tp: 10604940.0000 - fp: 1177338.0000 - tn: 39382680.0000 - fn: 1263836.0000 - precision: 0.9001 - recall: 0.8935 - accuracy: 0.9534 - auc: 0.9763 - val_loss: 0.
      3769 - val_tp: 2350085.0000 - val_fp: 99126.0000 - val_tn: 10001938.0000 - val_fn: 656051.0000 - val_precision: 0.9595 - val_recall: 0.7818 - val_accuracy: 0.9424 - val_auc: 0.9697
      Epoch 36/40
      1280/1280 [==============================] - 1782s 1s/step - loss: 0.3079 - tp: 10576699.0000 - fp: 1181888.0000 - tn: 39421312.0000 - fn: 1248879.0000 - precision: 0.8995 - recall: 0.8944 - accuracy: 0.9536 - auc: 0.9767 - val_loss: 0.
      3834 - val_tp: 2322480.0000 - val_fp: 71956.0000 - val_tn: 10012406.0000 - val_fn: 700358.0000 - val_precision: 0.9699 - val_recall: 0.7683 - val_accuracy: 0.9411 - val_auc: 0.9705
      Epoch 37/40
      1280/1280 [==============================] - 1775s 1s/step - loss: 0.3129 - tp: 10722707.0000 - fp: 1163322.0000 - tn: 39255528.0000 - fn: 1287232.0000 - precision: 0.9021 - recall: 0.8928 - accuracy: 0.9533 - auc: 0.9765 - val_loss: 0.
      4019 - val_tp: 2314261.0000 - val_fp: 62408.0000 - val_tn: 9985730.0000 - val_fn: 744801.0000 - val_precision: 0.9737 - val_recall: 0.7565 - val_accuracy: 0.9384 - val_auc: 0.9702
      Epoch 38/40
      1280/1280 [==============================] - 1783s 1s/step - loss: 0.3083 - tp: 10594205.0000 - fp: 1165411.0000 - tn: 39412032.0000 - fn: 1257165.0000 - precision: 0.9009 - recall: 0.8939 - accuracy: 0.9538 - auc: 0.9767 - val_loss: 0.
      3835 - val_tp: 2223637.0000 - val_fp: 52165.0000 - val_tn: 10117258.0000 - val_fn: 714140.0000 - val_precision: 0.9771 - val_recall: 0.7569 - val_accuracy: 0.9415 - val_auc: 0.9715
      Epoch 39/40
      1280/1280 [==============================] - 1776s 1s/step - loss: 0.3073 - tp: 10690271.0000 - fp: 1156059.0000 - tn: 39323200.0000 - fn: 1259274.0000 - precision: 0.9024 - recall: 0.8946 - accuracy: 0.9539 - auc: 0.9769 - val_loss: 0.
      3965 - val_tp: 2204023.0000 - val_fp: 67630.0000 - val_tn: 10139880.0000 - val_fn: 695667.0000 - val_precision: 0.9702 - val_recall: 0.7601 - val_accuracy: 0.9418 - val_auc: 0.9679
      Epoch 40/40
      1280/1280 [==============================] - 1771s 1s/step - loss: 0.3049 - tp: 10682842.0000 - fp: 1183309.0000 - tn: 39323412.0000 - fn: 1239227.0000 - precision: 0.9003 - recall: 0.8961 - accuracy: 0.9538 - auc: 0.9773 - val_loss: 0.
      3758 - val_tp: 2309020.0000 - val_fp: 116124.0000 - val_tn: 10004803.0000 - val_fn: 677253.0000 - val_precision: 0.9521 - val_recall: 0.7732 - val_accuracy: 0.9395 - val_auc: 0.9702
      400/400 [==============================] - 118s 296ms/step - loss: 0.4356 - tp: 2969562.0000 - fp: 289346.0000 - tn: 12303178.0000 - fn: 821914.0000 - precision: 0.9112 - recall: 0.7832 - accuracy: 0.9322 - auc: 0.9648
      2020/07/04 09:37:42 INFO mlflow.projects: === Run (ID 'd9b44dc2e3d44ea1a71129808b642af6') succeeded ===

2.2 exp-201231-clustersim

  • this experiment is to document the simulation of fluorescence timetraces with “bright cluster” artifacts

2.2.1 connect to jupyter notebook

  1. Request compute node via tmux
    cd /
    srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
      (tf-nightly) [ye53nis@node146 /]$ jupyter lab --no-browser --port=$PORT
      [I 00:02:39.372 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/jupyterlab
      [I 00:02:39.372 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf-nightly/share/jupyter/lab
      [I 00:02:39.375 LabApp] Serving notebooks from local directory: /
      [I 00:02:39.375 LabApp] Jupyter Notebook 6.1.4 is running at:
      [I 00:02:39.375 LabApp] http://localhost:9999/?token=93791464f12bacd92a8343c1a3be84117c0674d5703fd278
      [I 00:02:39.375 LabApp]  or http://127.0.0.1:9999/?token=93791464f12bacd92a8343c1a3be84117c0674d5703fd278
      [I 00:02:39.375 LabApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
      [C 00:02:39.380 LabApp]

          To access the notebook, open this file in a browser:
              file:///home/ye53nis/.local/share/jupyter/runtime/nbserver-54410-open.html
          Or copy and paste one of these URLs:
              http://localhost:9999/?token=93791464f12bacd92a8343c1a3be84117c0674d5703fd278
           or http://127.0.0.1:9999/?token=93791464f12bacd92a8343c1a3be84117c0674d5703fd278
  1. Create SSH tunnel
sh-5.0$ sh-5.0$ ye53nis@ara-login01.rz.uni-jena.de’s password:          
ye53nis@node146’s password:              
Last login: Mon Jan 4 12:09:39 2021 from login01.ara
  1. connect to Python 3 kernel using jupyter-server-list-kernels
           python3           f6f8ea4a-c473-459c-93b6-4984b0987ff8   a few seconds ago    starting   0
    

2.2.2 record metadata

      %cd /beegfs/ye53nis/drmed-git/
/beegfs/ye53nis/drmed-git
      !git log -1
      !git status
      commit 90315560e472cfec38b0f927e905da1635d25240
      Author: Apoplex <oligolex@vivaldi.net>
      Date:   Thu Dec 31 01:32:25 2020 +0100

          change metadata gathering and add docs
      # On branch exp-201231-clustersim
      # Changes not staged for commit:
      #   (use "git add <file>..." to update what will be committed)
      #   (use "git checkout -- <file>..." to discard changes in working directory)
      #   (commit or discard the untracked or modified content in submodules)
      #
      #	modified:   src/nanosimpy (untracked content)
      #
      # Untracked files:
      #   (use "git add <file>..." to include in what will be committed)
      #
      #	data/
      #	experiment_params.csv
      #	mlruns/
      #	tramp.YDPCnB
      no changes added to commit (use "git add" and/or "git commit -a")

#+CALL: jp-metadata(_long='True)

      No of CPUs in system: 72
      No of CPUs the current process can use: 24
      load average: (16.0, 16.04, 16.01)
      os.uname():  posix.uname_result(sysname='Linux', nodename='node146', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64')
      PID of process: 173820
      RAM total: 199G, RAM used: 70G, RAM free: 99G
      the current directory: /beegfs/ye53nis/drmed-git
      My disk usage:
      Filesystem           Size  Used Avail Use% Mounted on
      /dev/sda1             50G  3.2G   47G   7% /
      devtmpfs              94G     0   94G   0% /dev
      tmpfs                 94G  297M   94G   1% /dev/shm
      tmpfs                 94G  195M   94G   1% /run
      tmpfs                 94G     0   94G   0% /sys/fs/cgroup
      nfs01-ib:/cluster    2.0T  473G  1.6T  24% /cluster
      nfs03-ib:/pool/work  100T   70T   31T  70% /nfsdata
      nfs02-ib:/data01      88T   71T   17T  81% /data01
      nfs01-ib:/home        80T   71T  9.8T  88% /home
      /dev/sda3            6.0G  435M  5.6G   8% /var
      /dev/sda5            2.0G   34M  2.0G   2% /tmp
      /dev/sda6            169G   18G  152G  11% /local
      beegfs_nodev         524T  437T   88T  84% /beegfs
      tmpfs                 19G     0   19G   0% /run/user/67339
      # packages in environment at /home/ye53nis/.conda/envs/tf-nightly:
      #
      # Name                    Version                   Build  Channel
      _libgcc_mutex             0.1                        main
      absl-py                   0.11.0                   pypi_0    pypi
      alembic                   1.4.1                      py_0    conda-forge
      appdirs                   1.4.4              pyh9f0ad1d_0    conda-forge
      argon2-cffi               20.1.0           py38h7b6447c_1
      asn1crypto                1.4.0              pyh9f0ad1d_0    conda-forge
      asteval                   0.9.16             pyh5ca1d4c_0    conda-forge
      astunparse                1.6.3                    pypi_0    pypi
      async_generator           1.10                       py_0
      attrs                     20.2.0                     py_0
      azure-core                1.8.2              pyh9f0ad1d_0    conda-forge
      azure-storage-blob        12.5.0             pyh9f0ad1d_0    conda-forge
      backcall                  0.2.0                      py_0
      blas                      1.0                         mkl
      bleach                    3.2.1                      py_0
      blinker                   1.4                        py_1    conda-forge
      brotlipy                  0.7.0           py38h7b6447c_1000
      ca-certificates           2020.12.5            ha878542_0    conda-forge
      cachetools                4.1.1                    pypi_0    pypi
      certifi                   2020.12.5        py38h578d9bd_0    conda-forge
      cffi                      1.14.3           py38he30daa8_0
      chardet                   3.0.4                 py38_1003
      click                     7.1.2              pyh9f0ad1d_0    conda-forge
      cloudpickle               1.6.0                      py_0    conda-forge
      configparser              5.0.1                      py_0    conda-forge
      cryptography              3.1.1            py38h1ba5d50_0
      cycler                    0.10.0                   py38_0
      databricks-cli            0.9.1                      py_0    conda-forge
      dbus                      1.13.18              hb2f20db_0
      decorator                 4.4.2                      py_0
      defusedxml                0.6.0                      py_0
      docker-py                 4.3.1            py38h32f6830_1    conda-forge
      docker-pycreds            0.4.0                      py_0    conda-forge
      entrypoints               0.3                      py38_0
      expat                     2.2.10               he6710b0_2
      fcsfiles                  2020.9.18                pypi_0    pypi
      flask                     1.1.2              pyh9f0ad1d_0    conda-forge
      flatbuffers               1.12                     pypi_0    pypi
      fontconfig                2.13.0               h9420a91_0
      freetype                  2.10.4               h5ab3b9f_0
      future                    0.18.2           py38h578d9bd_2    conda-forge
      gast                      0.3.3                    pypi_0    pypi
      gitdb                     4.0.5                      py_0    conda-forge
      gitpython                 3.1.11                     py_0    conda-forge
      glib                      2.66.1               h92f7085_0
      google-auth               1.23.0                   pypi_0    pypi
      google-auth-oauthlib      0.4.2                    pypi_0    pypi
      google-pasta              0.2.0                    pypi_0    pypi
      gorilla                   0.3.0                      py_0    conda-forge
      grpcio                    1.32.0                   pypi_0    pypi
      gst-plugins-base          1.14.0               hbbd80ab_1
      gstreamer                 1.14.0               hb31296c_0
      gunicorn                  20.0.4           py38h32f6830_2    conda-forge
      h5py                      2.10.0                   pypi_0    pypi
      icu                       58.2                 he6710b0_3
      idna                      2.10                       py_0
      importlib-metadata        2.0.0                      py_1
      importlib_metadata        2.0.0                         1
      intel-openmp              2020.2                      254
      ipykernel                 5.3.4            py38h5ca1d4c_0
      ipython                   7.18.1           py38h5ca1d4c_0
      ipython_genutils          0.2.0                    py38_0
      isodate                   0.6.0                      py_1    conda-forge
      itsdangerous              1.1.0                      py_0    conda-forge
      jedi                      0.17.2                   py38_0
      jinja2                    2.11.2                     py_0
      jpeg                      9b                   h024ee3a_2
      json5                     0.9.5                      py_0
      jsonschema                3.2.0                      py_2
      jupyter_client            6.1.7                      py_0
      jupyter_core              4.6.3                    py38_0
      jupyterlab                2.2.6                      py_0
      jupyterlab_pygments       0.1.2                      py_0
      jupyterlab_server         1.2.0                      py_0
      keras-preprocessing       1.1.2                    pypi_0    pypi
      kiwisolver                1.3.0            py38h2531618_0
      lcms2                     2.11                 h396b838_0
      ld_impl_linux-64          2.33.1               h53a641e_7
      libedit                   3.1.20191231         h14c3975_1
      libffi                    3.3                  he6710b0_2
      libgcc-ng                 9.1.0                hdf63c60_0
      libgfortran-ng            7.3.0                hdf63c60_0
      libpng                    1.6.37               hbc83047_0
      libprotobuf               3.13.0.1             h8b12597_0    conda-forge
      libsodium                 1.0.18               h7b6447c_0
      libstdcxx-ng              9.1.0                hdf63c60_0
      libtiff                   4.1.0                h2733197_1
      libuuid                   1.0.3                h1bed415_2
      libxcb                    1.14                 h7b6447c_0
      libxml2                   2.9.10               hb55368b_3
      lmfit                     1.0.1                      py_1    conda-forge
      lz4-c                     1.9.2                heb0550a_3
      mako                      1.1.3              pyh9f0ad1d_0    conda-forge
      markdown                  3.3.3                    pypi_0    pypi
      markupsafe                1.1.1            py38h7b6447c_0
      matplotlib                3.3.2                         0
      matplotlib-base           3.3.2            py38h817c723_0
      mistune                   0.8.4           py38h7b6447c_1000
      mkl                       2020.2                      256
      mkl-service               2.3.0            py38he904b0f_0
      mkl_fft                   1.2.0            py38h23d657b_0
      mkl_random                1.1.1            py38h0573a6f_0
      mlflow                    1.11.0           py38h32f6830_1    conda-forge
      msrest                    0.6.19             pyh9f0ad1d_0    conda-forge
      multipletau               0.3.3                    pypi_0    pypi
      nbclient                  0.5.1                      py_0
      nbconvert                 6.0.7                    py38_0
      nbformat                  5.0.8                      py_0
      ncurses                   6.2                  he6710b0_1
      nest-asyncio              1.4.1                      py_0
      notebook                  6.1.4                    py38_0
      numpy                     1.19.2           py38h54aff64_0
      numpy-base                1.19.2           py38hfa32c7d_0
      oauthlib                  3.0.1                      py_0    conda-forge
      olefile                   0.46                       py_0
      openssl                   1.1.1h               h516909a_0    conda-forge
      opt-einsum                3.3.0                    pypi_0    pypi
      packaging                 20.4                       py_0
      pandas                    1.1.3            py38he6710b0_0
      pandoc                    2.11                 hb0f4dca_0
      pandocfilters             1.4.2                    py38_1
      parso                     0.7.0                      py_0
      pcre                      8.44                 he6710b0_0
      pexpect                   4.8.0                    py38_0
      pickleshare               0.7.5                 py38_1000
      pillow                    8.0.1            py38he98fc37_0
      pip                       20.2.4                   py38_0
      prometheus_client         0.8.0                      py_0
      prometheus_flask_exporter 0.18.1             pyh9f0ad1d_0    conda-forge
      prompt-toolkit            3.0.8                      py_0
      protobuf                  3.13.0.1         py38h950e882_1    conda-forge
      ptyprocess                0.6.0                    py38_0
      pyasn1                    0.4.8                    pypi_0    pypi
      pyasn1-modules            0.2.8                    pypi_0    pypi
      pycparser                 2.20                       py_2
      pygments                  2.7.2              pyhd3eb1b0_0
      pyjwt                     1.7.1                      py_0    conda-forge
      pyopenssl                 19.1.0                     py_1
      pyparsing                 2.4.7                      py_0
      pyqt                      5.9.2            py38h05f1152_4
      pyrsistent                0.17.3           py38h7b6447c_0
      pysocks                   1.7.1                    py38_0
      python                    3.8.5                h7579374_1
      python-dateutil           2.8.1                      py_0
      python-editor             1.0.4                      py_0    conda-forge
      python_abi                3.8                      1_cp38    conda-forge
      pytz                      2020.1                     py_0
      pyyaml                    5.3.1            py38h8df0ef7_1    conda-forge
      pyzmq                     19.0.2           py38he6710b0_1
      qt                        5.9.7                h5867ecd_1
      querystring_parser        1.2.4                      py_0    conda-forge
      readline                  8.0                  h7b6447c_0
      requests                  2.24.0                     py_0
      requests-oauthlib         1.3.0              pyh9f0ad1d_0    conda-forge
      rsa                       4.6                      pypi_0    pypi
      scipy                     1.5.2            py38h0b6359f_0
      seaborn                   0.11.0                     py_0
      send2trash                1.5.0                    py38_0
      setuptools                50.3.0           py38hb0f4dca_1
      sip                       4.19.13          py38he6710b0_0
      six                       1.15.0                     py_0
      smmap                     3.0.4              pyh9f0ad1d_0    conda-forge
      sqlalchemy                1.3.13           py38h516909a_0    conda-forge
      sqlite                    3.33.0               h62c20be_0
      sqlparse                  0.4.1              pyh9f0ad1d_0    conda-forge
      tabulate                  0.8.7              pyh9f0ad1d_0    conda-forge
      tb-nightly                2.4.0a20201102           pypi_0    pypi
      tensorboard-plugin-wit    1.7.0                    pypi_0    pypi
      termcolor                 1.1.0                    pypi_0    pypi
      terminado                 0.9.1                    py38_0
      testpath                  0.4.4                      py_0
      tf-estimator-nightly      2.4.0.dev2020102301          pypi_0    pypi
      tf-nightly                2.5.0.dev20201029          pypi_0    pypi
      tifffile                  2020.10.1        py38hdd07704_2
      tk                        8.6.10               hbc83047_0
      tornado                   6.0.4            py38h7b6447c_1
      traitlets                 5.0.5                      py_0
      typing-extensions         3.7.4.3                  pypi_0    pypi
      uncertainties             3.1.5              pyhd8ed1ab_0    conda-forge
      urllib3                   1.25.11                    py_0
      wcwidth                   0.2.5                      py_0
      webencodings              0.5.1                    py38_1
      websocket-client          0.57.0           py38h32f6830_3    conda-forge
      werkzeug                  1.0.1              pyh9f0ad1d_0    conda-forge
      wheel                     0.35.1                     py_0
      wrapt                     1.12.1                   pypi_0    pypi
      xz                        5.2.5                h7b6447c_0
      yaml                      0.2.5                h516909a_0    conda-forge
      zeromq                    4.3.3                he6710b0_3
      zipp                      3.4.0              pyhd3eb1b0_0
      zlib                      1.2.11               h7b6447c_3
      zstd                      1.4.5                h9ceee32_0

      Note: you may need to restart the kernel to use updated packages.
      {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint',
       'SLURM_NODELIST': 'node146',
       'SLURM_JOB_NAME': 'bash',
       'XDG_SESSION_ID': '9639',
       'SLURMD_NODENAME': 'node146',
       'SLURM_TOPOLOGY_ADDR': 'node146',
       'SLURM_NTASKS_PER_NODE': '24',
       'HOSTNAME': 'login01',
       'SLURM_PRIO_PROCESS': '0',
       'SLURM_SRUN_COMM_PORT': '43120',
       'SHELL': '/bin/bash',
       'TERM': 'xterm-color',
       'SLURM_JOB_QOS': 'qstand',
       'SLURM_PTY_WIN_ROW': '24',
       'HISTSIZE': '1000',
       'TMPDIR': '/tmp',
       'SLURM_TOPOLOGY_ADDR_PATTERN': 'node',
       'SSH_CLIENT': '10.231.210.198 43508 22',
       'CONDA_SHLVL': '2',
       'CONDA_PROMPT_MODIFIER': '(tf-nightly) ',
       'WINDOWID': '0',
       'QTDIR': '/usr/lib64/qt-3.3',
       'QTINC': '/usr/lib64/qt-3.3/include',
       'SSH_TTY': '/dev/pts/5',
       'QT_GRAPHICSSYSTEM_CHECKED': '1',
       'SLURM_NNODES': '1',
       'USER': 'ye53nis',
       'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
       'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:',
       'CONDA_EXE': '/cluster/miniconda3/bin/conda',
       'SLURM_STEP_NUM_NODES': '1',
       'SLURM_JOBID': '534856',
       'SRUN_DEBUG': '3',
       'SLURM_NTASKS': '24',
       'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5',
       'SLURM_STEP_ID': '0',
       'TMUX': '/tmp/tmux-67339/default,27827,6',
       '_CE_CONDA': '',
       'CONDA_PREFIX_1': '/cluster/miniconda3',
       'SLURM_STEP_LAUNCHER_PORT': '43120',
       'SLURM_TASKS_PER_NODE': '24',
       'MAIL': '/var/spool/mail/ye53nis',
       'PATH': '/home/ye53nis/.conda/envs/tf-nightly/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/home/lex/Programme/miniconda3/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin',
       'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448',
       'SLURM_JOB_ID': '534856',
       'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf-nightly',
       'SLURM_JOB_USER': 'ye53nis',
       'SLURM_STEPID': '0',
       'PWD': '/',
       'SLURM_SRUN_COMM_HOST': '192.168.192.5',
       'LANG': 'en_US.UTF-8',
       'SLURM_PTY_WIN_COL': '80',
       'SLURM_UMASK': '0022',
       'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles',
       'SLURM_JOB_UID': '67339',
       'LOADEDMODULES': '',
       'SLURM_NODEID': '0',
       'TMUX_PANE': '%6',
       'SLURM_SUBMIT_DIR': '/',
       'SLURM_TASK_PID': '53476',
       'SLURM_NPROCS': '24',
       'SLURM_CPUS_ON_NODE': '24',
       'SLURM_DISTRIBUTION': 'block',
       'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
       'SLURM_PROCID': '0',
       'HISTCONTROL': 'ignoredups',
       '_CE_M': '',
       'SLURM_JOB_NODELIST': 'node146',
       'SLURM_PTY_PORT': '46638',
       'HOME': '/home/ye53nis',
       'SHLVL': '3',
       'SLURM_LOCALID': '0',
       'SLURM_JOB_GID': '13280',
       'SLURM_JOB_CPUS_PER_NODE': '24',
       'SLURM_CLUSTER_NAME': 'hpc',
       'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23',
       'SLURM_SUBMIT_HOST': 'login01',
       'SLURM_JOB_PARTITION': 's_standard',
       'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3',
       'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python',
       'LOGNAME': 'ye53nis',
       'SLURM_STEP_NUM_TASKS': '24',
       'QTLIB': '/usr/lib64/qt-3.3/lib',
       'SLURM_JOB_ACCOUNT': 'iaob',
       'SLURM_JOB_NUM_NODES': '1',
       'MODULESHOME': '/usr/share/Modules',
       'CONDA_DEFAULT_ENV': 'tf-nightly',
       'LESSOPEN': '||/usr/bin/lesspipe.sh %s',
       'SLURM_STEP_TASKS_PER_NODE': '24',
       'PORT': '9999',
       'SLURM_STEP_NODELIST': 'node146',
       'DISPLAY': ':0',
       'XDG_RUNTIME_DIR': '',
       'XAUTHORITY': '/home/lex/.Xauthority',
       'BASH_FUNC_module()': '() {  eval `/usr/bin/modulecmd bash $*`\n}',
       '_': '/home/ye53nis/.conda/envs/tf-nightly/bin/jupyter',
       'JPY_PARENT_PID': '54410',
       'CLICOLOR': '1',
       'PAGER': 'cat',
       'GIT_PAGER': 'cat',
       'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}

2.2.3 set variables

  • any files generated using the :file header of org-mode source blocks will be saved here (Note: the destination of the simulations is different, see the variables below)
      (setq org-babel-jupyter-resource-directory "./data/exp-201231-clustsim")
./data/exp-201231-clustsim
      import sys
      sys.path.append('/beegfs/ye53nis/drmed-git/src/')
      from fluotracify.simulations import simulate_trace_with_artifact as stwa
      folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020/'
      file_name = 'traces_brightclust_Nov2020'
      total_sim_time = 16384
      d_mol_arr = [0.069, 0.08, 0.1, 0.2, 0.4, 0.6, 1.0, 3.0, 10, 50]
      col_per_example = 3
      label_for = 'both'
      number_of_sets = 10
      traces_per_set = 100
      artifact = 1
  • for each diffusion constant given in d_mol_arr, 10 .csv files will be generated (number_of_sets) which each comprise of 100 fluorescence traces (traces_per_set)
  • The output of the function will be written to stdout (the terminal inside a tmux session on the machine where the notebook is running). Thus, Emacs can be closed. After the simulations are done, the printed output can be copied from the terminal, because tmux is making it possible to attach and detach to a running terminal session.
      sys.stdout = open('/dev/stdout', 'w')

2.2.4 Do the simulation

       stwa.produce_training_data(folder=folder,
                                  file_name=file_name,
                                  col_per_example=col_per_example,
                                  number_of_sets=number_of_sets,
                                  traces_per_set=traces_per_set,
                                  total_sim_time=total_sim_time,
                                  artifact=1,
                                  d_mol_arr=d_mol_arr,
                                  label_for=label_for)
354a0d72-5d50-4e51-b971-a52c0cf8f572
  • Note: the results were printed to the terminal, but I didn’t think of the terminal history limit of tmux, which is at around 1800 lines. This means, most of the history couldn’t be saved. Here is an example of the output:
           Set 10 ------------------------
           num_of_steps 16384
           Processing tracks: [=================== ] 99% complete
           Processing FWHM 250, num_of_steps 16384
           Processing tracks: [=================   ] 85% complete
           Processing FWHM 250,
           Trace 1: Nmol: 2621 d_mol: 50 Cluster multiplier: 9000
           num_of_steps 16384
           Processing tracks: [=================== ] 99% complete
           Processing FWHM 250, num_of_steps 16384
           Processing tracks: [=================   ] 85% complete
           Processing FWHM 250,
           Trace 2: Nmol: 2621 d_mol: 50 Cluster multiplier: 5000
           num_of_steps 16384
           Processing tracks: [=================== ] 99% complete
           Processing FWHM 250, num_of_steps 16384
           Processing tracks: [=================   ] 85% complete
           Processing FWHM 250,
           Trace 3: Nmol: 2621 d_mol: 50 Cluster multiplier: 5000
           num_of_steps 16384
           Processing tracks: [=================== ] 99% complete
           Processing FWHM 250, num_of_steps 16384
           Processing tracks: [=================   ] 85% complete
           Processing FWHM 250,
           Trace 4: Nmol: 2621 d_mol: 50 Cluster multiplier: 9000
           num_of_steps 16384
           Processing tracks: [=================== ] 99% complete
           Processing FWHM 250, num_of_steps 16384
           Processing tracks: [=================   ] 85% complete
           Processing FWHM 250,
           Trace 5: Nmol: 2621 d_mol: 50 Cluster multiplier: 7000
           num_of_steps 16384
           Processing tracks: [=================== ] 99% complete
           Processing FWHM 250, num_of_steps 16384
           Processing tracks: [=================   ] 85% complete
           Processing FWHM 250,
           Trace 6: Nmol: 2621 d_mol: 50 Cluster multiplier: 8000
           num_of_steps 16384
           Processing tracks: [=================== ] 99% complete
           Processing FWHM 250, num_of_steps 16384
           Processing tracks: [=================   ] 85% complete
           Processing FWHM 250,
           Trace 7: Nmol: 2621 d_mol: 50 Cluster multiplier: 7000
           num_of_steps 16384
           Processing tracks: [=================== ] 99% complete
           Processing FWHM 250, num_of_steps 16384
           Processing tracks: [=================   ] 85% complete
           Processing FWHM 250,
           Trace 8: Nmol: 2621 d_mol: 50 Cluster multiplier: 5000
           num_of_steps 16384
           Processing tracks: [=================== ] 99% complete
           Processing FWHM 250, num_of_steps 16384
           Processing tracks: [=================   ] 85% complete
           Processing FWHM 250,
           Trace 9: Nmol: 2621 d_mol: 50 Cluster multiplier: 9000
           num_of_steps 16384
           Processing tracks: [=================== ] 99% complete
           Processing FWHM 250, num_of_steps 16384
           Processing tracks: [=================   ] 85% complete
           Processing FWHM 250,
           Trace 10: Nmol: 2621 d_mol: 50 Cluster multiplier: 9000
           num_of_steps 16384
           Processing tracks: [=================== ] 99% complete
           Processing FWHM 250, num_of_steps 16384
           Processing tracks: [=================   ] 85% complete
           Processing FWHM 250,
    

2.2.5 preparing examplary plots of the results (new kernel, new code)

  • I used a different jupyter kernel for loading (See properties drawer above), thus libraries have to be imported again and parameters have to be set again. On the plus side: the sequence of plotting here is independent of the sequence of simulation above.
            %cd /beegfs/ye53nis/drmed-git/
    
    /beegfs/ye53nis/drmed-git
    
  • I also used some additional code for plotting:
            !git log -1
    
            !git status
    
            commit 47d02edd7313d1b172934a17a0aca0a8e47a8fff
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Tue Jan 5 21:41:11 2021 +0100
    
                Add docs; rename to drate to diffrate
            # On branch exp-201231-clustersim
            # Changes not staged for commit:
            #   (use "git add <file>..." to update what will be committed)
            #   (use "git checkout -- <file>..." to discard changes in working directory)
            #   (commit or discard the untracked or modified content in submodules)
            #
            #	modified:   src/nanosimpy (untracked content)
            #
            # Untracked files:
            #   (use "git add <file>..." to include in what will be committed)
            #
            #	data/
            #	experiment_params.csv
            #	mlruns/
            #	test.pdf
            #	test.svg
            #	tramp.YDPCnB
            no changes added to commit (use "git add" and/or "git commit -a")
    
  • again the file to save plots in - notice that this is on my local machine, not the remote one, since I open this LabBook.org-file on my local machine.
            (setq org-babel-jupyter-resource-directory "./data/exp-201231-clustsim")
    
    ./data/exp-201231-clustsim
    
  • then the necessary imports and variables
            import sys
            sys.path.append('/beegfs/ye53nis/drmed-git/src/')
            from fluotracify.simulations import import_simulation_from_csv as isfc
            from fluotracify.simulations import plot_simulations as ps
    
            folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020/'
            col_per_example = 3
            d_mol_arr = [0.069, 0.08, 0.1, 0.2, 0.4, 0.6, 1.0, 3.0, 10, 50]
            artifact = 1
    
  • let’s load our data
            dataset, _, nsamples, experiment_params = isfc.import_from_csv(
                folder=folder,
                header=12,
                frac_train=1,
                col_per_example=col_per_example,
                dropindex=None,
                dropcolumns=None)
    
            train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set007.csv
            train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set007.csv
            train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set003.csv
            train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set006.csv
            train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set006.csv
            train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set004.csv
            train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set007.csv
            train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set004.csv
            train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set005.csv
            train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set006.csvtrain 10 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set004.csv
            train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set003.csv
            train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set009.csv
            train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set004.csv
            train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set008.csv
            train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set001.csv
            train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set003.csv
            train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set005.csv
            train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set004.csv
            train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set009.csv
            train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set004.csv
            train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set003.csv
            train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set004.csv
            train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set002.csv
            train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set006.csv
            train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set009.csv
            train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set007.csv
            train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set010.csv
            train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set003.csv
            train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set007.csv
            train 30 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set001.csv
            train 31 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set001.csv
            train 32 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set001.csv
            train 33 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set009.csv
            train 34 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set002.csv
            train 35 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set008.csv
            train 36 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set009.csv
            train 37 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set007.csv
            train 38 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set004.csv
            train 39 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set005.csv
            train 40 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set002.csv
            train 41 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set002.csv
            train 42 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set003.csv
            train 43 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set002.csv
            train 44 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set005.csv
            train 45 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set006.csv
            train 46 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set008.csv
            train 47 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set001.csv
            train 48 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set009.csv
            train 49 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set006.csv
            train 50 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set002.csv
            train 51 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set010.csv
            train 52 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set001.csv
            train 53 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set005.csv
            train 54 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set009.csv
            train 55 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set001.csv
            train 56 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set002.csv
            train 57 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set006.csv
            train 58 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set004.csv
            train 59 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set003.csv
            train 60 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set001.csv
            train 61 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set002.csv
            train 62 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set007.csv
            train 63 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set008.csv
            train 64 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set010.csv
            train 65 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set006.csv
            train 66 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set003.csv
            train 67 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set005.csv
            train 68 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set005.csv
            train 69 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set010.csv
            train 70 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set010.csv
            train 71 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set010.csv
            train 72 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set010.csv
            train 73 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set008.csv
            train 74 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set009.csv
            train 75 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set010.csv
            train 76 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set001.csv
            train 77 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set005.csv
            train 78 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set003.csv
            train 79 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set008.csv
            train 80 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set006.csv
            train 81 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set008.csv
            train 82 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set002.csv
            train 83 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set007.csv
            train 84 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set010.csv
            train 85 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set006.csv
            train 86 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set009.csv
            train 87 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set003.csv
            train 88 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set009.csv
            train 89 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set001.csv
            train 90 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set008.csv
            train 91 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set007.csv
            train 92 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set002.csv
            train 93 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set004.csv
            train 94 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set010.csv
            train 95 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set007.csv
            train 96 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set008.csv
            train 97 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set005.csv
            train 98 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set008.csv
            train 99 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set005.csv
    
            out = isfc.separate_data_and_labels(
                array=dataset,
                nsamples=nsamples,
                col_per_example=col_per_example)
    
    The given DataFrame was split into 3 parts with shapes: [(16384, 10000), (16384, 10000), (16384, 10000)]
    
  • added <2022-08-22 Mo>: For machine learning, we did 3 splits of data: train, validation, test. Let’s load them and characterize them
            %cd /beegfs/ye53nis/drmed-git
    
    /beegfs/ye53nis/drmed-git
    
            !git log -1
    
            !git status
    
            commit 6def0df6b174f2f51efc279d6add74e9f809e1eb
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Fri Jul 15 14:36:15 2022 +0200
    
                fix correlate_timetrace_and_save
            # On branch exp-220227-unet
            # Changes not staged for commit:
            #   (use "git add <file>..." to update what will be committed)
            #   (use "git checkout -- <file>..." to discard changes in working directory)
            #   (commit or discard the untracked or modified content in submodules)
            #
            #	modified:   src/nanosimpy (untracked content)
            #
            # Untracked files:
            #   (use "git add <file>..." to include in what will be committed)
            #
            #	data/0.069.svg
            #	data/exp-210204-unet/
            #	data/exp-220120-correlate-ptu/
            #	data/exp-220227-unet/2022-03-01_experimental/
            #	data/exp-220227-unet/2022-04-22_simulations/
            #	data/exp-220227-unet/2022-05-17_simulations/
            #	data/exp-220227-unet/2022-05-22_experimental/
            #	data/exp-220227-unet/2022-06-02_experimental-pex5/
            #	data/exp-220316-publication1/
            #	data/exp-devtest/
            #	data/exp-test/
            #	data/mlruns/
            #	data/tb/
            #	experiment_params.csv
            #	src/fluotracify/applications/correlate_cython.c
            #	test
            #	tramp.YDPCnB
            no changes added to commit (use "git add" and/or "git commit -a")
    
            import sys
    
            import numpy as np
            import pandas as pd
    
    
            from pathlib import Path
            from pprint import pprint
    
            FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/'
            sys.path.append(FLUOTRACIFY_PATH)
            from fluotracify.simulations import (
               import_simulation_from_csv as isfc,
               analyze_simulations as ans,
            )
    
    
    2022-08-22 14:53:59.575866: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2022-08-22 14:53:59.575902: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
            col_per_example = 3
            lab_thresh = 0.04
            artifact = 0
            model_type = 1
            fwhm = 250
    
            train_path = Path('/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets')
            val_path = Path('/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN')
            test_path = Path('/beegfs/ye53nis/saves/firstartifact_Nov2020_test')
    
            train, _, nsamples_train, train_params = isfc.import_from_csv(
                folder=train_path,
                header=12,
                frac_train=1,
                col_per_example=col_per_example,
                dropindex=None,
                dropcolumns=None)
    
            val, _, nsamples_val, val_params = isfc.import_from_csv(
                folder=val_path,
                header=12,
                frac_train=1,
                col_per_example=col_per_example,
                dropindex=None,
                dropcolumns=None)
    
            test, _, nsamples_test, test_params = isfc.import_from_csv(
                folder=test_path,
                header=12,
                frac_train=1,
                col_per_example=col_per_example,
                dropindex=None,
                dropcolumns=None)
    
    
            2022-08-22 15:01:07,583 - sim import tools - 1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv
            2022-08-22 15:01:10,900 - sim import tools - 2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv
            2022-08-22 15:01:14,230 - sim import tools - 3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv
            2022-08-22 15:01:24,427 - sim import tools - 4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv
            2022-08-22 15:01:28,527 - sim import tools - 5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv
            2022-08-22 15:01:32,186 - sim import tools - 6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv
            2022-08-22 15:01:36,667 - sim import tools - 7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv
            2022-08-22 15:01:40,508 - sim import tools - 8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv
            2022-08-22 15:01:44,080 - sim import tools - 9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv
            2022-08-22 15:01:49,585 - sim import tools - 10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv2022-08-22 15:01:53,212 - sim import tools - 11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv
            2022-08-22 15:01:56,689 - sim import tools - 12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv
            2022-08-22 15:02:00,568 - sim import tools - 13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv
            2022-08-22 15:02:04,222 - sim import tools - 14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv
            2022-08-22 15:02:07,872 - sim import tools - 15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv
            2022-08-22 15:02:11,754 - sim import tools - 16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv
            2022-08-22 15:02:16,110 - sim import tools - 17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv
            2022-08-22 15:02:19,635 - sim import tools - 18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv
            2022-08-22 15:02:23,317 - sim import tools - 19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv
            2022-08-22 15:02:26,787 - sim import tools - 20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv
            2022-08-22 15:02:30,350 - sim import tools - 21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv
            2022-08-22 15:02:38,204 - sim import tools - 22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv
            2022-08-22 15:02:42,002 - sim import tools - 23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv
            2022-08-22 15:02:47,861 - sim import tools - 24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv
            2022-08-22 15:02:51,915 - sim import tools - 25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv
            2022-08-22 15:02:55,479 - sim import tools - 26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv
            2022-08-22 15:02:59,060 - sim import tools - 27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv
            2022-08-22 15:03:02,729 - sim import tools - 28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv
            2022-08-22 15:03:06,402 - sim import tools - 29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv
            2022-08-22 15:03:10,838 - sim import tools - 30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv
            2022-08-22 15:03:15,520 - sim import tools - 31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv
            2022-08-22 15:03:19,243 - sim import tools - 32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv
            2022-08-22 15:03:24,959 - sim import tools - 33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv
            2022-08-22 15:03:28,685 - sim import tools - 34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv
            2022-08-22 15:03:32,498 - sim import tools - 35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv
            2022-08-22 15:03:36,044 - sim import tools - 36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv
            2022-08-22 15:03:39,848 - sim import tools - 37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv
            2022-08-22 15:03:43,605 - sim import tools - 38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv
            2022-08-22 15:03:47,474 - sim import tools - 39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv
            2022-08-22 15:03:51,072 - sim import tools - 40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv
            2022-08-22 15:03:54,988 - sim import tools - 41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv
            2022-08-22 15:04:01,497 - sim import tools - 42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv
            2022-08-22 15:04:05,120 - sim import tools - 43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv
            2022-08-22 15:04:08,664 - sim import tools - 44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv
            2022-08-22 15:04:13,252 - sim import tools - 45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv
            2022-08-22 15:04:16,976 - sim import tools - 46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv
            2022-08-22 15:04:20,744 - sim import tools - 47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv
            2022-08-22 15:04:24,635 - sim import tools - 48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv
            2022-08-22 15:04:28,258 - sim import tools - 1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv
            2022-08-22 15:04:31,883 - sim import tools - 2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv
            2022-08-22 15:04:36,746 - sim import tools - 3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv
            2022-08-22 15:04:40,324 - sim import tools - 4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv
            2022-08-22 15:04:44,167 - sim import tools - 5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv
            2022-08-22 15:04:47,733 - sim import tools - 6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv
            2022-08-22 15:04:51,261 - sim import tools - 7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv
            2022-08-22 15:04:54,837 - sim import tools - 8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv
            2022-08-22 15:04:58,638 - sim import tools - 9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv
            2022-08-22 15:05:02,079 - sim import tools - 10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv
            2022-08-22 15:05:06,190 - sim import tools - 11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv
            2022-08-22 15:05:09,643 - sim import tools - 12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv
            2022-08-22 15:05:13,347 - sim import tools - 1/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/1.0/traces_brightclust_Nov2020_D0.069_set010.csv
            2022-08-22 15:05:17,852 - sim import tools - 2/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/0.1/traces_brightclust_Nov2020_D50_set003.csv
            2022-08-22 15:05:21,482 - sim import tools - 3/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/0.1/traces_brightclust_Nov2020_D0.4_set001.csv
            2022-08-22 15:05:25,196 - sim import tools - 4/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/0.1/traces_brightclust_Nov2020_D0.2_set007.csv
            2022-08-22 15:05:29,300 - sim import tools - 5/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/1.0/traces_brightclust_Nov2020_D3.0_set002.csv
            2022-08-22 15:05:32,904 - sim import tools - 6/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/0.01/traces_brightclust_Nov2020_D3.0_set004.csv
            2022-08-22 15:05:36,427 - sim import tools - 7/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/0.01/traces_brightclust_Nov2020_D50_set002.csv
            2022-08-22 15:05:42,126 - sim import tools - 8/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/1.0/traces_brightclust_Nov2020_D0.2_set005.csv
            2022-08-22 15:05:45,767 - sim import tools - 9/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/1.0/traces_brightclust_Nov2020_D0.6_set009.csv
            2022-08-22 15:05:49,081 - sim import tools - 10/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/0.1/traces_brightclust_Nov2020_D10_set001.csv
            2022-08-22 15:05:52,579 - sim import tools - 11/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/1.0/traces_brightclust_Nov2020_D0.08_set001.csv
            2022-08-22 15:05:56,075 - sim import tools - 12/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/0.1/traces_brightclust_Nov2020_D0.6_set003.csv
            2022-08-22 15:05:59,546 - sim import tools - 13/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/1.0/traces_brightclust_Nov2020_D0.1_set001.csv
            2022-08-22 15:06:03,365 - sim import tools - 14/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/1.0/traces_brightclust_Nov2020_D0.4_set005.csv
            2022-08-22 15:06:06,954 - sim import tools - 15/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/1.0/traces_brightclust_Nov2020_D10_set005.csv
            2022-08-22 15:06:10,482 - sim import tools - 16/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/1.0/traces_brightclust_Nov2020_D1.0_set005.csv
            2022-08-22 15:06:15,475 - sim import tools - 17/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/0.1/traces_brightclust_Nov2020_D0.069_set001.csv
            2022-08-22 15:06:19,122 - sim import tools - 18/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/1.0/traces_brightclust_Nov2020_D50_set001.csv
            2022-08-22 15:06:22,559 - sim import tools - 19/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/0.01/traces_brightclust_Nov2020_D0.1_set002.csv
            2022-08-22 15:06:26,128 - sim import tools - 20/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/0.1/traces_brightclust_Nov2020_D0.08_set003.csv
            2022-08-22 15:06:29,503 - sim import tools - 21/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/0.01/traces_brightclust_Nov2020_D1.0_set006.csv
            2022-08-22 15:06:32,862 - sim import tools - 22/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/0.1/traces_brightclust_Nov2020_D1.0_set003.csv
            2022-08-22 15:06:36,597 - sim import tools - 23/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/0.01/traces_brightclust_Nov2020_D0.2_set002.csv
            2022-08-22 15:06:40,322 - sim import tools - 24/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/0.1/traces_brightclust_Nov2020_D0.1_set005.csv
            2022-08-22 15:06:43,806 - sim import tools - 25/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/0.1/traces_brightclust_Nov2020_D3.0_set007.csv
            2022-08-22 15:06:47,273 - sim import tools - 26/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/0.01/traces_brightclust_Nov2020_D0.08_set005.csv
            2022-08-22 15:06:51,150 - sim import tools - 27/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/0.01/traces_brightclust_Nov2020_D0.069_set005.csv
            2022-08-22 15:06:54,884 - sim import tools - 28/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/0.01/traces_brightclust_Nov2020_D10_set002.csv
            2022-08-22 15:06:58,405 - sim import tools - 29/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/0.01/traces_brightclust_Nov2020_D0.6_set008.csv
            2022-08-22 15:07:01,776 - sim import tools - 30/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/0.01/traces_brightclust_Nov2020_D0.4_set008.csv
    
            train_sep = isfc.separate_data_and_labels(array=train,
                                                    nsamples=nsamples_train,
                                                    col_per_example=col_per_example)
    
            val_sep = isfc.separate_data_and_labels(array=val,
                                                    nsamples=nsamples_val,
                                                    col_per_example=col_per_example)
    
            test_sep = isfc.separate_data_and_labels(array=test,
                                                    nsamples=nsamples_test,
                                                    col_per_example=col_per_example)
    
            train_dirty = train_sep['0']
            train_labels = train_sep['1']
            train_labbool = train_labels > lab_thresh
            train_clean = train_sep['2']
    
            val_dirty = val_sep['0']
            val_labels = val_sep['1']
            val_labbool = val_labels > lab_thresh
            val_clean = val_sep['2']
    
            test_dirty = test_sep['0']
            test_labels = test_sep['1']
            test_labbool = test_labels > lab_thresh
            test_clean = test_sep['2']
    
            train_dirty
    
    2022-08-22 15:09:46,295 - sim import tools - The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)]
    2022-08-22 15:09:46,389 - sim import tools - The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)]
    2022-08-22 15:09:46,630 - sim import tools - The given DataFrame was split into 3 parts with shapes: [(16384, 3000), (16384, 3000), (16384, 3000)]
    
      trace001 trace002 trace003 trace004 trace005 trace006 trace007 trace008 trace009 trace010 trace091 trace092 trace093 trace094 trace095 trace096 trace097 trace098 trace099 trace100
    0 2087.936279 1859.954834 1258.620728 2111.855713 1154.932617 1681.850952 1902.115112 1953.226929 1493.605713 1824.782837 2991.938965 3056.693848 3065.942139 3209.311768 3072.823975 2137.467773 2536.288086 2596.720459 2322.556152 3241.336670
    1 2225.077148 1538.099731 1234.391113 2202.052979 1106.553467 1599.424927 1756.183716 2155.242676 1453.128052 1733.415771 2830.736816 2632.801514 2681.733887 3103.006836 2852.432373 2902.637939 2606.319336 2728.558350 2388.868164 2557.717041
    2 2283.867920 1672.847534 1297.318359 2068.382568 1088.629150 1539.257568 1730.095825 1944.324951 1615.796753 1677.323486 3424.374268 2697.639648 2094.186279 2632.571777 2324.150879 2309.326904 2808.739746 3119.658447 2337.465332 2208.561035
    3 2101.477295 1826.694214 1343.309448 1992.692871 1082.352295 1493.574097 1632.583740 2063.340576 1768.437134 1518.847534 3126.366455 2493.093018 1937.462158 2888.637939 2180.181396 2906.921631 2272.959717 2823.713379 2872.672607 3321.868408
    4 1987.587769 1914.085205 1294.796875 2188.687256 1047.618774 1740.084961 1642.488403 1969.975830 1540.356079 1479.204956 4045.698975 2669.068115 2655.093018 2531.362305 3005.655273 2545.799316 2692.775635 3238.976562 2815.497314 2685.596680
    16379 2248.828369 1512.159180 2574.389893 2085.525146 5731.513672 1902.472778 1578.385742 1916.452393 1320.047119 1550.951904 2291.134277 4845.781250 2534.955322 2397.597900 2810.859375 3058.239746 3012.957520 2055.962646 2597.934814 2275.868896
    16380 2194.083984 1545.642700 2921.095459 2010.420410 5787.336426 1907.732056 1580.937744 2172.060059 1421.129517 1479.062744 2997.078125 5184.318359 2522.363281 2385.093506 2436.397705 3615.403076 2555.819092 1970.641113 3601.866455 2630.073730
    16381 2067.856201 1610.466431 3070.954102 2197.771729 5789.680664 1971.624023 1475.542847 2084.938232 1400.463867 1298.757202 2942.168457 5496.346680 3230.807373 3597.340332 2541.044678 2924.228516 1627.710083 2388.055176 2722.604248 2373.275879
    16382 2067.812988 1689.094238 3292.006836 2390.899170 6230.407715 1930.711670 1451.472778 2083.847168 1289.194824 1380.650146 2794.364746 5706.733887 2287.560303 3041.490723 2482.794189 3858.045654 2195.243896 2333.582764 2728.599365 2198.640869
    16383 2240.335205 1743.910645 3327.093018 2357.319092 5435.189453 1860.456299 1333.890869 2038.945801 1358.094727 1312.259766 2627.845703 5518.034668 2491.838867 2519.055176 3319.664062 3653.108398 3334.266846 2495.438721 2713.831055 2330.221436

    16384 rows × 4800 columns

            train_ntot = train_labbool.size
            train_npos = train_labbool.sum().sum()
            train_nneg = train_ntot - train_npos
            train_perc = train_npos / train_ntot
    
            val_ntot = val_labbool.size
            val_npos = val_labbool.sum().sum()
            val_nneg = val_ntot - val_npos
            val_perc = val_npos / val_ntot
    
            test_ntot = test_labbool.size
            test_npos = test_labbool.sum().sum()
            test_nneg = test_ntot - test_npos
            test_perc = test_npos / test_ntot
    
            print(f'Total N train: {train_ntot}, N pos train: {train_npos}, N neg train: {train_nneg}, Percent of pos: {train_perc:.2%}')
            print(f'Total N val: {val_ntot}, N pos val: {val_npos}, N neg val: {val_nneg}, Percent of pos: {val_perc:.2%}')
            print(f'Total N test: {test_ntot}, N pos test: {test_npos}, N neg test: {test_nneg}, Percent of pos: {test_perc:.2%}')
    
    
    Total N train: 78643200, N pos train: 11969767, N neg train: 66673433, Percent of pos: 15.22%
    Total N val: 19660800, N pos val: 3162854, N neg val: 16497946, Percent of pos: 16.09%
    Total N test: 49152000, N pos test: 7556233, N neg test: 41595767, Percent of pos: 15.37%
    

2.2.6 plots of the simulated traces by diffusion rate

  • This is the plotting code:
            import matplotlib.pyplot as plt
            import numpy as np
            import pandas as pd
    
            def plot_traces_by_diffrates(ntraces, col_per_example, diffrate_of_interest,
                                                                             data_label_array, experiment_params, artifact):
                            """A plot to examine simulated traces via
                                 fluotracify.simulations.simulate_trace_with_artifacts
    
                            Parameters
                            ----------
                            ntraces : int
                                    The number of traces you want to plot. It determines the size of the
                                    plot as well, where columns are fixed at 6 and depending on ntraces
                                    and col_per_example the number of rows is determined.
                            col_per_example : int
                                    Number of columns per example, first column being a trace, and then
                                    one or multiple labels
                            diffrate_of_interest : float
                                    diffusion rate used to simulate the traces of interest
                            data_label_array : dict of pandas DataFrames
                                    Contains one key per column in each simulated example. E.g. if the
                                    simulated features comes with two labels, the key '0' will be the
                                    array with the features, '1' will be the array with label A and
                                    '2' will be the array with label B.
                            experiment_params : pandas DataFrame
                                    Contains metadata of the files
                            artifact : {0, 1, 2, 3}
                                    0 = no artifact, 1 = bright clusters, 2 = detector dropout,
                                    3 = photobleaching
    
                            Returns
                            -------
                            Plot of fluorescence traces and labels from their simulations
                            """
                            drates = experiment_params.loc[
                                    'diffusion rate of molecules in micrometer^2 / s']
                            # get indices of diffusion rates of interest
                            dindices = drates.index.where(drates == str(diffrate_of_interest))
                            dindices = dindices.dropna().astype(int)
                            # get indices of first of each of the 100 traces per file as an example
                            tindices = dindices * 100
                            if artifact == 1:
                                    nclusts = experiment_params.loc['number of slow clusters'][dindices]
                                    dclusts = experiment_params.loc[
                                            'diffusion rate of clusters in micrometer^2 / s'][dindices]
    
                            cols = 6
                            rows = int(ntraces // (cols / col_per_example) +
                                                 (ntraces % (cols / col_per_example) > 0))
                            # share y axis only if col_per_example is 1
                            sharey = col_per_example == 1
    
                            fig, ax = plt.subplots(rows,
                                                                         cols,
                                                                         figsize=(cols * 4, rows * 4),
                                                                         sharex=True,
                                                                         sharey=sharey)
                            fig.add_subplot(111, frameon=False)
                            # hide tick and tick label of the big axes
                            plt.tick_params(labelcolor='none',
                                                            top=False,
                                                            bottom=False,
                                                            left=False,
                                                            right=False)
                            plt.grid(False)
                            plt.xlabel("time steps in $ms$", fontsize=20)
                            plt.ylabel('fluorescence intensity in $a.u.$', labelpad=20, fontsize=20)
                            suptitle_height = 1 - (fig.get_figheight() * 0.004)
                            plt.suptitle(t='Simulated Fluorescence Traces With D = {} '
                                                     '$\\frac{{\mu m^2}}{{s}}$'.format(diffrate_of_interest),
                                                     y=suptitle_height,
                                                     fontsize=20)
                            traceid = 0
                            for idx in range(rows):
                                    for jdx in range(0, cols, col_per_example):
                                            # first plot the trace
                                            try:
                                                    ax[idx,
                                                         jdx].plot(data_label_array['0'].iloc[:, tindices[traceid]])
                                            except IndexError:
                                                    break
                                            if artifact == 1:
                                                    ax[idx, jdx].set_title('trace {} ({} clusters, $D_c$ = '
                                                                                                 '{} $\\frac{{\mu m^2}}{{s}}$)'.format(
                                                                                                         traceid + 1, nclusts.iloc[traceid],
                                                                                                         dclusts.iloc[traceid]))
                                            else:
                                                    ax[idx, jdx].set_title('trace {}'.format(traceid + 1))
                                            ax[idx, jdx].set_ylim(0, 12000)
                                            for kdx in range(1, col_per_example):
                                                    # then plot the labels, if they are given
                                                    ax[idx, jdx + kdx].plot(
                                                            data_label_array['{}'.format(kdx)].iloc[:,
                                                                                                                                            tindices[traceid]])
                                                    ax[idx, jdx + kdx].set_title('label {}, type {}'.format(
                                                            traceid + 1, kdx))
                                            traceid += 1
                            plt.show()
    
    
    • the actual plotting function:
              for drate in d_mol_arr:
                  ps.plot_traces_by_diffrates(
                      ntraces=10,
                      col_per_example=col_per_example,
                      diffrate_of_interest=drate,
                      data_label_array=out,
                      experiment_params=experiment_params,
                      artifact=1)
      

    50: 4683d391bdba74b0c9460a5e968d1135995e4a81.png 10: 963615ec0ac613d53e4c4b11d9b6811c6e38a7f1.png 3: f2667c8e27f421f2a47c7f307598b32a6cde5c5f.png 1: 6a89c85b30e41cbb67c477d10e7cc2239e02f081.png 0.6: 74f0fbc639df415b140d785e8bf3aa23213c31a4.png 0.4: c5d18053e9befd64e8bfc71d4e5e260b2f5606e7.png 0.2: ea43e8d0a7d8075efe27429c44e0ea99df1221ac.png 0.1: 727100134d52d8d8967e1cbb2efda097171f06f0.png 0.08: 89250a71f8711657f2b8138e2323802a1edea8af.png 0.069: 17e9c4bfb65d91e8100cd9131cabbdb1f35e62e1.png

  • open the plots with C-c C-o or toggle inline display with C-c C-x C-v or view them by themselves in the folder

2.2.7 Learnings

  • next time: save output of simulation function not to terminal, but to .txt file.

2.3 exp-210204-unet

2.3.1 Connect

2.3.1.1 Node for script execution
  1. Setup Tmux #+CALL: setup-tmux[:session local2]()
    rm: cannot remove home/lex.tmux-local-socket-remote-machine’: No such file or directory
    ye53nis@ara-login01.rz.uni-jena.de’s password:              
    /tmp/tmux-67339/default                
    > ye53nis@ara-login01.rz.uni-jena.de’s password:            
  2. Request a compute node from Ara cluster
             cd /
             srun -p b_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
    
             (base) [ye53nis@node117 /]$
    
  3. Make sure you are on the desired branch (exp-210104-unet)
             cd /beegfs/ye53nis/drmed-git
             git status
    
             (base) [ye53nis@node221 /]$ cd /beegfs/ye53nis/drmed-git
             (base) [ye53nis@node221 drmed-git]$ git status
             # On branch exp-210104-unet
             no changes added to commit (use "git add" and/or "git commit -a")
             (base) [ye53nis@node221 drmed-git]$
    
2.3.1.2 Node for running Jupyter
  1. Setup Tmux (if we haven’t done it before)
         
    sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:
    > ye53nis@ara-login01.rz.uni-jena.de’s password:
  2. Request compute node from Ara cluster
            cd /
            srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
    
  3. Start Jupyter Lab
              (base) [ye53nis@login01 /]$ srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
              (base) [ye53nis@node302 /]$ conda activate tf-nightly
              (tf-nightly) [ye53nis@node302 /]$ export PORT=9999
              (tf-nightly) [ye53nis@node302 /]$ export XDG_RUNTIME_DIR=''
              (tf-nightly) [ye53nis@node302 /]$ export XDG_RUNTIME_DIR=""
              (tf-nightly) [ye53nis@node302 /]$ jupyter lab --no-browser --port=$PORT
              [I 21:13:32.358 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/jupyterlab
              [I 21:13:32.358 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf-nightly/share/jupyter/lab
              [I 21:13:32.382 LabApp] Serving notebooks from local directory: /
              [I 21:13:32.382 LabApp] Jupyter Notebook 6.2.0 is running at:
              [I 21:13:32.383 LabApp] http://localhost:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4
              [I 21:13:32.383 LabApp]  or http://127.0.0.1:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4
              [I 21:13:32.383 LabApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
              [C 21:13:32.418 LabApp]
    
                  To access the notebook, open this file in a browser:
                      file:///home/ye53nis/.local/share/jupyter/runtime/nbserver-124120-open.html
                  Or copy and paste one of these URLs:
                      http://localhost:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4
                   or http://127.0.0.1:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4
    
  4. Tunnel the remote jupyter to the local computer
                     
    sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:          
    ye53nis@node302’s password:              
    Last login: Fri Apr 2 19:25:33 2021 from login01.ara
  5. Start Python 3 kernel using jupyter-server-list-kernels. Then copy the kernel ID to the :PROPERTIES: drawer for any subtree where you want to use it
            python3           f26207a6-d326-45bb-b432-63d05a573ade   in a few seconds     starting   0
    
  6. any files generated using the :file header of org-mode source blocks will be saved here
              (setq org-babel-jupyter-resource-directory "./data/exp-210204-unet")
    
    ./data/exp-210204-unet
    
2.3.1.3 Node for running Mlflow UI
       conda activate tf-nightly
       mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns
       (tf-nightly) [ye53nis@login01 data]$ mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns
       [2021-02-08 11:55:44 +0100] [19566] [INFO] Starting gunicorn 20.0.4
       [2021-02-08 11:55:44 +0100] [19566] [INFO] Listening at: http://127.0.0.1:5000 (19566)
       [2021-02-08 11:55:44 +0100] [19566] [INFO] Using worker: sync
       [2021-02-08 11:55:44 +0100] [19572] [INFO] Booting worker with pid: 19572
                 
sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:          
ye53nis@login01’s password:              
bind: Address already in use        
Last login: Fri Apr 2 22:54:20 2021 from 10.231.191.246

2.3.2 Run 1 - full dataset

2.3.2.1 Record metadata
  1. current directory
             %cd /beegfs/ye53nis/drmed-git
    
    /beegfs/ye53nis/drmed-git
    
  2. git log
             !git log -3
    
             commit bc590b22329ea0dad425a040bb23370b3e9de3d4
             Author: Apoplex <oligolex@vivaldi.net>
             Date:   Thu Feb 4 20:40:13 2021 +0100
    
                 Increase readability in html export
    
             commit bb78ded17807e0ad259440f4ae4624d1576cbba5
             Author: Apoplex <oligolex@vivaldi.net>
             Date:   Mon Feb 1 21:44:15 2021 +0100
    
                 Add changes from unet branch like unet prepro
             commit 06186e40f8d4d1aa786e9268651160e96ead2223
             Author: Apoplex <oligolex@vivaldi.net>
             Date:   Mon Feb 1 21:16:42 2021 +0100
    
                 Add these updates to ptu_utils from unet code
    
  3. Metadata of environment #+CALL: jp-metadata(_long='True)
             No of CPUs in system: 72
             No of CPUs the current process can use: 24
             load average: (16.0, 16.0, 16.05)
             os.uname():  posix.uname_result(sysname='Linux', nodename='node221', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64')
             PID of process: 231630
             RAM total: 199G, RAM used: 21G, RAM free: 138G
             the current directory: /beegfs/ye53nis/drmed-git
             My disk usage:
             Filesystem           Size  Used Avail Use% Mounted on
             /dev/sda1             50G  3.2G   47G   7% /
             devtmpfs              94G     0   94G   0% /dev
             tmpfs                 94G  302M   94G   1% /dev/shm
             tmpfs                 94G  131M   94G   1% /run
             tmpfs                 94G     0   94G   0% /sys/fs/cgroup
             nfs03-ib:/pool/work  100T   78T   23T  78% /nfsdata
             nfs01-ib:/cluster    2.0T  412G  1.6T  21% /cluster
             nfs01-ib:/home        80T   64T   17T  80% /home
             nfs02-ib:/data01      88T   70T   19T  80% /data01
             /dev/sda6            169G   33M  169G   1% /local
             /dev/sda5            2.0G   34M  2.0G   2% /tmp
             /dev/sda3            6.0G  295M  5.8G   5% /var
             beegfs_nodev         524T  277T  248T  53% /beegfs
             tmpfs                 19G     0   19G   0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf-nightly:
             #
             # Name                    Version                   Build  Channel
             _libgcc_mutex             0.1                        main
             absl-py                   0.11.0                   pypi_0    pypi
             alembic                   1.4.1                      py_0    conda-forge/label/main
             appdirs                   1.4.4              pyh9f0ad1d_0    conda-forge/label/main
             argon2-cffi               20.1.0           py38h7b6447c_1
             asn1crypto                1.4.0              pyh9f0ad1d_0    conda-forge/label/main
             asteval                   0.9.16             pyh5ca1d4c_0    conda-forge/label/main
             astunparse                1.6.3                    pypi_0    pypi
             async_generator           1.10               pyhd3eb1b0_0
             attrs                     20.3.0             pyhd3eb1b0_0
             azure-core                1.10.0             pyhd8ed1ab_0    conda-forge/label/main
             azure-storage-blob        12.7.1             pyh44b312d_0    conda-forge/label/main
             backcall                  0.2.0              pyhd3eb1b0_0
             blas                      1.0                         mkl
             bleach                    3.2.3              pyhd3eb1b0_0
             blinker                   1.4                        py_1    conda-forge/label/main
             blosc                     1.20.1               hd408876_0
             brotli                    1.0.9                he6710b0_2
             brotlipy                  0.7.0           py38h27cfd23_1003
             brunsli                   0.1                  h2531618_0
             bzip2                     1.0.8                h7b6447c_0
             ca-certificates           2020.12.5            ha878542_0    conda-forge/label/main
             cachetools                4.2.1                    pypi_0    pypi
             certifi                   2020.12.5        py38h578d9bd_1    conda-forge/label/main
             cffi                      1.14.4           py38h261ae71_0
             chardet                   4.0.0           py38h06a4308_1003
             charls                    2.1.0                he6710b0_2
             click                     7.1.2              pyh9f0ad1d_0    conda-forge/label/main
             cloudpickle               1.6.0                      py_0    conda-forge/label/main
             configparser              5.0.1                      py_0    conda-forge/label/main
             cryptography              3.3.1            py38h3c74f83_0
             cycler                    0.10.0                   py38_0
             databricks-cli            0.9.1                      py_0    conda-forge/label/main
             dbus                      1.13.18              hb2f20db_0
             decorator                 4.4.2              pyhd3eb1b0_0
             defusedxml                0.6.0                      py_0
             docker-py                 4.4.1            py38h578d9bd_1    conda-forge/label/main
             docker-pycreds            0.4.0                      py_0    conda-forge/label/main
             entrypoints               0.3                      py38_0
             expat                     2.2.10               he6710b0_2
             fcsfiles                  2020.9.18                pypi_0    pypi
             flask                     1.1.2              pyh9f0ad1d_0    conda-forge/label/main
             flatbuffers               1.12                     pypi_0    pypi
             fontconfig                2.13.0               h9420a91_0
             freetype                  2.10.4               h5ab3b9f_0
             future                    0.18.2           py38h578d9bd_3    conda-forge/label/main
             gast                      0.4.0                    pypi_0    pypi
             giflib                    5.1.4                h14c3975_1
             gitdb                     4.0.5                      py_0    conda-forge/label/main
             gitpython                 3.1.12             pyhd8ed1ab_0    conda-forge/label/main
             glib                      2.66.1               h92f7085_0
             google-auth               1.24.0                   pypi_0    pypi
             google-auth-oauthlib      0.4.2                    pypi_0    pypi
             google-pasta              0.2.0                    pypi_0    pypi
             gorilla                   0.3.0                      py_0    conda-forge/label/main
             grpcio                    1.34.1                   pypi_0    pypi
             gst-plugins-base          1.14.0               h8213a91_2
             gstreamer                 1.14.0               h28cd5cc_2
             gunicorn                  20.0.4           py38h578d9bd_3    conda-forge/label/main
             h5py                      3.1.0                    pypi_0    pypi
             icu                       58.2                 he6710b0_3
             idna                      2.10               pyhd3eb1b0_0
             imagecodecs               2021.1.11        py38h581e88b_1
             importlib-metadata        2.0.0                      py_1
             importlib_metadata        2.0.0                         1
             intel-openmp              2020.2                      254
             ipykernel                 5.3.4            py38h5ca1d4c_0
             ipython                   7.19.0           py38hb070fc8_1
             ipython_genutils          0.2.0              pyhd3eb1b0_1
             isodate                   0.6.0                      py_1    conda-forge/label/main
             itsdangerous              1.1.0                      py_0    conda-forge/label/main
             jedi                      0.17.0                   py38_0
             jinja2                    2.11.2             pyhd3eb1b0_0
             jpeg                      9b                   h024ee3a_2
             json5                     0.9.5                      py_0
             jsonschema                3.2.0                      py_2
             jupyter_client            6.1.7                      py_0
             jupyter_core              4.7.0            py38h06a4308_0
             jupyterlab                2.2.6                      py_0
             jupyterlab_pygments       0.1.2                      py_0
             jupyterlab_server         1.2.0                      py_0
             jxrlib                    1.1                  h7b6447c_2
             keras-preprocessing       1.1.2                    pypi_0    pypi
             kiwisolver                1.3.0            py38h2531618_0
             lcms2                     2.11                 h396b838_0
             ld_impl_linux-64          2.33.1               h53a641e_7
             lerc                      2.2.1                h2531618_0
             libaec                    1.0.4                he6710b0_1
             libdeflate                1.7                  h27cfd23_5
             libedit                   3.1.20191231         h14c3975_1
             libffi                    3.3                  he6710b0_2
             libgcc-ng                 9.1.0                hdf63c60_0
             libgfortran-ng            7.3.0                hdf63c60_0
             libpng                    1.6.37               hbc83047_0
             libprotobuf               3.13.0.1             h8b12597_0    conda-forge/label/main
             libsodium                 1.0.18               h7b6447c_0
             libstdcxx-ng              9.1.0                hdf63c60_0
             libtiff                   4.1.0                h2733197_1
             libuuid                   1.0.3                h1bed415_2
             libwebp                   1.0.1                h8e7db2f_0
             libxcb                    1.14                 h7b6447c_0
             libxml2                   2.9.10               hb55368b_3
             libzopfli                 1.0.3                he6710b0_0
             lmfit                     1.0.1                      py_1    conda-forge/label/main
             lz4-c                     1.9.3                h2531618_0
             mako                      1.1.4              pyh44b312d_0    conda-forge/label/main
             markdown                  3.3.3                    pypi_0    pypi
             markupsafe                1.1.1            py38h7b6447c_0
             matplotlib                3.3.2                h06a4308_0
             matplotlib-base           3.3.2            py38h817c723_0
             mistune                   0.8.4           py38h7b6447c_1000
             mkl                       2020.2                      256
             mkl-service               2.3.0            py38he904b0f_0
             mkl_fft                   1.2.0            py38h23d657b_0
             mkl_random                1.1.1            py38h0573a6f_0
             mlflow                    1.13.1           py38h578d9bd_2    conda-forge/label/main
             msrest                    0.6.21             pyh44b312d_0    conda-forge/label/main
             multipletau               0.3.3                    pypi_0    pypi
             nbclient                  0.5.1                      py_0
             nbconvert                 6.0.7                    py38_0
             nbformat                  5.1.2              pyhd3eb1b0_1
             ncurses                   6.2                  he6710b0_1
             nest-asyncio              1.4.3              pyhd3eb1b0_0
             notebook                  6.2.0            py38h06a4308_0
             numpy                     1.19.2           py38h54aff64_0
             numpy-base                1.19.2           py38hfa32c7d_0
             oauthlib                  3.0.1                      py_0    conda-forge/label/main
             olefile                   0.46                       py_0
             openjpeg                  2.3.0                h05c96fa_1
             openssl                   1.1.1i               h27cfd23_0
             opt-einsum                3.3.0                    pypi_0    pypi
             packaging                 20.9               pyhd3eb1b0_0
             pandas                    1.2.1            py38ha9443f7_0
             pandoc                    2.11                 hb0f4dca_0
             pandocfilters             1.4.3            py38h06a4308_1
             parso                     0.8.1              pyhd3eb1b0_0
             pcre                      8.44                 he6710b0_0
             pexpect                   4.8.0              pyhd3eb1b0_3
             pickleshare               0.7.5           pyhd3eb1b0_1003
             pillow                    8.1.0            py38he98fc37_0
             pip                       20.3.3           py38h06a4308_0
             prometheus_client         0.9.0              pyhd3eb1b0_0
             prometheus_flask_exporter 0.18.1             pyh9f0ad1d_0    conda-forge/label/main
             prompt-toolkit            3.0.8                      py_0
             protobuf                  3.13.0.1         py38hadf7658_1    conda-forge/label/main
             ptyprocess                0.7.0              pyhd3eb1b0_2
             pyasn1                    0.4.8                    pypi_0    pypi
             pyasn1-modules            0.2.8                    pypi_0    pypi
             pycparser                 2.20                       py_2
             pygments                  2.7.4              pyhd3eb1b0_0
             pyjwt                     2.0.1              pyhd8ed1ab_0    conda-forge/label/main
             pyopenssl                 20.0.1             pyhd3eb1b0_1
             pyparsing                 2.4.7              pyhd3eb1b0_0
             pyqt                      5.9.2            py38h05f1152_4
             pyrsistent                0.17.3           py38h7b6447c_0
             pysocks                   1.7.1            py38h06a4308_0
             python                    3.8.5                h7579374_1
             python-dateutil           2.8.1              pyhd3eb1b0_0
             python-editor             1.0.4                      py_0    conda-forge/label/main
             python_abi                3.8                      1_cp38    conda-forge/label/main
             pytz                      2020.5             pyhd3eb1b0_0
             pyyaml                    5.3.1            py38h8df0ef7_1    conda-forge/label/main
             pyzmq                     20.0.0           py38h2531618_1
             qt                        5.9.7                h5867ecd_1
             querystring_parser        1.2.4                      py_0    conda-forge/label/main
             readline                  8.1                  h27cfd23_0
             requests                  2.25.1             pyhd3eb1b0_0
             requests-oauthlib         1.3.0              pyh9f0ad1d_0    conda-forge/label/main
             rsa                       4.7                      pypi_0    pypi
             scipy                     1.5.2            py38h0b6359f_0
             seaborn                   0.11.1             pyhd3eb1b0_0
             send2trash                1.5.0              pyhd3eb1b0_1
             setuptools                52.0.0           py38h06a4308_0
             sip                       4.19.13          py38he6710b0_0
             six                       1.15.0           py38h06a4308_0
             smmap                     4.0.0              pyh44b312d_0    conda-forge/label/main
             snappy                    1.1.8                he6710b0_0
             sqlalchemy                1.3.20           py38h1e0a361_0    conda-forge/label/main
             sqlite                    3.33.0               h62c20be_0
             sqlparse                  0.4.1              pyh9f0ad1d_0    conda-forge/label/main
             tabulate                  0.8.7              pyh9f0ad1d_0    conda-forge/label/main
             tb-nightly                2.5.0a20210130           pypi_0    pypi
             tensorboard-plugin-wit    1.8.0                    pypi_0    pypi
             termcolor                 1.1.0                    pypi_0    pypi
             terminado                 0.9.2            py38h06a4308_0
             testpath                  0.4.4              pyhd3eb1b0_0
             tf-estimator-nightly      2.5.0.dev2021020101          pypi_0    pypi
             tf-nightly                2.5.0.dev20210130          pypi_0    pypi
             tifffile                  2021.1.14          pyhd3eb1b0_1
             tk                        8.6.10               hbc83047_0
             tornado                   6.1              py38h27cfd23_0
             traitlets                 5.0.5              pyhd3eb1b0_0
             typing-extensions         3.7.4.3                  pypi_0    pypi
             uncertainties             3.1.5              pyhd8ed1ab_0    conda-forge/label/main
             urllib3                   1.26.3             pyhd3eb1b0_0
             wcwidth                   0.2.5                      py_0
             webencodings              0.5.1                    py38_1
             websocket-client          0.57.0           py38h578d9bd_4    conda-forge/label/main
             werkzeug                  1.0.1              pyh9f0ad1d_0    conda-forge/label/main
             wheel                     0.36.2             pyhd3eb1b0_0
             wrapt                     1.12.1                   pypi_0    pypi
             xz                        5.2.5                h7b6447c_0
             yaml                      0.2.5                h516909a_0    conda-forge/label/main
             zeromq                    4.3.3                he6710b0_3
             zfp                       0.5.5                h2531618_4
             zipp                      3.4.0              pyhd3eb1b0_0
             zlib                      1.2.11               h7b6447c_3
             zstd                      1.4.5                h9ceee32_0
    
             Note: you may need to restart the kernel to use updated packages.
             {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint',
              'SLURM_NODELIST': 'node221',
              'SLURM_JOB_NAME': 'bash',
              'XDG_SESSION_ID': '595',
              'SLURMD_NODENAME': 'node221',
              'SLURM_TOPOLOGY_ADDR': 'node221',
              'SLURM_NTASKS_PER_NODE': '24',
              'HOSTNAME': 'login01',
              'SLURM_PRIO_PROCESS': '0',
              'SLURM_SRUN_COMM_PORT': '33255',
              'SHELL': '/bin/bash',
              'TERM': 'xterm-color',
              'SLURM_JOB_QOS': 'qstand',
              'SLURM_PTY_WIN_ROW': '24',
              'HISTSIZE': '1000',
              'TMPDIR': '/tmp',
              'SLURM_TOPOLOGY_ADDR_PATTERN': 'node',
              'SSH_CLIENT': '10.231.182.213 44428 22',
              'CONDA_SHLVL': '2',
              'CONDA_PROMPT_MODIFIER': '(tf-nightly) ',
              'QTDIR': '/usr/lib64/qt-3.3',
              'QTINC': '/usr/lib64/qt-3.3/include',
              'SSH_TTY': '/dev/pts/2',
              'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24',
              'QT_GRAPHICSSYSTEM_CHECKED': '1',
              'SLURM_NNODES': '1',
              'USER': 'ye53nis',
              'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:',
              'CONDA_EXE': '/cluster/miniconda3/bin/conda',
              'SLURM_STEP_NUM_NODES': '1',
              'SLURM_JOBID': '618588',
              'SRUN_DEBUG': '3',
              'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
              'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'SLURM_NTASKS': '24',
              'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5',
              'SLURM_STEP_ID': '0',
              'TMUX': '/tmp/tmux-67339/default,43792,2',
              '_CE_CONDA': '',
              'CONDA_PREFIX_1': '/cluster/miniconda3',
              'SLURM_STEP_LAUNCHER_PORT': '33255',
              'SLURM_TASKS_PER_NODE': '24',
              'MAIL': '/var/spool/mail/ye53nis',
              'PATH': '/home/ye53nis/.conda/envs/tf-nightly/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin',
              'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448',
              'SLURM_JOB_ID': '618588',
              'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf-nightly',
              'SLURM_JOB_USER': 'ye53nis',
              'SLURM_STEPID': '0',
              'PWD': '/',
              'SLURM_SRUN_COMM_HOST': '192.168.192.5',
              'LANG': 'en_US.UTF-8',
              'SLURM_PTY_WIN_COL': '80',
              'SLURM_UMASK': '0022',
              'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles',
              'SLURM_JOB_UID': '67339',
              'LOADEDMODULES': '',
              'SLURM_NODEID': '0',
              'TMUX_PANE': '%2',
              'SLURM_SUBMIT_DIR': '/',
              'SLURM_TASK_PID': '75179',
              'SLURM_NPROCS': '24',
              'SLURM_CPUS_ON_NODE': '24',
              'SLURM_DISTRIBUTION': 'block',
              'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
              'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'SLURM_PROCID': '0',
              'HISTCONTROL': 'ignoredups',
              '_CE_M': '',
              'SLURM_JOB_NODELIST': 'node221',
              'SLURM_PTY_PORT': '41588',
              'HOME': '/home/ye53nis',
              'SHLVL': '3',
              'SLURM_LOCALID': '0',
              'SLURM_JOB_GID': '13280',
              'SLURM_JOB_CPUS_PER_NODE': '24',
              'SLURM_CLUSTER_NAME': 'hpc',
              'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24',
              'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23',
              'SLURM_SUBMIT_HOST': 'login01',
              'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
              'SLURM_JOB_PARTITION': 's_standard',
              'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3',
              'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python',
              'LOGNAME': 'ye53nis',
              'SLURM_STEP_NUM_TASKS': '24',
              'QTLIB': '/usr/lib64/qt-3.3/lib',
              'SLURM_JOB_ACCOUNT': 'iaob',
              'SLURM_JOB_NUM_NODES': '1',
              'MODULESHOME': '/usr/share/Modules',
              'CONDA_DEFAULT_ENV': 'tf-nightly',
              'LESSOPEN': '||/usr/bin/lesspipe.sh %s',
              'SLURM_STEP_TASKS_PER_NODE': '24',
              'PORT': '9999','SLURM_STEP_NODELIST': 'node221',
             'DISPLAY': ':0',
             'XDG_RUNTIME_DIR': '',
             'XAUTHORITY': '/home/lex/.Xauthority',
             'BASH_FUNC_module()': '() {  eval `/usr/bin/modulecmd bash $*`\n}',
             '_': '/home/ye53nis/.conda/envs/tf-nightly/bin/jupyter',
             'JPY_PARENT_PID': '94022',
             'CLICOLOR': '1',
             'PAGER': 'cat',
             'GIT_PAGER': 'cat',
             'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
    
2.3.2.2 Set mlflow variables
  • mlflow environment variables
            conda activate tf-nightly
            cd /beegfs/ye53nis/drmed-git
            export MLFLOW_EXPERIMENT_NAME=exp-210204-unet
            export MLFLOW_TRACKING_URI=file:./data/mlruns
            mkdir data/exp-210204-unet
    
            (tf-nightly) [ye53nis@node221 drmed-git]$
    
2.3.2.3 run mlflow
  • Use whole dataset (6400 training, 1600 validation, 2000 test), but during training, use only 1/5th of it per epoch
            mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Nov2020 -P steps_per_epoch=1280 -P validation_steps=320
    
            (tf-nightly) [ye53nis@node221 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Nov2020 -P steps_per_epoch=1280 -P validation_
            steps=320
    
            INFO: 'exp-210104-unet' does not exist. Creating a new experiment
    
            2021/02/05 18:23:53 INFO mlflow.projects.utils: === Created directory /tmp/tmptojz254v for downloading remote URIs passed to arguments of type 'path' ===
    
            2021/02/05 18:23:53 INFO mlflow.projects.backend.local:
            === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c 1>&2
            && python src/fluotracify/training/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 50 /beegfs/ye53nis/saves/firstartifact_Nov2020 3 1280 320'
            in run with ID 'b9935d1e554c423fb2852242f4c4504c' ===
    
            2021-02-05 18:24:11.505650: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
            2021-02-05 18:24:11.505734: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. 2.5.0-dev20210130
            2021-02-05 18:24:48.480544: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
            2021-02-05 18:24:48.480629: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] failed call to cuInit: UNKNOWN ERROR (303)
            2021-02-05 18:24:48.480678: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node221): /proc/driver/nvidia/version does not exist
            GPUs:  []
    
            train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set007.csv
            train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set002.csv
            train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set003.csv
            train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set003.csv
            train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set006.csv
            train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set009.csv
            train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set007.csv
            train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set010.csv
            train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set007.csv
            train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set006.csv
            train 10 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set007.csv
            train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set007.csv
            train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set002.csv
            train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set004.csv
            train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set008.csv
            train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set001.csv
            train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set003.csv
            train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set005.csv
            train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set004.csv
            train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set009.csv
            train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set004.csv
            train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set009.csv
            train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set004.csv
            train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set005.csv
            train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set003.csv
            train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set006.csv
            train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set007.csv
            train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set007.csv
            train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set005.csv
            train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set010.csv
            train 30 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set004.csv
            train 31 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set008.csv
            train 32 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set001.csv
            train 33 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set002.csv
            train 34 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set004.csv
            train 35 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set008.csv
            train 36 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set009.csv
            train 37 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set010.csv
            train 38 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set010.csv
            train 39 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set001.csv
            train 40 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set004.csv
            train 41 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D3.0_set004.csv
            train 42 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set002.csv
            train 43 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set007.csv
            train 44 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set003.csv
            train 45 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set002.csv
            train 46 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set005.csv
            train 47 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set006.csv
            train 48 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set008.csv
            train 49 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set001.csv
            train 50 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set009.csv
            train 51 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set006.csv
            train 52 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set006.csv
            train 53 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set005.csv
            train 54 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set001.csv
            train 55 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set005.csv
            train 56 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set009.csv
            train 57 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set006.csv
            train 58 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set001.csv
            train 59 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set002.csv
            train 60 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set006.csv
            train 61 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set004.csv
            train 62 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set003.csv
            train 63 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set001.csv
            train 64 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set002.csv
            train 65 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set009.csv
            train 66 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set008.csv
            train 67 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set001.csv
            train 68 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set002.csv
            train 69 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set003.csv
            train 70 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set005.csv
            train 71 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set005.csv
            train 72 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set004.csv
            train 73 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set010.csv
            train 74 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set010.csv
            train 75 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set010.csv
            train 76 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D0.2_set002.csv
            train 77 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D1.0_set003.csv
            train 78 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set010.csv
            train 79 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set001.csv
            train 80 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set009.csv
            train 81 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set003.csv
            train 82 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set008.csv
            test 83 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set006.csv
            test 84 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set008.csv
            test 85 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set002.csv
            test 86 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set007.csv
            test 87 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set010.csv
            test 88 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set006.csv
            test 89 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set009.csv
            test 90 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set003.csv
            test 91 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set003.csv
            test 92 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set009.csv
            test 93 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set001.csv
            test 94 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set008.csv
            test 95 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set007.csv
            test 96 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set002.csv
            test 97 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set004.csv
            test 98 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set010.csv
            test 99 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D0.069_set001.csv
            test 100 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set008.csv
            test 101 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set005.csv
            test 102 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set008.csv
            test 103 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set005.csv
    
            The given DataFrame was split into 3 parts with shapes: [(16384, 8300), (16384, 8300), (16384, 8300)]
            The given DataFrame was split into 3 parts with shapes: [(16384, 2100), (16384, 2100), (16384, 2100)]
    
            for each 16384 timestap trace there are the following numbers of corrupted timesteps:
            label001_1    5916
            label002_1    7367
            label003_1     954
            label004_1    2965
            label005_1       0
            dtype: int64
    
            2021-02-05 18:31:32.060731: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
            To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    
            number of training examples: 6640, number of validation examples: 1660
    
            ------------------------
            number of test examples: 2100
    
            input - shape:   (None, 16384, 1)
            output - shape:  (None, 16384, 1)
    
            2021-02-05 18:31:38.503252: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing.
            2021-02-05 18:31:38.503297: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started.
            2021-02-05 18:31:38.503361: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down.
            2021/02/05 18:31:38 INFO mlflow.utils.autologging_utils: tensorflow autologging will track hyperparameters, performance metrics, model artifacts, and lineage information for the current tensorflow workflow to the MLflow run with ID 'b9935d1e554c423fb2852242f4c4504c'
            2021/02/05 18:31:38 WARNING mlflow.utils.autologging_utils: MLflow issued a warning during tensorflow autologging: "/home/ye53nis/.conda/envs/mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:86:
            UserWarning: Logging to MLflow failed: Changing param values is not allowed. Param with key='batch_size' was already logged with value='5' for run ID='b9935d1e554c423fb2852242f4c4504c'. Attempted logging new value 'None'."
    
            Epoch 1/50
    
            2021-02-05 18:31:49.433599: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:145] None of the MLIR Optimization Passes are enabled (registered 2)
            2021-02-05 18:31:49.686354: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2300000000 Hz
            2021-02-05 18:31:57.757621: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing.
            2021-02-05 18:31:57.757684: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started.
            2021-02-05 18:31:59.478997: I tensorflow/core/profiler/lib/profiler_session.cc:66] Profiler session collecting data.
            2021-02-05 18:31:59.513272: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down.
            2021-02-05 18:31:59.547737: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_02_05_18_31_59
            2021-02-05 18:31:59.563056: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.trace.json.gz
            2021-02-05 18:31:59.600514: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_02_05_18_31_59
            2021-02-05 18:31:59.600709: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.memory_profile.json.gz
            2021-02-05 18:31:59.604669: I tensorflow/core/profiler/rpc/client/capture_profile.cc:251] Creating directory: /tmp/tb/train/plugins/profile/2021_02_05_18_31_59Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.xplane.pb
            Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.overview_page.pb
            Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.input_pipeline.pb
            Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.tensorflow_stats.pb
            Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.kernel_stats.pb
    
            1280/1280 [==============================] - 2294s 2s/step - loss: 0.9535 - tp0.1: 7533469.6347 - fp0.1: 15687196.0695 - tn0.1: 28384947.3810 - fn0.1: 905043.5777 - precision0.1: 0.3192 - recall0.1: 0.8847 - tp0.3: 5299550.3950 - fp0.3
            : 6318015.6128 - tn0.3: 37754137.8610 - fn0.3: 3138962.8173 - precision0.3: 0.4501 - recall0.3: 0.6250 - tp0.5: 3326666.3817 - fp0.5: 1645942.8673 - tn0.5: 42426193.8962 - fn0.5: 5111846.8306 - precision0.5: 0.6413 - recall0.5: 0.3856
            - tp0.7: 2414052.7869 - fp0.7: 649878.6245 - tn0.7: 43422251.9945 - fn0.7: 6024460.4254 - precision0.7: 0.7630 - recall0.7: 0.2684 - tp0.9: 1333571.2881 - fp0.9: 122667.3622 - tn0.9: 43949483.5308 - fn0.9: 7104941.9243 - precision0.9:
            0.8933 - recall0.9: 0.1421 - accuracy: 0.8665 - auc: 0.8370 - val_loss: 4.5065 - val_tp0.1: 3953260.0000 - val_fp0.1: 22248736.0000 - val_tn0.1: 11977.0000 - val_fn0.1: 433.0000 - val_precision0.1: 0.1509 - val_recall0.1: 0.9999 - val_
            tp0.3: 3952790.0000 - val_fp0.3: 22240896.0000 - val_tn0.3: 19810.0000 - val_fn0.3: 903.0000 - val_precision0.3: 0.1509 - val_recall0.3: 0.9998 - val_tp0.5: 3932309.0000 - val_fp0.5: 18000460.0000 - val_tn0.5: 4260247.0000 - val_fn0.5:
             21384.0000 - val_precision0.5: 0.1793 - val_recall0.5: 0.9946 - val_tp0.7: 3907763.0000 - val_fp0.7: 15479875.0000 - val_tn0.7: 6780832.0000 - val_fn0.7: 45930.0000 - val_precision0.7: 0.2016 - val_recall0.7: 0.9884 - val_tp0.9: 38181
            41.0000 - val_fp0.9: 10776068.0000 - val_tn0.9: 11484639.0000 - val_fn0.9: 135552.0000 - val_precision0.9: 0.2616 - val_recall0.9: 0.9657 - val_accuracy: 0.3125 - val_auc: 0.8388
            Epoch 2/50
            1280/1280 [==============================] - 2266s 2s/step - loss: 0.7086 - tp0.1: 7408524.6518 - fp0.1: 9777539.1296 - tn0.1: 34354079.2826 - fn0.1: 970517.5371 - precision0.1: 0.4242 - recall0.1: 0.8837 - tp0.3: 6604603.1468 - fp0.3:
             5177327.2397 - tn0.3: 38954289.9594 - fn0.3: 1774439.0422 - precision0.3: 0.5497 - recall0.3: 0.7873 - tp0.5: 4795568.8735 - fp0.5: 1588506.0874 - tn0.5: 42543101.8407 - fn0.5: 3583473.3154 - precision0.5: 0.7554 - recall0.5: 0.5523 -
             tp0.7: 3842322.5410 - fp0.7: 585624.8493 - tn0.7: 43545999.7440 - fn0.7: 4536719.6479 - precision0.7: 0.8722 - recall0.7: 0.4455 - tp0.9: 2664836.5355 - fp0.9: 183975.7455 - tn0.9: 43947648.4012 - fn0.9: 5714205.6534 - precision0.9: 0
            .9372 - recall0.9: 0.3066 - accuracy: 0.9005 - auc: 0.8983 - val_loss: 8.8910 - val_tp0.1: 4309704.0000 - val_fp0.1: 21433558.0000 - val_tn0.1: 466616.0000 - val_fn0.1: 4509.0000 - val_precision0.1: 0.1674 - val_recall0.1: 0.9990 - val
            _tp0.3: 4304770.0000 - val_fp0.3: 20572086.0000 - val_tn0.3: 1328101.0000 - val_fn0.3: 9443.0000 - val_precision0.3: 0.1730 - val_recall0.3: 0.9978 - val_tp0.5: 4291421.0000 - val_fp0.5: 18429908.0000 - val_tn0.5: 3470280.0000 - val_fn
            0.5: 22792.0000 - val_precision0.5: 0.1889 - val_recall0.5: 0.9947 - val_tp0.7: 4286245.0000 - val_fp0.7: 17960968.0000 - val_tn0.7: 3939218.0000 - val_fn0.7: 27968.0000 - val_precision0.7: 0.1927 - val_recall0.7: 0.9935 - val_tp0.9: 4
            275720.0000 - val_fp0.9: 17168184.0000 - val_tn0.9: 4732003.0000 - val_fn0.9: 38493.0000 - val_precision0.9: 0.1994 - val_recall0.9: 0.9911 - val_accuracy: 0.2961 - val_auc: 0.6353
            Epoch 3/50
            1280/1280 [==============================] - 2269s 2s/step - loss: 0.4737 - tp0.1: 8043601.5324 - fp0.1: 6567924.1288 - tn0.1: 37316662.9188 - fn0.1: 582465.5137 - precision0.1: 0.5472 - recall0.1: 0.9292 - tp0.3: 7343577.1382 - fp0.3:
             2667019.8610 - tn0.3: 41217565.9859 - fn0.3: 1282489.9079 - precision0.3: 0.7338 - recall0.3: 0.8450 - tp0.5: 6431038.6987 - fp0.5: 1096394.8681 - tn0.5: 42788211.8212 - fn0.5: 2195028.3474 - precision0.5: 0.8653 - recall0.5: 0.7272 -
             tp0.7: 5761648.7400 - fp0.7: 554569.4169 - tn0.7: 43330028.4895 - fn0.7: 2864418.3060 - precision0.7: 0.9155 - recall0.7: 0.6553 - tp0.9: 4604418.9586 - fp0.9: 201930.2724 - tn0.9: 43682665.5402 - fn0.9: 4021648.0874 - precision0.9: 0
            .9590 - recall0.9: 0.5232 - accuracy: 0.9363 - auc: 0.9445 - val_loss: 0.6077 - val_tp0.1: 3651028.0000 - val_fp0.1: 3375728.0000 - val_tn0.1: 18695272.0000 - val_fn0.1: 492376.0000 - val_precision0.1: 0.5196 - val_recall0.1: 0.8812 -
            val_tp0.3: 3024227.0000 - val_fp0.3: 1523943.0000 - val_tn0.3: 20547044.0000 - val_fn0.3: 1119177.0000 - val_precision0.3: 0.6649 - val_recall0.3: 0.7299 - val_tp0.5: 2511712.0000 - val_fp0.5: 734684.0000 - val_tn0.5: 21336306.0000 - v
            al_fn0.5: 1631692.0000 - val_precision0.5: 0.7737 - val_recall0.5: 0.6062 - val_tp0.7: 2014285.0000 - val_fp0.7: 342510.0000 - val_tn0.7: 21728484.0000 - val_fn0.7: 2129119.0000 - val_precision0.7: 0.8547 - val_recall0.7: 0.4861 - val_
            tp0.9: 1375650.0000 - val_fp0.9: 83494.0000 - val_tn0.9: 21987508.0000 - val_fn0.9: 2767754.0000 - val_precision0.9: 0.9428 - val_recall0.9: 0.3320 - val_accuracy: 0.9097 - val_auc: 0.9057
            Epoch 4/50
            1280/1280 [==============================] - 2269s 2s/step - loss: 0.4104 - tp0.1: 8058950.6292 - fp0.1: 5549150.7541 - tn0.1: 38382155.2373 - fn0.1: 520398.2319 - precision0.1: 0.5890 - recall0.1: 0.9388 - tp0.3: 7465362.4442 - fp0.3:
             2368717.0968 - tn0.3: 41562596.7416 - fn0.3: 1113986.4169 - precision0.3: 0.7555 - recall0.3: 0.8690 - tp0.5: 6948225.4496 - fp0.5: 1288524.5277 - tn0.5: 42642762.4083 - fn0.5: 1631123.4114 - precision0.5: 0.8408 - recall0.5: 0.8075 -
             tp0.7: 6012711.4176 - fp0.7: 481306.9664 - tn0.7: 43449995.4871 - fn0.7: 2566637.4434 - precision0.7: 0.9250 - recall0.7: 0.6949 - tp0.9: 4953486.9508 - fp0.9: 170919.6136 - tn0.9: 43760406.4403 - fn0.9: 3625861.9102 - precision0.9: 0
            .9659 - recall0.9: 0.5674 - accuracy: 0.9430 - auc: 0.9540 - val_loss: 0.7360 - val_tp0.1: 3518565.0000 - val_fp0.1: 2418501.0000 - val_tn0.1: 19514842.0000 - val_fn0.1: 762498.0000 - val_precision0.1: 0.5926 - val_recall0.1: 0.8219 -
            val_tp0.3: 2934643.0000 - val_fp0.3: 1727197.0000 - val_tn0.3: 20206140.0000 - val_fn0.3: 1346420.0000 - val_precision0.3: 0.6295 - val_recall0.3: 0.6855 - val_tp0.5: 2401516.0000 - val_fp0.5: 1120115.0000 - val_tn0.5: 20813218.0000 -
            val_fn0.5: 1879547.0000 - val_precision0.5: 0.6819 - val_recall0.5: 0.5610 - val_tp0.7: 1995881.0000 - val_fp0.7: 587480.0000 - val_tn0.7: 21345854.0000 - val_fn0.7: 2285182.0000 - val_precision0.7: 0.7726 - val_recall0.7: 0.4662 - val
            _tp0.9: 1458232.0000 - val_fp0.9: 213624.0000 - val_tn0.9: 21719718.0000 - val_fn0.9: 2822831.0000 - val_precision0.9: 0.8722 - val_recall0.9: 0.3406 - val_accuracy: 0.8856 - val_auc: 0.8746
            Epoch 5/50
            1280/1280 [==============================] - 2256s 2s/step - loss: 0.3330 - tp0.1: 7934527.3903 - fp0.1: 4492667.3357 - tn0.1: 39650554.1023 - fn0.1: 432898.7760 - precision0.1: 0.6303 - recall0.1: 0.9481 - tp0.3: 7499415.2927 - fp0.3:
             1967988.6995 - tn0.3: 42175278.8080 - fn0.3: 868010.8735 - precision0.3: 0.7854 - recall0.3: 0.8951 - tp0.5: 7067133.4980 - fp0.5: 1049951.0960 - tn0.5: 43093262.6339 - fn0.5: 1300292.6682 - precision0.5: 0.8642 - recall0.5: 0.8435 -
            tp0.7: 6367827.1046 - fp0.7: 438987.0765 - tn0.7: 43704237.3872 - fn0.7: 1999599.0617 - precision0.7: 0.9322 - recall0.7: 0.7564 - tp0.9: 5357606.0351 - fp0.9: 138722.6315 - tn0.9: 44004504.8205 - fn0.9: 3009820.1311 - precision0.9: 0.
            9715 - recall0.9: 0.6358 - accuracy: 0.9541 - auc: 0.9638 - val_loss: 0.7327 - val_tp0.1: 3649063.0000 - val_fp0.1: 3036718.0000 - val_tn0.1: 18938916.0000 - val_fn0.1: 589701.0000 - val_precision0.1: 0.5458 - val_recall0.1: 0.8609 - v
            al_tp0.3: 3283999.0000 - val_fp0.3: 2440985.0000 - val_tn0.3: 19534644.0000 - val_fn0.3: 954765.0000 - val_precision0.3: 0.5736 - val_recall0.3: 0.7748 - val_tp0.5: 2951063.0000 - val_fp0.5: 2094966.0000 - val_tn0.5: 19880668.0000 - va
            l_fn0.5: 1287701.0000 - val_precision0.5: 0.5848 - val_recall0.5: 0.6962 - val_tp0.7: 2702547.0000 - val_fp0.7: 1708012.0000 - val_tn0.7: 20267626.0000 - val_fn0.7: 1536217.0000 - val_precision0.7: 0.6127 - val_recall0.7: 0.6376 - val_
            tp0.9: 2269870.0000 - val_fp0.9: 882080.0000 - val_tn0.9: 21093558.0000 - val_fn0.9: 1968894.0000 - val_precision0.9: 0.7201 - val_recall0.9: 0.5355 - val_accuracy: 0.8710 - val_auc: 0.8874
            Epoch 6/50
            1280/1280 [==============================] - 2267s 2s/step - loss: 0.3148 - tp0.1: 8107422.3794 - fp0.1: 4149459.1678 - tn0.1: 39840764.2201 - fn0.1: 412995.5535 - precision0.1: 0.6568 - recall0.1: 0.9505 - tp0.3: 7702537.1499 - fp0.3:
             1842434.6089 - tn0.3: 42147804.7213 - fn0.3: 817880.7830 - precision0.3: 0.8055 - recall0.3: 0.9021 - tp0.5: 7257172.3966 - fp0.5: 947340.6534 - tn0.5: 43042899.9469 - fn0.5: 1263245.5363 - precision0.5: 0.8838 - recall0.5: 0.8495 - t
            p0.7: 6767789.5652 - fp0.7: 485240.0351 - tn0.7: 43504992.3216 - fn0.7: 1752628.3677 - precision0.7: 0.9324 - recall0.7: 0.7924 - tp0.9: 5789730.9688 - fp0.9: 133595.3934 - tn0.9: 43856655.0180 - fn0.9: 2730686.9641 - precision0.9: 0.9
            771 - recall0.9: 0.6757 - accuracy: 0.9572 - auc: 0.9671 - val_loss: 0.5438 - val_tp0.1: 3469770.0000 - val_fp0.1: 1783021.0000 - val_tn0.1: 20362438.0000 - val_fn0.1: 599169.0000 - val_precision0.1: 0.6606 - val_recall0.1: 0.8527 - va
            l_tp0.3: 2981687.0000 - val_fp0.3: 776413.0000 - val_tn0.3: 21369044.0000 - val_fn0.3: 1087252.0000 - val_precision0.3: 0.7934 - val_recall0.3: 0.7328 - val_tp0.5: 2491815.0000 - val_fp0.5: 326150.0000 - val_tn0.5: 21819316.0000 - val_
            fn0.5: 1577124.0000 - val_precision0.5: 0.8843 - val_recall0.5: 0.6124 - val_tp0.7: 2092865.0000 - val_fp0.7: 128692.0000 - val_tn0.7: 22016760.0000 - val_fn0.7: 1976074.0000 - val_precision0.7: 0.9421 - val_recall0.7: 0.5144 - val_tp0
            .9: 1584013.0000 - val_fp0.9: 18793.0000 - val_tn0.9: 22126662.0000 - val_fn0.9: 2484926.0000 - val_precision0.9: 0.9883 - val_recall0.9: 0.3893 - val_accuracy: 0.9274 - val_auc: 0.9112
            Epoch 7/50
            1280/1280 [==============================] - 2250s 2s/step - loss: 0.2752 - tp0.1: 8215921.6979 - fp0.1: 3662051.7354 - tn0.1: 40263427.6151 - fn0.1: 369255.7354 - precision0.1: 0.6930 - recall0.1: 0.9578 - tp0.3: 7873789.5113 - fp0.3:
             1775915.5043 - tn0.3: 42149585.2553 - fn0.3: 711387.9219 - precision0.3: 0.8180 - recall0.3: 0.9178 - tp0.5: 7421898.0468 - fp0.5: 864234.9992 - tn0.5: 43061238.2006 - fn0.5: 1163279.3864 - precision0.5: 0.8970 - recall0.5: 0.8653 - t
            p0.7: 6899341.9555 - fp0.7: 403014.4684 - tn0.7: 43522441.7424 - fn0.7: 1685835.4778 - precision0.7: 0.9455 - recall0.7: 0.8048 - tp0.9: 6047520.0070 - fp0.9: 123672.6019 - tn0.9: 43801830.9766 - fn0.9: 2537657.4262 - precision0.9: 0.9
            803 - recall0.9: 0.7036 - accuracy: 0.9616 - auc: 0.9725 - val_loss: 0.5870 - val_tp0.1: 3992712.0000 - val_fp0.1: 3100961.0000 - val_tn0.1: 18785236.0000 - val_fn0.1: 335494.0000 - val_precision0.1: 0.5629 - val_recall0.1: 0.9225 - va
            l_tp0.3: 3697613.0000 - val_fp0.3: 2362999.0000 - val_tn0.3: 19523192.0000 - val_fn0.3: 630593.0000 - val_precision0.3: 0.6101 - val_recall0.3: 0.8543 - val_tp0.5: 3356073.0000 - val_fp0.5: 1926159.0000 - val_tn0.5: 19960034.0000 - val
            _fn0.5: 972133.0000 - val_precision0.5: 0.6354 - val_recall0.5: 0.7754 - val_tp0.7: 3025256.0000 - val_fp0.7: 1584253.0000 - val_tn0.7: 20301946.0000 - val_fn0.7: 1302950.0000 - val_precision0.7: 0.6563 - val_recall0.7: 0.6990 - val_tp
            0.9: 2583002.0000 - val_fp0.9: 1016388.0000 - val_tn0.9: 20869810.0000 - val_fn0.9: 1745204.0000 - val_precision0.9: 0.7176 - val_recall0.9: 0.5968 - val_accuracy: 0.8894 - val_auc: 0.9219
            Epoch 8/50
            1280/1280 [==============================] - 2264s 2s/step - loss: 0.2659 - tp0.1: 8145147.1616 - fp0.1: 3529957.8525 - tn0.1: 40486117.0164 - fn0.1: 349436.3614 - precision0.1: 0.6977 - recall0.1: 0.9588 - tp0.3: 7816330.9524 - fp0.3:
             1688486.8493 - tn0.3: 42327603.8790 - fn0.3: 678252.5706 - precision0.3: 0.8221 - recall0.3: 0.9201 - tp0.5: 7396513.9524 - fp0.5: 842774.1983 - tn0.5: 43173300.2077 - fn0.5: 1098069.5706 - precision0.5: 0.8972 - recall0.5: 0.8704 - t
            p0.7: 6908332.2162 - fp0.7: 399714.5441 - tn0.7: 43616338.9617 - fn0.7: 1586251.3068 - precision0.7: 0.9448 - recall0.7: 0.8128 - tp0.9: 6106920.7744 - fp0.9: 123699.0000 - tn0.9: 43892389.6027 - fn0.9: 2387662.7486 - precision0.9: 0.9
            796 - recall0.9: 0.7174 - accuracy: 0.9627 - auc: 0.9735 - val_loss: 0.5059 - val_tp0.1: 3832991.0000 - val_fp0.1: 2975127.0000 - val_tn0.1: 19105348.0000 - val_fn0.1: 300933.0000 - val_precision0.1: 0.5630 - val_recall0.1: 0.9272 - va
            l_tp0.3: 3565080.0000 - val_fp0.3: 2148056.0000 - val_tn0.3: 19932426.0000 - val_fn0.3: 568844.0000 - val_precision0.3: 0.6240 - val_recall0.3: 0.8624 - val_tp0.5: 3244053.0000 - val_fp0.5: 1637048.0000 - val_tn0.5: 20443428.0000 - val
            _fn0.5: 889871.0000 - val_precision0.5: 0.6646 - val_recall0.5: 0.7847 - val_tp0.7: 2923895.0000 - val_fp0.7: 1240875.0000 - val_tn0.7: 20839598.0000 - val_fn0.7: 1210029.0000 - val_precision0.7: 0.7021 - val_recall0.7: 0.7073 - val_tp
            0.9: 2501710.0000 - val_fp0.9: 630185.0000 - val_tn0.9: 21450288.0000 - val_fn0.9: 1632214.0000 - val_precision0.9: 0.7988 - val_recall0.9: 0.6052 - val_accuracy: 0.9036 - val_auc: 0.9333
            Epoch 9/50
            1280/1280 [==============================] - 2265s 2s/step - loss: 0.2721 - tp0.1: 8177633.5020 - fp0.1: 3535203.1725 - tn0.1: 40418482.1335 - fn0.1: 379327.7697 - precision0.1: 0.7002 - recall0.1: 0.9554 - tp0.3: 7847088.7190 - fp0.3:
             1695397.4301 - tn0.3: 42258294.9282 - fn0.3: 709872.5527 - precision0.3: 0.8241 - recall0.3: 0.9169 - tp0.5: 7427192.4395 - fp0.5: 834997.2678 - tn0.5: 43118702.8587 - fn0.5: 1129768.8322 - precision0.5: 0.9006 - recall0.5: 0.8679 - t
            p0.7: 6938678.2849 - fp0.7: 395857.1007 - tn0.7: 43557853.7744 - fn0.7: 1618282.9867 - precision0.7: 0.9471 - recall0.7: 0.8106 - tp0.9: 6133368.2951 - fp0.9: 120955.7010 - tn0.9: 43832745.2506 - fn0.9: 2423592.9766 - precision0.9: 0.9
            811 - recall0.9: 0.7170 - accuracy: 0.9631 - auc: 0.9718 - val_loss: 0.5832 - val_tp0.1: 3893714.0000 - val_fp0.1: 3303616.0000 - val_tn0.1: 18681092.0000 - val_fn0.1: 335977.0000 - val_precision0.1: 0.5410 - val_recall0.1: 0.9206 - va
            l_tp0.3: 3627551.0000 - val_fp0.3: 2498540.0000 - val_tn0.3: 19486168.0000 - val_fn0.3: 602140.0000 - val_precision0.3: 0.5921 - val_recall0.3: 0.8576 - val_tp0.5: 3322248.0000 - val_fp0.5: 1987125.0000 - val_tn0.5: 19997588.0000 - val
            _fn0.5: 907443.0000 - val_precision0.5: 0.6257 - val_recall0.5: 0.7855 - val_tp0.7: 3013599.0000 - val_fp0.7: 1581768.0000 - val_tn0.7: 20402948.0000 - val_fn0.7: 1216092.0000 - val_precision0.7: 0.6558 - val_recall0.7: 0.7125 - val_tp
            0.9: 2613832.0000 - val_fp0.9: 924572.0000 - val_tn0.9: 21060124.0000 - val_fn0.9: 1615859.0000 - val_precision0.9: 0.7387 - val_recall0.9: 0.6180 - val_accuracy: 0.8896 - val_auc: 0.9233
            Epoch 10/50
            1280/1280 [==============================] - 2167s 2s/step - loss: 0.2587 - tp0.1: 8173202.1491 - fp0.1: 3419344.5308 - tn0.1: 40568773.3271 - fn0.1: 349346.8673 - precision0.1: 0.7050 - recall0.1: 0.9592 - tp0.3: 7845280.8431 - fp0.3:
             1633368.1054 - tn0.3: 42354746.7455 - fn0.3: 677268.1733 - precision0.3: 0.8274 - recall0.3: 0.9210 - tp0.5: 7444574.4614 - fp0.5: 808848.8946 - tn0.5: 43179274.2358 - fn0.5: 1077974.5550 - precision0.5: 0.9017 - recall0.5: 0.8744 - t
            p0.7: 6974399.5706 - fp0.7: 382341.6963 - tn0.7: 43605795.4044 - fn0.7: 1548149.4457 - precision0.7: 0.9478 - recall0.7: 0.8197 - tp0.9: 6212727.7385 - fp0.9: 117973.7447 - tn0.9: 43870128.1835 - fn0.9: 2309821.2779 - precision0.9: 0.9
            813 - recall0.9: 0.7300 - accuracy: 0.9641 - auc: 0.9742 - val_loss: 0.6408 - val_tp0.1: 3921454.0000 - val_fp0.1: 3165544.0000 - val_tn0.1: 18831180.0000 - val_fn0.1: 296224.0000 - val_precision0.1: 0.5533 - val_recall0.1: 0.9298 - va
            l_tp0.3: 3674710.0000 - val_fp0.3: 2541189.0000 - val_tn0.3: 19455532.0000 - val_fn0.3: 542968.0000 - val_precision0.3: 0.5912 - val_recall0.3: 0.8713 - val_tp0.5: 3370841.0000 - val_fp0.5: 2184413.0000 - val_tn0.5: 19812308.0000 - val
            _fn0.5: 846837.0000 - val_precision0.5: 0.6068 - val_recall0.5: 0.7992 - val_tp0.7: 3057156.0000 - val_fp0.7: 1929320.0000 - val_tn0.7: 20067408.0000 - val_fn0.7: 1160522.0000 - val_precision0.7: 0.6131 - val_recall0.7: 0.7248 - val_tp
            0.9: 2691235.0000 - val_fp0.9: 1545100.0000 - val_tn0.9: 20451626.0000 - val_fn0.9: 1526443.0000 - val_precision0.9: 0.6353 - val_recall0.9: 0.6381 - val_accuracy: 0.8844 - val_auc: 0.9185
            Epoch 11/50
            1280/1280 [==============================] - 2195s 2s/step - loss: 0.2597 - tp0.1: 8080787.5496 - fp0.1: 3464173.5402 - tn0.1: 40607994.5691 - fn0.1: 357720.7119 - precision0.1: 0.6992 - recall0.1: 0.9583 - tp0.3: 7754354.7728 - fp0.3:
             1652487.9594 - tn0.3: 42419634.1717 - fn0.3: 684153.4887 - precision0.3: 0.8245 - recall0.3: 0.9197 - tp0.5: 7350582.6308 - fp0.5: 814018.4028 - tn0.5: 43258092.7291 - fn0.5: 1087925.6308 - precision0.5: 0.9008 - recall0.5: 0.8720 - t
            p0.7: 6874278.2834 - fp0.7: 383492.2842 - tn0.7: 43688666.7549 - fn0.7: 1564229.9781 - precision0.7: 0.9477 - recall0.7: 0.8158 - tp0.9: 6117529.6448 - fp0.9: 121059.4980 - tn0.9: 43951099.9110 - fn0.9: 2320978.6167 - precision0.9: 0.9
            810 - recall0.9: 0.7266 - accuracy: 0.9642 - auc: 0.9736 - val_loss: 0.6007 - val_tp0.1: 3926588.0000 - val_fp0.1: 3104163.0000 - val_tn0.1: 18816186.0000 - val_fn0.1: 367465.0000 - val_precision0.1: 0.5585 - val_recall0.1: 0.9144 - va
            l_tp0.3: 3638712.0000 - val_fp0.3: 2431931.0000 - val_tn0.3: 19488412.0000 - val_fn0.3: 655341.0000 - val_precision0.3: 0.5994 - val_recall0.3: 0.8474 - val_tp0.5: 3274020.0000 - val_fp0.5: 1937942.0000 - val_tn0.5: 19982404.0000 - val
            _fn0.5: 1020033.0000 - val_precision0.5: 0.6282 - val_recall0.5: 0.7625 - val_tp0.7: 2918102.0000 - val_fp0.7: 1553208.0000 - val_tn0.7: 20367136.0000 - val_fn0.7: 1375951.0000 - val_precision0.7: 0.6526 - val_recall0.7: 0.6796 - val_t
            p0.9: 2486914.0000 - val_fp0.9: 949847.0000 - val_tn0.9: 20970500.0000 - val_fn0.9: 1807139.0000 - val_precision0.9: 0.7236 - val_recall0.9: 0.5792 - val_accuracy: 0.8872 - val_auc: 0.9170
            Epoch 12/50
            1280/1280 [==============================] - 2210s 2s/step - loss: 0.2529 - tp0.1: 8177778.9118 - fp0.1: 3446344.3888 - tn0.1: 40554141.6956 - fn0.1: 332395.2459 - precision0.1: 0.7024 - recall0.1: 0.9615 - tp0.3: 7866160.7268 - fp0.3:
             1663533.3247 - tn0.3: 42336942.1569 - fn0.3: 644013.4309 - precision0.3: 0.8244 - recall0.3: 0.9251 - tp0.5: 7468651.7650 - fp0.5: 826902.3630 - tn0.5: 43173597.9063 - fn0.5: 1041522.3927 - precision0.5: 0.8996 - recall0.5: 0.8783 - t
            p0.7: 6982137.1124 - fp0.7: 384836.8439 - tn0.7: 43615637.7978 - fn0.7: 1528037.0453 - precision0.7: 0.9473 - recall0.7: 0.8206 - tp0.9: 6215436.7151 - fp0.9: 115782.2108 - tn0.9: 43884692.7596 - fn0.9: 2294737.4426 - precision0.9: 0.9
            816 - recall0.9: 0.7291 - accuracy: 0.9644 - auc: 0.9753 - val_loss: 0.5433 - val_tp0.1: 3996675.0000 - val_fp0.1: 3049375.0000 - val_tn0.1: 18853738.0000 - val_fn0.1: 314612.0000 - val_precision0.1: 0.5672 - val_recall0.1: 0.9270 - va
            l_tp0.3: 3730606.0000 - val_fp0.3: 2336826.0000 - val_tn0.3: 19566286.0000 - val_fn0.3: 580681.0000 - val_precision0.3: 0.6149 - val_recall0.3: 0.8653 - val_tp0.5: 3416555.0000 - val_fp0.5: 1856264.0000 - val_tn0.5: 20046848.0000 - val
            _fn0.5: 894732.0000 - val_precision0.5: 0.6480 - val_recall0.5: 0.7925 - val_tp0.7: 3097348.0000 - val_fp0.7: 1461441.0000 - val_tn0.7: 20441664.0000 - val_fn0.7: 1213939.0000 - val_precision0.7: 0.6794 - val_recall0.7: 0.7184 - val_tp
            0.9: 2698173.0000 - val_fp0.9: 854641.0000 - val_tn0.9: 21048466.0000 - val_fn0.9: 1613114.0000 - val_precision0.9: 0.7594 - val_recall0.9: 0.6258 - val_accuracy: 0.8951 - val_auc: 0.9303
            Epoch 13/50
            1280/1280 [==============================] - 2209s 2s/step - loss: 0.2538 - tp0.1: 8165544.5761 - fp0.1: 3360321.7119 - tn0.1: 40640034.6550 - fn0.1: 344752.3396 - precision0.1: 0.7106 - recall0.1: 0.9599 - tp0.3: 7853592.0312 - fp0.3:
             1646282.5488 - tn0.3: 42354071.1335 - fn0.3: 656704.8845 - precision0.3: 0.8279 - recall0.3: 0.9236 - tp0.5: 7458424.3138 - fp0.5: 826341.5082 - tn0.5: 43174017.1226 - fn0.5: 1051872.6019 - precision0.5: 0.9009 - recall0.5: 0.8775 - t
            p0.7: 6979820.3271 - fp0.7: 395956.8899 - tn0.7: 43604407.7775 - fn0.7: 1530476.5886 - precision0.7: 0.9468 - recall0.7: 0.8215 - tp0.9: 6232427.8197 - fp0.9: 129181.2912 - tn0.9: 43871195.4387 - fn0.9: 2277869.0960 - precision0.9: 0.9
            799 - recall0.9: 0.7346 - accuracy: 0.9644 - auc: 0.9747 - val_loss: 0.5485 - val_tp0.1: 3997124.0000 - val_fp0.1: 3403162.0000 - val_tn0.1: 18545812.0000 - val_fn0.1: 268302.0000 - val_precision0.1: 0.5401 - val_recall0.1: 0.9371 - va
            l_tp0.3: 3749177.0000 - val_fp0.3: 2616473.0000 - val_tn0.3: 19332510.0000 - val_fn0.3: 516249.0000 - val_precision0.3: 0.5890 - val_recall0.3: 0.8790 - val_tp0.5: 3440083.0000 - val_fp0.5: 2075288.0000 - val_tn0.5: 19873688.0000 - val
            _fn0.5: 825343.0000 - val_precision0.5: 0.6237 - val_recall0.5: 0.8065 - val_tp0.7: 3117260.0000 - val_fp0.7: 1623393.0000 - val_tn0.7: 20325572.0000 - val_fn0.7: 1148166.0000 - val_precision0.7: 0.6576 - val_recall0.7: 0.7308 - val_tp
            0.9: 2708258.0000 - val_fp0.9: 926738.0000 - val_tn0.9: 21022226.0000 - val_fn0.9: 1557168.0000 - val_precision0.9: 0.7451 - val_recall0.9: 0.6349 - val_accuracy: 0.8894 - val_auc: 0.9322
            Epoch 14/50
            1280/1280 [==============================] - 2223s 2s/step - loss: 0.2483 - tp0.1: 8105005.2256 - fp0.1: 3301412.7728 - tn0.1: 40770974.7994 - fn0.1: 333249.2350 - precision0.1: 0.7102 - recall0.1: 0.9606 - tp0.3: 7797681.4614 - fp0.3:
             1632480.2381 - tn0.3: 42439931.4738 - fn0.3: 640572.9992 - precision0.3: 0.8273 - recall0.3: 0.9241 - tp0.5: 7399965.9297 - fp0.5: 804918.4660 - tn0.5: 43267490.8134 - fn0.5: 1038288.5308 - precision0.5: 0.9020 - recall0.5: 0.8772 - t
            p0.7: 6921871.3716 - fp0.7: 370916.4372 - tn0.7: 43701494.4621 - fn0.7: 1516383.0890 - precision0.7: 0.9493 - recall0.7: 0.8208 - tp0.9: 6187238.5597 - fp0.9: 114174.0468 - tn0.9: 43958233.5792 - fn0.9: 2251015.9009 - precision0.9: 0.9
            819 - recall0.9: 0.7337 - accuracy: 0.9651 - auc: 0.9752 - val_loss: 0.4990 - val_tp0.1: 3920222.0000 - val_fp0.1: 2895972.0000 - val_tn0.1: 19106396.0000 - val_fn0.1: 291803.0000 - val_precision0.1: 0.5751 - val_recall0.1: 0.9307 - va
            l_tp0.3: 3647799.0000 - val_fp0.3: 2161341.0000 - val_tn0.3: 19841040.0000 - val_fn0.3: 564226.0000 - val_precision0.3: 0.6279 - val_recall0.3: 0.8660 - val_tp0.5: 3322418.0000 - val_fp0.5: 1638347.0000 - val_tn0.5: 20364020.0000 - val
            _fn0.5: 889607.0000 - val_precision0.5: 0.6697 - val_recall0.5: 0.7888 - val_tp0.7: 2985353.0000 - val_fp0.7: 1222889.0000 - val_tn0.7: 20779488.0000 - val_fn0.7: 1226672.0000 - val_precision0.7: 0.7094 - val_recall0.7: 0.7088 - val_tp
            0.9: 2563095.0000 - val_fp0.9: 657853.0000 - val_tn0.9: 21344516.0000 - val_fn0.9: 1648930.0000 - val_precision0.9: 0.7958 - val_recall0.9: 0.6085 - val_accuracy: 0.9036 - val_auc: 0.9356
            Epoch 15/50
            1280/1280 [==============================] - 2223s 2s/step - loss: 0.2505 - tp0.1: 8129718.4130 - fp0.1: 3285117.6674 - tn0.1: 40755981.7447 - fn0.1: 339847.1585 - precision0.1: 0.7126 - recall0.1: 0.9599 - tp0.3: 7829732.9274 - fp0.3:
             1632416.1491 - tn0.3: 42408661.6440 - fn0.3: 639832.6440 - precision0.3: 0.8279 - recall0.3: 0.9244 - tp0.5: 7437810.6112 - fp0.5: 808981.5230 - tn0.5: 43232126.9953 - fn0.5: 1031754.9602 - precision0.5: 0.9024 - recall0.5: 0.8777 - t
            p0.7: 6957910.6557 - fp0.7: 373871.2498 - tn0.7: 43667250.3630 - fn0.7: 1511654.9157 - precision0.7: 0.9493 - recall0.7: 0.8208 - tp0.9: 6212919.2295 - fp0.9: 115091.8977 - tn0.9: 43925968.1874 - fn0.9: 2256646.3419 - precision0.9: 0.9
            817 - recall0.9: 0.7317 - accuracy: 0.9649 - auc: 0.9750 - val_loss: 0.5413 - val_tp0.1: 3929730.0000 - val_fp0.1: 3234417.0000 - val_tn0.1: 18748682.0000 - val_fn0.1: 301573.0000 - val_precision0.1: 0.5485 - val_recall0.1: 0.9287 - va
            l_tp0.3: 3652364.0000 - val_fp0.3: 2547235.0000 - val_tn0.3: 19435862.0000 - val_fn0.3: 578939.0000 - val_precision0.3: 0.5891 - val_recall0.3: 0.8632 - val_tp0.5: 3294284.0000 - val_fp0.5: 1952001.0000 - val_tn0.5: 20031108.0000 - val
            _fn0.5: 937019.0000 - val_precision0.5: 0.6279 - val_recall0.5: 0.7786 - val_tp0.7: 2934269.0000 - val_fp0.7: 1461182.0000 - val_tn0.7: 20521920.0000 - val_fn0.7: 1297034.0000 - val_precision0.7: 0.6676 - val_recall0.7: 0.6935 - val_tp
            0.9: 2494237.0000 - val_fp0.9: 748300.0000 - val_tn0.9: 21234804.0000 - val_fn0.9: 1737066.0000 - val_precision0.9: 0.7692 - val_recall0.9: 0.5895 - val_accuracy: 0.8898 - val_auc: 0.9282
            Epoch 16/50
            1280/1280 [==============================] - 2215s 2s/step - loss: 0.2478 - tp0.1: 8105796.2350 - fp0.1: 3240299.5347 - tn0.1: 40826166.4356 - fn0.1: 338386.8126 - precision0.1: 0.7132 - recall0.1: 0.9597 - tp0.3: 7813940.3685 - fp0.3:
             1622845.5285 - tn0.3: 42443650.8525 - fn0.3: 630242.6792 - precision0.3: 0.8274 - recall0.3: 0.9252 - tp0.5: 7422996.8228 - fp0.5: 793661.0414 - tn0.5: 43272824.2966 - fn0.5: 1021186.2248 - precision0.5: 0.9030 - recall0.5: 0.8785 - t
            p0.7: 6948059.6292 - fp0.7: 366674.7080 - tn0.7: 43699824.9578 - fn0.7: 1496123.4184 - precision0.7: 0.9495 - recall0.7: 0.8219 - tp0.9: 6225846.1991 - fp0.9: 114013.1436 - tn0.9: 43952461.9219 - fn0.9: 2218336.8486 - precision0.9: 0.9
            817 - recall0.9: 0.7370 - accuracy: 0.9654 - auc: 0.9750 - val_loss: 0.5514 - val_tp0.1: 3985944.0000 - val_fp0.1: 3204062.0000 - val_tn0.1: 18714132.0000 - val_fn0.1: 310258.0000 - val_precision0.1: 0.5544 - val_recall0.1: 0.9278 - va
            l_tp0.3: 3706293.0000 - val_fp0.3: 2449108.0000 - val_tn0.3: 19469088.0000 - val_fn0.3: 589909.0000 - val_precision0.3: 0.6021 - val_recall0.3: 0.8627 - val_tp0.5: 3369179.0000 - val_fp0.5: 1882360.0000 - val_tn0.5: 20035840.0000 - val
            _fn0.5: 927023.0000 - val_precision0.5: 0.6416 - val_recall0.5: 0.7842 - val_tp0.7: 3033922.0000 - val_fp0.7: 1434846.0000 - val_tn0.7: 20483356.0000 - val_fn0.7: 1262280.0000 - val_precision0.7: 0.6789 - val_recall0.7: 0.7062 - val_tp
            0.9: 2621404.0000 - val_fp0.9: 840233.0000 - val_tn0.9: 21077966.0000 - val_fn0.9: 1674798.0000 - val_precision0.9: 0.7573 - val_recall0.9: 0.6102 - val_accuracy: 0.8928 - val_auc: 0.9287
            Epoch 17/50
            1280/1280 [==============================] - 2214s 2s/step - loss: 0.2484 - tp0.1: 8227665.5144 - fp0.1: 3202591.7237 - tn0.1: 40740266.8517 - fn0.1: 340122.5121 - precision0.1: 0.7214 - recall0.1: 0.9603 - tp0.3: 7941320.1460 - fp0.3:
             1633513.9258 - tn0.3: 42309362.5909 - fn0.3: 626467.8806 - precision0.3: 0.8301 - recall0.3: 0.9272 - tp0.5: 7558350.9258 - fp0.5: 804203.6698 - tn0.5: 43138639.2201 - fn0.5: 1009437.1007 - precision0.5: 0.9041 - recall0.5: 0.8831 - t
            p0.7: 7083529.7642 - fp0.7: 372694.8454 - tn0.7: 43570150.8829 - fn0.7: 1484258.2623 - precision0.7: 0.9501 - recall0.7: 0.8284 - tp0.9: 6341241.1249 - fp0.9: 113794.4754 - tn0.9: 43829043.6105 - fn0.9: 2226546.9016 - precision0.9: 0.9
            824 - recall0.9: 0.7414 - accuracy: 0.9652 - auc: 0.9756 - val_loss: 0.5142 - val_tp0.1: 3628279.0000 - val_fp0.1: 2753615.0000 - val_tn0.1: 19485962.0000 - val_fn0.1: 346542.0000 - val_precision0.1: 0.5685 - val_recall0.1: 0.9128 - va
            l_tp0.3: 3324088.0000 - val_fp0.3: 2056425.0000 - val_tn0.3: 20183156.0000 - val_fn0.3: 650733.0000 - val_precision0.3: 0.6178 - val_recall0.3: 0.8363 - val_tp0.5: 2972065.0000 - val_fp0.5: 1467191.0000 - val_tn0.5: 20772396.0000 - val
            _fn0.5: 1002756.0000 - val_precision0.5: 0.6695 - val_recall0.5: 0.7477 - val_tp0.7: 2650974.0000 - val_fp0.7: 1083574.0000 - val_tn0.7: 21156004.0000 - val_fn0.7: 1323847.0000 - val_precision0.7: 0.7099 - val_recall0.7: 0.6669 - val_t
            p0.9: 2300149.0000 - val_fp0.9: 585684.0000 - val_tn0.9: 21653888.0000 - val_fn0.9: 1674672.0000 - val_precision0.9: 0.7970 - val_recall0.9: 0.5787 - val_accuracy: 0.9058 - val_auc: 0.9268
            Epoch 18/50
            1280/1280 [==============================] - 2223s 2s/step - loss: 0.2451 - tp0.1: 8257483.8283 - fp0.1: 3209709.3536 - tn0.1: 40707026.2334 - fn0.1: 336440.2756 - precision0.1: 0.7174 - recall0.1: 0.9618 - tp0.3: 7972148.5215 - fp0.3:
             1611985.2998 - tn0.3: 42304753.9649 - fn0.3: 621775.5824 - precision0.3: 0.8295 - recall0.3: 0.9289 - tp0.5: 7592991.5839 - fp0.5: 801375.8977 - tn0.5: 43115384.3333 - fn0.5: 1000932.5199 - precision0.5: 0.9027 - recall0.5: 0.8847 - t
            p0.7: 7121459.2779 - fp0.7: 371705.6339 - tn0.7: 43545020.0328 - fn0.7: 1472464.8259 - precision0.7: 0.9492 - recall0.7: 0.8297 - tp0.9: 6381060.6097 - fp0.9: 111751.2303 - tn0.9: 43804981.0523 - fn0.9: 2212863.4941 - precision0.9: 0.9
            823 - recall0.9: 0.7435 - accuracy: 0.9654 - auc: 0.9764 - val_loss: 0.5303 - val_tp0.1: 3950393.0000 - val_fp0.1: 2825498.0000 - val_tn0.1: 19094474.0000 - val_fn0.1: 344035.0000 - val_precision0.1: 0.5830 - val_recall0.1: 0.9199 - va
            l_tp0.3: 3645339.0000 - val_fp0.3: 2077885.0000 - val_tn0.3: 19842076.0000 - val_fn0.3: 649089.0000 - val_precision0.3: 0.6369 - val_recall0.3: 0.8489 - val_tp0.5: 3283330.0000 - val_fp0.5: 1558246.0000 - val_tn0.5: 20361722.0000 - val
            _fn0.5: 1011098.0000 - val_precision0.5: 0.6782 - val_recall0.5: 0.7646 - val_tp0.7: 2947342.0000 - val_fp0.7: 1176365.0000 - val_tn0.7: 20743604.0000 - val_fn0.7: 1347086.0000 - val_precision0.7: 0.7147 - val_recall0.7: 0.6863 - val_t
            p0.9: 2536959.0000 - val_fp0.9: 698850.0000 - val_tn0.9: 21221120.0000 - val_fn0.9: 1757469.0000 - val_precision0.9: 0.7840 - val_recall0.9: 0.5908 - val_accuracy: 0.9020 - val_auc: 0.9295
            Epoch 19/50
            1280/1280 [==============================] - 2211s 2s/step - loss: 0.2463 - tp0.1: 8262233.3575 - fp0.1: 3162400.5699 - tn0.1: 40752275.6565 - fn0.1: 333748.0101 - precision0.1: 0.7238 - recall0.1: 0.9607 - tp0.3: 7976781.4278 - fp0.3:
             1621499.8923 - tn0.3: 42293181.6620 - fn0.3: 619199.9399 - precision0.3: 0.8316 - recall0.3: 0.9269 - tp0.5: 7600963.2264 - fp0.5: 819732.1842 - tn0.5: 43094936.0523 - fn0.5: 995018.1413 - precision0.5: 0.9028 - recall0.5: 0.8828 - tp
            0.7: 7125748.6019 - fp0.7: 384384.1327 - tn0.7: 43530286.4083 - fn0.7: 1470232.7658 - precision0.7: 0.9489 - recall0.7: 0.8275 - tp0.9: 6355596.0687 - fp0.9: 116562.7260 - tn0.9: 43798125.0718 - fn0.9: 2240385.2990 - precision0.9: 0.98
            20 - recall0.9: 0.7377 - accuracy: 0.9650 - auc: 0.9759 - val_loss: 0.5854 - val_tp0.1: 3832029.0000 - val_fp0.1: 3030240.0000 - val_tn0.1: 18976838.0000 - val_fn0.1: 375292.0000 - val_precision0.1: 0.5584 - val_recall0.1: 0.9108 - val
            _tp0.3: 3499789.0000 - val_fp0.3: 2341510.0000 - val_tn0.3: 19665576.0000 - val_fn0.3: 707532.0000 - val_precision0.3: 0.5991 - val_recall0.3: 0.8318 - val_tp0.5: 3162666.0000 - val_fp0.5: 1856596.0000 - val_tn0.5: 20150478.0000 - val_
            fn0.5: 1044655.0000 - val_precision0.5: 0.6301 - val_recall0.5: 0.7517 - val_tp0.7: 2854187.0000 - val_fp0.7: 1428102.0000 - val_tn0.7: 20578972.0000 - val_fn0.7: 1353134.0000 - val_precision0.7: 0.6665 - val_recall0.7: 0.6784 - val_tp
            0.9: 2488186.0000 - val_fp0.9: 879408.0000 - val_tn0.9: 21127672.0000 - val_fn0.9: 1719135.0000 - val_precision0.9: 0.7389 - val_recall0.9: 0.5914 - val_accuracy: 0.8893 - val_auc: 0.9201
            Epoch 20/50
            1280/1280 [==============================] - 2220s 2s/step - loss: 0.2304 - tp0.1: 8074195.9617 - fp0.1: 2966270.8033 - tn0.1: 41146339.4450 - fn0.1: 323842.2264 - precision0.1: 0.7319 - recall0.1: 0.9616 - tp0.3: 7805955.5699 - fp0.3:
             1533470.4364 - tn0.3: 42579145.3279 - fn0.3: 592082.6183 - precision0.3: 0.8364 - recall0.3: 0.9297 - tp0.5: 7448954.0062 - fp0.5: 779671.7213 - tn0.5: 43332921.9258 - fn0.5: 949084.1819 - precision0.5: 0.9056 - recall0.5: 0.8873 - tp
            0.7: 6997774.1819 - fp0.7: 363044.1397 - tn0.7: 43749575.7775 - fn0.7: 1400264.0062 - precision0.7: 0.9510 - recall0.7: 0.8336 - tp0.9: 6267801.5144 - fp0.9: 107614.1304 - tn0.9: 44004989.1429 - fn0.9: 2130236.6737 - precision0.9: 0.98
            33 - recall0.9: 0.7471 - accuracy: 0.9673 - auc: 0.9771 - val_loss: 0.5968 - val_tp0.1: 3918274.0000 - val_fp0.1: 3250251.0000 - val_tn0.1: 18736068.0000 - val_fn0.1: 309803.0000 - val_precision0.1: 0.5466 - val_recall0.1: 0.9267 - val
            _tp0.3: 3617081.0000 - val_fp0.3: 2559029.0000 - val_tn0.3: 19427288.0000 - val_fn0.3: 610996.0000 - val_precision0.3: 0.5857 - val_recall0.3: 0.8555 - val_tp0.5: 3277656.0000 - val_fp0.5: 2084096.0000 - val_tn0.5: 19902236.0000 - val_
            fn0.5: 950421.0000 - val_precision0.5: 0.6113 - val_recall0.5: 0.7752 - val_tp0.7: 2954727.0000 - val_fp0.7: 1696039.0000 - val_tn0.7: 20290280.0000 - val_fn0.7: 1273350.0000 - val_precision0.7: 0.6353 - val_recall0.7: 0.6988 - val_tp0
            .9: 2580804.0000 - val_fp0.9: 1147305.0000 - val_tn0.9: 20839018.0000 - val_fn0.9: 1647273.0000 - val_precision0.9: 0.6923 - val_recall0.9: 0.6104 - val_accuracy: 0.8842 - val_auc: 0.9226
            Epoch 21/50
            1280/1280 [==============================] - 2204s 2s/step - loss: 0.2384 - tp0.1: 8140617.7596 - fp0.1: 3066144.5098 - tn0.1: 40972600.1975 - fn0.1: 331283.3044 - precision0.1: 0.7253 - recall0.1: 0.9608 - tp0.3: 7870474.5457 - fp0.3:
             1553244.6440 - tn0.3: 42485524.1530 - fn0.3: 601426.5183 - precision0.3: 0.8351 - recall0.3: 0.9289 - tp0.5: 7506928.4785 - fp0.5: 777322.4692 - tn0.5: 43261445.7369 - fn0.5: 964972.5855 - precision0.5: 0.9063 - recall0.5: 0.8856 - tp
            0.7: 7045491.5386 - fp0.7: 357699.5441 - tn0.7: 43681060.9094 - fn0.7: 1426409.5254 - precision0.7: 0.9516 - recall0.7: 0.8307 - tp0.9: 6309047.4247 - fp0.9: 104611.4294 - tn0.9: 43934120.4317 - fn0.9: 2162853.6393 - precision0.9: 0.98
            35 - recall0.9: 0.7429 - accuracy: 0.9668 - auc: 0.9764 - val_loss: 0.5731 - val_tp0.1: 3942096.0000 - val_fp0.1: 2995461.0000 - val_tn0.1: 18887014.0000 - val_fn0.1: 389824.0000 - val_precision0.1: 0.5682 - val_recall0.1: 0.9100 - val
            _tp0.3: 3599028.0000 - val_fp0.3: 2149008.0000 - val_tn0.3: 19733476.0000 - val_fn0.3: 732892.0000 - val_precision0.3: 0.6261 - val_recall0.3: 0.8308 - val_tp0.5: 3252555.0000 - val_fp0.5: 1599632.0000 - val_tn0.5: 20282852.0000 - val_
            fn0.5: 1079365.0000 - val_precision0.5: 0.6703 - val_recall0.5: 0.7508 - val_tp0.7: 2923628.0000 - val_fp0.7: 1191800.0000 - val_tn0.7: 20690680.0000 - val_fn0.7: 1408292.0000 - val_precision0.7: 0.7104 - val_recall0.7: 0.6749 - val_tp
            0.9: 2521604.0000 - val_fp0.9: 728892.0000 - val_tn0.9: 21153588.0000 - val_fn0.9: 1810316.0000 - val_precision0.9: 0.7758 - val_recall0.9: 0.5821 - val_accuracy: 0.8978 - val_auc: 0.9225
            Epoch 22/50
            1280/1280 [==============================] - 2202s 2s/step - loss: 0.2325 - tp0.1: 8142655.7533 - fp0.1: 2988317.6230 - tn0.1: 41059668.6183 - fn0.1: 320016.3560 - precision0.1: 0.7319 - recall0.1: 0.9621 - tp0.3: 7871852.7736 - fp0.3:
             1506270.7799 - tn0.3: 42541714.4848 - fn0.3: 590819.3357 - precision0.3: 0.8406 - recall0.3: 0.9295 - tp0.5: 7524881.3895 - fp0.5: 772793.9836 - tn0.5: 43275195.0945 - fn0.5: 937790.7198 - precision0.5: 0.9075 - recall0.5: 0.8882 - tp
            0.7: 7077438.3216 - fp0.7: 364340.6877 - tn0.7: 43683658.4301 - fn0.7: 1385233.7877 - precision0.7: 0.9513 - recall0.7: 0.8352 - tp0.9: 6339229.0827 - fp0.9: 109004.6729 - tn0.9: 43938973.3130 - fn0.9: 2123443.0265 - precision0.9: 0.98
            30 - recall0.9: 0.7477 - accuracy: 0.9672 - auc: 0.9774 - val_loss: 0.5088 - val_tp0.1: 4052314.0000 - val_fp0.1: 2813624.0000 - val_tn0.1: 18998480.0000 - val_fn0.1: 349977.0000 - val_precision0.1: 0.5902 - val_recall0.1: 0.9205 - val
            _tp0.3: 3687682.0000 - val_fp0.3: 1991405.0000 - val_tn0.3: 19820706.0000 - val_fn0.3: 714609.0000 - val_precision0.3: 0.6493 - val_recall0.3: 0.8377 - val_tp0.5: 3320706.0000 - val_fp0.5: 1380622.0000 - val_tn0.5: 20431490.0000 - val_
            fn0.5: 1081585.0000 - val_precision0.5: 0.7063 - val_recall0.5: 0.7543 - val_tp0.7: 2967625.0000 - val_fp0.7: 953933.0000 - val_tn0.7: 20858176.0000 - val_fn0.7: 1434666.0000 - val_precision0.7: 0.7567 - val_recall0.7: 0.6741 - val_tp0
            .9: 2531957.0000 - val_fp0.9: 497718.0000 - val_tn0.9: 21314390.0000 - val_fn0.9: 1870334.0000 - val_precision0.9: 0.8357 - val_recall0.9: 0.5751 - val_accuracy: 0.9061 - val_auc: 0.9328
            Epoch 23/50
            1280/1280 [==============================] - 2222s 2s/step - loss: 0.2366 - tp0.1: 8347653.8970 - fp0.1: 3081670.7681 - tn0.1: 40757305.4309 - fn0.1: 324014.3521 - precision0.1: 0.7290 - recall0.1: 0.9623 - tp0.3: 8070883.3950 - fp0.3:
             1575587.0781 - tn0.3: 42263394.8119 - fn0.3: 600784.8540 - precision0.3: 0.8352 - recall0.3: 0.9305 - tp0.5: 7717891.5347 - fp0.5: 814813.8595 - tn0.5: 43024150.6456 - fn0.5: 953776.7143 - precision0.5: 0.9036 - recall0.5: 0.8895 - tp
            0.7: 7268612.4356 - fp0.7: 391109.7408 - tn0.7: 43447878.6557 - fn0.7: 1403055.8134 - precision0.7: 0.9483 - recall0.7: 0.8378 - tp0.9: 6489543.3856 - fp0.9: 111622.6698 - tn0.9: 43727379.5621 - fn0.9: 2182124.8634 - precision0.9: 0.98
            31 - recall0.9: 0.7476 - accuracy: 0.9663 - auc: 0.9772 - val_loss: 0.6052 - val_tp0.1: 3963049.0000 - val_fp0.1: 3225080.0000 - val_tn0.1: 18705446.0000 - val_fn0.1: 320823.0000 - val_precision0.1: 0.5513 - val_recall0.1: 0.9251 - val
            _tp0.3: 3674699.0000 - val_fp0.3: 2561181.0000 - val_tn0.3: 19369346.0000 - val_fn0.3: 609173.0000 - val_precision0.3: 0.5893 - val_recall0.3: 0.8578 - val_tp0.5: 3373791.0000 - val_fp0.5: 2127280.0000 - val_tn0.5: 19803252.0000 - val_
            fn0.5: 910081.0000 - val_precision0.5: 0.6133 - val_recall0.5: 0.7876 - val_tp0.7: 3068979.0000 - val_fp0.7: 1731571.0000 - val_tn0.7: 20198960.0000 - val_fn0.7: 1214893.0000 - val_precision0.7: 0.6393 - val_recall0.7: 0.7164 - val_tp0
            .9: 2716240.0000 - val_fp0.9: 1223118.0000 - val_tn0.9: 20707410.0000 - val_fn0.9: 1567632.0000 - val_precision0.9: 0.6895 - val_recall0.9: 0.6341 - val_accuracy: 0.8841 - val_auc: 0.9237
            Epoch 24/50
            1280/1280 [==============================] - 2204s 2s/step - loss: 0.2289 - tp0.1: 8179279.4356 - fp0.1: 3005191.0726 - tn0.1: 41009950.9407 - fn0.1: 316225.4254 - precision0.1: 0.7325 - recall0.1: 0.9631 - tp0.3: 7901240.7315 - fp0.3:
             1504773.7026 - tn0.3: 42510372.7838 - fn0.3: 594264.1296 - precision0.3: 0.8407 - recall0.3: 0.9307 - tp0.5: 7554121.0180 - fp0.5: 777848.4996 - tn0.5: 43237301.8970 - fn0.5: 941383.8431 - precision0.5: 0.9069 - recall0.5: 0.8901 - tp
            0.7: 7115199.6105 - fp0.7: 370807.8002 - tn0.7: 43644327.6066 - fn0.7: 1380305.2506 - precision0.7: 0.9505 - recall0.7: 0.8385 - tp0.9: 6375731.2256 - fp0.9: 109566.7822 - tn0.9: 43905607.9274 - fn0.9: 2119773.6354 - precision0.9: 0.98
            30 - recall0.9: 0.7519 - accuracy: 0.9674 - auc: 0.9780 - val_loss: 0.5914 - val_tp0.1: 4024334.0000 - val_fp0.1: 3404652.0000 - val_tn0.1: 18506274.0000 - val_fn0.1: 279143.0000 - val_precision0.1: 0.5417 - val_recall0.1: 0.9351 - val
            _tp0.3: 3754317.0000 - val_fp0.3: 2715350.0000 - val_tn0.3: 19195568.0000 - val_fn0.3: 549160.0000 - val_precision0.3: 0.5803 - val_recall0.3: 0.8724 - val_tp0.5: 3470133.0000 - val_fp0.5: 2252806.0000 - val_tn0.5: 19658116.0000 - val_
            fn0.5: 833344.0000 - val_precision0.5: 0.6064 - val_recall0.5: 0.8064 - val_tp0.7: 3161773.0000 - val_fp0.7: 1777262.0000 - val_tn0.7: 20133664.0000 - val_fn0.7: 1141704.0000 - val_precision0.7: 0.6402 - val_recall0.7: 0.7347 - val_tp0
            .9: 2787618.0000 - val_fp0.9: 1197991.0000 - val_tn0.9: 20712926.0000 - val_fn0.9: 1515859.0000 - val_precision0.9: 0.6994 - val_recall0.9: 0.6478 - val_accuracy: 0.8823 - val_auc: 0.9283
            Epoch 25/50
            1280/1280 [==============================] - 2226s 2s/step - loss: 0.2252 - tp0.1: 8291979.4137 - fp0.1: 2984606.2982 - tn0.1: 40931178.3692 - fn0.1: 302890.0656 - precision0.1: 0.7344 - recall0.1: 0.9653 - tp0.3: 8019589.6370 - fp0.3:
             1494741.8806 - tn0.3: 42421057.4286 - fn0.3: 575279.8423 - precision0.3: 0.8422 - recall0.3: 0.9335 - tp0.5: 7686923.1866 - fp0.5: 778234.4176 - tn0.5: 43137535.1632 - fn0.5: 907946.2927 - precision0.5: 0.9079 - recall0.5: 0.8947 - tp
            0.7: 7250107.4707 - fp0.7: 372459.3240 - tn0.7: 43543354.1975 - fn0.7: 1344762.0086 - precision0.7: 0.9509 - recall0.7: 0.8437 - tp0.9: 6493233.8290 - fp0.9: 107705.5613 - tn0.9: 43808088.1733 - fn0.9: 2101635.6503 - precision0.9: 0.98
            38 - recall0.9: 0.7548 - accuracy: 0.9677 - auc: 0.9792 - val_loss: 0.5570 - val_tp0.1: 3995650.0000 - val_fp0.1: 3060009.0000 - val_tn0.1: 18836932.0000 - val_fn0.1: 321813.0000 - val_precision0.1: 0.5663 - val_recall0.1: 0.9255 - val
            _tp0.3: 3674821.0000 - val_fp0.3: 2374036.0000 - val_tn0.3: 19522900.0000 - val_fn0.3: 642642.0000 - val_precision0.3: 0.6075 - val_recall0.3: 0.8512 - val_tp0.5: 3346516.0000 - val_fp0.5: 1900974.0000 - val_tn0.5: 19995958.0000 - val_
            fn0.5: 970947.0000 - val_precision0.5: 0.6377 - val_recall0.5: 0.7751 - val_tp0.7: 3018485.0000 - val_fp0.7: 1460209.0000 - val_tn0.7: 20436728.0000 - val_fn0.7: 1298978.0000 - val_precision0.7: 0.6740 - val_recall0.7: 0.6991 - val_tp0
            .9: 2609054.0000 - val_fp0.9: 880392.0000 - val_tn0.9: 21016544.0000 - val_fn0.9: 1708409.0000 - val_precision0.9: 0.7477 - val_recall0.9: 0.6043 - val_accuracy: 0.8904 - val_auc: 0.9280
            Epoch 26/50
            1280/1280 [==============================] - 2216s 2s/step - loss: 0.2287 - tp0.1: 8319398.9969 - fp0.1: 2952438.8306 - tn0.1: 40921029.8501 - fn0.1: 317787.0890 - precision0.1: 0.7394 - recall0.1: 0.9635 - tp0.3: 8049496.8860 - fp0.3:
             1491537.2982 - tn0.3: 42381938.1233 - fn0.3: 587689.1998 - precision0.3: 0.8439 - recall0.3: 0.9326 - tp0.5: 7714917.0734 - fp0.5: 782715.8696 - tn0.5: 43090766.7041 - fn0.5: 922269.0125 - precision0.5: 0.9077 - recall0.5: 0.8941 - tp
            0.7: 7279420.8743 - fp0.7: 371072.6573 - tn0.7: 43502429.9672 - fn0.7: 1357765.2116 - precision0.7: 0.9513 - recall0.7: 0.8438 - tp0.9: 6527109.8852 - fp0.9: 103689.7635 - tn0.9: 43769772.2685 - fn0.9: 2110076.2006 - precision0.9: 0.98
            45 - recall0.9: 0.7564 - accuracy: 0.9674 - auc: 0.9783 - val_loss: 0.5787 - val_tp0.1: 3910190.0000 - val_fp0.1: 3250030.0000 - val_tn0.1: 18794728.0000 - val_fn0.1: 259453.0000 - val_precision0.1: 0.5461 - val_recall0.1: 0.9378 - val
            _tp0.3: 3639624.0000 - val_fp0.3: 2570780.0000 - val_tn0.3: 19473980.0000 - val_fn0.3: 530019.0000 - val_precision0.3: 0.5861 - val_recall0.3: 0.8729 - val_tp0.5: 3361012.0000 - val_fp0.5: 2146148.0000 - val_tn0.5: 19898600.0000 - val_
            fn0.5: 808631.0000 - val_precision0.5: 0.6103 - val_recall0.5: 0.8061 - val_tp0.7: 3051142.0000 - val_fp0.7: 1790049.0000 - val_tn0.7: 20254708.0000 - val_fn0.7: 1118501.0000 - val_precision0.7: 0.6302 - val_recall0.7: 0.7318 - val_tp0
            .9: 2683794.0000 - val_fp0.9: 1283960.0000 - val_tn0.9: 20760796.0000 - val_fn0.9: 1485849.0000 - val_precision0.9: 0.6764 - val_recall0.9: 0.6437 - val_accuracy: 0.8873 - val_auc: 0.9297
            Epoch 27/50
            1280/1280 [==============================] - 2202s 2s/step - loss: 0.2301 - tp0.1: 8107973.9399 - fp0.1: 2902140.6105 - tn0.1: 41182030.2319 - fn0.1: 318498.9274 - precision0.1: 0.7370 - recall0.1: 0.9620 - tp0.3: 7841754.6401 - fp0.3:
             1478702.1952 - tn0.3: 42605477.3365 - fn0.3: 584718.2272 - precision0.3: 0.8414 - recall0.3: 0.9300 - tp0.5: 7511893.1749 - fp0.5: 775511.8610 - tn0.5: 43308683.9024 - fn0.5: 914579.6924 - precision0.5: 0.9061 - recall0.5: 0.8905 - tp
            0.7: 7075173.0062 - fp0.7: 368300.9977 - tn0.7: 43715881.6714 - fn0.7: 1351299.8610 - precision0.7: 0.9500 - recall0.7: 0.8385 - tp0.9: 6326135.5004 - fp0.9: 105903.6909 - tn0.9: 43978285.1374 - fn0.9: 2100337.3669 - precision0.9: 0.98
            29 - recall0.9: 0.7495 - accuracy: 0.9673 - auc: 0.9774 - val_loss: 0.5563 - val_tp0.1: 3973953.0000 - val_fp0.1: 3033629.0000 - val_tn0.1: 18923208.0000 - val_fn0.1: 283603.0000 - val_precision0.1: 0.5671 - val_recall0.1: 0.9334 - val
            _tp0.3: 3702270.0000 - val_fp0.3: 2375708.0000 - val_tn0.3: 19581140.0000 - val_fn0.3: 555286.0000 - val_precision0.3: 0.6091 - val_recall0.3: 0.8696 - val_tp0.5: 3427641.0000 - val_fp0.5: 1972155.0000 - val_tn0.5: 19984684.0000 - val_
            fn0.5: 829915.0000 - val_precision0.5: 0.6348 - val_recall0.5: 0.8051 - val_tp0.7: 3124472.0000 - val_fp0.7: 1581643.0000 - val_tn0.7: 20375196.0000 - val_fn0.7: 1133084.0000 - val_precision0.7: 0.6639 - val_recall0.7: 0.7339 - val_tp0
            .9: 2757974.0000 - val_fp0.9: 1109127.0000 - val_tn0.9: 20847720.0000 - val_fn0.9: 1499582.0000 - val_precision0.9: 0.7132 - val_recall0.9: 0.6478 - val_accuracy: 0.8931 - val_auc: 0.9321
            Epoch 28/50
            1280/1280 [==============================] - 2087s 2s/step - loss: 0.2197 - tp0.1: 8160795.8228 - fp0.1: 2901034.4309 - tn0.1: 41142814.8181 - fn0.1: 306021.3466 - precision0.1: 0.7381 - recall0.1: 0.9644 - tp0.3: 7892365.4137 - fp0.3:
             1440828.1148 - tn0.3: 42603028.9719 - fn0.3: 574451.7557 - precision0.3: 0.8461 - recall0.3: 0.9326 - tp0.5: 7566706.5480 - fp0.5: 755226.4699 - tn0.5: 43288602.1678 - fn0.5: 900110.6214 - precision0.5: 0.9096 - recall0.5: 0.8942 - tp
            0.7: 7138328.0726 - fp0.7: 359169.3607 - tn0.7: 43684677.2763 - fn0.7: 1328489.0968 - precision0.7: 0.9523 - recall0.7: 0.8435 - tp0.9: 6407064.9711 - fp0.9: 100987.8735 - tn0.9: 43942848.2186 - fn0.9: 2059752.1983 - precision0.9: 0.98
            47 - recall0.9: 0.7566 - accuracy: 0.9687 - auc: 0.9791 - val_loss: 0.4500 - val_tp0.1: 3927337.0000 - val_fp0.1: 2709904.0000 - val_tn0.1: 19279502.0000 - val_fn0.1: 297660.0000 - val_precision0.1: 0.5917 - val_recall0.1: 0.9295 - val
            _tp0.3: 3622327.0000 - val_fp0.3: 1934449.0000 - val_tn0.3: 20054960.0000 - val_fn0.3: 602670.0000 - val_precision0.3: 0.6519 - val_recall0.3: 0.8574 - val_tp0.5: 3304686.0000 - val_fp0.5: 1267577.0000 - val_tn0.5: 20721824.0000 - val_
            fn0.5: 920311.0000 - val_precision0.5: 0.7228 - val_recall0.5: 0.7822 - val_tp0.7: 2969971.0000 - val_fp0.7: 803372.0000 - val_tn0.7: 21186032.0000 - val_fn0.7: 1255026.0000 - val_precision0.7: 0.7871 - val_recall0.7: 0.7030 - val_tp0.
            9: 2545450.0000 - val_fp0.9: 373527.0000 - val_tn0.9: 21615866.0000 - val_fn0.9: 1679547.0000 - val_precision0.9: 0.8720 - val_recall0.9: 0.6025 - val_accuracy: 0.9165 - val_auc: 0.9426
            Epoch 29/50
            1280/1280 [==============================] - 1968s 2s/step - loss: 0.2223 - tp0.1: 8375369.2490 - fp0.1: 2828068.0578 - tn0.1: 41000432.9828 - fn0.1: 306798.1413 - precision0.1: 0.7500 - recall0.1: 0.9648 - tp0.3: 8117816.3411 - fp0.3:
             1454670.2927 - tn0.3: 42373821.8306 - fn0.3: 564351.0492 - precision0.3: 0.8489 - recall0.3: 0.9354 - tp0.5: 7795654.3497 - fp0.5: 777398.3349 - tn0.5: 43051103.4832 - fn0.5: 886513.0406 - precision0.5: 0.9098 - recall0.5: 0.8987 - tp
            0.7: 7368227.7635 - fp0.7: 376034.1069 - tn0.7: 43452466.5371 - fn0.7: 1313939.6269 - precision0.7: 0.9517 - recall0.7: 0.8498 - tp0.9: 6617754.3536 - fp0.9: 111597.3193 - tn0.9: 43716853.5761 - fn0.9: 2064413.0367 - precision0.9: 0.98
            35 - recall0.9: 0.7637 - accuracy: 0.9681 - auc: 0.9792 - val_loss: 0.5416 - val_tp0.1: 3960357.0000 - val_fp0.1: 3230144.0000 - val_tn0.1: 18775996.0000 - val_fn0.1: 247899.0000 - val_precision0.1: 0.5508 - val_recall0.1: 0.9411 - val
            _tp0.3: 3709415.0000 - val_fp0.3: 2490342.0000 - val_tn0.3: 19515800.0000 - val_fn0.3: 498841.0000 - val_precision0.3: 0.5983 - val_recall0.3: 0.8815 - val_tp0.5: 3451033.0000 - val_fp0.5: 2038241.0000 - val_tn0.5: 19967904.0000 - val_
            fn0.5: 757223.0000 - val_precision0.5: 0.6287 - val_recall0.5: 0.8201 - val_tp0.7: 3148179.0000 - val_fp0.7: 1621294.0000 - val_tn0.7: 20384850.0000 - val_fn0.7: 1060077.0000 - val_precision0.7: 0.6601 - val_recall0.7: 0.7481 - val_tp0
            .9: 2788544.0000 - val_fp0.9: 1101598.0000 - val_tn0.9: 20904542.0000 - val_fn0.9: 1419712.0000 - val_precision0.9: 0.7168 - val_recall0.9: 0.6626 - val_accuracy: 0.8934 - val_auc: 0.9369
            Epoch 30/50
            1280/1280 [==============================] - 1987s 2s/step - loss: 0.2171 - tp0.1: 8237924.9360 - fp0.1: 2817507.8111 - tn0.1: 41152156.1608 - fn0.1: 303072.4856 - precision0.1: 0.7480 - recall0.1: 0.9644 - tp0.3: 7981439.7697 - fp0.3:
             1425495.2022 - tn0.3: 42544167.9969 - fn0.3: 559557.6518 - precision0.3: 0.8500 - recall0.3: 0.9347 - tp0.5: 7663120.4309 - fp0.5: 752759.7705 - tn0.5: 43216900.0492 - fn0.5: 877876.9906 - precision0.5: 0.9116 - recall0.5: 0.8978 - tp
            0.7: 7238382.6721 - fp0.7: 357392.6354 - tn0.7: 43612263.4215 - fn0.7: 1302614.7494 - precision0.7: 0.9538 - recall0.7: 0.8481 - tp0.9: 6495143.9938 - fp0.9: 101203.1015 - tn0.9: 43868469.8891 - fn0.9: 2045853.4278 - precision0.9: 0.98
            52 - recall0.9: 0.7605 - accuracy: 0.9692 - auc: 0.9793 - val_loss: 0.5477 - val_tp0.1: 4026668.0000 - val_fp0.1: 3118480.0000 - val_tn0.1: 18786898.0000 - val_fn0.1: 282350.0000 - val_precision0.1: 0.5636 - val_recall0.1: 0.9345 - val
            _tp0.3: 3769431.0000 - val_fp0.3: 2411082.0000 - val_tn0.3: 19494304.0000 - val_fn0.3: 539587.0000 - val_precision0.3: 0.6099 - val_recall0.3: 0.8748 - val_tp0.5: 3496580.0000 - val_fp0.5: 1951231.0000 - val_tn0.5: 19954152.0000 - val_
            fn0.5: 812438.0000 - val_precision0.5: 0.6418 - val_recall0.5: 0.8115 - val_tp0.7: 3175729.0000 - val_fp0.7: 1538001.0000 - val_tn0.7: 20367384.0000 - val_fn0.7: 1133289.0000 - val_precision0.7: 0.6737 - val_recall0.7: 0.7370 - val_tp0
            .9: 2769656.0000 - val_fp0.9: 1014413.0000 - val_tn0.9: 20890968.0000 - val_fn0.9: 1539362.0000 - val_precision0.9: 0.7319 - val_recall0.9: 0.6428 - val_accuracy: 0.8946 - val_auc: 0.9332
            Epoch 31/50
            1280/1280 [==============================] - 1975s 2s/step - loss: 0.2140 - tp0.1: 8254893.9524 - fp0.1: 2820541.8767 - tn0.1: 41143836.3778 - fn0.1: 291401.7947 - precision0.1: 0.7449 - recall0.1: 0.9663 - tp0.3: 8001833.3880 - fp0.3:
             1415982.6237 - tn0.3: 42548340.3044 - fn0.3: 544462.3591 - precision0.3: 0.8490 - recall0.3: 0.9370 - tp0.5: 7689740.5105 - fp0.5: 749876.5176 - tn0.5: 43214484.3458 - fn0.5: 856555.2365 - precision0.5: 0.9104 - recall0.5: 0.9008 - tp
            0.7: 7273005.2974 - fp0.7: 357730.3216 - tn0.7: 43606618.3302 - fn0.7: 1273290.4496 - precision0.7: 0.9525 - recall0.7: 0.8527 - tp0.9: 6528857.1772 - fp0.9: 101215.2264 - tn0.9: 43863149.4848 - fn0.9: 2017438.5699 - precision0.9: 0.98
            45 - recall0.9: 0.7661 - accuracy: 0.9694 - auc: 0.9801 - val_loss: 0.6223 - val_tp0.1: 3930460.0000 - val_fp0.1: 3394464.0000 - val_tn0.1: 18612148.0000 - val_fn0.1: 277327.0000 - val_precision0.1: 0.5366 - val_recall0.1: 0.9341 - val
            _tp0.3: 3651274.0000 - val_fp0.3: 2652264.0000 - val_tn0.3: 19354352.0000 - val_fn0.3: 556513.0000 - val_precision0.3: 0.5792 - val_recall0.3: 0.8677 - val_tp0.5: 3363770.0000 - val_fp0.5: 2181393.0000 - val_tn0.5: 19825220.0000 - val_
            fn0.5: 844017.0000 - val_precision0.5: 0.6066 - val_recall0.5: 0.7994 - val_tp0.7: 3042185.0000 - val_fp0.7: 1805943.0000 - val_tn0.7: 20200670.0000 - val_fn0.7: 1165602.0000 - val_precision0.7: 0.6275 - val_recall0.7: 0.7230 - val_tp0
            .9: 2649971.0000 - val_fp0.9: 1376978.0000 - val_tn0.9: 20629630.0000 - val_fn0.9: 1557816.0000 - val_precision0.9: 0.6581 - val_recall0.9: 0.6298 - val_accuracy: 0.8846 - val_auc: 0.9230
            Epoch 32/50
            1280/1280 [==============================] - 1985s 2s/step - loss: 0.2162 - tp0.1: 8168329.4106 - fp0.1: 2823874.2186 - tn0.1: 41219292.6159 - fn0.1: 299147.5254 - precision0.1: 0.7416 - recall0.1: 0.9648 - tp0.3: 7902494.5543 - fp0.3:
             1406775.2030 - tn0.3: 42636384.1311 - fn0.3: 564982.3817 - precision0.3: 0.8486 - recall0.3: 0.9329 - tp0.5: 7587653.1304 - fp0.5: 746883.7400 - tn0.5: 43296303.4005 - fn0.5: 879823.8056 - precision0.5: 0.9100 - recall0.5: 0.8957 - tp
            0.7: 7172023.5183 - fp0.7: 358490.8813 - tn0.7: 43684701.1390 - fn0.7: 1295453.4176 - precision0.7: 0.9519 - recall0.7: 0.8466 - tp0.9: 6440127.4231 - fp0.9: 99619.9977 - tn0.9: 43943567.7978 - fn0.9: 2027349.5129 - precision0.9: 0.984
            4 - recall0.9: 0.7605 - accuracy: 0.9691 - auc: 0.9792 - val_loss: 0.5922 - val_tp0.1: 4021661.0000 - val_fp0.1: 3341968.0000 - val_tn0.1: 18581152.0000 - val_fn0.1: 269622.0000 - val_precision0.1: 0.5462 - val_recall0.1: 0.9372 - val_
            tp0.3: 3723109.0000 - val_fp0.3: 2641493.0000 - val_tn0.3: 19281632.0000 - val_fn0.3: 568174.0000 - val_precision0.3: 0.5850 - val_recall0.3: 0.8676 - val_tp0.5: 3417861.0000 - val_fp0.5: 2185964.0000 - val_tn0.5: 19737154.0000 - val_f
            n0.5: 873422.0000 - val_precision0.5: 0.6099 - val_recall0.5: 0.7965 - val_tp0.7: 3082813.0000 - val_fp0.7: 1779173.0000 - val_tn0.7: 20143952.0000 - val_fn0.7: 1208470.0000 - val_precision0.7: 0.6341 - val_recall0.7: 0.7184 - val_tp0.
            9: 2687718.0000 - val_fp0.9: 1223941.0000 - val_tn0.9: 20699176.0000 - val_fn0.9: 1603565.0000 - val_precision0.9: 0.6871 - val_recall0.9: 0.6263 - val_accuracy: 0.8833 - val_auc: 0.9267
            Epoch 33/50
            1280/1280 [==============================] - 1990s 2s/step - loss: 0.2153 - tp0.1: 8159566.2951 - fp0.1: 2769324.2404 - tn0.1: 41293176.3880 - fn0.1: 288608.7385 - precision0.1: 0.7434 - recall0.1: 0.9660 - tp0.3: 7912034.2069 - fp0.3:
             1418334.3794 - tn0.3: 42644140.5886 - fn0.3: 536140.8267 - precision0.3: 0.8451 - recall0.3: 0.9365 - tp0.5: 7606237.6534 - fp0.5: 760974.3443 - tn0.5: 43301518.3575 - fn0.5: 841937.3802 - precision0.5: 0.9067 - recall0.5: 0.9000 - tp
            0.7: 7188970.2584 - fp0.7: 368072.7486 - tn0.7: 43694407.5129 - fn0.7: 1259204.7752 - precision0.7: 0.9494 - recall0.7: 0.8501 - tp0.9: 6447265.7268 - fp0.9: 106096.6183 - tn0.9: 43956391.5020 - fn0.9: 2000909.3068 - precision0.9: 0.98
            25 - recall0.9: 0.7622 - accuracy: 0.9690 - auc: 0.9797 - val_loss: 0.6103 - val_tp0.1: 4142693.0000 - val_fp0.1: 3021502.0000 - val_tn0.1: 18751128.0000 - val_fn0.1: 299079.0000 - val_precision0.1: 0.5782 - val_recall0.1: 0.9327 - val
            _tp0.3: 3873213.0000 - val_fp0.3: 2448264.0000 - val_tn0.3: 19324360.0000 - val_fn0.3: 568559.0000 - val_precision0.3: 0.6127 - val_recall0.3: 0.8720 - val_tp0.5: 3610020.0000 - val_fp0.5: 2106610.0000 - val_tn0.5: 19666014.0000 - val_
            fn0.5: 831752.0000 - val_precision0.5: 0.6315 - val_recall0.5: 0.8127 - val_tp0.7: 3302152.0000 - val_fp0.7: 1796893.0000 - val_tn0.7: 19975734.0000 - val_fn0.7: 1139620.0000 - val_precision0.7: 0.6476 - val_recall0.7: 0.7434 - val_tp0
            .9: 2940645.0000 - val_fp0.9: 1387374.0000 - val_tn0.9: 20385260.0000 - val_fn0.9: 1501127.0000 - val_precision0.9: 0.6794 - val_recall0.9: 0.6620 - val_accuracy: 0.8879 - val_auc: 0.9267
            Epoch 34/50
            1280/1280 [==============================] - 1975s 2s/step - loss: 0.2140 - tp0.1: 8354952.6027 - fp0.1: 2805323.7728 - tn0.1: 41057643.9641 - fn0.1: 292731.8275 - precision0.1: 0.7496 - recall0.1: 0.9661 - tp0.3: 8100316.4520 - fp0.3:
             1408795.9087 - tn0.3: 42454187.0320 - fn0.3: 547367.9781 - precision0.3: 0.8514 - recall0.3: 0.9370 - tp0.5: 7794247.9141 - fp0.5: 754289.6760 - tn0.5: 43108644.9532 - fn0.5: 853436.5160 - precision0.5: 0.9115 - recall0.5: 0.9017 - tp
            0.7: 7381753.1905 - fp0.7: 366912.4387 - tn0.7: 43496065.3107 - fn0.7: 1265931.2397 - precision0.7: 0.9524 - recall0.7: 0.8539 - tp0.9: 6643385.3435 - fp0.9: 104367.8337 - tn0.9: 43758580.2849 - fn0.9: 2004299.0867 - precision0.9: 0.98
            45 - recall0.9: 0.7683 - accuracy: 0.9694 - auc: 0.9801 - val_loss: 0.6624 - val_tp0.1: 3856354.0000 - val_fp0.1: 3145321.0000 - val_tn0.1: 18842388.0000 - val_fn0.1: 370344.0000 - val_precision0.1: 0.5508 - val_recall0.1: 0.9124 - val
            _tp0.3: 3549372.0000 - val_fp0.3: 2542341.0000 - val_tn0.3: 19445350.0000 - val_fn0.3: 677326.0000 - val_precision0.3: 0.5827 - val_recall0.3: 0.8398 - val_tp0.5: 3241294.0000 - val_fp0.5: 2119984.0000 - val_tn0.5: 19867720.0000 - val_
            fn0.5: 985404.0000 - val_precision0.5: 0.6046 - val_recall0.5: 0.7669 - val_tp0.7: 2930029.0000 - val_fp0.7: 1781338.0000 - val_tn0.7: 20206368.0000 - val_fn0.7: 1296669.0000 - val_precision0.7: 0.6219 - val_recall0.7: 0.6932 - val_tp0
            .9: 2550993.0000 - val_fp0.9: 1347073.0000 - val_tn0.9: 20640632.0000 - val_fn0.9: 1675705.0000 - val_precision0.9: 0.6544 - val_recall0.9: 0.6035 - val_accuracy: 0.8815 - val_auc: 0.9118
            Epoch 35/50
            1280/1280 [==============================] - 1979s 2s/step - loss: 0.2136 - tp0.1: 8121225.3489 - fp0.1: 2767519.3271 - tn0.1: 41328977.4340 - fn0.1: 292944.1897 - precision0.1: 0.7441 - recall0.1: 0.9648 - tp0.3: 7867775.7931 - fp0.3:
             1380664.7354 - tn0.3: 42715785.1093 - fn0.3: 546393.7455 - precision0.3: 0.8496 - recall0.3: 0.9344 - tp0.5: 7568656.2834 - fp0.5: 741064.5824 - tn0.5: 43355403.8126 - fn0.5: 845513.2553 - precision0.5: 0.9099 - recall0.5: 0.8989 - tp
            0.7: 7163273.2842 - fp0.7: 355917.4442 - tn0.7: 43740534.9688 - fn0.7: 1250896.2545 - precision0.7: 0.9521 - recall0.7: 0.8507 - tp0.9: 6427745.3263 - fp0.9: 99399.9547 - tn0.9: 43997102.2342 - fn0.9: 1986424.2123 - precision0.9: 0.984
            3 - recall0.9: 0.7629 - accuracy: 0.9697 - auc: 0.9794 - val_loss: 0.6109 - val_tp0.1: 3805391.0000 - val_fp0.1: 3155702.0000 - val_tn0.1: 18859740.0000 - val_fn0.1: 393569.0000 - val_precision0.1: 0.5467 - val_recall0.1: 0.9063 - val_
            tp0.3: 3505616.0000 - val_fp0.3: 2482634.0000 - val_tn0.3: 19532808.0000 - val_fn0.3: 693344.0000 - val_precision0.3: 0.5854 - val_recall0.3: 0.8349 - val_tp0.5: 3205095.0000 - val_fp0.5: 1968560.0000 - val_tn0.5: 20046874.0000 - val_f
            n0.5: 993865.0000 - val_precision0.5: 0.6195 - val_recall0.5: 0.7633 - val_tp0.7: 2889262.0000 - val_fp0.7: 1535981.0000 - val_tn0.7: 20479460.0000 - val_fn0.7: 1309698.0000 - val_precision0.7: 0.6529 - val_recall0.7: 0.6881 - val_tp0.
            9: 2477042.0000 - val_fp0.9: 982485.0000 - val_tn0.9: 21032952.0000 - val_fn0.9: 1721918.0000 - val_precision0.9: 0.7160 - val_recall0.9: 0.5899 - val_accuracy: 0.8870 - val_auc: 0.9160
            Epoch 36/50
            1280/1280 [==============================] - 1979s 2s/step - loss: 0.2059 - tp0.1: 8126280.0625 - fp0.1: 2646687.9227 - tn0.1: 41454888.0211 - fn0.1: 282807.8095 - precision0.1: 0.7538 - recall0.1: 0.9656 - tp0.3: 7878883.7135 - fp0.3:
             1323333.3552 - tn0.3: 42778233.2834 - fn0.3: 530204.1585 - precision0.3: 0.8559 - recall0.3: 0.9362 - tp0.5: 7591944.3318 - fp0.5: 712271.5222 - tn0.5: 43389291.7783 - fn0.5: 817143.5402 - precision0.5: 0.9140 - recall0.5: 0.9022 - tp
            0.7: 7203686.0226 - fp0.7: 343437.4106 - tn0.7: 43758143.1655 - fn0.7: 1205401.8493 - precision0.7: 0.9542 - recall0.7: 0.8564 - tp0.9: 6507343.4036 - fp0.9: 97816.8470 - tn0.9: 44003797.8345 - fn0.9: 1901744.4684 - precision0.9: 0.985
            0 - recall0.9: 0.7738 - accuracy: 0.9709 - auc: 0.9801 - val_loss: 0.5870 - val_tp0.1: 4142690.0000 - val_fp0.1: 3187548.0000 - val_tn0.1: 18594374.0000 - val_fn0.1: 289788.0000 - val_precision0.1: 0.5652 - val_recall0.1: 0.9346 - val_
            tp0.3: 3873916.0000 - val_fp0.3: 2590674.0000 - val_tn0.3: 19191250.0000 - val_fn0.3: 558562.0000 - val_precision0.3: 0.5993 - val_recall0.3: 0.8740 - val_tp0.5: 3589951.0000 - val_fp0.5: 2186008.0000 - val_tn0.5: 19595906.0000 - val_f
            n0.5: 842527.0000 - val_precision0.5: 0.6215 - val_recall0.5: 0.8099 - val_tp0.7: 3248583.0000 - val_fp0.7: 1758534.0000 - val_tn0.7: 20023388.0000 - val_fn0.7: 1183895.0000 - val_precision0.7: 0.6488 - val_recall0.7: 0.7329 - val_tp0.
            9: 2813690.0000 - val_fp0.9: 1197675.0000 - val_tn0.9: 20584246.0000 - val_fn0.9: 1618788.0000 - val_precision0.9: 0.7014 - val_recall0.9: 0.6348 - val_accuracy: 0.8845 - val_auc: 0.9275
            Epoch 37/50
            1280/1280 [==============================] - 1993s 2s/step - loss: 0.2130 - tp0.1: 8244281.2553 - fp0.1: 2777623.1632 - tn0.1: 41197305.6495 - fn0.1: 291461.3638 - precision0.1: 0.7465 - recall0.1: 0.9665 - tp0.3: 7992234.6581 - fp0.3:
             1376180.9282 - tn0.3: 42598749.7158 - fn0.3: 543507.9610 - precision0.3: 0.8514 - recall0.3: 0.9375 - tp0.5: 7696124.9321 - fp0.5: 737935.7494 - tn0.5: 43236985.3677 - fn0.5: 839617.6870 - precision0.5: 0.9113 - recall0.5: 0.9031 - tp
            0.7: 7289915.6175 - fp0.7: 354145.8751 - tn0.7: 43620781.5706 - fn0.7: 1245827.0016 - precision0.7: 0.9529 - recall0.7: 0.8559 - tp0.9: 6568139.6253 - fp0.9: 99108.1030 - tn0.9: 43875848.4980 - fn0.9: 1967602.9938 - precision0.9: 0.985
            0 - recall0.9: 0.7707 - accuracy: 0.9697 - auc: 0.9803 - val_loss: 0.6359 - val_tp0.1: 3972718.0000 - val_fp0.1: 2970398.0000 - val_tn0.1: 18895362.0000 - val_fn0.1: 375917.0000 - val_precision0.1: 0.5722 - val_recall0.1: 0.9136 - val_
            tp0.3: 3696968.0000 - val_fp0.3: 2407542.0000 - val_tn0.3: 19458224.0000 - val_fn0.3: 651667.0000 - val_precision0.3: 0.6056 - val_recall0.3: 0.8501 - val_tp0.5: 3418831.0000 - val_fp0.5: 2053387.0000 - val_tn0.5: 19812380.0000 - val_f
            n0.5: 929804.0000 - val_precision0.5: 0.6248 - val_recall0.5: 0.7862 - val_tp0.7: 3101481.0000 - val_fp0.7: 1742891.0000 - val_tn0.7: 20122868.0000 - val_fn0.7: 1247154.0000 - val_precision0.7: 0.6402 - val_recall0.7: 0.7132 - val_tp0.
            9: 2727270.0000 - val_fp0.9: 1316358.0000 - val_tn0.9: 20549408.0000 - val_fn0.9: 1621365.0000 - val_precision0.9: 0.6745 - val_recall0.9: 0.6272 - val_accuracy: 0.8862 - val_auc: 0.9173
            Epoch 38/50
            1280/1280 [==============================] - 1988s 2s/step - loss: 0.2095 - tp0.1: 8322547.4973 - fp0.1: 2736467.1725 - tn0.1: 41169366.0554 - fn0.1: 282238.6792 - precision0.1: 0.7515 - recall0.1: 0.9670 - tp0.3: 8066398.6003 - fp0.3:
             1365148.2873 - tn0.3: 42540740.5316 - fn0.3: 538387.5761 - precision0.3: 0.8549 - recall0.3: 0.9365 - tp0.5: 7770556.2529 - fp0.5: 735978.7931 - tn0.5: 43169885.3575 - fn0.5: 834229.9235 - precision0.5: 0.9132 - recall0.5: 0.9022 - tp
            0.7: 7368501.9875 - fp0.7: 354363.2201 - tn0.7: 43551529.7572 - fn0.7: 1236284.1889 - precision0.7: 0.9541 - recall0.7: 0.8557 - tp0.9: 6640326.0984 - fp0.9: 97963.4192 - tn0.9: 43807909.1975 - fn0.9: 1964460.0781 - precision0.9: 0.985
            5 - recall0.9: 0.7709 - accuracy: 0.9698 - auc: 0.9806 - val_loss: 0.5532 - val_tp0.1: 4070077.0000 - val_fp0.1: 3091837.0000 - val_tn0.1: 18834880.0000 - val_fn0.1: 217612.0000 - val_precision0.1: 0.5683 - val_recall0.1: 0.9492 - val_
            tp0.3: 3841354.0000 - val_fp0.3: 2343330.0000 - val_tn0.3: 19583380.0000 - val_fn0.3: 446335.0000 - val_precision0.3: 0.6211 - val_recall0.3: 0.8959 - val_tp0.5: 3610309.0000 - val_fp0.5: 1940937.0000 - val_tn0.5: 19985782.0000 - val_f
            n0.5: 677380.0000 - val_precision0.5: 0.6504 - val_recall0.5: 0.8420 - val_tp0.7: 3328203.0000 - val_fp0.7: 1620408.0000 - val_tn0.7: 20306288.0000 - val_fn0.7: 959486.0000 - val_precision0.7: 0.6726 - val_recall0.7: 0.7762 - val_tp0.9
            : 2957699.0000 - val_fp0.9: 1252356.0000 - val_tn0.9: 20674356.0000 - val_fn0.9: 1329990.0000 - val_precision0.9: 0.7025 - val_recall0.9: 0.6898 - val_accuracy: 0.9001 - val_auc: 0.9387
            Epoch 39/50
            1280/1280 [==============================] - 1983s 2s/step - loss: 0.2144 - tp0.1: 8366575.3263 - fp0.1: 2766167.9742 - tn0.1: 41080636.4215 - fn0.1: 297288.0242 - precision0.1: 0.7524 - recall0.1: 0.9656 - tp0.3: 8113164.2248 - fp0.3:
             1368911.6565 - tn0.3: 42477877.7752 - fn0.3: 550699.1257 - precision0.3: 0.8555 - recall0.3: 0.9368 - tp0.5: 7813941.1093 - fp0.5: 738235.6479 - tn0.5: 43108568.5925 - fn0.5: 849922.2412 - precision0.5: 0.9133 - recall0.5: 0.9025 - tp
            0.7: 7408230.3068 - fp0.7: 358148.5066 - tn0.7: 43488651.3341 - fn0.7: 1255633.0437 - precision0.7: 0.9536 - recall0.7: 0.8560 - tp0.9: 6668979.4731 - fp0.9: 100667.4668 - tn0.9: 43746134.9883 - fn0.9: 1994883.8774 - precision0.9: 0.98
            51 - recall0.9: 0.7710 - accuracy: 0.9697 - auc: 0.9798 - val_loss: 0.5509 - val_tp0.1: 3928121.0000 - val_fp0.1: 3362312.0000 - val_tn0.1: 18683104.0000 - val_fn0.1: 240862.0000 - val_precision0.1: 0.5388 - val_recall0.1: 0.9422 - val
            _tp0.3: 3683700.0000 - val_fp0.3: 2630754.0000 - val_tn0.3: 19414668.0000 - val_fn0.3: 485283.0000 - val_precision0.3: 0.5834 - val_recall0.3: 0.8836 - val_tp0.5: 3409649.0000 - val_fp0.5: 2123677.0000 - val_tn0.5: 19921740.0000 - val_
            fn0.5: 759334.0000 - val_precision0.5: 0.6162 - val_recall0.5: 0.8179 - val_tp0.7: 3082747.0000 - val_fp0.7: 1673717.0000 - val_tn0.7: 20371692.0000 - val_fn0.7: 1086236.0000 - val_precision0.7: 0.6481 - val_recall0.7: 0.7394 - val_tp0
            .9: 2675367.0000 - val_fp0.9: 1106165.0000 - val_tn0.9: 20939250.0000 - val_fn0.9: 1493616.0000 - val_precision0.9: 0.7075 - val_recall0.9: 0.6417 - val_accuracy: 0.8900 - val_auc: 0.9336
            Epoch 40/50
            1280/1280 [==============================] - 1983s 2s/step - loss: 0.1969 - tp0.1: 8112039.9274 - fp0.1: 2648956.8977 - tn0.1: 41481438.0515 - fn0.1: 268231.5964 - precision0.1: 0.7550 - recall0.1: 0.9682 - tp0.3: 7868925.6425 - fp0.3:
             1315040.1202 - tn0.3: 42815365.2927 - fn0.3: 511345.8813 - precision0.3: 0.8571 - recall0.3: 0.9396 - tp0.5: 7584341.2420 - fp0.5: 709881.4247 - tn0.5: 43420518.9040 - fn0.5: 795930.2818 - precision0.5: 0.9147 - recall0.5: 0.9057 - tp
            0.7: 7193185.0031 - fp0.7: 342578.8923 - tn0.7: 43787824.5191 - fn0.7: 1187086.5207 - precision0.7: 0.9550 - recall0.7: 0.8587 - tp0.9: 6494738.0343 - fp0.9: 97088.4145 - tn0.9: 44033315.7065 - fn0.9: 1885533.4895 - precision0.9: 0.985
            6 - recall0.9: 0.7753 - accuracy: 0.9718 - auc: 0.9815 - val_loss: 0.5690 - val_tp0.1: 3846468.0000 - val_fp0.1: 3007369.0000 - val_tn0.1: 19101806.0000 - val_fn0.1: 258769.0000 - val_precision0.1: 0.5612 - val_recall0.1: 0.9370 - val_
            tp0.3: 3613817.0000 - val_fp0.3: 2397217.0000 - val_tn0.3: 19711954.0000 - val_fn0.3: 491420.0000 - val_precision0.3: 0.6012 - val_recall0.3: 0.8803 - val_tp0.5: 3367535.0000 - val_fp0.5: 2008822.0000 - val_tn0.5: 20100340.0000 - val_f
            n0.5: 737702.0000 - val_precision0.5: 0.6264 - val_recall0.5: 0.8203 - val_tp0.7: 3076985.0000 - val_fp0.7: 1689883.0000 - val_tn0.7: 20419284.0000 - val_fn0.7: 1028252.0000 - val_precision0.7: 0.6455 - val_recall0.7: 0.7495 - val_tp0.
            9: 2719452.0000 - val_fp0.9: 1280160.0000 - val_tn0.9: 20829004.0000 - val_fn0.9: 1385785.0000 - val_precision0.9: 0.6799 - val_recall0.9: 0.6624 - val_accuracy: 0.8952 - val_auc: 0.9311
            Epoch 41/50
            1280/1280 [==============================] - 1978s 2s/step - loss: 0.2044 - tp0.1: 8119761.2217 - fp0.1: 2626596.4067 - tn0.1: 41483268.4879 - fn0.1: 281035.5894 - precision0.1: 0.7571 - recall0.1: 0.9663 - tp0.3: 7878864.4973 - fp0.3:
             1320586.7525 - tn0.3: 42789243.0968 - fn0.3: 521932.3138 - precision0.3: 0.8575 - recall0.3: 0.9377 - tp0.5: 7590439.7557 - fp0.5: 709361.4364 - tn0.5: 43400490.0500 - fn0.5: 810357.0554 - precision0.5: 0.9153 - recall0.5: 0.9035 - tp
            0.7: 7196681.5800 - fp0.7: 343281.3755 - tn0.7: 43766582.6877 - fn0.7: 1204115.2311 - precision0.7: 0.9549 - recall0.7: 0.8569 - tp0.9: 6477320.2436 - fp0.9: 94404.4832 - tn0.9: 44015438.6300 - fn0.9: 1923476.5675 - precision0.9: 0.985
            7 - recall0.9: 0.7709 - accuracy: 0.9710 - auc: 0.9804 - val_loss: 0.7317 - val_tp0.1: 3916023.0000 - val_fp0.1: 3484452.0000 - val_tn0.1: 18565136.0000 - val_fn0.1: 248781.0000 - val_precision0.1: 0.5292 - val_recall0.1: 0.9403 - val_
            tp0.3: 3708159.0000 - val_fp0.3: 2970626.0000 - val_tn0.3: 19078970.0000 - val_fn0.3: 456645.0000 - val_precision0.3: 0.5552 - val_recall0.3: 0.8904 - val_tp0.5: 3475102.0000 - val_fp0.5: 2669322.0000 - val_tn0.5: 19380278.0000 - val_f
            n0.5: 689702.0000 - val_precision0.5: 0.5656 - val_recall0.5: 0.8344 - val_tp0.7: 3188450.0000 - val_fp0.7: 2414665.0000 - val_tn0.7: 19634936.0000 - val_fn0.7: 976354.0000 - val_precision0.7: 0.5690 - val_recall0.7: 0.7656 - val_tp0.9
            : 2847371.0000 - val_fp0.9: 2085317.0000 - val_tn0.9: 19964284.0000 - val_fn0.9: 1317433.0000 - val_precision0.9: 0.5772 - val_recall0.9: 0.6837 - val_accuracy: 0.8719 - val_auc: 0.9139
            Epoch 42/50
            1280/1280 [==============================] - 1987s 2s/step - loss: 0.1985 - tp0.1: 8084262.2818 - fp0.1: 2648823.0039 - tn0.1: 41506455.0390 - fn0.1: 271123.8985 - precision0.1: 0.7515 - recall0.1: 0.9676 - tp0.3: 7842478.2342 - fp0.3:
             1315040.6995 - tn0.3: 42840230.2826 - fn0.3: 512907.9461 - precision0.3: 0.8555 - recall0.3: 0.9387 - tp0.5: 7555647.0101 - fp0.5: 708480.3888 - tn0.5: 43446801.7198 - fn0.5: 799739.1702 - precision0.5: 0.9137 - recall0.5: 0.9044 - tp
            0.7: 7164901.3419 - fp0.7: 337266.9789 - tn0.7: 43818009.3770 - fn0.7: 1190484.8384 - precision0.7: 0.9549 - recall0.7: 0.8575 - tp0.9: 6464041.4738 - fp0.9: 94869.2607 - tn0.9: 44060414.4278 - fn0.9: 1891344.7065 - precision0.9: 0.985
            5 - recall0.9: 0.7739 - accuracy: 0.9716 - auc: 0.9811 - val_loss: 0.5958 - val_tp0.1: 3933554.0000 - val_fp0.1: 2955615.0000 - val_tn0.1: 18990420.0000 - val_fn0.1: 334809.0000 - val_precision0.1: 0.5710 - val_recall0.1: 0.9216 - val_
            tp0.3: 3653243.0000 - val_fp0.3: 2331195.0000 - val_tn0.3: 19614844.0000 - val_fn0.3: 615120.0000 - val_precision0.3: 0.6105 - val_recall0.3: 0.8559 - val_tp0.5: 3388864.0000 - val_fp0.5: 1939453.0000 - val_tn0.5: 20006580.0000 - val_f
            n0.5: 879499.0000 - val_precision0.5: 0.6360 - val_recall0.5: 0.7939 - val_tp0.7: 3079796.0000 - val_fp0.7: 1608320.0000 - val_tn0.7: 20337718.0000 - val_fn0.7: 1188567.0000 - val_precision0.7: 0.6569 - val_recall0.7: 0.7215 - val_tp0.
            9: 2715008.0000 - val_fp0.9: 1171919.0000 - val_tn0.9: 20774120.0000 - val_fn0.9: 1553355.0000 - val_precision0.9: 0.6985 - val_recall0.9: 0.6361 - val_accuracy: 0.8925 - val_auc: 0.9240
            Epoch 43/50
            1280/1280 [==============================] - 1955s 2s/step - loss: 0.1987 - tp0.1: 8221268.6706 - fp0.1: 2670843.3326 - tn0.1: 41354847.4762 - fn0.1: 263685.1889 - precision0.1: 0.7553 - recall0.1: 0.9689 - tp0.3: 7974364.6284 - fp0.3:
             1305978.7268 - tn0.3: 42719745.8759 - fn0.3: 510589.2311 - precision0.3: 0.8607 - recall0.3: 0.9397 - tp0.5: 7690894.8962 - fp0.5: 703492.0546 - tn0.5: 43322229.0648 - fn0.5: 794058.9633 - precision0.5: 0.9176 - recall0.5: 0.9062 - tp
            0.7: 7300427.2842 - fp0.7: 340590.7377 - tn0.7: 43685101.9196 - fn0.7: 1184526.5753 - precision0.7: 0.9563 - recall0.7: 0.8599 - tp0.9: 6589497.3521 - fp0.9: 94983.5316 - tn0.9: 43930710.3302 - fn0.9: 1895456.5074 - precision0.9: 0.986
            2 - recall0.9: 0.7761 - accuracy: 0.9717 - auc: 0.9819 - val_loss: 0.6235 - val_tp0.1: 3909308.0000 - val_fp0.1: 3193225.0000 - val_tn0.1: 18785172.0000 - val_fn0.1: 326693.0000 - val_precision0.1: 0.5504 - val_recall0.1: 0.9229 - val_
            tp0.3: 3626074.0000 - val_fp0.3: 2618929.0000 - val_tn0.3: 19359480.0000 - val_fn0.3: 609927.0000 - val_precision0.3: 0.5806 - val_recall0.3: 0.8560 - val_tp0.5: 3338230.0000 - val_fp0.5: 2236986.0000 - val_tn0.5: 19741408.0000 - val_f
            n0.5: 897771.0000 - val_precision0.5: 0.5988 - val_recall0.5: 0.7881 - val_tp0.7: 2996830.0000 - val_fp0.7: 1846715.0000 - val_tn0.7: 20131684.0000 - val_fn0.7: 1239171.0000 - val_precision0.7: 0.6187 - val_recall0.7: 0.7075 - val_tp0.
            9: 2591293.0000 - val_fp0.9: 1332148.0000 - val_tn0.9: 20646248.0000 - val_fn0.9: 1644708.0000 - val_precision0.9: 0.6605 - val_recall0.9: 0.6117 - val_accuracy: 0.8804 - val_auc: 0.9182
            Epoch 44/50
            1280/1280 [==============================] - 1965s 2s/step - loss: 0.1994 - tp0.1: 8332024.2139 - fp0.1: 2677627.7361 - tn0.1: 41232032.9399 - fn0.1: 268956.1819 - precision0.1: 0.7573 - recall0.1: 0.9690 - tp0.3: 8088072.3755 - fp0.3:
             1334673.8392 - tn0.3: 42575000.3903 - fn0.3: 512908.0203 - precision0.3: 0.8587 - recall0.3: 0.9411 - tp0.5: 7804018.2927 - fp0.5: 727991.3505 - tn0.5: 43181681.2311 - fn0.5: 796962.1030 - precision0.5: 0.9148 - recall0.5: 0.9085 - tp
            0.7: 7411774.5628 - fp0.7: 351151.7166 - tn0.7: 43558520.9914 - fn0.7: 1189205.8329 - precision0.7: 0.9548 - recall0.7: 0.8632 - tp0.9: 6689648.7783 - fp0.9: 96689.1569 - tn0.9: 43812989.9953 - fn0.9: 1911331.6175 - precision0.9: 0.985
            8 - recall0.9: 0.7794 - accuracy: 0.9712 - auc: 0.9819 - val_loss: 0.5577 - val_tp0.1: 3767211.0000 - val_fp0.1: 2896593.0000 - val_tn0.1: 19207012.0000 - val_fn0.1: 343594.0000 - val_precision0.1: 0.5653 - val_recall0.1: 0.9164 - val_
            tp0.3: 3483824.0000 - val_fp0.3: 2230299.0000 - val_tn0.3: 19873292.0000 - val_fn0.3: 626981.0000 - val_precision0.3: 0.6097 - val_recall0.3: 0.8475 - val_tp0.5: 3200515.0000 - val_fp0.5: 1719966.0000 - val_tn0.5: 20383632.0000 - val_f
            n0.5: 910290.0000 - val_precision0.5: 0.6504 - val_recall0.5: 0.7786 - val_tp0.7: 2881571.0000 - val_fp0.7: 1322038.0000 - val_tn0.7: 20781552.0000 - val_fn0.7: 1229234.0000 - val_precision0.7: 0.6855 - val_recall0.7: 0.7010 - val_tp0.
            9: 2488169.0000 - val_fp0.9: 864656.0000 - val_tn0.9: 21238940.0000 - val_fn0.9: 1622636.0000 - val_precision0.9: 0.7421 - val_recall0.9: 0.6053 - val_accuracy: 0.8997 - val_auc: 0.9249
            Epoch 45/50
            1280/1280 [==============================] - 1967s 2s/step - loss: 0.2054 - tp0.1: 8039884.9914 - fp0.1: 2657730.7822 - tn0.1: 41537257.0453 - fn0.1: 275776.4333 - precision0.1: 0.7479 - recall0.1: 0.9656 - tp0.3: 7799006.9430 - fp0.3:
             1331880.2607 - tn0.3: 42863099.0406 - fn0.3: 516654.4817 - precision0.3: 0.8527 - recall0.3: 0.9360 - tp0.5: 7508282.6300 - fp0.5: 716584.7447 - tn0.5: 43478405.7619 - fn0.5: 807378.7947 - precision0.5: 0.9120 - recall0.5: 0.9006 - tp
            0.7: 7111748.2311 - fp0.7: 345919.2553 - tn0.7: 43849114.1967 - fn0.7: 1203913.1936 - precision0.7: 0.9530 - recall0.7: 0.8525 - tp0.9: 6406401.2319 - fp0.9: 97963.5379 - tn0.9: 44097016.4520 - fn0.9: 1909260.1928 - precision0.9: 0.984
            7 - recall0.9: 0.7671 - accuracy: 0.9708 - auc: 0.9799 - val_loss: 0.5755 - val_tp0.1: 3947505.0000 - val_fp0.1: 3387487.0000 - val_tn0.1: 18700156.0000 - val_fn0.1: 179254.0000 - val_precision0.1: 0.5382 - val_recall0.1: 0.9566 - val_
            tp0.3: 3738020.0000 - val_fp0.3: 2730917.0000 - val_tn0.3: 19356726.0000 - val_fn0.3: 388739.0000 - val_precision0.3: 0.5778 - val_recall0.3: 0.9058 - val_tp0.5: 3505678.0000 - val_fp0.5: 2359050.0000 - val_tn0.5: 19728584.0000 - val_f
            n0.5: 621081.0000 - val_precision0.5: 0.5978 - val_recall0.5: 0.8495 - val_tp0.7: 3196056.0000 - val_fp0.7: 1989619.0000 - val_tn0.7: 20098016.0000 - val_fn0.7: 930703.0000 - val_precision0.7: 0.6163 - val_recall0.7: 0.7745 - val_tp0.9
            : 2807022.0000 - val_fp0.9: 1495603.0000 - val_tn0.9: 20592028.0000 - val_fn0.9: 1319737.0000 - val_precision0.9: 0.6524 - val_recall0.9: 0.6802 - val_accuracy: 0.8863 - val_auc: 0.9356
            Epoch 46/50
            1280/1280 [==============================] - 1954s 2s/step - loss: 0.2006 - tp0.1: 8213399.9953 - fp0.1: 2647494.8681 - tn0.1: 41382018.9024 - fn0.1: 267742.8033 - precision0.1: 0.7532 - recall0.1: 0.9684 - tp0.3: 7974876.2194 - fp0.3:
             1321606.3544 - tn0.3: 42707910.7440 - fn0.3: 506266.5792 - precision0.3: 0.8563 - recall0.3: 0.9401 - tp0.5: 7686530.4450 - fp0.5: 705127.5909 - tn0.5: 43324387.6230 - fn0.5: 794612.3536 - precision0.5: 0.9155 - recall0.5: 0.9060 - tp
            0.7: 7293262.6581 - fp0.7: 337606.6417 - tn0.7: 43691898.0304 - fn0.7: 1187880.1405 - precision0.7: 0.9556 - recall0.7: 0.8595 - tp0.9: 6593016.1983 - fp0.9: 93813.7900 - tn0.9: 43935696.6682 - fn0.9: 1888126.6003 - precision0.9: 0.985
            9 - recall0.9: 0.7775 - accuracy: 0.9713 - auc: 0.9815 - val_loss: 0.5779 - val_tp0.1: 3847918.0000 - val_fp0.1: 3630042.0000 - val_tn0.1: 18523056.0000 - val_fn0.1: 213382.0000 - val_precision0.1: 0.5146 - val_recall0.1: 0.9475 - val_
            tp0.3: 3624637.0000 - val_fp0.3: 2927247.0000 - val_tn0.3: 19225848.0000 - val_fn0.3: 436663.0000 - val_precision0.3: 0.5532 - val_recall0.3: 0.8925 - val_tp0.5: 3387759.0000 - val_fp0.5: 2442181.0000 - val_tn0.5: 19710918.0000 - val_f
            n0.5: 673541.0000 - val_precision0.5: 0.5811 - val_recall0.5: 0.8342 - val_tp0.7: 3093355.0000 - val_fp0.7: 1959305.0000 - val_tn0.7: 20193798.0000 - val_fn0.7: 967945.0000 - val_precision0.7: 0.6122 - val_recall0.7: 0.7617 - val_tp0.9
            : 2709194.0000 - val_fp0.9: 1315902.0000 - val_tn0.9: 20837192.0000 - val_fn0.9: 1352106.0000 - val_precision0.9: 0.6731 - val_recall0.9: 0.6671 - val_accuracy: 0.8811 - val_auc: 0.9327
            Epoch 47/50
            1280/1280 [==============================] - 1945s 2s/step - loss: 0.1969 - tp0.1: 8300923.1351 - fp0.1: 2610298.6073 - tn0.1: 41331766.4083 - fn0.1: 267669.1296 - precision0.1: 0.7642 - recall0.1: 0.9694 - tp0.3: 8061644.4340 - fp0.3:
             1313054.2631 - tn0.3: 42629006.5870 - fn0.3: 506947.8306 - precision0.3: 0.8611 - recall0.3: 0.9422 - tp0.5: 7779027.9711 - fp0.5: 711910.2787 - tn0.5: 43230141.7112 - fn0.5: 789564.2935 - precision0.5: 0.9166 - recall0.5: 0.9097 - tp
            0.7: 7390637.0796 - fp0.7: 345621.5621 - tn0.7: 43596452.1616 - fn0.7: 1177955.1850 - precision0.7: 0.9553 - recall0.7: 0.8650 - tp0.9: 6688557.9680 - fp0.9: 97298.4106 - tn0.9: 43844794.7112 - fn0.9: 1880034.2966 - precision0.9: 0.985
            5 - recall0.9: 0.7835 - accuracy: 0.9714 - auc: 0.9821 - val_loss: 0.6259 - val_tp0.1: 3930823.0000 - val_fp0.1: 3136289.0000 - val_tn0.1: 18868696.0000 - val_fn0.1: 278584.0000 - val_precision0.1: 0.5562 - val_recall0.1: 0.9338 - val_
            tp0.3: 3682497.0000 - val_fp0.3: 2597221.0000 - val_tn0.3: 19407772.0000 - val_fn0.3: 526910.0000 - val_precision0.3: 0.5864 - val_recall0.3: 0.8748 - val_tp0.5: 3429169.0000 - val_fp0.5: 2237642.0000 - val_tn0.5: 19767344.0000 - val_f
            n0.5: 780238.0000 - val_precision0.5: 0.6051 - val_recall0.5: 0.8146 - val_tp0.7: 3114765.0000 - val_fp0.7: 1889104.0000 - val_tn0.7: 20115888.0000 - val_fn0.7: 1094642.0000 - val_precision0.7: 0.6225 - val_recall0.7: 0.7400 - val_tp0.
            9: 2710793.0000 - val_fp0.9: 1416123.0000 - val_tn0.9: 20588868.0000 - val_fn0.9: 1498614.0000 - val_precision0.9: 0.6569 - val_recall0.9: 0.6440 - val_accuracy: 0.8849 - val_auc: 0.9224
            Epoch 48/50
            1280/1280 [==============================] - 1953s 2s/step - loss: 0.1928 - tp0.1: 8105003.8283 - fp0.1: 2580803.4801 - tn0.1: 41568825.8158 - fn0.1: 256048.8673 - precision0.1: 0.7573 - recall0.1: 0.9697 - tp0.3: 7868496.5355 - fp0.3:
             1297144.6347 - tn0.3: 42852437.2209 - fn0.3: 492556.1600 - precision0.3: 0.8575 - recall0.3: 0.9414 - tp0.5: 7589914.3154 - fp0.5: 704118.4832 - tn0.5: 43445489.9368 - fn0.5: 771138.3802 - precision0.5: 0.9146 - recall0.5: 0.9080 - tp
            0.7: 7204444.4348 - fp0.7: 338098.1210 - tn0.7: 43811497.8689 - fn0.7: 1156608.2607 - precision0.7: 0.9549 - recall0.7: 0.8617 - tp0.9: 6516177.3638 - fp0.9: 93695.1686 - tn0.9: 44055912.6136 - fn0.9: 1844875.3318 - precision0.9: 0.985
            8 - recall0.9: 0.7794 - accuracy: 0.9719 - auc: 0.9822 - val_loss: 0.5549 - val_tp0.1: 3956721.0000 - val_fp0.1: 3232246.0000 - val_tn0.1: 18771428.0000 - val_fn0.1: 254013.0000 - val_precision0.1: 0.5504 - val_recall0.1: 0.9397 - val_
            tp0.3: 3708830.0000 - val_fp0.3: 2603884.0000 - val_tn0.3: 19399780.0000 - val_fn0.3: 501904.0000 - val_precision0.3: 0.5875 - val_recall0.3: 0.8808 - val_tp0.5: 3455265.0000 - val_fp0.5: 2129156.0000 - val_tn0.5: 19874504.0000 - val_f
            n0.5: 755469.0000 - val_precision0.5: 0.6187 - val_recall0.5: 0.8206 - val_tp0.7: 3150570.0000 - val_fp0.7: 1691047.0000 - val_tn0.7: 20312616.0000 - val_fn0.7: 1060164.0000 - val_precision0.7: 0.6507 - val_recall0.7: 0.7482 - val_tp0.
            9: 2734733.0000 - val_fp0.9: 1128005.0000 - val_tn0.9: 20875662.0000 - val_fn0.9: 1476001.0000 - val_precision0.9: 0.7080 - val_recall0.9: 0.6495 - val_accuracy: 0.8900 - val_auc: 0.9326
            Epoch 49/50
            1280/1280 [==============================] - 1952s 2s/step - loss: 0.1904 - tp0.1: 8205918.2201 - fp0.1: 2597375.0523 - tn0.1: 41463883.8283 - fn0.1: 243494.6815 - precision0.1: 0.7596 - recall0.1: 0.9713 - tp0.3: 7967288.4333 - fp0.3:
             1294707.1905 - tn0.3: 42766530.0679 - fn0.3: 482124.4684 - precision0.3: 0.8602 - recall0.3: 0.9426 - tp0.5: 7690726.4028 - fp0.5: 706852.2178 - tn0.5: 43354411.7049 - fn0.5: 758686.4988 - precision0.5: 0.9160 - recall0.5: 0.9099 - tp
            0.7: 7310265.9742 - fp0.7: 341418.8126 - tn0.7: 43719824.0367 - fn0.7: 1139146.9274 - precision0.7: 0.9557 - recall0.7: 0.8651 - tp0.9: 6619945.5667 - fp0.9: 95254.3942 - tn0.9: 43965990.5909 - fn0.9: 1829467.3349 - precision0.9: 0.986
            3 - recall0.9: 0.7836 - accuracy: 0.9719 - auc: 0.9831 - val_loss: 0.7113 - val_tp0.1: 3891189.0000 - val_fp0.1: 3192765.0000 - val_tn0.1: 18774752.0000 - val_fn0.1: 355695.0000 - val_precision0.1: 0.5493 - val_recall0.1: 0.9162 - val_
            tp0.3: 3627202.0000 - val_fp0.3: 2690459.0000 - val_tn0.3: 19277064.0000 - val_fn0.3: 619682.0000 - val_precision0.3: 0.5741 - val_recall0.3: 0.8541 - val_tp0.5: 3369672.0000 - val_fp0.5: 2384023.0000 - val_tn0.5: 19583492.0000 - val_f
            n0.5: 877212.0000 - val_precision0.5: 0.5857 - val_recall0.5: 0.7934 - val_tp0.7: 3076485.0000 - val_fp0.7: 2107024.0000 - val_tn0.7: 19860492.0000 - val_fn0.7: 1170399.0000 - val_precision0.7: 0.5935 - val_recall0.7: 0.7244 - val_tp0.
            9: 2710033.0000 - val_fp0.9: 1728311.0000 - val_tn0.9: 20239206.0000 - val_fn0.9: 1536851.0000 - val_precision0.9: 0.6106 - val_recall0.9: 0.6381 - val_accuracy: 0.8756 - val_auc: 0.9085
            Epoch 50/50
            1280/1280 [==============================] - 1959s 2s/step - loss: 0.1904 - tp0.1: 8168142.8899 - fp0.1: 2531078.8610 - tn0.1: 41557584.1272 - fn0.1: 253833.5800 - precision0.1: 0.7637 - recall0.1: 0.9699 - tp0.3: 7935448.9009 - fp0.3:
             1268230.0484 - tn0.3: 42820446.9766 - fn0.3: 486527.5691 - precision0.3: 0.8629 - recall0.3: 0.9420 - tp0.5: 7667088.7853 - fp0.5: 699134.4457 - tn0.5: 43389534.5613 - fn0.5: 754887.6846 - precision0.5: 0.9167 - recall0.5: 0.9102 - tp
            0.7: 7290487.3372 - fp0.7: 342110.9336 - tn0.7: 43746573.7869 - fn0.7: 1131489.1327 - precision0.7: 0.9553 - recall0.7: 0.8655 - tp0.9: 6585906.2607 - fp0.9: 97053.1694 - tn0.9: 43991631.9688 - fn0.9: 1836070.2092 - precision0.9: 0.985
            5 - recall0.9: 0.7818 - accuracy: 0.9724 - auc: 0.9826 - val_loss: 0.5552 - val_tp0.1: 3972788.0000 - val_fp0.1: 3022431.0000 - val_tn0.1: 18950448.0000 - val_fn0.1: 268737.0000 - val_precision0.1: 0.5679 - val_recall0.1: 0.9366 - val_
            tp0.3: 3744205.0000 - val_fp0.3: 2467134.0000 - val_tn0.3: 19505742.0000 - val_fn0.3: 497320.0000 - val_precision0.3: 0.6028 - val_recall0.3: 0.8827 - val_tp0.5: 3515241.0000 - val_fp0.5: 2098091.0000 - val_tn0.5: 19874784.0000 - val_f
            n0.5: 726284.0000 - val_precision0.5: 0.6262 - val_recall0.5: 0.8288 - val_tp0.7: 3227939.0000 - val_fp0.7: 1707258.0000 - val_tn0.7: 20265616.0000 - val_fn0.7: 1013586.0000 - val_precision0.7: 0.6541 - val_recall0.7: 0.7610 - val_tp0.
            9: 2849341.0000 - val_fp0.9: 1228067.0000 - val_tn0.9: 20744808.0000 - val_fn0.9: 1392184.0000 - val_precision0.9: 0.6988 - val_recall0.9: 0.6718 - val_accuracy: 0.8923 - val_auc: 0.9339
            420/420 [==============================] - 126s 300ms/step - loss: 0.5623 - tp0.1: 4784751.0000 - fp0.1: 3873965.0000 - tn0.1: 25422992.0000 - fn0.1: 324680.0000 - precision0.1: 0.5526 - recall0.1: 0.9365 - tp0.3: 4514069.0000 - fp0.3:
             3235942.0000 - tn0.3: 26061030.0000 - fn0.3: 595362.0000 - precision0.3: 0.5825 - recall0.3: 0.8835 - tp0.5: 4242444.0000 - fp0.5: 2843465.0000 - tn0.5: 26453508.0000 - fn0.5: 866987.0000 - precision0.5: 0.5987 - recall0.5: 0.8303 - t
            p0.7: 3892738.0000 - fp0.7: 2409415.0000 - tn0.7: 26887552.0000 - fn0.7: 1216693.0000 - precision0.7: 0.6177 - recall0.7: 0.7619 - tp0.9: 3413153.0000 - fp0.9: 1853895.0000 - tn0.9: 27443078.0000 - fn0.9: 1696278.0000 - precision0.9: 0
            .6480 - recall0.9: 0.6680 - accuracy: 0.8922 - auc: 0.9306
            2021/02/06 23:57:14 INFO mlflow.projects: === Run (ID 'b9935d1e554c423fb2852242f4c4504c') succeeded ===
            (tf-nightly) [ye53nis@node221 drmed-git]$
    

2.3.3 Read out logs of Run 1

2.3.3.1 test dataset statistics
  • test data is not saved out automatically, but can be copied from the log above

    420/420 [==============================] - 126s 300ms/step - loss: 0.5623

    0.1 0.3 0.5 0.7 0.9
    tp 4784751.0000 4514069.0000 4242444.0000 3892738.0000 3413153.0000
    fp 3873965.0000 3235942.0000 2843465.0000 2409415.0000 1853895.0000
    fn 324680.0000 595362.0000 866987.0000 1216693.0000 1696278.0000
    tn 25422992.0000 26061030.0000 26453508.0000 26887552.0000 27443078.0000
    all 34,406,388 34,406,403 34,406,404 34,406,398 34,406,404
    precision 0.5526 0.5825 0.5987 0.6177 0.6480
    recall 0.9365 0.8835 0.8303 0.7619 0.6680

    accuracy: 0.8922 - auc: 0.9306

    0.1 actual positive actual negative  
    pred positive 0.13906577 0.11259435 Prec: 0.5526
    pred negative 9.4345271e-3 0.73890325  
      Recall: 0.9365    
          F1: 0.69506400
    0.3 actual positive actual negative  
    pred positive 0.13119852 0.094050575 Prec: 0.5825
    pred negative 0.017303814 0.75744709  
      Recall: 0.8835    
          F1: 0.70209925
    0.5 actual positive actual negative  
    pred positive 0.12330391 0.082643481 Prec: 0.5987
    pred negative 0.025198419 0.76885419  
      Recall: 0.8303    
          F1: 0.69573213
    0.7 actual positive actual negative  
    pred positive 0.11313995 0.070028109 Prec: 0.6177
    pred negative 0.035362406 0.78146954  
      Recall: 0.7619    
          F1: 0.68226389
    0.9 actual positive actual negative  
    pred positive 0.099201096 0.053882266 Prec: 0.6480
    pred negative 0.049301229 0.79761541  
      Recall: 0.6680    
          F1: 0.65784802
2.3.3.2 prediction plots after each epoch

after epoch 1: plot0.png epoch 2: plot1.png epoch 3: plot2.png epoch 4: plot3.png epoch 5: plot4.png epoch 10: plot9.png epoch 20: plot19.png epoch 30: plot29.png epoch 40: plot39.png epoch 50: plot49.png

2.3.3.3 Git log after some code additions
      !git log -10
      commit a070d3b531725e0fb37688dde80e990083ccf1cc
      Author: Apoplex <oligolex@vivaldi.net>
      Date:   Mon Mar 15 21:48:01 2021 +0100

          Fix photon count bin metadata 2

      commit 86bcbfe13f4026f9b554ba8f0c7e3b9360090331
      Author: Apoplex <oligolex@vivaldi.net>
      Date:   Mon Mar 15 21:40:47 2021 +0100

          Fix photon count bin metadata
      commit 1c7ca995b2e550f6b6cb71dca647f170bbd9982d
      Author: Apoplex <oligolex@vivaldi.net>
      Date:   Mon Mar 15 19:10:01 2021 +0100

          Fix correction by list of prediction thresholds

      commit 61cbc69dc8be177a754afab9dfea82ab6cd1086e
      Author: Apoplex <oligolex@vivaldi.net>
      Date:   Mon Mar 15 19:03:07 2021 +0100

          Add correction by different prediction thresholds

      commit 58aa20f75747c43056ebe56831395b01c0535842
      Author: Apoplex <oligolex@vivaldi.net>
      Date:   Mon Mar 15 11:04:31 2021 +0100

          Fix column name \tau

      commit 01c14384c452ac4106263d088e0587ddf4ebc379
      Author: Apoplex <oligolex@vivaldi.net>
      Date:   Mon Mar 8 18:33:48 2021 +0100

          Add FileNotFoundError checks to import functions

      commit 28640d1360ca77aaa633de04e3349da6f12b208c
      Author: Apoplex <oligolex@vivaldi.net>
      Date:   Mon Mar 8 17:45:33 2021 +0100

          Fix if ntraces=None

      commit 5e493d6c826ca24b425a3b11c0b07d31aac8af1a
      Author: Apoplex <oligolex@vivaldi.net>
      Date:   Mon Mar 8 17:17:42 2021 +0100

          Add correction function for ptu files + csv export

      commit 61f076ecec76dd1f7c0323feb2b9e48f60368582
      Author: Apoplex <oligolex@vivaldi.net>
      Date:   Sat Feb 20 23:43:15 2021 +0100

          Fix concatenation order, add missing traces note

      commit ed974cb634e7e1c47b730b136fbd09d9ee20535f
      Author: Apoplex <oligolex@vivaldi.net>
      Date:   Sat Feb 20 22:35:14 2021 +0100

          Fix np.repeat, remove nfiles, print no of traces
2.3.3.4 Application 1 - load modules, set parameters
  1. Load the required modules
             %cd /beegfs/ye53nis/drmed-git
    
    /beegfs/ye53nis/drmed-git
    
             from pathlib import Path
    
             import sys
             import mlflow
             import matplotlib.pyplot as plt
             import numpy as np
             import pandas as pd
             import seaborn as sns
             mlflow.version.VERSION
    
    1.13.1
    
             sys.path.append('src/')
             from fluotracify.simulations import (
                import_simulation_from_csv as isfc,
                analyze_simulations as ans,
             )
             from fluotracify.training import build_model as bm, preprocess_data as ppd
             from fluotracify.applications import correlate, plots, correction
             from fluotracify.imports import ptu_utils as ptu
    
             import importlib
             importlib.reload(correction)
    
    <module 'fluotracify.applications.correction' from 'src/fluotracify/applications/correction.py'>
    
         folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/'
         col_per_example = 3
         lab_thresh = 0.04
         pred_thresh = 0.5
         xunit = 1
         artifact = 0
         model_type = 1
         fwhm = 250
         run_id = 'b9935d1e554c423fb2852242f4c4504c'
         length_delimiter = 2**14
  • now load the trained model
            mlflow.set_tracking_uri('file:///beegfs/ye53nis/drmed-git/data/mlruns')
            client = mlflow.tracking.MlflowClient(tracking_uri=mlflow.get_tracking_uri())
            model_path = client.download_artifacts(run_id=run_id,
                                                   path='model')
            model_keras = mlflow.keras.load_model(model_uri=model_path,
                                                  custom_objects={'binary_ce_dice':bm.binary_ce_dice_loss()})
            print(model_path, '\n', model_keras)
    
    /beegfs/ye53nis/drmed-git/data/mlruns/3/b9935d1e554c423fb2852242f4c4504c/artifacts/model
     <tensorflow.python.keras.engine.functional.Functional object at 0x2ae3e21c2d60>
    
2.3.3.5 Application 2 - test data
  • I copied the test data which was randomly sampled in the mlflow run (See docs above) in an extra directory. Next time, train and test data will be split beforehand.
            dataset, _, nsamples, experiment_params = isfc.import_from_csv(
                folder=folder,
                header=12,
                frac_train=1,
                col_per_example=col_per_example,
                dropindex=None,
                dropcolumns=None)
            experiment_params
    
            train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set009.csv
            train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.08_set003.csv
            train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D50_set003.csv
            train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.4_set007.csv
            train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.6_set009.csv
            train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set008.csv
            train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.2_set010.csv
            train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D1.0_set008.csv
            train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.2_set007.csv
            train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.1_set002.csvtrain 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.2_set008.csv
            train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D10_set001.csv
            train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.4_set008.csv
            train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.4_set005.csv
            train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set004.csv
            train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D1.0_set005.csv
            train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.1_set006.csv
            train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.069_set010.csv
            train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set002.csv
            train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D1.0_set006.csv
    
      0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
    unique identifier 340ad302-cf12-4224-addf-9455009bc9b3 b85aeec3-5e79-444f-b0c5-5ba7057fad8c b2b78a0f-278b-4b7d-82a3-5e625fbc91de 32d6e80c-92af-48c2-a756-1eee94d17c74 87d9374a-3ae4-4dfb-8dc3-ec401df4961d 90ec2bbf-d308-4895-b5fd-1974c0b3390d 5c310958-a0cc-4d1d-b721-f8652afd9707 b5d1537c-4113-4f13-a1ca-65664181f8cc 33ee5002-7064-4882-88de-79c773d741cd 9a2f89bd-c64e-4324-910c-46a5b8a657ba 71894018-b950-4672-a182-653d59f3b7db 6a3c00e3-24e6-4758-9c6d-f2a9dc23f7d9 20f0a9df-2c4d-409f-86de-ceda40d1aafe eb3f3035-955f-4e86-bfbd-16421eede63f cf57c545-933f-41b8-bcfe-19723d79b7bf 84116b56-7264-4f63-833a-2fa1af968288 55e826c0-a09a-4f1e-8f57-ddc113715aaf bebf4d6b-0ffe-4dcf-be78-93bfa70dd04c f2dcf7ee-f180-4b26-9706-526ceb6b9fe6 c1a85eb4-f202-40f7-8bce-cd3fd3a843dc
    path and file name /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/50… /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/1…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/10… /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/1…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/1….
    FWHMs of excitation PSFs used in nm [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250]
    Extent of simulated PSF (distance to center of Gaussian) in nm 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000
    total simulation time in ms 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384
    time step in ms 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
    number of fast molecules 2422 856 2561 2887 1296 766 1247 3300 895 2975 1239 1376 1724 560 1785 2059 2060 679 2900 1357
    diffusion rate of molecules in micrometer\2 / s 3.0 0.08 50 0.4 0.6 3.0 0.2 1.0 0.2 0.1 0.2 10 0.4 0.4 3.0 1.0 0.1 0.069 3.0 1.0
    width of the simulation in nm 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0
    height of the simulation in nm 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0
    number of slow clusters 3 7 7 3 3 10 3 3 7 10 7 7 10 3 10 3 10 3 3 10
    diffusion rate of clusters in micrometer\2 / s 1.0 0.1 0.1 1.0 1.0 0.01 1.0 1.0 0.1 0.01 0.1 0.1 0.01 1.0 0.01 1.0 0.01 1.0 1.0 0.01
    trace001 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1
            diffrates = experiment_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32)
            nmols = experiment_params.loc['number of fast molecules'].astype(np.float32)
            clusters = experiment_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32)
    
            dataset_sep = isfc.separate_data_and_labels(array=dataset,
                                                        nsamples=nsamples,
                                                        col_per_example=col_per_example)
    
            features = dataset_sep['0']
            labels_artifact = dataset_sep['1']
            labels_artifact_bool = labels_artifact > lab_thresh
            labels_puretrace = dataset_sep['2']
    
    The given DataFrame was split into 3 parts with shapes: [(16384, 2000), (16384, 2000), (16384, 2000)]
    
  • First attempt: look at distribution of all correlated diffrates by each simulated diffusion rate. The following function was thus executed for each simulated diffusion time and the box plots put together in inkscape by hand.
            pred_thresh = 0.5
            diffrate_of_interest = 50
            transit_time_expected = ((float(fwhm) / 1000)**2 * 1000) / (
                diffrate_of_interest * 8 * np.log(2.0))
            upper_bin = np.ceil(4*transit_time_expected)
            xunit_bins = np.arange(0, upper_bin, upper_bin / 50)
    
            out = plots.plot_distribution_of_correlations_corrected_by_prediction(
                diffrate_of_interest=diffrate_of_interest,
                model=model_keras,
                lab_thresh=lab_thresh,
                pred_thresh=pred_thresh,
                xunit=xunit,
                artifact=artifact,
                model_type=model_type,
                xunit_bins=xunit_bins,
                experiment_params=experiment_params,
                nsamples=nsamples,
                features=features,
                labels_artifact=labels_artifact,
                labels_puretrace=labels_puretrace,
                number_of_traces=100)
    

    210215_artifact0_xunit1_alldiffrates.svg

  • We see some interesting results in the corrupted data without correction (first box, in blue), can they be explained by the test data?
    speed of clusters 0.01 0.1 1.0
    0.069 test run1     10
    0.08 test run1   3  
    0.1 test run1 2, 6    
    0.2 test run1   7, 8 10
    0.4 test run1 8   5, 7
    0.6 test run1     9
    1.0 test run1 6   5, 8
    3.0 test run1 4, 8   2, 9
    10 test run1   1  
    50 test run1   3  
    • subsets which look like the bright clusters lead to a shift in the correlation curves towards their own transit time:
      • 0.069=163.35ms: cluster speed 1.0=11.27ms, median correlated speed 11.6ms
      • 0.08=140.89ms: cluster speed 0.1=112.71ms, median correlated speed 100.5ms
      • 0.6=18.79ms: cluster speed 1.0=11.27ms, median correlated speed 12.10ms
      • 10=1.13ms: cluster speed 0.1=112.71ms, median correlated speed 92.1ms
      • 50=0.23ms: cluster speed 0.1=112.71ms, median correlated speed 96.5ms
    • subsets which fall out of the pattern where I have to take a closer look:
      • 0.1=112.71ms: cluster speed 0.01=1127ms, median correlated speed 346.6ms → possible explanation: it is a rule of thumb in the FCS community, that you need around 2-3 orders of magnitude of measurement time longer than transit times you want to measure. For speeds of 1.13s that means measurement times of 113-1130s, where we are far away from with our simulated ~16s of trace.
      • 0.2=56.36ms: cluster speed 0.1=112.71ms AND 1.0=11.27ms, median correlated speed 73ms → possible explanation: there seem to be two maxima in the distribution, one around 10ms, one around 70-110ms, which kind of fits to the two kinds of clusters in these traces. → another strange thing: it has a quite long tail of transit times, way over 200ms, which does not seem related to the direct cluster speeds.
      • 0.4=28.18ms, 1.0=11.27ms and 3.0=3.76ms: cluster speed 0.01=1127ms AND 1.0=11.27ms, median correlated speed 14.4ms → strange case, since the traces with the slower 0.01 clusters do not show up in the distribution! The log of isfc.import_from_csv shows, that the respective files were loaded and used for these plots.
  • Looking at the predictions (and controls)
    • subsets which look fine, as in: predictions ~ controls
      • 0.069, 0.08, 0.2, 0.6
    • subsets where there seem to be a subsubset of traces where the prediction fails:
      • 0.1: median is fine, but the distribution is a lot wider, including a considerable left-ward skew, which does not show in either of the other distributions (corrupted or controls)
      • 0.4: median is fine, distribution is also okay, but a subset of traces gets very low transit times after correlation → have to figure out which subset this is
      • 1.0, 3.0: median is fine, but distribution has a considerable left-ward skew, and quite some outliers on the right
      • 10, 50: median and distribution are okay, BUT here there is quite a difference between the distribution in predictions, label control and pure control → here, most clearly in 50, it seems artifacts are introduced through the correction method.
      corr_out = ans.correlate_simulations_corrected_by_prediction(
          model=model_keras,
          lab_thresh=lab_thresh,
          pred_thresh=pred_thresh,
          artifact=artifact,
          model_type=model_type,
          experiment_params=experiment_params,
          nsamples=nsamples,
          features=features,
          labels_artifact=labels_artifact,
          labels_puretrace=labels_puretrace,
          save_as_csv=True)
      corr_out
processed correlation of 2000 traces with correction by label
processed correlation of 1999 traces with correction by prediction
processed correlation of 2000 traces without correction
processed correlation of pure 2000 traces
  Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used
0 3.0 1.0 2422.0 1.260146 8.944242 16384 corrupted without correction
1 3.0 1.0 2422.0 1.156435 9.746384 16384 corrupted without correction
2 3.0 1.0 2422.0 1.716206 6.567426 16384 corrupted without correction
3 3.0 1.0 2422.0 0.999673 11.274746 16384 corrupted without correction
4 3.0 1.0 2422.0 1.040372 10.833679 16384 corrupted without correction
7995 1.0 0.01 1357.0 0.706696 15.94895 14933 corrected by prediction
7996 1.0 0.01 1357.0 0.765425 14.725227 11550 corrected by prediction
7997 1.0 0.01 1357.0 2.033196 5.543517 1250 corrected by prediction
7998 1.0 0.01 1357.0 3.744989 3.009636 261 corrected by prediction
7999 1.0 0.01 1357.0 None None None corrected by prediction

8000 rows × 7 columns

      corr_out = pd.read_csv(filepath_or_buffer='data/exp-210204-unet/2021-02-20_correlations.csv')
      corr_out
  Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used
0 3.0 1.00 2422.0 1.260146 8.944242 16384.0 corrupted without correction
1 3.0 1.00 2422.0 1.156435 9.746384 16384.0 corrupted without correction
2 3.0 1.00 2422.0 1.716206 6.567426 16384.0 corrupted without correction
3 3.0 1.00 2422.0 0.999673 11.274746 16384.0 corrupted without correction
4 3.0 1.00 2422.0 1.040372 10.833679 16384.0 corrupted without correction
7995 1.0 0.01 1357.0 0.706696 15.948950 14933.0 corrected by prediction
7996 1.0 0.01 1357.0 0.765425 14.725227 11550.0 corrected by prediction
7997 1.0 0.01 1357.0 2.033196 5.543517 1250.0 corrected by prediction
7998 1.0 0.01 1357.0 3.744989 3.009636 261.0 corrected by prediction
7999 1.0 0.01 1357.0 NaN NaN NaN corrected by prediction

8000 rows × 7 columns

Awesome! Now let’s try categorical plotting to examine the results in a more structured manner. For the following 3 plots, I just changed the x value.

      ax = sns.catplot(data=corr_out,
            kind='strip',
            x='$D$ in $\\frac{{\mu m^2}}{{s}}$',
            y='Traces used',
            hue='Simulated $D_{{clust}}$',
            col='Simulated $D$',
            col_wrap=3,
            orient='h',
            dodge=True,
            sharex=False)
      plt.show()

Trace lengths: 2021-02-20_correlations_trace-lengths.png Transit times: 2021-02-20_correlations_transittimes.png Diffusion rates: 2021-02-20_correlations_diffusionrates.png

I have the theory, that trace lengths have quite an impact on transit times and diffusion rates. Let’s try to do a big plot of transittimes vs trace lengths and diffusion rates against trace lengths.

2.3.3.6 Application 3 - experimental data

Here I used the code in a jupyter notebook to produce this plot: ptu_brightbursts_correction_by_unet_histogram_010_tt_210303_400traces.svg

  1. There is a problem with the UNet, if it has to classify features different than the training size (1, 16384, 1) for the first time. It gives the following error:
           ---------------------------------------------------------------------------
           ValueError                                Traceback (most recent call last)
           <ipython-input-7-4c721240eb1b> in <module>
                 3 length_delimiter = 2**13  # for U-Net
                 4 bin_for_correlation = 1e5
           ----> 5 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction(
                 6   path_list=[path_tb_pex5_egfp],
                 7   model=model_keras,
    
           /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_experimental_traces_from_ptu_by_unet_prediction(path_list, model, pred_thresh, photon_count_bin, ntraces, save_as_csv)
               405             print('Processing correlation with correction by prediction '
               406                   'of dataset {}'.format(i + 1))
           --> 407             data['{}-pred'.format(i)] = correct_correlation_by_unet_prediction(
               408                 ntraces=ntraces,
               409                 traces_of_interest=ptu_1ms.astype(np.float64),
    
           /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_correlation_by_unet_prediction(ntraces, traces_of_interest, model, pred_thresh, fwhm, length_delimiter, traces_for_correlation, bin_for_correlation, verbose)
               215             ntraces_index=ntraces_index)
               216
           --> 217         predictions = model.predict(features_prepro, verbose=0)
               218         predictions = predictions.flatten()
               219
    
           ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py in predict(self, x, batch_size, verbose, steps, callbacks, max_queue_size, workers, use_multiprocessing)
              1661           for step in data_handler.steps():
              1662             callbacks.on_predict_batch_begin(step)
           -> 1663             tmp_batch_outputs = self.predict_function(iterator)
              1664             if data_handler.should_sync:
              1665               context.async_wait()
    
           ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
               816     tracing_count = self.experimental_get_tracing_count()
               817     with trace.Trace(self._name) as tm:
           --> 818       result = self._call(*args, **kwds)
               819       compiler = "xla" if self._jit_compile else "nonXla"
               820       new_tracing_count = self.experimental_get_tracing_count()
    
           ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
               860       # This is the first call of __call__, so we have to initialize.
               861       initializers = []
           --> 862       self._initialize(args, kwds, add_initializers_to=initializers)
               863     finally:
               864       # At this point we know that the initialization is complete (or less
    
           ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
               701     self._graph_deleter = FunctionDeleter(self._lifted_initializer_graph)
               702     self._concrete_stateful_fn = (
           --> 703         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
               704             *args, **kwds))
               705
    
           ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
              3018       args, kwargs = None, None
              3019     with self._lock:
           -> 3020       graph_function, _ = self._maybe_define_function(args, kwargs)
              3021     return graph_function
              3022
    
           ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
              3412
              3413           self._function_cache.missed.add(call_context_key)
           -> 3414           graph_function = self._create_graph_function(args, kwargs)
              3415           self._function_cache.primary[cache_key] = graph_function
              3416
    
           ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
              3247     arg_names = base_arg_names + missing_arg_names
              3248     graph_function = ConcreteFunction(
           -> 3249         func_graph_module.func_graph_from_py_func(
              3250             self._name,
              3251             self._python_function,
    
           ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
               996         _, original_func = tf_decorator.unwrap(python_func)
               997
           --> 998       func_outputs = python_func(*func_args, **func_kwargs)
               999
              1000       # invariant: `func_outputs` contains only Tensors, CompositeTensors,
    
           ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
               610             xla_context.Exit()
               611         else:
           --> 612           out = weak_wrapped_fn().__wrapped__(*args, **kwds)
               613         return out
               614
    
            ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
               983           except Exception as e:  # pylint:disable=broad-except
               984             if hasattr(e, "ag_error_metadata"):
           --> 985               raise e.ag_error_metadata.to_exception(e)
               986             else:
               987               raise
    
           ValueError: in user code:
    
               /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1512 predict_function  *
                   return step_function(self, iterator)
               /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1502 step_function  **
                   outputs = model.distribute_strategy.run(run_step, args=(data,))
               /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:1262 run
                   return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
               /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:2734 call_for_each_replica
                   return self._call_for_each_replica(fn, args, kwargs)
               /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:3423 _call_for_each_replica
                   return fn(*args, **kwargs)
               /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1495 run_step  **
                   outputs = model.predict_step(data)
               /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1468 predict_step
                   return self(x, training=False)
               /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py:1018 __call__
                   input_spec.assert_input_compatibility(self.input_spec, inputs, self.name)
               /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/input_spec.py:271 assert_input_compatibility
                   raise ValueError('Input ' + str(input_index) +
    
               ValueError: Input 0 is incompatible with layer model: expected shape=(None, 16384, 1), found shape=(None, 8192, 1)
    

    So how do we solve this? I did not find the real cause, but a workaround is, to let the loaded model first predict a dummy input with the training size:

             test_features = np.zeros((2**14))
             test_features = np.reshape(test_features, (1, -1, 1))
             print(test_features.shape)
             predictions = model_keras.predict(test_features, verbose=0)
             predictions = predictions.flatten()
             predictions
    
    (1, 16384, 1)
    array([2.7520498e-08, 7.7272375e-09, 5.2612198e-10, ..., 9.8416812e-08,
           8.9488267e-08, 3.5880134e-07], dtype=float32)
    
  2. Test the algorithm: here it can be seen, that in the ideal case, the metadata from the single files is joined to each computation. For the computation of all traces, this will probably not be possible, because of traces, which get omitted before correlation, because their trace lengths shrank below 32 time steps after correction. This small traces can’t be handled by multipletau.
             path_tb_pex5_egfp = '/beegfs/ye53nis/data/Pablo_structured_experiment'
             pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9]
             length_delimiter = 2**13  # for U-Net
             bin_for_correlation = 1e5
             out = correction.correct_experimental_traces_from_ptu_by_unet_prediction(
               path_list=path_tb_pex5_egfp,
               model=model_keras,
               pred_thresh=pred_thresh,
               photon_count_bin=bin_for_correlation,
               ntraces=None,
               save_as_csv=True)
             out
    
    Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment with bin=1e6. This can take a while...
    1 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu
    2 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu
    Different binning was chosen for correlation. Loading dataset 1 with bin=100000.0. This can take a while...
    Processing correlation of unprocessed dataset 1
    Processing correlation with correction by prediction of dataset 1
    
      \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\) File\GUID File\CreatingTime Measurement\SubMode File\Comment TTResult\StopReason MeasDesc\GlobalResolution TTResult\NumberOfRecords MeasDesc\AcquisitionTime TTResult\MDescWarningFlags TTResult\StopAfter TTResultFormat\TTTRRecType TTResultFormat\BitsPerRecord UsrPowerDiode Header\End Number of Channels
    0 0.87156 12.932046 8192.0 0-orig 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
    1 0.091734 122.866229 8192.0 0-orig 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1
    2 3.181256 3.542957 6413.0 0-pred-0.1 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
    3 1.968434 5.725899 7132.0 0-pred-0.1 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1
    4 0.534267 21.096303 6903.0 0-pred-0.3 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
    5 0.760655 14.817573 7490.0 0-pred-0.3 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1
    6 0.219843 51.268582 7178.0 0-pred-0.5 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
    7 0.453877 24.832866 7659.0 0-pred-0.5 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1
    8 0.144134 78.198714 7407.0 0-pred-0.7 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
    9 0.350758 32.133387 7785.0 0-pred-0.7 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1
    10 0.092882 121.348056 7692.0 0-pred-0.9 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
    11 0.281531 40.03487 7937.0 0-pred-0.9 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1

    12 rows × 94 columns

  3. Run correction for all experimental traces
             path_pex5_exp = ['/beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu', '/beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu']
             pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9]
             length_delimiter = 2**13  # for U-Net
             bin_for_correlation = 1e5
             out = correction.correct_experimental_traces_from_ptu_by_unet_prediction(
               path_list=path_pex5_exp,
               model=model_keras,
               pred_thresh=pred_thresh,
               photon_count_bin=bin_for_correlation,
               ntraces=400,
               save_as_csv=True)
             out
    
             Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu with bin=1e6. This can take a while...
             1 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1082s_1.ptu
             2 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1537s_1.ptu
             3 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488210_T2505s_1.ptu
             4 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488199_T2375s_1.ptu
             5 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2040s_1.ptu
             6 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488229_T2733s_1.ptu
             7 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1070s_1.ptu
             8 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1352s_1.ptu
             9 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T986s_1.ptu10 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488227_T2709s_1.ptu
             11 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2088s_1.ptu
             12 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1214s_1.ptu
             13 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1561s_1.ptu
             14 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T302s_1.ptu
             15 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1932s_1.ptu
             16 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2267s_1.ptu
             17 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2255s_1.ptu
             18 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488208_T2481s_1.ptu
             19 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T314s_1.ptu
             20 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488221_T2637s_1.ptu
             21 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1834s_1.ptu
             22 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1883s_1.ptu
             23 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488197_T2351s_1.ptu
             24 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T254s_1.ptu
             25 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48816_T182s_1.ptu
             26 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2148s_1.ptu
             27 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1238s_1.ptu
             28 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T833s_1.ptu
             29 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T676s_1.ptu
             30 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1496s_1.ptu
             31 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T459s_1.ptu
             32 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1610s_1.ptu
             33 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T592s_1.ptu
             34 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1907s_1.ptu
             35 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T604s_1.ptu
             36 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1895s_1.ptu
             37 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T926s_1.ptu
             38 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T447s_1.ptu
             39 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T821s_1.ptu
             40 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48834_T399s_1.ptu
             41 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T506s_1.ptu
             42 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1076s_1.ptu
             43 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2209s_1.ptu
             44 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T748s_1.ptu
             45 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1232s_1.ptu
             46 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2159s_1.ptu
             47 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T698s_1.ptu
             48 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T855s_1.ptu
             49 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1789s_1.ptu
             50 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488241_T2877s_1.ptu
             51 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488204_T2434s_1.ptu
             52 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T918s_1.ptu
             53 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2147s_1.ptu
             54 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2197s_1.ptu
             55 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1908s_1.ptu
             56 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488238_T2842s_1.ptu
             57 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1968s_1.ptu
             58 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488234_T2793s_1.ptu
             59 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T979s_1.ptu
             60 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1148s_1.ptu
             61 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1280s_1.ptu
             62 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1654s_1.ptu
             63 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1484s_1.ptu
             64 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2245s_1.ptu
             65 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T879s_1.ptu
             66 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1896s_1.ptu
             67 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2124s_1.ptu
             68 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1328s_1.ptu
             69 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T867s_1.ptu
             70 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T962s_1.ptu
             71 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T628s_1.ptu
             72 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48842_T496s_1.ptu
             73 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T590s_1.ptu
             74 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1184s_1.ptu
             75 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488196_T2339s_1.ptu
             76 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1956s_1.ptu
             77 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488217_T2589s_1.ptu
             78 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488218_T2601s_1.ptu
             79 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1418s_1.ptu
             80 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488206_T2458s_1.ptu
             81 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T785s_1.ptu
             82 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1226s_1.ptu
             83 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T278s_1.ptu
             84 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4887_T74s_1.ptu
             85 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2099s_1.ptu
             86 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48817_T194s_1.ptu
             87 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1346s_1.ptu
             88 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T688s_1.ptu
             89 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488211_T2517s_1.ptu
             90 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T712s_1.ptu
             91 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48833_T387s_1.ptu
             92 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T686s_1.ptu
             93 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48813_T146s_1.ptu
             94 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488126_T1502s_1.ptu
             95 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1118s_1.ptu
             96 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1316s_1.ptu
             97 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2243s_1.ptu
             98 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1430s_1.ptu
             99 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488219_T2613s_1.ptu
             100 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1646s_1.ptu
             101 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2231s_1.ptu
             102 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488146_T1742s_1.ptu
             103 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488155_T1859s_1.ptu
             104 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2075s_1.ptu
             105 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1884s_1.ptu
             106 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488244_T2914s_1.ptu
             107 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4886_T62s_1.ptu
             108 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1015s_1.ptu
             109 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1979s_1.ptu
             110 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T674s_1.ptu
             111 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2279s_1.ptu
             112 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2183s_1.ptu
             113 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1689s_1.ptu
             114 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2269s_1.ptu
             115 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T266s_1.ptu
             116 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488209_T2493s_1.ptu
             117 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1630s_1.ptu
             118 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488185_T2221s_1.ptu
             119 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2135s_1.ptu
             120 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T782s_1.ptu
             121 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1472s_1.ptu
             122 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1919s_1.ptu
             123 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T664s_1.ptu
             124 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T351s_1.ptu
             125 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T375s_1.ptu
             126 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T700s_1.ptu
             127 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1545s_1.ptu
             128 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1714s_1.ptu
             129 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1022s_1.ptu
             130 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1754s_1.ptu
             131 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488193_T2303s_1.ptu
             132 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1250s_1.ptu
             133 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488228_T2721s_1.ptu
             134 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1088s_1.ptu
             135 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2040s_1.ptu
             136 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48835_T411s_1.ptu
             137 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1046s_1.ptu
             138 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1466s_1.ptu
             139 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T906s_1.ptu
             140 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T255s_1.ptu
             141 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1730s_1.ptu
             142 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1358s_1.ptu
             143 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T279s_1.ptu
             144 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T638s_1.ptu
             145 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2949s_1.ptu
             146 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T519s_1.ptu
             147 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T482s_1.ptu
             148 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T327s_1.ptu
             149 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T471s_1.ptu
             150 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488225_T2685s_1.ptu
             151 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T362s_1.ptu
             152 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T578s_1.ptu
             153 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T722s_1.ptu
             154 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T614s_1.ptu
             155 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T616s_1.ptu
             156 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1778s_1.ptu
             157 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2028s_1.ptu
             158 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4883_T26s_1.ptu
             159 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T966s_1.ptu
             160 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T435s_1.ptu
             161 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1666s_1.ptu
             162 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2315s_1.ptu
             163 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488205_T2446s_1.ptu
             164 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48818_T206s_1.ptu
             165 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1533s_1.ptu
             166 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T602s_1.ptu
             167 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488116_T1388s_1.ptu
             168 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2196s_1.ptu
             169 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1394s_1.ptu
             170 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T818s_1.ptu
             171 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1130s_1.ptu
             172 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2076s_1.ptu
             173 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1262s_1.ptu
             174 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2993s_1.ptu
             175 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1063s_1.ptu
             176 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48845_T531s_1.ptu
             177 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1400s_1.ptu
             178 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488192_T2291s_1.ptu
             179 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1992s_1.ptu
             180 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1142s_1.ptu
             181 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1124s_1.ptu
             182 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2111s_1.ptu
             183 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48862_T736s_1.ptu
             184 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1412s_1.ptu
             185 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1100s_1.ptu
             186 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T555s_1.ptu
             187 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488223_T2661s_1.ptu
             188 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T626s_1.ptu
             189 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1622s_1.ptu
             190 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1810s_1.ptu
             191 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2925s_1.ptu
             192 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T942s_1.ptu
             193 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1448s_1.ptu
             194 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T809s_1.ptu
             195 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488201_T2398s_1.ptu
             196 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1670s_1.ptu
             197 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488250_T3006s_1.ptu
             198 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4884_T38s_1.ptu
             199 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1514s_1.ptu
             200 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1244s_1.ptu
             201 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2172s_1.ptu
             202 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1370s_1.ptu
             203 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1678s_1.ptu
             204 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T652s_1.ptu
             205 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T1003s_1.ptu
             206 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T544s_1.ptu
             207 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1569s_1.ptu
             208 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488236_T2817s_1.ptu
             209 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2123s_1.ptu
             210 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T869s_1.ptu
             211 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1968s_1.ptu
             212 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2973s_1.ptu
             213 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1801s_1.ptu
             214 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488235_T2805s_1.ptu
             215 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2028s_1.ptu
             216 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2160s_1.ptu
             217 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1618s_1.ptu
             218 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2281s_1.ptu
             219 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T758s_1.ptu
             220 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T794s_1.ptu
             221 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T891s_1.ptu
             222 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T842s_1.ptu
             223 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488213_T2541s_1.ptu
             224 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2184s_1.ptu
             225 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T484s_1.ptu
             226 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2052s_1.ptu
             227 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1825s_1.ptu
             228 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1581s_1.ptu
             229 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1762s_1.ptu
             230 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1310s_1.ptu
             231 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1010s_1.ptu
             232 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T290s_1.ptu
             233 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488168_T2004s_1.ptu
             234 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48820_T230s_1.ptu
             235 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1944s_1.ptu
             236 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488203_T2422s_1.ptu
             237 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488152_T1822s_1.ptu
             238 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T243s_1.ptu
             239 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T2004s_1.ptu
             240 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T436s_1.ptu
             241 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1980s_1.ptu
             242 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488200_T2386s_1.ptu
             243 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1454s_1.ptu
             244 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T508s_1.ptu
             245 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1220s_1.ptu
             246 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T773s_1.ptu
             247 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1920s_1.ptu
             248 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T267s_1.ptu
             249 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T746s_1.ptu
             250 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1573s_1.ptu
             251 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T797s_1.ptu
             252 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1726s_1.ptu
             253 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1738s_1.ptu
             254 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2016s_1.ptu
             255 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1058s_1.ptu
             256 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T710s_1.ptu
             257 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T363s_1.ptu
             258 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488215_T2565s_1.ptu
             259 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T930s_1.ptu
             260 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T770s_1.ptu
             261 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T830s_1.ptu
             262 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1364s_1.ptu
             263 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488148_T1774s_1.ptu
             264 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488224_T2673s_1.ptu
             265 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488172_T2052s_1.ptu
             266 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T1992s_1.ptu
             267 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488100_T1190s_1.ptu
             268 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T242s_1.ptu
             269 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488240_T2865s_1.ptu
             270 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1701s_1.ptu
             271 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1549s_1.ptu
             272 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T520s_1.ptu
             273 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T724s_1.ptu
             274 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48814_T158s_1.ptu
             275 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1956s_1.ptu
             276 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2064s_1.ptu
             277 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4885_T50s_1.ptu
             278 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T580s_1.ptu
             279 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T472s_1.ptu
             280 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T991s_1.ptu
             281 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2969s_1.ptu
             282 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1798s_1.ptu
             283 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T566s_1.ptu
             284 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1160s_1.ptu
             285 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1406s_1.ptu
             286 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4889_T98s_1.ptu
             287 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T134s_1.ptu
             288 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488222_T2649s_1.ptu
             289 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1039s_1.ptu
             290 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T938s_1.ptu
             291 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1051s_1.ptu
             292 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T902s_1.ptu
             293 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48819_T218s_1.ptu
             294 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1112s_1.ptu
             295 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1442s_1.ptu
             296 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488101_T1208s_1.ptu
             297 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488109_T1304s_1.ptu
             298 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1526s_1.ptu
             299 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488207_T2470s_1.ptu
             300 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2937s_1.ptu
             301 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488242_T2890s_1.ptu
             302 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T640s_1.ptu
             303 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T554s_1.ptu
             304 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1292s_1.ptu
             305 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1597s_1.ptu
             306 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4888_T86s_1.ptu
             307 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T857s_1.ptu
             308 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1786s_1.ptu
             309 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T291s_1.ptu
             310 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2171s_1.ptu
             311 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1871s_1.ptu
             312 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488220_T2624s_1.ptu
             313 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2981s_1.ptu
             314 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1154s_1.ptu
             315 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T568s_1.ptu
             316 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2100s_1.ptu
             317 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1847s_1.ptu
             318 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2945s_1.ptu
             319 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1658s_1.ptu
             320 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T350s_1.ptu
             321 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2087s_1.ptu
             322 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T662s_1.ptu
             323 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488230_T2745s_1.ptu
             324 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T894s_1.ptu
             325 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1521s_1.ptu
             326 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488195_T2327s_1.ptu
             327 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T998s_1.ptu
             328 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2219s_1.ptu
             329 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T974s_1.ptu
             330 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1606s_1.ptu
             331 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1286s_1.ptu
             332 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T315s_1.ptu
             333 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488214_T2553s_1.ptu
             334 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1944s_1.ptu
             335 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T460s_1.ptu
             336 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2233s_1.ptu
             337 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488243_T2902s_1.ptu
             338 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1642s_1.ptu
             339 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1861s_1.ptu
             340 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4882_T14s_1.ptu
             341 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1694s_1.ptu
             342 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T123s_1.ptu
             343 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2961s_1.ptu
             344 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1136s_1.ptu
             345 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T303s_1.ptu
             346 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2293s_1.ptu
             347 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1634s_1.ptu
             348 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488133_T1585s_1.ptu
             349 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488216_T2577s_1.ptu
             350 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1274s_1.ptu
             351 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1557s_1.ptu
             352 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1436s_1.ptu
             353 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T806s_1.ptu
             354 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1490s_1.ptu
             355 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T374s_1.ptu
             356 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1424s_1.ptu
             357 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T914s_1.ptu
             358 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2257s_1.ptu
             359 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48836_T423s_1.ptu
             360 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2112s_1.ptu
             361 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488112_T1334s_1.ptu
             362 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48815_T170s_1.ptu
             363 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T448s_1.ptu
             364 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2136s_1.ptu
             365 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488198_T2363s_1.ptu
             366 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T650s_1.ptu
             367 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1178s_1.ptu
             368 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1931s_1.ptu
             369 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2957s_1.ptu
             370 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488231_T2757s_1.ptu
             371 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1460s_1.ptu
             372 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1873s_1.ptu
             373 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2329s_1.ptu
             374 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T542s_1.ptu
             375 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1718s_1.ptu
             376 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1322s_1.ptu
             377 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1705s_1.ptu
             378 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T882s_1.ptu
             379 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1478s_1.ptu
             380 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1268s_1.ptu
             381 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1094s_1.ptu
             382 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1376s_1.ptu
             383 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T761s_1.ptu
             384 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488239_T2853s_1.ptu
             385 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1106s_1.ptu
             386 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1837s_1.ptu
             387 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1256s_1.ptu
             388 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48829_T338s_1.ptu
             389 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T845s_1.ptu
             390 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1172s_1.ptu
             391 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48880_T954s_1.ptu
             392 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T122s_1.ptu
             393 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1682s_1.ptu
             394 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488237_T2829s_1.ptu
             395 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48810_T110s_1.ptu
             396 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1166s_1.ptu
             397 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T135s_1.ptu
             398 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1034s_1.ptu
             399 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488202_T2410s_1.ptu
             400 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T326s_1.ptu
             401 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1027s_1.ptu
             Different binning was chosen for correlation. Loading dataset 1 with bin=100000.0. This can take a while...
             Processing correlation of unprocessed dataset 1
             Processing correlation with correction by prediction of dataset 1
             Loading dataset 2 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu with bin=1e6. This can take a while...
             1 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48869_T825s_1.ptu
             2 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488196_T2359s_1.ptu
             3 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488146_T1755s_1.ptu
             4 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488227_T2733s_1.ptu
             5 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T287s_1.ptu
             6 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T342s_1.ptu
             7 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488194_T2334s_1.ptu
             8 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48851_T607s_1.ptu
             9 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488210_T2528s_1.ptu
             10 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488234_T2818s_1.ptu
             11 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48882_T982s_1.ptu
             12 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488251_T3022s_1.ptu
             13 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T610s_1.ptu
             14 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488160_T1924s_1.ptu
             15 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T584s_1.ptu
             16 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488268_T3227s_1.ptu
             17 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T268s_1.ptu
             18 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48832_T378s_1.ptu
             19 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488241_T2902s_1.ptu
             20 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488198_T2383s_1.ptu
             21 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48869_T823s_1.ptu
             22 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48895_T1139s_1.ptu
             23 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48878_T934s_1.ptu
             24 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488100_T1197s_1.ptu
             25 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488155_T1864s_1.ptu
             26 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488132_T1585s_1.ptu
             27 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48866_T787s_1.ptu
             28 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48877_T922s_1.ptu
             29 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48861_T728s_1.ptu
             30 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488129_T1548s_1.ptu
             31 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T292s_1.ptu
             32 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488205_T2468s_1.ptu
             33 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4889_T106s_1.ptu
             34 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T474s_1.ptu
             35 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T546s_1.ptu
             36 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48887_T1042s_1.ptu
             37 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488116_T1391s_1.ptu
             38 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4884_T39s_1.ptu
             39 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488110_T1318s_1.ptu
             40 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488218_T2625s_1.ptu
             41 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48870_T834s_1.ptu
             42 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488270_T3251s_1.ptu
             43 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488177_T2129s_1.ptu
             44 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488136_T1633s_1.ptu
             45 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T521s_1.ptu
             46 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T341s_1.ptu
             47 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T75s_1.ptu
             48 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T497s_1.ptu
             49 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488291_T3505s_1.ptu
             50 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488117_T1403s_1.ptu
             51 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T159s_1.ptu
             52 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488215_T2589s_1.ptu
             53 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488128_T1536s_1.ptu
             54 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488135_T1621s_1.ptu
             55 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48870_T837s_1.ptu
             56 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488239_T2878s_1.ptu
             57 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T317s_1.ptu
             58 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488231_T2781s_1.ptu
             59 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488294_T3541s_1.ptu
             60 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488247_T2974s_1.ptu
             61 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488226_T2721s_1.ptu
             62 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488182_T2189s_1.ptu
             63 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488248_T2986s_1.ptu
             64 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488216_T2601s_1.ptu
             65 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T282s_1.ptu
             66 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488152_T1827s_1.ptu
             67 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48868_T811s_1.ptu
             68 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488112_T1342s_1.ptu
             69 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T123s_1.ptu
             70 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488185_T2225s_1.ptu
             71 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T330s_1.ptu
             72 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488232_T2793s_1.ptu
             73 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488293_T3529s_1.ptu
             74 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T294s_1.ptu
             75 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4886_T66s_1.ptu
             76 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu
             77 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48889_T1067s_1.ptu
             78 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T183s_1.ptu
             79 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48879_T946s_1.ptu
             80 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48876_T910s_1.ptu
             81 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T507s_1.ptu
             82 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T583s_1.ptu
             83 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T595s_1.ptu
             84 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T257s_1.ptu
             85 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488184_T2213s_1.ptu
             86 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T148s_1.ptu
             87 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488121_T1452s_1.ptu
             88 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488254_T3059s_1.ptu
             89 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T171s_1.ptu
             90 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T581s_1.ptu
             91 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488122_T1464s_1.ptu
             92 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488153_T1839s_1.ptu
             93 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48851_T605s_1.ptu
             94 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T222s_1.ptu
             95 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488104_T1246s_1.ptu
             96 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488179_T2153s_1.ptu
             97 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488130_T1560s_1.ptu
             98 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48874_T885s_1.ptu
             99 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488115_T1379s_1.ptu
             100 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488282_T3397s_1.ptu
             101 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488259_T3119s_1.ptu
             102 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48858_T690s_1.ptu
             103 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T244s_1.ptu
             104 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T313s_1.ptu
             105 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48861_T726s_1.ptu
             106 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T196s_1.ptu
             107 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488265_T3191s_1.ptu
             108 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48834_T400s_1.ptu
             109 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48854_T643s_1.ptu
             110 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48873_T873s_1.ptu
             111 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48857_T678s_1.ptu
             112 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488208_T2504s_1.ptu
             113 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4884_T41s_1.ptu
             114 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T120s_1.ptu
             115 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48873_T870s_1.ptu
             116 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48872_T859s_1.ptu
             117 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488180_T2165s_1.ptu
             118 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T328s_1.ptu
             119 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488224_T2697s_1.ptu
             120 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488167_T2009s_1.ptu
             121 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488237_T2854s_1.ptu
             122 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488258_T3107s_1.ptu
             123 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488222_T2673s_1.ptu
             124 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T534s_1.ptu
             125 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488280_T3373s_1.ptu
             126 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T569s_1.ptu
             127 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T145s_1.ptu
             128 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T522s_1.ptu
             129 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T351s_1.ptu
             130 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488173_T2081s_1.ptu
             131 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48893_T1115s_1.ptu
             132 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48865_T774s_1.ptu
             133 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48862_T740s_1.ptu
             134 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488187_T2250s_1.ptu
             135 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T136s_1.ptu
             136 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48853_T631s_1.ptu
             137 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T509s_1.ptu
             138 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48880_T955s_1.ptu
             139 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T535s_1.ptu
             140 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488133_T1597s_1.ptu
             141 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48836_T426s_1.ptu
             142 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488138_T1658s_1.ptu
             143 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488235_T2830s_1.ptu
             144 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488111_T1330s_1.ptu
             145 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488156_T1876s_1.ptu
             146 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48855_T655s_1.ptu
             147 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T80s_1.ptu
             148 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T365s_1.ptu
             149 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48854_T642s_1.ptu
             150 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48872_T861s_1.ptu
             151 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488107_T1282s_1.ptu
             152 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T280s_1.ptu
             153 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488256_T3083s_1.ptu
             154 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488204_T2456s_1.ptu
             155 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488197_T2371s_1.ptu
             156 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48852_T619s_1.ptu
             157 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488176_T2117s_1.ptu
             158 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488229_T2757s_1.ptu
             159 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T498s_1.ptu
             160 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T305s_1.ptu
             161 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48864_T762s_1.ptu
             162 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488289_T3481s_1.ptu
             163 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T624s_1.ptu
             164 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488249_T2998s_1.ptu
             165 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T184s_1.ptu
             166 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T197s_1.ptu
             167 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48884_T1006s_1.ptu
             168 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488178_T2141s_1.ptu
             169 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48855_T654s_1.ptu
             170 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T158s_1.ptu
             171 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488118_T1415s_1.ptu
             172 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488127_T1524s_1.ptu
             173 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48836_T425s_1.ptu
             174 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T352s_1.ptu
             175 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T340s_1.ptu
             176 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488261_T3143s_1.ptu
             177 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48837_T468s_1.ptu
             178 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T354s_1.ptu
             179 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T220s_1.ptu
             180 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488236_T2842s_1.ptu
             181 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488257_T3095s_1.ptu
             182 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T219s_1.ptu
             183 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488253_T3047s_1.ptu
             184 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T485s_1.ptu
             185 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T377s_1.ptu
             186 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488201_T2420s_1.ptu
             187 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T412s_1.ptu
             188 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488269_T3239s_1.ptu
             189 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T545s_1.ptu
             190 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T416s_1.ptu
             191 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T461s_1.ptu
             192 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T637s_1.ptu
             193 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488276_T3324s_1.ptu
             194 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488286_T3445s_1.ptu
             195 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488181_T2177s_1.ptu
             196 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488199_T2395s_1.ptu
             197 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488244_T2938s_1.ptu
             198 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488101_T1209s_1.ptu
             199 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48881_T970s_1.ptu
             200 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488126_T1512s_1.ptu
             201 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488223_T2685s_1.ptu
             202 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T557s_1.ptu
             203 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488158_T1900s_1.ptu
             204 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488139_T1670s_1.ptu
             205 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T281s_1.ptu
             206 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48859_T702s_1.ptu
             207 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T546s_1.ptu
             208 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488267_T3215s_1.ptu
             209 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4883_T28s_1.ptu
             210 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T318s_1.ptu
             211 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T232s_1.ptu
             212 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48860_T716s_1.ptu
             213 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4882_T15s_1.ptu
             214 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48896_T1151s_1.ptu
             215 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T353s_1.ptu
             216 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488262_T3155s_1.ptu
             217 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48899_T1187s_1.ptu
             218 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488209_T2516s_1.ptu
             219 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488150_T1803s_1.ptu
             220 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488147_T1767s_1.ptu
             221 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488134_T1609s_1.ptu
             222 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48815_T171s_1.ptu
             223 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488264_T3179s_1.ptu
             224 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488298_T3590s_1.ptu
             225 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488193_T2322s_1.ptu
             226 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4888_T87s_1.ptu
             227 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488106_T1270s_1.ptu
             228 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488284_T3421s_1.ptu
             229 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488145_T1743s_1.ptu
             230 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T329s_1.ptu
             231 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488183_T2201s_1.ptu
             232 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48856_T668s_1.ptu
             233 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4888_T93s_1.ptu
             234 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4889_T100s_1.ptu
             235 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T222s_1.ptu
             236 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T442s_1.ptu
             237 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488175_T2105s_1.ptu
             238 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T486s_1.ptu
             239 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T390s_1.ptu
             240 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488245_T2950s_1.ptu
             241 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488195_T2347s_1.ptu
             242 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48867_T799s_1.ptu
             243 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T494s_1.ptu
             244 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T195s_1.ptu
             245 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488105_T1258s_1.ptu
             246 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48897_T1163s_1.ptu
             247 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T413s_1.ptu
             248 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T248s_1.ptu
             249 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T520s_1.ptu
             250 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4881_T0s_1.ptu
             251 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488165_T1984s_1.ptu
             252 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48887_T1040s_1.ptu
             253 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T210s_1.ptu
             254 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4883_T27s_1.ptu
             255 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48891_T1091s_1.ptu
             256 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488233_T2806s_1.ptu
             257 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T132s_1.ptu
             258 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48876_T906s_1.ptu
             259 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T462s_1.ptu
             260 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488109_T1306s_1.ptu
             261 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488162_T1948s_1.ptu
             262 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48858_T692s_1.ptu
             263 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488151_T1815s_1.ptu
             264 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488203_T2444s_1.ptu
             265 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48815_T184s_1.ptu
             266 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T366s_1.ptu
             267 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48883_T991s_1.ptu
             268 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48881_T967s_1.ptu
             269 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488287_T3457s_1.ptu
             270 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48884_T1003s_1.ptu
             271 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48886_T1031s_1.ptu
             272 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T234s_1.ptu
             273 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T533s_1.ptu
             274 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488100_T1199s_1.ptu
             275 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488214_T2577s_1.ptu
             276 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T571s_1.ptu
             277 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48856_T666s_1.ptu
             278 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488172_T2069s_1.ptu
             279 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48837_T438s_1.ptu
             280 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T256s_1.ptu
             281 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488243_T2926s_1.ptu
             282 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488240_T2890s_1.ptu
             283 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488206_T2480s_1.ptu
             284 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T208s_1.ptu
             285 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48866_T788s_1.ptu
             286 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48863_T752s_1.ptu
             287 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488238_T2866s_1.ptu
             288 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488260_T3131s_1.ptu
             289 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T210s_1.ptu
             290 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48892_T1103s_1.ptu
             291 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T147s_1.ptu
             292 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48834_T402s_1.ptu
             293 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48853_T630s_1.ptu
             294 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488114_T1367s_1.ptu
             295 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488300_T3614s_1.ptu
             296 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488119_T1427s_1.ptu
             297 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48868_T813s_1.ptu
             298 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488157_T1888s_1.ptu
             299 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488188_T2262s_1.ptu
             300 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488212_T2552s_1.ptu
             301 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T388s_1.ptu
             302 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48864_T764s_1.ptu
             303 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T269s_1.ptu
             304 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488252_T3035s_1.ptu
             305 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488169_T2032s_1.ptu
             306 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48890_T1079s_1.ptu
             307 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48871_T847s_1.ptu
             308 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488137_T1646s_1.ptu
             309 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488166_T1997s_1.ptu
             310 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488283_T3409s_1.ptu
             311 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488279_T3360s_1.ptu
             312 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488125_T1500s_1.ptu
             313 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488200_T2408s_1.ptu
             314 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48882_T979s_1.ptu
             315 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488281_T3385s_1.ptu
             316 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T124s_1.ptu
             317 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488102_T1221s_1.ptu
             318 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T293s_1.ptu
             319 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488186_T2237s_1.ptu
             320 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488274_T3299s_1.ptu
             321 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T450s_1.ptu
             322 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T304s_1.ptu
             323 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488163_T1960s_1.ptu
             324 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488174_T2093s_1.ptu
             325 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488250_T3010s_1.ptu
             326 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488255_T3071s_1.ptu
             327 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T597s_1.ptu
             328 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488288_T3469s_1.ptu
             329 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488103_T1234s_1.ptu
             330 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488164_T1972s_1.ptu
             331 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48885_T1018s_1.ptu
             332 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T246s_1.ptu
             333 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T135s_1.ptu
             334 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488242_T2914s_1.ptu
             335 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488142_T1706s_1.ptu
             336 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488159_T1912s_1.ptu
             337 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T76s_1.ptu
             338 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48886_T1028s_1.ptu
             339 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488263_T3167s_1.ptu
             340 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T299s_1.ptu
             341 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488113_T1354s_1.ptu
             342 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488108_T1294s_1.ptu
             343 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T197s_1.ptu
             344 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48863_T750s_1.ptu
             345 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488140_T1682s_1.ptu
             346 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488230_T2769s_1.ptu
             347 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488131_T1573s_1.ptu
             348 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488220_T2649s_1.ptu
             349 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T449s_1.ptu
             350 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488154_T1852s_1.ptu
             351 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T481s_1.ptu
             352 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488120_T1439s_1.ptu
             353 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488207_T2492s_1.ptu
             354 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488171_T2056s_1.ptu
             355 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488190_T2286s_1.ptu
             356 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T558s_1.ptu
             357 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48898_T1175s_1.ptu
             358 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48862_T738s_1.ptu
             359 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T186s_1.ptu
             360 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488299_T3602s_1.ptu
             361 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488219_T2637s_1.ptu
             362 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T111s_1.ptu
             363 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488278_T3348s_1.ptu
             364 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488189_T2274s_1.ptu
             365 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48859_T704s_1.ptu
             366 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48832_T376s_1.ptu
             367 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48865_T776s_1.ptu
             368 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488225_T2709s_1.ptu
             369 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48871_T849s_1.ptu
             370 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48883_T994s_1.ptu
             371 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T390s_1.ptu
             372 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488272_T3276s_1.ptu
             373 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488148_T1779s_1.ptu
             374 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48875_T898s_1.ptu
             375 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T532s_1.ptu
             376 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488290_T3493s_1.ptu
             377 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48877_T918s_1.ptu
             378 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488297_T3578s_1.ptu
             379 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488191_T2298s_1.ptu
             380 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T160s_1.ptu
             381 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T558s_1.ptu
             382 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488221_T2661s_1.ptu
             383 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488211_T2540s_1.ptu
             384 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu
             385 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488123_T1475s_1.ptu
             386 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48852_T617s_1.ptu
             387 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488149_T1791s_1.ptu
             388 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488141_T1694s_1.ptu
             389 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T338s_1.ptu
             390 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488217_T2613s_1.ptu
             391 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T571s_1.ptu
             392 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4886_T63s_1.ptu
             393 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T510s_1.ptu
             394 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T112s_1.ptu
             395 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488124_T1488s_1.ptu
             396 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488271_T3263s_1.ptu
             397 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T473s_1.ptu
             398 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T306s_1.ptu
             399 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4885_T54s_1.ptu
             400 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T316s_1.ptu
             401 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T593s_1.ptu
             Different binning was chosen for correlation. Loading dataset 2 with bin=100000.0. This can take a while...
             Processing correlation of unprocessed dataset 2
             Processing correlation with correction by prediction of dataset 2
             src/fluotracify/applications/correction.py:508: UserWarning: Metadata is not saved with data. Reason: the correlation algorithm failed for one or more traces which were shorter than 32 time steps after correction.Since metadata is loaded in the beginning, it is not sure, which correlation is missing to ensure proper joining of data and metadata.
               'correlation algorithm failed for one or more traces '
    
      \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\)
    0 19.078159 0.590783 8192.0 0-orig 100000.0
    1 20.314897 0.554817 8192.0 0-orig 100000.0
    2 21.007772 0.536518 8192.0 0-orig 100000.0
    3 22.716317 0.496166 8192.0 0-orig 100000.0
    4 24.089236 0.467888 8192.0 0-orig 100000.0
    4697 0.006707 1680.558197 7719.0 1-pred-0.9 100000.0
    4698 0.071281 158.122526 7592.0 1-pred-0.9 100000.0
    4699 1.228636 9.173635 7876.0 1-pred-0.9 100000.0
    4700 0.258008 43.684844 7830.0 1-pred-0.9 100000.0
    4701 0.436051 25.848023 7974.0 1-pred-0.9 100000.0

    4702 rows × 5 columns

2.3.4 learnings from run 1

  • while loading data, the subsample folder was loaded even though it should not have been → move it out of the main folder.
  • in the end, 3 folders would be good: Nov2020-train, Nov2020-test, Nov2020-subsample (subsample is used for quick prototyping)
  • also, I will need 3 .csv files per simulated diffusion rate, because I want to test the algo on each of the 3 different cluster speeds
  • I created firstartifact_Nov2020_test and firstartifact_Nov2020_train:
      0.01 0.1 1.0
    0.069 train   2, 3, 6, 7, 8 9
    0.08 train 7 2, 6, 8, 10 4, 9
    0.1 train 4, 6, 8, 9, 10   3, 7
    0.2 train 3 1, 4, 6, 8 9, 10
    0.4 train 4, 10 2, 3, 9 6, 7
    0.6 train 10 4, 5, 6, 7 1, 2
    1.0 train 10 4, 7, 9 1, 2, 8
    3.0 train 5, 6, 8 10 1, 3, 9
    10 train 3, 4, 8, 9 6, 7 10
    50 train 6 9, 10 4, 5, 7, 8
    0.069 test 5 1 10
    0.08 test 5 3 1
    0.1 test 2 5 1
    0.2 test 2 7 5
    0.4 test 8 1 5
    0.6 test 8 3 9
    1.0 test 6 3 5
    3.0 test 4 7 2
    10 test 2 1 5
    50 test 2 3 1
  • NOTE: I accidentally deleted set004 (0.01) from 0.069 test file. That means the only remaining simulated file with D=0.01 has to be taken for test (set009) and there is NO training set for 0.01 cluster speed at 0.069 molecule speed. Also, there is no training set for 0.1 clusters and 0.1 molecules (sad!), because there was only one simulated one.

2.3.5 Run 2 - full dataset

2.3.5.1 Record metadata, git log
  1. current directory
              %cd /beegfs/ye53nis/drmed-git
    
    /beegfs/ye53nis/drmed-git
    
  1. git log
             !git log -3
    
             commit fa530079f3d8bdbba1eaa4c6bd3eed6a24789d84
             Author: Apoplex <oligolex@vivaldi.net>
             Date:   Tue Mar 16 22:20:39 2021 +0100
    
                 update mlproject for separate train and test files
    
             commit c9dd5f025bbd95e58f8f34796be36bcdb8c1a253
             Author: Apoplex <oligolex@vivaldi.net>
             Date:   Tue Mar 16 22:13:35 2021 +0100
    
                 Update train for separate train and test paths
    
             commit a070d3b531725e0fb37688dde80e990083ccf1cc
             Author: Apoplex <oligolex@vivaldi.net>
             Date:   Mon Mar 15 21:48:01 2021 +0100
    
                 Fix photon count bin metadata 2
    
  2. Metadata of environment
             No of CPUs in system: 72
             No of CPUs the current process can use: 24
             load average: (29.05, 36.29, 43.21)
             os.uname():  posix.uname_result(sysname='Linux', nodename='node260', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64')
             PID of process: 41375
             RAM total: 199G, RAM used: 7.3G, RAM free: 116G
             the current directory: /beegfs/ye53nis/drmed-git
             My disk usage:
             Filesystem           Size  Used Avail Use% Mounted on
             /dev/sda1             50G  3.3G   47G   7% /
             devtmpfs              94G     0   94G   0% /dev
             tmpfs                 94G  133M   94G   1% /dev/shm
             tmpfs                 94G   19M   94G   1% /run
             tmpfs                 94G     0   94G   0% /sys/fs/cgroup
             nfs02-ib:/data01      88T   69T   19T  79% /data01
             nfs01-ib:/home        80T   66T   15T  82% /home
             nfs01-ib:/cluster    2.0T  417G  1.6T  21% /cluster
             nfs03-ib:/pool/work  100T   78T   23T  78% /nfsdata
             /dev/sda5            2.0G   66M  2.0G   4% /tmp
             /dev/sda6            169G  3.0G  166G   2% /local
             /dev/sda3            6.0G  397M  5.7G   7% /var
             beegfs_nodev         524T  303T  222T  58% /beegfs
             tmpfs                 19G     0   19G   0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf-nightly:
             #
             # Name                    Version                   Build  Channel
             _libgcc_mutex             0.1                        main
             absl-py                   0.11.0                   pypi_0    pypi
             alembic                   1.4.1                      py_0    conda-forge/label/main
             appdirs                   1.4.4              pyh9f0ad1d_0    conda-forge/label/main
             argon2-cffi               20.1.0           py38h7b6447c_1
             asn1crypto                1.4.0              pyh9f0ad1d_0    conda-forge/label/main
             asteval                   0.9.16             pyh5ca1d4c_0    conda-forge/label/main
             astunparse                1.6.3                    pypi_0    pypi
             async_generator           1.10               pyhd3eb1b0_0
             attrs                     20.3.0             pyhd3eb1b0_0
             azure-core                1.10.0             pyhd8ed1ab_0    conda-forge/label/main
             azure-storage-blob        12.7.1             pyh44b312d_0    conda-forge/label/main
             backcall                  0.2.0              pyhd3eb1b0_0
             blas                      1.0                         mkl
             bleach                    3.2.3              pyhd3eb1b0_0
             blinker                   1.4                        py_1    conda-forge/label/main
             blosc                     1.20.1               hd408876_0
             brotli                    1.0.9                he6710b0_2
             brotlipy                  0.7.0           py38h27cfd23_1003
             brunsli                   0.1                  h2531618_0
             bzip2                     1.0.8                h7b6447c_0
             ca-certificates           2020.12.5            ha878542_0    conda-forge/label/main
             cachetools                4.2.1                    pypi_0    pypi
             certifi                   2020.12.5        py38h578d9bd_1    conda-forge/label/main
             cffi                      1.14.4           py38h261ae71_0
             chardet                   4.0.0           py38h06a4308_1003
             charls                    2.1.0                he6710b0_2
             click                     7.1.2              pyh9f0ad1d_0    conda-forge/label/main
             cloudpickle               1.6.0                      py_0    conda-forge/label/main
             configparser              5.0.1                      py_0    conda-forge/label/main
             cryptography              3.3.1            py38h3c74f83_0
             cycler                    0.10.0                   py38_0
             databricks-cli            0.9.1                      py_0    conda-forge/label/main
             dbus                      1.13.18              hb2f20db_0
             decorator                 4.4.2              pyhd3eb1b0_0
             defusedxml                0.6.0                      py_0
             docker-py                 4.4.1            py38h578d9bd_1    conda-forge/label/main
             docker-pycreds            0.4.0                      py_0    conda-forge/label/main
             entrypoints               0.3                      py38_0
             expat                     2.2.10               he6710b0_2
             fcsfiles                  2020.9.18                pypi_0    pypi
             flask                     1.1.2              pyh9f0ad1d_0    conda-forge/label/main
             flatbuffers               1.12                     pypi_0    pypi
             fontconfig                2.13.0               h9420a91_0
             freetype                  2.10.4               h5ab3b9f_0
             future                    0.18.2           py38h578d9bd_3    conda-forge/label/main
             gast                      0.4.0                    pypi_0    pypi
             giflib                    5.1.4                h14c3975_1
             gitdb                     4.0.5                      py_0    conda-forge/label/main
             gitpython                 3.1.12             pyhd8ed1ab_0    conda-forge/label/main
             glib                      2.66.1               h92f7085_0
             google-auth               1.24.0                   pypi_0    pypi
             google-auth-oauthlib      0.4.2                    pypi_0    pypi
             google-pasta              0.2.0                    pypi_0    pypi
             gorilla                   0.3.0                      py_0    conda-forge/label/main
             grpcio                    1.34.1                   pypi_0    pypi
             gst-plugins-base          1.14.0               h8213a91_2
             gstreamer                 1.14.0               h28cd5cc_2
             gunicorn                  20.0.4           py38h578d9bd_3    conda-forge/label/main
             h5py                      3.1.0                    pypi_0    pypi
             icu                       58.2                 he6710b0_3
             idna                      2.10               pyhd3eb1b0_0
             imagecodecs               2021.1.11        py38h581e88b_1
             importlib-metadata        2.0.0                      py_1
             importlib_metadata        2.0.0                         1
             intel-openmp              2020.2                      254
             ipykernel                 5.3.4            py38h5ca1d4c_0
             ipython                   7.19.0           py38hb070fc8_1
             ipython_genutils          0.2.0              pyhd3eb1b0_1
             isodate                   0.6.0                      py_1    conda-forge/label/main
             itsdangerous              1.1.0                      py_0    conda-forge/label/main
             jedi                      0.17.0                   py38_0
             jinja2                    2.11.2             pyhd3eb1b0_0
             jpeg                      9b                   h024ee3a_2
             json5                     0.9.5                      py_0
             jsonschema                3.2.0                      py_2
             jupyter_client            6.1.7                      py_0
             jupyter_core              4.7.0            py38h06a4308_0
             jupyterlab                2.2.6                      py_0
             jupyterlab_pygments       0.1.2                      py_0
             jupyterlab_server         1.2.0                      py_0
             jxrlib                    1.1                  h7b6447c_2
             keras-preprocessing       1.1.2                    pypi_0    pypi
             kiwisolver                1.3.0            py38h2531618_0
             lcms2                     2.11                 h396b838_0
             ld_impl_linux-64          2.33.1               h53a641e_7
             lerc                      2.2.1                h2531618_0
             libaec                    1.0.4                he6710b0_1
             libdeflate                1.7                  h27cfd23_5
             libedit                   3.1.20191231         h14c3975_1
             libffi                    3.3                  he6710b0_2
             libgcc-ng                 9.1.0                hdf63c60_0
             libgfortran-ng            7.3.0                hdf63c60_0
             libpng                    1.6.37               hbc83047_0
             libprotobuf               3.13.0.1             h8b12597_0    conda-forge/label/main
             libsodium                 1.0.18               h7b6447c_0
             libstdcxx-ng              9.1.0                hdf63c60_0
             libtiff                   4.1.0                h2733197_1
             libuuid                   1.0.3                h1bed415_2
             libwebp                   1.0.1                h8e7db2f_0
             libxcb                    1.14                 h7b6447c_0
             libxml2                   2.9.10               hb55368b_3
             libzopfli                 1.0.3                he6710b0_0
             lmfit                     1.0.1                      py_1    conda-forge/label/main
             lz4-c                     1.9.3                h2531618_0
             mako                      1.1.4              pyh44b312d_0    conda-forge/label/main
             markdown                  3.3.3                    pypi_0    pypi
             markupsafe                1.1.1            py38h7b6447c_0
             matplotlib                3.3.2                h06a4308_0
             matplotlib-base           3.3.2            py38h817c723_0
             mistune                   0.8.4           py38h7b6447c_1000
             mkl                       2020.2                      256
             mkl-service               2.3.0            py38he904b0f_0
             mkl_fft                   1.2.0            py38h23d657b_0
             mkl_random                1.1.1            py38h0573a6f_0
             mlflow                    1.13.1           py38h578d9bd_2    conda-forge/label/main
             msrest                    0.6.21             pyh44b312d_0    conda-forge/label/main
             multipletau               0.3.3                    pypi_0    pypi
             nbclient                  0.5.1                      py_0
             nbconvert                 6.0.7                    py38_0
             nbformat                  5.1.2              pyhd3eb1b0_1
             ncurses                   6.2                  he6710b0_1
             nest-asyncio              1.4.3              pyhd3eb1b0_0
             notebook                  6.2.0            py38h06a4308_0
             numpy                     1.19.2           py38h54aff64_0
             numpy-base                1.19.2           py38hfa32c7d_0
             oauthlib                  3.0.1                      py_0    conda-forge/label/main
             olefile                   0.46                       py_0
             openjpeg                  2.3.0                h05c96fa_1
             openssl                   1.1.1i               h27cfd23_0
             opt-einsum                3.3.0                    pypi_0    pypi
             packaging                 20.9               pyhd3eb1b0_0
             pandas                    1.2.1            py38ha9443f7_0
             pandoc                    2.11                 hb0f4dca_0
             pandocfilters             1.4.3            py38h06a4308_1
             parso                     0.8.1              pyhd3eb1b0_0
             pcre                      8.44                 he6710b0_0
             pexpect                   4.8.0              pyhd3eb1b0_3
             pickleshare               0.7.5           pyhd3eb1b0_1003
             pillow                    8.1.0            py38he98fc37_0
             pip                       20.3.3           py38h06a4308_0
             prometheus_client         0.9.0              pyhd3eb1b0_0
             prometheus_flask_exporter 0.18.1             pyh9f0ad1d_0    conda-forge/label/main
             prompt-toolkit            3.0.8                      py_0
             protobuf                  3.13.0.1         py38hadf7658_1    conda-forge/label/main
             ptyprocess                0.7.0              pyhd3eb1b0_2
             pyasn1                    0.4.8                    pypi_0    pypi
             pyasn1-modules            0.2.8                    pypi_0    pypi
             pycparser                 2.20                       py_2
             pygments                  2.7.4              pyhd3eb1b0_0
             pyjwt                     2.0.1              pyhd8ed1ab_0    conda-forge/label/main
             pyopenssl                 20.0.1             pyhd3eb1b0_1
             pyparsing                 2.4.7              pyhd3eb1b0_0
             pyqt                      5.9.2            py38h05f1152_4
             pyrsistent                0.17.3           py38h7b6447c_0
             pysocks                   1.7.1            py38h06a4308_0
             python                    3.8.5                h7579374_1
             python-dateutil           2.8.1              pyhd3eb1b0_0
             python-editor             1.0.4                      py_0    conda-forge/label/main
             python_abi                3.8                      1_cp38    conda-forge/label/main
             pytz                      2020.5             pyhd3eb1b0_0
             pyyaml                    5.3.1            py38h8df0ef7_1    conda-forge/label/main
             pyzmq                     20.0.0           py38h2531618_1
             qt                        5.9.7                h5867ecd_1
             querystring_parser        1.2.4                      py_0    conda-forge/label/main
             readline                  8.1                  h27cfd23_0
             requests                  2.25.1             pyhd3eb1b0_0
             requests-oauthlib         1.3.0              pyh9f0ad1d_0    conda-forge/label/main
             rsa                       4.7                      pypi_0    pypi
             scipy                     1.5.2            py38h0b6359f_0
             seaborn                   0.11.1             pyhd3eb1b0_0
             send2trash                1.5.0              pyhd3eb1b0_1
             setuptools                52.0.0           py38h06a4308_0
             sip                       4.19.13          py38he6710b0_0
             six                       1.15.0           py38h06a4308_0
             smmap                     4.0.0              pyh44b312d_0    conda-forge/label/main
             snappy                    1.1.8                he6710b0_0
             sqlalchemy                1.3.20           py38h1e0a361_0    conda-forge/label/main
             sqlite                    3.33.0               h62c20be_0
             sqlparse                  0.4.1              pyh9f0ad1d_0    conda-forge/label/main
             tabulate                  0.8.7              pyh9f0ad1d_0    conda-forge/label/main
             tb-nightly                2.5.0a20210130           pypi_0    pypi
             tensorboard-plugin-wit    1.8.0                    pypi_0    pypi
             termcolor                 1.1.0                    pypi_0    pypi
             terminado                 0.9.2            py38h06a4308_0
             testpath                  0.4.4              pyhd3eb1b0_0
             tf-estimator-nightly      2.5.0.dev2021020101          pypi_0    pypi
             tf-nightly                2.5.0.dev20210130          pypi_0    pypi
             tifffile                  2021.1.14          pyhd3eb1b0_1
             tk                        8.6.10               hbc83047_0
             tornado                   6.1              py38h27cfd23_0
             traitlets                 5.0.5              pyhd3eb1b0_0
             typing-extensions         3.7.4.3                  pypi_0    pypi
             uncertainties             3.1.5              pyhd8ed1ab_0    conda-forge/label/main
             urllib3                   1.26.3             pyhd3eb1b0_0
             wcwidth                   0.2.5                      py_0
             webencodings              0.5.1                    py38_1
             websocket-client          0.57.0           py38h578d9bd_4    conda-forge/label/main
             werkzeug                  1.0.1              pyh9f0ad1d_0    conda-forge/label/main
             wheel                     0.36.2             pyhd3eb1b0_0
             wrapt                     1.12.1                   pypi_0    pypi
             xz                        5.2.5                h7b6447c_0
             yaml                      0.2.5                h516909a_0    conda-forge/label/main
             zeromq                    4.3.3                he6710b0_3
             zfp                       0.5.5                h2531618_4
             zipp                      3.4.0              pyhd3eb1b0_0
             zlib                      1.2.11               h7b6447c_3
             zstd                      1.4.5                h9ceee32_0
    
             Note: you may need to restart the kernel to use updated packages.
             {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint',
              'SLURM_NODELIST': 'node260',
              'SLURM_JOB_NAME': 'bash',
              'XDG_SESSION_ID': '595',
              'SLURMD_NODENAME': 'node260',
              'SLURM_TOPOLOGY_ADDR': 'node260',
              'SLURM_NTASKS_PER_NODE': '24',
              'HOSTNAME': 'login01',
              'SLURM_PRIO_PROCESS': '0',
              'SLURM_SRUN_COMM_PORT': '39229',
              'SHELL': '/bin/bash',
              'TERM': 'xterm-color',
              'SLURM_JOB_QOS': 'qstand',
              'SLURM_PTY_WIN_ROW': '39',
              'HISTSIZE': '1000',
              'TMPDIR': '/tmp',
              'SLURM_TOPOLOGY_ADDR_PATTERN': 'node',
              'SSH_CLIENT': '10.231.182.213 44428 22',
              'CONDA_SHLVL': '2',
              'CONDA_PROMPT_MODIFIER': '(tf-nightly) ',
              'QTDIR': '/usr/lib64/qt-3.3',
              'QTINC': '/usr/lib64/qt-3.3/include',
              'SSH_TTY': '/dev/pts/2',
              'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24',
              'QT_GRAPHICSSYSTEM_CHECKED': '1',
              'SLURM_NNODES': '1',
              'USER': 'ye53nis',
              'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:',
              'CONDA_EXE': '/cluster/miniconda3/bin/conda',
              'SLURM_STEP_NUM_NODES': '1',
              'SLURM_JOBID': '652176',
              'SRUN_DEBUG': '3',
              'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
              'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'SLURM_NTASKS': '24',
              'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5',
              'SLURM_STEP_ID': '0',
              'TMUX': '/tmp/tmux-67339/default,43792,2',
              '_CE_CONDA': '',
              'CONDA_PREFIX_1': '/cluster/miniconda3',
              'SLURM_STEP_LAUNCHER_PORT': '39229','SLURM_TASKS_PER_NODE': '24',
             'MAIL': '/var/spool/mail/ye53nis',
             'PATH': '/home/ye53nis/.conda/envs/tf-nightly/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin',
             'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448',
             'SLURM_JOB_ID': '652176',
             'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf-nightly',
             'SLURM_JOB_USER': 'ye53nis',
             'SLURM_STEPID': '0',
             'PWD': '/',
             'SLURM_SRUN_COMM_HOST': '192.168.192.5',
             'LANG': 'en_US.UTF-8',
             'SLURM_PTY_WIN_COL': '205',
             'SLURM_UMASK': '0022',
             'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles',
             'SLURM_JOB_UID': '67339',
             'LOADEDMODULES': '',
             'SLURM_NODEID': '0',
             'TMUX_PANE': '%2',
             'SLURM_SUBMIT_DIR': '/',
             'SLURM_TASK_PID': '167340',
             'SLURM_NPROCS': '24',
             'SLURM_CPUS_ON_NODE': '24',
             'SLURM_DISTRIBUTION': 'block',
             'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
             'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
             'SLURM_PROCID': '0',
             'HISTCONTROL': 'ignoredups',
             '_CE_M': '',
             'SLURM_JOB_NODELIST': 'node260',
             'SLURM_PTY_PORT': '33620',
             'HOME': '/home/ye53nis',
             'SHLVL': '3',
             'SLURM_LOCALID': '0',
             'SLURM_JOB_GID': '13280',
             'SLURM_JOB_CPUS_PER_NODE': '24',
             'SLURM_CLUSTER_NAME': 'hpc',
             'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24',
             'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23',
             'SLURM_SUBMIT_HOST': 'login01',
             'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
             'SLURM_JOB_PARTITION': 's_standard',
             'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3',
             'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python',
             'LOGNAME': 'ye53nis',
             'SLURM_STEP_NUM_TASKS': '24',
             'QTLIB': '/usr/lib64/qt-3.3/lib',
             'SLURM_JOB_ACCOUNT': 'iaob',
             'SLURM_JOB_NUM_NODES': '1',
             'MODULESHOME': '/usr/share/Modules',
             'CONDA_DEFAULT_ENV': 'tf-nightly',
             'LESSOPEN': '||/usr/bin/lesspipe.sh %s',
             'SLURM_STEP_TASKS_PER_NODE': '24',
             'PORT': '9999',
             'SLURM_STEP_NODELIST': 'node260',
             'DISPLAY': ':0',
             'XDG_RUNTIME_DIR': '',
             'XAUTHORITY': '/home/lex/.Xauthority',
             'BASH_FUNC_module()': '() {  eval `/usr/bin/modulecmd bash $*`\n}',
             '_': '/home/ye53nis/.conda/envs/tf-nightly/bin/jupyter',
             'JPY_PARENT_PID': '446797',
             'CLICOLOR': '1',
             'PAGER': 'cat',
             'GIT_PAGER': 'cat',
             'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
    
2.3.5.2 Set mlflow variables
  • mlflow environment variables
            conda activate tf-nightly
            cd /beegfs/ye53nis/drmed-git
            export MLFLOW_EXPERIMENT_NAME=exp-210204-unet
            export MLFLOW_TRACKING_URI=file:./data/mlruns
            mkdir data/exp-210204-unet
    
            (tf-nightly) [ye53nis@node117 drmed-git]$
    
2.3.5.3 run mlflow
  • Use whole dataset (6400 training, 1600 validation, 2000 test), but during training, use only 1/5th of it per epoch - but this time with more balanced test set.
            mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train -P csv_path_test=/beegfs/ye53nis/saves/firstartifact_Nov2020_test -P steps_per_epoch=1280 -P validation_steps=320
    
            (tf-nightly) [ye53nis@node117 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train -P csv_path_test=/beegfs/y
            e53nis/saves/firstartifact_Nov2020_test -P steps_per_epoch=1280 -P validation_steps=320
            WARNING:root:Malformed experiment '1'. Detailed error Yaml file './data/mlruns/1/meta.yaml' does not exist.
            Traceback (most recent call last):
              File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 237, in list_experiments
                experiment = self._get_experiment(exp_id, view_type)
              File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 311, in _get_experiment
                meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME)
              File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 170, in read_yaml
                raise MissingConfigException("Yaml file '%s' does not exist." % file_path)
            mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/1/meta.yaml' does not exist.
            WARNING:root:Malformed experiment '0'. Detailed error Yaml file './data/mlruns/0/meta.yaml' does not exist.
            Traceback (most recent call last):
              File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 237, in list_experiments
                experiment = self._get_experiment(exp_id, view_type)
              File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 311, in _get_experiment
                meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME)
              File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 170, in read_yaml
                raise MissingConfigException("Yaml file '%s' does not exist." % file_path)
            mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/0/meta.yaml' does not exist.
            2021/03/16 22:26:14 INFO mlflow.projects.utils: === Created directory /tmp/tmp4e89kbom for downloading remote URIs passed to arguments of type 'path' ===
            2021/03/16 22:26:14 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c 1>&2 && python src/fluotracify/trai
            ning/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 50 /beegfs/ye53nis/saves/firstartifact_Nov2020_train /beegfs/ye53nis/saves/firstartifact_Nov2020_test 3 1280 320' in run with ID '3cec3f26ed2d4004978c4ec37c00fba0' ===
            2021-03-16 22:26:31.835407: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
            2021-03-16 22:26:31.835484: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
            2.5.0-dev20210130
            2021-03-16 22:27:03.495143: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
            2021-03-16 22:27:03.495217: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] failed call to cuInit: UNKNOWN ERROR (303)
            2021-03-16 22:27:03.495359: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist
            GPUs:  []
            train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set005.csv
            train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set001.csv
            train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set005.csv
            train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set008.csv
            train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set004.csv
            train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set004.csv
            train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set004.csv
            train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set004.csv
            train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set009.csv
            train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set001.csv
            train 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set002.csv
            train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set006.csv
            train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set010.csv
            train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set007.csv
            train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set004.csv
            train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set008.csv
            train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set009.csv
            train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set002.csv
            train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set008.csv
            train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set010.csv
            train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set003.csv
            train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set006.csv
            train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set010.csv
            train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set009.csv
            train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set007.csv
            train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set009.csv
            train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set010.csv
            train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set008.csv
            train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set010.csv
            train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set003.csv
            train 30 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set008.csv
            train 31 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set003.csv
            train 32 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set009.csv
            train 33 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set004.csv
            train 34 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set001.csv
            train 35 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set010.csv
            train 36 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set004.csv
            train 37 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set007.csv
            train 38 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set002.csv
            train 39 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set009.csv
            train 40 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set002.csv
            train 41 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set006.csv
            train 42 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set009.csv
            train 43 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set007.csv
            train 44 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set001.csv
            train 45 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set007.csv
            train 46 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set006.csv
            train 47 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set003.csv
            train 48 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set009.csv
            train 49 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set005.csv
            train 50 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set008.csv
            train 51 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set006.csv
            train 52 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set009.csv
            train 53 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set010.csv
            train 54 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set007.csv
            train 55 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set006.csv
            train 56 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set003.csv
            train 57 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set010.csv
            train 58 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set008.csv
            train 59 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set008.csv
            train 60 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set002.csv
            train 61 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set006.csv
            train 62 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set004.csv
            train 63 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set006.csv
            train 64 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set003.csv
            train 65 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set007.csv
            train 66 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set006.csv
            train 67 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set010.csv
            train 68 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set007.csv
            train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set010.csv
            train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set002.csv
            train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set005.csv
            train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set005.csv
            train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set007.csv
            train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set002.csv
            train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set001.csv
            train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set007.csv
            train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set009.csv
            train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set002.csv
            train 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set005.csv
            train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set008.csv
            train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set005.csv
            train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set008.csv
            train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set005.csv
            train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set006.csv
            train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set005.csv
            train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set003.csv
            train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set001.csv
            train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set003.csv
            train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set003.csv
            train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set005.csv
            train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set002.csv
            train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set002.csv
            train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set004.csv
            train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set001.csv
            train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set001.csv
            train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set001.csv
            train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set003.csv
            train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set001.csv
            The given DataFrame was split into 3 parts with shapes: [(16384, 6900), (16384, 6900), (16384, 6900)]
            The given DataFrame was split into 3 parts with shapes: [(16384, 3000), (16384, 3000), (16384, 3000)]
    
            for each 16384 timestap trace there are the following numbers of corrupted timesteps:
            label001_1    1916
            label002_1    1004
            label003_1    1476
            label004_1    1154
            label005_1    1454
            dtype: int64
            2021-03-16 22:34:23.544689: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operati
            ons:  AVX2 FMA
            To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
            number of training examples: 5520, number of validation examples: 1380
    
            ------------------------
            number of test examples: 3000
    
            input - shape:   (None, 16384, 1)
            output - shape:  (None, 16384, 1)
            2021-03-16 22:34:30.005739: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing.
            2021-03-16 22:34:30.005803: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started.
            2021-03-16 22:34:30.005880: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down.
            2021/03/16 22:34:30 INFO mlflow.utils.autologging_utils: tensorflow autologging will track hyperparameters, performance metrics, model artifacts, and lineage information for the current tensorflow workflow to the MLflow run with ID '3c
            ec3f26ed2d4004978c4ec37c00fba0'
            2021/03/16 22:34:30 WARNING mlflow.utils.autologging_utils: MLflow issued a warning during tensorflow autologging: "/home/ye53nis/.conda/envs/mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c/lib/python3.8/site-packages/mlflow/utils/auto
            logging_utils.py:86: UserWarning: Logging to MLflow failed: Changing param values is not allowed. Param with key='batch_size' was already logged with value='5' for run ID='3cec3f26ed2d4004978c4ec37c00fba0'. Attempted logging new value
            'None'."
            Epoch 1/50
            2021-03-16 22:34:43.027454: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:145] None of the MLIR Optimization Passes are enabled (registered 2)
            2021-03-16 22:34:43.259103: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2194880000 Hz
               1/1280 [..............................] - ETA: 7:06:43 - loss: 1.7012 - tp0.1: 11443.0000 - fp0.1: 69168.0000 - tn0.1: 50.0000 - fn0.1: 1259.0000 - precision0.1: 0.1420 - recall0.1: 0.9009 - tp0.3: 9371.0000 - fp0.3: 67996.0000 - tn
            0.3: 1222.0000 - fn0.3: 3331.0000 - precision0.3: 0.1211 - recall0.3: 0.7378 - tp0.5: 5565.0000 - fp0.5: 37117.0000 - tn0.5: 32101.0000 - fn0.5: 7137.0000 - precision0.5: 0.1304 - recall0.5: 0.4381 - tp0.7: 1504.0000 - fp0.7: 2293.0000
             - tn0.7: 66925.0000 - fn0.7: 11198.0000 - precision0.7: 0.3961 - recall0.7: 0.1184 - tp0.9: 284.0000 - fp0.9: 114.0000 - tn0.9: 69104.0000 - fn0.9: 12418.0000 - precision0.9: 0.7136 - recall0.9: 0.0224 - accuracy: 0.4598 - auc: 0.4176
            2021-03-16 22:34:50.791836: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing.
            2021-03-16 22:34:50.791935: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started.
               2/1280 [..............................] - ETA: 55:09 - loss: 1.5706 - tp0.1: 15933.5000 - fp0.1: 91410.0000 - tn0.1: 14176.5000 - fn0.1: 1360.0000 - precision0.1: 0.1471 - recall0.1: 0.9171 - tp0.3: 11355.0000 - fp0.3: 68009.0000 -
            tn0.3: 37577.5000 - fn0.3: 5938.5000 - precision0.3: 0.1425 - recall0.3: 0.6736 - tp0.5: 7264.0000 - fp0.5: 37126.5000 - tn0.5: 68460.0000 - fn0.5: 10029.5000 - precision0.5: 0.1624 - recall0.5: 0.4238 - tp0.7: 2845.0000 - fp0.7: 2300.
            0000 - tn0.7: 103286.5000 - fn0.7: 14448.5000 - precision0.7: 0.5204 - recall0.7: 0.1548 - tp0.9: 1306.5000 - fp0.9: 119.0000 - tn0.9: 105467.5000 - fn0.9: 15987.0000 - precision0.9: 0.8315 - recall0.9: 0.0644 - accuracy: 0.5771 - auc:
             0.53722021-03-16 22:34:53.384001: I tensorflow/core/profiler/lib/profiler_session.cc:66] Profiler session collecting data.
            2021-03-16 22:34:53.414299: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down.
            2021-03-16 22:34:53.449110: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_03_16_22_34_53
            2021-03-16 22:34:53.468888: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.trace.json.gz
            2021-03-16 22:34:53.498618: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_03_16_22_34_53
            2021-03-16 22:34:53.498775: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.memory_profile.json.gz
            2021-03-16 22:34:53.501218: I tensorflow/core/profiler/rpc/client/capture_profile.cc:251] Creating directory: /tmp/tb/train/plugins/profile/2021_03_16_22_34_53Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2021_03_16_2
            2_34_53/node117.xplane.pb
            Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.overview_page.pb
            Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.input_pipeline.pb
            Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.tensorflow_stats.pb
            Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.kernel_stats.pb
    
            1280/1280 [==============================] - 3356s 3s/step - loss: 0.9438 - tp0.1: 7090847.5004 - fp0.1: 12587220.8876 - tn0.1: 31719449.0960 - fn0.1: 1113141.3841 - precision0.1: 0.3522 - recall0.1: 0.8539 - tp0.3: 5944647.5215 - fp0.
            3: 7704502.4426 - tn0.3: 36602146.0117 - fn0.3: 2259341.3630 - precision0.3: 0.4254 - recall0.3: 0.6980 - tp0.5: 3390349.7166 - fp0.5: 2172177.0687 - tn0.5: 42134502.0273 - fn0.5: 4813639.1678 - precision0.5: 0.5845 - recall0.5: 0.4054
             - tp0.7: 2075799.0164 - fp0.7: 570841.5262 - tn0.7: 43735856.3763 - fn0.7: 6128189.8681 - precision0.7: 0.7474 - recall0.7: 0.2354 - tp0.9: 1317276.8236 - fp0.9: 157422.0055 - tn0.9: 44149241.1343 - fn0.9: 6886712.0609 - precision0.9:
             0.8734 - recall0.9: 0.1441 - accuracy: 0.8611 - auc: 0.8419 - val_loss: 1.7438 - val_tp0.1: 1858818.0000 - val_fp0.1: 1751074.0000 - val_tn0.1: 20297196.0000 - val_fn0.1: 2307317.0000 - val_precision0.1: 0.5149 - val_recall0.1: 0.4462
             - val_tp0.3: 1147351.0000 - val_fp0.3: 857162.0000 - val_tn0.3: 21191096.0000 - val_fn0.3: 3018784.0000 - val_precision0.3: 0.5724 - val_recall0.3: 0.2754 - val_tp0.5: 22832.0000 - val_fp0.5: 2666.0000 - val_tn0.5: 22045600.0000 - val
            _fn0.5: 4143303.0000 - val_precision0.5: 0.8954 - val_recall0.5: 0.0055 - val_tp0.7: 0.0000e+00 - val_fp0.7: 0.0000e+00 - val_tn0.7: 22048264.0000 - val_fn0.7: 4166135.0000 - val_precision0.7: 0.0000e+00 - val_recall0.7: 0.0000e+00 - v
            al_tp0.9: 0.0000e+00 - val_fp0.9: 0.0000e+00 - val_tn0.9: 22048264.0000 - val_fn0.9: 4166135.0000 - val_precision0.9: 0.0000e+00 - val_recall0.9: 0.0000e+00 - val_accuracy: 0.8418 - val_auc: 0.7129
            Epoch 2/50
            1280/1280 [==============================] - 3273s 3s/step - loss: 0.7454 - tp0.1: 7319058.9383 - fp0.1: 12182101.0671 - tn0.1: 32209636.0234 - fn0.1: 799871.6300 - precision0.1: 0.3732 - recall0.1: 0.9003 - tp0.3: 6349950.7744 - fp0.3
            : 7864965.2303 - tn0.3: 36526747.8587 - fn0.3: 1768979.7939 - precision0.3: 0.4426 - recall0.3: 0.7794 - tp0.5: 3304850.4598 - fp0.5: 1018320.5308 - tn0.5: 43373388.4637 - fn0.5: 4814080.1085 - precision0.5: 0.7573 - recall0.5: 0.4070
            - tp0.7: 2713284.5909 - fp0.7: 370786.4668 - tn0.7: 44020933.5667 - fn0.7: 5405645.9774 - precision0.7: 0.8821 - recall0.7: 0.3298 - tp0.9: 2048963.3240 - fp0.9: 143660.5839 - tn0.9: 44248083.9859 - fn0.9: 6069967.2443 - precision0.9:
            0.9325 - recall0.9: 0.2463 - accuracy: 0.8888 - auc: 0.8781 - val_loss: 1.8629 - val_tp0.1: 1696755.0000 - val_fp0.1: 1369278.0000 - val_tn0.1: 20627520.0000 - val_fn0.1: 2520850.0000 - val_precision0.1: 0.5534 - val_recall0.1: 0.4023
            - val_tp0.3: 1177823.0000 - val_fp0.3: 724329.0000 - val_tn0.3: 21272468.0000 - val_fn0.3: 3039782.0000 - val_precision0.3: 0.6192 - val_recall0.3: 0.2793 - val_tp0.5: 726105.0000 - val_fp0.5: 220632.0000 - val_tn0.5: 21776148.0000 - v
            al_fn0.5: 3491500.0000 - val_precision0.5: 0.7670 - val_recall0.5: 0.1722 - val_tp0.7: 622624.0000 - val_fp0.7: 149383.0000 - val_tn0.7: 21847414.0000 - val_fn0.7: 3594981.0000 - val_precision0.7: 0.8065 - val_recall0.7: 0.1476 - val_t
            p0.9: 478068.0000 - val_fp0.9: 78711.0000 - val_tn0.9: 21918088.0000 - val_fn0.9: 3739537.0000 - val_precision0.9: 0.8586 - val_recall0.9: 0.1134 - val_accuracy: 0.8584 - val_auc: 0.6881
            Epoch 3/50
            1280/1280 [==============================] - 3268s 3s/step - loss: 0.6401 - tp0.1: 7574454.9469 - fp0.1: 10689439.2311 - tn0.1: 33573907.5972 - fn0.1: 672847.0898 - precision0.1: 0.4156 - recall0.1: 0.9171 - tp0.3: 6542181.5066 - fp0.3
            : 5029903.7557 - tn0.3: 39233452.5995 - fn0.3: 1705120.5301 - precision0.3: 0.5571 - recall0.3: 0.7912 - tp0.5: 4316700.4192 - fp0.5: 813585.7369 - tn0.5: 43449769.7229 - fn0.5: 3930601.6175 - precision0.5: 0.8494 - recall0.5: 0.5079 -
             tp0.7: 3862233.1499 - fp0.7: 434886.9867 - tn0.7: 43828435.6581 - fn0.7: 4385068.8868 - precision0.7: 0.9012 - recall0.7: 0.4570 - tp0.9: 3000635.4949 - fp0.9: 146691.9102 - tn0.9: 44116668.4348 - fn0.9: 5246666.5418 - precision0.9: 0
            .9538 - recall0.9: 0.3597 - accuracy: 0.9073 - auc: 0.9113 - val_loss: 1.2681 - val_tp0.1: 2112447.0000 - val_fp0.1: 1372411.0000 - val_tn0.1: 20688214.0000 - val_fn0.1: 2041318.0000 - val_precision0.1: 0.6062 - val_recall0.1: 0.5086 -
             val_tp0.3: 1459147.0000 - val_fp0.3: 526021.0000 - val_tn0.3: 21534608.0000 - val_fn0.3: 2694618.0000 - val_precision0.3: 0.7350 - val_recall0.3: 0.3513 - val_tp0.5: 1206684.0000 - val_fp0.5: 343698.0000 - val_tn0.5: 21716924.0000 - v
            al_fn0.5: 2947081.0000 - val_precision0.5: 0.7783 - val_recall0.5: 0.2905 - val_tp0.7: 926901.0000 - val_fp0.7: 212441.0000 - val_tn0.7: 21848180.0000 - val_fn0.7: 3226864.0000 - val_precision0.7: 0.8135 - val_recall0.7: 0.2231 - val_t
            p0.9: 701556.0000 - val_fp0.9: 119958.0000 - val_tn0.9: 21940680.0000 - val_fn0.9: 3452209.0000 - val_precision0.9: 0.8540 - val_recall0.9: 0.1689 - val_accuracy: 0.8745 - val_auc: 0.7587
            Epoch 4/50
            1280/1280 [==============================] - 3266s 3s/step - loss: 0.5483 - tp0.1: 7577427.0859 - fp0.1: 8351943.7939 - tn0.1: 35940757.2381 - fn0.1: 640533.9243 - precision0.1: 0.4704 - recall0.1: 0.9241 - tp0.3: 6848424.7369 - fp0.3:
             4027475.1538 - tn0.3: 40265212.3185 - fn0.3: 1369536.2732 - precision0.3: 0.6241 - recall0.3: 0.8352 - tp0.5: 6060996.3591 - fp0.5: 2313256.1897 - tn0.5: 41979441.1702 - fn0.5: 2156964.6511 - precision0.5: 0.7177 - recall0.5: 0.7389 -
             tp0.7: 4556251.4965 - fp0.7: 542255.6714 - tn0.7: 43750437.9961 - fn0.7: 3661709.5137 - precision0.7: 0.8912 - recall0.7: 0.5511 - tp0.9: 3395492.4715 - fp0.9: 154251.2139 - tn0.9: 44138439.1054 - fn0.9: 4822468.5386 - precision0.9: 0
            .9548 - recall0.9: 0.4106 - accuracy: 0.9134 - auc: 0.9349 - val_loss: 1.5831 - val_tp0.1: 3220872.0000 - val_fp0.1: 3814830.0000 - val_tn0.1: 18497596.0000 - val_fn0.1: 681105.0000 - val_precision0.1: 0.4578 - val_recall0.1: 0.8254 -
            val_tp0.3: 2365990.0000 - val_fp0.3: 2561983.0000 - val_tn0.3: 19750440.0000 - val_fn0.3: 1535987.0000 - val_precision0.3: 0.4801 - val_recall0.3: 0.6064 - val_tp0.5: 1952532.0000 - val_fp0.5: 2291714.0000 - val_tn0.5: 20020708.0000 -
            val_fn0.5: 1949445.0000 - val_precision0.5: 0.4600 - val_recall0.5: 0.5004 - val_tp0.7: 1618270.0000 - val_fp0.7: 2113505.0000 - val_tn0.7: 20198920.0000 - val_fn0.7: 2283707.0000 - val_precision0.7: 0.4336 - val_recall0.7: 0.4147 - va
            l_tp0.9: 1467404.0000 - val_fp0.9: 1996280.0000 - val_tn0.9: 20316148.0000 - val_fn0.9: 2434573.0000 - val_precision0.9: 0.4237 - val_recall0.9: 0.3761 - val_accuracy: 0.8382 - val_auc: 0.8531
            Epoch 5/50
            1280/1280 [==============================] - 3259s 3s/step - loss: 0.4575 - tp0.1: 7563591.0968 - fp0.1: 6166461.2155 - tn0.1: 38207695.0180 - fn0.1: 572899.0141 - precision0.1: 0.5449 - recall0.1: 0.9269 - tp0.3: 6976500.9703 - fp0.3:
             2853572.8470 - tn0.3: 41520584.7908 - fn0.3: 1159989.1405 - precision0.3: 0.7064 - recall0.3: 0.8492 - tp0.5: 6358931.4910 - fp0.5: 1545188.1085 - tn0.5: 42828968.9243 - fn0.5: 1777558.6198 - precision0.5: 0.8010 - recall0.5: 0.7718 -
             tp0.7: 5171541.8845 - fp0.7: 510104.5824 - tn0.7: 43864075.8119 - fn0.7: 2964948.2264 - precision0.7: 0.9101 - recall0.7: 0.6254 - tp0.9: 3989419.1991 - fp0.9: 146867.6534 - tn0.9: 44227286.8977 - fn0.9: 4147070.9118 - precision0.9: 0
            .9658 - recall0.9: 0.4744 - accuracy: 0.9360 - auc: 0.9496 - val_loss: 1.0113 - val_tp0.1: 2745883.0000 - val_fp0.1: 1806365.0000 - val_tn0.1: 20277030.0000 - val_fn0.1: 1385129.0000 - val_precision0.1: 0.6032 - val_recall0.1: 0.6647 -
             val_tp0.3: 1898747.0000 - val_fp0.3: 1004741.0000 - val_tn0.3: 21078656.0000 - val_fn0.3: 2232265.0000 - val_precision0.3: 0.6540 - val_recall0.3: 0.4596 - val_tp0.5: 1378572.0000 - val_fp0.5: 684339.0000 - val_tn0.5: 21399046.0000 -
            val_fn0.5: 2752440.0000 - val_precision0.5: 0.6683 - val_recall0.5: 0.3337 - val_tp0.7: 1058802.0000 - val_fp0.7: 422419.0000 - val_tn0.7: 21660976.0000 - val_fn0.7: 3072210.0000 - val_precision0.7: 0.7148 - val_recall0.7: 0.2563 - val
            _tp0.9: 633251.0000 - val_fp0.9: 145724.0000 - val_tn0.9: 21937676.0000 - val_fn0.9: 3497761.0000 - val_precision0.9: 0.8129 - val_recall0.9: 0.1533 - val_accuracy: 0.8689 - val_auc: 0.8229
            Epoch 6/50
            1280/1280 [==============================] - 3293s 3s/step - loss: 0.3999 - tp0.1: 7670968.6714 - fp0.1: 5321303.1358 - tn0.1: 38997617.0039 - fn0.1: 520751.9563 - precision0.1: 0.5842 - recall0.1: 0.9342 - tp0.3: 7188663.1733 - fp0.3:
             2542544.6495 - tn0.3: 41776414.2037 - fn0.3: 1003057.4543 - precision0.3: 0.7341 - recall0.3: 0.8729 - tp0.5: 6622211.5550 - fp0.5: 1333118.7088 - tn0.5: 42985778.1749 - fn0.5: 1569509.0726 - precision0.5: 0.8305 - recall0.5: 0.8017 -
             tp0.7: 5590775.7127 - fp0.7: 478800.2568 - tn0.7: 43840116.4879 - fn0.7: 2600944.9149 - precision0.7: 0.9198 - recall0.7: 0.6746 - tp0.9: 4639602.3575 - fp0.9: 154184.4598 - tn0.9: 44164751.2225 - fn0.9: 3552118.2701 - precision0.9: 0
            .9678 - recall0.9: 0.5580 - accuracy: 0.9436 - auc: 0.9557 - val_loss: 0.7256 - val_tp0.1: 3301232.0000 - val_fp0.1: 2777637.0000 - val_tn0.1: 19396900.0000 - val_fn0.1: 738630.0000 - val_precision0.1: 0.5431 - val_recall0.1: 0.8172 -
            val_tp0.3: 2789396.0000 - val_fp0.3: 1963405.0000 - val_tn0.3: 20211132.0000 - val_fn0.3: 1250466.0000 - val_precision0.3: 0.5869 - val_recall0.3: 0.6905 - val_tp0.5: 2332065.0000 - val_fp0.5: 1478069.0000 - val_tn0.5: 20696466.0000 -
            val_fn0.5: 1707797.0000 - val_precision0.5: 0.6121 - val_recall0.5: 0.5773 - val_tp0.7: 1949962.0000 - val_fp0.7: 1076978.0000 - val_tn0.7: 21097560.0000 - val_fn0.7: 2089900.0000 - val_precision0.7: 0.6442 - val_recall0.7: 0.4827 - va
            l_tp0.9: 1380432.0000 - val_fp0.9: 492826.0000 - val_tn0.9: 21681716.0000 - val_fn0.9: 2659430.0000 - val_precision0.9: 0.7369 - val_recall0.9: 0.3417 - val_accuracy: 0.8785 - val_auc: 0.8740
            Epoch 7/50
            1280/1280 [==============================] - 3286s 3s/step - loss: 0.3597 - tp0.1: 7890232.5785 - fp0.1: 4953542.9781 - tn0.1: 39218777.5909 - fn0.1: 448103.7330 - precision0.1: 0.6178 - recall0.1: 0.9465 - tp0.3: 7467308.2701 - fp0.3:
             2391275.9922 - tn0.3: 41781019.9024 - fn0.3: 871028.0414 - precision0.3: 0.7613 - recall0.3: 0.8946 - tp0.5: 6988139.4286 - fp0.5: 1302055.8244 - tn0.5: 42870220.7486 - fn0.5: 1350196.8829 - precision0.5: 0.8451 - recall0.5: 0.8377 -
            tp0.7: 5947552.7845 - fp0.7: 472146.9633 - tn0.7: 43700160.4223 - fn0.7: 2390783.5269 - precision0.7: 0.9259 - recall0.7: 0.7138 - tp0.9: 4968978.2139 - fp0.9: 143981.8579 - tn0.9: 44028364.7588 - fn0.9: 3369358.0976 - precision0.9: 0.
            9713 - recall0.9: 0.5953 - accuracy: 0.9493 - auc: 0.9636 - val_loss: 0.7770 - val_tp0.1: 3234726.0000 - val_fp0.1: 2249439.0000 - val_tn0.1: 19829152.0000 - val_fn0.1: 901082.0000 - val_precision0.1: 0.5898 - val_recall0.1: 0.7821 - v
            al_tp0.3: 2554897.0000 - val_fp0.3: 1502825.0000 - val_tn0.3: 20575758.0000 - val_fn0.3: 1580911.0000 - val_precision0.3: 0.6296 - val_recall0.3: 0.6178 - val_tp0.5: 1992390.0000 - val_fp0.5: 1136809.0000 - val_tn0.5: 20941788.0000 - v
            al_fn0.5: 2143418.0000 - val_precision0.5: 0.6367 - val_recall0.5: 0.4817 - val_tp0.7: 1526404.0000 - val_fp0.7: 689435.0000 - val_tn0.7: 21389156.0000 - val_fn0.7: 2609404.0000 - val_precision0.7: 0.6889 - val_recall0.7: 0.3691 - val_
            tp0.9: 847679.0000 - val_fp0.9: 133403.0000 - val_tn0.9: 21945180.0000 - val_fn0.9: 3288129.0000 - val_precision0.9: 0.8640 - val_recall0.9: 0.2050 - val_accuracy: 0.8749 - val_auc: 0.8627
            Epoch 8/50
            1280/1280 [==============================] - 3289s 3s/step - loss: 0.3339 - tp0.1: 7747141.5660 - fp0.1: 4489700.9196 - tn0.1: 39841447.7486 - fn0.1: 432355.7814 - precision0.1: 0.6332 - recall0.1: 0.9472 - tp0.3: 7357958.1397 - fp0.3:
             2241207.2966 - tn0.3: 42089942.4052 - fn0.3: 821539.2077 - precision0.3: 0.7676 - recall0.3: 0.9001 - tp0.5: 6904184.2022 - fp0.5: 1214222.3841 - tn0.5: 43116930.9828 - fn0.5: 1275313.1452 - precision0.5: 0.8526 - recall0.5: 0.8448 -
            tp0.7: 5918119.9930 - fp0.7: 436485.9844 - tn0.7: 43894677.5480 - fn0.7: 2261377.3544 - precision0.7: 0.9324 - recall0.7: 0.7243 - tp0.9: 4978028.0929 - fp0.9: 136413.7908 - tn0.9: 44194744.8298 - fn0.9: 3201469.2545 - precision0.9: 0.
            9737 - recall0.9: 0.6094 - accuracy: 0.9533 - auc: 0.9664 - val_loss: 0.7192 - val_tp0.1: 3266754.0000 - val_fp0.1: 2261077.0000 - val_tn0.1: 19887774.0000 - val_fn0.1: 798799.0000 - val_precision0.1: 0.5910 - val_recall0.1: 0.8035 - v
            al_tp0.3: 2594715.0000 - val_fp0.3: 1533904.0000 - val_tn0.3: 20614936.0000 - val_fn0.3: 1470838.0000 - val_precision0.3: 0.6285 - val_recall0.3: 0.6382 - val_tp0.5: 2022214.0000 - val_fp0.5: 1204526.0000 - val_tn0.5: 20944316.0000 - v
            al_fn0.5: 2043339.0000 - val_precision0.5: 0.6267 - val_recall0.5: 0.4974 - val_tp0.7: 1633266.0000 - val_fp0.7: 893751.0000 - val_tn0.7: 21255104.0000 - val_fn0.7: 2432287.0000 - val_precision0.7: 0.6463 - val_recall0.7: 0.4017 - val_
            tp0.9: 1072066.0000 - val_fp0.9: 366453.0000 - val_tn0.9: 21782404.0000 - val_fn0.9: 2993487.0000 - val_precision0.9: 0.7453 - val_recall0.9: 0.2637 - val_accuracy: 0.8761 - val_auc: 0.8749
            Epoch 9/50
            1280/1280 [==============================] - 3297s 3s/step - loss: 0.3316 - tp0.1: 7830543.1632 - fp0.1: 4449068.0055 - tn0.1: 39786384.2771 - fn0.1: 444679.2272 - precision0.1: 0.6389 - recall0.1: 0.9467 - tp0.3: 7430622.2623 - fp0.3:
             2239407.0976 - tn0.3: 41996012.4926 - fn0.3: 844600.1280 - precision0.3: 0.7686 - recall0.3: 0.8983 - tp0.5: 6975903.1639 - fp0.5: 1214978.6417 - tn0.5: 43020456.3084 - fn0.5: 1299319.2264 - precision0.5: 0.8518 - recall0.5: 0.8438 -
            tp0.7: 6015111.5628 - fp0.7: 439544.0406 - tn0.7: 43795920.7791 - fn0.7: 2260110.8275 - precision0.7: 0.9325 - recall0.7: 0.7281 - tp0.9: 5071827.3482 - fp0.9: 135401.1327 - tn0.9: 44100020.3169 - fn0.9: 3203395.0422 - precision0.9: 0.
            9746 - recall0.9: 0.6139 - accuracy: 0.9520 - auc: 0.9664 - val_loss: 0.7987 - val_tp0.1: 3338155.0000 - val_fp0.1: 2467457.0000 - val_tn0.1: 19568284.0000 - val_fn0.1: 840502.0000 - val_precision0.1: 0.5750 - val_recall0.1: 0.7989 - v
            al_tp0.3: 2683614.0000 - val_fp0.3: 1892638.0000 - val_tn0.3: 20143100.0000 - val_fn0.3: 1495043.0000 - val_precision0.3: 0.5864 - val_recall0.3: 0.6422 - val_tp0.5: 2192750.0000 - val_fp0.5: 1587985.0000 - val_tn0.5: 20447752.0000 - v
            al_fn0.5: 1985907.0000 - val_precision0.5: 0.5800 - val_recall0.5: 0.5247 - val_tp0.7: 1808320.0000 - val_fp0.7: 1284650.0000 - val_tn0.7: 20751092.0000 - val_fn0.7: 2370337.0000 - val_precision0.7: 0.5847 - val_recall0.7: 0.4328 - val
            _tp0.9: 1198897.0000 - val_fp0.9: 618524.0000 - val_tn0.9: 21417220.0000 - val_fn0.9: 2979760.0000 - val_precision0.9: 0.6597 - val_recall0.9: 0.2869 - val_accuracy: 0.8637 - val_auc: 0.8621
            Epoch 10/50
            1280/1280 [==============================] - 3281s 3s/step - loss: 0.3275 - tp0.1: 7792627.5020 - fp0.1: 4279949.3427 - tn0.1: 40001537.3630 - fn0.1: 436537.2279 - precision0.1: 0.6422 - recall0.1: 0.9472 - tp0.3: 7406705.6987 - fp0.3:
             2160243.7174 - tn0.3: 42121245.1132 - fn0.3: 822459.0312 - precision0.3: 0.7727 - recall0.3: 0.8998 - tp0.5: 6961682.1405 - fp0.5: 1207985.9984 - tn0.5: 43073509.1913 - fn0.5: 1267482.5894 - precision0.5: 0.8511 - recall0.5: 0.8457 -
            tp0.7: 5977782.7900 - fp0.7: 441395.7190 - tn0.7: 43840082.2201 - fn0.7: 2251381.9399 - precision0.7: 0.9300 - recall0.7: 0.7245 - tp0.9: 5047421.8314 - fp0.9: 138119.9415 - tn0.9: 44143384.7346 - fn0.9: 3181742.8985 - precision0.9: 0.
            9728 - recall0.9: 0.6102 - accuracy: 0.9528 - auc: 0.9660 - val_loss: 0.8271 - val_tp0.1: 3497398.0000 - val_fp0.1: 2613010.0000 - val_tn0.1: 19230938.0000 - val_fn0.1: 873051.0000 - val_precision0.1: 0.5724 - val_recall0.1: 0.8002 - v
            al_tp0.3: 2805297.0000 - val_fp0.3: 1928525.0000 - val_tn0.3: 19915426.0000 - val_fn0.3: 1565152.0000 - val_precision0.3: 0.5926 - val_recall0.3: 0.6419 - val_tp0.5: 2250608.0000 - val_fp0.5: 1602046.0000 - val_tn0.5: 20241908.0000 - v
            al_fn0.5: 2119841.0000 - val_precision0.5: 0.5842 - val_recall0.5: 0.5150 - val_tp0.7: 1873937.0000 - val_fp0.7: 1289178.0000 - val_tn0.7: 20554764.0000 - val_fn0.7: 2496512.0000 - val_precision0.7: 0.5924 - val_recall0.7: 0.4288 - val
            _tp0.9: 1282739.0000 - val_fp0.9: 663370.0000 - val_tn0.9: 21180588.0000 - val_fn0.9: 3087710.0000 - val_precision0.9: 0.6591 - val_recall0.9: 0.2935 - val_accuracy: 0.8580 - val_auc: 0.8595
            Epoch 11/50
            1280/1280 [==============================] - 3284s 3s/step - loss: 0.3131 - tp0.1: 7805750.0211 - fp0.1: 4180231.1202 - tn0.1: 40107131.8431 - fn0.1: 417539.0390 - precision0.1: 0.6527 - recall0.1: 0.9499 - tp0.3: 7439055.2615 - fp0.3:
             2100484.2233 - tn0.3: 42186897.5113 - fn0.3: 784233.7986 - precision0.3: 0.7813 - recall0.3: 0.9065 - tp0.5: 7021029.5238 - fp0.5: 1158430.3731 - tn0.5: 43128929.4192 - fn0.5: 1202259.5363 - precision0.5: 0.8590 - recall0.5: 0.8568 -
            tp0.7: 6113168.1468 - fp0.7: 426487.4707 - tn0.7: 43860880.4848 - fn0.7: 2110120.9133 - precision0.7: 0.9352 - recall0.7: 0.7472 - tp0.9: 5208463.6464 - fp0.9: 134634.9001 - tn0.9: 44152728.1069 - fn0.9: 3014825.4137 - precision0.9: 0.
            9752 - recall0.9: 0.6369 - accuracy: 0.9554 - auc: 0.9685 - val_loss: 0.8179 - val_tp0.1: 3171244.0000 - val_fp0.1: 2428671.0000 - val_tn0.1: 19710012.0000 - val_fn0.1: 904466.0000 - val_precision0.1: 0.5663 - val_recall0.1: 0.7781 - v
            al_tp0.3: 2577226.0000 - val_fp0.3: 1780010.0000 - val_tn0.3: 20358686.0000 - val_fn0.3: 1498484.0000 - val_precision0.3: 0.5915 - val_recall0.3: 0.6323 - val_tp0.5: 2103216.0000 - val_fp0.5: 1506964.0000 - val_tn0.5: 20631718.0000 - v
            al_fn0.5: 1972494.0000 - val_precision0.5: 0.5826 - val_recall0.5: 0.5160 - val_tp0.7: 1740648.0000 - val_fp0.7: 1184962.0000 - val_tn0.7: 20953724.0000 - val_fn0.7: 2335062.0000 - val_precision0.7: 0.5950 - val_recall0.7: 0.4271 - val
            _tp0.9: 1152892.0000 - val_fp0.9: 479364.0000 - val_tn0.9: 21659326.0000 - val_fn0.9: 2922818.0000 - val_precision0.9: 0.7063 - val_recall0.9: 0.2829 - val_accuracy: 0.8673 - val_auc: 0.8530
            Epoch 12/50
            1280/1280 [==============================] - 3297s 3s/step - loss: 0.3231 - tp0.1: 7673586.0687 - fp0.1: 4254414.5621 - tn0.1: 40148103.3286 - fn0.1: 434544.6292 - precision0.1: 0.6426 - recall0.1: 0.9456 - tp0.3: 7286525.1889 - fp0.3:
             2133646.5324 - tn0.3: 42268881.5730 - fn0.3: 821605.5090 - precision0.3: 0.7727 - recall0.3: 0.8978 - tp0.5: 6849781.8283 - fp0.5: 1164265.2397 - tn0.5: 43238255.9961 - fn0.5: 1258348.8696 - precision0.5: 0.8542 - recall0.5: 0.8438 -
            tp0.7: 5967163.4153 - fp0.7: 423410.0211 - tn0.7: 43979128.0921 - fn0.7: 2140967.2826 - precision0.7: 0.9348 - recall0.7: 0.7339 - tp0.9: 5093586.0039 - fp0.9: 136848.5098 - tn0.9: 44265710.3138 - fn0.9: 3014544.6940 - precision0.9: 0.
            9745 - recall0.9: 0.6262 - accuracy: 0.9537 - auc: 0.9657 - val_loss: 0.7042 - val_tp0.1: 3495859.0000 - val_fp0.1: 2855125.0000 - val_tn0.1: 19280112.0000 - val_fn0.1: 583301.0000 - val_precision0.1: 0.5504 - val_recall0.1: 0.8570 - v
            al_tp0.3: 2938637.0000 - val_fp0.3: 2173835.0000 - val_tn0.3: 19961412.0000 - val_fn0.3: 1140523.0000 - val_precision0.3: 0.5748 - val_recall0.3: 0.7204 - val_tp0.5: 2404430.0000 - val_fp0.5: 1820758.0000 - val_tn0.5: 20314484.0000 - v
            al_fn0.5: 1674730.0000 - val_precision0.5: 0.5691 - val_recall0.5: 0.5894 - val_tp0.7: 2024378.0000 - val_fp0.7: 1527093.0000 - val_tn0.7: 20608140.0000 - val_fn0.7: 2054782.0000 - val_precision0.7: 0.5700 - val_recall0.7: 0.4963 - val
            _tp0.9: 1381535.0000 - val_fp0.9: 912692.0000 - val_tn0.9: 21222556.0000 - val_fn0.9: 2697625.0000 - val_precision0.9: 0.6022 - val_recall0.9: 0.3387 - val_accuracy: 0.8667 - val_auc: 0.8805
            Epoch 13/50
            1280/1280 [==============================] - 3321s 3s/step - loss: 0.3169 - tp0.1: 7909004.5371 - fp0.1: 4146765.2818 - tn0.1: 40030494.6401 - fn0.1: 424405.8938 - precision0.1: 0.6543 - recall0.1: 0.9500 - tp0.3: 7536643.9977 - fp0.3:
             2085465.0749 - tn0.3: 42091771.2584 - fn0.3: 796766.4333 - precision0.3: 0.7808 - recall0.3: 0.9063 - tp0.5: 7106355.0859 - fp0.5: 1146387.5933 - tn0.5: 43030851.5699 - fn0.5: 1227055.3450 - precision0.5: 0.8590 - recall0.5: 0.8551 -
            tp0.7: 6229305.1702 - fp0.7: 429169.7603 - tn0.7: 43748120.6526 - fn0.7: 2104105.2607 - precision0.7: 0.9350 - recall0.7: 0.7476 - tp0.9: 5365662.5207 - fp0.9: 142482.5558 - tn0.9: 44034765.0882 - fn0.9: 2967747.9102 - precision0.9: 0.
            9736 - recall0.9: 0.6436 - accuracy: 0.9544 - auc: 0.9678 - val_loss: 0.8398 - val_tp0.1: 3245885.0000 - val_fp0.1: 2536432.0000 - val_tn0.1: 19519276.0000 - val_fn0.1: 912810.0000 - val_precision0.1: 0.5613 - val_recall0.1: 0.7805 - v
            al_tp0.3: 2564525.0000 - val_fp0.3: 1814112.0000 - val_tn0.3: 20241596.0000 - val_fn0.3: 1594170.0000 - val_precision0.3: 0.5857 - val_recall0.3: 0.6167 - val_tp0.5: 2015465.0000 - val_fp0.5: 1451082.0000 - val_tn0.5: 20604624.0000 - v
            al_fn0.5: 2143230.0000 - val_precision0.5: 0.5814 - val_recall0.5: 0.4846 - val_tp0.7: 1621561.0000 - val_fp0.7: 1053037.0000 - val_tn0.7: 21002666.0000 - val_fn0.7: 2537134.0000 - val_precision0.7: 0.6063 - val_recall0.7: 0.3899 - val
            _tp0.9: 1065568.0000 - val_fp0.9: 460390.0000 - val_tn0.9: 21595312.0000 - val_fn0.9: 3093127.0000 - val_precision0.9: 0.6983 - val_recall0.9: 0.2562 - val_accuracy: 0.8629 - val_auc: 0.8493
            Epoch 14/50
            1280/1280 [==============================] - 3314s 3s/step - loss: 0.3076 - tp0.1: 7765395.1202 - fp0.1: 4130752.8431 - tn0.1: 40213352.2810 - fn0.1: 401143.6737 - precision0.1: 0.6501 - recall0.1: 0.9503 - tp0.3: 7389168.6144 - fp0.3:
             2041484.8189 - tn0.3: 42302624.6870 - fn0.3: 777370.1795 - precision0.3: 0.7825 - recall0.3: 0.9030 - tp0.5: 6961617.5222 - fp0.5: 1091504.5597 - tn0.5: 43252606.1101 - fn0.5: 1204921.2717 - precision0.5: 0.8642 - recall0.5: 0.8492 -
            tp0.7: 6118152.3286 - fp0.7: 416044.1280 - tn0.7: 43928097.5558 - fn0.7: 2048386.4653 - precision0.7: 0.9364 - recall0.7: 0.7464 - tp0.9: 5275694.6081 - fp0.9: 131773.3169 - tn0.9: 44212345.9774 - fn0.9: 2890844.1858 - precision0.9: 0.
            9759 - recall0.9: 0.6429 - accuracy: 0.9559 - auc: 0.9681 - val_loss: 0.7646 - val_tp0.1: 3394116.0000 - val_fp0.1: 2434359.0000 - val_tn0.1: 19620386.0000 - val_fn0.1: 765541.0000 - val_precision0.1: 0.5823 - val_recall0.1: 0.8160 - v
            al_tp0.3: 2854698.0000 - val_fp0.3: 1867547.0000 - val_tn0.3: 20187194.0000 - val_fn0.3: 1304959.0000 - val_precision0.3: 0.6045 - val_recall0.3: 0.6863 - val_tp0.5: 2392164.0000 - val_fp0.5: 1600876.0000 - val_tn0.5: 20453860.0000 - v
            al_fn0.5: 1767493.0000 - val_precision0.5: 0.5991 - val_recall0.5: 0.5751 - val_tp0.7: 2014352.0000 - val_fp0.7: 1325938.0000 - val_tn0.7: 20728804.0000 - val_fn0.7: 2145305.0000 - val_precision0.7: 0.6030 - val_recall0.7: 0.4843 - val
            _tp0.9: 1382581.0000 - val_fp0.9: 710524.0000 - val_tn0.9: 21344216.0000 - val_fn0.9: 2777076.0000 - val_precision0.9: 0.6605 - val_recall0.9: 0.3324 - val_accuracy: 0.8715 - val_auc: 0.8680
            Epoch 15/50
            1280/1280 [==============================] - 3321s 3s/step - loss: 0.3012 - tp0.1: 7918202.5168 - fp0.1: 3944007.1944 - tn0.1: 40234677.5113 - fn0.1: 413802.1538 - precision0.1: 0.6678 - recall0.1: 0.9509 - tp0.3: 7545589.1913 - fp0.3:
             1942385.4692 - tn0.3: 42236259.0687 - fn0.3: 786415.4793 - precision0.3: 0.7966 - recall0.3: 0.9059 - tp0.5: 7139685.9657 - fp0.5: 1075216.9391 - tn0.5: 43103450.5808 - fn0.5: 1192318.7049 - precision0.5: 0.8712 - recall0.5: 0.8570 -
            tp0.7: 6377161.2748 - fp0.7: 450450.9469 - tn0.7: 43728240.0265 - fn0.7: 1954843.3958 - precision0.7: 0.9369 - recall0.7: 0.7641 - tp0.9: 5506362.6120 - fp0.9: 143446.8002 - tn0.9: 44035203.3466 - fn0.9: 2825642.0585 - precision0.9: 0.
            9752 - recall0.9: 0.6625 - accuracy: 0.9571 - auc: 0.9692 - val_loss: 0.7740 - val_tp0.1: 3355047.0000 - val_fp0.1: 2511597.0000 - val_tn0.1: 19571600.0000 - val_fn0.1: 776157.0000 - val_precision0.1: 0.5719 - val_recall0.1: 0.8121 - v
            al_tp0.3: 2793785.0000 - val_fp0.3: 1928920.0000 - val_tn0.3: 20154280.0000 - val_fn0.3: 1337419.0000 - val_precision0.3: 0.5916 - val_recall0.3: 0.6763 - val_tp0.5: 2272116.0000 - val_fp0.5: 1578770.0000 - val_tn0.5: 20504436.0000 - v
            al_fn0.5: 1859088.0000 - val_precision0.5: 0.5900 - val_recall0.5: 0.5500 - val_tp0.7: 1883335.0000 - val_fp0.7: 1254872.0000 - val_tn0.7: 20828326.0000 - val_fn0.7: 2247869.0000 - val_precision0.7: 0.6001 - val_recall0.7: 0.4559 - val
            _tp0.9: 1294491.0000 - val_fp0.9: 656247.0000 - val_tn0.9: 21426948.0000 - val_fn0.9: 2836713.0000 - val_precision0.9: 0.6636 - val_recall0.9: 0.3133 - val_accuracy: 0.8689 - val_auc: 0.8643
            Epoch 16/50
            1280/1280 [==============================] - 3322s 3s/step - loss: 0.2996 - tp0.1: 7939368.5972 - fp0.1: 3969169.3778 - tn0.1: 40211699.6347 - fn0.1: 390406.3911 - precision0.1: 0.6606 - recall0.1: 0.9528 - tp0.3: 7573992.7580 - fp0.3:
             1993073.9243 - tn0.3: 42187811.5020 - fn0.3: 755782.2303 - precision0.3: 0.7866 - recall0.3: 0.9074 - tp0.5: 7177194.8970 - fp0.5: 1109584.0390 - tn0.5: 43071285.9805 - fn0.5: 1152580.0913 - precision0.5: 0.8632 - recall0.5: 0.8586 -
            tp0.7: 6618657.6151 - fp0.7: 578836.1054 - tn0.7: 43602043.0445 - fn0.7: 1711117.3731 - precision0.7: 0.9188 - recall0.7: 0.7896 - tp0.9: 5482513.6440 - fp0.9: 141140.2100 - tn0.9: 44039753.1483 - fn0.9: 2847261.3443 - precision0.9: 0.
            9744 - recall0.9: 0.6538 - accuracy: 0.9565 - auc: 0.9693 - val_loss: 0.8054 - val_tp0.1: 3345481.0000 - val_fp0.1: 2254991.0000 - val_tn0.1: 19696408.0000 - val_fn0.1: 917515.0000 - val_precision0.1: 0.5974 - val_recall0.1: 0.7848 - v
            al_tp0.3: 2726884.0000 - val_fp0.3: 1640058.0000 - val_tn0.3: 20311344.0000 - val_fn0.3: 1536112.0000 - val_precision0.3: 0.6244 - val_recall0.3: 0.6397 - val_tp0.5: 2263115.0000 - val_fp0.5: 1402171.0000 - val_tn0.5: 20549236.0000 - v
            al_fn0.5: 1999881.0000 - val_precision0.5: 0.6174 - val_recall0.5: 0.5309 - val_tp0.7: 1906416.0000 - val_fp0.7: 1106825.0000 - val_tn0.7: 20844576.0000 - val_fn0.7: 2356580.0000 - val_precision0.7: 0.6327 - val_recall0.7: 0.4472 - val
            _tp0.9: 1297258.0000 - val_fp0.9: 495212.0000 - val_tn0.9: 21456192.0000 - val_fn0.9: 2965738.0000 - val_precision0.9: 0.7237 - val_recall0.9: 0.3043 - val_accuracy: 0.8702 - val_auc: 0.8614
            Epoch 17/50
            1280/1280 [==============================] - 3281s 3s/step - loss: 0.2900 - tp0.1: 7724454.9820 - fp0.1: 3793475.2631 - tn0.1: 40600766.8860 - fn0.1: 391947.2693 - precision0.1: 0.6695 - recall0.1: 0.9516 - tp0.3: 7368504.9789 - fp0.3:
             1879500.1913 - tn0.3: 42514764.5855 - fn0.3: 747897.2724 - precision0.3: 0.7960 - recall0.3: 0.9078 - tp0.5: 6984976.5464 - fp0.5: 1046817.2740 - tn0.5: 43347456.7892 - fn0.5: 1131425.7049 - precision0.5: 0.8690 - recall0.5: 0.8606 -
            tp0.7: 6474243.4176 - fp0.7: 552184.5105 - tn0.7: 43842053.0726 - fn0.7: 1642158.8337 - precision0.7: 0.9206 - recall0.7: 0.7983 - tp0.9: 5438164.0788 - fp0.9: 137406.8056 - tn0.9: 44256829.4044 - fn0.9: 2678238.1725 - precision0.9: 0.
            9752 - recall0.9: 0.6718 - accuracy: 0.9584 - auc: 0.9698 - val_loss: 0.8475 - val_tp0.1: 3212091.0000 - val_fp0.1: 2556630.0000 - val_tn0.1: 19565418.0000 - val_fn0.1: 880263.0000 - val_precision0.1: 0.5568 - val_recall0.1: 0.7849 - v
            al_tp0.3: 2676698.0000 - val_fp0.3: 1975975.0000 - val_tn0.3: 20146070.0000 - val_fn0.3: 1415656.0000 - val_precision0.3: 0.5753 - val_recall0.3: 0.6541 - val_tp0.5: 2228667.0000 - val_fp0.5: 1724443.0000 - val_tn0.5: 20397608.0000 - v
            al_fn0.5: 1863687.0000 - val_precision0.5: 0.5638 - val_recall0.5: 0.5446 - val_tp0.7: 1876988.0000 - val_fp0.7: 1421139.0000 - val_tn0.7: 20700906.0000 - val_fn0.7: 2215366.0000 - val_precision0.7: 0.5691 - val_recall0.7: 0.4587 - val
            _tp0.9: 1318523.0000 - val_fp0.9: 744640.0000 - val_tn0.9: 21377414.0000 - val_fn0.9: 2773831.0000 - val_precision0.9: 0.6391 - val_recall0.9: 0.3222 - val_accuracy: 0.8631 - val_auc: 0.8479
            Epoch 18/50
            1280/1280 [==============================] - 3291s 3s/step - loss: 0.2960 - tp0.1: 7878258.3583 - fp0.1: 3966414.4723 - tn0.1: 40266792.8720 - fn0.1: 399191.5441 - precision0.1: 0.6660 - recall0.1: 0.9518 - tp0.3: 7519728.0133 - fp0.3:
             1997387.8189 - tn0.3: 42235815.4325 - fn0.3: 757721.8891 - precision0.3: 0.7910 - recall0.3: 0.9083 - tp0.5: 7117268.5543 - fp0.5: 1103594.4309 - tn0.5: 43129603.3357 - fn0.5: 1160181.3482 - precision0.5: 0.8660 - recall0.5: 0.8598 -
            tp0.7: 6559720.6885 - fp0.7: 569817.0601 - tn0.7: 43663373.8767 - fn0.7: 1717729.2139 - precision0.7: 0.9203 - recall0.7: 0.7929 - tp0.9: 5460392.9578 - fp0.9: 133811.0039 - tn0.9: 44099404.8353 - fn0.9: 2817056.9446 - precision0.9: 0.
            9765 - recall0.9: 0.6620 - accuracy: 0.9569 - auc: 0.9692 - val_loss: 2.4700 - val_tp0.1: 3478680.0000 - val_fp0.1: 2735141.0000 - val_tn0.1: 19398832.0000 - val_fn0.1: 601742.0000 - val_precision0.1: 0.5598 - val_recall0.1: 0.8525 - v
            al_tp0.3: 2990828.0000 - val_fp0.3: 2147854.0000 - val_tn0.3: 19986120.0000 - val_fn0.3: 1089594.0000 - val_precision0.3: 0.5820 - val_recall0.3: 0.7330 - val_tp0.5: 2523597.0000 - val_fp0.5: 1960329.0000 - val_tn0.5: 20173640.0000 - v
            al_fn0.5: 1556825.0000 - val_precision0.5: 0.5628 - val_recall0.5: 0.6185 - val_tp0.7: 2211753.0000 - val_fp0.7: 1837061.0000 - val_tn0.7: 20296910.0000 - val_fn0.7: 1868669.0000 - val_precision0.7: 0.5463 - val_recall0.7: 0.5420 - val
            _tp0.9: 1781271.0000 - val_fp0.9: 1591848.0000 - val_tn0.9: 20542120.0000 - val_fn0.9: 2299151.0000 - val_precision0.9: 0.5281 - val_recall0.9: 0.4365 - val_accuracy: 0.8658 - val_auc: 0.8707
            Epoch 19/50
            1280/1280 [==============================] - 3287s 3s/step - loss: 0.2909 - tp0.1: 7989303.7198 - fp0.1: 3862557.4653 - tn0.1: 40273532.0609 - fn0.1: 385255.3396 - precision0.1: 0.6759 - recall0.1: 0.9542 - tp0.3: 7630793.7799 - fp0.3:
             1926931.7330 - tn0.3: 42209171.3419 - fn0.3: 743765.2795 - precision0.3: 0.7994 - recall0.3: 0.9113 - tp0.5: 7240582.7869 - fp0.5: 1067331.3224 - tn0.5: 43068761.2030 - fn0.5: 1133976.2724 - precision0.5: 0.8729 - recall0.5: 0.8645 -
            tp0.7: 6700153.0500 - fp0.7: 553561.1038 - tn0.7: 43582525.7065 - fn0.7: 1674406.0094 - precision0.7: 0.9247 - recall0.7: 0.7993 - tp0.9: 5619106.6877 - fp0.9: 138913.2576 - tn0.9: 43997191.2326 - fn0.9: 2755452.3716 - precision0.9: 0.
            9761 - recall0.9: 0.6706 - accuracy: 0.9580 - auc: 0.9708 - val_loss: 0.8749 - val_tp0.1: 3092711.0000 - val_fp0.1: 2067604.0000 - val_tn0.1: 20017088.0000 - val_fn0.1: 1036989.0000 - val_precision0.1: 0.5993 - val_recall0.1: 0.7489 -
            val_tp0.3: 2486761.0000 - val_fp0.3: 1549670.0000 - val_tn0.3: 20535032.0000 - val_fn0.3: 1642939.0000 - val_precision0.3: 0.6161 - val_recall0.3: 0.6022 - val_tp0.5: 2068354.0000 - val_fp0.5: 1334103.0000 - val_tn0.5: 20750600.0000 -
            val_fn0.5: 2061346.0000 - val_precision0.5: 0.6079 - val_recall0.5: 0.5008 - val_tp0.7: 1728814.0000 - val_fp0.7: 1041223.0000 - val_tn0.7: 21043472.0000 - val_fn0.7: 2400886.0000 - val_precision0.7: 0.6241 - val_recall0.7: 0.4186 - va
            l_tp0.9: 1199934.0000 - val_fp0.9: 520759.0000 - val_tn0.9: 21563940.0000 - val_fn0.9: 2929766.0000 - val_precision0.9: 0.6974 - val_recall0.9: 0.2906 - val_accuracy: 0.8705 - val_auc: 0.8436
            Epoch 20/50
            1280/1280 [==============================] - 3278s 3s/step - loss: 0.2874 - tp0.1: 7845801.3482 - fp0.1: 3747571.3029 - tn0.1: 40520331.9508 - fn0.1: 396960.4161 - precision0.1: 0.6782 - recall0.1: 0.9514 - tp0.3: 7499855.0742 - fp0.3:
             1875299.3388 - tn0.3: 42392596.7424 - fn0.3: 742906.6901 - precision0.3: 0.8017 - recall0.3: 0.9098 - tp0.5: 7121660.4918 - fp0.5: 1042386.0788 - tn0.5: 43225501.8384 - fn0.5: 1121101.2724 - precision0.5: 0.8739 - recall0.5: 0.8640 -
            tp0.7: 6592531.3404 - fp0.7: 538088.3911 - tn0.7: 43729809.0500 - fn0.7: 1650230.4239 - precision0.7: 0.9254 - recall0.7: 0.8003 - tp0.9: 5543415.5105 - fp0.9: 131938.6378 - tn0.9: 44135942.6190 - fn0.9: 2699346.2537 - precision0.9: 0.
            9770 - recall0.9: 0.6728 - accuracy: 0.9592 - auc: 0.9698 - val_loss: 0.9565 - val_tp0.1: 2943258.0000 - val_fp0.1: 2086336.0000 - val_tn0.1: 20045976.0000 - val_fn0.1: 1138833.0000 - val_precision0.1: 0.5852 - val_recall0.1: 0.7210 -
            val_tp0.3: 2419480.0000 - val_fp0.3: 1662989.0000 - val_tn0.3: 20469314.0000 - val_fn0.3: 1662611.0000 - val_precision0.3: 0.5927 - val_recall0.3: 0.5927 - val_tp0.5: 2018052.0000 - val_fp0.5: 1478186.0000 - val_tn0.5: 20654124.0000 -
            val_fn0.5: 2064039.0000 - val_precision0.5: 0.5772 - val_recall0.5: 0.4944 - val_tp0.7: 1715248.0000 - val_fp0.7: 1231354.0000 - val_tn0.7: 20900956.0000 - val_fn0.7: 2366843.0000 - val_precision0.7: 0.5821 - val_recall0.7: 0.4202 - va
            l_tp0.9: 1245570.0000 - val_fp0.9: 677868.0000 - val_tn0.9: 21454434.0000 - val_fn0.9: 2836521.0000 - val_precision0.9: 0.6476 - val_recall0.9: 0.3051 - val_accuracy: 0.8649 - val_auc: 0.8275
            Epoch 21/50
            1280/1280 [==============================] - 3290s 3s/step - loss: 0.2804 - tp0.1: 7821343.4738 - fp0.1: 3664726.1171 - tn0.1: 40657232.2397 - fn0.1: 367350.5347 - precision0.1: 0.6815 - recall0.1: 0.9542 - tp0.3: 7489144.7580 - fp0.3:
             1868735.6292 - tn0.3: 42453227.8447 - fn0.3: 699549.2506 - precision0.3: 0.8010 - recall0.3: 0.9132 - tp0.5: 7115665.6729 - fp0.5: 1043113.8876 - tn0.5: 43278844.9688 - fn0.5: 1073028.3357 - precision0.5: 0.8724 - recall0.5: 0.8679 -
            tp0.7: 6602597.8665 - fp0.7: 551623.0804 - tn0.7: 43770320.6628 - fn0.7: 1586096.1421 - precision0.7: 0.9226 - recall0.7: 0.8053 - tp0.9: 5554093.7018 - fp0.9: 134091.5519 - tn0.9: 44187854.0671 - fn0.9: 2634600.3068 - precision0.9: 0.
            9763 - recall0.9: 0.6772 - accuracy: 0.9595 - auc: 0.9714 - val_loss: 0.8160 - val_tp0.1: 3192064.0000 - val_fp0.1: 2182394.0000 - val_tn0.1: 19900398.0000 - val_fn0.1: 939537.0000 - val_precision0.1: 0.5939 - val_recall0.1: 0.7726 - v
            al_tp0.3: 2628251.0000 - val_fp0.3: 1676252.0000 - val_tn0.3: 20406544.0000 - val_fn0.3: 1503350.0000 - val_precision0.3: 0.6106 - val_recall0.3: 0.6361 - val_tp0.5: 2262964.0000 - val_fp0.5: 1459711.0000 - val_tn0.5: 20623092.0000 - v
            al_fn0.5: 1868637.0000 - val_precision0.5: 0.6079 - val_recall0.5: 0.5477 - val_tp0.7: 1912004.0000 - val_fp0.7: 1114695.0000 - val_tn0.7: 20968108.0000 - val_fn0.7: 2219597.0000 - val_precision0.7: 0.6317 - val_recall0.7: 0.4628 - val
            _tp0.9: 1266412.0000 - val_fp0.9: 537157.0000 - val_tn0.9: 21545640.0000 - val_fn0.9: 2865189.0000 - val_precision0.9: 0.7022 - val_recall0.9: 0.3065 - val_accuracy: 0.8730 - val_auc: 0.8570
            Epoch 22/50
            1280/1280 [==============================] - 3337s 3s/step - loss: 0.2695 - tp0.1: 7964599.1304 - fp0.1: 3487980.5644 - tn0.1: 40692123.6760 - fn0.1: 365971.2584 - precision0.1: 0.6952 - recall0.1: 0.9559 - tp0.3: 7639300.1928 - fp0.3:
             1768977.4333 - tn0.3: 42411101.8767 - fn0.3: 691270.1959 - precision0.3: 0.8119 - recall0.3: 0.9169 - tp0.5: 7283022.7681 - fp0.5: 1008769.9313 - tn0.5: 43171283.5621 - fn0.5: 1047547.6206 - precision0.5: 0.8781 - recall0.5: 0.8740 -
            tp0.7: 6797706.8946 - fp0.7: 543031.7963 - tn0.7: 43637044.5636 - fn0.7: 1532863.4941 - precision0.7: 0.9257 - recall0.7: 0.8158 - tp0.9: 5748924.9516 - fp0.9: 136050.2350 - tn0.9: 44044056.0921 - fn0.9: 2581645.4372 - precision0.9: 0.
            9771 - recall0.9: 0.6893 - accuracy: 0.9609 - auc: 0.9731 - val_loss: 0.8131 - val_tp0.1: 3187368.0000 - val_fp0.1: 2205558.0000 - val_tn0.1: 19939310.0000 - val_fn0.1: 882169.0000 - val_precision0.1: 0.5910 - val_recall0.1: 0.7832 - v
            al_tp0.3: 2568349.0000 - val_fp0.3: 1630822.0000 - val_tn0.3: 20514044.0000 - val_fn0.3: 1501188.0000 - val_precision0.3: 0.6116 - val_recall0.3: 0.6311 - val_tp0.5: 2132479.0000 - val_fp0.5: 1391371.0000 - val_tn0.5: 20753492.0000 - v
            al_fn0.5: 1937058.0000 - val_precision0.5: 0.6052 - val_recall0.5: 0.5240 - val_tp0.7: 1724396.0000 - val_fp0.7: 1052743.0000 - val_tn0.7: 21092120.0000 - val_fn0.7: 2345141.0000 - val_precision0.7: 0.6209 - val_recall0.7: 0.4237 - val
            _tp0.9: 1088044.0000 - val_fp0.9: 509365.0000 - val_tn0.9: 21635508.0000 - val_fn0.9: 2981493.0000 - val_precision0.9: 0.6811 - val_recall0.9: 0.2674 - val_accuracy: 0.8730 - val_auc: 0.8564
            Epoch 23/50
            1280/1280 [==============================] - 3288s 3s/step - loss: 0.2689 - tp0.1: 7750995.1733 - fp0.1: 3597605.4887 - tn0.1: 40799177.1624 - fn0.1: 362898.6737 - precision0.1: 0.6830 - recall0.1: 0.9562 - tp0.3: 7415912.0773 - fp0.3:
             1777617.9633 - tn0.3: 42619150.5051 - fn0.3: 697981.7697 - precision0.3: 0.8063 - recall0.3: 0.9146 - tp0.5: 7059667.4192 - fp0.5: 992741.5051 - tn0.5: 43404008.9727 - fn0.5: 1054226.4278 - precision0.5: 0.8769 - recall0.5: 0.8705 - t
            p0.7: 6579822.4957 - fp0.7: 525915.9500 - tn0.7: 43870813.2443 - fn0.7: 1534071.3513 - precision0.7: 0.9263 - recall0.7: 0.8112 - tp0.9: 5573469.2935 - fp0.9: 125489.0593 - tn0.9: 44271266.5379 - fn0.9: 2540424.5535 - precision0.9: 0.9
            785 - recall0.9: 0.6878 - accuracy: 0.9612 - auc: 0.9727 - val_loss: 0.8991 - val_tp0.1: 3067116.0000 - val_fp0.1: 2378685.0000 - val_tn0.1: 19772492.0000 - val_fn0.1: 996109.0000 - val_precision0.1: 0.5632 - val_recall0.1: 0.7548 - va
            l_tp0.3: 2525982.0000 - val_fp0.3: 1869663.0000 - val_tn0.3: 20281514.0000 - val_fn0.3: 1537243.0000 - val_precision0.3: 0.5747 - val_recall0.3: 0.6217 - val_tp0.5: 2090818.0000 - val_fp0.5: 1570273.0000 - val_tn0.5: 20580908.0000 - va
            l_fn0.5: 1972407.0000 - val_precision0.5: 0.5711 - val_recall0.5: 0.5146 - val_tp0.7: 1691191.0000 - val_fp0.7: 1177904.0000 - val_tn0.7: 20973274.0000 - val_fn0.7: 2372034.0000 - val_precision0.7: 0.5895 - val_recall0.7: 0.4162 - val_
            tp0.9: 1101527.0000 - val_fp0.9: 574543.0000 - val_tn0.9: 21576624.0000 - val_fn0.9: 2961698.0000 - val_precision0.9: 0.6572 - val_recall0.9: 0.2711 - val_accuracy: 0.8649 - val_auc: 0.8377
            Epoch 24/50
            1280/1280 [==============================] - 3284s 3s/step - loss: 0.2805 - tp0.1: 7918656.6589 - fp0.1: 3592495.9235 - tn0.1: 40635399.4606 - fn0.1: 364123.3185 - precision0.1: 0.6839 - recall0.1: 0.9541 - tp0.3: 7581799.2061 - fp0.3:
             1810020.2311 - tn0.3: 42417852.9594 - fn0.3: 700980.7713 - precision0.3: 0.8032 - recall0.3: 0.9122 - tp0.5: 7211523.7502 - fp0.5: 1027547.9930 - tn0.5: 43200324.1296 - fn0.5: 1071256.2272 - precision0.5: 0.8718 - recall0.5: 0.8665 -
            tp0.7: 6727091.3692 - fp0.7: 558955.8712 - tn0.7: 43668944.4075 - fn0.7: 1555688.6081 - precision0.7: 0.9209 - recall0.7: 0.8072 - tp0.9: 5696121.9555 - fp0.9: 142622.7455 - tn0.9: 44085280.0343 - fn0.9: 2586658.0219 - precision0.9: 0.
            9746 - recall0.9: 0.6826 - accuracy: 0.9591 - auc: 0.9708 - val_loss: 0.9386 - val_tp0.1: 2779932.0000 - val_fp0.1: 1939286.0000 - val_tn0.1: 20344936.0000 - val_fn0.1: 1150243.0000 - val_precision0.1: 0.5891 - val_recall0.1: 0.7073 -
            val_tp0.3: 2181594.0000 - val_fp0.3: 1457307.0000 - val_tn0.3: 20826908.0000 - val_fn0.3: 1748581.0000 - val_precision0.3: 0.5995 - val_recall0.3: 0.5551 - val_tp0.5: 1772386.0000 - val_fp0.5: 1197130.0000 - val_tn0.5: 21087092.0000 -
            val_fn0.5: 2157789.0000 - val_precision0.5: 0.5969 - val_recall0.5: 0.4510 - val_tp0.7: 1397374.0000 - val_fp0.7: 840833.0000 - val_tn0.7: 21443384.0000 - val_fn0.7: 2532801.0000 - val_precision0.7: 0.6243 - val_recall0.7: 0.3556 - val
            _tp0.9: 891892.0000 - val_fp0.9: 338054.0000 - val_tn0.9: 21946184.0000 - val_fn0.9: 3038283.0000 - val_precision0.9: 0.7251 - val_recall0.9: 0.2269 - val_accuracy: 0.8720 - val_auc: 0.8227
            Epoch 25/50
            1280/1280 [==============================] - 3312s 3s/step - loss: 0.2614 - tp0.1: 7920216.7338 - fp0.1: 3526618.6542 - tn0.1: 40723751.9001 - fn0.1: 340058.4512 - precision0.1: 0.6948 - recall0.1: 0.9594 - tp0.3: 7591746.0851 - fp0.3:
             1770255.0687 - tn0.3: 42480125.7884 - fn0.3: 668529.0999 - precision0.3: 0.8133 - recall0.3: 0.9199 - tp0.5: 7232148.8064 - fp0.5: 1004410.7486 - tn0.5: 43245980.8556 - fn0.5: 1028126.3786 - precision0.5: 0.8800 - recall0.5: 0.8766 -
            tp0.7: 6751684.1514 - fp0.7: 540161.4325 - tn0.7: 43710214.4629 - fn0.7: 1508591.0336 - precision0.7: 0.9275 - recall0.7: 0.8179 - tp0.9: 5682987.5933 - fp0.9: 133426.7330 - tn0.9: 44116927.1835 - fn0.9: 2577287.5917 - precision0.9: 0.
            9781 - recall0.9: 0.6873 - accuracy: 0.9617 - auc: 0.9742 - val_loss: 0.7990 - val_tp0.1: 3208335.0000 - val_fp0.1: 2291707.0000 - val_tn0.1: 19888704.0000 - val_fn0.1: 825651.0000 - val_precision0.1: 0.5833 - val_recall0.1: 0.7953 - v
            al_tp0.3: 2646324.0000 - val_fp0.3: 1812815.0000 - val_tn0.3: 20367606.0000 - val_fn0.3: 1387662.0000 - val_precision0.3: 0.5935 - val_recall0.3: 0.6560 - val_tp0.5: 2184535.0000 - val_fp0.5: 1449172.0000 - val_tn0.5: 20731252.0000 - v
            al_fn0.5: 1849451.0000 - val_precision0.5: 0.6012 - val_recall0.5: 0.5415 - val_tp0.7: 1700807.0000 - val_fp0.7: 1059055.0000 - val_tn0.7: 21121356.0000 - val_fn0.7: 2333179.0000 - val_precision0.7: 0.6163 - val_recall0.7: 0.4216 - val
            _tp0.9: 1000799.0000 - val_fp0.9: 603281.0000 - val_tn0.9: 21577132.0000 - val_fn0.9: 3033187.0000 - val_precision0.9: 0.6239 - val_recall0.9: 0.2481 - val_accuracy: 0.8742 - val_auc: 0.8559
            Epoch 26/50
            1280/1280 [==============================] - 3292s 3s/step - loss: 0.2564 - tp0.1: 7951938.6698 - fp0.1: 3507608.0250 - tn0.1: 40722855.8618 - fn0.1: 328256.7658 - precision0.1: 0.6956 - recall0.1: 0.9610 - tp0.3: 7628245.6300 - fp0.3:
             1764444.8579 - tn0.3: 42466010.5285 - fn0.3: 651949.8056 - precision0.3: 0.8130 - recall0.3: 0.9222 - tp0.5: 7277018.4473 - fp0.5: 993563.1429 - tn0.5: 43236890.8002 - fn0.5: 1003176.9883 - precision0.5: 0.8801 - recall0.5: 0.8802 - t
            p0.7: 6809211.9329 - fp0.7: 538938.6565 - tn0.7: 43691507.5847 - fn0.7: 1470983.5027 - precision0.7: 0.9271 - recall0.7: 0.8247 - tp0.9: 5778468.3435 - fp0.9: 130088.7877 - tn0.9: 44100381.7361 - fn0.9: 2501727.0921 - precision0.9: 0.9
            783 - recall0.9: 0.7006 - accuracy: 0.9620 - auc: 0.9752 - val_loss: 0.9080 - val_tp0.1: 2917153.0000 - val_fp0.1: 2217207.0000 - val_tn0.1: 20036056.0000 - val_fn0.1: 1043985.0000 - val_precision0.1: 0.5682 - val_recall0.1: 0.7364 - v
            al_tp0.3: 2324132.0000 - val_fp0.3: 1709552.0000 - val_tn0.3: 20543718.0000 - val_fn0.3: 1637006.0000 - val_precision0.3: 0.5762 - val_recall0.3: 0.5867 - val_tp0.5: 1885949.0000 - val_fp0.5: 1373092.0000 - val_tn0.5: 20880176.0000 - v
            al_fn0.5: 2075189.0000 - val_precision0.5: 0.5787 - val_recall0.5: 0.4761 - val_tp0.7: 1470934.0000 - val_fp0.7: 951612.0000 - val_tn0.7: 21301648.0000 - val_fn0.7: 2490204.0000 - val_precision0.7: 0.6072 - val_recall0.7: 0.3713 - val_
            tp0.9: 925487.0000 - val_fp0.9: 440991.0000 - val_tn0.9: 21812280.0000 - val_fn0.9: 3035651.0000 - val_precision0.9: 0.6773 - val_recall0.9: 0.2336 - val_accuracy: 0.8685 - val_auc: 0.8286
            Epoch 27/50
            1280/1280 [==============================] - 3294s 3s/step - loss: 0.2645 - tp0.1: 8005473.6409 - fp0.1: 3575769.4098 - tn0.1: 40581931.1319 - fn0.1: 347472.6667 - precision0.1: 0.6907 - recall0.1: 0.9587 - tp0.3: 7670517.9243 - fp0.3:
             1798604.7674 - tn0.3: 42359111.5941 - fn0.3: 682428.3833 - precision0.3: 0.8108 - recall0.3: 0.9185 - tp0.5: 7312500.5558 - fp0.5: 1024504.0812 - tn0.5: 43133203.4434 - fn0.5: 1040445.7518 - precision0.5: 0.8784 - recall0.5: 0.8764 -
            tp0.7: 6846122.2201 - fp0.7: 554274.4294 - tn0.7: 43603409.3521 - fn0.7: 1506824.0874 - precision0.7: 0.9264 - recall0.7: 0.8215 - tp0.9: 5804102.2420 - fp0.9: 127947.9672 - tn0.9: 44029764.9969 - fn0.9: 2548844.0656 - precision0.9: 0.
            9789 - recall0.9: 0.6991 - accuracy: 0.9613 - auc: 0.9737 - val_loss: 0.7467 - val_tp0.1: 3265250.0000 - val_fp0.1: 2199966.0000 - val_tn0.1: 19968754.0000 - val_fn0.1: 780424.0000 - val_precision0.1: 0.5975 - val_recall0.1: 0.8071 - v
            al_tp0.3: 2595986.0000 - val_fp0.3: 1569977.0000 - val_tn0.3: 20598752.0000 - val_fn0.3: 1449688.0000 - val_precision0.3: 0.6231 - val_recall0.3: 0.6417 - val_tp0.5: 2090775.0000 - val_fp0.5: 1320764.0000 - val_tn0.5: 20847968.0000 - v
            al_fn0.5: 1954899.0000 - val_precision0.5: 0.6129 - val_recall0.5: 0.5168 - val_tp0.7: 1610859.0000 - val_fp0.7: 895071.0000 - val_tn0.7: 21273662.0000 - val_fn0.7: 2434815.0000 - val_precision0.7: 0.6428 - val_recall0.7: 0.3982 - val_
            tp0.9: 934620.0000 - val_fp0.9: 380349.0000 - val_tn0.9: 21788384.0000 - val_fn0.9: 3111054.0000 - val_precision0.9: 0.7108 - val_recall0.9: 0.2310 - val_accuracy: 0.8750 - val_auc: 0.8659
            Epoch 28/50
            1280/1280 [==============================] - 3286s 3s/step - loss: 0.2563 - tp0.1: 7900461.9563 - fp0.1: 3575374.1405 - tn0.1: 40711544.3599 - fn0.1: 323306.9867 - precision0.1: 0.6896 - recall0.1: 0.9612 - tp0.3: 7567966.7549 - fp0.3:
             1768843.2389 - tn0.3: 42518056.5605 - fn0.3: 655802.1881 - precision0.3: 0.8113 - recall0.3: 0.9206 - tp0.5: 7202561.9477 - fp0.5: 988935.1319 - tn0.5: 43297946.7713 - fn0.5: 1021206.9953 - precision0.5: 0.8795 - recall0.5: 0.8766 - t
            p0.7: 6725537.1077 - fp0.7: 525482.0679 - tn0.7: 43761380.4372 - fn0.7: 1498231.8353 - precision0.7: 0.9278 - recall0.7: 0.8191 - tp0.9: 5729492.5956 - fp0.9: 139279.5152 - tn0.9: 44147595.4887 - fn0.9: 2494276.3474 - precision0.9: 0.9
            761 - recall0.9: 0.7005 - accuracy: 0.9620 - auc: 0.9747 - val_loss: 0.9282 - val_tp0.1: 3074924.0000 - val_fp0.1: 2026526.0000 - val_tn0.1: 20054118.0000 - val_fn0.1: 1058829.0000 - val_precision0.1: 0.6028 - val_recall0.1: 0.7439 - v
            al_tp0.3: 2384857.0000 - val_fp0.3: 1512374.0000 - val_tn0.3: 20568268.0000 - val_fn0.3: 1748896.0000 - val_precision0.3: 0.6119 - val_recall0.3: 0.5769 - val_tp0.5: 1874790.0000 - val_fp0.5: 1177108.0000 - val_tn0.5: 20903548.0000 - v
            al_fn0.5: 2258963.0000 - val_precision0.5: 0.6143 - val_recall0.5: 0.4535 - val_tp0.7: 1433826.0000 - val_fp0.7: 875539.0000 - val_tn0.7: 21205108.0000 - val_fn0.7: 2699927.0000 - val_precision0.7: 0.6209 - val_recall0.7: 0.3469 - val_
            tp0.9: 876571.0000 - val_fp0.9: 463067.0000 - val_tn0.9: 21617596.0000 - val_fn0.9: 3257182.0000 - val_precision0.9: 0.6543 - val_recall0.9: 0.2121 - val_accuracy: 0.8689 - val_auc: 0.8345
            Epoch 29/50
            1280/1280 [==============================] - 3301s 3s/step - loss: 0.2631 - tp0.1: 7928634.4387 - fp0.1: 3499371.4231 - tn0.1: 40746977.2912 - fn0.1: 335655.7486 - precision0.1: 0.6931 - recall0.1: 0.9590 - tp0.3: 7590846.6565 - fp0.3:
             1745234.9133 - tn0.3: 42501135.9079 - fn0.3: 673443.5308 - precision0.3: 0.8123 - recall0.3: 0.9172 - tp0.5: 7228004.8962 - fp0.5: 987598.6276 - tn0.5: 43258775.8423 - fn0.5: 1036285.2912 - precision0.5: 0.8797 - recall0.5: 0.8722 - t
            p0.7: 6751780.5855 - fp0.7: 528906.3060 - tn0.7: 43717457.8899 - fn0.7: 1512509.6019 - precision0.7: 0.9276 - recall0.7: 0.8149 - tp0.9: 5739049.2662 - fp0.9: 134220.8212 - tn0.9: 44112121.8931 - fn0.9: 2525240.9212 - precision0.9: 0.9
            773 - recall0.9: 0.6932 - accuracy: 0.9610 - auc: 0.9735 - val_loss: 0.9733 - val_tp0.1: 2953631.0000 - val_fp0.1: 2097398.0000 - val_tn0.1: 20016580.0000 - val_fn0.1: 1146781.0000 - val_precision0.1: 0.5848 - val_recall0.1: 0.7203 - v
            al_tp0.3: 2295553.0000 - val_fp0.3: 1572391.0000 - val_tn0.3: 20541608.0000 - val_fn0.3: 1804859.0000 - val_precision0.3: 0.5935 - val_recall0.3: 0.5598 - val_tp0.5: 1907607.0000 - val_fp0.5: 1337407.0000 - val_tn0.5: 20776580.0000 - v
            al_fn0.5: 2192805.0000 - val_precision0.5: 0.5879 - val_recall0.5: 0.4652 - val_tp0.7: 1521536.0000 - val_fp0.7: 1008010.0000 - val_tn0.7: 21105980.0000 - val_fn0.7: 2578876.0000 - val_precision0.7: 0.6015 - val_recall0.7: 0.3711 - val
            _tp0.9: 972957.0000 - val_fp0.9: 483731.0000 - val_tn0.9: 21630266.0000 - val_fn0.9: 3127455.0000 - val_precision0.9: 0.6679 - val_recall0.9: 0.2373 - val_accuracy: 0.8653 - val_auc: 0.8217
            Epoch 30/50
            1280/1280 [==============================] - 3328s 3s/step - loss: 0.2476 - tp0.1: 7928433.5863 - fp0.1: 3472550.0773 - tn0.1: 40794809.0422 - fn0.1: 314855.4317 - precision0.1: 0.6960 - recall0.1: 0.9627 - tp0.3: 7601842.5277 - fp0.3:
             1687439.2631 - tn0.3: 42579912.0640 - fn0.3: 641446.4902 - precision0.3: 0.8211 - recall0.3: 0.9228 - tp0.5: 7249994.1311 - fp0.5: 954111.0289 - tn0.5: 43313245.2014 - fn0.5: 993294.8868 - precision0.5: 0.8862 - recall0.5: 0.8801 - tp
            0.7: 6788340.7728 - fp0.7: 512779.7322 - tn0.7: 43754579.6230 - fn0.7: 1454948.2451 - precision0.7: 0.9317 - recall0.7: 0.8242 - tp0.9: 5804142.8977 - fp0.9: 135882.9547 - tn0.9: 44131491.4426 - fn0.9: 2439146.1202 - precision0.9: 0.97
            77 - recall0.9: 0.7071 - accuracy: 0.9638 - auc: 0.9759 - val_loss: 0.9000 - val_tp0.1: 3155596.0000 - val_fp0.1: 2364539.0000 - val_tn0.1: 19719286.0000 - val_fn0.1: 974987.0000 - val_precision0.1: 0.5717 - val_recall0.1: 0.7640 - val
            _tp0.3: 2555024.0000 - val_fp0.3: 1820537.0000 - val_tn0.3: 20263286.0000 - val_fn0.3: 1575559.0000 - val_precision0.3: 0.5839 - val_recall0.3: 0.6186 - val_tp0.5: 2171845.0000 - val_fp0.5: 1530813.0000 - val_tn0.5: 20553012.0000 - val
            _fn0.5: 1958738.0000 - val_precision0.5: 0.5866 - val_recall0.5: 0.5258 - val_tp0.7: 1696953.0000 - val_fp0.7: 1088079.0000 - val_tn0.7: 20995736.0000 - val_fn0.7: 2433630.0000 - val_precision0.7: 0.6093 - val_recall0.7: 0.4108 - val_t
            p0.9: 986911.0000 - val_fp0.9: 596529.0000 - val_tn0.9: 21487282.0000 - val_fn0.9: 3143672.0000 - val_precision0.9: 0.6233 - val_recall0.9: 0.2389 - val_accuracy: 0.8669 - val_auc: 0.8372
            Epoch 31/50
            1280/1280 [==============================] - 3327s 3s/step - loss: 0.2474 - tp0.1: 7893463.6916 - fp0.1: 3376652.6175 - tn0.1: 40920762.5230 - fn0.1: 319751.0945 - precision0.1: 0.6988 - recall0.1: 0.9618 - tp0.3: 7584152.9766 - fp0.3:
             1687559.6604 - tn0.3: 42609861.8407 - fn0.3: 629061.8095 - precision0.3: 0.8167 - recall0.3: 0.9246 - tp0.5: 7249654.8931 - fp0.5: 952218.5824 - tn0.5: 43345227.1788 - fn0.5: 963559.8931 - precision0.5: 0.8832 - recall0.5: 0.8838 - tp
            0.7: 6813905.7268 - fp0.7: 516513.1452 - tn0.7: 43780937.7900 - fn0.7: 1399309.0593 - precision0.7: 0.9292 - recall0.7: 0.8309 - tp0.9: 5825876.9290 - fp0.9: 123739.9094 - tn0.9: 44173704.9789 - fn0.9: 2387337.8571 - precision0.9: 0.97
            94 - recall0.9: 0.7105 - accuracy: 0.9638 - auc: 0.9755 - val_loss: 1.0137 - val_tp0.1: 2843857.0000 - val_fp0.1: 2045215.0000 - val_tn0.1: 20132800.0000 - val_fn0.1: 1192532.0000 - val_precision0.1: 0.5817 - val_recall0.1: 0.7046 - va
            l_tp0.3: 2207535.0000 - val_fp0.3: 1595385.0000 - val_tn0.3: 20582624.0000 - val_fn0.3: 1828854.0000 - val_precision0.3: 0.5805 - val_recall0.3: 0.5469 - val_tp0.5: 1835971.0000 - val_fp0.5: 1390695.0000 - val_tn0.5: 20787306.0000 - va
            l_fn0.5: 2200418.0000 - val_precision0.5: 0.5690 - val_recall0.5: 0.4549 - val_tp0.7: 1407052.0000 - val_fp0.7: 1033277.0000 - val_tn0.7: 21144740.0000 - val_fn0.7: 2629337.0000 - val_precision0.7: 0.5766 - val_recall0.7: 0.3486 - val_
            tp0.9: 786994.0000 - val_fp0.9: 502079.0000 - val_tn0.9: 21675932.0000 - val_fn0.9: 3249395.0000 - val_precision0.9: 0.6105 - val_recall0.9: 0.1950 - val_accuracy: 0.8630 - val_auc: 0.8121
            Epoch 32/50
            1280/1280 [==============================] - 3314s 3s/step - loss: 0.2529 - tp0.1: 7921204.5262 - fp0.1: 3486226.5160 - tn0.1: 40787447.0554 - fn0.1: 315795.7416 - precision0.1: 0.6929 - recall0.1: 0.9624 - tp0.3: 7593409.2264 - fp0.3:
             1719995.1319 - tn0.3: 42553646.5496 - fn0.3: 643591.0414 - precision0.3: 0.8139 - recall0.3: 0.9227 - tp0.5: 7240041.4294 - fp0.5: 971849.9313 - tn0.5: 43301829.9984 - fn0.5: 996958.8384 - precision0.5: 0.8807 - recall0.5: 0.8794 - tp
            0.7: 6782718.2459 - fp0.7: 527577.0203 - tn0.7: 43746081.8454 - fn0.7: 1454282.0219 - precision0.7: 0.9273 - recall0.7: 0.8235 - tp0.9: 5780993.2069 - fp0.9: 137794.4926 - tn0.9: 44135860.1952 - fn0.9: 2456007.0609 - precision0.9: 0.97
            62 - recall0.9: 0.7029 - accuracy: 0.9623 - auc: 0.9755 - val_loss: 0.9139 - val_tp0.1: 2984184.0000 - val_fp0.1: 1853144.0000 - val_tn0.1: 20302900.0000 - val_fn0.1: 1074177.0000 - val_precision0.1: 0.6169 - val_recall0.1: 0.7353 - va
            l_tp0.3: 2282389.0000 - val_fp0.3: 1253127.0000 - val_tn0.3: 20902908.0000 - val_fn0.3: 1775972.0000 - val_precision0.3: 0.6456 - val_recall0.3: 0.5624 - val_tp0.5: 1856088.0000 - val_fp0.5: 1008268.0000 - val_tn0.5: 21147768.0000 - va
            l_fn0.5: 2202273.0000 - val_precision0.5: 0.6480 - val_recall0.5: 0.4573 - val_tp0.7: 1412568.0000 - val_fp0.7: 746394.0000 - val_tn0.7: 21409650.0000 - val_fn0.7: 2645793.0000 - val_precision0.7: 0.6543 - val_recall0.7: 0.3481 - val_t
            p0.9: 859420.0000 - val_fp0.9: 382687.0000 - val_tn0.9: 21773356.0000 - val_fn0.9: 3198941.0000 - val_precision0.9: 0.6919 - val_recall0.9: 0.2118 - val_accuracy: 0.8775 - val_auc: 0.8374
            Epoch 33/50
            1280/1280 [==============================] - 3327s 3s/step - loss: 0.2503 - tp0.1: 8047970.1561 - fp0.1: 3391824.5386 - tn0.1: 40757551.3286 - fn0.1: 313307.7994 - precision0.1: 0.7045 - recall0.1: 0.9628 - tp0.3: 7729505.2756 - fp0.3:
             1696243.9040 - tn0.3: 42453121.2498 - fn0.3: 631772.6799 - precision0.3: 0.8217 - recall0.3: 0.9244 - tp0.5: 7388192.9508 - fp0.5: 982075.0718 - tn0.5: 43167288.1382 - fn0.5: 973085.0047 - precision0.5: 0.8838 - recall0.5: 0.8830 - tp
            0.7: 6931423.2888 - fp0.7: 537102.3271 - tn0.7: 43612270.6479 - fn0.7: 1429854.6667 - precision0.7: 0.9287 - recall0.7: 0.8280 - tp0.9: 5907919.1241 - fp0.9: 136823.9852 - tn0.9: 44012543.5980 - fn0.9: 2453358.8314 - precision0.9: 0.97
            77 - recall0.9: 0.7060 - accuracy: 0.9628 - auc: 0.9760 - val_loss: 1.0074 - val_tp0.1: 3175440.0000 - val_fp0.1: 2183311.0000 - val_tn0.1: 19707500.0000 - val_fn0.1: 1148150.0000 - val_precision0.1: 0.5926 - val_recall0.1: 0.7344 - va
            l_tp0.3: 2561350.0000 - val_fp0.3: 1772975.0000 - val_tn0.3: 20117834.0000 - val_fn0.3: 1762240.0000 - val_precision0.3: 0.5909 - val_recall0.3: 0.5924 - val_tp0.5: 2236272.0000 - val_fp0.5: 1567765.0000 - val_tn0.5: 20323044.0000 - va
            l_fn0.5: 2087318.0000 - val_precision0.5: 0.5879 - val_recall0.5: 0.5172 - val_tp0.7: 1860628.0000 - val_fp0.7: 1235466.0000 - val_tn0.7: 20655340.0000 - val_fn0.7: 2462962.0000 - val_precision0.7: 0.6010 - val_recall0.7: 0.4303 - val_
            tp0.9: 1296792.0000 - val_fp0.9: 704030.0000 - val_tn0.9: 21186792.0000 - val_fn0.9: 3026798.0000 - val_precision0.9: 0.6481 - val_recall0.9: 0.2999 - val_accuracy: 0.8606 - val_auc: 0.8254
            Epoch 34/50
            1280/1280 [==============================] - 3324s 3s/step - loss: 0.2507 - tp0.1: 7911580.4098 - fp0.1: 3345203.1913 - tn0.1: 40931131.7447 - fn0.1: 322742.2100 - precision0.1: 0.7028 - recall0.1: 0.9609 - tp0.3: 7599881.2022 - fp0.3:
             1647150.7923 - tn0.3: 42629169.7291 - fn0.3: 634441.4176 - precision0.3: 0.8220 - recall0.3: 0.9223 - tp0.5: 7270919.3005 - fp0.5: 951517.5379 - tn0.5: 43324815.6550 - fn0.5: 963403.3193 - precision0.5: 0.8843 - recall0.5: 0.8819 - tp
            0.7: 6834573.1491 - fp0.7: 523079.1390 - tn0.7: 43753256.2943 - fn0.7: 1399749.4707 - precision0.7: 0.9292 - recall0.7: 0.8288 - tp0.9: 5841839.3435 - fp0.9: 132340.8064 - tn0.9: 44144004.1702 - fn0.9: 2392483.2763 - precision0.9: 0.97
            80 - recall0.9: 0.7081 - accuracy: 0.9633 - auc: 0.9751 - val_loss: 0.9237 - val_tp0.1: 3263836.0000 - val_fp0.1: 1919441.0000 - val_tn0.1: 19948316.0000 - val_fn0.1: 1082810.0000 - val_precision0.1: 0.6297 - val_recall0.1: 0.7509 - va
            l_tp0.3: 2560242.0000 - val_fp0.3: 1398314.0000 - val_tn0.3: 20469446.0000 - val_fn0.3: 1786404.0000 - val_precision0.3: 0.6468 - val_recall0.3: 0.5890 - val_tp0.5: 2148456.0000 - val_fp0.5: 1146771.0000 - val_tn0.5: 20720984.0000 - va
            l_fn0.5: 2198190.0000 - val_precision0.5: 0.6520 - val_recall0.5: 0.4943 - val_tp0.7: 1663813.0000 - val_fp0.7: 806718.0000 - val_tn0.7: 21061036.0000 - val_fn0.7: 2682833.0000 - val_precision0.7: 0.6735 - val_recall0.7: 0.3828 - val_t
            p0.9: 979165.0000 - val_fp0.9: 394579.0000 - val_tn0.9: 21473184.0000 - val_fn0.9: 3367481.0000 - val_precision0.9: 0.7128 - val_recall0.9: 0.2253 - val_accuracy: 0.8724 - val_auc: 0.8405
            Epoch 35/50
            1280/1280 [==============================] - 3310s 3s/step - loss: 0.2614 - tp0.1: 7937448.7291 - fp0.1: 3421955.0578 - tn0.1: 40822462.2030 - fn0.1: 328785.1717 - precision0.1: 0.6999 - recall0.1: 0.9579 - tp0.3: 7621030.6534 - fp0.3:
             1703065.0414 - tn0.3: 42541374.6472 - fn0.3: 645203.2475 - precision0.3: 0.8174 - recall0.3: 0.9200 - tp0.5: 7279229.2404 - fp0.5: 977595.1093 - tn0.5: 43266832.8696 - fn0.5: 987004.6604 - precision0.5: 0.8809 - recall0.5: 0.8792 - tp
            0.7: 6838107.3216 - fp0.7: 536670.7908 - tn0.7: 43707710.4473 - fn0.7: 1428126.5792 - precision0.7: 0.9261 - recall0.7: 0.8262 - tp0.9: 5811902.2927 - fp0.9: 135171.2490 - tn0.9: 44109247.1507 - fn0.9: 2454331.6081 - precision0.9: 0.97
            71 - recall0.9: 0.7018 - accuracy: 0.9620 - auc: 0.9732 - val_loss: 0.8013 - val_tp0.1: 3284754.0000 - val_fp0.1: 2344554.0000 - val_tn0.1: 19771954.0000 - val_fn0.1: 813139.0000 - val_precision0.1: 0.5835 - val_recall0.1: 0.8016 - val
            _tp0.3: 2575560.0000 - val_fp0.3: 1777769.0000 - val_tn0.3: 20338744.0000 - val_fn0.3: 1522333.0000 - val_precision0.3: 0.5916 - val_recall0.3: 0.6285 - val_tp0.5: 2179640.0000 - val_fp0.5: 1496577.0000 - val_tn0.5: 20619926.0000 - val
            _fn0.5: 1918253.0000 - val_precision0.5: 0.5929 - val_recall0.5: 0.5319 - val_tp0.7: 1701082.0000 - val_fp0.7: 1053012.0000 - val_tn0.7: 21063498.0000 - val_fn0.7: 2396811.0000 - val_precision0.7: 0.6177 - val_recall0.7: 0.4151 - val_t
            p0.9: 989696.0000 - val_fp0.9: 527144.0000 - val_tn0.9: 21589364.0000 - val_fn0.9: 3108197.0000 - val_precision0.9: 0.6525 - val_recall0.9: 0.2415 - val_accuracy: 0.8697 - val_auc: 0.8572
            Epoch 36/50
            1280/1280 [==============================] - 3341s 3s/step - loss: 0.2585 - tp0.1: 7873502.4785 - fp0.1: 3351134.0312 - tn0.1: 40955766.1046 - fn0.1: 330264.3185 - precision0.1: 0.6971 - recall0.1: 0.9588 - tp0.3: 7549771.1140 - fp0.3:
             1661219.6745 - tn0.3: 42645646.7143 - fn0.3: 653995.6831 - precision0.3: 0.8162 - recall0.3: 0.9183 - tp0.5: 7211353.4215 - fp0.5: 964176.2467 - tn0.5: 43342703.0515 - fn0.5: 992413.3755 - precision0.5: 0.8793 - recall0.5: 0.8765 - tp
            0.7: 6769812.5121 - fp0.7: 536905.1553 - tn0.7: 43770008.0851 - fn0.7: 1433954.2849 - precision0.7: 0.9245 - recall0.7: 0.8228 - tp0.9: 5783984.8657 - fp0.9: 143730.5753 - tn0.9: 44163162.1390 - fn0.9: 2419781.9313 - precision0.9: 0.97
            52 - recall0.9: 0.7042 - accuracy: 0.9619 - auc: 0.9736 - val_loss: 0.7459 - val_tp0.1: 3472629.0000 - val_fp0.1: 2432774.0000 - val_tn0.1: 19591824.0000 - val_fn0.1: 717165.0000 - val_precision0.1: 0.5880 - val_recall0.1: 0.8288 - val
            _tp0.3: 2809063.0000 - val_fp0.3: 1835029.0000 - val_tn0.3: 20189584.0000 - val_fn0.3: 1380731.0000 - val_precision0.3: 0.6049 - val_recall0.3: 0.6705 - val_tp0.5: 2315959.0000 - val_fp0.5: 1490932.0000 - val_tn0.5: 20533678.0000 - val
            _fn0.5: 1873835.0000 - val_precision0.5: 0.6084 - val_recall0.5: 0.5528 - val_tp0.7: 1776363.0000 - val_fp0.7: 1094378.0000 - val_tn0.7: 20930232.0000 - val_fn0.7: 2413431.0000 - val_precision0.7: 0.6188 - val_recall0.7: 0.4240 - val_t
            p0.9: 1035383.0000 - val_fp0.9: 541763.0000 - val_tn0.9: 21482840.0000 - val_fn0.9: 3154411.0000 - val_precision0.9: 0.6565 - val_recall0.9: 0.2471 - val_accuracy: 0.8716 - val_auc: 0.8687
            Epoch 37/50
            1280/1280 [==============================] - 3295s 3s/step - loss: 0.2437 - tp0.1: 8016183.8337 - fp0.1: 3307100.4614 - tn0.1: 40879834.5652 - fn0.1: 307556.7455 - precision0.1: 0.7070 - recall0.1: 0.9629 - tp0.3: 7712574.3755 - fp0.3:
             1659818.0539 - tn0.3: 42527102.4731 - fn0.3: 611166.2037 - precision0.3: 0.8224 - recall0.3: 0.9270 - tp0.5: 7388699.9188 - fp0.5: 964567.5652 - tn0.5: 43222331.7237 - fn0.5: 935040.6604 - precision0.5: 0.8843 - recall0.5: 0.8884 - tp
            0.7: 6943361.7510 - fp0.7: 525733.5105 - tn0.7: 43661155.2553 - fn0.7: 1380378.8283 - precision0.7: 0.9294 - recall0.7: 0.8349 - tp0.9: 5919522.7244 - fp0.9: 126122.8407 - tn0.9: 44060797.3005 - fn0.9: 2404217.8548 - precision0.9: 0.97
            90 - recall0.9: 0.7122 - accuracy: 0.9641 - auc: 0.9762 - val_loss: 0.8760 - val_tp0.1: 3352442.0000 - val_fp0.1: 2392549.0000 - val_tn0.1: 19544092.0000 - val_fn0.1: 925309.0000 - val_precision0.1: 0.5835 - val_recall0.1: 0.7837 - val
            _tp0.3: 2658571.0000 - val_fp0.3: 1872790.0000 - val_tn0.3: 20063866.0000 - val_fn0.3: 1619180.0000 - val_precision0.3: 0.5867 - val_recall0.3: 0.6215 - val_tp0.5: 2313864.0000 - val_fp0.5: 1697140.0000 - val_tn0.5: 20239508.0000 - val
            _fn0.5: 1963887.0000 - val_precision0.5: 0.5769 - val_recall0.5: 0.5409 - val_tp0.7: 1882798.0000 - val_fp0.7: 1331096.0000 - val_tn0.7: 20605548.0000 - val_fn0.7: 2394953.0000 - val_precision0.7: 0.5858 - val_recall0.7: 0.4401 - val_t
            p0.9: 1104516.0000 - val_fp0.9: 586104.0000 - val_tn0.9: 21350548.0000 - val_fn0.9: 3173235.0000 - val_precision0.9: 0.6533 - val_recall0.9: 0.2582 - val_accuracy: 0.8603 - val_auc: 0.8446
            Epoch 38/50
            1280/1280 [==============================] - 3369s 3s/step - loss: 0.2413 - tp0.1: 7956859.0180 - fp0.1: 3276078.4895 - tn0.1: 40979600.7861 - fn0.1: 298124.8735 - precision0.1: 0.7090 - recall0.1: 0.9634 - tp0.3: 7646937.8517 - fp0.3:
             1590794.5269 - tn0.3: 42664873.7775 - fn0.3: 608046.0398 - precision0.3: 0.8280 - recall0.3: 0.9258 - tp0.5: 7313832.8025 - fp0.5: 911027.5652 - tn0.5: 43344624.5683 - fn0.5: 941151.0890 - precision0.5: 0.8894 - recall0.5: 0.8851 - tp
            0.7: 6881091.8657 - fp0.7: 495880.5730 - tn0.7: 43759809.8337 - fn0.7: 1373892.0258 - precision0.7: 0.9331 - recall0.7: 0.8326 - tp0.9: 5927602.7518 - fp0.9: 127784.9633 - tn0.9: 44127895.0578 - fn0.9: 2327381.1397 - precision0.9: 0.97
            90 - recall0.9: 0.7159 - accuracy: 0.9644 - auc: 0.9765 - val_loss: 4.9077 - val_tp0.1: 3486973.0000 - val_fp0.1: 2850284.0000 - val_tn0.1: 19285722.0000 - val_fn0.1: 591422.0000 - val_precision0.1: 0.5502 - val_recall0.1: 0.8550 - val
            _tp0.3: 2787062.0000 - val_fp0.3: 2180072.0000 - val_tn0.3: 19955928.0000 - val_fn0.3: 1291333.0000 - val_precision0.3: 0.5611 - val_recall0.3: 0.6834 - val_tp0.5: 2371435.0000 - val_fp0.5: 2041150.0000 - val_tn0.5: 20094856.0000 - val
            _fn0.5: 1706960.0000 - val_precision0.5: 0.5374 - val_recall0.5: 0.5815 - val_tp0.7: 2052507.0000 - val_fp0.7: 1911080.0000 - val_tn0.7: 20224928.0000 - val_fn0.7: 2025888.0000 - val_precision0.7: 0.5178 - val_recall0.7: 0.5033 - val_t
            p0.9: 1593600.0000 - val_fp0.9: 1598028.0000 - val_tn0.9: 20537976.0000 - val_fn0.9: 2484795.0000 - val_precision0.9: 0.4993 - val_recall0.9: 0.3907 - val_accuracy: 0.8570 - val_auc: 0.8622
            Epoch 39/50
            1280/1280 [==============================] - 3380s 3s/step - loss: 0.2414 - tp0.1: 7803821.4372 - fp0.1: 3354269.5839 - tn0.1: 41052380.7252 - fn0.1: 300171.4941 - precision0.1: 0.6956 - recall0.1: 0.9633 - tp0.3: 7497167.4637 - fp0.3:
             1643206.8829 - tn0.3: 42763432.2763 - fn0.3: 606825.4676 - precision0.3: 0.8198 - recall0.3: 0.9250 - tp0.5: 7161284.4465 - fp0.5: 930784.7471 - tn0.5: 43475886.7112 - fn0.5: 942708.4848 - precision0.5: 0.8867 - recall0.5: 0.8828 - tp
            0.7: 6716037.1132 - fp0.7: 498289.9742 - tn0.7: 43908382.7361 - fn0.7: 1387955.8181 - precision0.7: 0.9325 - recall0.7: 0.8275 - tp0.9: 5745482.9321 - fp0.9: 129539.1460 - tn0.9: 44277093.8798 - fn0.9: 2358509.9992 - precision0.9: 0.97
            87 - recall0.9: 0.7074 - accuracy: 0.9647 - auc: 0.9763 - val_loss: 0.8416 - val_tp0.1: 3152764.0000 - val_fp0.1: 1979016.0000 - val_tn0.1: 20133118.0000 - val_fn0.1: 949499.0000 - val_precision0.1: 0.6144 - val_recall0.1: 0.7685 - val
            _tp0.3: 2438228.0000 - val_fp0.3: 1470054.0000 - val_tn0.3: 20642072.0000 - val_fn0.3: 1664035.0000 - val_precision0.3: 0.6239 - val_recall0.3: 0.5944 - val_tp0.5: 1977683.0000 - val_fp0.5: 1217609.0000 - val_tn0.5: 20894528.0000 - val
            _fn0.5: 2124580.0000 - val_precision0.5: 0.6189 - val_recall0.5: 0.4821 - val_tp0.7: 1503343.0000 - val_fp0.7: 862897.0000 - val_tn0.7: 21249240.0000 - val_fn0.7: 2598920.0000 - val_precision0.7: 0.6353 - val_recall0.7: 0.3665 - val_tp
            0.9: 896812.0000 - val_fp0.9: 377234.0000 - val_tn0.9: 21734904.0000 - val_fn0.9: 3205451.0000 - val_precision0.9: 0.7039 - val_recall0.9: 0.2186 - val_accuracy: 0.8725 - val_auc: 0.8477
            Epoch 40/50
            1280/1280 [==============================] - 3386s 3s/step - loss: 0.2375 - tp0.1: 8019265.8907 - fp0.1: 3238880.4543 - tn0.1: 40953284.0133 - fn0.1: 299240.1600 - precision0.1: 0.7138 - recall0.1: 0.9637 - tp0.3: 7719720.4668 - fp0.3:
             1605122.1085 - tn0.3: 42587020.9703 - fn0.3: 598785.5839 - precision0.3: 0.8287 - recall0.3: 0.9280 - tp0.5: 7396785.5230 - fp0.5: 927286.7697 - tn0.5: 43264845.8103 - fn0.5: 921720.5277 - precision0.5: 0.8890 - recall0.5: 0.8895 - tp
            0.7: 6965247.9297 - fp0.7: 501804.8829 - tn0.7: 43690323.6995 - fn0.7: 1353258.1210 - precision0.7: 0.9328 - recall0.7: 0.8383 - tp0.9: 5960658.1421 - fp0.9: 123056.3981 - tn0.9: 44069097.9461 - fn0.9: 2357847.9087 - precision0.9: 0.97
            98 - recall0.9: 0.7181 - accuracy: 0.9649 - auc: 0.9769 - val_loss: 0.7336 - val_tp0.1: 3398410.0000 - val_fp0.1: 2457064.0000 - val_tn0.1: 19690942.0000 - val_fn0.1: 667979.0000 - val_precision0.1: 0.5804 - val_recall0.1: 0.8357 - val
            _tp0.3: 2749737.0000 - val_fp0.3: 1843797.0000 - val_tn0.3: 20304204.0000 - val_fn0.3: 1316652.0000 - val_precision0.3: 0.5986 - val_recall0.3: 0.6762 - val_tp0.5: 2345968.0000 - val_fp0.5: 1609916.0000 - val_tn0.5: 20538100.0000 - val
            _fn0.5: 1720421.0000 - val_precision0.5: 0.5930 - val_recall0.5: 0.5769 - val_tp0.7: 1892495.0000 - val_fp0.7: 1225411.0000 - val_tn0.7: 20922604.0000 - val_fn0.7: 2173894.0000 - val_precision0.7: 0.6070 - val_recall0.7: 0.4654 - val_t
            p0.9: 1133144.0000 - val_fp0.9: 662854.0000 - val_tn0.9: 21485156.0000 - val_fn0.9: 2933245.0000 - val_precision0.9: 0.6309 - val_recall0.9: 0.2787 - val_accuracy: 0.8730 - val_auc: 0.8721
            Epoch 41/50
            1280/1280 [==============================] - 3385s 3s/step - loss: 0.2342 - tp0.1: 7776741.3099 - fp0.1: 3289425.7650 - tn0.1: 41160217.6448 - fn0.1: 284258.4153 - precision0.1: 0.7028 - recall0.1: 0.9655 - tp0.3: 7475615.4660 - fp0.3:
             1607131.3685 - tn0.3: 42842547.8212 - fn0.3: 585384.2592 - precision0.3: 0.8230 - recall0.3: 0.9281 - tp0.5: 7146650.6237 - fp0.5: 908662.7939 - tn0.5: 43541000.6799 - fn0.5: 914349.1015 - precision0.5: 0.8871 - recall0.5: 0.8872 - tp
            0.7: 6711653.7861 - fp0.7: 487381.3060 - tn0.7: 43962279.2373 - fn0.7: 1349345.9391 - precision0.7: 0.9322 - recall0.7: 0.8330 - tp0.9: 5745993.2186 - fp0.9: 124517.9758 - tn0.9: 44325130.4988 - fn0.9: 2315006.5066 - precision0.9: 0.97
            85 - recall0.9: 0.7118 - accuracy: 0.9651 - auc: 0.9776 - val_loss: 0.9870 - val_tp0.1: 3053092.0000 - val_fp0.1: 1964937.0000 - val_tn0.1: 20015960.0000 - val_fn0.1: 1180406.0000 - val_precision0.1: 0.6084 - val_recall0.1: 0.7212 - va
            l_tp0.3: 2284036.0000 - val_fp0.3: 1477236.0000 - val_tn0.3: 20503676.0000 - val_fn0.3: 1949462.0000 - val_precision0.3: 0.6073 - val_recall0.3: 0.5395 - val_tp0.5: 1899487.0000 - val_fp0.5: 1256383.0000 - val_tn0.5: 20724524.0000 - va
            l_fn0.5: 2334011.0000 - val_precision0.5: 0.6019 - val_recall0.5: 0.4487 - val_tp0.7: 1422839.0000 - val_fp0.7: 921281.0000 - val_tn0.7: 21059624.0000 - val_fn0.7: 2810659.0000 - val_precision0.7: 0.6070 - val_recall0.7: 0.3361 - val_t
            p0.9: 829426.0000 - val_fp0.9: 481727.0000 - val_tn0.9: 21499180.0000 - val_fn0.9: 3404072.0000 - val_precision0.9: 0.6326 - val_recall0.9: 0.1959 - val_accuracy: 0.8630 - val_auc: 0.8226
            Epoch 42/50
            1280/1280 [==============================] - 3315s 3s/step - loss: 0.2346 - tp0.1: 8105380.3060 - fp0.1: 3217998.5480 - tn0.1: 40897704.3310 - fn0.1: 289593.6690 - precision0.1: 0.7181 - recall0.1: 0.9656 - tp0.3: 7802382.4910 - fp0.3:
             1604270.8267 - tn0.3: 42511413.2233 - fn0.3: 592591.4840 - precision0.3: 0.8318 - recall0.3: 0.9298 - tp0.5: 7475287.1304 - fp0.5: 928889.2771 - tn0.5: 43186785.4551 - fn0.5: 919686.8447 - precision0.5: 0.8906 - recall0.5: 0.8917 - tp
            0.7: 7046455.8064 - fp0.7: 507457.0898 - tn0.7: 43608208.9945 - fn0.7: 1348518.1686 - precision0.7: 0.9334 - recall0.7: 0.8413 - tp0.9: 6058878.7190 - fp0.9: 128713.2311 - tn0.9: 43986958.0468 - fn0.9: 2336095.2560 - precision0.9: 0.97
            95 - recall0.9: 0.7240 - accuracy: 0.9650 - auc: 0.9779 - val_loss: 0.7327 - val_tp0.1: 3402300.0000 - val_fp0.1: 2653288.0000 - val_tn0.1: 19553712.0000 - val_fn0.1: 605094.0000 - val_precision0.1: 0.5618 - val_recall0.1: 0.8490 - val
            _tp0.3: 2812815.0000 - val_fp0.3: 2101002.0000 - val_tn0.3: 20106008.0000 - val_fn0.3: 1194579.0000 - val_precision0.3: 0.5724 - val_recall0.3: 0.7019 - val_tp0.5: 2455006.0000 - val_fp0.5: 1878473.0000 - val_tn0.5: 20328530.0000 - val
            _fn0.5: 1552388.0000 - val_precision0.5: 0.5665 - val_recall0.5: 0.6126 - val_tp0.7: 2074881.0000 - val_fp0.7: 1530207.0000 - val_tn0.7: 20676798.0000 - val_fn0.7: 1932513.0000 - val_precision0.7: 0.5755 - val_recall0.7: 0.5178 - val_t
            p0.9: 1484583.0000 - val_fp0.9: 913417.0000 - val_tn0.9: 21293592.0000 - val_fn0.9: 2522811.0000 - val_precision0.9: 0.6191 - val_recall0.9: 0.3705 - val_accuracy: 0.8691 - val_auc: 0.8751
            Epoch 43/50
            1280/1280 [==============================] - 3323s 3s/step - loss: 0.2312 - tp0.1: 7991710.0656 - fp0.1: 3249384.0929 - tn0.1: 40992411.0070 - fn0.1: 277145.7760 - precision0.1: 0.7097 - recall0.1: 0.9664 - tp0.3: 7693901.7158 - fp0.3:
             1595395.2670 - tn0.3: 42646409.5269 - fn0.3: 574954.1257 - precision0.3: 0.8268 - recall0.3: 0.9305 - tp0.5: 7373192.4247 - fp0.5: 917265.3872 - tn0.5: 43324540.4536 - fn0.5: 895663.4169 - precision0.5: 0.8882 - recall0.5: 0.8913 - tp
            0.7: 6950466.7244 - fp0.7: 497989.1148 - tn0.7: 43743813.0945 - fn0.7: 1318389.1171 - precision0.7: 0.9326 - recall0.7: 0.8395 - tp0.9: 5981119.6440 - fp0.9: 128545.2209 - tn0.9: 44113239.2467 - fn0.9: 2287736.1975 - precision0.9: 0.97
            92 - recall0.9: 0.7218 - accuracy: 0.9653 - auc: 0.9783 - val_loss: 0.9647 - val_tp0.1: 2876343.0000 - val_fp0.1: 1660425.0000 - val_tn0.1: 20507034.0000 - val_fn0.1: 1170598.0000 - val_precision0.1: 0.6340 - val_recall0.1: 0.7107 - va
            l_tp0.3: 2209087.0000 - val_fp0.3: 1251945.0000 - val_tn0.3: 20915512.0000 - val_fn0.3: 1837854.0000 - val_precision0.3: 0.6383 - val_recall0.3: 0.5459 - val_tp0.5: 1778622.0000 - val_fp0.5: 995657.0000 - val_tn0.5: 21171812.0000 - val
            _fn0.5: 2268319.0000 - val_precision0.5: 0.6411 - val_recall0.5: 0.4395 - val_tp0.7: 1307626.0000 - val_fp0.7: 702184.0000 - val_tn0.7: 21465282.0000 - val_fn0.7: 2739315.0000 - val_precision0.7: 0.6506 - val_recall0.7: 0.3231 - val_tp
            0.9: 721015.0000 - val_fp0.9: 304685.0000 - val_tn0.9: 21862786.0000 - val_fn0.9: 3325926.0000 - val_precision0.9: 0.7029 - val_recall0.9: 0.1782 - val_accuracy: 0.8755 - val_auc: 0.8252
            Epoch 44/50
            1280/1280 [==============================] - 3324s 3s/step - loss: 0.2316 - tp0.1: 7993553.5519 - fp0.1: 3116269.6425 - tn0.1: 41108883.5878 - fn0.1: 291939.1897 - precision0.1: 0.7205 - recall0.1: 0.9644 - tp0.3: 7697513.5496 - fp0.3:
             1532368.8548 - tn0.3: 42692802.8033 - fn0.3: 587979.1920 - precision0.3: 0.8347 - recall0.3: 0.9284 - tp0.5: 7391393.2475 - fp0.5: 891003.0500 - tn0.5: 43334168.9118 - fn0.5: 894099.4941 - precision0.5: 0.8927 - recall0.5: 0.8916 - tp
            0.7: 6972420.4403 - fp0.7: 485629.1991 - tn0.7: 43739548.5152 - fn0.7: 1313072.3013 - precision0.7: 0.9351 - recall0.7: 0.8406 - tp0.9: 6005577.5371 - fp0.9: 125956.1194 - tn0.9: 44099185.2194 - fn0.9: 2279915.2045 - precision0.9: 0.97
            93 - recall0.9: 0.7244 - accuracy: 0.9660 - auc: 0.9775 - val_loss: 0.7395 - val_tp0.1: 3516454.0000 - val_fp0.1: 2931698.0000 - val_tn0.1: 19145124.0000 - val_fn0.1: 621132.0000 - val_precision0.1: 0.5453 - val_recall0.1: 0.8499 - val
            _tp0.3: 2802624.0000 - val_fp0.3: 2096050.0000 - val_tn0.3: 19980764.0000 - val_fn0.3: 1334962.0000 - val_precision0.3: 0.5721 - val_recall0.3: 0.6774 - val_tp0.5: 2395920.0000 - val_fp0.5: 1817727.0000 - val_tn0.5: 20259092.0000 - val
            _fn0.5: 1741666.0000 - val_precision0.5: 0.5686 - val_recall0.5: 0.5791 - val_tp0.7: 1884999.0000 - val_fp0.7: 1378065.0000 - val_tn0.7: 20698756.0000 - val_fn0.7: 2252587.0000 - val_precision0.7: 0.5777 - val_recall0.7: 0.4556 - val_t
            p0.9: 983346.0000 - val_fp0.9: 679335.0000 - val_tn0.9: 21397474.0000 - val_fn0.9: 3154240.0000 - val_precision0.9: 0.5914 - val_recall0.9: 0.2377 - val_accuracy: 0.8642 - val_auc: 0.8683
            Epoch 45/50
            1280/1280 [==============================] - 3312s 3s/step - loss: 0.2330 - tp0.1: 7970480.2670 - fp0.1: 3209589.4871 - tn0.1: 41051845.7307 - fn0.1: 278741.1163 - precision0.1: 0.7127 - recall0.1: 0.9666 - tp0.3: 7675031.2553 - fp0.3:
             1589895.0429 - tn0.3: 42671527.8275 - fn0.3: 574190.1280 - precision0.3: 0.8279 - recall0.3: 0.9311 - tp0.5: 7351503.7557 - fp0.5: 918595.6940 - tn0.5: 43342860.1577 - fn0.5: 897717.6276 - precision0.5: 0.8886 - recall0.5: 0.8921 - tp
            0.7: 6925182.0765 - fp0.7: 503433.8673 - tn0.7: 43758011.1593 - fn0.7: 1324039.3068 - precision0.7: 0.9318 - recall0.7: 0.8413 - tp0.9: 5948949.5558 - fp0.9: 139165.2740 - tn0.9: 44122272.1593 - fn0.9: 2300271.8275 - precision0.9: 0.97
            68 - recall0.9: 0.7246 - accuracy: 0.9651 - auc: 0.9781 - val_loss: 0.7183 - val_tp0.1: 3462944.0000 - val_fp0.1: 2547992.0000 - val_tn0.1: 19584976.0000 - val_fn0.1: 618487.0000 - val_precision0.1: 0.5761 - val_recall0.1: 0.8485 - val
            _tp0.3: 2757155.0000 - val_fp0.3: 1916541.0000 - val_tn0.3: 20216436.0000 - val_fn0.3: 1324276.0000 - val_precision0.3: 0.5899 - val_recall0.3: 0.6755 - val_tp0.5: 2406562.0000 - val_fp0.5: 1766897.0000 - val_tn0.5: 20366082.0000 - val
            _fn0.5: 1674869.0000 - val_precision0.5: 0.5766 - val_recall0.5: 0.5896 - val_tp0.7: 2083375.0000 - val_fp0.7: 1557338.0000 - val_tn0.7: 20575626.0000 - val_fn0.7: 1998056.0000 - val_precision0.7: 0.5722 - val_recall0.7: 0.5105 - val_t
            p0.9: 1330037.0000 - val_fp0.9: 696335.0000 - val_tn0.9: 21436634.0000 - val_fn0.9: 2751394.0000 - val_precision0.9: 0.6564 - val_recall0.9: 0.3259 - val_accuracy: 0.8687 - val_auc: 0.8762
            Epoch 46/50
            1280/1280 [==============================] - 3307s 3s/step - loss: 0.2304 - tp0.1: 7916214.3216 - fp0.1: 3181145.9766 - tn0.1: 41127786.5941 - fn0.1: 285496.9227 - precision0.1: 0.7125 - recall0.1: 0.9651 - tp0.3: 7621058.9899 - fp0.3:
             1584443.6526 - tn0.3: 42724483.9516 - fn0.3: 580652.2545 - precision0.3: 0.8279 - recall0.3: 0.9291 - tp0.5: 7291826.7104 - fp0.5: 896453.6901 - tn0.5: 43412477.0523 - fn0.5: 909884.5340 - precision0.5: 0.8906 - recall0.5: 0.8889 - tp
            0.7: 6852507.8103 - fp0.7: 474238.7486 - tn0.7: 43834734.6058 - fn0.7: 1349203.4340 - precision0.7: 0.9355 - recall0.7: 0.8352 - tp0.9: 5907297.4052 - fp0.9: 120870.0991 - tn0.9: 44188071.7377 - fn0.9: 2294413.8392 - precision0.9: 0.98
            03 - recall0.9: 0.7195 - accuracy: 0.9658 - auc: 0.9776 - val_loss: 0.8308 - val_tp0.1: 2925415.0000 - val_fp0.1: 999631.0000 - val_tn0.1: 21181596.0000 - val_fn0.1: 1107748.0000 - val_precision0.1: 0.7453 - val_recall0.1: 0.7253 - val
            _tp0.3: 2129554.0000 - val_fp0.3: 432959.0000 - val_tn0.3: 21748276.0000 - val_fn0.3: 1903609.0000 - val_precision0.3: 0.8310 - val_recall0.3: 0.5280 - val_tp0.5: 1616477.0000 - val_fp0.5: 255434.0000 - val_tn0.5: 21925804.0000 - val_f
            n0.5: 2416686.0000 - val_precision0.5: 0.8635 - val_recall0.5: 0.4008 - val_tp0.7: 1160120.0000 - val_fp0.7: 159480.0000 - val_tn0.7: 22021744.0000 - val_fn0.7: 2873043.0000 - val_precision0.7: 0.8791 - val_recall0.7: 0.2876 - val_tp0.
            9: 660411.0000 - val_fp0.9: 58454.0000 - val_tn0.9: 22122774.0000 - val_fn0.9: 3372752.0000 - val_precision0.9: 0.9187 - val_recall0.9: 0.1637 - val_accuracy: 0.8981 - val_auc: 0.8530
            Epoch 47/50
            1280/1280 [==============================] - 3373s 3s/step - loss: 0.2224 - tp0.1: 7905453.9578 - fp0.1: 3088525.5402 - tn0.1: 41239482.1889 - fn0.1: 277215.0070 - precision0.1: 0.7202 - recall0.1: 0.9667 - tp0.3: 7625498.5870 - fp0.3:
             1552664.1967 - tn0.3: 42775315.1663 - fn0.3: 557170.3778 - precision0.3: 0.8312 - recall0.3: 0.9328 - tp0.5: 7314136.2771 - fp0.5: 889383.1952 - tn0.5: 43438616.4731 - fn0.5: 868532.6877 - precision0.5: 0.8918 - recall0.5: 0.8950 - tp
            0.7: 6893069.8415 - fp0.7: 475384.9407 - tn0.7: 43852616.7221 - fn0.7: 1289599.1233 - precision0.7: 0.9360 - recall0.7: 0.8437 - tp0.9: 5954104.8665 - fp0.9: 121730.6745 - tn0.9: 44206239.8525 - fn0.9: 2228564.0984 - precision0.9: 0.98
            04 - recall0.9: 0.7290 - accuracy: 0.9667 - auc: 0.9788 - val_loss: 1.0397 - val_tp0.1: 2921669.0000 - val_fp0.1: 1566454.0000 - val_tn0.1: 20378636.0000 - val_fn0.1: 1347646.0000 - val_precision0.1: 0.6510 - val_recall0.1: 0.6843 - va
            l_tp0.3: 2142218.0000 - val_fp0.3: 1055434.0000 - val_tn0.3: 20889652.0000 - val_fn0.3: 2127097.0000 - val_precision0.3: 0.6699 - val_recall0.3: 0.5018 - val_tp0.5: 1695622.0000 - val_fp0.5: 805323.0000 - val_tn0.5: 21139764.0000 - val
            _fn0.5: 2573693.0000 - val_precision0.5: 0.6780 - val_recall0.5: 0.3972 - val_tp0.7: 1240483.0000 - val_fp0.7: 547415.0000 - val_tn0.7: 21397672.0000 - val_fn0.7: 3028832.0000 - val_precision0.7: 0.6938 - val_recall0.7: 0.2906 - val_tp
            0.9: 699052.0000 - val_fp0.9: 209226.0000 - val_tn0.9: 21735862.0000 - val_fn0.9: 3570263.0000 - val_precision0.9: 0.7696 - val_recall0.9: 0.1637 - val_accuracy: 0.8711 - val_auc: 0.8155
            Epoch 48/50
            1280/1280 [==============================] - 3304s 3s/step - loss: 0.2335 - tp0.1: 7940859.5363 - fp0.1: 3183249.2857 - tn0.1: 41099674.0820 - fn0.1: 286865.7822 - precision0.1: 0.7138 - recall0.1: 0.9650 - tp0.3: 7641716.9641 - fp0.3:
             1582103.0671 - tn0.3: 42700833.3349 - fn0.3: 586008.3544 - precision0.3: 0.8288 - recall0.3: 0.9284 - tp0.5: 7316574.1686 - fp0.5: 906813.2022 - tn0.5: 43376114.1671 - fn0.5: 911151.1499 - precision0.5: 0.8900 - recall0.5: 0.8886 - tp
            0.7: 6893099.7447 - fp0.7: 495988.3950 - tn0.7: 43786957.1632 - fn0.7: 1334625.5738 - precision0.7: 0.9332 - recall0.7: 0.8372 - tp0.9: 5936967.9602 - fp0.9: 132958.7853 - tn0.9: 44149966.0359 - fn0.9: 2290757.3583 - precision0.9: 0.97
            82 - recall0.9: 0.7212 - accuracy: 0.9651 - auc: 0.9775 - val_loss: 0.8885 - val_tp0.1: 3090482.0000 - val_fp0.1: 1927063.0000 - val_tn0.1: 20147076.0000 - val_fn0.1: 1049776.0000 - val_precision0.1: 0.6159 - val_recall0.1: 0.7464 - va
            l_tp0.3: 2402659.0000 - val_fp0.3: 1358720.0000 - val_tn0.3: 20715420.0000 - val_fn0.3: 1737599.0000 - val_precision0.3: 0.6388 - val_recall0.3: 0.5803 - val_tp0.5: 2026443.0000 - val_fp0.5: 1121590.0000 - val_tn0.5: 20952544.0000 - va
            l_fn0.5: 2113815.0000 - val_precision0.5: 0.6437 - val_recall0.5: 0.4894 - val_tp0.7: 1587666.0000 - val_fp0.7: 757043.0000 - val_tn0.7: 21317100.0000 - val_fn0.7: 2552592.0000 - val_precision0.7: 0.6771 - val_recall0.7: 0.3835 - val_t
            p0.9: 946633.0000 - val_fp0.9: 302967.0000 - val_tn0.9: 21771180.0000 - val_fn0.9: 3193625.0000 - val_precision0.9: 0.7575 - val_recall0.9: 0.2286 - val_accuracy: 0.8766 - val_auc: 0.8420
            Epoch 49/50
            1280/1280 [==============================] - 3305s 3s/step - loss: 0.2225 - tp0.1: 7979679.4473 - fp0.1: 3114299.9914 - tn0.1: 41145497.0710 - fn0.1: 271189.6027 - precision0.1: 0.7186 - recall0.1: 0.9674 - tp0.3: 7686659.5777 - fp0.3:
             1542401.8501 - tn0.3: 42717409.8704 - fn0.3: 564209.4723 - precision0.3: 0.8334 - recall0.3: 0.9319 - tp0.5: 7371634.7557 - fp0.5: 895979.9727 - tn0.5: 43363790.1265 - fn0.5: 879234.2943 - precision0.5: 0.8923 - recall0.5: 0.8937 - tp
            0.7: 6947267.2155 - fp0.7: 481955.5433 - tn0.7: 43777844.2342 - fn0.7: 1303601.8345 - precision0.7: 0.9356 - recall0.7: 0.8420 - tp0.9: 6003926.6534 - fp0.9: 121081.5886 - tn0.9: 44138712.2896 - fn0.9: 2246942.3966 - precision0.9: 0.98
            05 - recall0.9: 0.7264 - accuracy: 0.9665 - auc: 0.9792 - val_loss: 0.9566 - val_tp0.1: 2861835.0000 - val_fp0.1: 1548477.0000 - val_tn0.1: 20587614.0000 - val_fn0.1: 1216470.0000 - val_precision0.1: 0.6489 - val_recall0.1: 0.7017 - va
            l_tp0.3: 2113828.0000 - val_fp0.3: 1067547.0000 - val_tn0.3: 21068548.0000 - val_fn0.3: 1964477.0000 - val_precision0.3: 0.6644 - val_recall0.3: 0.5183 - val_tp0.5: 1718632.0000 - val_fp0.5: 841787.0000 - val_tn0.5: 21294304.0000 - val
            _fn0.5: 2359673.0000 - val_precision0.5: 0.6712 - val_recall0.5: 0.4214 - val_tp0.7: 1302909.0000 - val_fp0.7: 555088.0000 - val_tn0.7: 21581000.0000 - val_fn0.7: 2775396.0000 - val_precision0.7: 0.7012 - val_recall0.7: 0.3195 - val_tp
            0.9: 773038.0000 - val_fp0.9: 218091.0000 - val_tn0.9: 21918012.0000 - val_fn0.9: 3305267.0000 - val_precision0.9: 0.7800 - val_recall0.9: 0.1895 - val_accuracy: 0.8779 - val_auc: 0.8265
            Epoch 50/50
            1280/1280 [==============================] - 3294s 3s/step - loss: 0.2301 - tp0.1: 8047942.4426 - fp0.1: 3082506.1288 - tn0.1: 41101922.8275 - fn0.1: 278310.9493 - precision0.1: 0.7219 - recall0.1: 0.9663 - tp0.3: 7760370.9899 - fp0.3:
             1521186.0101 - tn0.3: 42663221.2100 - fn0.3: 565882.4020 - precision0.3: 0.8352 - recall0.3: 0.9315 - tp0.5: 7453452.6776 - fp0.5: 892538.5199 - tn0.5: 43291840.9251 - fn0.5: 872800.7143 - precision0.5: 0.8922 - recall0.5: 0.8941 - tp
            0.7: 7032066.8470 - fp0.7: 486059.3411 - tn0.7: 43698327.0984 - fn0.7: 1294186.5449 - precision0.7: 0.9348 - recall0.7: 0.8430 - tp0.9: 6085441.6674 - fp0.9: 123868.2233 - tn0.9: 44060549.1827 - fn0.9: 2240811.7244 - precision0.9: 0.98
            05 - recall0.9: 0.7278 - accuracy: 0.9656 - auc: 0.9784 - val_loss: 0.7966 - val_tp0.1: 3023429.0000 - val_fp0.1: 1958644.0000 - val_tn0.1: 20321072.0000 - val_fn0.1: 911248.0000 - val_precision0.1: 0.6069 - val_recall0.1: 0.7684 - val
            _tp0.3: 2293385.0000 - val_fp0.3: 1327982.0000 - val_tn0.3: 20951742.0000 - val_fn0.3: 1641292.0000 - val_precision0.3: 0.6333 - val_recall0.3: 0.5829 - val_tp0.5: 1893004.0000 - val_fp0.5: 1112093.0000 - val_tn0.5: 21167626.0000 - val
            _fn0.5: 2041673.0000 - val_precision0.5: 0.6299 - val_recall0.5: 0.4811 - val_tp0.7: 1460348.0000 - val_fp0.7: 748911.0000 - val_tn0.7: 21530808.0000 - val_fn0.7: 2474329.0000 - val_precision0.7: 0.6610 - val_recall0.7: 0.3711 - val_tp
            0.9: 871307.0000 - val_fp0.9: 277884.0000 - val_tn0.9: 22001836.0000 - val_fn0.9: 3063370.0000 - val_precision0.9: 0.7582 - val_recall0.9: 0.2214 - val_accuracy: 0.8797 - val_auc: 0.8508
            600/600 [==============================] - 317s 527ms/step - loss: 0.9377 - tp0.1: 5542504.0000 - fp0.1: 4670897.0000 - tn0.1: 36924880.0000 - fn0.1: 2013729.0000 - precision0.1: 0.5427 - recall0.1: 0.7335 - tp0.3: 4216657.0000 - fp0.3
            : 3293157.0000 - tn0.3: 38302600.0000 - fn0.3: 3339576.0000 - precision0.3: 0.5615 - recall0.3: 0.5580 - tp0.5: 3498904.0000 - fp0.5: 2765631.0000 - tn0.5: 38830152.0000 - fn0.5: 4057329.0000 - precision0.5: 0.5585 - recall0.5: 0.4630
            - tp0.7: 2661409.0000 - fp0.7: 1815115.0000 - tn0.7: 39780628.0000 - fn0.7: 4894824.0000 - precision0.7: 0.5945 - recall0.7: 0.3522 - tp0.9: 1573540.0000 - fp0.9: 592773.0000 - tn0.9: 41002980.0000 - fn0.9: 5982693.0000 - precision0.9:
             0.7264 - recall0.9: 0.2082 - accuracy: 0.8612 - auc: 0.8217
            2021/03/18 20:42:08 INFO mlflow.projects: === Run (ID '3cec3f26ed2d4004978c4ec37c00fba0') succeeded ===
            (tf-nightly) [ye53nis@node117 drmed-git]$
    

2.3.6 Read out logs of Run 2

2.3.6.1 test dataset statistics
  • test data is not saved out automatically, but can be copied from the log above

    600/600 [==============================] - 317s 527ms/step - loss: 0.9377

    0.1 0.3 0.5 0.7 0.9
    tp 5542504.0000 4216657.0000 3498904.0000 2661409.0000 1573540.0000
    fp 4670897.0000 3293157.0000 2765631.0000 1815115.0000 592773.0000
    fn 2013729.0000 3339576.0000 4057329.0000 4894824.0000 5982693.0000
    tn 36924880.0000 38302600.0000 38830152.0000 39780628.0000 41002980.0000
    all 49152010 49151990 49152016 49151976 49151986
    precision 0.5427 0.5615 0.5585 0.5945 0.7264
    recall 0.7335 0.5580 0.4630 0.3522 0.2082

    accuracy: 0.8612 auc: 0.8217

    0.1 actual positive actual negative  
    pred positive 0.11276251 0.095029623 Prec: 0.5427
    pred negative 0.040969413 0.75123845  
      Recall: 0.7335    
          F1: 0.62383709
    0.3 actual positive actual negative  
    pred positive 0.085788124 0.066999464 Prec: 0.5615
    pred negative 0.067943861 0.77926855  
      Recall: 0.5580    
          F1: 0.55974453
    0.5 actual positive actual negative  
    pred positive 0.071185361 0.056266888 Prec: 0.5585
    pred negative 0.082546543 0.79000121  
      Recall: 0.4630    
          F1: 0.50628585
    0.7 actual positive actual negative  
    pred positive 0.054146531 0.036928627 Prec: 0.5945
    pred negative 0.099585498 0.80933934  
      Recall: 0.3522    
          F1: 0.44234266
    0.9 actual positive actual negative  
    pred positive 0.032013762 0.012060001 Prec: 0.7264
    pred negative 0.12171824 0.83420800  
      Recall: 0.2082    
          F1: 0.32363895
  • looks like pred_thresh=0.1 leads to the best results (Best F1 score)
2.3.6.2 prediction plots after each epoch

sadly, the random sample traces were not very useful, since the spikes were quite small…

2.3.6.3 Application 1 - git log, load modules, set parameters
  1. Git log, because some more code changes were made
             !git log -5
    
             commit 6586965ec900669bd641d69f85b4999050122502
             Author: Apoplex <oligolex@vivaldi.net>
             Date:   Tue Mar 23 20:26:11 2021 +0100
    
                 Fix management of correlation failing 2
    
             commit ccdb3fb0887cce929987ef04408133917c02ce58
             Author: Apoplex <oligolex@vivaldi.net>
             Date:   Tue Mar 23 17:57:39 2021 +0100
    
                 Merge plot_simulations and analyze_simulations 2
    
             commit 7951d725c9d53bbffd18c3fca8ccad05d528a368
             Author: Apoplex <oligolex@vivaldi.net>
             Date:   Sun Mar 21 12:49:47 2021 +0100
    
                 Fix management of correlation failing; return nan
    
             commit 6c2146df58ba0af6a148745e7fafc7ff01a2e1b4
             Author: Apoplex <oligolex@vivaldi.net>
             Date:   Sun Mar 21 10:43:04 2021 +0100
    
                 New management of correlation failing; return nan
    
             commit 940df93d2dacdb9c1951b6d8a8aa92f2c6043695
             Author: Apoplex <oligolex@vivaldi.net>
             Date:   Sat Mar 20 19:54:01 2021 +0100
    
                 Merge plot_simulations and analyze_simulations
    
             %cd /beegfs/ye53nis/drmed-git
    
    /beegfs/ye53nis/drmed-git
    
             from pathlib import Path
    
             import sys
             import mlflow
             import matplotlib.pyplot as plt
             import numpy as np
             import pandas as pd
             import seaborn as sns
             mlflow.version.VERSION
    
    1.13.1
    
             sys.path.append('src/')
             from fluotracify.simulations import (
                import_simulation_from_csv as isfc,
                analyze_simulations as ans,
             )
             from fluotracify.training import build_model as bm, preprocess_data as ppd
             from fluotracify.applications import correlate, plots, correction
             from fluotracify.imports import ptu_utils as ptu
    
             import importlib
             importlib.reload(correction)
    
    <module 'fluotracify.applications.correction' from 'src/fluotracify/applications/correction.py'>
    
             folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020_test'
             col_per_example = 3
             lab_thresh = 0.04
             pred_thresh = 0.1
             xunit = 1
             artifact = 0
             model_type = 1
             fwhm = 250
             run_id = '3cec3f26ed2d4004978c4ec37c00fba0'
             length_delimiter = 2**14
    
  2. now load the trained model
            mlflow.set_tracking_uri('file:///beegfs/ye53nis/drmed-git/data/mlruns')
            client = mlflow.tracking.MlflowClient(tracking_uri=mlflow.get_tracking_uri())
            model_path = client.download_artifacts(run_id=run_id,
                                                   path='model')
            model_keras = mlflow.keras.load_model(model_uri=model_path,
                                                  custom_objects={'binary_ce_dice':bm.binary_ce_dice_loss()})
            print(model_path, '\n', model_keras)
    
    /beegfs/ye53nis/drmed-git/3cec3f26ed2d4004978c4ec37c00fba0/artifacts/model
     <tensorflow.python.keras.engine.functional.Functional object at 0x2acdc9893190>
    
2.3.6.4 Application 2 - test data
  • test and train data were separated beforehand. Now, I only load test data.
             folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020_test'
             dataset, _, nsamples, experiment_params = isfc.import_from_csv(
                       folder=folder,
                       header=12,
                       frac_train=1,
                       col_per_example=col_per_example,
                       dropindex=None,
                       dropcolumns=None)
             experiment_params
    
             train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set010.csv
             train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set002.csv
             train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set005.csv
             train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set005.csv
             train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set007.csv
             train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set002.csv
             train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set001.csv
             train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set007.csv
             train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set009.csv
             train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set002.csvtrain 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set005.csv
             train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set008.csv
             train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set005.csv
             train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set008.csv
             train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set005.csv
             train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set006.csv
             train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set005.csv
             train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set003.csv
             train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set001.csv
             train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set003.csv
             train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set003.csv
             train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set005.csv
             train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set002.csv
             train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set002.csv
             train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set004.csv
             train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set001.csv
             train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set001.csv
             train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set001.csv
             train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set003.csv
             train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set001.csv
    
             diffrates = experiment_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32)
             nmols = experiment_params.loc['number of fast molecules'].astype(np.float32)
             clusters = experiment_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32)
    
             dataset_sep = isfc.separate_data_and_labels(array=dataset,
                                                         nsamples=nsamples,
                                                         col_per_example=col_per_example)
    
             features = dataset_sep['0']
             labels_artifact = dataset_sep['1']
             labels_artifact_bool = labels_artifact > lab_thresh
             labels_puretrace = dataset_sep['2']
    
    The given DataFrame was split into 3 parts with shapes: [(16384, 3000), (16384, 3000), (16384, 3000)]
    
  • Let’s correct the traces with the new model and correlate them!
             corr_out = ans.correlate_simulations_corrected_by_prediction(
                 model=model_keras,
                 lab_thresh=lab_thresh,
                 pred_thresh=pred_thresh,
                 artifact=artifact,
                 model_type=model_type,
                 experiment_params=experiment_params,
                 nsamples=nsamples,
                 features=features,
                 labels_artifact=labels_artifact,
                 labels_puretrace=labels_puretrace,
                 save_as_csv=True)
             corr_out
    
    processed correlation of 3000 traces with correction by label
    processed correlation of 3000 traces with correction by prediction
    processed correlation of 3000 traces without correction
    processed correlation of pure 3000 traces
    
      Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used
    0 0.069 1.0 679.0 1.037836 10.860146 16384 corrupted without correction
    1 0.069 1.0 679.0 0.81403 13.846002 16384 corrupted without correction
    2 0.069 1.0 679.0 1.053716 10.696482 16384 corrupted without correction
    3 0.069 1.0 679.0 0.897022 12.564974 16384 corrupted without correction
    4 0.069 1.0 679.0 1.083577 10.401707 16384 corrupted without correction
    11995 0.4 0.1 1939.0 0.658104 17.126562 11187 corrected by prediction
    11996 0.4 0.1 1939.0 0.336804 33.464773 15720 corrected by prediction
    11997 0.4 0.1 1939.0 0.456482 24.691128 15292 corrected by prediction
    11998 0.4 0.1 1939.0 0.411872 27.365437 12516 corrected by prediction
    11999 0.4 0.1 1939.0 0.244884 46.026059 12986 corrected by prediction

    12000 rows × 7 columns

             corr_out = pd.read_csv(filepath_or_buffer='data/exp-210204-unet/2021-03-21_correlations.csv')
             corr_out[corr_out['$D$ in $\\frac{{\mu m^2}}{{s}}$'].isna()]
    
      Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used
    9109 50.0 0.01 2323.0 NaN NaN 1 corrected by prediction
    9118 50.0 0.01 2323.0 NaN NaN 6 corrected by prediction
    9131 50.0 0.01 2323.0 NaN NaN 26 corrected by prediction
    9134 50.0 0.01 2323.0 NaN NaN 3 corrected by prediction
    9141 50.0 0.01 2323.0 NaN NaN 6 corrected by prediction
    9144 50.0 0.01 2323.0 NaN NaN 17 corrected by prediction
    9163 50.0 0.01 2323.0 NaN NaN 24 corrected by prediction
    9170 50.0 0.01 2323.0 NaN NaN 27 corrected by prediction
    9171 50.0 0.01 2323.0 NaN NaN 30 corrected by prediction
    9174 50.0 0.01 2323.0 NaN NaN 8 corrected by prediction
    9183 50.0 0.01 2323.0 NaN NaN 13 corrected by prediction
    9187 50.0 0.01 2323.0 NaN NaN 29 corrected by prediction
    9199 50.0 0.01 2323.0 NaN NaN 18 corrected by prediction
    9909 10.0 0.01 1396.0 NaN NaN 24 corrected by prediction
    9922 10.0 0.01 1396.0 NaN NaN 7 corrected by prediction
    9931 10.0 0.01 1396.0 NaN NaN 16 corrected by prediction
    9978 10.0 0.01 1396.0 NaN NaN 31 corrected by prediction
    9998 10.0 0.01 1396.0 NaN NaN 9 corrected by prediction
  • We loaded the correlation results from the saved out .csv file and looked at where it failed. All the cases where basically all the trace was (wrongfully) removed, was at a very slow simulated cluster speed (0.01) and a rather high simulated speed of the molecules we are interested in (10 and 50).

    Awesome! Now let’s try categorical plotting to examine the results in a more structured manner. First, plot the trace lengths.

             x = 'Trace lengths'
    
             g = sns.FacetGrid(data=corr_out,
                               col='Simulated $D$',
                               col_wrap=2,
                               sharex=True,
                               aspect=1.5,
                               height=5,
                               legend_out=True)
             g.map_dataframe(sns.boxplot,
                   x=x,
                   y='Traces used',
                   hue='Simulated $D_{{clust}}$',
                   palette='colorblind',
                   showfliers=False)
             g.add_legend(title='Simulated $D_{{clust}}$')
             g.map_dataframe(sns.stripplot,
                   x=x,
                   y='Traces used',
                   hue='Simulated $D_{{clust}}$',
                   dodge=True,
                   palette=sns.color_palette(['0.3']),
                   size=4,
                   jitter=0.2)
             g.set_xlabels(x)
             g.tight_layout()
             plt.show()
    
  • Then, plot the diffusion rates and transit times. Since they follow a log normal distribution, use a log scale.
             # '$D$ in $\\frac{{\mu m^2}}{{s}}$'
             # '$\\tau_{{D}}$ in $ms$'
             x = '$\\tau_{{D}}$ in $ms$'
    
             g = sns.FacetGrid(data=corr_out,
                               col='Simulated $D$',
                               col_wrap=2,
                               sharex=False,  # False for x=D or x=tau, True for x=Trace lengths
                               aspect=1.5,
                               height=5,
                               legend_out=True)
             g.map_dataframe(sns.boxplot,
                   x=x,
                   y='Traces used',
                   hue='Simulated $D_{{clust}}$',
                   palette='colorblind',
                   showfliers=False).set(xscale = 'log')
             g.add_legend(title='Simulated $D_{{clust}}$')
             g.map_dataframe(sns.stripplot,
                   x=x,
                   y='Traces used',
                   hue='Simulated $D_{{clust}}$',
                   dodge=True,
                   palette=sns.color_palette(['0.3']),
                   size=4,
                   jitter=0.2).set(xscale = 'log')
             g.set_xlabels(x)
             g.tight_layout()
             plt.show()
    

    2021-03-21_correlations_transit-times.png 2021-03-21_correlations_diffusion-rates.png 2021-03-21_correlations_trace-lengths.png

  • Now let’s look at the corrections a little closer.
             corr_scatter = corr_out[corr_out['Traces used'].isin(['corrected by labels (control)', 'corrected by prediction'])]
             corr_scatter
    
      Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used
    6000 0.069 1.0 679.0 0.051680 218.095043 14468 corrected by labels (control)
    6001 0.069 1.0 679.0 0.050863 221.596899 15380 corrected by labels (control)
    6002 0.069 1.0 679.0 0.060130 187.443486 14908 corrected by labels (control)
    6003 0.069 1.0 679.0 0.087759 128.431237 15230 corrected by labels (control)
    6004 0.069 1.0 679.0 0.144906 77.781595 14930 corrected by labels (control)
    11995 0.400 0.1 1939.0 0.658104 17.126562 11187 corrected by prediction
    11996 0.400 0.1 1939.0 0.336804 33.464773 15720 corrected by prediction
    11997 0.400 0.1 1939.0 0.456482 24.691128 15292 corrected by prediction
    11998 0.400 0.1 1939.0 0.411872 27.365437 12516 corrected by prediction
    11999 0.400 0.1 1939.0 0.244884 46.026059 12986 corrected by prediction

    6000 rows × 7 columns

  • This scatterplot shows Diffusion rates / transit times against trace lengths.
             # '$D$ in $\\frac{{\mu m^2}}{{s}}$'
             # '$\\tau_{{D}}$ in $ms$'
             x = '$\\tau_{{D}}$ in $ms$'
    
             g = sns.FacetGrid(data=corr_scatter,
                               row='Simulated $D$',
                               col='Traces used',
                               sharex='row',
                               aspect=1,
                               height=4,
                               legend_out=True,
                               margin_titles=True)
             g.map_dataframe(sns.scatterplot,
                   x=x,
                   y='Trace lengths',
                   hue='Simulated $D_{{clust}}$',
                   palette='colorblind').set(xscale = 'log')
             g.add_legend(title='Simulated $D_{{clust}}$')
             g.set_xlabels(x)
             g.tight_layout()
             plt.show()
    
  • I concatenated the resulting 2 plots into 1 (left diffusion rates, right transit times). Here it can be nicely seen, that they are just two representations of the same dynamic phenomenon. 2021-03-21_correlations_tt-diffrate-tracelength-scatterplot.png
2.3.6.5 Application 3 - experimental data
  1. Workaround for the model prediction problem.
             test_features = np.zeros((2**14)).reshape(1, -1, 1)
             print(test_features.shape)
             predictions = model_keras.predict(test_features, verbose=0).flatten()
             predictions
    
    (1, 16384, 1)
    array([3.3430334e-15, 1.2115031e-08, 5.5057057e-09, ..., 3.8589034e-09,
           8.7170475e-09, 9.7742303e-14], dtype=float32)
    
             test_features = np.zeros((2**13)).reshape(1, -1, 1)
             print(test_features.shape)
             predictions = model_keras.predict(test_features, verbose=0).flatten()
             predictions
    
    (1, 8192, 1)
    array([3.3430334e-15, 1.2115031e-08, 5.5057057e-09, ..., 3.8588959e-09,
           8.7170475e-09, 9.7742493e-14], dtype=float32)
    
             path_tb_pex5_egfp = '/beegfs/ye53nis/data/Pablo_structured_experiment'
             pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9]
             length_delimiter = 2**13  # for U-Net
             bin_for_correlation = 1e6
             out = correction.correct_experimental_traces_from_ptu_by_unet_prediction(
               path_list=path_tb_pex5_egfp,
               model=model_keras,
               pred_thresh=pred_thresh,
               photon_count_bin=bin_for_correlation,
               ntraces=None,
               save_as_csv=True)
             out
    
    Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment with bin=1e6. This can take a while...
    1 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu
    2 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu
    Processing correlation of unprocessed dataset 1
    Processing correlation with correction by prediction of dataset 1
    
             ---------------------------------------------------------------------------
             ValueError                                Traceback (most recent call last)
             <ipython-input-186-8ad0b763f87d> in <module>
                   3 length_delimiter = 2**13  # for U-Net
                   4 bin_for_correlation = 1e6
             ----> 5 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction(
                   6   path_list=path_tb_pex5_egfp,
                   7   model=model_keras,
    
             /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_experimental_traces_from_ptu_by_unet_prediction(path_list, model, pred_thresh, photon_count_bin, ntraces, save_as_csv)
                 413             for thr in pred_thresh:
                 414                 data['{}-pred-{}'.format(
             --> 415                     i, thr)] = correct_correlation_by_unet_prediction(
                 416                         ntraces=ntraces,
                 417                         traces_of_interest=ptu_1ms.astype(np.float64),
    
             /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_correlation_by_unet_prediction(ntraces, traces_of_interest, model, pred_thresh, fwhm, length_delimiter, traces_for_correlation, bin_for_correlation, verbose)
                 215             ntraces_index=ntraces_index)
                 216
             --> 217         predictions = model.predict(features_prepro, verbose=0)
                 218         predictions = predictions.flatten()
                 219
    
             ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py in predict(self, x, batch_size, verbose, steps, callbacks, max_queue_size, workers, use_multiprocessing)
                1661           for step in data_handler.steps():
                1662             callbacks.on_predict_batch_begin(step)
             -> 1663             tmp_batch_outputs = self.predict_function(iterator)
                1664             if data_handler.should_sync:
                1665               context.async_wait()
    
             ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
                 816     tracing_count = self.experimental_get_tracing_count()
                 817     with trace.Trace(self._name) as tm:
             --> 818       result = self._call(*args, **kwds)
                 819       compiler = "xla" if self._jit_compile else "nonXla"
                 820       new_tracing_count = self.experimental_get_tracing_count()
    
             ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
                 851       # In this case we have not created variables on the first call. So we can
                 852       # run the first trace but we should fail if variables are created.
             --> 853       results = self._stateful_fn(*args, **kwds)
                 854       if self._created_variables:
                 855         raise ValueError("Creating variables on a non-first call to a function"
    
             ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs)
                2990     with self._lock:
                2991       (graph_function,
             -> 2992        filtered_flat_args) = self._maybe_define_function(args, kwargs)
                2993     return graph_function._call_flat(
                2994         filtered_flat_args, captured_inputs=graph_function.captured_inputs)  # pylint: disable=protected-access
    
             ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
                3408               self.input_signature is None and
                3409               call_context_key in self._function_cache.missed):
             -> 3410             return self._define_function_with_shape_relaxation(
                3411                 args, kwargs, flat_args, filtered_flat_args, cache_key_context)
                3412
    
             ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _define_function_with_shape_relaxation(self, args, kwargs, flat_args, filtered_flat_args, cache_key_context)
                3330           expand_composites=True)
                3331
             -> 3332     graph_function = self._create_graph_function(
                3333         args, kwargs, override_flat_arg_shapes=relaxed_arg_shapes)
                3334     self._function_cache.arg_relaxed[rank_only_cache_key] = graph_function
    
             ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
                3247     arg_names = base_arg_names + missing_arg_names
                3248     graph_function = ConcreteFunction(
             -> 3249         func_graph_module.func_graph_from_py_func(
                3250             self._name,
                3251             self._python_function,
    
             ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
                 996         _, original_func = tf_decorator.unwrap(python_func)
                 997
             --> 998       func_outputs = python_func(*func_args, **func_kwargs)
                 999
                1000       # invariant: `func_outputs` contains only Tensors, CompositeTensors,
    
             ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
                 610             xla_context.Exit()
                 611         else:
             --> 612           out = weak_wrapped_fn().__wrapped__(*args, **kwds)
                 613         return out
                 614
    
             ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
                 983           except Exception as e:  # pylint:disable=broad-except
                 984             if hasattr(e, "ag_error_metadata"):
             --> 985               raise e.ag_error_metadata.to_exception(e)
                 986             else:
                 987               raise
    
             ValueError: in user code:
    
                 /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1512 predict_function  *
                     return step_function(self, iterator)
                 /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1502 step_function  **
                     outputs = model.distribute_strategy.run(run_step, args=(data,))
                 /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:1262 run
                     return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
                 /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:2734 call_for_each_replica
                     return self._call_for_each_replica(fn, args, kwargs)
                 /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:3423 _call_for_each_replica
                     return fn(*args, **kwargs)
                 /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1495 run_step  **
                     outputs = model.predict_step(data)
                 /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1468 predict_step
                     return self(x, training=False)
                 /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py:1018 __call__
                     input_spec.assert_input_compatibility(self.input_spec, inputs, self.name)
                 /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/input_spec.py:271 assert_input_compatibility
                     raise ValueError('Input ' + str(input_index) +
    
                 ValueError: Input 0 is incompatible with layer model: expected shape=(None, 16384, 1), found shape=(None, 8192, 1)
    
  2. Run correction for all experimental traces
             path_pex5_exp = ['/beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu', '/beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu']
             pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9]
             length_delimiter = 2**13  # for U-Net
             bin_for_correlation = 1e5
             out = correction.correct_experimental_traces_from_ptu_by_unet_prediction(
               path_list=path_pex5_exp,
               model=model_keras,
               pred_thresh=pred_thresh,
               photon_count_bin=bin_for_correlation,
               ntraces=400,
               save_as_csv=True)
             out
    
             Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu with bin=1e6. This can take a while...
             1 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1082s_1.ptu
             2 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1537s_1.ptu
             3 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488210_T2505s_1.ptu
             4 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488199_T2375s_1.ptu
             5 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2040s_1.ptu
             6 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488229_T2733s_1.ptu
             7 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1070s_1.ptu
             8 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1352s_1.ptu
             9 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T986s_1.ptu10 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488227_T2709s_1.ptu
             11 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2088s_1.ptu
             12 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1214s_1.ptu
             13 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1561s_1.ptu
             14 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T302s_1.ptu
             15 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1932s_1.ptu
             16 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2267s_1.ptu
             17 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2255s_1.ptu
             18 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488208_T2481s_1.ptu
             19 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T314s_1.ptu
             20 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488221_T2637s_1.ptu
             21 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1834s_1.ptu
             22 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1883s_1.ptu
             23 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488197_T2351s_1.ptu
             24 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T254s_1.ptu
             25 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48816_T182s_1.ptu
             26 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2148s_1.ptu
             27 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1238s_1.ptu
             28 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T833s_1.ptu
             29 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T676s_1.ptu
             30 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1496s_1.ptu
             31 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T459s_1.ptu
             32 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1610s_1.ptu
             33 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T592s_1.ptu
             34 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1907s_1.ptu
             35 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T604s_1.ptu
             36 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1895s_1.ptu
             37 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T926s_1.ptu
             38 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T447s_1.ptu
             39 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T821s_1.ptu
             40 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48834_T399s_1.ptu
             41 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T506s_1.ptu
             42 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1076s_1.ptu
             43 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2209s_1.ptu
             44 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T748s_1.ptu
             45 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1232s_1.ptu
             46 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2159s_1.ptu
             47 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T698s_1.ptu
             48 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T855s_1.ptu
             49 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1789s_1.ptu
             50 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488241_T2877s_1.ptu
             51 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488204_T2434s_1.ptu
             52 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T918s_1.ptu
             53 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2147s_1.ptu
             54 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2197s_1.ptu
             55 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1908s_1.ptu
             56 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488238_T2842s_1.ptu
             57 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1968s_1.ptu
             58 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488234_T2793s_1.ptu
             59 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T979s_1.ptu
             60 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1148s_1.ptu
             61 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1280s_1.ptu
             62 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1654s_1.ptu
             63 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1484s_1.ptu
             64 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2245s_1.ptu
             65 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T879s_1.ptu
             66 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1896s_1.ptu
             67 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2124s_1.ptu
             68 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1328s_1.ptu
             69 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T867s_1.ptu
             70 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T962s_1.ptu
             71 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T628s_1.ptu
             72 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48842_T496s_1.ptu
             73 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T590s_1.ptu
             74 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1184s_1.ptu
             75 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488196_T2339s_1.ptu
             76 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1956s_1.ptu
             77 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488217_T2589s_1.ptu
             78 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488218_T2601s_1.ptu
             79 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1418s_1.ptu
             80 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488206_T2458s_1.ptu
             81 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T785s_1.ptu
             82 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1226s_1.ptu
             83 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T278s_1.ptu
             84 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4887_T74s_1.ptu
             85 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2099s_1.ptu
             86 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48817_T194s_1.ptu
             87 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1346s_1.ptu
             88 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T688s_1.ptu
             89 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488211_T2517s_1.ptu
             90 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T712s_1.ptu
             91 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48833_T387s_1.ptu
             92 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T686s_1.ptu
             93 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48813_T146s_1.ptu
             94 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488126_T1502s_1.ptu
             95 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1118s_1.ptu
             96 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1316s_1.ptu
             97 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2243s_1.ptu
             98 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1430s_1.ptu
             99 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488219_T2613s_1.ptu
             100 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1646s_1.ptu
             101 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2231s_1.ptu
             102 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488146_T1742s_1.ptu
             103 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488155_T1859s_1.ptu
             104 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2075s_1.ptu
             105 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1884s_1.ptu
             106 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488244_T2914s_1.ptu
             107 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4886_T62s_1.ptu
             108 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1015s_1.ptu
             109 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1979s_1.ptu
             110 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T674s_1.ptu
             111 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2279s_1.ptu
             112 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2183s_1.ptu
             113 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1689s_1.ptu
             114 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2269s_1.ptu
             115 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T266s_1.ptu
             116 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488209_T2493s_1.ptu
             117 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1630s_1.ptu
             118 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488185_T2221s_1.ptu
             119 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2135s_1.ptu
             120 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T782s_1.ptu
             121 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1472s_1.ptu
             122 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1919s_1.ptu
             123 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T664s_1.ptu
             124 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T351s_1.ptu
             125 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T375s_1.ptu
             126 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T700s_1.ptu
             127 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1545s_1.ptu
             128 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1714s_1.ptu
             129 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1022s_1.ptu
             130 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1754s_1.ptu
             131 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488193_T2303s_1.ptu
             132 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1250s_1.ptu
             133 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488228_T2721s_1.ptu
             134 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1088s_1.ptu
             135 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2040s_1.ptu
             136 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48835_T411s_1.ptu
             137 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1046s_1.ptu
             138 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1466s_1.ptu
             139 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T906s_1.ptu
             140 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T255s_1.ptu
             141 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1730s_1.ptu
             142 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1358s_1.ptu
             143 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T279s_1.ptu
             144 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T638s_1.ptu
             145 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2949s_1.ptu
             146 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T519s_1.ptu
             147 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T482s_1.ptu
             148 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T327s_1.ptu
             149 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T471s_1.ptu
             150 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488225_T2685s_1.ptu
             151 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T362s_1.ptu
             152 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T578s_1.ptu
             153 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T722s_1.ptu
             154 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T614s_1.ptu
             155 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T616s_1.ptu
             156 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1778s_1.ptu
             157 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2028s_1.ptu
             158 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4883_T26s_1.ptu
             159 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T966s_1.ptu
             160 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T435s_1.ptu
             161 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1666s_1.ptu
             162 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2315s_1.ptu
             163 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488205_T2446s_1.ptu
             164 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48818_T206s_1.ptu
             165 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1533s_1.ptu
             166 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T602s_1.ptu
             167 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488116_T1388s_1.ptu
             168 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2196s_1.ptu
             169 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1394s_1.ptu
             170 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T818s_1.ptu
             171 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1130s_1.ptu
             172 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2076s_1.ptu
             173 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1262s_1.ptu
             174 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2993s_1.ptu
             175 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1063s_1.ptu
             176 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48845_T531s_1.ptu
             177 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1400s_1.ptu
             178 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488192_T2291s_1.ptu
             179 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1992s_1.ptu
             180 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1142s_1.ptu
             181 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1124s_1.ptu
             182 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2111s_1.ptu
             183 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48862_T736s_1.ptu
             184 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1412s_1.ptu
             185 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1100s_1.ptu
             186 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T555s_1.ptu
             187 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488223_T2661s_1.ptu
             188 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T626s_1.ptu
             189 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1622s_1.ptu
             190 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1810s_1.ptu
             191 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2925s_1.ptu
             192 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T942s_1.ptu
             193 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1448s_1.ptu
             194 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T809s_1.ptu
             195 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488201_T2398s_1.ptu
             196 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1670s_1.ptu
             197 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488250_T3006s_1.ptu
             198 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4884_T38s_1.ptu
             199 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1514s_1.ptu
             200 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1244s_1.ptu
             201 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2172s_1.ptu
             202 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1370s_1.ptu
             203 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1678s_1.ptu
             204 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T652s_1.ptu
             205 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T1003s_1.ptu
             206 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T544s_1.ptu
             207 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1569s_1.ptu
             208 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488236_T2817s_1.ptu
             209 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2123s_1.ptu
             210 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T869s_1.ptu
             211 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1968s_1.ptu
             212 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2973s_1.ptu
             213 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1801s_1.ptu
             214 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488235_T2805s_1.ptu
             215 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2028s_1.ptu
             216 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2160s_1.ptu
             217 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1618s_1.ptu
             218 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2281s_1.ptu
             219 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T758s_1.ptu
             220 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T794s_1.ptu
             221 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T891s_1.ptu
             222 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T842s_1.ptu
             223 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488213_T2541s_1.ptu
             224 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2184s_1.ptu
             225 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T484s_1.ptu
             226 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2052s_1.ptu
             227 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1825s_1.ptu
             228 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1581s_1.ptu
             229 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1762s_1.ptu
             230 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1310s_1.ptu
             231 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1010s_1.ptu
             232 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T290s_1.ptu
             233 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488168_T2004s_1.ptu
             234 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48820_T230s_1.ptu
             235 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1944s_1.ptu
             236 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488203_T2422s_1.ptu
             237 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488152_T1822s_1.ptu
             238 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T243s_1.ptu
             239 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T2004s_1.ptu
             240 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T436s_1.ptu
             241 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1980s_1.ptu
             242 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488200_T2386s_1.ptu
             243 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1454s_1.ptu
             244 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T508s_1.ptu
             245 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1220s_1.ptu
             246 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T773s_1.ptu
             247 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1920s_1.ptu
             248 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T267s_1.ptu
             249 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T746s_1.ptu
             250 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1573s_1.ptu
             251 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T797s_1.ptu
             252 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1726s_1.ptu
             253 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1738s_1.ptu
             254 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2016s_1.ptu
             255 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1058s_1.ptu
             256 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T710s_1.ptu
             257 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T363s_1.ptu
             258 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488215_T2565s_1.ptu
             259 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T930s_1.ptu
             260 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T770s_1.ptu
             261 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T830s_1.ptu
             262 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1364s_1.ptu
             263 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488148_T1774s_1.ptu
             264 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488224_T2673s_1.ptu
             265 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488172_T2052s_1.ptu
             266 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T1992s_1.ptu
             267 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488100_T1190s_1.ptu
             268 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T242s_1.ptu
             269 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488240_T2865s_1.ptu
             270 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1701s_1.ptu
             271 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1549s_1.ptu
             272 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T520s_1.ptu
             273 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T724s_1.ptu
             274 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48814_T158s_1.ptu
             275 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1956s_1.ptu
             276 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2064s_1.ptu
             277 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4885_T50s_1.ptu
             278 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T580s_1.ptu
             279 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T472s_1.ptu
             280 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T991s_1.ptu
             281 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2969s_1.ptu
             282 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1798s_1.ptu
             283 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T566s_1.ptu
             284 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1160s_1.ptu
             285 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1406s_1.ptu
             286 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4889_T98s_1.ptu
             287 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T134s_1.ptu
             288 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488222_T2649s_1.ptu
             289 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1039s_1.ptu
             290 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T938s_1.ptu
             291 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1051s_1.ptu
             292 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T902s_1.ptu
             293 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48819_T218s_1.ptu
             294 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1112s_1.ptu
             295 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1442s_1.ptu
             296 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488101_T1208s_1.ptu
             297 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488109_T1304s_1.ptu
             298 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1526s_1.ptu
             299 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488207_T2470s_1.ptu
             300 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2937s_1.ptu
             301 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488242_T2890s_1.ptu
             302 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T640s_1.ptu
             303 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T554s_1.ptu
             304 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1292s_1.ptu
             305 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1597s_1.ptu
             306 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4888_T86s_1.ptu
             307 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T857s_1.ptu
             308 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1786s_1.ptu
             309 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T291s_1.ptu
             310 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2171s_1.ptu
             311 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1871s_1.ptu
             312 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488220_T2624s_1.ptu
             313 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2981s_1.ptu
             314 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1154s_1.ptu
             315 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T568s_1.ptu
             316 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2100s_1.ptu
             317 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1847s_1.ptu
             318 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2945s_1.ptu
             319 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1658s_1.ptu
             320 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T350s_1.ptu
             321 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2087s_1.ptu
             322 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T662s_1.ptu
             323 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488230_T2745s_1.ptu
             324 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T894s_1.ptu
             325 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1521s_1.ptu
             326 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488195_T2327s_1.ptu
             327 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T998s_1.ptu
             328 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2219s_1.ptu
             329 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T974s_1.ptu
             330 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1606s_1.ptu
             331 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1286s_1.ptu
             332 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T315s_1.ptu
             333 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488214_T2553s_1.ptu
             334 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1944s_1.ptu
             335 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T460s_1.ptu
             336 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2233s_1.ptu
             337 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488243_T2902s_1.ptu
             338 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1642s_1.ptu
             339 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1861s_1.ptu
             340 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4882_T14s_1.ptu
             341 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1694s_1.ptu
             342 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T123s_1.ptu
             343 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2961s_1.ptu
             344 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1136s_1.ptu
             345 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T303s_1.ptu
             346 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2293s_1.ptu
             347 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1634s_1.ptu
             348 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488133_T1585s_1.ptu
             349 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488216_T2577s_1.ptu
             350 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1274s_1.ptu
             351 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1557s_1.ptu
             352 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1436s_1.ptu
             353 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T806s_1.ptu
             354 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1490s_1.ptu
             355 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T374s_1.ptu
             356 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1424s_1.ptu
             357 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T914s_1.ptu
             358 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2257s_1.ptu
             359 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48836_T423s_1.ptu
             360 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2112s_1.ptu
             361 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488112_T1334s_1.ptu
             362 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48815_T170s_1.ptu
             363 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T448s_1.ptu
             364 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2136s_1.ptu
             365 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488198_T2363s_1.ptu
             366 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T650s_1.ptu
             367 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1178s_1.ptu
             368 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1931s_1.ptu
             369 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2957s_1.ptu
             370 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488231_T2757s_1.ptu
             371 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1460s_1.ptu
             372 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1873s_1.ptu
             373 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2329s_1.ptu
             374 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T542s_1.ptu
             375 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1718s_1.ptu
             376 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1322s_1.ptu
             377 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1705s_1.ptu
             378 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T882s_1.ptu
             379 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1478s_1.ptu
             380 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1268s_1.ptu
             381 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1094s_1.ptu
             382 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1376s_1.ptu
             383 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T761s_1.ptu
             384 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488239_T2853s_1.ptu
             385 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1106s_1.ptu
             386 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1837s_1.ptu
             387 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1256s_1.ptu
             388 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48829_T338s_1.ptu
             389 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T845s_1.ptu
             390 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1172s_1.ptu
             391 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48880_T954s_1.ptu
             392 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T122s_1.ptu
             393 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1682s_1.ptu
             394 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488237_T2829s_1.ptu
             395 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48810_T110s_1.ptu
             396 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1166s_1.ptu
             397 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T135s_1.ptu
             398 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1034s_1.ptu
             399 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488202_T2410s_1.ptu
             400 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T326s_1.ptu
             401 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1027s_1.ptu
             Different binning was chosen for correlation. Loading dataset 1 with bin=100000.0. This can take a while...
             Processing correlation of unprocessed dataset 1
             Processing correlation with correction by prediction of dataset 1
    
  3. Not all of the log was saved (e.g. loading folder alldirtyptu). Load CSV
             corr_out = pd.read_csv(filepath_or_buffer='data/exp-210204-unet/2021-03-24_correlations.csv')
             corr_out
    
      \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\)
    0 19.078159 0.590783 8192.0 0-orig 100000.0
    1 20.314897 0.554817 8192.0 0-orig 100000.0
    2 21.007772 0.536518 8192.0 0-orig 100000.0
    3 22.716317 0.496166 8192.0 0-orig 100000.0
    4 24.089236 0.467888 8192.0 0-orig 100000.0
    4795 0.062475 180.409905 8017.0 1-pred-0.9 100000.0
    4796 0.054750 205.864659 7976.0 1-pred-0.9 100000.0
    4797 0.265582 42.439007 8060.0 1-pred-0.9 100000.0
    4798 0.148929 75.680566 8077.0 1-pred-0.9 100000.0
    4799 0.331785 33.970940 8091.0 1-pred-0.9 100000.0

    4800 rows × 5 columns

    looks good! Open question: why were metadata not saved? Since I started handling multipletau failures better (they now return np.nan values for the correlations instead of just skipping the correlation) the shapes of metadata and data should match…

  4. Check out nan values
             corr_out[corr_out['$D$ in $\\frac{{\mu m^2}}{{s}}$'].isna()]
    
      \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\)
    402 NaN NaN 3.0 0-pred-0.1 100000.0
    410 NaN NaN 3.0 0-pred-0.1 100000.0
    428 NaN NaN 0.0 0-pred-0.1 100000.0
    481 NaN NaN 3.0 0-pred-0.1 100000.0
    527 NaN NaN 3.0 0-pred-0.1 100000.0
    530 NaN NaN 1.0 0-pred-0.1 100000.0
    534 NaN NaN 0.0 0-pred-0.1 100000.0
    552 NaN NaN 1.0 0-pred-0.1 100000.0
    553 NaN NaN 1.0 0-pred-0.1 100000.0
    557 NaN NaN 2.0 0-pred-0.1 100000.0
    558 NaN NaN 2.0 0-pred-0.1 100000.0
    563 NaN NaN 2.0 0-pred-0.1 100000.0
    568 NaN NaN 1.0 0-pred-0.1 100000.0
    572 NaN NaN 0.0 0-pred-0.1 100000.0
    578 NaN NaN 1.0 0-pred-0.1 100000.0
    589 NaN NaN 2.0 0-pred-0.1 100000.0
    623 NaN NaN 3.0 0-pred-0.1 100000.0
    634 NaN NaN 1.0 0-pred-0.1 100000.0
    638 NaN NaN 1.0 0-pred-0.1 100000.0
    651 NaN NaN 2.0 0-pred-0.1 100000.0
    655 NaN NaN 3.0 0-pred-0.1 100000.0
    656 NaN NaN 0.0 0-pred-0.1 100000.0
    660 NaN NaN 0.0 0-pred-0.1 100000.0
    691 NaN NaN 0.0 0-pred-0.1 100000.0
    694 NaN NaN 0.0 0-pred-0.1 100000.0
    699 NaN NaN 2.0 0-pred-0.1 100000.0
    715 NaN NaN 2.0 0-pred-0.1 100000.0
    721 NaN NaN 0.0 0-pred-0.1 100000.0
    725 NaN NaN 1.0 0-pred-0.1 100000.0
    764 NaN NaN 2.0 0-pred-0.1 100000.0
    799 NaN NaN 1.0 0-pred-0.1 100000.0

    We see, that all of the 31 NaNs happened in the “clean” dataset with a prediction threshold of 0.1 and all were presumably caused by the insufficient trace length, since multipletau needs in this case 32 time steps to correlate the trace.

  5. Refactor folder-idtraces-used into 2 columns
             corr_out['folder_id-traces_used']
    
             0           0-orig
             1           0-orig
             2           0-orig
             3           0-orig
             4           0-orig
                        ...
             4795    1-pred-0.9
             4796    1-pred-0.9
             4797    1-pred-0.9
             4798    1-pred-0.9
             4799    1-pred-0.9
             Name: folder_id-traces_used, Length: 4800, dtype: object
    
             corr_out[['Folder ID', 'Traces used']] = corr_out['folder_id-traces_used'].str.split(pat='-', n=1, expand=True)
    
             corr_out
    
      \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\) Folder ID Traces used
    0 19.078159 0.590783 8192.0 0-orig 100000.0 0 orig
    1 20.314897 0.554817 8192.0 0-orig 100000.0 0 orig
    2 21.007772 0.536518 8192.0 0-orig 100000.0 0 orig
    3 22.716317 0.496166 8192.0 0-orig 100000.0 0 orig
    4 24.089236 0.467888 8192.0 0-orig 100000.0 0 orig
    4795 0.062475 180.409905 8017.0 1-pred-0.9 100000.0 1 pred-0.9
    4796 0.054750 205.864659 7976.0 1-pred-0.9 100000.0 1 pred-0.9
    4797 0.265582 42.439007 8060.0 1-pred-0.9 100000.0 1 pred-0.9
    4798 0.148929 75.680566 8077.0 1-pred-0.9 100000.0 1 pred-0.9
    4799 0.331785 33.970940 8091.0 1-pred-0.9 100000.0 1 pred-0.9

    4800 rows × 7 columns

  6. plots
             x = 'Trace lengths'
    
             g = sns.FacetGrid(data=corr_out,
                               col='Folder ID',
                               col_wrap=1,
                               sharex=True,
                               aspect=1.5,
                               height=5,
                               legend_out=True)
             g.map_dataframe(sns.boxplot,
                   x=x,
                   y='Traces used',
                   palette='colorblind',
                   showfliers=False)
             g.map_dataframe(sns.stripplot,
                   x=x,
                   y='Traces used',
                   dodge=True,
                   palette=sns.color_palette(['0.3']),
                   size=4,
                   jitter=0.2)
             g.set_xlabels(x)
             g.tight_layout()
             plt.show()
    

    Trace lengths: 2021-03-24_correlations_trace-lengths.png

             # '$D$ in $\\frac{{\mu m^2}}{{s}}$'
             # '$\\tau_{{D}}$ in $ms$'
             x = '$D$ in $\\frac{{\mu m^2}}{{s}}$'
    
             g = sns.FacetGrid(data=corr_out,
                               col='Folder ID',
                               col_wrap=1,
                               sharex=True,
                               aspect=1.5,
                               height=5,
                               legend_out=True)
             g.map_dataframe(sns.boxplot,
                   x=x,
                   y='Traces used',
                   palette='colorblind',
                   showfliers=False).set(xscale = 'log')
             g.map_dataframe(sns.stripplot,
                   x=x,
                   y='Traces used',
                   dodge=True,
                   palette=sns.color_palette(['0.3']),
                   size=4,
                   jitter=0.2).set(xscale = 'log')
             g.set_xlabels(x)
             g.tight_layout()
             plt.show()
    

    D: 2021-03-24_correlations_diffusion-rates.png tau: 2021-03-24_correlations_transit-times.png

    This scatterplot shows Diffusion rates / transit times against trace lengths. I used a subsample to avoid overplotting.

             # '$D$ in $\\frac{{\mu m^2}}{{s}}$'
             # '$\\tau_{{D}}$ in $ms$'
             x = '$\\tau_{{D}}$ in $ms$'
    
             g = sns.FacetGrid(data=corr_out,
                               row='Traces used',
                               col='Folder ID',
                               hue='Traces used',
                               sharex=True,
                               sharey=True,
                               aspect=1.5,
                               height=3.5,
                               margin_titles=True,
                               legend_out=True)
             g.map_dataframe(sns.scatterplot,
                   x=x,
                   y='Trace lengths',
                   palette='colorblind').set(xscale = 'log')
             g.add_legend(title='Traces used')
             g.set_xlabels(x)
             g.tight_layout()
             plt.show()
    
             # '$D$ in $\\frac{{\mu m^2}}{{s}}$'
             # '$\\tau_{{D}}$ in $ms$'
             x = '$\\tau_{{D}}$ in $ms$'
    
             g = sns.FacetGrid(data=corr_out.sample(1000),
                               row='Folder ID',
                               hue='Traces used',
                               hue_order=['orig', 'pred-0.1', 'pred-0.3', 'pred-0.5', 'pred-0.7', 'pred-0.9'],
                               sharex=True,
                               sharey=True,
                               aspect=1.5,
                               height=4,
                               margin_titles=True,
                               legend_out=True)
             g.map_dataframe(sns.scatterplot,
                   x=x,
                   y='Trace lengths',
                   palette='colorblind').set(xscale = 'log')
             g.add_legend(title='Traces used')
             g.set_xlabels(x)
             g.tight_layout()
             plt.show()
    

    Scatterplot on subsample: 2021-03-24_correlations_scatter-subsample.png Scatterplot on full dataset, but categorical: 2021-03-24_correlations_scatter-full.png

2.3.7 use MLFLOW to compare run 1 and run 2

  1. get the experiment ID
              conda activate tf-nightly
              cd Programme/drmed-git
              export MLFLOW_EXPERIMENT_NAME=exp-210204-unet
    
              export MLFLOW_TRACKING_URI=file:/data/mlruns
              mlflow experiments list
    
                Experiment Id  Name             Artifact Location
              ---------------  ---------------  -------------------
                            2  exp-210124-test  file:.
                            3  exp-210204-unet  file:.
    
              mlflow runs list --experiment-id 3
    
              Date                     Name    ID
              -----------------------  ------  --------------------------------
              2021-03-16 22:26:12 CET          3cec3f26ed2d4004978c4ec37c00fba0
              2021-02-05 18:23:50 CET          b9935d1e554c423fb2852242f4c4504c
    
  2. start tensorboard for the runs
              export EXP1=b9935d1e554c423fb2852242f4c4504c
              export EXP2=3cec3f26ed2d4004978c4ec37c00fba0
              tensorboard --logdir=data/mlruns/3/$EXP2/artifacts/tensorboard_logs
    
                     
    sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:          
    ye53nis@login01’s password:              
    bind: Address already in use        
    Last login: Fri Apr 2 23:45:47 2021 from 10.231.191.246

auc and val-auc: auc-and-val-auc.png

loss and val-loss: loss-and-val-loss.png

epoch_precision_and_recall.svg

run 1 distribution and histogram of final layer run1_distribution_final-layer.png run1_histogram_final-layer.png

run 2 distribution and histogram of final layer run2_distribution_final-layer.png run2_histogram_final-layer.png

2.4 exp-210807-hparams

2.4.1 Connect

2.4.1.1 GPU node for script execution
  1. Setup tmux
    rm: cannot remove home/lex.tmux-local-socket-remote-machine’: No such file or directory
    ye53nis@ara-login01.rz.uni-jena.de’s password:              
    /tmp/tmux-67339/default                
    > ye53nis@ara-login01.rz.uni-jena.de’s password:            
  2. first, connect with the GPU node in the high performance cluster
              cd /
              srun -p gpu_v100 --time=5-10:00:00 --ntasks-per-node=12 --mem-per-cpu=4000 --gres=gpu:1 --pty bash
    
              (base) [ye53nis@node130 /]$
    
  3. Load CUDA and cuDNN in the version compatible to your tensorflow library (see https://www.tensorflow.org/install/source#gpu)
              module load nvidia/cuda/11.2
              module load nvidia/cudnn/8.1
              module list
    
  4. Branch out git branch exp-210807-hparams from main (done via magit) and make sure you are on the correct branch
              cd /beegfs/ye53nis/drmed-git
              git checkout exp-210807-hparams
    
              (base) [ye53nis@node130 drmed-git]$ git checkout exp-210807-hparams
              Checking out files: 100% (148/148), done.
              M       src/nanosimpy
              Branch exp-210807-hparams set up to track remote branch exp-210807-hparams from origin.
              Switched to a new branch 'exp-210807-hparams'
              \nThis repository is configured for Git LFS but 'git-lfs' was not found on your path. If you no longer wish to use Git LFS, remove this hook by deleting .git/hooks/post-checkout.\n
              (base) [ye53nis@node130 drmed-git]$
    
  5. Side quest: remove last remnants of failed git LFS experiments
              cat .git/hooks/post-checkout
              rm .git/hooks/post-checkout
              rm .git/hooks/pre-push
    
              (base) [ye53nis@node130 drmed-git]$ cat .git/hooks/post-checkout
              #!/bin/sh
              command -v git-lfs >/dev/null 2>&1 || { echo >&2 "\nThis repository is configured for Git LFS but 'git-lfs' was not found on your path. If you no longer wish to use Git LFS, remove this hook by deleting .git/hooks/post-checkout.\n"; ex
              it 2; }
              git lfs post-checkout "$@"
              (base) [ye53nis@node130 drmed-git]$ rm .git/hooks/post-checkout
              (base) [ye53nis@node130 drmed-git]$ rm .git/hooks/pre-push
              (base) [ye53nis@node130 drmed-git]$ git push origin exp-210807-hparams
              Username for 'https://github.com': aseltmann
              Password for 'https://aseltmann@github.com':
              Everything up-to-date
              (base) [ye53nis@node130 drmed-git]$
    
  6. Load conda environment
              conda activate tf
    
              (tf) [ye53nis@node130 drmed-git]$
    
  7. define MLflow environment variables and create log directory
              cd /beegfs/ye53nis/drmed-git
              export MLFLOW_EXPERIMENT_NAME=exp-210807-hparams
              export MLFLOW_TRACKING_URI=file:/beegfs/ye53nis/drmed-git/data/mlruns
              mkdir data/exp-210807-hparams
    
              (tf) [ye53nis@node130 drmed-git]$
    
2.4.1.2 Node for running Jupyter
  1. customize the output folder using the following org-mode variable:
              (setq org-babel-jupyter-resource-directory "./data/exp-210807-hparams/jupyter")
    
    ./data/exp-210807-hparams/jupyter
    
  2. Set up tmux (if we haven’t done that before) (#+CALL: setup-tmux[:session local])
         
    sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:
    > ye53nis@ara-login01.rz.uni-jena.de’s password:
  3. Request compute node
              cd /
              srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
    
  4. Start Jupyter Lab (#+CALL: jpt-tmux[:session jpmux])
              (tf) [ye53nis@node144 /]$ jupyter lab --no-browser --port=$PORT
              [I 2021-12-14 13:02:25.053 ServerApp] jupyterlab | extension was successfully linked.
              [I 2021-12-14 13:02:30.949 ServerApp] nbclassic | extension was successfully linked.
              [I 2021-12-14 13:02:31.454 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab
              [I 2021-12-14 13:02:31.455 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab
              [I 2021-12-14 13:02:31.464 ServerApp] jupyterlab | extension was successfully loaded.
              [I 2021-12-14 13:02:31.591 ServerApp] nbclassic | extension was successfully loaded.
              [I 2021-12-14 13:02:31.592 ServerApp] Serving notebooks from local directory: /
              [I 2021-12-14 13:02:31.592 ServerApp] Jupyter Server 1.4.1 is running at:
              [I 2021-12-14 13:02:31.592 ServerApp] http://localhost:9999/lab?token=d56ed5d84f4a58d80eccfc44527559c44840ce3fd540c1b2
              [I 2021-12-14 13:02:31.592 ServerApp]  or http://127.0.0.1:9999/lab?token=d56ed5d84f4a58d80eccfc44527559c44840ce3fd540c1b2
              [I 2021-12-14 13:02:31.592 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
              [C 2021-12-14 13:02:31.625 ServerApp]
    
                  To access the server, open this file in a browser:
                      file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-92394-open.html
                  Or copy and paste one of these URLs:
                      http://localhost:9999/lab?token=d56ed5d84f4a58d80eccfc44527559c44840ce3fd540c1b2
                   or http://127.0.0.1:9999/lab?token=d56ed5d84f4a58d80eccfc44527559c44840ce3fd540c1b2
    
  5. Create SSH Tunnel for jupyter lab to the local computer (e.g. #+CALL: ssh-tunnel(port="9999", node="node152"))
                     
    sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:          
    ye53nis@node144’s password:              
    Last login: Tue Dec 14 22:39:42 2021 from login01.ara
  6. I started a Python3 kernel using jupyter-server-list-kernels. Then I added the kernel ID to the :PROPERTIES: drawer of this (and following) subtrees.
            python3           c4f3acce-60c4-489d-922c-407da110fd6a   a few seconds ago    idle       1
    
  7. Test (#+CALL: jp-metadata(_long='True)):
              No of CPUs in system: 72
              No of CPUs the current process can use: 24
              load average: (17.06, 17.03, 18.02)
              os.uname():  posix.uname_result(sysname='Linux', nodename='node162', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64')
              PID of process: 40969
              RAM total: 199G, RAM used: 13G, RAM free: 164G
              the current directory: /
              My disk usage:
              Filesystem           Size  Used Avail Use% Mounted on
              /dev/sda1             50G  3.8G   47G   8% /
              devtmpfs              94G     0   94G   0% /dev
              tmpfs                 94G  8.6M   94G   1% /dev/shm
              tmpfs                 94G  115M   94G   1% /run
              tmpfs                 94G     0   94G   0% /sys/fs/cgroup
              nfs01-ib:/home        80T   67T   14T  83% /home
              nfs03-ib:/pool/work  100T   78T   22T  79% /nfsdata
              nfs02-ib:/data01      88T   71T   17T  82% /data01
              nfs01-ib:/cluster    2.0T  464G  1.6T  23% /cluster
              /dev/sda5            2.0G   34M  2.0G   2% /tmp
              /dev/sda3            6.0G  428M  5.6G   7% /var
              /dev/sda6            169G   33M  169G   1% /local
              beegfs_nodev         524T  484T   41T  93% /beegfs
              tmpfs                 19G     0   19G   0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf:
              #
              # Name                    Version                   Build  Channel
              _libgcc_mutex             0.1                        main
              _openmp_mutex             4.5                       1_gnu
              absl-py                   0.13.0                   pypi_0    pypi
              alembic                   1.4.1                    pypi_0    pypi
              anyio                     2.2.0            py39h06a4308_1
              argon2-cffi               20.1.0           py39h27cfd23_1
              asteval                   0.9.25                   pypi_0    pypi
              astunparse                1.6.3                    pypi_0    pypi
              async_generator           1.10               pyhd3eb1b0_0
              attrs                     21.2.0             pyhd3eb1b0_0
              babel                     2.9.1              pyhd3eb1b0_0
              backcall                  0.2.0              pyhd3eb1b0_0
              bleach                    3.3.1              pyhd3eb1b0_0
              brotlipy                  0.7.0           py39h27cfd23_1003
              ca-certificates           2021.7.5             h06a4308_1
              cachetools                4.2.2                    pypi_0    pypi
              certifi                   2021.5.30        py39h06a4308_0
              cffi                      1.14.6           py39h400218f_0
              chardet                   4.0.0           py39h06a4308_1003
              click                     8.0.1                    pypi_0    pypi
              cloudpickle               1.6.0                    pypi_0    pypi
              cryptography              3.4.7            py39hd23ed53_0
              cycler                    0.10.0                   pypi_0    pypi
              databricks-cli            0.14.3                   pypi_0    pypi
              decorator                 5.0.9              pyhd3eb1b0_0
              defusedxml                0.7.1              pyhd3eb1b0_0
              docker                    5.0.0                    pypi_0    pypi
              entrypoints               0.3              py39h06a4308_0
              fcsfiles                  2021.6.6                 pypi_0    pypi
              flask                     2.0.1                    pypi_0    pypi
              flatbuffers               1.12                     pypi_0    pypi
              future                    0.18.2                   pypi_0    pypi
              gast                      0.4.0                    pypi_0    pypi
              gitdb                     4.0.7                    pypi_0    pypi
              gitpython                 3.1.18                   pypi_0    pypi
              google-auth               1.34.0                   pypi_0    pypi
              google-auth-oauthlib      0.4.5                    pypi_0    pypi
              google-pasta              0.2.0                    pypi_0    pypi
              greenlet                  1.1.0                    pypi_0    pypi
              grpcio                    1.34.1                   pypi_0    pypi
              gunicorn                  20.1.0                   pypi_0    pypi
              h5py                      3.1.0                    pypi_0    pypi
              idna                      2.10               pyhd3eb1b0_0
              importlib-metadata        3.10.0           py39h06a4308_0
              importlib_metadata        3.10.0               hd3eb1b0_0
              ipykernel                 5.3.4            py39hb070fc8_0
              ipython                   7.22.0           py39hb070fc8_0
              ipython_genutils          0.2.0              pyhd3eb1b0_1
              itsdangerous              2.0.1                    pypi_0    pypi
              jedi                      0.17.2           py39h06a4308_1
              jinja2                    3.0.1              pyhd3eb1b0_0
              joblib                    1.0.1                    pypi_0    pypi
              json5                     0.9.6              pyhd3eb1b0_0
              jsonschema                3.2.0                      py_2
              jupyter-packaging         0.7.12             pyhd3eb1b0_0
              jupyter_client            6.1.12             pyhd3eb1b0_0
              jupyter_core              4.7.1            py39h06a4308_0
              jupyter_server            1.4.1            py39h06a4308_0
              jupyterlab                3.0.14             pyhd3eb1b0_1
              jupyterlab_pygments       0.1.2                      py_0
              jupyterlab_server         2.6.1              pyhd3eb1b0_0
              keras-nightly             2.5.0.dev2021032900          pypi_0    pypi
              keras-preprocessing       1.1.2                    pypi_0    pypi
              kiwisolver                1.3.1                    pypi_0    pypi
              ld_impl_linux-64          2.35.1               h7274673_9
              libffi                    3.3                  he6710b0_2
              libgcc-ng                 9.3.0               h5101ec6_17
              libgomp                   9.3.0               h5101ec6_17
              libsodium                 1.0.18               h7b6447c_0
              libstdcxx-ng              9.3.0               hd4cf53a_17
              lmfit                     1.0.2                    pypi_0    pypi
              mako                      1.1.4                    pypi_0    pypi
              markdown                  3.3.4                    pypi_0    pypi
              markupsafe                2.0.1            py39h27cfd23_0
              matplotlib                3.4.2                    pypi_0    pypi
              mistune                   0.8.4           py39h27cfd23_1000
              mlflow                    1.19.0                   pypi_0    pypi
              multipletau               0.3.3                    pypi_0    pypi
              nbclassic                 0.2.6              pyhd3eb1b0_0
              nbclient                  0.5.3              pyhd3eb1b0_0
              nbconvert                 6.1.0            py39h06a4308_0
              nbformat                  5.1.3              pyhd3eb1b0_0
              ncurses                   6.2                  he6710b0_1
              nest-asyncio              1.5.1              pyhd3eb1b0_0
              notebook                  6.4.0            py39h06a4308_0
              numpy                     1.19.5                   pypi_0    pypi
              oauthlib                  3.1.1                    pypi_0    pypi
              openssl                   1.1.1k               h27cfd23_0
              opt-einsum                3.3.0                    pypi_0    pypi
              packaging                 21.0               pyhd3eb1b0_0
              pandas                    1.3.1                    pypi_0    pypi
              pandocfilters             1.4.3            py39h06a4308_1
              parso                     0.7.0                      py_0
              pexpect                   4.8.0              pyhd3eb1b0_3
              pickleshare               0.7.5           pyhd3eb1b0_1003
              pillow                    8.3.1                    pypi_0    pypi
              pip                       21.1.3           py39h06a4308_0
              prometheus-flask-exporter 0.18.2                   pypi_0    pypi
              prometheus_client         0.11.0             pyhd3eb1b0_0
              prompt-toolkit            3.0.17             pyh06a4308_0
              protobuf                  3.17.3                   pypi_0    pypi
              ptyprocess                0.7.0              pyhd3eb1b0_2
              pyasn1                    0.4.8                    pypi_0    pypi
              pyasn1-modules            0.2.8                    pypi_0    pypi
              pycparser                 2.20                       py_2
              pygments                  2.9.0              pyhd3eb1b0_0
              pyopenssl                 20.0.1             pyhd3eb1b0_1
              pyparsing                 2.4.7              pyhd3eb1b0_0
              pyrsistent                0.18.0           py39h7f8727e_0
              pysocks                   1.7.1            py39h06a4308_0
              python                    3.9.5                h12debd9_4
              python-dateutil           2.8.2              pyhd3eb1b0_0
              python-editor             1.0.4                    pypi_0    pypi
              pytz                      2021.1             pyhd3eb1b0_0
              pyyaml                    5.4.1                    pypi_0    pypi
              pyzmq                     20.0.0           py39h2531618_1
              querystring-parser        1.2.4                    pypi_0    pypi
              readline                  8.1                  h27cfd23_0
              requests                  2.25.1             pyhd3eb1b0_0
              requests-oauthlib         1.3.0                    pypi_0    pypi
              rsa                       4.7.2                    pypi_0    pypi
              scikit-learn              0.24.2                   pypi_0    pypi
              scipy                     1.7.0                    pypi_0    pypi
              seaborn                   0.11.1                   pypi_0    pypi
              send2trash                1.5.0              pyhd3eb1b0_1
              setuptools                52.0.0           py39h06a4308_0
              six                       1.15.0                   pypi_0    pypi
              smmap                     4.0.0                    pypi_0    pypi
              sniffio                   1.2.0            py39h06a4308_1
              sqlalchemy                1.4.22                   pypi_0    pypi
              sqlite                    3.36.0               hc218d9a_0
              sqlparse                  0.4.1                    pypi_0    pypi
              tabulate                  0.8.9                    pypi_0    pypi
              tensorboard               2.5.0                    pypi_0    pypi
              tensorboard-data-server   0.6.1                    pypi_0    pypi
              tensorboard-plugin-wit    1.8.0                    pypi_0    pypi
              tensorflow                2.5.0                    pypi_0    pypi
              tensorflow-estimator      2.5.0                    pypi_0    pypi
              termcolor                 1.1.0                    pypi_0    pypi
              terminado                 0.9.4            py39h06a4308_0
              testpath                  0.5.0              pyhd3eb1b0_0
              threadpoolctl             2.2.0                    pypi_0    pypi
              tifffile                  2021.7.30                pypi_0    pypi
              tk                        8.6.10               hbc83047_0
              tornado                   6.1              py39h27cfd23_0
              traitlets                 5.0.5              pyhd3eb1b0_0
              typing-extensions         3.7.4.3                  pypi_0    pypi
              tzdata                    2021a                h52ac0ba_0
              uncertainties             3.1.6                    pypi_0    pypi
              urllib3                   1.26.6             pyhd3eb1b0_1
              wcwidth                   0.2.5                      py_0
              webencodings              0.5.1            py39h06a4308_1
              websocket-client          1.1.0                    pypi_0    pypi
              werkzeug                  2.0.1                    pypi_0    pypi
              wheel                     0.36.2             pyhd3eb1b0_0
              wrapt                     1.12.1                   pypi_0    pypi
              xz                        5.2.5                h7b6447c_0
              zeromq                    4.3.4                h2531618_0
              zipp                      3.5.0              pyhd3eb1b0_0
              zlib                      1.2.11               h7b6447c_3
    
              Note: you may need to restart the kernel to use updated packages.
              {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint',
               'SLURM_NODELIST': 'node162',
               'SLURM_JOB_NAME': 'bash',
               'XDG_SESSION_ID': '44301',
               'SLURMD_NODENAME': 'node162',
               'SLURM_TOPOLOGY_ADDR': 'node162',
               'SLURM_NTASKS_PER_NODE': '24',
               'HOSTNAME': 'login01',
               'SLURM_PRIO_PROCESS': '0',
               'SLURM_SRUN_COMM_PORT': '34890',
               'SHELL': '/bin/bash',
               'TERM': 'xterm-color',
               'SLURM_JOB_QOS': 'qstand',
               'SLURM_PTY_WIN_ROW': '32',
               'HISTSIZE': '1000',
               'TMPDIR': '/tmp',
               'SLURM_TOPOLOGY_ADDR_PATTERN': 'node',
               'SSH_CLIENT': '10.231.181.128 49370 22',
               'CONDA_SHLVL': '2',
               'CONDA_PROMPT_MODIFIER': '(tf) ',
               'QTDIR': '/usr/lib64/qt-3.3',
               'QTINC': '/usr/lib64/qt-3.3/include',
               'SSH_TTY': '/dev/pts/79',
               'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
               'QT_GRAPHICSSYSTEM_CHECKED': '1',
               'SLURM_NNODES': '1',
               'USER': 'ye53nis',
               'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
               'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:',
               'CONDA_EXE': '/cluster/miniconda3/bin/conda',
               'SLURM_STEP_NUM_NODES': '1',
               'SLURM_JOBID': '1547254',
               'SRUN_DEBUG': '3',
               'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
               'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
               'SLURM_NTASKS': '24',
               'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5',
               'SLURM_STEP_ID': '0',
               'TMUX': '/tmp/tmux-67339/default,20557,4',
               '_CE_CONDA': '',
               'CONDA_PREFIX_1': '/cluster/miniconda3',
               'SLURM_STEP_LAUNCHER_PORT': '34890',
               'SLURM_TASKS_PER_NODE': '24',
               'MAIL': '/var/spool/mail/ye53nis',
               'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin',
               'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448',
               'SLURM_JOB_ID': '1547254',
               'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf',
               'SLURM_JOB_USER': 'ye53nis',
               'SLURM_STEPID': '0',
               'PWD': '/',
               'SLURM_SRUN_COMM_HOST': '192.168.192.5',
               'LANG': 'en_US.UTF-8',
               'SLURM_PTY_WIN_COL': '235',
               'SLURM_UMASK': '0022',
               'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles',
               'SLURM_JOB_UID': '67339',
               'LOADEDMODULES': '',
               'SLURM_NODEID': '0',
               'TMUX_PANE': '%4',
               'SLURM_SUBMIT_DIR': '/',
               'SLURM_TASK_PID': '37261',
               'SLURM_NPROCS': '24',
               'SLURM_CPUS_ON_NODE': '24',
               'SLURM_DISTRIBUTION': 'block',
               'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
               'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
               'SLURM_PROCID': '0',
               'HISTCONTROL': 'ignoredups',
               '_CE_M': '',
               'SLURM_JOB_NODELIST': 'node162',
               'SLURM_PTY_PORT': '39060',
               'HOME': '/home/ye53nis',
               'SHLVL': '3',
               'SLURM_LOCALID': '0',
               'SLURM_JOB_GID': '13280',
               'SLURM_JOB_CPUS_PER_NODE': '24',
               'SLURM_CLUSTER_NAME': 'hpc',
               'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
               'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23',
               'SLURM_SUBMIT_HOST': 'login01',
               'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
               'SLURM_JOB_PARTITION': 's_standard',
               'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3',
               'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python',
               'LOGNAME': 'ye53nis',
               'SLURM_STEP_NUM_TASKS': '24',
               'QTLIB': '/usr/lib64/qt-3.3/lib',
               'SLURM_JOB_ACCOUNT': 'iaob',
               'SLURM_JOB_NUM_NODES': '1',
               'MODULESHOME': '/usr/share/Modules',
               'CONDA_DEFAULT_ENV': 'tf',
               'LESSOPEN': '||/usr/bin/lesspipe.sh %s',
               'SLURM_STEP_TASKS_PER_NODE': '24',
               'PORT': '9999',
               'SLURM_STEP_NODELIST': 'node162',
               'DISPLAY': ':0',
               'XDG_RUNTIME_DIR': '',
               'XAUTHORITY': '/home/lex/.Xauthority',
               'BASH_FUNC_module()': '() {  eval `/usr/bin/modulecmd bash $*`\n}',
               '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter',
               'JPY_PARENT_PID': '38132',
               'CLICOLOR': '1',
               'PAGER': 'cat',
               'GIT_PAGER': 'cat',
               'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
    
2.4.1.3 Node for running Mlflow UI
  1. Create mlflow tmux session and start mlflow ui
              conda activate tf
              mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns -p 5001
    
              (tf) [ye53nis@login01 ~]$ mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns -p 5001
              [2021-08-08 14:47:33 +0200] [5106] [INFO] Starting gunicorn 20.1.0
              [2021-08-08 14:47:33 +0200] [5106] [INFO] Listening at: http://127.0.0.1:5001 (5106)
              [2021-08-08 14:47:33 +0200] [5106] [INFO] Using worker: sync
              [2021-08-08 14:47:33 +0200] [5115] [INFO] Booting worker with pid: 5115
    
  2. SHH tunnel the mflow session to the local computer (#+CALL: ssh-tunnel[:session local3](port=“5001”, node=“login01”))
                     
    sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:          
    ye53nis@login01’s password:              
    bind: Address already in use        
    Last login: Tue Aug 17 18:03:52 2021 from 10.231.188.20

2.4.2 Run 1 - hparams

2.4.2.1 Record metadata
  1. Current directory, last 5 git commits
              pwd
              git log -5
    
              (tf) [ye53nis@node130 drmed-git]$ pwd
              /beegfs/ye53nis/drmed-git
              (tf) [ye53nis@node130 drmed-git]$ git log -5
              commit aa5b9bc35c53c4fd1525c6b812b2a28532ae7afb
              Author: Apoplex <oligolex@vivaldi.net>
              Date:   Sat Aug 7 22:15:02 2021 +0200
    
                  Add hparams combi restriction; add metadata
    
                  problems arise, if in the random combination of hparams, 2*pool_size**n_levels
                  is bigger than the input_size. That's why these cases are skipped now.
    
              commit 36bfdd79e78f84fe2f05a11d791c33b9c724b71f
              Author: Apoplex <oligolex@vivaldi.net>
              Date:   Sat Aug 7 14:28:28 2021 +0200
    
                  add drop_remainder, add hparams, remove steps
    
              commit f3f5310a32a110793d016c2c788b1058bbc5439e
              Author: Apoplex <oligolex@vivaldi.net>
              Date:   Sat Aug 7 14:02:57 2021 +0200
    
                  Change conda environment
    
              commit fcc80acbc07dcc92b207b034f4b4133f2800d0f3
              Author: Apoplex <oligolex@vivaldi.net>
              Date:   Thu Aug 5 22:16:18 2021 +0200
    
                  Rename master to main
    
              commit 8edc3c254d26b5c18fb262e73c1fd26406b97573
              Author: Apoplex <oligolex@vivaldi.net>
              Date:   Wed Aug 4 22:36:06 2021 +0200
    
                  Fix mlflow best run logging
              (tf) [ye53nis@node130 drmed-git]$
    
  2. GPU, CPU, RAM, file system, env variables, top info
              nvcc -V
              echo --------------------
              lscpu
              echo --------------------
              nproc
              echo --------------------
              free -h
              echo --------------------
              df -h
              echo --------------------
              printenv
              echo --------------------
              top -bcn1 -w512 | head -n 15
    
              (tf) [ye53nis@node130 drmed-git]$ nvcc -V
              nvcc: NVIDIA (R) Cuda compiler driver
              Copyright (c) 2005-2020 NVIDIA Corporation
              Built on Mon_Nov_30_19:08:53_PST_2020
              Cuda compilation tools, release 11.2, V11.2.67
              Build cuda_11.2.r11.2/compiler.29373293_0
    
              --------------------
              (tf) [ye53nis@node130 drmed-git]$ lscpu
              Architecture:          x86_64
              CPU op-mode(s):        32-bit, 64-bit
              Byte Order:            Little Endian
              CPU(s):                48
              On-line CPU(s) list:   0-47
              Thread(s) per core:    2
              Core(s) per socket:    12
              Socket(s):             2
              NUMA node(s):          4
              Vendor ID:             GenuineIntel
              CPU family:            6
              Model:                 79
              Model name:            Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
              Stepping:              1
              CPU MHz:               1200.439
              CPU max MHz:           2900.0000
              CPU min MHz:           1200.0000
              BogoMIPS:              4399.92
              Virtualization:        VT-x
              L1d cache:             32K
              L1i cache:             32K
              L2 cache:              256K
              L3 cache:              15360K
              NUMA node0 CPU(s):     0-5,24-29
              NUMA node1 CPU(s):     6-11,30-35
              NUMA node2 CPU(s):     12-17,36-41
              NUMA node3 CPU(s):     18-23,42-47
              Flags:                 fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arc
              h_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic m
              ovbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 cdp_l3 intel_ppin intel_pt ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_
              adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a rdseed adx smap xsaveopt cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts spec_ctrl intel_stibp
    
              --------------------
              (tf) [ye53nis@node130 drmed-git]$ nproc
              12
    
              --------------------
              (tf) [ye53nis@node130 drmed-git]$ free -h
                            total        used        free      shared  buff/cache   available
              Mem:           125G        1.2G         78G        229M         45G        122G
              Swap:           11G        2.2M         11G
    
              --------------------
              (tf) [ye53nis@node130 drmed-git]$ df -h
              Filesystem           Size  Used Avail Use% Mounted on
              /dev/sda1             50G  6.2G   44G  13% /
              devtmpfs              63G     0   63G   0% /dev
              tmpfs                 63G  180M   63G   1% /dev/shm
              tmpfs                 63G   51M   63G   1% /run
              tmpfs                 63G     0   63G   0% /sys/fs/cgroup
              nfs03-ib:/pool/work  100T   78T   23T  78% /nfsdata
              nfs01-ib:/home        80T   62T   19T  77% /home
              nfs01-ib:/cluster    2.0T  435G  1.6T  22% /cluster
              /dev/sda6            169G  122M  169G   1% /local
              /dev/sda5            2.0G   35M  2.0G   2% /tmp
              /dev/sda3            6.0G  666M  5.4G  11% /var
              beegfs_nodev         524T  432T   92T  83% /beegfs
    
              --------------------
              (tf) [ye53nis@node130 drmed-git]$ printenv
              SLURM_CHECKPOINT_IMAGE_DIR=/var/slurm/checkpoint
              SLURM_NODELIST=node130
              CUDA_PATH=/cluster/nvidia/cuda/11.2
              SLURM_JOB_NAME=bash
              CUDA_INC_PATH=/cluster/nvidia/cuda/11.2/include
              XDG_SESSION_ID=44301
              SLURMD_NODENAME=node130
              SLURM_TOPOLOGY_ADDR=node130
              SLURM_NTASKS_PER_NODE=12
              HOSTNAME=login01
              SLURM_PRIO_PROCESS=0
              SLURM_SRUN_COMM_PORT=37107
              SHELL=/bin/bash
              TERM=screen
              MLFLOW_EXPERIMENT_NAME=exp-210807-hparams
              SLURM_JOB_QOS=qstand
              SLURM_PTY_WIN_ROW=24
              HISTSIZE=1000
              TMPDIR=/tmp
              SLURM_TOPOLOGY_ADDR_PATTERN=node
              SSH_CLIENT=10.231.181.128 49370 22
              INCLUDEDIR=/cluster/nvidia/cuda/11.2/include
              CONDA_SHLVL=2
              CONDA_PROMPT_MODIFIER=(tf)
              OLDPWD=/beegfs/ye53nis/drmed-git/data
              QTDIR=/usr/lib64/qt-3.3
              QTINC=/usr/lib64/qt-3.3/include
              SSH_TTY=/dev/pts/79
              NO_PROXY=localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001
              QT_GRAPHICSSYSTEM_CHECKED=1
              SLURM_NNODES=1
              USER=ye53nis
              http_proxy=http://internet4nzm.rz.uni-jena.de:3128
              LD_LIBRARY_PATH=/cluster/nvidia/cuda/11.2/lib64:/cluster/nvidia/cuda/11.2/nvvm/lib64:/cluster/nvidia/cudnn/8.1//lib64
              LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01
              ;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01
              ;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01
              ;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tg
              a=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01
              ;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl
              =01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*
              .mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:
              CONDA_EXE=/cluster/miniconda3/bin/conda
              SLURM_STEP_NUM_NODES=1
              SLURM_JOBID=1461501
              SRUN_DEBUG=3
              FTP_PROXY=http://internet4nzm.rz.uni-jena.de:3128
              ftp_proxy=http://internet4nzm.rz.uni-jena.de:3128
              SLURM_NTASKS=12
              SLURM_LAUNCH_NODE_IPADDR=192.168.192.5
              SLURM_STEP_ID=0
              TMUX=/tmp/tmux-67339/default,20557,6
              _CE_CONDA=
              CONDA_PREFIX_1=/cluster/miniconda3
              MODCUDA=YES
              SLURM_STEP_LAUNCHER_PORT=37107
              SLURM_TASKS_PER_NODE=12
              MAIL=/var/spool/mail/ye53nis
              PATH=/cluster/nvidia/cuda/11.2/bin:/cluster/nvidia/cuda/11.2/nvvm:/cluster/nvidia/cuda/11.2/open64/bin:/cluster/nvidia/cuda/11.2/libnvvp:/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programm
              e/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/
              usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin
              SLURM_WORKING_CLUSTER=hpc:192.168.192.1:6817:8448
              SLURM_JOB_ID=1461501
              LD_RUN_PATH=/cluster/nvidia/cuda/11.2/lib64
              SLURM_STEP_GPUS=0
              CONDA_PREFIX=/home/ye53nis/.conda/envs/tf
              CUDA_LIB_PATH=/cluster/nvidia/cuda/11.2/lib64
              SLURM_JOB_USER=ye53nis
              SLURM_STEPID=0
              PWD=/beegfs/ye53nis/drmed-git
              _LMFILES_=/cluster/modulefiles/nvidia/cuda/11.2:/cluster/modulefiles/nvidia/cudnn/8.1
              CUDA_VISIBLE_DEVICES=0
              SLURM_SRUN_COMM_HOST=192.168.192.5
              LANG=en_US.UTF-8
              SLURM_PTY_WIN_COL=80
              SLURM_UMASK=0022
              MODULEPATH=/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles
              SLURM_JOB_UID=67339
              LOADEDMODULES=nvidia/cuda/11.2:nvidia/cudnn/8.1
              SLURM_NODEID=0
              TMUX_PANE=%6
              SLURM_SUBMIT_DIR=/
              SLURM_TASK_PID=11596
              SLURM_NPROCS=12
              SLURM_CPUS_ON_NODE=12
              SLURM_DISTRIBUTION=block
              HTTPS_PROXY=http://internet4nzm.rz.uni-jena.de:3128
              https_proxy=http://internet4nzm.rz.uni-jena.de:3128
              SLURM_PROCID=0
              HISTCONTROL=ignoredups
              _CE_M=
              SLURM_JOB_NODELIST=node130
              SLURM_PTY_PORT=41921
              HOME=/home/ye53nis
              SHLVL=3
              SLURM_LOCALID=0
              SLURM_JOB_GID=13280
              SLURM_JOB_CPUS_PER_NODE=12
              SLURM_CLUSTER_NAME=hpc
              no_proxy=localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001
              SLURM_GTIDS=0,1,2,3,4,5,6,7,8,9,10,11
              SLURM_SUBMIT_HOST=login01
              HTTP_PROXY=http://internet4nzm.rz.uni-jena.de:3128
              SLURM_JOB_PARTITION=gpu_v100
              MATHEMATICA_HOME=/cluster/apps/mathematica/11.3
              CONDA_PYTHON_EXE=/cluster/miniconda3/bin/python
              LOGNAME=ye53nis
              SLURM_STEP_NUM_TASKS=12
              QTLIB=/usr/lib64/qt-3.3/lib
              GPU_DEVICE_ORDINAL=0
              SLURM_JOB_ACCOUNT=iaob
              MLFLOW_TRACKING_URI=file:/beegfs/ye53nis/drmed-git/data/mlruns
              SLURM_JOB_NUM_NODES=1
              MODULESHOME=/usr/share/Modules
              CONDA_DEFAULT_ENV=tf
              LESSOPEN=||/usr/bin/lesspipe.sh %s
              SLURM_STEP_TASKS_PER_NODE=12
              SLURM_STEP_NODELIST=node130
              DISPLAY=:0
              XDG_RUNTIME_DIR=/run/user/67339
              INCLUDE=/cluster/nvidia/cudnn/8.1//include
              XAUTHORITY=/home/lex/.Xauthority
              BASH_FUNC_module()=() {  eval `/usr/bin/modulecmd bash $*`
              }
              _=/bin/printenv
    
              --------------------
              (tf) [ye53nis@node130 drmed-git]$ top -bcn1 -w512 | head -n 15
              top - 15:07:22 up 89 days, 23:51,  0 users,  load average: 0.00, 0.01, 0.05
              Tasks: 513 total,   2 running, 511 sleeping,   0 stopped,   0 zombie
              %Cpu(s):  0.2 us,  0.2 sy,  0.0 ni, 99.6 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
              KiB Mem : 13191629+total, 82832160 free,  1227056 used, 47857076 buff/cache
              KiB Swap: 12582908 total, 12580604 free,     2304 used. 12863139+avail Mem
    
                PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
               9574 ye53nis   20   0  172600   2616   1668 R  11.8  0.0   0:00.03 top -bcn1 -w512
                  1 root      20   0   71816   7552   2584 S   0.0  0.0  38:23.65 /usr/lib/systemd/systemd --switched-root --system --deserialize 22
                  2 root      20   0       0      0      0 S   0.0  0.0   0:05.31 [kthreadd]
                  3 root      20   0       0      0      0 S   0.0  0.0   2:30.24 [ksoftirqd/0]
                  5 root       0 -20       0      0      0 S   0.0  0.0   0:00.00 [kworker/0:0H]
                  8 root      rt   0       0      0      0 S   0.0  0.0   0:43.26 [migration/0]
                  9 root      20   0       0      0      0 S   0.0  0.0   0:00.00 [rcu_bh]
                 10 root      20   0       0      0      0 R   0.0  0.0 275:37.95 [rcu_sched]
              (tf) [ye53nis@node130 drmed-git]$
    
  3. print conda list
              conda list
    
              (tf) [ye53nis@node130 drmed-git]$ conda list
              # packages in environment at /home/ye53nis/.conda/envs/tf:
              #
              # Name                    Version                   Build  Channel
              _libgcc_mutex             0.1                        main
              _openmp_mutex             4.5                       1_gnu
              absl-py                   0.13.0                   pypi_0    pypi
              alembic                   1.4.1                    pypi_0    pypi
              anyio                     2.2.0            py39h06a4308_1
              argon2-cffi               20.1.0           py39h27cfd23_1
              asteval                   0.9.25                   pypi_0    pypi
              astunparse                1.6.3                    pypi_0    pypi
              async_generator           1.10               pyhd3eb1b0_0
              attrs                     21.2.0             pyhd3eb1b0_0
              babel                     2.9.1              pyhd3eb1b0_0
              backcall                  0.2.0              pyhd3eb1b0_0
              bleach                    3.3.1              pyhd3eb1b0_0
              brotlipy                  0.7.0           py39h27cfd23_1003
              ca-certificates           2021.7.5             h06a4308_1
              cachetools                4.2.2                    pypi_0    pypi
              certifi                   2021.5.30        py39h06a4308_0
              cffi                      1.14.6           py39h400218f_0
              chardet                   4.0.0           py39h06a4308_1003
              click                     8.0.1                    pypi_0    pypi
              cloudpickle               1.6.0                    pypi_0    pypi
              cryptography              3.4.7            py39hd23ed53_0
              cycler                    0.10.0                   pypi_0    pypi
              databricks-cli            0.14.3                   pypi_0    pypi
              decorator                 5.0.9              pyhd3eb1b0_0
              defusedxml                0.7.1              pyhd3eb1b0_0
              docker                    5.0.0                    pypi_0    pypi
              entrypoints               0.3              py39h06a4308_0
              fcsfiles                  2021.6.6                 pypi_0    pypi
              flask                     2.0.1                    pypi_0    pypi
              flatbuffers               1.12                     pypi_0    pypi
              future                    0.18.2                   pypi_0    pypi
              gast                      0.4.0                    pypi_0    pypi
              gitdb                     4.0.7                    pypi_0    pypi
              gitpython                 3.1.18                   pypi_0    pypi
              google-auth               1.34.0                   pypi_0    pypi
              google-auth-oauthlib      0.4.5                    pypi_0    pypi
              google-pasta              0.2.0                    pypi_0    pypi
              greenlet                  1.1.0                    pypi_0    pypi
              grpcio                    1.34.1                   pypi_0    pypi
              gunicorn                  20.1.0                   pypi_0    pypi
              h5py                      3.1.0                    pypi_0    pypi
              idna                      2.10               pyhd3eb1b0_0
              importlib-metadata        3.10.0           py39h06a4308_0
              importlib_metadata        3.10.0               hd3eb1b0_0
              ipykernel                 5.3.4            py39hb070fc8_0
              ipython                   7.22.0           py39hb070fc8_0
              ipython_genutils          0.2.0              pyhd3eb1b0_1
              itsdangerous              2.0.1                    pypi_0    pypi
              jedi                      0.17.2           py39h06a4308_1
              jinja2                    3.0.1              pyhd3eb1b0_0
              joblib                    1.0.1                    pypi_0    pypi
              json5                     0.9.6              pyhd3eb1b0_0
              jsonschema                3.2.0                      py_2
              jupyter-packaging         0.7.12             pyhd3eb1b0_0
              jupyter_client            6.1.12             pyhd3eb1b0_0
              jupyter_core              4.7.1            py39h06a4308_0
              jupyter_server            1.4.1            py39h06a4308_0
              jupyterlab                3.0.14             pyhd3eb1b0_1
              jupyterlab_pygments       0.1.2                      py_0
              jupyterlab_server         2.6.1              pyhd3eb1b0_0
              keras-nightly             2.5.0.dev2021032900          pypi_0    pypi
              keras-preprocessing       1.1.2                    pypi_0    pypi
              kiwisolver                1.3.1                    pypi_0    pypi
              ld_impl_linux-64          2.35.1               h7274673_9
              libffi                    3.3                  he6710b0_2
              libgcc-ng                 9.3.0               h5101ec6_17
              libgomp                   9.3.0               h5101ec6_17
              libsodium                 1.0.18               h7b6447c_0
              libstdcxx-ng              9.3.0               hd4cf53a_17
              lmfit                     1.0.2                    pypi_0    pypi
              mako                      1.1.4                    pypi_0    pypi
              markdown                  3.3.4                    pypi_0    pypi
              markupsafe                2.0.1            py39h27cfd23_0
              matplotlib                3.4.2                    pypi_0    pypi
              mistune                   0.8.4           py39h27cfd23_1000
              mlflow                    1.19.0                   pypi_0    pypi
              multipletau               0.3.3                    pypi_0    pypi
              nbclassic                 0.2.6              pyhd3eb1b0_0
              nbclient                  0.5.3              pyhd3eb1b0_0
              nbconvert                 6.1.0            py39h06a4308_0
              nbformat                  5.1.3              pyhd3eb1b0_0
              ncurses                   6.2                  he6710b0_1
              nest-asyncio              1.5.1              pyhd3eb1b0_0
              notebook                  6.4.0            py39h06a4308_0
              numpy                     1.19.5                   pypi_0    pypi
              oauthlib                  3.1.1                    pypi_0    pypi
              openssl                   1.1.1k               h27cfd23_0
              opt-einsum                3.3.0                    pypi_0    pypi
              packaging                 21.0               pyhd3eb1b0_0
              pandas                    1.3.1                    pypi_0    pypi
              pandocfilters             1.4.3            py39h06a4308_1
              parso                     0.7.0                      py_0
              pexpect                   4.8.0              pyhd3eb1b0_3
              pickleshare               0.7.5           pyhd3eb1b0_1003
              pillow                    8.3.1                    pypi_0    pypi
              pip                       21.1.3           py39h06a4308_0
              prometheus-flask-exporter 0.18.2                   pypi_0    pypi
              prometheus_client         0.11.0             pyhd3eb1b0_0
              prompt-toolkit            3.0.17             pyh06a4308_0
              protobuf                  3.17.3                   pypi_0    pypi
              ptyprocess                0.7.0              pyhd3eb1b0_2
              pyasn1                    0.4.8                    pypi_0    pypi
              pyasn1-modules            0.2.8                    pypi_0    pypi
              pycparser                 2.20                       py_2
              pygments                  2.9.0              pyhd3eb1b0_0
              pyopenssl                 20.0.1             pyhd3eb1b0_1
              pyparsing                 2.4.7              pyhd3eb1b0_0
              pyrsistent                0.18.0           py39h7f8727e_0
              pysocks                   1.7.1            py39h06a4308_0
              python                    3.9.5                h12debd9_4
              python-dateutil           2.8.2              pyhd3eb1b0_0
              python-editor             1.0.4                    pypi_0    pypi
              pytz                      2021.1             pyhd3eb1b0_0
              pyyaml                    5.4.1                    pypi_0    pypi
              pyzmq                     20.0.0           py39h2531618_1
              querystring-parser        1.2.4                    pypi_0    pypi
              readline                  8.1                  h27cfd23_0
              requests                  2.25.1             pyhd3eb1b0_0
              requests-oauthlib         1.3.0                    pypi_0    pypi
              rsa                       4.7.2                    pypi_0    pypi
              scikit-learn              0.24.2                   pypi_0    pypi
              scipy                     1.7.0                    pypi_0    pypi
              seaborn                   0.11.1                   pypi_0    pypi
              send2trash                1.5.0              pyhd3eb1b0_1
              setuptools                52.0.0           py39h06a4308_0
              six                       1.15.0                   pypi_0    pypi
              smmap                     4.0.0                    pypi_0    pypi
              sniffio                   1.2.0            py39h06a4308_1
              sqlalchemy                1.4.22                   pypi_0    pypi
              sqlite                    3.36.0               hc218d9a_0
              sqlparse                  0.4.1                    pypi_0    pypi
              tabulate                  0.8.9                    pypi_0    pypi
              tensorboard               2.5.0                    pypi_0    pypi
              tensorboard-data-server   0.6.1                    pypi_0    pypi
              tensorboard-plugin-wit    1.8.0                    pypi_0    pypi
              tensorflow                2.5.0                    pypi_0    pypi
              tensorflow-estimator      2.5.0                    pypi_0    pypi
              termcolor                 1.1.0                    pypi_0    pypi
              terminado                 0.9.4            py39h06a4308_0
              testpath                  0.5.0              pyhd3eb1b0_0
              threadpoolctl             2.2.0                    pypi_0    pypi
              tifffile                  2021.7.30                pypi_0    pypi
              tk                        8.6.10               hbc83047_0
              tornado                   6.1              py39h27cfd23_0
              traitlets                 5.0.5              pyhd3eb1b0_0
              typing-extensions         3.7.4.3                  pypi_0    pypi
              tzdata                    2021a                h52ac0ba_0
              uncertainties             3.1.6                    pypi_0    pypi
              urllib3                   1.26.6             pyhd3eb1b0_1
              wcwidth                   0.2.5                      py_0
              webencodings              0.5.1            py39h06a4308_1
              websocket-client          1.1.0                    pypi_0    pypi
              werkzeug                  2.0.1                    pypi_0    pypi
              wheel                     0.36.2             pyhd3eb1b0_0
              wrapt                     1.12.1                   pypi_0    pypi
              xz                        5.2.5                h7b6447c_0
              zeromq                    4.3.4                h2531618_0
              zipp                      3.5.0              pyhd3eb1b0_0
              zlib                      1.2.11               h7b6447c_3
              (tf) [ye53nis@node130 drmed-git]$
    
  4. Show tree of input files used. I made a design choice in simulating these files, which I now regret: I simulated 10 files for each speed of molecules (0.069, 0.08, 0.1, …), but I randomly chose the clusters. In hindsight, the cluster speed creates vastly different artifact shapes, which may have implications for the training. Thats why I manually created different splits of train and val data.
              tree ../saves/firstartifact_Nov2020_train_max3sets
              echo --------------------
              tree ../saves/firstartifact_Nov2020_val_max3sets
              echo --------------------
              tree ../saves/firstartifact_Nov2020_train_max2sets
              echo --------------------
              tree ../saves/firstartifact_Nov2020_val_max2sets_SORTEDIN
              echo --------------------
              tree ../saves/firstartifact_Nov2020_train_max1set
              echo --------------------
              tree ../saves/firstartifact_Nov2020_test
    
              ../saves/firstartifact_Nov2020_train_max3sets
              ├── 0.069
              │   ├── 0.01
              │   ├── 0.1
              │   │   ├── traces_brightclust_Nov2020_D0.069_set002.csv
              │   │   ├── traces_brightclust_Nov2020_D0.069_set003.csv
              │   │   └── traces_brightclust_Nov2020_D0.069_set006.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D0.069_set009.csv
              ├── 0.08
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.08_set007.csv
              │   ├── 0.1
              │   │   ├── traces_brightclust_Nov2020_D0.08_set002.csv
              │   │   ├── traces_brightclust_Nov2020_D0.08_set006.csv
              │   │   └── traces_brightclust_Nov2020_D0.08_set008.csv
              │   └── 1.0
              │       ├── traces_brightclust_Nov2020_D0.08_set004.csv
              │       └── traces_brightclust_Nov2020_D0.08_set009.csv
              ├── 0.1
              │   ├── 0.01
              │   │   ├── traces_brightclust_Nov2020_D0.1_set004.csv
              │   │   ├── traces_brightclust_Nov2020_D0.1_set006.csv
              │   │   └── traces_brightclust_Nov2020_D0.1_set008.csv
              │   ├── 0.1
              │   └── 1.0
              │       ├── traces_brightclust_Nov2020_D0.1_set003.csv
              │       └── traces_brightclust_Nov2020_D0.1_set007.csv
              ├── 0.2
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.2_set003.csv
              │   ├── 0.1
              │   │   ├── traces_brightclust_Nov2020_D0.2_set001.csv
              │   │   ├── traces_brightclust_Nov2020_D0.2_set004.csv
              │   │   └── traces_brightclust_Nov2020_D0.2_set006.csv
              │   └── 1.0
              │       ├── traces_brightclust_Nov2020_D0.2_set009.csv
              │       └── traces_brightclust_Nov2020_D0.2_set010.csv
              ├── 0.4
              │   ├── 0.01
              │   │   ├── traces_brightclust_Nov2020_D0.4_set004.csv
              │   │   └── traces_brightclust_Nov2020_D0.4_set010.csv
              │   ├── 0.1
              │   │   ├── traces_brightclust_Nov2020_D0.4_set002.csv
              │   │   ├── traces_brightclust_Nov2020_D0.4_set003.csv
              │   │   └── traces_brightclust_Nov2020_D0.4_set009.csv
              │   └── 1.0
              │       ├── traces_brightclust_Nov2020_D0.4_set006.csv
              │       └── traces_brightclust_Nov2020_D0.4_set007.csv
              ├── 0.6
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.6_set010.csv
              │   ├── 0.1
              │   │   ├── traces_brightclust_Nov2020_D0.6_set004.csv
              │   │   ├── traces_brightclust_Nov2020_D0.6_set005.csv
              │   │   └── traces_brightclust_Nov2020_D0.6_set006.csv
              │   └── 1.0
              │       ├── traces_brightclust_Nov2020_D0.6_set001.csv
              │       └── traces_brightclust_Nov2020_D0.6_set002.csv
              ├── 10
              │   ├── 0.01
              │   │   ├── traces_brightclust_Nov2020_D10_set003.csv
              │   │   ├── traces_brightclust_Nov2020_D10_set004.csv
              │   │   └── traces_brightclust_Nov2020_D10_set008.csv
              │   ├── 0.1
              │   │   ├── traces_brightclust_Nov2020_D10_set006.csv
              │   │   └── traces_brightclust_Nov2020_D10_set007.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D10_set010.csv
              ├── 1.0
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D1.0_set010.csv
              │   ├── 0.1
              │   │   ├── traces_brightclust_Nov2020_D1.0_set004.csv
              │   │   ├── traces_brightclust_Nov2020_D1.0_set007.csv
              │   │   └── traces_brightclust_Nov2020_D1.0_set009.csv
              │   └── 1.0
              │       ├── traces_brightclust_Nov2020_D1.0_set001.csv
              │       ├── traces_brightclust_Nov2020_D1.0_set002.csv
              │       └── traces_brightclust_Nov2020_D1.0_set008.csv
              ├── 3.0
              │   ├── 0.01
              │   │   ├── traces_brightclust_Nov2020_D3.0_set005.csv
              │   │   ├── traces_brightclust_Nov2020_D3.0_set006.csv
              │   │   └── traces_brightclust_Nov2020_D3.0_set008.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D3.0_set010.csv
              │   └── 1.0
              │       ├── traces_brightclust_Nov2020_D3.0_set001.csv
              │       ├── traces_brightclust_Nov2020_D3.0_set003.csv
              │       └── traces_brightclust_Nov2020_D3.0_set009.csv
              └── 50
                  ├── 0.01
                  │   └── traces_brightclust_Nov2020_D50_set006.csv
                  ├── 0.1
                  │   ├── traces_brightclust_Nov2020_D50_set009.csv
                  │   └── traces_brightclust_Nov2020_D50_set010.csv
                  └── 1.0
                      ├── traces_brightclust_Nov2020_D50_set004.csv
                      ├── traces_brightclust_Nov2020_D50_set005.csv
                      └── traces_brightclust_Nov2020_D50_set007.csv
    
              40 directories, 60 files
    
              --------------------
              ../saves/firstartifact_Nov2020_val_max3sets
              ├── 0.069
              │   ├── 0.01
              │   ├── 0.1
              │   │   ├── traces_brightclust_Nov2020_D0.069_set007.csv
              │   │   └── traces_brightclust_Nov2020_D0.069_set008.csv
              │   └── 1.0
              ├── 0.08
              │   ├── 0.01
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.08_set010.csv
              │   └── 1.0
              ├── 0.1
              │   ├── 0.01
              │   │   ├── traces_brightclust_Nov2020_D0.1_set009.csv
              │   │   └── traces_brightclust_Nov2020_D0.1_set010.csv
              │   ├── 0.1
              │   └── 1.0
              ├── 0.2
              │   ├── 0.01
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.2_set008.csv
              │   └── 1.0
              ├── 0.4
              │   ├── 0.01
              │   ├── 0.1
              │   └── 1.0
              ├── 0.6
              │   ├── 0.01
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.6_set007.csv
              │   └── 1.0
              ├── 10
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D10_set009.csv
              │   ├── 0.1
              │   └── 1.0
              ├── 1.0
              │   ├── 0.01
              │   ├── 0.1
              │   └── 1.0
              ├── 3.0
              │   ├── 0.01
              │   ├── 0.1
              │   └── 1.0
              └── 50
                  ├── 0.01
                  ├── 0.1
                  └── 1.0
                      └── traces_brightclust_Nov2020_D50_set008.csv
    
              40 directories, 9 files
    
              --------------------
              ../saves/firstartifact_Nov2020_train_max2sets
              ├── 0.069
              │   ├── 0.01
              │   ├── 0.1
              │   │   ├── traces_brightclust_Nov2020_D0.069_set002.csv
              │   │   └── traces_brightclust_Nov2020_D0.069_set003.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D0.069_set009.csv
              ├── 0.08
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.08_set007.csv
              │   ├── 0.1
              │   │   ├── traces_brightclust_Nov2020_D0.08_set002.csv
              │   │   └── traces_brightclust_Nov2020_D0.08_set006.csv
              │   └── 1.0
              │       ├── traces_brightclust_Nov2020_D0.08_set004.csv
              │       └── traces_brightclust_Nov2020_D0.08_set009.csv
              ├── 0.1
              │   ├── 0.01
              │   │   ├── traces_brightclust_Nov2020_D0.1_set004.csv
              │   │   └── traces_brightclust_Nov2020_D0.1_set006.csv
              │   ├── 0.1
              │   └── 1.0
              │       ├── traces_brightclust_Nov2020_D0.1_set003.csv
              │       └── traces_brightclust_Nov2020_D0.1_set007.csv
              ├── 0.2
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.2_set003.csv
              │   ├── 0.1
              │   │   ├── traces_brightclust_Nov2020_D0.2_set001.csv
              │   │   └── traces_brightclust_Nov2020_D0.2_set004.csv
              │   └── 1.0
              │       ├── traces_brightclust_Nov2020_D0.2_set009.csv
              │       └── traces_brightclust_Nov2020_D0.2_set010.csv
              ├── 0.4
              │   ├── 0.01
              │   │   ├── traces_brightclust_Nov2020_D0.4_set004.csv
              │   │   └── traces_brightclust_Nov2020_D0.4_set010.csv
              │   ├── 0.1
              │   │   ├── traces_brightclust_Nov2020_D0.4_set002.csv
              │   │   └── traces_brightclust_Nov2020_D0.4_set003.csv
              │   └── 1.0
              │       ├── traces_brightclust_Nov2020_D0.4_set006.csv
              │       └── traces_brightclust_Nov2020_D0.4_set007.csv
              ├── 0.6
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.6_set010.csv
              │   ├── 0.1
              │   │   ├── traces_brightclust_Nov2020_D0.6_set004.csv
              │   │   └── traces_brightclust_Nov2020_D0.6_set005.csv
              │   └── 1.0
              │       ├── traces_brightclust_Nov2020_D0.6_set001.csv
              │       └── traces_brightclust_Nov2020_D0.6_set002.csv
              ├── 10
              │   ├── 0.01
              │   │   ├── traces_brightclust_Nov2020_D10_set003.csv
              │   │   └── traces_brightclust_Nov2020_D10_set004.csv
              │   ├── 0.1
              │   │   ├── traces_brightclust_Nov2020_D10_set006.csv
              │   │   └── traces_brightclust_Nov2020_D10_set007.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D10_set010.csv
              ├── 1.0
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D1.0_set010.csv
              │   ├── 0.1
              │   │   ├── traces_brightclust_Nov2020_D1.0_set004.csv
              │   │   └── traces_brightclust_Nov2020_D1.0_set007.csv
              │   └── 1.0
              │       ├── traces_brightclust_Nov2020_D1.0_set001.csv
              │       └── traces_brightclust_Nov2020_D1.0_set002.csv
              ├── 3.0
              │   ├── 0.01
              │   │   ├── traces_brightclust_Nov2020_D3.0_set005.csv
              │   │   └── traces_brightclust_Nov2020_D3.0_set006.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D3.0_set010.csv
              │   └── 1.0
              │       ├── traces_brightclust_Nov2020_D3.0_set001.csv
              │       └── traces_brightclust_Nov2020_D3.0_set003.csv
              └── 50
                  ├── 0.01
                  │   └── traces_brightclust_Nov2020_D50_set006.csv
                  ├── 0.1
                  │   ├── traces_brightclust_Nov2020_D50_set009.csv
                  │   └── traces_brightclust_Nov2020_D50_set010.csv
                  └── 1.0
                      ├── traces_brightclust_Nov2020_D50_set004.csv
                      └── traces_brightclust_Nov2020_D50_set005.csv
    
              40 directories, 48 files
    
              --------------------
              ../saves/firstartifact_Nov2020_val_max2sets_SORTEDIN
              ├── 0.069
              │   ├── 0.01
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.069_set006.csv
              │   └── 1.0
              ├── 0.08
              │   ├── 0.01
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.08_set008.csv
              │   └── 1.0
              ├── 0.1
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.1_set008.csv
              │   ├── 0.1
              │   └── 1.0
              ├── 0.2
              │   ├── 0.01
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.2_set006.csv
              │   └── 1.0
              ├── 0.4
              │   ├── 0.01
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.4_set009.csv
              │   └── 1.0
              ├── 0.6
              │   ├── 0.01
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.6_set006.csv
              │   └── 1.0
              ├── 10
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D10_set008.csv
              │   ├── 0.1
              │   └── 1.0
              ├── 1.0
              │   ├── 0.01
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D1.0_set009.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D1.0_set008.csv
              ├── 3.0
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D3.0_set008.csv
              │   ├── 0.1
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D3.0_set009.csv
              └── 50
                  ├── 0.01
                  ├── 0.1
                  └── 1.0
                      └── traces_brightclust_Nov2020_D50_set007.csv
    
              40 directories, 12 files
    
              --------------------
              ../saves/firstartifact_Nov2020_train_max1set
              ├── 0.069
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.069_set002.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D0.069_set009.csv
              ├── 0.08
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.08_set007.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.08_set002.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D0.08_set004.csv
              ├── 0.1
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.1_set004.csv
              │   ├── 0.1
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D0.1_set003.csv
              ├── 0.2
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.2_set003.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.2_set001.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D0.2_set009.csv
              ├── 0.4
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.4_set004.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.4_set002.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D0.4_set006.csv
              ├── 0.6
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.6_set010.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.6_set004.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D0.6_set001.csv
              ├── 10
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D10_set003.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D10_set006.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D10_set010.csv
              ├── 1.0
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D1.0_set010.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D1.0_set004.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D1.0_set001.csv
              ├── 3.0
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D3.0_set005.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D3.0_set010.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D3.0_set001.csv
              └── 50
                  ├── 0.01
                  │   └── traces_brightclust_Nov2020_D50_set006.csv
                  ├── 0.1
                  │   └── traces_brightclust_Nov2020_D50_set009.csv
                  └── 1.0
                      └── traces_brightclust_Nov2020_D50_set004.csv
    
              39 directories, 28 files
    
              --------------------
              ../saves/firstartifact_Nov2020_test
              ├── 0.069
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.069_set005.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.069_set001.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D0.069_set010.csv
              ├── 0.08
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.08_set005.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.08_set003.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D0.08_set001.csv
              ├── 0.1
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.1_set002.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.1_set005.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D0.1_set001.csv
              ├── 0.2
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.2_set002.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.2_set007.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D0.2_set005.csv
              ├── 0.4
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.4_set008.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.4_set001.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D0.4_set005.csv
              ├── 0.6
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D0.6_set008.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D0.6_set003.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D0.6_set009.csv
              ├── 10
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D10_set002.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D10_set001.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D10_set005.csv
              ├── 1.0
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D1.0_set006.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D1.0_set003.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D1.0_set005.csv
              ├── 3.0
              │   ├── 0.01
              │   │   └── traces_brightclust_Nov2020_D3.0_set004.csv
              │   ├── 0.1
              │   │   └── traces_brightclust_Nov2020_D3.0_set007.csv
              │   └── 1.0
              │       └── traces_brightclust_Nov2020_D3.0_set002.csv
              └── 50
                  ├── 0.01
                  │   └── traces_brightclust_Nov2020_D50_set002.csv
                  ├── 0.1
                  │   └── traces_brightclust_Nov2020_D50_set003.csv
                  └── 1.0
                      └── traces_brightclust_Nov2020_D50_set001.csv
    
              40 directories, 30 files
    
    
2.4.2.2 Mlflow run 1 (failed mid run)
  • Use firstartifact_Nov2020_train_max2sets and firstartifact_Nov2020_val_max2sets_SORTEDIN to get a good equilibrium between amount of training data (max1set would maybe be not enough) and equal distribution of artifacts (max3sets might give too much weight to slow clusters with 0.1 speed, because a lot of them were simulated). Note that the #+RESULTS section was too long, that’s why not everything is printed (but logged in MLFLOW of course)
             mlflow run . -e search_hparams -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN -P num_session_groups=70
    
             0000 - val_precision0.7: 0.1635 - val_recall0.7: 0.9999 - val_tp0.9: 803718.0000 - val_fp0.9: 4111163.0000 - val_tn0.9: 180.0000 - val_fn0.9: 139.0000 - val_precision0.9: 0.1635 - val_reca
             ll0.9: 0.9998 - val_accuracy: 0.1635 - val_auc: 0.5000 - val_f1: 0.2811
             Epoch 6/20
             2400/2400 [==============================] - 63s 26ms/step - loss: 0.5782 - tp0.1: 2622910.0000 - fp0.1: 2505997.0000 - tn0.1: 14176971.0000 - fn0.1: 354922.0000 - precision0.1: 0.5114 - r
             ecall0.1: 0.8808 - tp0.3: 2342499.0000 - fp0.3: 1169993.0000 - tn0.3: 15512975.0000 - fn0.3: 635333.0000 - precision0.3: 0.6669 - recall0.3: 0.7866 - tp0.5: 2053203.0000 - fp0.5: 564864.00
             00 - tn0.5: 16118104.0000 - fn0.5: 924629.0000 - precision0.5: 0.7842 - recall0.5: 0.6895 - tp0.7: 1755923.0000 - fp0.7: 242889.0000 - tn0.7: 16440079.0000 - fn0.7: 1221909.0000 - precisio
             n0.7: 0.8785 - recall0.7: 0.5897 - tp0.9: 1327740.0000 - fp0.9: 66010.0000 - tn0.9: 16616958.0000 - fn0.9: 1650092.0000 - precision0.9: 0.9526 - recall0.9: 0.4459 - accuracy: 0.9242 - auc:
              0.9204 - f1: 0.2631 - val_loss: 13.4848 - val_tp0.1: 750399.0000 - val_fp0.1: 3679523.0000 - val_tn0.1: 431820.0000 - val_fn0.1: 53458.0000 - val_precision0.1: 0.1694 - val_recall0.1: 0.9
             335 - val_tp0.3: 743640.0000 - val_fp0.3: 3633172.0000 - val_tn0.3: 478171.0000 - val_fn0.3: 60217.0000 - val_precision0.3: 0.1699 - val_recall0.3: 0.9251 - val_tp0.5: 739322.0000 - val_fp
             0.5: 3600015.0000 - val_tn0.5: 511328.0000 - val_fn0.5: 64535.0000 - val_precision0.5: 0.1704 - val_recall0.5: 0.9197 - val_tp0.7: 734726.0000 - val_fp0.7: 3563811.0000 - val_tn0.7: 547532
             .0000 - val_fn0.7: 69131.0000 - val_precision0.7: 0.1709 - val_recall0.7: 0.9140 - val_tp0.9: 727004.0000 - val_fp0.9: 3500250.0000 - val_tn0.9: 611093.0000 - val_fn0.9: 76853.0000 - val_p
             recision0.9: 0.1720 - val_recall0.9: 0.9044 - val_accuracy: 0.2544 - val_auc: 0.5331 - val_f1: 0.2811
             Epoch 7/20
             2400/2400 [==============================] - 63s 26ms/step - loss: 0.5493 - tp0.1: 2634892.0000 - fp0.1: 2322719.0000 - tn0.1: 14360249.0000 - fn0.1: 342940.0000 - precision0.1: 0.5315 - r
             ecall0.1: 0.8848 - tp0.3: 2368274.0000 - fp0.3: 1081444.0000 - tn0.3: 15601524.0000 - fn0.3: 609558.0000 - precision0.3: 0.6865 - recall0.3: 0.7953 - tp0.5: 2112193.0000 - fp0.5: 526093.00
             00 - tn0.5: 16156875.0000 - fn0.5: 865639.0000 - precision0.5: 0.8006 - recall0.5: 0.7093 - tp0.7: 1831510.0000 - fp0.7: 239952.0000 - tn0.7: 16443016.0000 - fn0.7: 1146322.0000 - precisio
             n0.7: 0.8842 - recall0.7: 0.6150 - tp0.9: 1405225.0000 - fp0.9: 69139.0000 - tn0.9: 16613829.0000 - fn0.9: 1572607.0000 - precision0.9: 0.9531 - recall0.9: 0.4719 - accuracy: 0.9292 - auc:
              0.9254 - f1: 0.2631 - val_loss: 7.7748 - val_tp0.1: 803044.0000 - val_fp0.1: 4110345.0000 - val_tn0.1: 998.0000 - val_fn0.1: 813.0000 - val_precision0.1: 0.1634 - val_recall0.1: 0.9990 -
             val_tp0.3: 800982.0000 - val_fp0.3: 4110344.0000 - val_tn0.3: 999.0000 - val_fn0.3: 2875.0000 - val_precision0.3: 0.1631 - val_recall0.3: 0.9964 - val_tp0.5: 797547.0000 - val_fp0.5: 41103
             41.0000 - val_tn0.5: 1002.0000 - val_fn0.5: 6310.0000 - val_precision0.5: 0.1625 - val_recall0.5: 0.9922 - val_tp0.7: 790114.0000 - val_fp0.7: 4110336.0000 - val_tn0.7: 1007.0000 - val_fn0
             .7: 13743.0000 - val_precision0.7: 0.1612 - val_recall0.7: 0.9829 - val_tp0.9: 762283.0000 - val_fp0.9: 4110237.0000 - val_tn0.9: 1106.0000 - val_fn0.9: 41574.0000 - val_precision0.9: 0.15
             64 - val_recall0.9: 0.9483 - val_accuracy: 0.1625 - val_auc: 0.4107 - val_f1: 0.2811
             Epoch 8/20
             2400/2400 [==============================] - 63s 26ms/step - loss: 0.5317 - tp0.1: 2659295.0000 - fp0.1: 2333208.0000 - tn0.1: 14349760.0000 - fn0.1: 318537.0000 - precision0.1: 0.5327 - r
             ecall0.1: 0.8930 - tp0.3: 2408124.0000 - fp0.3: 1118900.0000 - tn0.3: 15564068.0000 - fn0.3: 569708.0000 - precision0.3: 0.6828 - recall0.3: 0.8087 - tp0.5: 2142570.0000 - fp0.5: 537358.00
             00 - tn0.5: 16145610.0000 - fn0.5: 835262.0000 - precision0.5: 0.7995 - recall0.5: 0.7195 - tp0.7: 1851259.0000 - fp0.7: 238215.0000 - tn0.7: 16444753.0000 - fn0.7: 1126573.0000 - precisio
             n0.7: 0.8860 - recall0.7: 0.6217 - tp0.9: 1401657.0000 - fp0.9: 63157.0000 - tn0.9: 16619811.0000 - fn0.9: 1576175.0000 - precision0.9: 0.9569 - recall0.9: 0.4707 - accuracy: 0.9302 - auc:
              0.9298 - f1: 0.2631 - val_loss: 3.0251 - val_tp0.1: 49509.0000 - val_fp0.1: 176370.0000 - val_tn0.1: 3934973.0000 - val_fn0.1: 754348.0000 - val_precision0.1: 0.2192 - val_recall0.1: 0.06
             16 - val_tp0.3: 41217.0000 - val_fp0.3: 153934.0000 - val_tn0.3: 3957409.0000 - val_fn0.3: 762640.0000 - val_precision0.3: 0.2112 - val_recall0.3: 0.0513 - val_tp0.5: 36870.0000 - val_fp0.
             5: 140528.0000 - val_tn0.5: 3970815.0000 - val_fn0.5: 766987.0000 - val_precision0.5: 0.2078 - val_recall0.5: 0.0459 - val_tp0.7: 32949.0000 - val_fp0.7: 127605.0000 - val_tn0.7: 3983738.0
             000 - val_fn0.7: 770908.0000 - val_precision0.7: 0.2052 - val_recall0.7: 0.0410 - val_tp0.9: 27690.0000 - val_fp0.9: 108151.0000 - val_tn0.9: 4003192.0000 - val_fn0.9: 776167.0000 - val_pr
             ecision0.9: 0.2038 - val_recall0.9: 0.0344 - val_accuracy: 0.8154 - val_auc: 0.5157 - val_f1: 0.2811
             Epoch 9/20
             2400/2400 [==============================] - 63s 26ms/step - loss: 0.5086 - tp0.1: 2674117.0000 - fp0.1: 2256419.0000 - tn0.1: 14426549.0000 - fn0.1: 303715.0000 - precision0.1: 0.5424 - r
             ecall0.1: 0.8980 - tp0.3: 2438091.0000 - fp0.3: 1100372.0000 - tn0.3: 15582596.0000 - fn0.3: 539741.0000 - precision0.3: 0.6890 - recall0.3: 0.8187 - tp0.5: 2186313.0000 - fp0.5: 529438.00
             00 - tn0.5: 16153530.0000 - fn0.5: 791519.0000 - precision0.5: 0.8050 - recall0.5: 0.7342 - tp0.7: 1892609.0000 - fp0.7: 231011.0000 - tn0.7: 16451957.0000 - fn0.7: 1085223.0000 - precisio
             n0.7: 0.8912 - recall0.7: 0.6356 - tp0.9: 1451523.0000 - fp0.9: 61651.0000 - tn0.9: 16621317.0000 - fn0.9: 1526309.0000 - precision0.9: 0.9593 - recall0.9: 0.4874 - accuracy: 0.9328 - auc:
              0.9337 - f1: 0.2631 - val_loss: 2.5628 - val_tp0.1: 369859.0000 - val_fp0.1: 118128.0000 - val_tn0.1: 3993215.0000 - val_fn0.1: 433998.0000 - val_precision0.1: 0.7579 - val_recall0.1: 0.4
             601 - val_tp0.3: 356259.0000 - val_fp0.3: 94845.0000 - val_tn0.3: 4016498.0000 - val_fn0.3: 447598.0000 - val_precision0.3: 0.7897 - val_recall0.3: 0.4432 - val_tp0.5: 347560.0000 - val_fp
             0.5: 82338.0000 - val_tn0.5: 4029005.0000 - val_fn0.5: 456297.0000 - val_precision0.5: 0.8085 - val_recall0.5: 0.4324 - val_tp0.7: 338552.0000 - val_fp0.7: 70840.0000 - val_tn0.7: 4040503.
             0000 - val_fn0.7: 465305.0000 - val_precision0.7: 0.8270 - val_recall0.7: 0.4212 - val_tp0.9: 317996.0000 - val_fp0.9: 52787.0000 - val_tn0.9: 4058556.0000 - val_fn0.9: 485861.0000 - val_p
             recision0.9: 0.8576 - val_recall0.9: 0.3956 - val_accuracy: 0.8904 - val_auc: 0.7315 - val_f1: 0.2812
             Epoch 10/20
             2400/2400 [==============================] - 63s 26ms/step - loss: 0.4747 - tp0.1: 2701201.0000 - fp0.1: 2158402.0000 - tn0.1: 14524566.0000 - fn0.1: 276631.0000 - precision0.1: 0.5558 - r
             ecall0.1: 0.9071 - tp0.3: 2471097.0000 - fp0.3: 1011755.0000 - tn0.3: 15671213.0000 - fn0.3: 506735.0000 - precision0.3: 0.7095 - recall0.3: 0.8298 - tp0.5: 2234639.0000 - fp0.5: 500413.00
             00 - tn0.5: 16182555.0000 - fn0.5: 743193.0000 - precision0.5: 0.8170 - recall0.5: 0.7504 - tp0.7: 1960526.0000 - fp0.7: 224293.0000 - tn0.7: 16458675.0000 - fn0.7: 1017306.0000 - precisio
             n0.7: 0.8973 - recall0.7: 0.6584 - tp0.9: 1515400.0000 - fp0.9: 58089.0000 - tn0.9: 16624879.0000 - fn0.9: 1462432.0000 - precision0.9: 0.9631 - recall0.9: 0.5089 - accuracy: 0.9367 - auc:
              0.9403 - f1: 0.2631 - val_loss: 2.7288 - val_tp0.1: 770447.0000 - val_fp0.1: 3861936.0000 - val_tn0.1: 249407.0000 - val_fn0.1: 33410.0000 - val_precision0.1: 0.1663 - val_recall0.1: 0.95
             84 - val_tp0.3: 749545.0000 - val_fp0.3: 3747496.0000 - val_tn0.3: 363847.0000 - val_fn0.3: 54312.0000 - val_precision0.3: 0.1667 - val_recall0.3: 0.9324 - val_tp0.5: 720064.0000 - val_fp0
             .5: 3582604.0000 - val_tn0.5: 528739.0000 - val_fn0.5: 83793.0000 - val_precision0.5: 0.1674 - val_recall0.5: 0.8958 - val_tp0.7: 648811.0000 - val_fp0.7: 3077696.0000 - val_tn0.7: 1033647
             .0000 - val_fn0.7: 155046.0000 - val_precision0.7: 0.1741 - val_recall0.7: 0.8071 - val_tp0.9: 426993.0000 - val_fp0.9: 1072419.0000 - val_tn0.9: 3038924.0000 - val_fn0.9: 376864.0000 - va
             l_precision0.9: 0.2848 - val_recall0.9: 0.5312 - val_accuracy: 0.2541 - val_auc: 0.6440 - val_f1: 0.2811
             Epoch 11/20
             2400/2400 [==============================] - 63s 26ms/step - loss: 0.4648 - tp0.1: 2705161.0000 - fp0.1: 2061104.0000 - tn0.1: 14621864.0000 - fn0.1: 272671.0000 - precision0.1: 0.5676 - r
             ecall0.1: 0.9084 - tp0.3: 2495871.0000 - fp0.3: 1013446.0000 - tn0.3: 15669522.0000 - fn0.3: 481961.0000 - precision0.3: 0.7112 - recall0.3: 0.8382 - tp0.5: 2264736.0000 - fp0.5: 501786.00
             00 - tn0.5: 16181182.0000 - fn0.5: 713096.0000 - precision0.5: 0.8186 - recall0.5: 0.7605 - tp0.7: 1995279.0000 - fp0.7: 225179.0000 - tn0.7: 16457789.0000 - fn0.7: 982553.0000 - precision
             0.7: 0.8986 - recall0.7: 0.6700 - tp0.9: 1553742.0000 - fp0.9: 58202.0000 - tn0.9: 16624766.0000 - fn0.9: 1424090.0000 - precision0.9: 0.9639 - recall0.9: 0.5218 - accuracy: 0.9382 - auc:
             0.9416 - f1: 0.2631 - val_loss: 2.5613 - val_tp0.1: 412390.0000 - val_fp0.1: 2079926.0000 - val_tn0.1: 2031417.0000 - val_fn0.1: 391467.0000 - val_precision0.1: 0.1655 - val_recall0.1: 0.5
             130 - val_tp0.3: 404704.0000 - val_fp0.3: 2059044.0000 - val_tn0.3: 2052299.0000 - val_fn0.3: 399153.0000 - val_precision0.3: 0.1643 - val_recall0.3: 0.5035 - val_tp0.5: 396367.0000 - val_
             fp0.5: 2012051.0000 - val_tn0.5: 2099292.0000 - val_fn0.5: 407490.0000 - val_precision0.5: 0.1646 - val_recall0.5: 0.4931 - val_tp0.7: 362322.0000 - val_fp0.7: 1698034.0000 - val_tn0.7: 24
             13309.0000 - val_fn0.7: 441535.0000 - val_precision0.7: 0.1759 - val_recall0.7: 0.4507 - val_tp0.9: 186125.0000 - val_fp0.9: 532408.0000 - val_tn0.9: 3578935.0000 - val_fn0.9: 617732.0000
             - val_precision0.9: 0.2590 - val_recall0.9: 0.2315 - val_accuracy: 0.5077 - val_auc: 0.5355 - val_f1: 0.2811
             Epoch 12/20
             2400/2400 [==============================] - 64s 26ms/step - loss: 0.4441 - tp0.1: 2719890.0000 - fp0.1: 2017765.0000 - tn0.1: 14665203.0000 - fn0.1: 257942.0000 - precision0.1: 0.5741 - r
             ecall0.1: 0.9134 - tp0.3: 2513777.0000 - fp0.3: 998230.0000 - tn0.3: 15684738.0000 - fn0.3: 464055.0000 - precision0.3: 0.7158 - recall0.3: 0.8442 - tp0.5: 2283999.0000 - fp0.5: 506817.000
             0 - tn0.5: 16176151.0000 - fn0.5: 693833.0000 - precision0.5: 0.8184 - recall0.5: 0.7670 - tp0.7: 2013621.0000 - fp0.7: 228901.0000 - tn0.7: 16454067.0000 - fn0.7: 964211.0000 - precision0
             .7: 0.8979 - recall0.7: 0.6762 - tp0.9: 1553339.0000 - fp0.9: 58704.0000 - tn0.9: 16624264.0000 - fn0.9: 1424493.0000 - precision0.9: 0.9636 - recall0.9: 0.5216 - accuracy: 0.9389 - auc: 0
             .9450 - f1: 0.2631 - val_loss: 7.1302 - val_tp0.1: 605571.0000 - val_fp0.1: 2024528.0000 - val_tn0.1: 2086815.0000 - val_fn0.1: 198286.0000 - val_precision0.1: 0.2302 - val_recall0.1: 0.75
             33 - val_tp0.3: 600395.0000 - val_fp0.3: 1954684.0000 - val_tn0.3: 2156659.0000 - val_fn0.3: 203462.0000 - val_precision0.3: 0.2350 - val_recall0.3: 0.7469 - val_tp0.5: 597139.0000 - val_f
             p0.5: 1912183.0000 - val_tn0.5: 2199160.0000 - val_fn0.5: 206718.0000 - val_precision0.5: 0.2380 - val_recall0.5: 0.7428 - val_tp0.7: 594024.0000 - val_fp0.7: 1870774.0000 - val_tn0.7: 224
             0569.0000 - val_fn0.7: 209833.0000 - val_precision0.7: 0.2410 - val_recall0.7: 0.7390 - val_tp0.9: 589086.0000 - val_fp0.9: 1806611.0000 - val_tn0.9: 2304732.0000 - val_fn0.9: 214771.0000
             - val_precision0.9: 0.2459 - val_recall0.9: 0.7328 - val_accuracy: 0.5689 - val_auc: 0.6516 - val_f1: 0.2811
             Epoch 13/20
             2400/2400 [==============================] - 63s 26ms/step - loss: 0.4185 - tp0.1: 2737060.0000 - fp0.1: 1927283.0000 - tn0.1: 14755685.0000 - fn0.1: 240772.0000 - precision0.1: 0.5868 - r
             ecall0.1: 0.9191 - tp0.3: 2543087.0000 - fp0.3: 952973.0000 - tn0.3: 15729995.0000 - fn0.3: 434745.0000 - precision0.3: 0.7274 - recall0.3: 0.8540 - tp0.5: 2330175.0000 - fp0.5: 482868.000
             0 - tn0.5: 16200100.0000 - fn0.5: 647657.0000 - precision0.5: 0.8283 - recall0.5: 0.7825 - tp0.7: 2076869.0000 - fp0.7: 221622.0000 - tn0.7: 16461346.0000 - fn0.7: 900963.0000 - precision0
             .7: 0.9036 - recall0.7: 0.6974 - tp0.9: 1634082.0000 - fp0.9: 57693.0000 - tn0.9: 16625275.0000 - fn0.9: 1343750.0000 - precision0.9: 0.9659 - recall0.9: 0.5487 - accuracy: 0.9425 - auc: 0
             .9493 - f1: 0.2631 - val_loss: 1.8139 - val_tp0.1: 239760.0000 - val_fp0.1: 4548.0000 - val_tn0.1: 4106795.0000 - val_fn0.1: 564097.0000 - val_precision0.1: 0.9814 - val_recall0.1: 0.2983
             - val_tp0.3: 233628.0000 - val_fp0.3: 3848.0000 - val_tn0.3: 4107495.0000 - val_fn0.3: 570229.0000 - val_precision0.3: 0.9838 - val_recall0.3: 0.2906 - val_tp0.5: 227509.0000 - val_fp0.5:
             3252.0000 - val_tn0.5: 4108091.0000 - val_fn0.5: 576348.0000 - val_precision0.5: 0.9859 - val_recall0.5: 0.2830 - val_tp0.7: 217711.0000 - val_fp0.7: 2455.0000 - val_tn0.7: 4108888.0000 -
             val_fn0.7: 586146.0000 - val_precision0.7: 0.9888 - val_recall0.7: 0.2708 - val_tp0.9: 195925.0000 - val_fp0.9: 1407.0000 - val_tn0.9: 4109936.0000 - val_fn0.9: 607932.0000 - val_precision
             0.9: 0.9929 - val_recall0.9: 0.2437 - val_accuracy: 0.8821 - val_auc: 0.6547 - val_f1: 0.2811
             Epoch 14/20
             2400/2400 [==============================] - 63s 26ms/step - loss: 0.4189 - tp0.1: 2744214.0000 - fp0.1: 1995913.0000 - tn0.1: 14687055.0000 - fn0.1: 233618.0000 - precision0.1: 0.5789 - r
             ecall0.1: 0.9215 - tp0.3: 2544539.0000 - fp0.3: 941608.0000 - tn0.3: 15741360.0000 - fn0.3: 433293.0000 - precision0.3: 0.7299 - recall0.3: 0.8545 - tp0.5: 2330855.0000 - fp0.5: 475880.000
             0 - tn0.5: 16207088.0000 - fn0.5: 646977.0000 - precision0.5: 0.8305 - recall0.5: 0.7827 - tp0.7: 2079586.0000 - fp0.7: 222500.0000 - tn0.7: 16460468.0000 - fn0.7: 898246.0000 - precision0
             .7: 0.9033 - recall0.7: 0.6984 - tp0.9: 1628422.0000 - fp0.9: 55899.0000 - tn0.9: 16627069.0000 - fn0.9: 1349410.0000 - precision0.9: 0.9668 - recall0.9: 0.5468 - accuracy: 0.9429 - auc: 0
             .9503 - f1: 0.2631 - val_loss: 1.6218 - val_tp0.1: 510355.0000 - val_fp0.1: 1689260.0000 - val_tn0.1: 2422083.0000 - val_fn0.1: 293502.0000 - val_precision0.1: 0.2320 - val_recall0.1: 0.63
             49 - val_tp0.3: 421290.0000 - val_fp0.3: 1170939.0000 - val_tn0.3: 2940404.0000 - val_fn0.3: 382567.0000 - val_precision0.3: 0.2646 - val_recall0.3: 0.5241 - val_tp0.5: 358225.0000 - val_f
             p0.5: 571750.0000 - val_tn0.5: 3539593.0000 - val_fn0.5: 445632.0000 - val_precision0.5: 0.3852 - val_recall0.5: 0.4456 - val_tp0.7: 323677.0000 - val_fp0.7: 214942.0000 - val_tn0.7: 38964
             01.0000 - val_fn0.7: 480180.0000 - val_precision0.7: 0.6009 - val_recall0.7: 0.4027 - val_tp0.9: 290885.0000 - val_fp0.9: 143266.0000 - val_tn0.9: 3968077.0000 - val_fn0.9: 512972.0000 - v
             al_precision0.9: 0.6700 - val_recall0.9: 0.3619 - val_accuracy: 0.7930 - val_auc: 0.6785 - val_f1: 0.2811
             Epoch 15/20
             2400/2400 [==============================] - 63s 26ms/step - loss: 0.4039 - tp0.1: 2751584.0000 - fp0.1: 1904870.0000 - tn0.1: 14778098.0000 - fn0.1: 226248.0000 - precision0.1: 0.5909 - r
             ecall0.1: 0.9240 - tp0.3: 2559610.0000 - fp0.3: 920199.0000 - tn0.3: 15762769.0000 - fn0.3: 418222.0000 - precision0.3: 0.7356 - recall0.3: 0.8596 - tp0.5: 2358628.0000 - fp0.5: 480866.000
             0 - tn0.5: 16202102.0000 - fn0.5: 619204.0000 - precision0.5: 0.8307 - recall0.5: 0.7921 - tp0.7: 2108242.0000 - fp0.7: 222942.0000 - tn0.7: 16460026.0000 - fn0.7: 869590.0000 - precision0
             .7: 0.9044 - recall0.7: 0.7080 - tp0.9: 1658131.0000 - fp0.9: 56354.0000 - tn0.9: 16626614.0000 - fn0.9: 1319701.0000 - precision0.9: 0.9671 - recall0.9: 0.5568 - accuracy: 0.9440 - auc: 0
             .9516 - f1: 0.2631 - val_loss: 1.4853 - val_tp0.1: 516528.0000 - val_fp0.1: 1043680.0000 - val_tn0.1: 3067663.0000 - val_fn0.1: 287329.0000 - val_precision0.1: 0.3311 - val_recall0.1: 0.64
             26 - val_tp0.3: 418011.0000 - val_fp0.3: 456854.0000 - val_tn0.3: 3654489.0000 - val_fn0.3: 385846.0000 - val_precision0.3: 0.4778 - val_recall0.3: 0.5200 - val_tp0.5: 350573.0000 - val_fp
             0.5: 253208.0000 - val_tn0.5: 3858135.0000 - val_fn0.5: 453284.0000 - val_precision0.5: 0.5806 - val_recall0.5: 0.4361 - val_tp0.7: 302626.0000 - val_fp0.7: 145263.0000 - val_tn0.7: 396608
             0.0000 - val_fn0.7: 501231.0000 - val_precision0.7: 0.6757 - val_recall0.7: 0.3765 - val_tp0.9: 245404.0000 - val_fp0.9: 47550.0000 - val_tn0.9: 4063793.0000 - val_fn0.9: 558453.0000 - val
             _precision0.9: 0.8377 - val_recall0.9: 0.3053 - val_accuracy: 0.8563 - val_auc: 0.7430 - val_f1: 0.2811
             Epoch 16/20
             2400/2400 [==============================] - 63s 26ms/step - loss: 0.3733 - tp0.1: 2769563.0000 - fp0.1: 1728895.0000 - tn0.1: 14954073.0000 - fn0.1: 208269.0000 - precision0.1: 0.6157 - r
             ecall0.1: 0.9301 - tp0.3: 2599312.0000 - fp0.3: 855827.0000 - tn0.3: 15827141.0000 - fn0.3: 378520.0000 - precision0.3: 0.7523 - recall0.3: 0.8729 - tp0.5: 2413813.0000 - fp0.5: 450780.000
             0 - tn0.5: 16232188.0000 - fn0.5: 564019.0000 - precision0.5: 0.8426 - recall0.5: 0.8106 - tp0.7: 2181800.0000 - fp0.7: 210158.0000 - tn0.7: 16472810.0000 - fn0.7: 796032.0000 - precision0
             .7: 0.9121 - recall0.7: 0.7327 - tp0.9: 1723463.0000 - fp0.9: 51642.0000 - tn0.9: 16631326.0000 - fn0.9: 1254369.0000 - precision0.9: 0.9709 - recall0.9: 0.5788 - accuracy: 0.9484 - auc: 0
             .9564 - f1: 0.2631 - val_loss: 9.3258 - val_tp0.1: 803646.0000 - val_fp0.1: 4110058.0000 - val_tn0.1: 1285.0000 - val_fn0.1: 211.0000 - val_precision0.1: 0.1636 - val_recall0.1: 0.9997 - v
             al_tp0.3: 803193.0000 - val_fp0.3: 4106394.0000 - val_tn0.3: 4949.0000 - val_fn0.3: 664.0000 - val_precision0.3: 0.1636 - val_recall0.3: 0.9992 - val_tp0.5: 802499.0000 - val_fp0.5: 410051
             0.0000 - val_tn0.5: 10833.0000 - val_fn0.5: 1358.0000 - val_precision0.5: 0.1637 - val_recall0.5: 0.9983 - val_tp0.7: 800907.0000 - val_fp0.7: 4088834.0000 - val_tn0.7: 22509.0000 - val_fn
             0.7: 2950.0000 - val_precision0.7: 0.1638 - val_recall0.7: 0.9963 - val_tp0.9: 794980.0000 - val_fp0.9: 4040625.0000 - val_tn0.9: 70718.0000 - val_fn0.9: 8877.0000 - val_precision0.9: 0.16
             44 - val_recall0.9: 0.9890 - val_accuracy: 0.1655 - val_auc: 0.5230 - val_f1: 0.2811
             Epoch 17/20
             2400/2400 [==============================] - 63s 26ms/step - loss: 0.3676 - tp0.1: 2769181.0000 - fp0.1: 1659194.0000 - tn0.1: 15023774.0000 - fn0.1: 208651.0000 - precision0.1: 0.6253 - r
             ecall0.1: 0.9299 - tp0.3: 2610951.0000 - fp0.3: 858713.0000 - tn0.3: 15824255.0000 - fn0.3: 366881.0000 - precision0.3: 0.7525 - recall0.3: 0.8768 - tp0.5: 2429189.0000 - fp0.5: 452947.000
             0 - tn0.5: 16230021.0000 - fn0.5: 548643.0000 - precision0.5: 0.8428 - recall0.5: 0.8158 - tp0.7: 2189579.0000 - fp0.7: 210955.0000 - tn0.7: 16472013.0000 - fn0.7: 788253.0000 - precision0
             .7: 0.9121 - recall0.7: 0.7353 - tp0.9: 1747880.0000 - fp0.9: 50128.0000 - tn0.9: 16632840.0000 - fn0.9: 1229952.0000 - precision0.9: 0.9721 - recall0.9: 0.5870 - accuracy: 0.9491 - auc: 0
             .9570 - f1: 0.2631 - val_loss: 5.5868 - val_tp0.1: 802997.0000 - val_fp0.1: 4076916.0000 - val_tn0.1: 34427.0000 - val_fn0.1: 860.0000 - val_precision0.1: 0.1646 - val_recall0.1: 0.9989 -
             val_tp0.3: 802425.0000 - val_fp0.3: 4060844.0000 - val_tn0.3: 50499.0000 - val_fn0.3: 1432.0000 - val_precision0.3: 0.1650 - val_recall0.3: 0.9982 - val_tp0.5: 801861.0000 - val_fp0.5: 404
             2504.0000 - val_tn0.5: 68839.0000 - val_fn0.5: 1996.0000 - val_precision0.5: 0.1655 - val_recall0.5: 0.9975 - val_tp0.7: 800923.0000 - val_fp0.7: 4011295.0000 - val_tn0.7: 100048.0000 - va
             l_fn0.7: 2934.0000 - val_precision0.7: 0.1664 - val_recall0.7: 0.9964 - val_tp0.9: 795379.0000 - val_fp0.9: 3913030.0000 - val_tn0.9: 198313.0000 - val_fn0.9: 8478.0000 - val_precision0.9:
              0.1689 - val_recall0.9: 0.9895 - val_accuracy: 0.1771 - val_auc: 0.5462 - val_f1: 0.2811
             Epoch 18/20
             2400/2400 [==============================] - 63s 26ms/step - loss: 0.3717 - tp0.1: 2768914.0000 - fp0.1: 1725165.0000 - tn0.1: 14957803.0000 - fn0.1: 208918.0000 - precision0.1: 0.6161 - r
             ecall0.1: 0.9298 - tp0.3: 2598193.0000 - fp0.3: 861638.0000 - tn0.3: 15821330.0000 - fn0.3: 379639.0000 - precision0.3: 0.7510 - recall0.3: 0.8725 - tp0.5: 2411640.0000 - fp0.5: 445576.000
             0 - tn0.5: 16237392.0000 - fn0.5: 566192.0000 - precision0.5: 0.8441 - recall0.5: 0.8099 - tp0.7: 2177668.0000 - fp0.7: 207154.0000 - tn0.7: 16475814.0000 - fn0.7: 800164.0000 - precision0
             .7: 0.9131 - recall0.7: 0.7313 - tp0.9: 1736637.0000 - fp0.9: 49527.0000 - tn0.9: 16633441.0000 - fn0.9: 1241195.0000 - precision0.9: 0.9723 - recall0.9: 0.5832 - accuracy: 0.9485 - auc: 0
             .9563 - f1: 0.2631 - val_loss: 1.5014 - val_tp0.1: 559528.0000 - val_fp0.1: 1842714.0000 - val_tn0.1: 2268629.0000 - val_fn0.1: 244329.0000 - val_precision0.1: 0.2329 - val_recall0.1: 0.69
             61 - val_tp0.3: 502697.0000 - val_fp0.3: 1389421.0000 - val_tn0.3: 2721922.0000 - val_fn0.3: 301160.0000 - val_precision0.3: 0.2657 - val_recall0.3: 0.6254 - val_tp0.5: 413701.0000 - val_f
             p0.5: 665286.0000 - val_tn0.5: 3446057.0000 - val_fn0.5: 390156.0000 - val_precision0.5: 0.3834 - val_recall0.5: 0.5146 - val_tp0.7: 345100.0000 - val_fp0.7: 322127.0000 - val_tn0.7: 37892
             16.0000 - val_fn0.7: 458757.0000 - val_precision0.7: 0.5172 - val_recall0.7: 0.4293 - val_tp0.9: 274540.0000 - val_fp0.9: 106793.0000 - val_tn0.9: 4004550.0000 - val_fn0.9: 529317.0000 - v
             al_precision0.9: 0.7199 - val_recall0.9: 0.3415 - val_accuracy: 0.7853 - val_auc: 0.7127 - val_f1: 0.2811
             Epoch 19/20
             2400/2400 [==============================] - 63s 26ms/step - loss: 0.3547 - tp0.1: 2782451.0000 - fp0.1: 1665578.0000 - tn0.1: 15017390.0000 - fn0.1: 195381.0000 - precision0.1: 0.6255 - r
             ecall0.1: 0.9344 - tp0.3: 2619177.0000 - fp0.3: 850031.0000 - tn0.3: 15832937.0000 - fn0.3: 358655.0000 - precision0.3: 0.7550 - recall0.3: 0.8796 - tp0.5: 2432227.0000 - fp0.5: 440386.000
             0 - tn0.5: 16242582.0000 - fn0.5: 545605.0000 - precision0.5: 0.8467 - recall0.5: 0.8168 - tp0.7: 2203211.0000 - fp0.7: 207630.0000 - tn0.7: 16475338.0000 - fn0.7: 774621.0000 - precision0
             .7: 0.9139 - recall0.7: 0.7399 - tp0.9: 1758972.0000 - fp0.9: 48353.0000 - tn0.9: 16634615.0000 - fn0.9: 1218860.0000 - precision0.9: 0.9732 - recall0.9: 0.5907 - accuracy: 0.9499 - auc: 0
             .9594 - f1: 0.2631 - val_loss: 1.6122 - val_tp0.1: 364867.0000 - val_fp0.1: 80402.0000 - val_tn0.1: 4030941.0000 - val_fn0.1: 438990.0000 - val_precision0.1: 0.8194 - val_recall0.1: 0.4539
              - val_tp0.3: 338563.0000 - val_fp0.3: 52446.0000 - val_tn0.3: 4058897.0000 - val_fn0.3: 465294.0000 - val_precision0.3: 0.8659 - val_recall0.3: 0.4212 - val_tp0.5: 303084.0000 - val_fp0.5
             : 26254.0000 - val_tn0.5: 4085089.0000 - val_fn0.5: 500773.0000 - val_precision0.5: 0.9203 - val_recall0.5: 0.3770 - val_tp0.7: 268991.0000 - val_fp0.7: 12371.0000 - val_tn0.7: 4098972.000
             0 - val_fn0.7: 534866.0000 - val_precision0.7: 0.9560 - val_recall0.7: 0.3346 - val_tp0.9: 228930.0000 - val_fp0.9: 4729.0000 - val_tn0.9: 4106614.0000 - val_fn0.9: 574927.0000 - val_preci
             sion0.9: 0.9798 - val_recall0.9: 0.2848 - val_accuracy: 0.8928 - val_auc: 0.7252 - val_f1: 0.2811
             Epoch 20/20
             2400/2400 [==============================] - 63s 26ms/step - loss: 0.3465 - tp0.1: 2789105.0000 - fp0.1: 1630391.0000 - tn0.1: 15052577.0000 - fn0.1: 188727.0000 - precision0.1: 0.6311 - r
             ecall0.1: 0.9366 - tp0.3: 2634590.0000 - fp0.3: 826424.0000 - tn0.3: 15856544.0000 - fn0.3: 343242.0000 - precision0.3: 0.7612 - recall0.3: 0.8847 - tp0.5: 2453024.0000 - fp0.5: 430471.000
             0 - tn0.5: 16252497.0000 - fn0.5: 524808.0000 - precision0.5: 0.8507 - recall0.5: 0.8238 - tp0.7: 2228295.0000 - fp0.7: 203336.0000 - tn0.7: 16479632.0000 - fn0.7: 749537.0000 - precision0
             .7: 0.9164 - recall0.7: 0.7483 - tp0.9: 1795290.0000 - fp0.9: 47888.0000 - tn0.9: 16635080.0000 - fn0.9: 1182542.0000 - precision0.9: 0.9740 - recall0.9: 0.6029 - accuracy: 0.9514 - auc: 0
             .9610 - f1: 0.2631 - val_loss: 1.6856 - val_tp0.1: 306188.0000 - val_fp0.1: 33472.0000 - val_tn0.1: 4077871.0000 - val_fn0.1: 497669.0000 - val_precision0.1: 0.9015 - val_recall0.1: 0.3809
              - val_tp0.3: 252310.0000 - val_fp0.3: 16537.0000 - val_tn0.3: 4094806.0000 - val_fn0.3: 551547.0000 - val_precision0.3: 0.9385 - val_recall0.3: 0.3139 - val_tp0.5: 216053.0000 - val_fp0.5
             : 9308.0000 - val_tn0.5: 4102035.0000 - val_fn0.5: 587804.0000 - val_precision0.5: 0.9587 - val_recall0.5: 0.2688 - val_tp0.7: 183648.0000 - val_fp0.7: 4739.0000 - val_tn0.7: 4106604.0000
             - val_fn0.7: 620209.0000 - val_precision0.7: 0.9748 - val_recall0.7: 0.2285 - val_tp0.9: 141556.0000 - val_fp0.9: 1421.0000 - val_tn0.9: 4109922.0000 - val_fn0.9: 662301.0000 - val_precisi
             on0.9: 0.9901 - val_recall0.9: 0.1761 - val_accuracy: 0.8785 - val_auc: 0.7019 - val_f1: 0.2811
             --- Running training session 55/140
             {'hp_epochs': 20, 'hp_batch_size': 10, 'hp_scaler': 'robust', 'hp_n_levels': 5, 'hp_first_filters': 16, 'hp_pool_size': 4, 'hp_input_size': 8192, 'hp_lr_start': 0.06276763366515732, 'hp_lr
             _power': 1.0}
             --- repeat #: 1
             input - shape:   (None, 8192, 1)
             output - shape:  (None, 8192, 1)
             Epoch 1/20
             480/480 [==============================] - 45s 53ms/step - loss: 0.7092 - tp0.1: 5321969.0000 - fp0.1: 6687422.0000 - tn0.1: 26697388.0000 - fn0.1: 614807.0000 - precision0.1: 0.4432 - rec
             all0.1: 0.8964 - tp0.3: 4646941.0000 - fp0.3: 2819314.0000 - tn0.3: 30565520.0000 - fn0.3: 1289835.0000 - precision0.3: 0.6224 - recall0.3: 0.7827 - tp0.5: 3895656.0000 - fp0.5: 1079912.00
             00 - tn0.5: 32304924.0000 - fn0.5: 2041120.0000 - precision0.5: 0.7830 - recall0.5: 0.6562 - tp0.7: 3225404.0000 - fp0.7: 417241.0000 - tn0.7: 32967584.0000 - fn0.7: 2711372.0000 - precisi
             on0.7: 0.8855 - recall0.7: 0.5433 - tp0.9: 2363272.0000 - fp0.9: 80854.0000 - tn0.9: 33303980.0000 - fn0.9: 3573504.0000 - precision0.9: 0.9669 - recall0.9: 0.3981 - accuracy: 0.9206 - auc
             : 0.9209 - f1: 0.2624 - val_loss: 1.7392 - val_tp0.1: 675173.0000 - val_fp0.1: 51103.0000 - val_tn0.1: 8196692.0000 - val_fn0.1: 907432.0000 - val_precision0.1: 0.9296 - val_recall0.1: 0.4
             266 - val_tp0.3: 629304.0000 - val_fp0.3: 27265.0000 - val_tn0.3: 8220530.0000 - val_fn0.3: 953301.0000 - val_precision0.3: 0.9585 - val_recall0.3: 0.3976 - val_tp0.5: 554968.0000 - val_fp
             0.5: 8081.0000 - val_tn0.5: 8239714.0000 - val_fn0.5: 1027637.0000 - val_precision0.5: 0.9856 - val_recall0.5: 0.3507 - val_tp0.7: 482396.0000 - val_fp0.7: 1352.0000 - val_tn0.7: 8246443.0
             000 - val_fn0.7: 1100209.0000 - val_precision0.7: 0.9972 - val_recall0.7: 0.3048 - val_tp0.9: 365703.0000 - val_fp0.9: 93.0000 - val_tn0.9: 8247702.0000 - val_fn0.9: 1216902.0000 - val_pre
             cision0.9: 0.9997 - val_recall0.9: 0.2311 - val_accuracy: 0.8946 - val_auc: 0.7140 - val_f1: 0.2773
             Epoch 2/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.5057 - tp0.1: 5497302.0000 - fp0.1: 6092525.0000 - tn0.1: 27292284.0000 - fn0.1: 439474.0000 - precision0.1: 0.4743 - rec
             all0.1: 0.9260 - tp0.3: 4832858.0000 - fp0.3: 2368876.0000 - tn0.3: 31015944.0000 - fn0.3: 1103918.0000 - precision0.3: 0.6711 - recall0.3: 0.8141 - tp0.5: 4194498.0000 - fp0.5: 1025948.00
             00 - tn0.5: 32358848.0000 - fn0.5: 1742278.0000 - precision0.5: 0.8035 - recall0.5: 0.7065 - tp0.7: 3542699.0000 - fp0.7: 455958.0000 - tn0.7: 32928884.0000 - fn0.7: 2394077.0000 - precisi
             on0.7: 0.8860 - recall0.7: 0.5967 - tp0.9: 2649175.0000 - fp0.9: 121325.0000 - tn0.9: 33263512.0000 - fn0.9: 3287601.0000 - precision0.9: 0.9562 - recall0.9: 0.4462 - accuracy: 0.9296 - au
             c: 0.9389 - f1: 0.2624 - val_loss: 1.7645 - val_tp0.1: 734127.0000 - val_fp0.1: 22185.0000 - val_tn0.1: 8225610.0000 - val_fn0.1: 848478.0000 - val_precision0.1: 0.9707 - val_recall0.1: 0.
             4639 - val_tp0.3: 692477.0000 - val_fp0.3: 8041.0000 - val_tn0.3: 8239754.0000 - val_fn0.3: 890128.0000 - val_precision0.3: 0.9885 - val_recall0.3: 0.4376 - val_tp0.5: 645446.0000 - val_fp
             0.5: 3920.0000 - val_tn0.5: 8243875.0000 - val_fn0.5: 937159.0000 - val_precision0.5: 0.9940 - val_recall0.5: 0.4078 - val_tp0.7: 574282.0000 - val_fp0.7: 1352.0000 - val_tn0.7: 8246443.00
             00 - val_fn0.7: 1008323.0000 - val_precision0.7: 0.9977 - val_recall0.7: 0.3629 - val_tp0.9: 453034.0000 - val_fp0.9: 218.0000 - val_tn0.9: 8247577.0000 - val_fn0.9: 1129571.0000 - val_pre
             cision0.9: 0.9995 - val_recall0.9: 0.2863 - val_accuracy: 0.9043 - val_auc: 0.7331 - val_f1: 0.2773
             Epoch 3/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.4505 - tp0.1: 5568258.0000 - fp0.1: 5463889.0000 - tn0.1: 27920928.0000 - fn0.1: 368518.0000 - precision0.1: 0.5047 - rec
             all0.1: 0.9379 - tp0.3: 4929910.0000 - fp0.3: 2020777.0000 - tn0.3: 31364036.0000 - fn0.3: 1006866.0000 - precision0.3: 0.7093 - recall0.3: 0.8304 - tp0.5: 4449095.0000 - fp0.5: 1041240.00
             00 - tn0.5: 32343572.0000 - fn0.5: 1487681.0000 - precision0.5: 0.8104 - recall0.5: 0.7494 - tp0.7: 3823844.0000 - fp0.7: 479840.0000 - tn0.7: 32904986.0000 - fn0.7: 2112932.0000 - precisi
             on0.7: 0.8885 - recall0.7: 0.6441 - tp0.9: 2882785.0000 - fp0.9: 126351.0000 - tn0.9: 33258496.0000 - fn0.9: 3053991.0000 - precision0.9: 0.9580 - recall0.9: 0.4856 - accuracy: 0.9357 - au
             c: 0.9475 - f1: 0.2624 - val_loss: 0.6952 - val_tp0.1: 1307421.0000 - val_fp0.1: 509799.0000 - val_tn0.1: 7737996.0000 - val_fn0.1: 275184.0000 - val_precision0.1: 0.7195 - val_recall0.1:
             0.8261 - val_tp0.3: 1160591.0000 - val_fp0.3: 197075.0000 - val_tn0.3: 8050720.0000 - val_fn0.3: 422014.0000 - val_precision0.3: 0.8548 - val_recall0.3: 0.7333 - val_tp0.5: 946439.0000 - v
             al_fp0.5: 19008.0000 - val_tn0.5: 8228787.0000 - val_fn0.5: 636166.0000 - val_precision0.5: 0.9803 - val_recall0.5: 0.5980 - val_tp0.7: 695971.0000 - val_fp0.7: 2696.0000 - val_tn0.7: 8245
             099.0000 - val_fn0.7: 886634.0000 - val_precision0.7: 0.9961 - val_recall0.7: 0.4398 - val_tp0.9: 409103.0000 - val_fp0.9: 135.0000 - val_tn0.9: 8247660.0000 - val_fn0.9: 1173502.0000 - va
             l_precision0.9: 0.9997 - val_recall0.9: 0.2585 - val_accuracy: 0.9334 - val_auc: 0.9043 - val_f1: 0.2773
             Epoch 4/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.4147 - tp0.1: 5582837.0000 - fp0.1: 4800957.0000 - tn0.1: 28583876.0000 - fn0.1: 353939.0000 - precision0.1: 0.5376 - rec
             all0.1: 0.9404 - tp0.3: 5025077.0000 - fp0.3: 1931724.0000 - tn0.3: 31453094.0000 - fn0.3: 911699.0000 - precision0.3: 0.7223 - recall0.3: 0.8464 - tp0.5: 4590126.0000 - fp0.5: 953938.0000
              - tn0.5: 32430896.0000 - fn0.5: 1346650.0000 - precision0.5: 0.8279 - recall0.5: 0.7732 - tp0.7: 4038584.0000 - fp0.7: 465004.0000 - tn0.7: 32919816.0000 - fn0.7: 1898192.0000 - precision
             0.7: 0.8967 - recall0.7: 0.6803 - tp0.9: 3025476.0000 - fp0.9: 119273.0000 - tn0.9: 33265544.0000 - fn0.9: 2911300.0000 - precision0.9: 0.9621 - recall0.9: 0.5096 - accuracy: 0.9415 - auc:
              0.9527 - f1: 0.2624 - val_loss: 0.5201 - val_tp0.1: 1399126.0000 - val_fp0.1: 622073.0000 - val_tn0.1: 7625722.0000 - val_fn0.1: 183479.0000 - val_precision0.1: 0.6922 - val_recall0.1: 0.
             8841 - val_tp0.3: 1113548.0000 - val_fp0.3: 36502.0000 - val_tn0.3: 8211293.0000 - val_fn0.3: 469057.0000 - val_precision0.3: 0.9683 - val_recall0.3: 0.7036 - val_tp0.5: 884202.0000 - val_
             fp0.5: 4823.0000 - val_tn0.5: 8242972.0000 - val_fn0.5: 698403.0000 - val_precision0.5: 0.9946 - val_recall0.5: 0.5587 - val_tp0.7: 569297.0000 - val_fp0.7: 628.0000 - val_tn0.7: 8247167.0
             000 - val_fn0.7: 1013308.0000 - val_precision0.7: 0.9989 - val_recall0.7: 0.3597 - val_tp0.9: 374108.0000 - val_fp0.9: 50.0000 - val_tn0.9: 8247745.0000 - val_fn0.9: 1208497.0000 - val_pre
             cision0.9: 0.9999 - val_recall0.9: 0.2364 - val_accuracy: 0.9285 - val_auc: 0.9333 - val_f1: 0.2773
             Epoch 5/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.3754 - tp0.1: 5634883.0000 - fp0.1: 4427128.0000 - tn0.1: 28957694.0000 - fn0.1: 301893.0000 - precision0.1: 0.5600 - rec
             all0.1: 0.9491 - tp0.3: 5093958.0000 - fp0.3: 1784747.0000 - tn0.3: 31600080.0000 - fn0.3: 842818.0000 - precision0.3: 0.7405 - recall0.3: 0.8580 - tp0.5: 4689585.0000 - fp0.5: 889979.0000
              - tn0.5: 32494848.0000 - fn0.5: 1247191.0000 - precision0.5: 0.8405 - recall0.5: 0.7899 - tp0.7: 4192223.0000 - fp0.7: 451284.0000 - tn0.7: 32933542.0000 - fn0.7: 1744553.0000 - precision
             0.7: 0.9028 - recall0.7: 0.7061 - tp0.9: 3191877.0000 - fp0.9: 120760.0000 - tn0.9: 33264048.0000 - fn0.9: 2744899.0000 - precision0.9: 0.9635 - recall0.9: 0.5376 - accuracy: 0.9456 - auc:
              0.9584 - f1: 0.2624 - val_loss: 0.4916 - val_tp0.1: 1492248.0000 - val_fp0.1: 1196998.0000 - val_tn0.1: 7050797.0000 - val_fn0.1: 90357.0000 - val_precision0.1: 0.5549 - val_recall0.1: 0.
             9429 - val_tp0.3: 948440.0000 - val_fp0.3: 76049.0000 - val_tn0.3: 8171746.0000 - val_fn0.3: 634165.0000 - val_precision0.3: 0.9258 - val_recall0.3: 0.5993 - val_tp0.5: 790703.0000 - val_f
             p0.5: 18060.0000 - val_tn0.5: 8229735.0000 - val_fn0.5: 791902.0000 - val_precision0.5: 0.9777 - val_recall0.5: 0.4996 - val_tp0.7: 644735.0000 - val_fp0.7: 3337.0000 - val_tn0.7: 8244458.
             0000 - val_fn0.7: 937870.0000 - val_precision0.7: 0.9949 - val_recall0.7: 0.4074 - val_tp0.9: 446636.0000 - val_fp0.9: 194.0000 - val_tn0.9: 8247601.0000 - val_fn0.9: 1135969.0000 - val_pr
             ecision0.9: 0.9996 - val_recall0.9: 0.2822 - val_accuracy: 0.9176 - val_auc: 0.9509 - val_f1: 0.2773
             Epoch 6/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.3576 - tp0.1: 5650782.0000 - fp0.1: 4214930.0000 - tn0.1: 29169904.0000 - fn0.1: 285994.0000 - precision0.1: 0.5728 - rec
             all0.1: 0.9518 - tp0.3: 5157731.0000 - fp0.3: 1802746.0000 - tn0.3: 31582076.0000 - fn0.3: 779045.0000 - precision0.3: 0.7410 - recall0.3: 0.8688 - tp0.5: 4706560.0000 - fp0.5: 815239.0000
              - tn0.5: 32569602.0000 - fn0.5: 1230216.0000 - precision0.5: 0.8524 - recall0.5: 0.7928 - tp0.7: 4257269.0000 - fp0.7: 416618.0000 - tn0.7: 32968196.0000 - fn0.7: 1679507.0000 - precision
             0.7: 0.9109 - recall0.7: 0.7171 - tp0.9: 3338555.0000 - fp0.9: 117993.0000 - tn0.9: 33266826.0000 - fn0.9: 2598221.0000 - precision0.9: 0.9659 - recall0.9: 0.5624 - accuracy: 0.9480 - auc:
              0.9615 - f1: 0.2624 - val_loss: 0.5022 - val_tp0.1: 1476921.0000 - val_fp0.1: 1294149.0000 - val_tn0.1: 6953646.0000 - val_fn0.1: 105684.0000 - val_precision0.1: 0.5330 - val_recall0.1: 0
             .9332 - val_tp0.3: 1409625.0000 - val_fp0.3: 897663.0000 - val_tn0.3: 7350132.0000 - val_fn0.3: 172980.0000 - val_precision0.3: 0.6109 - val_recall0.3: 0.8907 - val_tp0.5: 1288431.0000 - v
             al_fp0.5: 516719.0000 - val_tn0.5: 7731076.0000 - val_fn0.5: 294174.0000 - val_precision0.5: 0.7138 - val_recall0.5: 0.8141 - val_tp0.7: 1184168.0000 - val_fp0.7: 362179.0000 - val_tn0.7:
             7885616.0000 - val_fn0.7: 398437.0000 - val_precision0.7: 0.7658 - val_recall0.7: 0.7482 - val_tp0.9: 982390.0000 - val_fp0.9: 193676.0000 - val_tn0.9: 8054119.0000 - val_fn0.9: 600215.000
             0 - val_precision0.9: 0.8353 - val_recall0.9: 0.6207 - val_accuracy: 0.9175 - val_auc: 0.9394 - val_f1: 0.2773
             Epoch 7/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.3384 - tp0.1: 5645527.0000 - fp0.1: 3726823.0000 - tn0.1: 29657992.0000 - fn0.1: 291249.0000 - precision0.1: 0.6024 - rec
             all0.1: 0.9509 - tp0.3: 5236539.0000 - fp0.3: 1794315.0000 - tn0.3: 31590506.0000 - fn0.3: 700237.0000 - precision0.3: 0.7448 - recall0.3: 0.8821 - tp0.5: 4787739.0000 - fp0.5: 779171.0000
              - tn0.5: 32605672.0000 - fn0.5: 1149037.0000 - precision0.5: 0.8600 - recall0.5: 0.8065 - tp0.7: 4390618.0000 - fp0.7: 404832.0000 - tn0.7: 32980006.0000 - fn0.7: 1546158.0000 - precision
             0.7: 0.9156 - recall0.7: 0.7396 - tp0.9: 3468567.0000 - fp0.9: 102570.0000 - tn0.9: 33282264.0000 - fn0.9: 2468209.0000 - precision0.9: 0.9713 - recall0.9: 0.5843 - accuracy: 0.9510 - auc:
              0.9638 - f1: 0.2624 - val_loss: 0.3821 - val_tp0.1: 1458280.0000 - val_fp0.1: 507037.0000 - val_tn0.1: 7740758.0000 - val_fn0.1: 124325.0000 - val_precision0.1: 0.7420 - val_recall0.1: 0.
             9214 - val_tp0.3: 1138703.0000 - val_fp0.3: 109160.0000 - val_tn0.3: 8138635.0000 - val_fn0.3: 443902.0000 - val_precision0.3: 0.9125 - val_recall0.3: 0.7195 - val_tp0.5: 963399.0000 - val
             _fp0.5: 44369.0000 - val_tn0.5: 8203426.0000 - val_fn0.5: 619206.0000 - val_precision0.5: 0.9560 - val_recall0.5: 0.6087 - val_tp0.7: 768098.0000 - val_fp0.7: 13185.0000 - val_tn0.7: 82346
             10.0000 - val_fn0.7: 814507.0000 - val_precision0.7: 0.9831 - val_recall0.7: 0.4853 - val_tp0.9: 549365.0000 - val_fp0.9: 1330.0000 - val_tn0.9: 8246465.0000 - val_fn0.9: 1033240.0000 - va
             l_precision0.9: 0.9976 - val_recall0.9: 0.3471 - val_accuracy: 0.9325 - val_auc: 0.9604 - val_f1: 0.2773
             Epoch 8/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.3065 - tp0.1: 5676575.0000 - fp0.1: 3449099.0000 - tn0.1: 29935738.0000 - fn0.1: 260201.0000 - precision0.1: 0.6220 - rec
             all0.1: 0.9562 - tp0.3: 5325689.0000 - fp0.3: 1652021.0000 - tn0.3: 31732808.0000 - fn0.3: 611087.0000 - precision0.3: 0.7632 - recall0.3: 0.8971 - tp0.5: 4859260.0000 - fp0.5: 655135.0000
              - tn0.5: 32729690.0000 - fn0.5: 1077516.0000 - precision0.5: 0.8812 - recall0.5: 0.8185 - tp0.7: 4528001.0000 - fp0.7: 355303.0000 - tn0.7: 33029518.0000 - fn0.7: 1408775.0000 - precision
             0.7: 0.9272 - recall0.7: 0.7627 - tp0.9: 3797501.0000 - fp0.9: 104696.0000 - tn0.9: 33280128.0000 - fn0.9: 2139275.0000 - precision0.9: 0.9732 - recall0.9: 0.6397 - accuracy: 0.9559 - auc:
              0.9683 - f1: 0.2624 - val_loss: 0.4780 - val_tp0.1: 1324114.0000 - val_fp0.1: 275210.0000 - val_tn0.1: 7972585.0000 - val_fn0.1: 258491.0000 - val_precision0.1: 0.8279 - val_recall0.1: 0.
             8367 - val_tp0.3: 1141828.0000 - val_fp0.3: 54316.0000 - val_tn0.3: 8193479.0000 - val_fn0.3: 440777.0000 - val_precision0.3: 0.9546 - val_recall0.3: 0.7215 - val_tp0.5: 1048254.0000 - val
             _fp0.5: 27301.0000 - val_tn0.5: 8220494.0000 - val_fn0.5: 534351.0000 - val_precision0.5: 0.9746 - val_recall0.5: 0.6624 - val_tp0.7: 938136.0000 - val_fp0.7: 13368.0000 - val_tn0.7: 82344
             27.0000 - val_fn0.7: 644469.0000 - val_precision0.7: 0.9860 - val_recall0.7: 0.5928 - val_tp0.9: 734879.0000 - val_fp0.9: 3835.0000 - val_tn0.9: 8243960.0000 - val_fn0.9: 847726.0000 - val
             _precision0.9: 0.9948 - val_recall0.9: 0.4643 - val_accuracy: 0.9429 - val_auc: 0.9295 - val_f1: 0.2773
             Epoch 9/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.3010 - tp0.1: 5676976.0000 - fp0.1: 3336526.0000 - tn0.1: 30048290.0000 - fn0.1: 259800.0000 - precision0.1: 0.6298 - rec
             all0.1: 0.9562 - tp0.3: 5326144.0000 - fp0.3: 1579793.0000 - tn0.3: 31805038.0000 - fn0.3: 610632.0000 - precision0.3: 0.7712 - recall0.3: 0.8971 - tp0.5: 4898244.0000 - fp0.5: 689875.0000
              - tn0.5: 32694952.0000 - fn0.5: 1038532.0000 - precision0.5: 0.8765 - recall0.5: 0.8251 - tp0.7: 4562202.0000 - fp0.7: 365675.0000 - tn0.7: 33019140.0000 - fn0.7: 1374574.0000 - precision
             0.7: 0.9258 - recall0.7: 0.7685 - tp0.9: 3784831.0000 - fp0.9: 104828.0000 - tn0.9: 33280008.0000 - fn0.9: 2151945.0000 - precision0.9: 0.9730 - recall0.9: 0.6375 - accuracy: 0.9560 - auc:
              0.9694 - f1: 0.2624 - val_loss: 0.4138 - val_tp0.1: 1542379.0000 - val_fp0.1: 1309329.0000 - val_tn0.1: 6938466.0000 - val_fn0.1: 40226.0000 - val_precision0.1: 0.5409 - val_recall0.1: 0.
             9746 - val_tp0.3: 1522585.0000 - val_fp0.3: 940842.0000 - val_tn0.3: 7306953.0000 - val_fn0.3: 60020.0000 - val_precision0.3: 0.6181 - val_recall0.3: 0.9621 - val_tp0.5: 1471806.0000 - val
             _fp0.5: 673062.0000 - val_tn0.5: 7574733.0000 - val_fn0.5: 110799.0000 - val_precision0.5: 0.6862 - val_recall0.5: 0.9300 - val_tp0.7: 1439073.0000 - val_fp0.7: 504700.0000 - val_tn0.7: 77
             43095.0000 - val_fn0.7: 143532.0000 - val_precision0.7: 0.7404 - val_recall0.7: 0.9093 - val_tp0.9: 1349827.0000 - val_fp0.9: 275289.0000 - val_tn0.9: 7972506.0000 - val_fn0.9: 232778.0000
              - val_precision0.9: 0.8306 - val_recall0.9: 0.8529 - val_accuracy: 0.9203 - val_auc: 0.9720 - val_f1: 0.2773
             Epoch 10/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2783 - tp0.1: 5687717.0000 - fp0.1: 2979751.0000 - tn0.1: 30405060.0000 - fn0.1: 249059.0000 - precision0.1: 0.6562 - rec
             all0.1: 0.9580 - tp0.3: 5401647.0000 - fp0.3: 1520293.0000 - tn0.3: 31864510.0000 - fn0.3: 535129.0000 - precision0.3: 0.7804 - recall0.3: 0.9099 - tp0.5: 4984841.0000 - fp0.5: 648600.0000
              - tn0.5: 32736208.0000 - fn0.5: 951935.0000 - precision0.5: 0.8849 - recall0.5: 0.8397 - tp0.7: 4668237.0000 - fp0.7: 338935.0000 - tn0.7: 33045886.0000 - fn0.7: 1268539.0000 - precision0
             .7: 0.9323 - recall0.7: 0.7863 - tp0.9: 3974497.0000 - fp0.9: 95618.0000 - tn0.9: 33289212.0000 - fn0.9: 1962279.0000 - precision0.9: 0.9765 - recall0.9: 0.6695 - accuracy: 0.9593 - auc: 0
             .9717 - f1: 0.2624 - val_loss: 0.3033 - val_tp0.1: 1528072.0000 - val_fp0.1: 891324.0000 - val_tn0.1: 7356471.0000 - val_fn0.1: 54533.0000 - val_precision0.1: 0.6316 - val_recall0.1: 0.965
             5 - val_tp0.3: 1410892.0000 - val_fp0.3: 321988.0000 - val_tn0.3: 7925807.0000 - val_fn0.3: 171713.0000 - val_precision0.3: 0.8142 - val_recall0.3: 0.8915 - val_tp0.5: 1288259.0000 - val_f
             p0.5: 124605.0000 - val_tn0.5: 8123190.0000 - val_fn0.5: 294346.0000 - val_precision0.5: 0.9118 - val_recall0.5: 0.8140 - val_tp0.7: 1162405.0000 - val_fp0.7: 53667.0000 - val_tn0.7: 81941
             28.0000 - val_fn0.7: 420200.0000 - val_precision0.7: 0.9559 - val_recall0.7: 0.7345 - val_tp0.9: 912340.0000 - val_fp0.9: 11304.0000 - val_tn0.9: 8236491.0000 - val_fn0.9: 670265.0000 - va
             l_precision0.9: 0.9878 - val_recall0.9: 0.5765 - val_accuracy: 0.9574 - val_auc: 0.9736 - val_f1: 0.2773
             Epoch 11/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2692 - tp0.1: 5698307.0000 - fp0.1: 2926299.0000 - tn0.1: 30458524.0000 - fn0.1: 238469.0000 - precision0.1: 0.6607 - rec
             all0.1: 0.9598 - tp0.3: 5414811.0000 - fp0.3: 1480385.0000 - tn0.3: 31904448.0000 - fn0.3: 521965.0000 - precision0.3: 0.7853 - recall0.3: 0.9121 - tp0.5: 4973314.0000 - fp0.5: 587269.0000
              - tn0.5: 32797544.0000 - fn0.5: 963462.0000 - precision0.5: 0.8944 - recall0.5: 0.8377 - tp0.7: 4687698.0000 - fp0.7: 318968.0000 - tn0.7: 33065868.0000 - fn0.7: 1249078.0000 - precision0
             .7: 0.9363 - recall0.7: 0.7896 - tp0.9: 4069138.0000 - fp0.9: 90368.0000 - tn0.9: 33294464.0000 - fn0.9: 1867638.0000 - precision0.9: 0.9783 - recall0.9: 0.6854 - accuracy: 0.9606 - auc: 0
             .9727 - f1: 0.2624 - val_loss: 0.2832 - val_tp0.1: 1495971.0000 - val_fp0.1: 516145.0000 - val_tn0.1: 7731650.0000 - val_fn0.1: 86634.0000 - val_precision0.1: 0.7435 - val_recall0.1: 0.945
             3 - val_tp0.3: 1379197.0000 - val_fp0.3: 185244.0000 - val_tn0.3: 8062551.0000 - val_fn0.3: 203408.0000 - val_precision0.3: 0.8816 - val_recall0.3: 0.8715 - val_tp0.5: 1284245.0000 - val_f
             p0.5: 85898.0000 - val_tn0.5: 8161897.0000 - val_fn0.5: 298360.0000 - val_precision0.5: 0.9373 - val_recall0.5: 0.8115 - val_tp0.7: 1199963.0000 - val_fp0.7: 43094.0000 - val_tn0.7: 820470
             1.0000 - val_fn0.7: 382642.0000 - val_precision0.7: 0.9653 - val_recall0.7: 0.7582 - val_tp0.9: 968381.0000 - val_fp0.9: 8568.0000 - val_tn0.9: 8239227.0000 - val_fn0.9: 614224.0000 - val_
             precision0.9: 0.9912 - val_recall0.9: 0.6119 - val_accuracy: 0.9609 - val_auc: 0.9676 - val_f1: 0.2773
             Epoch 12/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2531 - tp0.1: 5703005.0000 - fp0.1: 2614169.0000 - tn0.1: 30770672.0000 - fn0.1: 233771.0000 - precision0.1: 0.6857 - rec
             all0.1: 0.9606 - tp0.3: 5460500.0000 - fp0.3: 1362191.0000 - tn0.3: 32022638.0000 - fn0.3: 476276.0000 - precision0.3: 0.8003 - recall0.3: 0.9198 - tp0.5: 5066536.0000 - fp0.5: 594270.0000
              - tn0.5: 32790576.0000 - fn0.5: 870240.0000 - precision0.5: 0.8950 - recall0.5: 0.8534 - tp0.7: 4782731.0000 - fp0.7: 324884.0000 - tn0.7: 33059918.0000 - fn0.7: 1154045.0000 - precision0
             .7: 0.9364 - recall0.7: 0.8056 - tp0.9: 4134257.0000 - fp0.9: 91592.0000 - tn0.9: 33293228.0000 - fn0.9: 1802519.0000 - precision0.9: 0.9783 - recall0.9: 0.6964 - accuracy: 0.9628 - auc: 0
             .9742 - f1: 0.2624 - val_loss: 0.2880 - val_tp0.1: 1541566.0000 - val_fp0.1: 930091.0000 - val_tn0.1: 7317704.0000 - val_fn0.1: 41039.0000 - val_precision0.1: 0.6237 - val_recall0.1: 0.974
             1 - val_tp0.3: 1476199.0000 - val_fp0.3: 465005.0000 - val_tn0.3: 7782790.0000 - val_fn0.3: 106406.0000 - val_precision0.3: 0.7605 - val_recall0.3: 0.9328 - val_tp0.5: 1399471.0000 - val_f
             p0.5: 255679.0000 - val_tn0.5: 7992116.0000 - val_fn0.5: 183134.0000 - val_precision0.5: 0.8455 - val_recall0.5: 0.8843 - val_tp0.7: 1343272.0000 - val_fp0.7: 156828.0000 - val_tn0.7: 8090
             967.0000 - val_fn0.7: 239333.0000 - val_precision0.7: 0.8955 - val_recall0.7: 0.8488 - val_tp0.9: 1199567.0000 - val_fp0.9: 59158.0000 - val_tn0.9: 8188637.0000 - val_fn0.9: 383038.0000 -
             val_precision0.9: 0.9530 - val_recall0.9: 0.7580 - val_accuracy: 0.9554 - val_auc: 0.9778 - val_f1: 0.2773
             Epoch 13/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2610 - tp0.1: 5692281.0000 - fp0.1: 2715173.0000 - tn0.1: 30669648.0000 - fn0.1: 244495.0000 - precision0.1: 0.6771 - rec
             all0.1: 0.9588 - tp0.3: 5444152.0000 - fp0.3: 1405545.0000 - tn0.3: 31979284.0000 - fn0.3: 492624.0000 - precision0.3: 0.7948 - recall0.3: 0.9170 - tp0.5: 5067232.0000 - fp0.5: 645126.0000
              - tn0.5: 32739708.0000 - fn0.5: 869544.0000 - precision0.5: 0.8871 - recall0.5: 0.8535 - tp0.7: 4741815.0000 - fp0.7: 326101.0000 - tn0.7: 33058726.0000 - fn0.7: 1194961.0000 - precision0
             .7: 0.9357 - recall0.7: 0.7987 - tp0.9: 4095017.0000 - fp0.9: 90536.0000 - tn0.9: 33294300.0000 - fn0.9: 1841759.0000 - precision0.9: 0.9784 - recall0.9: 0.6898 - accuracy: 0.9615 - auc: 0
             .9733 - f1: 0.2624 - val_loss: 0.3264 - val_tp0.1: 1552497.0000 - val_fp0.1: 1332139.0000 - val_tn0.1: 6915656.0000 - val_fn0.1: 30108.0000 - val_precision0.1: 0.5382 - val_recall0.1: 0.98
             10 - val_tp0.3: 1491410.0000 - val_fp0.3: 604265.0000 - val_tn0.3: 7643530.0000 - val_fn0.3: 91195.0000 - val_precision0.3: 0.7117 - val_recall0.3: 0.9424 - val_tp0.5: 1423905.0000 - val_f
             p0.5: 336821.0000 - val_tn0.5: 7910974.0000 - val_fn0.5: 158700.0000 - val_precision0.5: 0.8087 - val_recall0.5: 0.8997 - val_tp0.7: 1364436.0000 - val_fp0.7: 196850.0000 - val_tn0.7: 8050
             945.0000 - val_fn0.7: 218169.0000 - val_precision0.7: 0.8739 - val_recall0.7: 0.8621 - val_tp0.9: 1214453.0000 - val_fp0.9: 61872.0000 - val_tn0.9: 8185923.0000 - val_fn0.9: 368152.0000 -
             val_precision0.9: 0.9515 - val_recall0.9: 0.7674 - val_accuracy: 0.9496 - val_auc: 0.9794 - val_f1: 0.2773
             Epoch 14/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2416 - tp0.1: 5720003.0000 - fp0.1: 2566509.0000 - tn0.1: 30818316.0000 - fn0.1: 216773.0000 - precision0.1: 0.6903 - rec
             all0.1: 0.9635 - tp0.3: 5480611.0000 - fp0.3: 1304768.0000 - tn0.3: 32080068.0000 - fn0.3: 456165.0000 - precision0.3: 0.8077 - recall0.3: 0.9232 - tp0.5: 5185408.0000 - fp0.5: 690719.0000
              - tn0.5: 32694086.0000 - fn0.5: 751368.0000 - precision0.5: 0.8825 - recall0.5: 0.8734 - tp0.7: 4822441.0000 - fp0.7: 319155.0000 - tn0.7: 33065634.0000 - fn0.7: 1114335.0000 - precision0
             .7: 0.9379 - recall0.7: 0.8123 - tp0.9: 4172445.0000 - fp0.9: 86620.0000 - tn0.9: 33298202.0000 - fn0.9: 1764331.0000 - precision0.9: 0.9797 - recall0.9: 0.7028 - accuracy: 0.9633 - auc: 0
             .9762 - f1: 0.2624 - val_loss: 0.3018 - val_tp0.1: 1466734.0000 - val_fp0.1: 405231.0000 - val_tn0.1: 7842564.0000 - val_fn0.1: 115871.0000 - val_precision0.1: 0.7835 - val_recall0.1: 0.92
             68 - val_tp0.3: 1381330.0000 - val_fp0.3: 201920.0000 - val_tn0.3: 8045875.0000 - val_fn0.3: 201275.0000 - val_precision0.3: 0.8725 - val_recall0.3: 0.8728 - val_tp0.5: 1281231.0000 - val_
             fp0.5: 78305.0000 - val_tn0.5: 8169490.0000 - val_fn0.5: 301374.0000 - val_precision0.5: 0.9424 - val_recall0.5: 0.8096 - val_tp0.7: 1204999.0000 - val_fp0.7: 38474.0000 - val_tn0.7: 82093
             21.0000 - val_fn0.7: 377606.0000 - val_precision0.7: 0.9691 - val_recall0.7: 0.7614 - val_tp0.9: 1069398.0000 - val_fp0.9: 12845.0000 - val_tn0.9: 8234950.0000 - val_fn0.9: 513207.0000 - v
             al_precision0.9: 0.9881 - val_recall0.9: 0.6757 - val_accuracy: 0.9614 - val_auc: 0.9591 - val_f1: 0.2773
             Epoch 15/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2295 - tp0.1: 5722432.0000 - fp0.1: 2370696.0000 - tn0.1: 31014116.0000 - fn0.1: 214344.0000 - precision0.1: 0.7071 - rec
             all0.1: 0.9639 - tp0.3: 5503430.0000 - fp0.3: 1205741.0000 - tn0.3: 32179086.0000 - fn0.3: 433346.0000 - precision0.3: 0.8203 - recall0.3: 0.9270 - tp0.5: 5226789.0000 - fp0.5: 622292.0000
              - tn0.5: 32762524.0000 - fn0.5: 709987.0000 - precision0.5: 0.8936 - recall0.5: 0.8804 - tp0.7: 4882199.0000 - fp0.7: 299113.0000 - tn0.7: 33085700.0000 - fn0.7: 1054577.0000 - precision0
             .7: 0.9423 - recall0.7: 0.8224 - tp0.9: 4261326.0000 - fp0.9: 78340.0000 - tn0.9: 33306484.0000 - fn0.9: 1675450.0000 - precision0.9: 0.9819 - recall0.9: 0.7178 - accuracy: 0.9661 - auc: 0
             .9771 - f1: 0.2624 - val_loss: 0.2662 - val_tp0.1: 1543285.0000 - val_fp0.1: 895817.0000 - val_tn0.1: 7351978.0000 - val_fn0.1: 39320.0000 - val_precision0.1: 0.6327 - val_recall0.1: 0.975
             2 - val_tp0.3: 1493466.0000 - val_fp0.3: 427226.0000 - val_tn0.3: 7820569.0000 - val_fn0.3: 89139.0000 - val_precision0.3: 0.7776 - val_recall0.3: 0.9437 - val_tp0.5: 1429946.0000 - val_fp
             0.5: 249890.0000 - val_tn0.5: 7997905.0000 - val_fn0.5: 152659.0000 - val_precision0.5: 0.8512 - val_recall0.5: 0.9035 - val_tp0.7: 1335056.0000 - val_fp0.7: 132081.0000 - val_tn0.7: 81157
             14.0000 - val_fn0.7: 247549.0000 - val_precision0.7: 0.9100 - val_recall0.7: 0.8436 - val_tp0.9: 1178764.0000 - val_fp0.9: 50269.0000 - val_tn0.9: 8197526.0000 - val_fn0.9: 403841.0000 - v
             al_precision0.9: 0.9591 - val_recall0.9: 0.7448 - val_accuracy: 0.9591 - val_auc: 0.9796 - val_f1: 0.2773
             Epoch 16/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2200 - tp0.1: 5727744.0000 - fp0.1: 2233811.0000 - tn0.1: 31151016.0000 - fn0.1: 209032.0000 - precision0.1: 0.7194 - rec
             all0.1: 0.9648 - tp0.3: 5535079.0000 - fp0.3: 1172465.0000 - tn0.3: 32212368.0000 - fn0.3: 401697.0000 - precision0.3: 0.8252 - recall0.3: 0.9323 - tp0.5: 5279991.0000 - fp0.5: 630115.0000
              - tn0.5: 32754706.0000 - fn0.5: 656785.0000 - precision0.5: 0.8934 - recall0.5: 0.8894 - tp0.7: 4922795.0000 - fp0.7: 289713.0000 - tn0.7: 33095104.0000 - fn0.7: 1013981.0000 - precision0
             .7: 0.9444 - recall0.7: 0.8292 - tp0.9: 4339994.0000 - fp0.9: 81950.0000 - tn0.9: 33302856.0000 - fn0.9: 1596782.0000 - precision0.9: 0.9815 - recall0.9: 0.7310 - accuracy: 0.9673 - auc: 0
             .9780 - f1: 0.2624 - val_loss: 0.3052 - val_tp0.1: 1502027.0000 - val_fp0.1: 713668.0000 - val_tn0.1: 7534127.0000 - val_fn0.1: 80578.0000 - val_precision0.1: 0.6779 - val_recall0.1: 0.949
             1 - val_tp0.3: 1373186.0000 - val_fp0.3: 249430.0000 - val_tn0.3: 7998365.0000 - val_fn0.3: 209419.0000 - val_precision0.3: 0.8463 - val_recall0.3: 0.8677 - val_tp0.5: 1287724.0000 - val_f
             p0.5: 120697.0000 - val_tn0.5: 8127098.0000 - val_fn0.5: 294881.0000 - val_precision0.5: 0.9143 - val_recall0.5: 0.8137 - val_tp0.7: 1203991.0000 - val_fp0.7: 63408.0000 - val_tn0.7: 81843
             87.0000 - val_fn0.7: 378614.0000 - val_precision0.7: 0.9500 - val_recall0.7: 0.7608 - val_tp0.9: 994204.0000 - val_fp0.9: 14550.0000 - val_tn0.9: 8233245.0000 - val_fn0.9: 588401.0000 - va
             l_precision0.9: 0.9856 - val_recall0.9: 0.6282 - val_accuracy: 0.9577 - val_auc: 0.9681 - val_f1: 0.2773
             Epoch 17/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2132 - tp0.1: 5740894.0000 - fp0.1: 2232275.0000 - tn0.1: 31152552.0000 - fn0.1: 195882.0000 - precision0.1: 0.7200 - rec
             all0.1: 0.9670 - tp0.3: 5532271.0000 - fp0.3: 1168226.0000 - tn0.3: 32216606.0000 - fn0.3: 404505.0000 - precision0.3: 0.8257 - recall0.3: 0.9319 - tp0.5: 5273881.0000 - fp0.5: 609565.0000
              - tn0.5: 32775244.0000 - fn0.5: 662895.0000 - precision0.5: 0.8964 - recall0.5: 0.8883 - tp0.7: 4954897.0000 - fp0.7: 286255.0000 - tn0.7: 33098576.0000 - fn0.7: 981879.0000 - precision0.
             7: 0.9454 - recall0.7: 0.8346 - tp0.9: 4392174.0000 - fp0.9: 78566.0000 - tn0.9: 33306278.0000 - fn0.9: 1544602.0000 - precision0.9: 0.9824 - recall0.9: 0.7398 - accuracy: 0.9676 - auc: 0.
             9792 - f1: 0.2624 - val_loss: 0.2674 - val_tp0.1: 1542015.0000 - val_fp0.1: 886833.0000 - val_tn0.1: 7360962.0000 - val_fn0.1: 40590.0000 - val_precision0.1: 0.6349 - val_recall0.1: 0.9744
              - val_tp0.3: 1513414.0000 - val_fp0.3: 533995.0000 - val_tn0.3: 7713800.0000 - val_fn0.3: 69191.0000 - val_precision0.3: 0.7392 - val_recall0.3: 0.9563 - val_tp0.5: 1469868.0000 - val_fp0
             .5: 320357.0000 - val_tn0.5: 7927438.0000 - val_fn0.5: 112737.0000 - val_precision0.5: 0.8211 - val_recall0.5: 0.9288 - val_tp0.7: 1389256.0000 - val_fp0.7: 180638.0000 - val_tn0.7: 806715
             7.0000 - val_fn0.7: 193349.0000 - val_precision0.7: 0.8849 - val_recall0.7: 0.8778 - val_tp0.9: 1265894.0000 - val_fp0.9: 72673.0000 - val_tn0.9: 8175122.0000 - val_fn0.9: 316711.0000 - va
             l_precision0.9: 0.9457 - val_recall0.9: 0.7999 - val_accuracy: 0.9559 - val_auc: 0.9797 - val_f1: 0.2773
             Epoch 18/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2127 - tp0.1: 5744925.0000 - fp0.1: 2262684.0000 - tn0.1: 31122132.0000 - fn0.1: 191851.0000 - precision0.1: 0.7174 - rec
             all0.1: 0.9677 - tp0.3: 5540864.0000 - fp0.3: 1151165.0000 - tn0.3: 32233664.0000 - fn0.3: 395912.0000 - precision0.3: 0.8280 - recall0.3: 0.9333 - tp0.5: 5275650.0000 - fp0.5: 595986.0000
              - tn0.5: 32788824.0000 - fn0.5: 661126.0000 - precision0.5: 0.8985 - recall0.5: 0.8886 - tp0.7: 4961721.0000 - fp0.7: 298376.0000 - tn0.7: 33086462.0000 - fn0.7: 975055.0000 - precision0.
             7: 0.9433 - recall0.7: 0.8358 - tp0.9: 4369101.0000 - fp0.9: 83285.0000 - tn0.9: 33301528.0000 - fn0.9: 1567675.0000 - precision0.9: 0.9813 - recall0.9: 0.7359 - accuracy: 0.9680 - auc: 0.
             9797 - f1: 0.2624 - val_loss: 0.2642 - val_tp0.1: 1498157.0000 - val_fp0.1: 419273.0000 - val_tn0.1: 7828522.0000 - val_fn0.1: 84448.0000 - val_precision0.1: 0.7813 - val_recall0.1: 0.9466
              - val_tp0.3: 1376765.0000 - val_fp0.3: 147925.0000 - val_tn0.3: 8099870.0000 - val_fn0.3: 205840.0000 - val_precision0.3: 0.9030 - val_recall0.3: 0.8699 - val_tp0.5: 1282934.0000 - val_fp
             0.5: 68148.0000 - val_tn0.5: 8179647.0000 - val_fn0.5: 299671.0000 - val_precision0.5: 0.9496 - val_recall0.5: 0.8106 - val_tp0.7: 1192758.0000 - val_fp0.7: 34480.0000 - val_tn0.7: 8213315
             .0000 - val_fn0.7: 389847.0000 - val_precision0.7: 0.9719 - val_recall0.7: 0.7537 - val_tp0.9: 940508.0000 - val_fp0.9: 5969.0000 - val_tn0.9: 8241826.0000 - val_fn0.9: 642097.0000 - val_p
             recision0.9: 0.9937 - val_recall0.9: 0.5943 - val_accuracy: 0.9626 - val_auc: 0.9698 - val_f1: 0.2773
             Epoch 19/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2024 - tp0.1: 5743078.0000 - fp0.1: 2054017.0000 - tn0.1: 31330796.0000 - fn0.1: 193698.0000 - precision0.1: 0.7366 - rec
             all0.1: 0.9674 - tp0.3: 5562740.0000 - fp0.3: 1087818.0000 - tn0.3: 32297020.0000 - fn0.3: 374036.0000 - precision0.3: 0.8364 - recall0.3: 0.9370 - tp0.5: 5320915.0000 - fp0.5: 581625.0000
              - tn0.5: 32803212.0000 - fn0.5: 615861.0000 - precision0.5: 0.9015 - recall0.5: 0.8963 - tp0.7: 5014211.0000 - fp0.7: 278329.0000 - tn0.7: 33106496.0000 - fn0.7: 922565.0000 - precision0.
             7: 0.9474 - recall0.7: 0.8446 - tp0.9: 4439455.0000 - fp0.9: 69924.0000 - tn0.9: 33314888.0000 - fn0.9: 1497321.0000 - precision0.9: 0.9845 - recall0.9: 0.7478 - accuracy: 0.9695 - auc: 0.
             9800 - f1: 0.2624 - val_loss: 0.2474 - val_tp0.1: 1500397.0000 - val_fp0.1: 388201.0000 - val_tn0.1: 7859594.0000 - val_fn0.1: 82208.0000 - val_precision0.1: 0.7945 - val_recall0.1: 0.9481
              - val_tp0.3: 1417832.0000 - val_fp0.3: 177501.0000 - val_tn0.3: 8070294.0000 - val_fn0.3: 164773.0000 - val_precision0.3: 0.8887 - val_recall0.3: 0.8959 - val_tp0.5: 1324841.0000 - val_fp
             0.5: 83172.0000 - val_tn0.5: 8164623.0000 - val_fn0.5: 257764.0000 - val_precision0.5: 0.9409 - val_recall0.5: 0.8371 - val_tp0.7: 1241641.0000 - val_fp0.7: 44194.0000 - val_tn0.7: 8203601
             .0000 - val_fn0.7: 340964.0000 - val_precision0.7: 0.9656 - val_recall0.7: 0.7846 - val_tp0.9: 1008204.0000 - val_fp0.9: 8267.0000 - val_tn0.9: 8239528.0000 - val_fn0.9: 574401.0000 - val_
             precision0.9: 0.9919 - val_recall0.9: 0.6371 - val_accuracy: 0.9653 - val_auc: 0.9703 - val_f1: 0.2773
             Epoch 20/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.1967 - tp0.1: 5751226.0000 - fp0.1: 2003963.0000 - tn0.1: 31380856.0000 - fn0.1: 185550.0000 - precision0.1: 0.7416 - rec
             all0.1: 0.9687 - tp0.3: 5579827.0000 - fp0.3: 1068977.0000 - tn0.3: 32315852.0000 - fn0.3: 356949.0000 - precision0.3: 0.8392 - recall0.3: 0.9399 - tp0.5: 5349645.0000 - fp0.5: 581039.0000
              - tn0.5: 32803788.0000 - fn0.5: 587131.0000 - precision0.5: 0.9020 - recall0.5: 0.9011 - tp0.7: 5051728.0000 - fp0.7: 282220.0000 - tn0.7: 33102590.0000 - fn0.7: 885048.0000 - precision0.
             7: 0.9471 - recall0.7: 0.8509 - tp0.9: 4482265.0000 - fp0.9: 74224.0000 - tn0.9: 33310598.0000 - fn0.9: 1454511.0000 - precision0.9: 0.9837 - recall0.9: 0.7550 - accuracy: 0.9703 - auc: 0.
             9808 - f1: 0.2624 - val_loss: 0.2503 - val_tp0.1: 1534044.0000 - val_fp0.1: 725110.0000 - val_tn0.1: 7522685.0000 - val_fn0.1: 48561.0000 - val_precision0.1: 0.6790 - val_recall0.1: 0.9693
              - val_tp0.3: 1480024.0000 - val_fp0.3: 353833.0000 - val_tn0.3: 7893962.0000 - val_fn0.3: 102581.0000 - val_precision0.3: 0.8071 - val_recall0.3: 0.9352 - val_tp0.5: 1407828.0000 - val_fp
             0.5: 193567.0000 - val_tn0.5: 8054228.0000 - val_fn0.5: 174777.0000 - val_precision0.5: 0.8791 - val_recall0.5: 0.8896 - val_tp0.7: 1340054.0000 - val_fp0.7: 119720.0000 - val_tn0.7: 81280
             75.0000 - val_fn0.7: 242551.0000 - val_precision0.7: 0.9180 - val_recall0.7: 0.8467 - val_tp0.9: 1179562.0000 - val_fp0.9: 41420.0000 - val_tn0.9: 8206375.0000 - val_fn0.9: 403043.0000 - v
             al_precision0.9: 0.9661 - val_recall0.9: 0.7453 - val_accuracy: 0.9625 - val_auc: 0.9780 - val_f1: 0.2773
             --- Running training session 56/140
             {'hp_epochs': 20, 'hp_batch_size': 10, 'hp_scaler': 'robust', 'hp_n_levels': 5, 'hp_first_filters': 16, 'hp_pool_size': 4, 'hp_input_size': 8192, 'hp_lr_start': 0.06276763366515732, 'hp_lr
             _power': 1.0}
             --- repeat #: 2
             input - shape:   (None, 8192, 1)
             output - shape:  (None, 8192, 1)
             Epoch 1/20
             480/480 [==============================] - 44s 52ms/step - loss: 0.6448 - tp0.1: 5265662.0000 - fp0.1: 6246252.0000 - tn0.1: 27138564.0000 - fn0.1: 671114.0000 - precision0.1: 0.4574 - rec
             all0.1: 0.8870 - tp0.3: 4710949.0000 - fp0.3: 3395106.0000 - tn0.3: 29989722.0000 - fn0.3: 1225827.0000 - precision0.3: 0.5812 - recall0.3: 0.7935 - tp0.5: 3693283.0000 - fp0.5: 1049113.00
             00 - tn0.5: 32335700.0000 - fn0.5: 2243493.0000 - precision0.5: 0.7788 - recall0.5: 0.6221 - tp0.7: 3063860.0000 - fp0.7: 405953.0000 - tn0.7: 32978848.0000 - fn0.7: 2872916.0000 - precisi
             on0.7: 0.8830 - recall0.7: 0.5161 - tp0.9: 2353054.0000 - fp0.9: 100482.0000 - tn0.9: 33284332.0000 - fn0.9: 3583722.0000 - precision0.9: 0.9590 - recall0.9: 0.3964 - accuracy: 0.9163 - au
             c: 0.9133 - f1: 0.2624 - val_loss: 1.3199 - val_tp0.1: 1131372.0000 - val_fp0.1: 737035.0000 - val_tn0.1: 7510760.0000 - val_fn0.1: 451233.0000 - val_precision0.1: 0.6055 - val_recall0.1:
             0.7149 - val_tp0.3: 1034683.0000 - val_fp0.3: 330216.0000 - val_tn0.3: 7917579.0000 - val_fn0.3: 547922.0000 - val_precision0.3: 0.7581 - val_recall0.3: 0.6538 - val_tp0.5: 928465.0000 - v
             al_fp0.5: 121376.0000 - val_tn0.5: 8126419.0000 - val_fn0.5: 654140.0000 - val_precision0.5: 0.8844 - val_recall0.5: 0.5867 - val_tp0.7: 829955.0000 - val_fp0.7: 60010.0000 - val_tn0.7: 81
             87785.0000 - val_fn0.7: 752650.0000 - val_precision0.7: 0.9326 - val_recall0.7: 0.5244 - val_tp0.9: 673776.0000 - val_fp0.9: 11090.0000 - val_tn0.9: 8236705.0000 - val_fn0.9: 908829.0000 -
              val_precision0.9: 0.9838 - val_recall0.9: 0.4257 - val_accuracy: 0.9211 - val_auc: 0.8400 - val_f1: 0.2773
             Epoch 2/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.5271 - tp0.1: 5418063.0000 - fp0.1: 5526907.0000 - tn0.1: 27857926.0000 - fn0.1: 518713.0000 - precision0.1: 0.4950 - rec
             all0.1: 0.9126 - tp0.3: 4862070.0000 - fp0.3: 2474103.0000 - tn0.3: 30910734.0000 - fn0.3: 1074706.0000 - precision0.3: 0.6628 - recall0.3: 0.8190 - tp0.5: 4124120.0000 - fp0.5: 1036855.00
             00 - tn0.5: 32347980.0000 - fn0.5: 1812656.0000 - precision0.5: 0.7991 - recall0.5: 0.6947 - tp0.7: 3446425.0000 - fp0.7: 437082.0000 - tn0.7: 32947768.0000 - fn0.7: 2490351.0000 - precisi
             on0.7: 0.8875 - recall0.7: 0.5805 - tp0.9: 2633706.0000 - fp0.9: 118948.0000 - tn0.9: 33265864.0000 - fn0.9: 3303070.0000 - precision0.9: 0.9568 - recall0.9: 0.4436 - accuracy: 0.9275 - au
             c: 0.9331 - f1: 0.2624 - val_loss: 1.1481 - val_tp0.1: 991975.0000 - val_fp0.1: 327918.0000 - val_tn0.1: 7919877.0000 - val_fn0.1: 590630.0000 - val_precision0.1: 0.7516 - val_recall0.1: 0
             .6268 - val_tp0.3: 921560.0000 - val_fp0.3: 203493.0000 - val_tn0.3: 8044302.0000 - val_fn0.3: 661045.0000 - val_precision0.3: 0.8191 - val_recall0.3: 0.5823 - val_tp0.5: 816746.0000 - val
             _fp0.5: 96370.0000 - val_tn0.5: 8151425.0000 - val_fn0.5: 765859.0000 - val_precision0.5: 0.8945 - val_recall0.5: 0.5161 - val_tp0.7: 638180.0000 - val_fp0.7: 16690.0000 - val_tn0.7: 82311
             05.0000 - val_fn0.7: 944425.0000 - val_precision0.7: 0.9745 - val_recall0.7: 0.4032 - val_tp0.9: 454222.0000 - val_fp0.9: 1300.0000 - val_tn0.9: 8246495.0000 - val_fn0.9: 1128383.0000 - va
             l_precision0.9: 0.9971 - val_recall0.9: 0.2870 - val_accuracy: 0.9123 - val_auc: 0.8046 - val_f1: 0.2773
             Epoch 3/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.4694 - tp0.1: 5506389.0000 - fp0.1: 5279352.0000 - tn0.1: 28105468.0000 - fn0.1: 430387.0000 - precision0.1: 0.5105 - rec
             all0.1: 0.9275 - tp0.3: 4935930.0000 - fp0.3: 2185008.0000 - tn0.3: 31199836.0000 - fn0.3: 1000846.0000 - precision0.3: 0.6932 - recall0.3: 0.8314 - tp0.5: 4402685.0000 - fp0.5: 1013988.00
             00 - tn0.5: 32370838.0000 - fn0.5: 1534091.0000 - precision0.5: 0.8128 - recall0.5: 0.7416 - tp0.7: 3775055.0000 - fp0.7: 446059.0000 - tn0.7: 32938768.0000 - fn0.7: 2161721.0000 - precisi
             on0.7: 0.8943 - recall0.7: 0.6359 - tp0.9: 2837543.0000 - fp0.9: 112976.0000 - tn0.9: 33271836.0000 - fn0.9: 3099233.0000 - precision0.9: 0.9617 - recall0.9: 0.4780 - accuracy: 0.9352 - au
             c: 0.9432 - f1: 0.2624 - val_loss: 1.1726 - val_tp0.1: 958675.0000 - val_fp0.1: 396142.0000 - val_tn0.1: 7851653.0000 - val_fn0.1: 623930.0000 - val_precision0.1: 0.7076 - val_recall0.1: 0
             .6058 - val_tp0.3: 888712.0000 - val_fp0.3: 224696.0000 - val_tn0.3: 8023099.0000 - val_fn0.3: 693893.0000 - val_precision0.3: 0.7982 - val_recall0.3: 0.5616 - val_tp0.5: 821633.0000 - val
             _fp0.5: 102326.0000 - val_tn0.5: 8145469.0000 - val_fn0.5: 760972.0000 - val_precision0.5: 0.8893 - val_recall0.5: 0.5192 - val_tp0.7: 735292.0000 - val_fp0.7: 39372.0000 - val_tn0.7: 8208
             423.0000 - val_fn0.7: 847313.0000 - val_precision0.7: 0.9492 - val_recall0.7: 0.4646 - val_tp0.9: 572482.0000 - val_fp0.9: 1157.0000 - val_tn0.9: 8246638.0000 - val_fn0.9: 1010123.0000 - v
             al_precision0.9: 0.9980 - val_recall0.9: 0.3617 - val_accuracy: 0.9122 - val_auc: 0.7943 - val_f1: 0.2773
             Epoch 4/20
             480/480 [==============================] - 21s 43ms/step - loss: 0.4326 - tp0.1: 5560029.0000 - fp0.1: 4926737.0000 - tn0.1: 28458088.0000 - fn0.1: 376747.0000 - precision0.1: 0.5302 - rec
             all0.1: 0.9365 - tp0.3: 5043034.0000 - fp0.3: 2165200.0000 - tn0.3: 31219610.0000 - fn0.3: 893742.0000 - precision0.3: 0.6996 - recall0.3: 0.8495 - tp0.5: 4510820.0000 - fp0.5: 990813.0000
              - tn0.5: 32394014.0000 - fn0.5: 1425956.0000 - precision0.5: 0.8199 - recall0.5: 0.7598 - tp0.7: 3929915.0000 - fp0.7: 460992.0000 - tn0.7: 32923836.0000 - fn0.7: 2006861.0000 - precision
             0.7: 0.8950 - recall0.7: 0.6620 - tp0.9: 2983151.0000 - fp0.9: 124501.0000 - tn0.9: 33260320.0000 - fn0.9: 2953625.0000 - precision0.9: 0.9599 - recall0.9: 0.5025 - accuracy: 0.9385 - auc:
              0.9491 - f1: 0.2624 - val_loss: 0.4556 - val_tp0.1: 1447920.0000 - val_fp0.1: 910577.0000 - val_tn0.1: 7337218.0000 - val_fn0.1: 134685.0000 - val_precision0.1: 0.6139 - val_recall0.1: 0.
             9149 - val_tp0.3: 1348323.0000 - val_fp0.3: 526913.0000 - val_tn0.3: 7720882.0000 - val_fn0.3: 234282.0000 - val_precision0.3: 0.7190 - val_recall0.3: 0.8520 - val_tp0.5: 1171829.0000 - va
             l_fp0.5: 254087.0000 - val_tn0.5: 7993708.0000 - val_fn0.5: 410776.0000 - val_precision0.5: 0.8218 - val_recall0.5: 0.7404 - val_tp0.7: 1027826.0000 - val_fp0.7: 124376.0000 - val_tn0.7: 8
             123419.0000 - val_fn0.7: 554779.0000 - val_precision0.7: 0.8921 - val_recall0.7: 0.6495 - val_tp0.9: 747344.0000 - val_fp0.9: 3170.0000 - val_tn0.9: 8244625.0000 - val_fn0.9: 835261.0000 -
              val_precision0.9: 0.9958 - val_recall0.9: 0.4722 - val_accuracy: 0.9324 - val_auc: 0.9418 - val_f1: 0.2773
             Epoch 5/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.4141 - tp0.1: 5574699.0000 - fp0.1: 4604743.0000 - tn0.1: 28780080.0000 - fn0.1: 362077.0000 - precision0.1: 0.5476 - rec
             all0.1: 0.9390 - tp0.3: 5097801.0000 - fp0.3: 2138526.0000 - tn0.3: 31246316.0000 - fn0.3: 838975.0000 - precision0.3: 0.7045 - recall0.3: 0.8587 - tp0.5: 4556087.0000 - fp0.5: 942923.0000
              - tn0.5: 32441904.0000 - fn0.5: 1380689.0000 - precision0.5: 0.8285 - recall0.5: 0.7674 - tp0.7: 3978370.0000 - fp0.7: 450803.0000 - tn0.7: 32934030.0000 - fn0.7: 1958406.0000 - precision
             0.7: 0.8982 - recall0.7: 0.6701 - tp0.9: 3000212.0000 - fp0.9: 125980.0000 - tn0.9: 33258844.0000 - fn0.9: 2936564.0000 - precision0.9: 0.9597 - recall0.9: 0.5054 - accuracy: 0.9409 - auc:
              0.9524 - f1: 0.2624 - val_loss: 0.4822 - val_tp0.1: 1476924.0000 - val_fp0.1: 1123072.0000 - val_tn0.1: 7124723.0000 - val_fn0.1: 105681.0000 - val_precision0.1: 0.5680 - val_recall0.1: 0
             .9332 - val_tp0.3: 1253583.0000 - val_fp0.3: 295322.0000 - val_tn0.3: 7952473.0000 - val_fn0.3: 329022.0000 - val_precision0.3: 0.8093 - val_recall0.3: 0.7921 - val_tp0.5: 1023581.0000 - v
             al_fp0.5: 50787.0000 - val_tn0.5: 8197008.0000 - val_fn0.5: 559024.0000 - val_precision0.5: 0.9527 - val_recall0.5: 0.6468 - val_tp0.7: 804131.0000 - val_fp0.7: 19006.0000 - val_tn0.7: 822
             8789.0000 - val_fn0.7: 778474.0000 - val_precision0.7: 0.9769 - val_recall0.7: 0.5081 - val_tp0.9: 623158.0000 - val_fp0.9: 3898.0000 - val_tn0.9: 8243897.0000 - val_fn0.9: 959447.0000 - v
             al_precision0.9: 0.9938 - val_recall0.9: 0.3938 - val_accuracy: 0.9380 - val_auc: 0.9508 - val_f1: 0.2773
             Epoch 6/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.3607 - tp0.1: 5623701.0000 - fp0.1: 3956775.0000 - tn0.1: 29428044.0000 - fn0.1: 313075.0000 - precision0.1: 0.5870 - rec
             all0.1: 0.9473 - tp0.3: 5201616.0000 - fp0.3: 1881599.0000 - tn0.3: 31503236.0000 - fn0.3: 735160.0000 - precision0.3: 0.7344 - recall0.3: 0.8762 - tp0.5: 4749347.0000 - fp0.5: 857493.0000
              - tn0.5: 32527328.0000 - fn0.5: 1187429.0000 - precision0.5: 0.8471 - recall0.5: 0.8000 - tp0.7: 4289257.0000 - fp0.7: 431585.0000 - tn0.7: 32953252.0000 - fn0.7: 1647519.0000 - precision
             0.7: 0.9086 - recall0.7: 0.7225 - tp0.9: 3310664.0000 - fp0.9: 120910.0000 - tn0.9: 33263930.0000 - fn0.9: 2626112.0000 - precision0.9: 0.9648 - recall0.9: 0.5577 - accuracy: 0.9480 - auc:
              0.9600 - f1: 0.2624 - val_loss: 0.3199 - val_tp0.1: 1487331.0000 - val_fp0.1: 694274.0000 - val_tn0.1: 7553521.0000 - val_fn0.1: 95274.0000 - val_precision0.1: 0.6818 - val_recall0.1: 0.9
             398 - val_tp0.3: 1386296.0000 - val_fp0.3: 286146.0000 - val_tn0.3: 7961649.0000 - val_fn0.3: 196309.0000 - val_precision0.3: 0.8289 - val_recall0.3: 0.8760 - val_tp0.5: 1304018.0000 - val
             _fp0.5: 139220.0000 - val_tn0.5: 8108575.0000 - val_fn0.5: 278587.0000 - val_precision0.5: 0.9035 - val_recall0.5: 0.8240 - val_tp0.7: 1235725.0000 - val_fp0.7: 76207.0000 - val_tn0.7: 817
             1588.0000 - val_fn0.7: 346880.0000 - val_precision0.7: 0.9419 - val_recall0.7: 0.7808 - val_tp0.9: 1080668.0000 - val_fp0.9: 23195.0000 - val_tn0.9: 8224600.0000 - val_fn0.9: 501937.0000 -
              val_precision0.9: 0.9790 - val_recall0.9: 0.6828 - val_accuracy: 0.9575 - val_auc: 0.9627 - val_f1: 0.2773
             Epoch 7/20
             480/480 [==============================] - 21s 43ms/step - loss: 0.3314 - tp0.1: 5646234.0000 - fp0.1: 3554455.0000 - tn0.1: 29830372.0000 - fn0.1: 290542.0000 - precision0.1: 0.6137 - rec
             all0.1: 0.9511 - tp0.3: 5227655.0000 - fp0.3: 1614171.0000 - tn0.3: 31770668.0000 - fn0.3: 709121.0000 - precision0.3: 0.7641 - recall0.3: 0.8806 - tp0.5: 4830553.0000 - fp0.5: 751013.0000
              - tn0.5: 32633820.0000 - fn0.5: 1106223.0000 - precision0.5: 0.8654 - recall0.5: 0.8137 - tp0.7: 4458898.0000 - fp0.7: 401272.0000 - tn0.7: 32983556.0000 - fn0.7: 1477878.0000 - precision
             0.7: 0.9174 - recall0.7: 0.7511 - tp0.9: 3589678.0000 - fp0.9: 117919.0000 - tn0.9: 33266924.0000 - fn0.9: 2347098.0000 - precision0.9: 0.9682 - recall0.9: 0.6047 - accuracy: 0.9528 - auc:
              0.9641 - f1: 0.2624 - val_loss: 0.3516 - val_tp0.1: 1443246.0000 - val_fp0.1: 388491.0000 - val_tn0.1: 7859304.0000 - val_fn0.1: 139359.0000 - val_precision0.1: 0.7879 - val_recall0.1: 0.
             9119 - val_tp0.3: 1363949.0000 - val_fp0.3: 220386.0000 - val_tn0.3: 8027409.0000 - val_fn0.3: 218656.0000 - val_precision0.3: 0.8609 - val_recall0.3: 0.8618 - val_tp0.5: 1277387.0000 - va
             l_fp0.5: 127462.0000 - val_tn0.5: 8120333.0000 - val_fn0.5: 305218.0000 - val_precision0.5: 0.9093 - val_recall0.5: 0.8071 - val_tp0.7: 1201550.0000 - val_fp0.7: 76391.0000 - val_tn0.7: 81
             71404.0000 - val_fn0.7: 381055.0000 - val_precision0.7: 0.9402 - val_recall0.7: 0.7592 - val_tp0.9: 1034837.0000 - val_fp0.9: 29131.0000 - val_tn0.9: 8218664.0000 - val_fn0.9: 547768.0000
             - val_precision0.9: 0.9726 - val_recall0.9: 0.6539 - val_accuracy: 0.9560 - val_auc: 0.9517 - val_f1: 0.2773
             Epoch 8/20
             480/480 [==============================] - 21s 43ms/step - loss: 0.3124 - tp0.1: 5661924.0000 - fp0.1: 3284244.0000 - tn0.1: 30100560.0000 - fn0.1: 274852.0000 - precision0.1: 0.6329 - rec
             all0.1: 0.9537 - tp0.3: 5341190.0000 - fp0.3: 1750123.0000 - tn0.3: 31634684.0000 - fn0.3: 595586.0000 - precision0.3: 0.7532 - recall0.3: 0.8997 - tp0.5: 4855283.0000 - fp0.5: 738314.0000
              - tn0.5: 32646522.0000 - fn0.5: 1081493.0000 - precision0.5: 0.8680 - recall0.5: 0.8178 - tp0.7: 4484249.0000 - fp0.7: 391982.0000 - tn0.7: 32992836.0000 - fn0.7: 1452527.0000 - precision
             0.7: 0.9196 - recall0.7: 0.7553 - tp0.9: 3662123.0000 - fp0.9: 116143.0000 - tn0.9: 33268688.0000 - fn0.9: 2274653.0000 - precision0.9: 0.9693 - recall0.9: 0.6169 - accuracy: 0.9537 - auc:
              0.9668 - f1: 0.2624 - val_loss: 0.3804 - val_tp0.1: 1538470.0000 - val_fp0.1: 1344786.0000 - val_tn0.1: 6903009.0000 - val_fn0.1: 44135.0000 - val_precision0.1: 0.5336 - val_recall0.1: 0.
             9721 - val_tp0.3: 1492276.0000 - val_fp0.3: 750571.0000 - val_tn0.3: 7497224.0000 - val_fn0.3: 90329.0000 - val_precision0.3: 0.6653 - val_recall0.3: 0.9429 - val_tp0.5: 1415057.0000 - val
             _fp0.5: 403390.0000 - val_tn0.5: 7844405.0000 - val_fn0.5: 167548.0000 - val_precision0.5: 0.7782 - val_recall0.5: 0.8941 - val_tp0.7: 1355676.0000 - val_fp0.7: 251522.0000 - val_tn0.7: 79
             96273.0000 - val_fn0.7: 226929.0000 - val_precision0.7: 0.8435 - val_recall0.7: 0.8566 - val_tp0.9: 1239605.0000 - val_fp0.9: 115484.0000 - val_tn0.9: 8132311.0000 - val_fn0.9: 343000.0000
              - val_precision0.9: 0.9148 - val_recall0.9: 0.7833 - val_accuracy: 0.9419 - val_auc: 0.9731 - val_f1: 0.2773
             Epoch 9/20
             480/480 [==============================] - 21s 43ms/step - loss: 0.3173 - tp0.1: 5659382.0000 - fp0.1: 3425500.0000 - tn0.1: 29959316.0000 - fn0.1: 277394.0000 - precision0.1: 0.6229 - rec
             all0.1: 0.9533 - tp0.3: 5292646.0000 - fp0.3: 1671784.0000 - tn0.3: 31713034.0000 - fn0.3: 644130.0000 - precision0.3: 0.7600 - recall0.3: 0.8915 - tp0.5: 4877061.0000 - fp0.5: 747610.0000
              - tn0.5: 32637216.0000 - fn0.5: 1059715.0000 - precision0.5: 0.8671 - recall0.5: 0.8215 - tp0.7: 4496117.0000 - fp0.7: 402814.0000 - tn0.7: 32982008.0000 - fn0.7: 1440659.0000 - precision
             0.7: 0.9178 - recall0.7: 0.7573 - tp0.9: 3666370.0000 - fp0.9: 116952.0000 - tn0.9: 33267872.0000 - fn0.9: 2270406.0000 - precision0.9: 0.9691 - recall0.9: 0.6176 - accuracy: 0.9540 - auc:
              0.9663 - f1: 0.2624 - val_loss: 0.4111 - val_tp0.1: 1461116.0000 - val_fp0.1: 755222.0000 - val_tn0.1: 7492573.0000 - val_fn0.1: 121489.0000 - val_precision0.1: 0.6592 - val_recall0.1: 0.
             9232 - val_tp0.3: 1223139.0000 - val_fp0.3: 230361.0000 - val_tn0.3: 8017434.0000 - val_fn0.3: 359466.0000 - val_precision0.3: 0.8415 - val_recall0.3: 0.7729 - val_tp0.5: 1066667.0000 - va
             l_fp0.5: 102255.0000 - val_tn0.5: 8145540.0000 - val_fn0.5: 515938.0000 - val_precision0.5: 0.9125 - val_recall0.5: 0.6740 - val_tp0.7: 886969.0000 - val_fp0.7: 41575.0000 - val_tn0.7: 820
             6220.0000 - val_fn0.7: 695636.0000 - val_precision0.7: 0.9552 - val_recall0.7: 0.5604 - val_tp0.9: 665393.0000 - val_fp0.9: 8132.0000 - val_tn0.9: 8239663.0000 - val_fn0.9: 917212.0000 - v
             al_precision0.9: 0.9879 - val_recall0.9: 0.4204 - val_accuracy: 0.9371 - val_auc: 0.9500 - val_f1: 0.2773
             Epoch 10/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2749 - tp0.1: 5674290.0000 - fp0.1: 2738682.0000 - tn0.1: 30646168.0000 - fn0.1: 262486.0000 - precision0.1: 0.6745 - rec
             all0.1: 0.9558 - tp0.3: 5383213.0000 - fp0.3: 1364871.0000 - tn0.3: 32019970.0000 - fn0.3: 553563.0000 - precision0.3: 0.7977 - recall0.3: 0.9068 - tp0.5: 4998441.0000 - fp0.5: 611762.0000
              - tn0.5: 32773056.0000 - fn0.5: 938335.0000 - precision0.5: 0.8910 - recall0.5: 0.8419 - tp0.7: 4697294.0000 - fp0.7: 334198.0000 - tn0.7: 33050624.0000 - fn0.7: 1239482.0000 - precision0
             .7: 0.9336 - recall0.7: 0.7912 - tp0.9: 4025561.0000 - fp0.9: 94510.0000 - tn0.9: 33290300.0000 - fn0.9: 1911215.0000 - precision0.9: 0.9771 - recall0.9: 0.6781 - accuracy: 0.9606 - auc: 0
             .9710 - f1: 0.2624 - val_loss: 0.3147 - val_tp0.1: 1502641.0000 - val_fp0.1: 644566.0000 - val_tn0.1: 7603229.0000 - val_fn0.1: 79964.0000 - val_precision0.1: 0.6998 - val_recall0.1: 0.949
             5 - val_tp0.3: 1470125.0000 - val_fp0.3: 446059.0000 - val_tn0.3: 7801736.0000 - val_fn0.3: 112480.0000 - val_precision0.3: 0.7672 - val_recall0.3: 0.9289 - val_tp0.5: 1426341.0000 - val_f
             p0.5: 321683.0000 - val_tn0.5: 7926112.0000 - val_fn0.5: 156264.0000 - val_precision0.5: 0.8160 - val_recall0.5: 0.9013 - val_tp0.7: 1390033.0000 - val_fp0.7: 241453.0000 - val_tn0.7: 8006
             342.0000 - val_fn0.7: 192572.0000 - val_precision0.7: 0.8520 - val_recall0.7: 0.8783 - val_tp0.9: 1306070.0000 - val_fp0.9: 125298.0000 - val_tn0.9: 8122497.0000 - val_fn0.9: 276535.0000 -
              val_precision0.9: 0.9125 - val_recall0.9: 0.8253 - val_accuracy: 0.9514 - val_auc: 0.9668 - val_f1: 0.2773
             Epoch 11/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2571 - tp0.1: 5701636.0000 - fp0.1: 2654470.0000 - tn0.1: 30730342.0000 - fn0.1: 235140.0000 - precision0.1: 0.6823 - rec
             all0.1: 0.9604 - tp0.3: 5431401.0000 - fp0.3: 1345161.0000 - tn0.3: 32039650.0000 - fn0.3: 505375.0000 - precision0.3: 0.8015 - recall0.3: 0.9149 - tp0.5: 5052982.0000 - fp0.5: 600086.0000
              - tn0.5: 32784728.0000 - fn0.5: 883794.0000 - precision0.5: 0.8938 - recall0.5: 0.8511 - tp0.7: 4767820.0000 - fp0.7: 330196.0000 - tn0.7: 33054604.0000 - fn0.7: 1168956.0000 - precision0
             .7: 0.9352 - recall0.7: 0.8031 - tp0.9: 4129243.0000 - fp0.9: 91729.0000 - tn0.9: 33293112.0000 - fn0.9: 1807533.0000 - precision0.9: 0.9783 - recall0.9: 0.6955 - accuracy: 0.9623 - auc: 0
             .9739 - f1: 0.2624 - val_loss: 0.2934 - val_tp0.1: 1497012.0000 - val_fp0.1: 580336.0000 - val_tn0.1: 7667459.0000 - val_fn0.1: 85593.0000 - val_precision0.1: 0.7206 - val_recall0.1: 0.945
             9 - val_tp0.3: 1418177.0000 - val_fp0.3: 304844.0000 - val_tn0.3: 7942951.0000 - val_fn0.3: 164428.0000 - val_precision0.3: 0.8231 - val_recall0.3: 0.8961 - val_tp0.5: 1344607.0000 - val_f
             p0.5: 177499.0000 - val_tn0.5: 8070296.0000 - val_fn0.5: 237998.0000 - val_precision0.5: 0.8834 - val_recall0.5: 0.8496 - val_tp0.7: 1277773.0000 - val_fp0.7: 107504.0000 - val_tn0.7: 8140
             291.0000 - val_fn0.7: 304832.0000 - val_precision0.7: 0.9224 - val_recall0.7: 0.8074 - val_tp0.9: 1107705.0000 - val_fp0.9: 32564.0000 - val_tn0.9: 8215231.0000 - val_fn0.9: 474900.0000 -
             val_precision0.9: 0.9714 - val_recall0.9: 0.6999 - val_accuracy: 0.9577 - val_auc: 0.9663 - val_f1: 0.2773
             Epoch 12/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2581 - tp0.1: 5693123.0000 - fp0.1: 2595417.0000 - tn0.1: 30789420.0000 - fn0.1: 243653.0000 - precision0.1: 0.6869 - rec
             all0.1: 0.9590 - tp0.3: 5446545.0000 - fp0.3: 1373916.0000 - tn0.3: 32010920.0000 - fn0.3: 490231.0000 - precision0.3: 0.7986 - recall0.3: 0.9174 - tp0.5: 5065870.0000 - fp0.5: 607551.0000
              - tn0.5: 32777282.0000 - fn0.5: 870906.0000 - precision0.5: 0.8929 - recall0.5: 0.8533 - tp0.7: 4775092.0000 - fp0.7: 334512.0000 - tn0.7: 33050316.0000 - fn0.7: 1161684.0000 - precision0
             .7: 0.9345 - recall0.7: 0.8043 - tp0.9: 4147063.0000 - fp0.9: 95688.0000 - tn0.9: 33289134.0000 - fn0.9: 1789713.0000 - precision0.9: 0.9774 - recall0.9: 0.6985 - accuracy: 0.9624 - auc: 0
             .9732 - f1: 0.2624 - val_loss: 0.3343 - val_tp0.1: 1442029.0000 - val_fp0.1: 269201.0000 - val_tn0.1: 7978594.0000 - val_fn0.1: 140576.0000 - val_precision0.1: 0.8427 - val_recall0.1: 0.91
             12 - val_tp0.3: 1407074.0000 - val_fp0.3: 174843.0000 - val_tn0.3: 8072952.0000 - val_fn0.3: 175531.0000 - val_precision0.3: 0.8895 - val_recall0.3: 0.8891 - val_tp0.5: 1303677.0000 - val_
             fp0.5: 75577.0000 - val_tn0.5: 8172218.0000 - val_fn0.5: 278928.0000 - val_precision0.5: 0.9452 - val_recall0.5: 0.8238 - val_tp0.7: 1215800.0000 - val_fp0.7: 37337.0000 - val_tn0.7: 82104
             58.0000 - val_fn0.7: 366805.0000 - val_precision0.7: 0.9702 - val_recall0.7: 0.7682 - val_tp0.9: 998956.0000 - val_fp0.9: 6587.0000 - val_tn0.9: 8241208.0000 - val_fn0.9: 583649.0000 - val
             _precision0.9: 0.9934 - val_recall0.9: 0.6312 - val_accuracy: 0.9639 - val_auc: 0.9540 - val_f1: 0.2773
             Epoch 13/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2406 - tp0.1: 5706933.0000 - fp0.1: 2415054.0000 - tn0.1: 30969764.0000 - fn0.1: 229843.0000 - precision0.1: 0.7027 - rec
             all0.1: 0.9613 - tp0.3: 5471726.0000 - fp0.3: 1216004.0000 - tn0.3: 32168800.0000 - fn0.3: 465050.0000 - precision0.3: 0.8182 - recall0.3: 0.9217 - tp0.5: 5159436.0000 - fp0.5: 606629.0000
              - tn0.5: 32778208.0000 - fn0.5: 777340.0000 - precision0.5: 0.8948 - recall0.5: 0.8691 - tp0.7: 4865465.0000 - fp0.7: 318865.0000 - tn0.7: 33065960.0000 - fn0.7: 1071311.0000 - precision0
             .7: 0.9385 - recall0.7: 0.8195 - tp0.9: 4237026.0000 - fp0.9: 90188.0000 - tn0.9: 33294624.0000 - fn0.9: 1699750.0000 - precision0.9: 0.9792 - recall0.9: 0.7137 - accuracy: 0.9648 - auc: 0
             .9754 - f1: 0.2624 - val_loss: 0.2832 - val_tp0.1: 1508198.0000 - val_fp0.1: 679566.0000 - val_tn0.1: 7568229.0000 - val_fn0.1: 74407.0000 - val_precision0.1: 0.6894 - val_recall0.1: 0.953
             0 - val_tp0.3: 1446107.0000 - val_fp0.3: 334069.0000 - val_tn0.3: 7913726.0000 - val_fn0.3: 136498.0000 - val_precision0.3: 0.8123 - val_recall0.3: 0.9138 - val_tp0.5: 1377613.0000 - val_f
             p0.5: 188915.0000 - val_tn0.5: 8058880.0000 - val_fn0.5: 204992.0000 - val_precision0.5: 0.8794 - val_recall0.5: 0.8705 - val_tp0.7: 1285384.0000 - val_fp0.7: 100950.0000 - val_tn0.7: 8146
             845.0000 - val_fn0.7: 297221.0000 - val_precision0.7: 0.9272 - val_recall0.7: 0.8122 - val_tp0.9: 1070502.0000 - val_fp0.9: 23679.0000 - val_tn0.9: 8224116.0000 - val_fn0.9: 512103.0000 -
             val_precision0.9: 0.9784 - val_recall0.9: 0.6764 - val_accuracy: 0.9599 - val_auc: 0.9699 - val_f1: 0.2773
             Epoch 14/20
             480/480 [==============================] - 21s 43ms/step - loss: 0.2360 - tp0.1: 5707005.0000 - fp0.1: 2311718.0000 - tn0.1: 31073108.0000 - fn0.1: 229771.0000 - precision0.1: 0.7117 - rec
             all0.1: 0.9613 - tp0.3: 5487802.0000 - fp0.3: 1178541.0000 - tn0.3: 32206284.0000 - fn0.3: 448974.0000 - precision0.3: 0.8232 - recall0.3: 0.9244 - tp0.5: 5194613.0000 - fp0.5: 583262.0000
              - tn0.5: 32801574.0000 - fn0.5: 742163.0000 - precision0.5: 0.8991 - recall0.5: 0.8750 - tp0.7: 4910863.0000 - fp0.7: 316507.0000 - tn0.7: 33068318.0000 - fn0.7: 1025913.0000 - precision0
             .7: 0.9395 - recall0.7: 0.8272 - tp0.9: 4295202.0000 - fp0.9: 88374.0000 - tn0.9: 33296440.0000 - fn0.9: 1641574.0000 - precision0.9: 0.9798 - recall0.9: 0.7235 - accuracy: 0.9663 - auc: 0
             .9761 - f1: 0.2624 - val_loss: 0.2611 - val_tp0.1: 1505124.0000 - val_fp0.1: 555660.0000 - val_tn0.1: 7692135.0000 - val_fn0.1: 77481.0000 - val_precision0.1: 0.7304 - val_recall0.1: 0.951
             0 - val_tp0.3: 1441677.0000 - val_fp0.3: 299314.0000 - val_tn0.3: 7948481.0000 - val_fn0.3: 140928.0000 - val_precision0.3: 0.8281 - val_recall0.3: 0.9110 - val_tp0.5: 1368785.0000 - val_f
             p0.5: 147030.0000 - val_tn0.5: 8100765.0000 - val_fn0.5: 213820.0000 - val_precision0.5: 0.9030 - val_recall0.5: 0.8649 - val_tp0.7: 1283194.0000 - val_fp0.7: 69148.0000 - val_tn0.7: 81786
             47.0000 - val_fn0.7: 299411.0000 - val_precision0.7: 0.9489 - val_recall0.7: 0.8108 - val_tp0.9: 1099339.0000 - val_fp0.9: 14278.0000 - val_tn0.9: 8233517.0000 - val_fn0.9: 483266.0000 - v
             al_precision0.9: 0.9872 - val_recall0.9: 0.6946 - val_accuracy: 0.9633 - val_auc: 0.9706 - val_f1: 0.2773
             Epoch 15/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2284 - tp0.1: 5723340.0000 - fp0.1: 2332080.0000 - tn0.1: 31052740.0000 - fn0.1: 213436.0000 - precision0.1: 0.7105 - rec
             all0.1: 0.9640 - tp0.3: 5500588.0000 - fp0.3: 1197957.0000 - tn0.3: 32186864.0000 - fn0.3: 436188.0000 - precision0.3: 0.8212 - recall0.3: 0.9265 - tp0.5: 5193950.0000 - fp0.5: 592030.0000
              - tn0.5: 32792800.0000 - fn0.5: 742826.0000 - precision0.5: 0.8977 - recall0.5: 0.8749 - tp0.7: 4891648.0000 - fp0.7: 303851.0000 - tn0.7: 33080976.0000 - fn0.7: 1045128.0000 - precision0
             .7: 0.9415 - recall0.7: 0.8240 - tp0.9: 4289986.0000 - fp0.9: 85261.0000 - tn0.9: 33299542.0000 - fn0.9: 1646790.0000 - precision0.9: 0.9805 - recall0.9: 0.7226 - accuracy: 0.9661 - auc: 0
             .9772 - f1: 0.2624 - val_loss: 0.2553 - val_tp0.1: 1513456.0000 - val_fp0.1: 572837.0000 - val_tn0.1: 7674958.0000 - val_fn0.1: 69149.0000 - val_precision0.1: 0.7254 - val_recall0.1: 0.956
             3 - val_tp0.3: 1455197.0000 - val_fp0.3: 304127.0000 - val_tn0.3: 7943668.0000 - val_fn0.3: 127408.0000 - val_precision0.3: 0.8271 - val_recall0.3: 0.9195 - val_tp0.5: 1393774.0000 - val_f
             p0.5: 176303.0000 - val_tn0.5: 8071492.0000 - val_fn0.5: 188831.0000 - val_precision0.5: 0.8877 - val_recall0.5: 0.8807 - val_tp0.7: 1315535.0000 - val_fp0.7: 92255.0000 - val_tn0.7: 81555
             40.0000 - val_fn0.7: 267070.0000 - val_precision0.7: 0.9345 - val_recall0.7: 0.8312 - val_tp0.9: 1145098.0000 - val_fp0.9: 24287.0000 - val_tn0.9: 8223508.0000 - val_fn0.9: 437507.0000 - v
             al_precision0.9: 0.9792 - val_recall0.9: 0.7236 - val_accuracy: 0.9629 - val_auc: 0.9728 - val_f1: 0.2773
             Epoch 16/20
             480/480 [==============================] - 21s 43ms/step - loss: 0.2187 - tp0.1: 5730057.0000 - fp0.1: 2238043.0000 - tn0.1: 31146768.0000 - fn0.1: 206719.0000 - precision0.1: 0.7191 - rec
             all0.1: 0.9652 - tp0.3: 5526887.0000 - fp0.3: 1168477.0000 - tn0.3: 32216352.0000 - fn0.3: 409889.0000 - precision0.3: 0.8255 - recall0.3: 0.9310 - tp0.5: 5240624.0000 - fp0.5: 596087.0000
              - tn0.5: 32788744.0000 - fn0.5: 696152.0000 - precision0.5: 0.8979 - recall0.5: 0.8827 - tp0.7: 4938991.0000 - fp0.7: 293175.0000 - tn0.7: 33091644.0000 - fn0.7: 997785.0000 - precision0.
             7: 0.9440 - recall0.7: 0.8319 - tp0.9: 4369873.0000 - fp0.9: 82397.0000 - tn0.9: 33302432.0000 - fn0.9: 1566903.0000 - precision0.9: 0.9815 - recall0.9: 0.7361 - accuracy: 0.9671 - auc: 0.
             9784 - f1: 0.2624 - val_loss: 0.2767 - val_tp0.1: 1523233.0000 - val_fp0.1: 780683.0000 - val_tn0.1: 7467112.0000 - val_fn0.1: 59372.0000 - val_precision0.1: 0.6611 - val_recall0.1: 0.9625
              - val_tp0.3: 1444414.0000 - val_fp0.3: 310339.0000 - val_tn0.3: 7937456.0000 - val_fn0.3: 138191.0000 - val_precision0.3: 0.8231 - val_recall0.3: 0.9127 - val_tp0.5: 1372018.0000 - val_fp
             0.5: 162131.0000 - val_tn0.5: 8085664.0000 - val_fn0.5: 210587.0000 - val_precision0.5: 0.8943 - val_recall0.5: 0.8669 - val_tp0.7: 1293148.0000 - val_fp0.7: 87275.0000 - val_tn0.7: 816052
             0.0000 - val_fn0.7: 289457.0000 - val_precision0.7: 0.9368 - val_recall0.7: 0.8171 - val_tp0.9: 1123318.0000 - val_fp0.9: 21366.0000 - val_tn0.9: 8226429.0000 - val_fn0.9: 459287.0000 - va
             l_precision0.9: 0.9813 - val_recall0.9: 0.7098 - val_accuracy: 0.9621 - val_auc: 0.9750 - val_f1: 0.2773
             Epoch 17/20
             480/480 [==============================] - 21s 43ms/step - loss: 0.2057 - tp0.1: 5743364.0000 - fp0.1: 2092169.0000 - tn0.1: 31292644.0000 - fn0.1: 193412.0000 - precision0.1: 0.7330 - rec
             all0.1: 0.9674 - tp0.3: 5554900.0000 - fp0.3: 1112642.0000 - tn0.3: 32272176.0000 - fn0.3: 381876.0000 - precision0.3: 0.8331 - recall0.3: 0.9357 - tp0.5: 5313778.0000 - fp0.5: 596612.0000
              - tn0.5: 32788216.0000 - fn0.5: 622998.0000 - precision0.5: 0.8991 - recall0.5: 0.8951 - tp0.7: 4988960.0000 - fp0.7: 279744.0000 - tn0.7: 33105068.0000 - fn0.7: 947816.0000 - precision0.
             7: 0.9469 - recall0.7: 0.8403 - tp0.9: 4440493.0000 - fp0.9: 78516.0000 - tn0.9: 33306316.0000 - fn0.9: 1496283.0000 - precision0.9: 0.9826 - recall0.9: 0.7480 - accuracy: 0.9690 - auc: 0.
             9798 - f1: 0.2624 - val_loss: 0.2385 - val_tp0.1: 1523932.0000 - val_fp0.1: 579099.0000 - val_tn0.1: 7668696.0000 - val_fn0.1: 58673.0000 - val_precision0.1: 0.7246 - val_recall0.1: 0.9629
              - val_tp0.3: 1459850.0000 - val_fp0.3: 271056.0000 - val_tn0.3: 7976739.0000 - val_fn0.3: 122755.0000 - val_precision0.3: 0.8434 - val_recall0.3: 0.9224 - val_tp0.5: 1390400.0000 - val_fp
             0.5: 143841.0000 - val_tn0.5: 8103954.0000 - val_fn0.5: 192205.0000 - val_precision0.5: 0.9062 - val_recall0.5: 0.8786 - val_tp0.7: 1305162.0000 - val_fp0.7: 75449.0000 - val_tn0.7: 817234
             6.0000 - val_fn0.7: 277443.0000 - val_precision0.7: 0.9454 - val_recall0.7: 0.8247 - val_tp0.9: 1149169.0000 - val_fp0.9: 23232.0000 - val_tn0.9: 8224563.0000 - val_fn0.9: 433436.0000 - va
             l_precision0.9: 0.9802 - val_recall0.9: 0.7261 - val_accuracy: 0.9658 - val_auc: 0.9764 - val_f1: 0.2773
             Epoch 18/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.2093 - tp0.1: 5739105.0000 - fp0.1: 2145054.0000 - tn0.1: 31239784.0000 - fn0.1: 197671.0000 - precision0.1: 0.7279 - rec
             all0.1: 0.9667 - tp0.3: 5545657.0000 - fp0.3: 1100602.0000 - tn0.3: 32284224.0000 - fn0.3: 391119.0000 - precision0.3: 0.8344 - recall0.3: 0.9341 - tp0.5: 5306649.0000 - fp0.5: 593735.0000
              - tn0.5: 32791100.0000 - fn0.5: 630127.0000 - precision0.5: 0.8994 - recall0.5: 0.8939 - tp0.7: 4982136.0000 - fp0.7: 287791.0000 - tn0.7: 33097036.0000 - fn0.7: 954640.0000 - precision0.
             7: 0.9454 - recall0.7: 0.8392 - tp0.9: 4415070.0000 - fp0.9: 79761.0000 - tn0.9: 33305060.0000 - fn0.9: 1521706.0000 - precision0.9: 0.9823 - recall0.9: 0.7437 - accuracy: 0.9689 - auc: 0.
             9796 - f1: 0.2624 - val_loss: 0.2350 - val_tp0.1: 1525598.0000 - val_fp0.1: 568429.0000 - val_tn0.1: 7679366.0000 - val_fn0.1: 57007.0000 - val_precision0.1: 0.7285 - val_recall0.1: 0.9640
              - val_tp0.3: 1474346.0000 - val_fp0.3: 295141.0000 - val_tn0.3: 7952654.0000 - val_fn0.3: 108259.0000 - val_precision0.3: 0.8332 - val_recall0.3: 0.9316 - val_tp0.5: 1424497.0000 - val_fp
             0.5: 190561.0000 - val_tn0.5: 8057234.0000 - val_fn0.5: 158108.0000 - val_precision0.5: 0.8820 - val_recall0.5: 0.9001 - val_tp0.7: 1359738.0000 - val_fp0.7: 110514.0000 - val_tn0.7: 81372
             81.0000 - val_fn0.7: 222867.0000 - val_precision0.7: 0.9248 - val_recall0.7: 0.8592 - val_tp0.9: 1242403.0000 - val_fp0.9: 43687.0000 - val_tn0.9: 8204108.0000 - val_fn0.9: 340202.0000 - v
             al_precision0.9: 0.9660 - val_recall0.9: 0.7850 - val_accuracy: 0.9645 - val_auc: 0.9772 - val_f1: 0.2773
             Epoch 19/20
             480/480 [==============================] - 21s 43ms/step - loss: 0.1984 - tp0.1: 5744440.0000 - fp0.1: 1989366.0000 - tn0.1: 31395464.0000 - fn0.1: 192336.0000 - precision0.1: 0.7428 - rec
             all0.1: 0.9676 - tp0.3: 5566674.0000 - fp0.3: 1040758.0000 - tn0.3: 32344072.0000 - fn0.3: 370102.0000 - precision0.3: 0.8425 - recall0.3: 0.9377 - tp0.5: 5348217.0000 - fp0.5: 577516.0000
              - tn0.5: 32807312.0000 - fn0.5: 588559.0000 - precision0.5: 0.9025 - recall0.5: 0.9009 - tp0.7: 5052821.0000 - fp0.7: 276996.0000 - tn0.7: 33107824.0000 - fn0.7: 883955.0000 - precision0.
             7: 0.9480 - recall0.7: 0.8511 - tp0.9: 4492968.0000 - fp0.9: 72302.0000 - tn0.9: 33312520.0000 - fn0.9: 1443808.0000 - precision0.9: 0.9842 - recall0.9: 0.7568 - accuracy: 0.9703 - auc: 0.
             9805 - f1: 0.2624 - val_loss: 0.2484 - val_tp0.1: 1501131.0000 - val_fp0.1: 393771.0000 - val_tn0.1: 7854024.0000 - val_fn0.1: 81474.0000 - val_precision0.1: 0.7922 - val_recall0.1: 0.9485
              - val_tp0.3: 1409758.0000 - val_fp0.3: 163787.0000 - val_tn0.3: 8084008.0000 - val_fn0.3: 172847.0000 - val_precision0.3: 0.8959 - val_recall0.3: 0.8908 - val_tp0.5: 1322183.0000 - val_fp
             0.5: 84259.0000 - val_tn0.5: 8163536.0000 - val_fn0.5: 260422.0000 - val_precision0.5: 0.9401 - val_recall0.5: 0.8354 - val_tp0.7: 1216424.0000 - val_fp0.7: 42192.0000 - val_tn0.7: 8205603
             .0000 - val_fn0.7: 366181.0000 - val_precision0.7: 0.9665 - val_recall0.7: 0.7686 - val_tp0.9: 1024424.0000 - val_fp0.9: 10587.0000 - val_tn0.9: 8237208.0000 - val_fn0.9: 558181.0000 - val
             _precision0.9: 0.9898 - val_recall0.9: 0.6473 - val_accuracy: 0.9649 - val_auc: 0.9712 - val_f1: 0.2773
             Epoch 20/20
             480/480 [==============================] - 21s 44ms/step - loss: 0.1942 - tp0.1: 5753146.0000 - fp0.1: 1975562.0000 - tn0.1: 31409254.0000 - fn0.1: 183630.0000 - precision0.1: 0.7444 - rec
             all0.1: 0.9691 - tp0.3: 5571490.0000 - fp0.3: 1010543.0000 - tn0.3: 32374284.0000 - fn0.3: 365286.0000 - precision0.3: 0.8465 - recall0.3: 0.9385 - tp0.5: 5341643.0000 - fp0.5: 549462.0000
              - tn0.5: 32835368.0000 - fn0.5: 595133.0000 - precision0.5: 0.9067 - recall0.5: 0.8998 - tp0.7: 5040559.0000 - fp0.7: 265388.0000 - tn0.7: 33119436.0000 - fn0.7: 896217.0000 - precision0.
             7: 0.9500 - recall0.7: 0.8490 - tp0.9: 4493527.0000 - fp0.9: 71308.0000 - tn0.9: 33313516.0000 - fn0.9: 1443249.0000 - precision0.9: 0.9844 - recall0.9: 0.7569 - accuracy: 0.9709 - auc: 0.
             9814 - f1: 0.2624 - val_loss: 0.2216 - val_tp0.1: 1527498.0000 - val_fp0.1: 536072.0000 - val_tn0.1: 7711723.0000 - val_fn0.1: 55107.0000 - val_precision0.1: 0.7402 - val_recall0.1: 0.9652
              - val_tp0.3: 1473395.0000 - val_fp0.3: 266651.0000 - val_tn0.3: 7981144.0000 - val_fn0.3: 109210.0000 - val_precision0.3: 0.8468 - val_recall0.3: 0.9310 - val_tp0.5: 1410224.0000 - val_fp
             0.5: 150868.0000 - val_tn0.5: 8096927.0000 - val_fn0.5: 172381.0000 - val_precision0.5: 0.9034 - val_recall0.5: 0.8911 - val_tp0.7: 1334322.0000 - val_fp0.7: 77751.0000 - val_tn0.7: 817004
             4.0000 - val_fn0.7: 248283.0000 - val_precision0.7: 0.9449 - val_recall0.7: 0.8431 - val_tp0.9: 1186212.0000 - val_fp0.9: 22796.0000 - val_tn0.9: 8224999.0000 - val_fn0.9: 396393.0000 - va
             l_precision0.9: 0.9811 - val_recall0.9: 0.7495 - val_accuracy: 0.9671 - val_auc: 0.9782 - val_f1: 0.2773
             --- Running training session 57/140
             {'hp_epochs': 20, 'hp_batch_size': 16, 'hp_scaler': 'standard', 'hp_n_levels': 3, 'hp_first_filters': 64, 'hp_pool_size': 2, 'hp_input_size': 16384, 'hp_lr_start': 0.05209134418613575, 'hp
             _lr_power': 5.0}
             --- repeat #: 1
             input - shape:   (None, 16384, 1)
             output - shape:  (None, 16384, 1)
             Epoch 1/20
             300/300 [==============================] - 131s 378ms/step - loss: 1.1698 - tp0.1: 9792293.0000 - fp0.1: 16380066.0000 - tn0.1: 50293360.0000 - fn0.1: 2177474.0000 - precision0.1: 0.3741 -
              recall0.1: 0.8181 - tp0.3: 8106203.0000 - fp0.3: 5386658.0000 - tn0.3: 61286792.0000 - fn0.3: 3863564.0000 - precision0.3: 0.6008 - recall0.3: 0.6772 - tp0.5: 6816180.0000 - fp0.5: 244709
             8.0000 - tn0.5: 64226336.0000 - fn0.5: 5153587.0000 - precision0.5: 0.7358 - recall0.5: 0.5694 - tp0.7: 5263785.0000 - fp0.7: 811449.0000 - tn0.7: 65861992.0000 - fn0.7: 6705982.0000 - pre
             cision0.7: 0.8664 - recall0.7: 0.4398 - tp0.9: 3484091.0000 - fp0.9: 160303.0000 - tn0.9: 66513160.0000 - fn0.9: 8485676.0000 - precision0.9: 0.9560 - recall0.9: 0.2911 - accuracy: 0.9034
             - auc: 0.8642 - f1: 0.2642 - val_loss: 2.1107 - val_tp0.1: 3108339.0000 - val_fp0.1: 15105390.0000 - val_tn0.1: 1392556.0000 - val_fn0.1: 54515.0000 - val_precision0.1: 0.1707 - val_recall
             0.1: 0.9828 - val_tp0.3: 2913184.0000 - val_fp0.3: 8671661.0000 - val_tn0.3: 7826285.0000 - val_fn0.3: 249670.0000 - val_precision0.3: 0.2515 - val_recall0.3: 0.9211 - val_tp0.5: 2807049.0
             000 - val_fp0.5: 6353778.0000 - val_tn0.5: 10144168.0000 - val_fn0.5: 355805.0000 - val_precision0.5: 0.3064 - val_recall0.5: 0.8875 - val_tp0.7: 2699435.0000 - val_fp0.7: 4581266.0000 - v
             al_tn0.7: 11916680.0000 - val_fn0.7: 463419.0000 - val_precision0.7: 0.3708 - val_recall0.7: 0.8535 - val_tp0.9: 2536045.0000 - val_fp0.9: 2954857.0000 - val_tn0.9: 13543089.0000 - val_fn0
             .9: 626809.0000 - val_precision0.9: 0.4619 - val_recall0.9: 0.8018 - val_accuracy: 0.6587 - val_auc: 0.8551 - val_f1: 0.2772
             Epoch 2/20
             300/300 [==============================] - 110s 367ms/step - loss: 1.1426 - tp0.1: 9916409.0000 - fp0.1: 13548468.0000 - tn0.1: 53124976.0000 - fn0.1: 2053358.0000 - precision0.1: 0.4226 -
              recall0.1: 0.8285 - tp0.3: 8478833.0000 - fp0.3: 4638495.0000 - tn0.3: 62034944.0000 - fn0.3: 3490934.0000 - precision0.3: 0.6464 - recall0.3: 0.7084 - tp0.5: 7332170.0000 - fp0.5: 218002
             8.0000 - tn0.5: 64493416.0000 - fn0.5: 4637597.0000 - precision0.5: 0.7708 - recall0.5: 0.6126 - tp0.7: 5950349.0000 - fp0.7: 846977.0000 - tn0.7: 65826468.0000 - fn0.7: 6019418.0000 - pre
             cision0.7: 0.8754 - recall0.7: 0.4971 - tp0.9: 4092626.0000 - fp0.9: 183109.0000 - tn0.9: 66490320.0000 - fn0.9: 7877141.0000 - precision0.9: 0.9572 - recall0.9: 0.3419 - accuracy: 0.9133
             - auc: 0.8817 - f1: 0.2642 - val_loss: 1.3552 - val_tp0.1: 3018867.0000 - val_fp0.1: 9642342.0000 - val_tn0.1: 6855604.0000 - val_fn0.1: 143987.0000 - val_precision0.1: 0.2384 - val_recall
             0.1: 0.9545 - val_tp0.3: 2882930.0000 - val_fp0.3: 5948958.0000 - val_tn0.3: 10548988.0000 - val_fn0.3: 279924.0000 - val_precision0.3: 0.3264 - val_recall0.3: 0.9115 - val_tp0.5: 2710540.
             0000 - val_fp0.5: 3482144.0000 - val_tn0.5: 13015802.0000 - val_fn0.5: 452314.0000 - val_precision0.5: 0.4377 - val_recall0.5: 0.8570 - val_tp0.7: 2470093.0000 - val_fp0.7: 1883006.0000 -
             val_tn0.7: 14614940.0000 - val_fn0.7: 692761.0000 - val_precision0.7: 0.5674 - val_recall0.7: 0.7810 - val_tp0.9: 2057360.0000 - val_fp0.9: 785358.0000 - val_tn0.9: 15712588.0000 - val_fn0
             .9: 1105494.0000 - val_precision0.9: 0.7237 - val_recall0.9: 0.6505 - val_accuracy: 0.7999 - val_auc: 0.8997 - val_f1: 0.2772
             Epoch 3/20
             300/300 [==============================] - 110s 367ms/step - loss: 1.1129 - tp0.1: 10053816.0000 - fp0.1: 11055564.0000 - tn0.1: 55617880.0000 - fn0.1: 1915951.0000 - precision0.1: 0.4763
             - recall0.1: 0.8399 - tp0.3: 8934470.0000 - fp0.3: 4064684.0000 - tn0.3: 62608744.0000 - fn0.3: 3035297.0000 - precision0.3: 0.6873 - recall0.3: 0.7464 - tp0.5: 8010627.0000 - fp0.5: 21114
             72.0000 - tn0.5: 64561976.0000 - fn0.5: 3959140.0000 - precision0.5: 0.7914 - recall0.5: 0.6692 - tp0.7: 6744537.0000 - fp0.7: 920340.0000 - tn0.7: 65753096.0000 - fn0.7: 5225230.0000 - pr
             ecision0.7: 0.8799 - recall0.7: 0.5635 - tp0.9: 4739266.0000 - fp0.9: 210718.0000 - tn0.9: 66462700.0000 - fn0.9: 7230501.0000 - precision0.9: 0.9574 - recall0.9: 0.3959 - accuracy: 0.9228
              - auc: 0.9043 - f1: 0.2642 - val_loss: 1.1474 - val_tp0.1: 2967564.0000 - val_fp0.1: 6983406.0000 - val_tn0.1: 9514540.0000 - val_fn0.1: 195290.0000 - val_precision0.1: 0.2982 - val_recal
             l0.1: 0.9383 - val_tp0.3: 2788083.0000 - val_fp0.3: 2981666.0000 - val_tn0.3: 13516280.0000 - val_fn0.3: 374771.0000 - val_precision0.3: 0.4832 - val_recall0.3: 0.8815 - val_tp0.5: 2559864
             .0000 - val_fp0.5: 1470225.0000 - val_tn0.5: 15027721.0000 - val_fn0.5: 602990.0000 - val_precision0.5: 0.6352 - val_recall0.5: 0.8094 - val_tp0.7: 2204980.0000 - val_fp0.7: 672610.0000 -
             val_tn0.7: 15825336.0000 - val_fn0.7: 957874.0000 - val_precision0.7: 0.7663 - val_recall0.7: 0.6971 - val_tp0.9: 1441024.0000 - val_fp0.9: 161378.0000 - val_tn0.9: 16336568.0000 - val_fn0
             .9: 1721830.0000 - val_precision0.9: 0.8993 - val_recall0.9: 0.4556 - val_accuracy: 0.8946 - val_auc: 0.9228 - val_f1: 0.2772
             Epoch 4/20
             300/300 [==============================] - 110s 367ms/step - loss: 0.9937 - tp0.1: 10107575.0000 - fp0.1: 10632681.0000 - tn0.1: 56040784.0000 - fn0.1: 1862192.0000 - precision0.1: 0.4873
             - recall0.1: 0.8444 - tp0.3: 9018636.0000 - fp0.3: 3861193.0000 - tn0.3: 62812244.0000 - fn0.3: 2951131.0000 - precision0.3: 0.7002 - recall0.3: 0.7535 - tp0.5: 8145541.0000 - fp0.5: 20363
             45.0000 - tn0.5: 64637076.0000 - fn0.5: 3824226.0000 - precision0.5: 0.8000 - recall0.5: 0.6805 - tp0.7: 6999441.0000 - fp0.7: 948132.0000 - tn0.7: 65725288.0000 - fn0.7: 4970326.0000 - pr
             ecision0.7: 0.8807 - recall0.7: 0.5848 - tp0.9: 4926381.0000 - fp0.9: 215719.0000 - tn0.9: 66457736.0000 - fn0.9: 7043386.0000 - precision0.9: 0.9580 - recall0.9: 0.4116 - accuracy: 0.9255
              - auc: 0.9063 - f1: 0.2642 - val_loss: 0.8383 - val_tp0.1: 2770907.0000 - val_fp0.1: 3233641.0000 - val_tn0.1: 13264305.0000 - val_fn0.1: 391947.0000 - val_precision0.1: 0.4615 - val_reca
             ll0.1: 0.8761 - val_tp0.3: 2695153.0000 - val_fp0.3: 2457686.0000 - val_tn0.3: 14040260.0000 - val_fn0.3: 467701.0000 - val_precision0.3: 0.5230 - val_recall0.3: 0.8521 - val_tp0.5: 262682
             4.0000 - val_fp0.5: 1996722.0000 - val_tn0.5: 14501224.0000 - val_fn0.5: 536030.0000 - val_precision0.5: 0.5681 - val_recall0.5: 0.8305 - val_tp0.7: 2543169.0000 - val_fp0.7: 1571034.0000
             - val_tn0.7: 14926912.0000 - val_fn0.7: 619685.0000 - val_precision0.7: 0.6181 - val_recall0.7: 0.8041 - val_tp0.9: 2364543.0000 - val_fp0.9: 988221.0000 - val_tn0.9: 15509725.0000 - val_f
             n0.9: 798311.0000 - val_precision0.9: 0.7053 - val_recall0.9: 0.7476 - val_accuracy: 0.8712 - val_auc: 0.9011 - val_f1: 0.2772
             Epoch 5/20
             300/300 [==============================] - 110s 366ms/step - loss: 0.6515 - tp0.1: 10120253.0000 - fp0.1: 9513561.0000 - tn0.1: 57159892.0000 - fn0.1: 1849514.0000 - precision0.1: 0.5155 -
              recall0.1: 0.8455 - tp0.3: 9146172.0000 - fp0.3: 3874592.0000 - tn0.3: 62798872.0000 - fn0.3: 2823595.0000 - precision0.3: 0.7024 - recall0.3: 0.7641 - tp0.5: 8285447.0000 - fp0.5: 203234
             9.0000 - tn0.5: 64641116.0000 - fn0.5: 3684320.0000 - precision0.5: 0.8030 - recall0.5: 0.6922 - tp0.7: 7115867.0000 - fp0.7: 936057.0000 - tn0.7: 65737360.0000 - fn0.7: 4853900.0000 - pre
             cision0.7: 0.8837 - recall0.7: 0.5945 - tp0.9: 5021875.0000 - fp0.9: 210954.0000 - tn0.9: 66462488.0000 - fn0.9: 6947892.0000 - precision0.9: 0.9597 - recall0.9: 0.4195 - accuracy: 0.9273
             - auc: 0.9005 - f1: 0.2642 - val_loss: 0.5790 - val_tp0.1: 2786753.0000 - val_fp0.1: 2338059.0000 - val_tn0.1: 14159887.0000 - val_fn0.1: 376101.0000 - val_precision0.1: 0.5438 - val_recal
             l0.1: 0.8811 - val_tp0.3: 2442329.0000 - val_fp0.3: 767449.0000 - val_tn0.3: 15730497.0000 - val_fn0.3: 720525.0000 - val_precision0.3: 0.7609 - val_recall0.3: 0.7722 - val_tp0.5: 2227274.
             0000 - val_fp0.5: 432048.0000 - val_tn0.5: 16065898.0000 - val_fn0.5: 935580.0000 - val_precision0.5: 0.8375 - val_recall0.5: 0.7042 - val_tp0.7: 1917679.0000 - val_fp0.7: 203533.0000 - va
             l_tn0.7: 16294413.0000 - val_fn0.7: 1245175.0000 - val_precision0.7: 0.9040 - val_recall0.7: 0.6063 - val_tp0.9: 1380335.0000 - val_fp0.9: 47607.0000 - val_tn0.9: 16450339.0000 - val_fn0.9
             : 1782519.0000 - val_precision0.9: 0.9667 - val_recall0.9: 0.4364 - val_accuracy: 0.9304 - val_auc: 0.9216 - val_f1: 0.2772
             Epoch 6/20
             300/300 [==============================] - 110s 367ms/step - loss: 0.6145 - tp0.1: 10221226.0000 - fp0.1: 9054753.0000 - tn0.1: 57618652.0000 - fn0.1: 1748541.0000 - precision0.1: 0.5303 -
              recall0.1: 0.8539 - tp0.3: 9253443.0000 - fp0.3: 3526719.0000 - tn0.3: 63146724.0000 - fn0.3: 2716324.0000 - precision0.3: 0.7240 - recall0.3: 0.7731 - tp0.5: 8544655.0000 - fp0.5: 198031
             7.0000 - tn0.5: 64693120.0000 - fn0.5: 3425112.0000 - precision0.5: 0.8118 - recall0.5: 0.7139 - tp0.7: 7486882.0000 - fp0.7: 931061.0000 - tn0.7: 65742384.0000 - fn0.7: 4482885.0000 - pre
             cision0.7: 0.8894 - recall0.7: 0.6255 - tp0.9: 5438772.0000 - fp0.9: 216030.0000 - tn0.9: 66457408.0000 - fn0.9: 6530995.0000 - precision0.9: 0.9618 - recall0.9: 0.4544 - accuracy: 0.9313
             - auc: 0.9073 - f1: 0.2642 - val_loss: 0.5665 - val_tp0.1: 2863152.0000 - val_fp0.1: 2970240.0000 - val_tn0.1: 13527706.0000 - val_fn0.1: 299702.0000 - val_precision0.1: 0.4908 - val_recal
             l0.1: 0.9052 - val_tp0.3: 2546439.0000 - val_fp0.3: 915799.0000 - val_tn0.3: 15582147.0000 - val_fn0.3: 616415.0000 - val_precision0.3: 0.7355 - val_recall0.3: 0.8051 - val_tp0.5: 2318053.
             0000 - val_fp0.5: 477192.0000 - val_tn0.5: 16020754.0000 - val_fn0.5: 844801.0000 - val_precision0.5: 0.8293 - val_recall0.5: 0.7329 - val_tp0.7: 1952977.0000 - val_fp0.7: 192829.0000 - va
             l_tn0.7: 16305117.0000 - val_fn0.7: 1209877.0000 - val_precision0.7: 0.9101 - val_recall0.7: 0.6175 - val_tp0.9: 1328714.0000 - val_fp0.9: 31660.0000 - val_tn0.9: 16466286.0000 - val_fn0.9
             : 1834140.0000 - val_precision0.9: 0.9767 - val_recall0.9: 0.4201 - val_accuracy: 0.9328 - val_auc: 0.9303 - val_f1: 0.2772
             Epoch 7/20
             300/300 [==============================] - 110s 367ms/step - loss: 0.6010 - tp0.1: 10240926.0000 - fp0.1: 8765134.0000 - tn0.1: 57908304.0000 - fn0.1: 1728841.0000 - precision0.1: 0.5388 -
              recall0.1: 0.8556 - tp0.3: 9298657.0000 - fp0.3: 3414297.0000 - tn0.3: 63259112.0000 - fn0.3: 2671110.0000 - precision0.3: 0.7314 - recall0.3: 0.7768 - tp0.5: 8600118.0000 - fp0.5: 190447
             1.0000 - tn0.5: 64768972.0000 - fn0.5: 3369649.0000 - precision0.5: 0.8187 - recall0.5: 0.7185 - tp0.7: 7578223.0000 - fp0.7: 896266.0000 - tn0.7: 65777152.0000 - fn0.7: 4391544.0000 - pre
             cision0.7: 0.8942 - recall0.7: 0.6331 - tp0.9: 5575318.0000 - fp0.9: 206423.0000 - tn0.9: 66467012.0000 - fn0.9: 6394449.0000 - precision0.9: 0.9643 - recall0.9: 0.4658 - accuracy: 0.9329
             - auc: 0.9091 - f1: 0.2642 - val_loss: 0.6136 - val_tp0.1: 2833227.0000 - val_fp0.1: 2966233.0000 - val_tn0.1: 13531713.0000 - val_fn0.1: 329627.0000 - val_precision0.1: 0.4885 - val_recal
             l0.1: 0.8958 - val_tp0.3: 2657099.0000 - val_fp0.3: 1503941.0000 - val_tn0.3: 14994005.0000 - val_fn0.3: 505755.0000 - val_precision0.3: 0.6386 - val_recall0.3: 0.8401 - val_tp0.5: 2521378
             .0000 - val_fp0.5: 979303.0000 - val_tn0.5: 15518643.0000 - val_fn0.5: 641476.0000 - val_precision0.5: 0.7203 - val_recall0.5: 0.7972 - val_tp0.7: 2355434.0000 - val_fp0.7: 617852.0000 - v
             al_tn0.7: 15880094.0000 - val_fn0.7: 807420.0000 - val_precision0.7: 0.7922 - val_recall0.7: 0.7447 - val_tp0.9: 2044932.0000 - val_fp0.9: 285145.0000 - val_tn0.9: 16212801.0000 - val_fn0.
             9: 1117922.0000 - val_precision0.9: 0.8776 - val_recall0.9: 0.6465 - val_accuracy: 0.9176 - val_auc: 0.9226 - val_f1: 0.2772
             Epoch 8/20
             300/300 [==============================] - 110s 367ms/step - loss: 0.5874 - tp0.1: 10313883.0000 - fp0.1: 8946511.0000 - tn0.1: 57726912.0000 - fn0.1: 1655884.0000 - precision0.1: 0.5355 -
              recall0.1: 0.8617 - tp0.3: 9372263.0000 - fp0.3: 3402993.0000 - tn0.3: 63270404.0000 - fn0.3: 2597504.0000 - precision0.3: 0.7336 - recall0.3: 0.7830 - tp0.5: 8691543.0000 - fp0.5: 189512
             5.0000 - tn0.5: 64778312.0000 - fn0.5: 3278224.0000 - precision0.5: 0.8210 - recall0.5: 0.7261 - tp0.7: 7678420.0000 - fp0.7: 891412.0000 - tn0.7: 65782052.0000 - fn0.7: 4291347.0000 - pre
             cision0.7: 0.8960 - recall0.7: 0.6415 - tp0.9: 5663701.0000 - fp0.9: 205730.0000 - tn0.9: 66467716.0000 - fn0.9: 6306066.0000 - precision0.9: 0.9649 - recall0.9: 0.4732 - accuracy: 0.9342
             - auc: 0.9123 - f1: 0.2642 - val_loss: 0.5994 - val_tp0.1: 2655699.0000 - val_fp0.1: 1220112.0000 - val_tn0.1: 15277834.0000 - val_fn0.1: 507155.0000 - val_precision0.1: 0.6852 - val_recal
             l0.1: 0.8397 - val_tp0.3: 2195697.0000 - val_fp0.3: 383330.0000 - val_tn0.3: 16114616.0000 - val_fn0.3: 967157.0000 - val_precision0.3: 0.8514 - val_recall0.3: 0.6942 - val_tp0.5: 1922446.
             0000 - val_fp0.5: 203083.0000 - val_tn0.5: 16294863.0000 - val_fn0.5: 1240408.0000 - val_precision0.5: 0.9045 - val_recall0.5: 0.6078 - val_tp0.7: 1577371.0000 - val_fp0.7: 87819.0000 - va
             l_tn0.7: 16410127.0000 - val_fn0.7: 1585483.0000 - val_precision0.7: 0.9473 - val_recall0.7: 0.4987 - val_tp0.9: 1033785.0000 - val_fp0.9: 15309.0000 - val_tn0.9: 16482637.0000 - val_fn0.9
             : 2129069.0000 - val_precision0.9: 0.9854 - val_recall0.9: 0.3269 - val_accuracy: 0.9266 - val_auc: 0.9095 - val_f1: 0.2772
             Epoch 9/20
             300/300 [==============================] - 110s 366ms/step - loss: 0.5779 - tp0.1: 10317324.0000 - fp0.1: 8680261.0000 - tn0.1: 57993180.0000 - fn0.1: 1652443.0000 - precision0.1: 0.5431 -
              recall0.1: 0.8619 - tp0.3: 9391398.0000 - fp0.3: 3311151.0000 - tn0.3: 63362284.0000 - fn0.3: 2578369.0000 - precision0.3: 0.7393 - recall0.3: 0.7846 - tp0.5: 8705608.0000 - fp0.5: 181412
             3.0000 - tn0.5: 64859340.0000 - fn0.5: 3264159.0000 - precision0.5: 0.8276 - recall0.5: 0.7273 - tp0.7: 7731054.0000 - fp0.7: 858059.0000 - tn0.7: 65815376.0000 - fn0.7: 4238713.0000 - pre
             cision0.7: 0.9001 - recall0.7: 0.6459 - tp0.9: 5763101.0000 - fp0.9: 200933.0000 - tn0.9: 66472512.0000 - fn0.9: 6206666.0000 - precision0.9: 0.9663 - recall0.9: 0.4815 - accuracy: 0.9354
             - auc: 0.9133 - f1: 0.2642 - val_loss: 0.5336 - val_tp0.1: 2783751.0000 - val_fp0.1: 1864654.0000 - val_tn0.1: 14633292.0000 - val_fn0.1: 379103.0000 - val_precision0.1: 0.5989 - val_recal
             l0.1: 0.8801 - val_tp0.3: 2518451.0000 - val_fp0.3: 718668.0000 - val_tn0.3: 15779278.0000 - val_fn0.3: 644403.0000 - val_precision0.3: 0.7780 - val_recall0.3: 0.7963 - val_tp0.5: 2312604.
             0000 - val_fp0.5: 409725.0000 - val_tn0.5: 16088221.0000 - val_fn0.5: 850250.0000 - val_precision0.5: 0.8495 - val_recall0.5: 0.7312 - val_tp0.7: 2020053.0000 - val_fp0.7: 204600.0000 - va
             l_tn0.7: 16293346.0000 - val_fn0.7: 1142801.0000 - val_precision0.7: 0.9080 - val_recall0.7: 0.6387 - val_tp0.9: 1443951.0000 - val_fp0.9: 46830.0000 - val_tn0.9: 16451116.0000 - val_fn0.9
             : 1718903.0000 - val_precision0.9: 0.9686 - val_recall0.9: 0.4565 - val_accuracy: 0.9359 - val_auc: 0.9250 - val_f1: 0.2772
             Epoch 10/20
             300/300 [==============================] - 110s 367ms/step - loss: 0.5662 - tp0.1: 10352395.0000 - fp0.1: 8545400.0000 - tn0.1: 58128032.0000 - fn0.1: 1617372.0000 - precision0.1: 0.5478 -
              recall0.1: 0.8649 - tp0.3: 9453462.0000 - fp0.3: 3297727.0000 - tn0.3: 63375704.0000 - fn0.3: 2516305.0000 - precision0.3: 0.7414 - recall0.3: 0.7898 - tp0.5: 8780933.0000 - fp0.5: 180115
             0.0000 - tn0.5: 64872296.0000 - fn0.5: 3188834.0000 - precision0.5: 0.8298 - recall0.5: 0.7336 - tp0.7: 7844065.0000 - fp0.7: 860857.0000 - tn0.7: 65812548.0000 - fn0.7: 4125702.0000 - pre
             cision0.7: 0.9011 - recall0.7: 0.6553 - tp0.9: 5892491.0000 - fp0.9: 202051.0000 - tn0.9: 66471364.0000 - fn0.9: 6077276.0000 - precision0.9: 0.9668 - recall0.9: 0.4923 - accuracy: 0.9365
             - auc: 0.9156 - f1: 0.2642 - val_loss: 0.5278 - val_tp0.1: 2876358.0000 - val_fp0.1: 2715037.0000 - val_tn0.1: 13782909.0000 - val_fn0.1: 286496.0000 - val_precision0.1: 0.5144 - val_recal
             l0.1: 0.9094 - val_tp0.3: 2636089.0000 - val_fp0.3: 1014420.0000 - val_tn0.3: 15483526.0000 - val_fn0.3: 526765.0000 - val_precision0.3: 0.7221 - val_recall0.3: 0.8335 - val_tp0.5: 2435712
             .0000 - val_fp0.5: 548278.0000 - val_tn0.5: 15949668.0000 - val_fn0.5: 727142.0000 - val_precision0.5: 0.8163 - val_recall0.5: 0.7701 - val_tp0.7: 2160433.0000 - val_fp0.7: 261165.0000 - v
             al_tn0.7: 16236781.0000 - val_fn0.7: 1002421.0000 - val_precision0.7: 0.8922 - val_recall0.7: 0.6831 - val_tp0.9: 1556420.0000 - val_fp0.9: 50492.0000 - val_tn0.9: 16447454.0000 - val_fn0.
             9: 1606434.0000 - val_precision0.9: 0.9686 - val_recall0.9: 0.4921 - val_accuracy: 0.9351 - val_auc: 0.9348 - val_f1: 0.2772
             Epoch 11/20
             300/300 [==============================] - 110s 367ms/step - loss: 0.5610 - tp0.1: 10373608.0000 - fp0.1: 8572388.0000 - tn0.1: 58101040.0000 - fn0.1: 1596159.0000 - precision0.1: 0.5475 -
              recall0.1: 0.8667 - tp0.3: 9468020.0000 - fp0.3: 3221384.0000 - tn0.3: 63452048.0000 - fn0.3: 2501747.0000 - precision0.3: 0.7461 - recall0.3: 0.7910 - tp0.5: 8789688.0000 - fp0.5: 173793
             5.0000 - tn0.5: 64935508.0000 - fn0.5: 3180079.0000 - precision0.5: 0.8349 - recall0.5: 0.7343 - tp0.7: 7882409.0000 - fp0.7: 841710.0000 - tn0.7: 65831744.0000 - fn0.7: 4087358.0000 - pre
             cision0.7: 0.9035 - recall0.7: 0.6585 - tp0.9: 5966113.0000 - fp0.9: 196483.0000 - tn0.9: 66476952.0000 - fn0.9: 6003654.0000 - precision0.9: 0.9681 - recall0.9: 0.4984 - accuracy: 0.9375
             - auc: 0.9166 - f1: 0.2642 - val_loss: 0.5227 - val_tp0.1: 2833580.0000 - val_fp0.1: 2220007.0000 - val_tn0.1: 14277939.0000 - val_fn0.1: 329274.0000 - val_precision0.1: 0.5607 - val_recal
             l0.1: 0.8959 - val_tp0.3: 2545954.0000 - val_fp0.3: 744480.0000 - val_tn0.3: 15753466.0000 - val_fn0.3: 616900.0000 - val_precision0.3: 0.7737 - val_recall0.3: 0.8050 - val_tp0.5: 2303452.
             0000 - val_fp0.5: 376141.0000 - val_tn0.5: 16121805.0000 - val_fn0.5: 859402.0000 - val_precision0.5: 0.8596 - val_recall0.5: 0.7283 - val_tp0.7: 1971041.0000 - val_fp0.7: 160456.0000 - va
             l_tn0.7: 16337490.0000 - val_fn0.7: 1191813.0000 - val_precision0.7: 0.9247 - val_recall0.7: 0.6232 - val_tp0.9: 1375228.0000 - val_fp0.9: 28055.0000 - val_tn0.9: 16469891.0000 - val_fn0.9
             : 1787626.0000 - val_precision0.9: 0.9800 - val_recall0.9: 0.4348 - val_accuracy: 0.9372 - val_auc: 0.9312 - val_f1: 0.2772
             Epoch 12/20
             300/300 [==============================] - 110s 366ms/step - loss: 0.5516 - tp0.1: 10421559.0000 - fp0.1: 8658554.0000 - tn0.1: 58014880.0000 - fn0.1: 1548208.0000 - precision0.1: 0.5462 -
              recall0.1: 0.8707 - tp0.3: 9509353.0000 - fp0.3: 3240736.0000 - tn0.3: 63432728.0000 - fn0.3: 2460414.0000 - precision0.3: 0.7458 - recall0.3: 0.7944 - tp0.5: 8835728.0000 - fp0.5: 174437
             1.0000 - tn0.5: 64929060.0000 - fn0.5: 3134039.0000 - precision0.5: 0.8351 - recall0.5: 0.7382 - tp0.7: 7935785.0000 - fp0.7: 836444.0000 - tn0.7: 65836992.0000 - fn0.7: 4033982.0000 - pre
             cision0.7: 0.9046 - recall0.7: 0.6630 - tp0.9: 6021972.0000 - fp0.9: 194282.0000 - tn0.9: 66479164.0000 - fn0.9: 5947795.0000 - precision0.9: 0.9687 - recall0.9: 0.5031 - accuracy: 0.9380
             - auc: 0.9190 - f1: 0.2642 - val_loss: 0.5259 - val_tp0.1: 2813028.0000 - val_fp0.1: 2078752.0000 - val_tn0.1: 14419194.0000 - val_fn0.1: 349826.0000 - val_precision0.1: 0.5751 - val_recal
             l0.1: 0.8894 - val_tp0.3: 2528314.0000 - val_fp0.3: 706366.0000 - val_tn0.3: 15791580.0000 - val_fn0.3: 634540.0000 - val_precision0.3: 0.7816 - val_recall0.3: 0.7994 - val_tp0.5: 2316024.
             0000 - val_fp0.5: 388662.0000 - val_tn0.5: 16109284.0000 - val_fn0.5: 846830.0000 - val_precision0.5: 0.8563 - val_recall0.5: 0.7323 - val_tp0.7: 2044271.0000 - val_fp0.7: 193248.0000 - va
             l_tn0.7: 16304698.0000 - val_fn0.7: 1118583.0000 - val_precision0.7: 0.9136 - val_recall0.7: 0.6463 - val_tp0.9: 1538039.0000 - val_fp0.9: 48557.0000 - val_tn0.9: 16449389.0000 - val_fn0.9
             : 1624815.0000 - val_precision0.9: 0.9694 - val_recall0.9: 0.4863 - val_accuracy: 0.9372 - val_auc: 0.9290 - val_f1: 0.2772
             Epoch 13/20
             300/300 [==============================] - 110s 366ms/step - loss: 0.5454 - tp0.1: 10439462.0000 - fp0.1: 8578643.0000 - tn0.1: 58094796.0000 - fn0.1: 1530305.0000 - precision0.1: 0.5489 -
              recall0.1: 0.8722 - tp0.3: 9511162.0000 - fp0.3: 3179906.0000 - tn0.3: 63493568.0000 - fn0.3: 2458605.0000 - precision0.3: 0.7494 - recall0.3: 0.7946 - tp0.5: 8819389.0000 - fp0.5: 168064
             2.0000 - tn0.5: 64992792.0000 - fn0.5: 3150378.0000 - precision0.5: 0.8399 - recall0.5: 0.7368 - tp0.7: 7930729.0000 - fp0.7: 810316.0000 - tn0.7: 65863144.0000 - fn0.7: 4039038.0000 - pre
             cision0.7: 0.9073 - recall0.7: 0.6626 - tp0.9: 6037837.0000 - fp0.9: 190230.0000 - tn0.9: 66483196.0000 - fn0.9: 5931930.0000 - precision0.9: 0.9695 - recall0.9: 0.5044 - accuracy: 0.9386
             - auc: 0.9201 - f1: 0.2642 - val_loss: 0.5152 - val_tp0.1: 2825402.0000 - val_fp0.1: 2086657.0000 - val_tn0.1: 14411289.0000 - val_fn0.1: 337452.0000 - val_precision0.1: 0.5752 - val_recal
             l0.1: 0.8933 - val_tp0.3: 2573708.0000 - val_fp0.3: 777952.0000 - val_tn0.3: 15719994.0000 - val_fn0.3: 589146.0000 - val_precision0.3: 0.7679 - val_recall0.3: 0.8137 - val_tp0.5: 2360881.
             0000 - val_fp0.5: 416427.0000 - val_tn0.5: 16081519.0000 - val_fn0.5: 801973.0000 - val_precision0.5: 0.8501 - val_recall0.5: 0.7464 - val_tp0.7: 2074036.0000 - val_fp0.7: 196402.0000 - va
             l_tn0.7: 16301544.0000 - val_fn0.7: 1088818.0000 - val_precision0.7: 0.9135 - val_recall0.7: 0.6557 - val_tp0.9: 1511886.0000 - val_fp0.9: 41512.0000 - val_tn0.9: 16456434.0000 - val_fn0.9
             : 1650968.0000 - val_precision0.9: 0.9733 - val_recall0.9: 0.4780 - val_accuracy: 0.9380 - val_auc: 0.9310 - val_f1: 0.2772
             Epoch 14/20
             300/300 [==============================] - 110s 366ms/step - loss: 0.5443 - tp0.1: 10444511.0000 - fp0.1: 8600961.0000 - tn0.1: 58072476.0000 - fn0.1: 1525256.0000 - precision0.1: 0.5484 -
              recall0.1: 0.8726 - tp0.3: 9538913.0000 - fp0.3: 3252925.0000 - tn0.3: 63420496.0000 - fn0.3: 2430854.0000 - precision0.3: 0.7457 - recall0.3: 0.7969 - tp0.5: 8849106.0000 - fp0.5: 171047
             5.0000 - tn0.5: 64962976.0000 - fn0.5: 3120661.0000 - precision0.5: 0.8380 - recall0.5: 0.7393 - tp0.7: 7973420.0000 - fp0.7: 827235.0000 - tn0.7: 65846200.0000 - fn0.7: 3996347.0000 - pre
             cision0.7: 0.9060 - recall0.7: 0.6661 - tp0.9: 6091812.0000 - fp0.9: 195928.0000 - tn0.9: 66477488.0000 - fn0.9: 5877955.0000 - precision0.9: 0.9688 - recall0.9: 0.5089 - accuracy: 0.9386
             - auc: 0.9203 - f1: 0.2642 - val_loss: 0.5191 - val_tp0.1: 2826998.0000 - val_fp0.1: 2155571.0000 - val_tn0.1: 14342375.0000 - val_fn0.1: 335856.0000 - val_precision0.1: 0.5674 - val_recal
             l0.1: 0.8938 - val_tp0.3: 2586837.0000 - val_fp0.3: 829620.0000 - val_tn0.3: 15668326.0000 - val_fn0.3: 576017.0000 - val_precision0.3: 0.7572 - val_recall0.3: 0.8179 - val_tp0.5: 2383398.
             0000 - val_fp0.5: 453397.0000 - val_tn0.5: 16044549.0000 - val_fn0.5: 779456.0000 - val_precision0.5: 0.8402 - val_recall0.5: 0.7536 - val_tp0.7: 2122357.0000 - val_fp0.7: 227187.0000 - va
             l_tn0.7: 16270759.0000 - val_fn0.7: 1040497.0000 - val_precision0.7: 0.9033 - val_recall0.7: 0.6710 - val_tp0.9: 1608918.0000 - val_fp0.9: 56008.0000 - val_tn0.9: 16441938.0000 - val_fn0.9
             : 1553936.0000 - val_precision0.9: 0.9664 - val_recall0.9: 0.5087 - val_accuracy: 0.9373 - val_auc: 0.9305 - val_f1: 0.2772
             Epoch 15/20
             300/300 [==============================] - 110s 367ms/step - loss: 0.5447 - tp0.1: 10433601.0000 - fp0.1: 8522557.0000 - tn0.1: 58150872.0000 - fn0.1: 1536166.0000 - precision0.1: 0.5504 -
              recall0.1: 0.8717 - tp0.3: 9526040.0000 - fp0.3: 3191360.0000 - tn0.3: 63482064.0000 - fn0.3: 2443727.0000 - precision0.3: 0.7491 - recall0.3: 0.7958 - tp0.5: 8837031.0000 - fp0.5: 167970
             9.0000 - tn0.5: 64993724.0000 - fn0.5: 3132736.0000 - precision0.5: 0.8403 - recall0.5: 0.7383 - tp0.7: 7952386.0000 - fp0.7: 812351.0000 - tn0.7: 65861096.0000 - fn0.7: 4017381.0000 - pre
             cision0.7: 0.9073 - recall0.7: 0.6644 - tp0.9: 6066606.0000 - fp0.9: 190872.0000 - tn0.9: 66482528.0000 - fn0.9: 5903161.0000 - precision0.9: 0.9695 - recall0.9: 0.5068 - accuracy: 0.9388
             - auc: 0.9200 - f1: 0.2642 - val_loss: 0.5173 - val_tp0.1: 2837321.0000 - val_fp0.1: 2234345.0000 - val_tn0.1: 14263601.0000 - val_fn0.1: 325533.0000 - val_precision0.1: 0.5594 - val_recal
             l0.1: 0.8971 - val_tp0.3: 2592118.0000 - val_fp0.3: 832258.0000 - val_tn0.3: 15665688.0000 - val_fn0.3: 570736.0000 - val_precision0.3: 0.7570 - val_recall0.3: 0.8196 - val_tp0.5: 2384808.
             0000 - val_fp0.5: 447800.0000 - val_tn0.5: 16050146.0000 - val_fn0.5: 778046.0000 - val_precision0.5: 0.8419 - val_recall0.5: 0.7540 - val_tp0.7: 2112938.0000 - val_fp0.7: 217396.0000 - va
             l_tn0.7: 16280550.0000 - val_fn0.7: 1049916.0000 - val_precision0.7: 0.9067 - val_recall0.7: 0.6680 - val_tp0.9: 1562455.0000 - val_fp0.9: 48138.0000 - val_tn0.9: 16449808.0000 - val_fn0.9
             : 1600399.0000 - val_precision0.9: 0.9701 - val_recall0.9: 0.4940 - val_accuracy: 0.9377 - val_auc: 0.9318 - val_f1: 0.2772
             Epoch 16/20
             300/300 [==============================] - 110s 367ms/step - loss: 0.5470 - tp0.1: 10446770.0000 - fp0.1: 8763433.0000 - tn0.1: 57909992.0000 - fn0.1: 1522997.0000 - precision0.1: 0.5438 -
              recall0.1: 0.8728 - tp0.3: 9531541.0000 - fp0.3: 3286354.0000 - tn0.3: 63387068.0000 - fn0.3: 2438226.0000 - precision0.3: 0.7436 - recall0.3: 0.7963 - tp0.5: 8849773.0000 - fp0.5: 174540
             6.0000 - tn0.5: 64928032.0000 - fn0.5: 3119994.0000 - precision0.5: 0.8353 - recall0.5: 0.7393 - tp0.7: 7984098.0000 - fp0.7: 851547.0000 - tn0.7: 65821888.0000 - fn0.7: 3985669.0000 - pre
             cision0.7: 0.9036 - recall0.7: 0.6670 - tp0.9: 6119565.0000 - fp0.9: 198791.0000 - tn0.9: 66474608.0000 - fn0.9: 5850202.0000 - precision0.9: 0.9685 - recall0.9: 0.5113 - accuracy: 0.9381
             - auc: 0.9200 - f1: 0.2642 - val_loss: 0.5199 - val_tp0.1: 2830415.0000 - val_fp0.1: 2198213.0000 - val_tn0.1: 14299733.0000 - val_fn0.1: 332439.0000 - val_precision0.1: 0.5629 - val_recal
             l0.1: 0.8949 - val_tp0.3: 2585794.0000 - val_fp0.3: 826003.0000 - val_tn0.3: 15671943.0000 - val_fn0.3: 577060.0000 - val_precision0.3: 0.7579 - val_recall0.3: 0.8176 - val_tp0.5: 2380750.
             0000 - val_fp0.5: 448412.0000 - val_tn0.5: 16049534.0000 - val_fn0.5: 782104.0000 - val_precision0.5: 0.8415 - val_recall0.5: 0.7527 - val_tp0.7: 2117268.0000 - val_fp0.7: 222683.0000 - va
             l_tn0.7: 16275263.0000 - val_fn0.7: 1045586.0000 - val_precision0.7: 0.9048 - val_recall0.7: 0.6694 - val_tp0.9: 1600774.0000 - val_fp0.9: 54219.0000 - val_tn0.9: 16443727.0000 - val_fn0.9
             : 1562080.0000 - val_precision0.9: 0.9672 - val_recall0.9: 0.5061 - val_accuracy: 0.9374 - val_auc: 0.9309 - val_f1: 0.2772
             Epoch 17/20
             300/300 [==============================] - 110s 366ms/step - loss: 0.5479 - tp0.1: 10435195.0000 - fp0.1: 8675069.0000 - tn0.1: 57998372.0000 - fn0.1: 1534572.0000 - precision0.1: 0.5461 -
              recall0.1: 0.8718 - tp0.3: 9510450.0000 - fp0.3: 3192019.0000 - tn0.3: 63481376.0000 - fn0.3: 2459317.0000 - precision0.3: 0.7487 - recall0.3: 0.7945 - tp0.5: 8815376.0000 - fp0.5: 168445
             9.0000 - tn0.5: 64988968.0000 - fn0.5: 3154391.0000 - precision0.5: 0.8396 - recall0.5: 0.7365 - tp0.7: 7941450.0000 - fp0.7: 818142.0000 - tn0.7: 65855296.0000 - fn0.7: 4028317.0000 - pre
             cision0.7: 0.9066 - recall0.7: 0.6635 - tp0.9: 6071147.0000 - fp0.9: 191455.0000 - tn0.9: 66481988.0000 - fn0.9: 5898620.0000 - precision0.9: 0.9694 - recall0.9: 0.5072 - accuracy: 0.9385
             - auc: 0.9197 - f1: 0.2642 - val_loss: 0.5189 - val_tp0.1: 2828825.0000 - val_fp0.1: 2176033.0000 - val_tn0.1: 14321913.0000 - val_fn0.1: 334029.0000 - val_precision0.1: 0.5652 - val_recal
             l0.1: 0.8944 - val_tp0.3: 2585975.0000 - val_fp0.3: 823670.0000 - val_tn0.3: 15674276.0000 - val_fn0.3: 576879.0000 - val_precision0.3: 0.7584 - val_recall0.3: 0.8176 - val_tp0.5: 2383653.
             0000 - val_fp0.5: 450199.0000 - val_tn0.5: 16047747.0000 - val_fn0.5: 779201.0000 - val_precision0.5: 0.8411 - val_recall0.5: 0.7536 - val_tp0.7: 2121977.0000 - val_fp0.7: 224378.0000 - va
             l_tn0.7: 16273568.0000 - val_fn0.7: 1040877.0000 - val_precision0.7: 0.9044 - val_recall0.7: 0.6709 - val_tp0.9: 1604835.0000 - val_fp0.9: 54571.0000 - val_tn0.9: 16443375.0000 - val_fn0.9
             : 1558019.0000 - val_precision0.9: 0.9671 - val_recall0.9: 0.5074 - val_accuracy: 0.9375 - val_auc: 0.9309 - val_f1: 0.2772
             Epoch 18/20
             300/300 [==============================] - 110s 367ms/step - loss: 0.5454 - tp0.1: 10442547.0000 - fp0.1: 8683315.0000 - tn0.1: 57990116.0000 - fn0.1: 1527220.0000 - precision0.1: 0.5460 -
              recall0.1: 0.8724 - tp0.3: 9524521.0000 - fp0.3: 3195203.0000 - tn0.3: 63478232.0000 - fn0.3: 2445246.0000 - precision0.3: 0.7488 - recall0.3: 0.7957 - tp0.5: 8838166.0000 - fp0.5: 167403
             0.0000 - tn0.5: 64999392.0000 - fn0.5: 3131601.0000 - precision0.5: 0.8408 - recall0.5: 0.7384 - tp0.7: 7963121.0000 - fp0.7: 806164.0000 - tn0.7: 65867296.0000 - fn0.7: 4006646.0000 - pre
             cision0.7: 0.9081 - recall0.7: 0.6653 - tp0.9: 6093558.0000 - fp0.9: 189519.0000 - tn0.9: 66483896.0000 - fn0.9: 5876209.0000 - precision0.9: 0.9698 - recall0.9: 0.5091 - accuracy: 0.9389
             - auc: 0.9202 - f1: 0.2642 - val_loss: 0.5184 - val_tp0.1: 2832372.0000 - val_fp0.1: 2204134.0000 - val_tn0.1: 14293812.0000 - val_fn0.1: 330482.0000 - val_precision0.1: 0.5624 - val_recal
             l0.1: 0.8955 - val_tp0.3: 2594182.0000 - val_fp0.3: 844891.0000 - val_tn0.3: 15653055.0000 - val_fn0.3: 568672.0000 - val_precision0.3: 0.7543 - val_recall0.3: 0.8202 - val_tp0.5: 2395380.
             0000 - val_fp0.5: 464502.0000 - val_tn0.5: 16033444.0000 - val_fn0.5: 767474.0000 - val_precision0.5: 0.8376 - val_recall0.5: 0.7573 - val_tp0.7: 2138310.0000 - val_fp0.7: 234231.0000 - va
             l_tn0.7: 16263715.0000 - val_fn0.7: 1024544.0000 - val_precision0.7: 0.9013 - val_recall0.7: 0.6761 - val_tp0.9: 1623105.0000 - val_fp0.9: 57407.0000 - val_tn0.9: 16440539.0000 - val_fn0.9
             : 1539749.0000 - val_precision0.9: 0.9658 - val_recall0.9: 0.5132 - val_accuracy: 0.9373 - val_auc: 0.9313 - val_f1: 0.2772
             Epoch 19/20
             300/300 [==============================] - 110s 366ms/step - loss: 0.5418 - tp0.1: 10456777.0000 - fp0.1: 8641725.0000 - tn0.1: 58031732.0000 - fn0.1: 1512990.0000 - precision0.1: 0.5475 -
              recall0.1: 0.8736 - tp0.3: 9535623.0000 - fp0.3: 3181102.0000 - tn0.3: 63492344.0000 - fn0.3: 2434144.0000 - precision0.3: 0.7498 - recall0.3: 0.7966 - tp0.5: 8844625.0000 - fp0.5: 167217
             5.0000 - tn0.5: 65001264.0000 - fn0.5: 3125142.0000 - precision0.5: 0.8410 - recall0.5: 0.7389 - tp0.7: 7965635.0000 - fp0.7: 804103.0000 - tn0.7: 65869328.0000 - fn0.7: 4004132.0000 - pre
             cision0.7: 0.9083 - recall0.7: 0.6655 - tp0.9: 6091897.0000 - fp0.9: 189993.0000 - tn0.9: 66483440.0000 - fn0.9: 5877870.0000 - precision0.9: 0.9698 - recall0.9: 0.5089 - accuracy: 0.9390
             - auc: 0.9210 - f1: 0.2642 - val_loss: 0.5190 - val_tp0.1: 2831559.0000 - val_fp0.1: 2201859.0000 - val_tn0.1: 14296087.0000 - val_fn0.1: 331295.0000 - val_precision0.1: 0.5626 - val_recal
             l0.1: 0.8953 - val_tp0.3: 2592759.0000 - val_fp0.3: 841402.0000 - val_tn0.3: 15656544.0000 - val_fn0.3: 570095.0000 - val_precision0.3: 0.7550 - val_recall0.3: 0.8198 - val_tp0.5: 2393128.
             0000 - val_fp0.5: 461852.0000 - val_tn0.5: 16036094.0000 - val_fn0.5: 769726.0000 - val_precision0.5: 0.8382 - val_recall0.5: 0.7566 - val_tp0.7: 2135701.0000 - val_fp0.7: 232684.0000 - va
             l_tn0.7: 16265262.0000 - val_fn0.7: 1027153.0000 - val_precision0.7: 0.9018 - val_recall0.7: 0.6752 - val_tp0.9: 1622963.0000 - val_fp0.9: 57421.0000 - val_tn0.9: 16440525.0000 - val_fn0.9
             : 1539891.0000 - val_precision0.9: 0.9658 - val_recall0.9: 0.5131 - val_accuracy: 0.9374 - val_auc: 0.9311 - val_f1: 0.2772
             Epoch 20/20
             300/300 [==============================] - 110s 366ms/step - loss: 0.5454 - tp0.1: 10445310.0000 - fp0.1: 8664704.0000 - tn0.1: 58008732.0000 - fn0.1: 1524457.0000 - precision0.1: 0.5466 -
              recall0.1: 0.8726 - tp0.3: 9522539.0000 - fp0.3: 3185766.0000 - tn0.3: 63487664.0000 - fn0.3: 2447228.0000 - precision0.3: 0.7493 - recall0.3: 0.7955 - tp0.5: 8829214.0000 - fp0.5: 167729
             6.0000 - tn0.5: 64996140.0000 - fn0.5: 3140553.0000 - precision0.5: 0.8404 - recall0.5: 0.7376 - tp0.7: 7945247.0000 - fp0.7: 812426.0000 - tn0.7: 65861008.0000 - fn0.7: 4024520.0000 - pre
             cision0.7: 0.9072 - recall0.7: 0.6638 - tp0.9: 6065229.0000 - fp0.9: 190972.0000 - tn0.9: 66482444.0000 - fn0.9: 5904538.0000 - precision0.9: 0.9695 - recall0.9: 0.5067 - accuracy: 0.9387
             - auc: 0.9203 - f1: 0.2642 - val_loss: 0.5199 - val_tp0.1: 2827480.0000 - val_fp0.1: 2173312.0000 - val_tn0.1: 14324634.0000 - val_fn0.1: 335374.0000 - val_precision0.1: 0.5654 - val_recal
             l0.1: 0.8940 - val_tp0.3: 2584623.0000 - val_fp0.3: 824555.0000 - val_tn0.3: 15673391.0000 - val_fn0.3: 578231.0000 - val_precision0.3: 0.7581 - val_recall0.3: 0.8172 - val_tp0.5: 2381163.
             0000 - val_fp0.5: 449934.0000 - val_tn0.5: 16048012.0000 - val_fn0.5: 781691.0000 - val_precision0.5: 0.8411 - val_recall0.5: 0.7529 - val_tp0.7: 2119470.0000 - val_fp0.7: 224462.0000 - va
             l_tn0.7: 16273484.0000 - val_fn0.7: 1043384.0000 - val_precision0.7: 0.9042 - val_recall0.7: 0.6701 - val_tp0.9: 1605312.0000 - val_fp0.9: 55121.0000 - val_tn0.9: 16442825.0000 - val_fn0.9
             : 1557542.0000 - val_precision0.9: 0.9668 - val_recall0.9: 0.5076 - val_accuracy: 0.9374 - val_auc: 0.9306 - val_f1: 0.2772
             --- Running training session 58/140
             {'hp_epochs': 20, 'hp_batch_size': 16, 'hp_scaler': 'standard', 'hp_n_levels': 3, 'hp_first_filters': 64, 'hp_pool_size': 2, 'hp_input_size': 16384, 'hp_lr_start': 0.05209134418613575, 'hp
             _lr_power': 5.0}
             --- repeat #: 2
             input - shape:   (None, 16384, 1)
             output - shape:  (None, 16384, 1)
             Epoch 1/20
             300/300 [==============================] - 129s 378ms/step - loss: 1.1658 - tp0.1: 9830604.0000 - fp0.1: 16232549.0000 - tn0.1: 50440888.0000 - fn0.1: 2139163.0000 - precision0.1: 0.3772 -
              recall0.1: 0.8213 - tp0.3: 8228708.0000 - fp0.3: 5302541.0000 - tn0.3: 61370904.0000 - fn0.3: 3741059.0000 - precision0.3: 0.6081 - recall0.3: 0.6875 - tp0.5: 6775084.0000 - fp0.5: 211648
             8.0000 - tn0.5: 64556952.0000 - fn0.5: 5194683.0000 - precision0.5: 0.7620 - recall0.5: 0.5660 - tp0.7: 5350792.0000 - fp0.7: 805898.0000 - tn0.7: 65867540.0000 - fn0.7: 6618975.0000 - pre
             cision0.7: 0.8691 - recall0.7: 0.4470 - tp0.9: 3697858.0000 - fp0.9: 194591.0000 - tn0.9: 66478832.0000 - fn0.9: 8271909.0000 - precision0.9: 0.9500 - recall0.9: 0.3089 - accuracy: 0.9070
             - auc: 0.8672 - f1: 0.2642 - val_loss: 1.3447 - val_tp0.1: 3029789.0000 - val_fp0.1: 10720478.0000 - val_tn0.1: 5777468.0000 - val_fn0.1: 133065.0000 - val_precision0.1: 0.2203 - val_recal
             l0.1: 0.9579 - val_tp0.3: 2725924.0000 - val_fp0.3: 5062932.0000 - val_tn0.3: 11435014.0000 - val_fn0.3: 436930.0000 - val_precision0.3: 0.3500 - val_recall0.3: 0.8619 - val_tp0.5: 2519324
             .0000 - val_fp0.5: 3056247.0000 - val_tn0.5: 13441699.0000 - val_fn0.5: 643530.0000 - val_precision0.5: 0.4519 - val_recall0.5: 0.7965 - val_tp0.7: 2295185.0000 - val_fp0.7: 1804933.0000 -
              val_tn0.7: 14693013.0000 - val_fn0.7: 867669.0000 - val_precision0.7: 0.5598 - val_recall0.7: 0.7257 - val_tp0.9: 1906967.0000 - val_fp0.9: 746282.0000 - val_tn0.9: 15751664.0000 - val_fn
             0.9: 1255887.0000 - val_precision0.9: 0.7187 - val_recall0.9: 0.6029 - val_accuracy: 0.8118 - val_auc: 0.8811 - val_f1: 0.2772
             Epoch 2/20
             300/300 [==============================] - 109s 364ms/step - loss: 1.1355 - tp0.1: 9957479.0000 - fp0.1: 13357487.0000 - tn0.1: 53315960.0000 - fn0.1: 2012288.0000 - precision0.1: 0.4271 -
              recall0.1: 0.8319 - tp0.3: 8569227.0000 - fp0.3: 4466847.0000 - tn0.3: 62206584.0000 - fn0.3: 3400540.0000 - precision0.3: 0.6573 - recall0.3: 0.7159 - tp0.5: 7483729.0000 - fp0.5: 216675
             6.0000 - tn0.5: 64506688.0000 - fn0.5: 4486038.0000 - precision0.5: 0.7755 - recall0.5: 0.6252 - tp0.7: 6133208.0000 - fp0.7: 879463.0000 - tn0.7: 65793980.0000 - fn0.7: 5836559.0000 - pre
             cision0.7: 0.8746 - recall0.7: 0.5124 - tp0.9: 4221172.0000 - fp0.9: 179821.0000 - tn0.9: 66493600.0000 - fn0.9: 7748595.0000 - precision0.9: 0.9591 - recall0.9: 0.3527 - accuracy: 0.9154
             - auc: 0.8904 - f1: 0.2642 - val_loss: 1.1731 - val_tp0.1: 3054894.0000 - val_fp0.1: 9937096.0000 - val_tn0.1: 6560850.0000 - val_fn0.1: 107960.0000 - val_precision0.1: 0.2351 - val_recall
             0.1: 0.9659 - val_tp0.3: 2783981.0000 - val_fp0.3: 3337977.0000 - val_tn0.3: 13159969.0000 - val_fn0.3: 378873.0000 - val_precision0.3: 0.4548 - val_recall0.3: 0.8802 - val_tp0.5: 2388364.
             0000 - val_fp0.5: 1174330.0000 - val_tn0.5: 15323616.0000 - val_fn0.5: 774490.0000 - val_precision0.5: 0.6704 - val_recall0.5: 0.7551 - val_tp0.7: 1964516.0000 - val_fp0.7: 504808.0000 - v
             al_tn0.7: 15993138.0000 - val_fn0.7: 1198338.0000 - val_precision0.7: 0.7956 - val_recall0.7: 0.6211 - val_tp0.9: 1396619.0000 - val_fp0.9: 139367.0000 - val_tn0.9: 16358579.0000 - val_fn0
             .9: 1766235.0000 - val_precision0.9: 0.9093 - val_recall0.9: 0.4416 - val_accuracy: 0.9009 - val_auc: 0.9170 - val_f1: 0.2772
             Epoch 3/20
             300/300 [==============================] - 109s 365ms/step - loss: 1.1191 - tp0.1: 9992425.0000 - fp0.1: 11721660.0000 - tn0.1: 54951760.0000 - fn0.1: 1977342.0000 - precision0.1: 0.4602 -
              recall0.1: 0.8348 - tp0.3: 8827502.0000 - fp0.3: 4156590.0000 - tn0.3: 62516832.0000 - fn0.3: 3142265.0000 - precision0.3: 0.6799 - recall0.3: 0.7375 - tp0.5: 7896775.0000 - fp0.5: 216438
             4.0000 - tn0.5: 64509016.0000 - fn0.5: 4072992.0000 - precision0.5: 0.7849 - recall0.5: 0.6597 - tp0.7: 6592308.0000 - fp0.7: 940147.0000 - tn0.7: 65733296.0000 - fn0.7: 5377459.0000 - pre
             cision0.7: 0.8752 - recall0.7: 0.5507 - tp0.9: 4505055.0000 - fp0.9: 193708.0000 - tn0.9: 66479780.0000 - fn0.9: 7464712.0000 - precision0.9: 0.9588 - recall0.9: 0.3764 - accuracy: 0.9207
             - auc: 0.9016 - f1: 0.2642 - val_loss: 1.1653 - val_tp0.1: 2999133.0000 - val_fp0.1: 7651011.0000 - val_tn0.1: 8846935.0000 - val_fn0.1: 163721.0000 - val_precision0.1: 0.2816 - val_recall
             0.1: 0.9482 - val_tp0.3: 2753881.0000 - val_fp0.3: 2809322.0000 - val_tn0.3: 13688624.0000 - val_fn0.3: 408973.0000 - val_precision0.3: 0.4950 - val_recall0.3: 0.8707 - val_tp0.5: 2575607.
             0000 - val_fp0.5: 1604092.0000 - val_tn0.5: 14893854.0000 - val_fn0.5: 587247.0000 - val_precision0.5: 0.6162 - val_recall0.5: 0.8143 - val_tp0.7: 2325512.0000 - val_fp0.7: 840619.0000 - v
             al_tn0.7: 15657327.0000 - val_fn0.7: 837342.0000 - val_precision0.7: 0.7345 - val_recall0.7: 0.7353 - val_tp0.9: 1883413.0000 - val_fp0.9: 305362.0000 - val_tn0.9: 16192584.0000 - val_fn0.
             9: 1279441.0000 - val_precision0.9: 0.8605 - val_recall0.9: 0.5955 - val_accuracy: 0.8885 - val_auc: 0.9234 - val_f1: 0.2772
             Epoch 4/20
             300/300 [==============================] - 109s 364ms/step - loss: 0.7296 - tp0.1: 9976082.0000 - fp0.1: 10739149.0000 - tn0.1: 55934272.0000 - fn0.1: 1993685.0000 - precision0.1: 0.4816 -
              recall0.1: 0.8334 - tp0.3: 8926198.0000 - fp0.3: 4393527.0000 - tn0.3: 62279884.0000 - fn0.3: 3043569.0000 - precision0.3: 0.6701 - recall0.3: 0.7457 - tp0.5: 7905026.0000 - fp0.5: 217465
             0.0000 - tn0.5: 64498764.0000 - fn0.5: 4064741.0000 - precision0.5: 0.7843 - recall0.5: 0.6604 - tp0.7: 6608527.0000 - fp0.7: 943676.0000 - tn0.7: 65729772.0000 - fn0.7: 5361240.0000 - pre
             cision0.7: 0.8750 - recall0.7: 0.5521 - tp0.9: 4494816.0000 - fp0.9: 193397.0000 - tn0.9: 66480032.0000 - fn0.9: 7474951.0000 - precision0.9: 0.9587 - recall0.9: 0.3755 - accuracy: 0.9207
             - auc: 0.8902 - f1: 0.2642 - val_loss: 0.9724 - val_tp0.1: 2946822.0000 - val_fp0.1: 7011140.0000 - val_tn0.1: 9486806.0000 - val_fn0.1: 216032.0000 - val_precision0.1: 0.2959 - val_recall
             0.1: 0.9317 - val_tp0.3: 2828230.0000 - val_fp0.3: 4270134.0000 - val_tn0.3: 12227812.0000 - val_fn0.3: 334624.0000 - val_precision0.3: 0.3984 - val_recall0.3: 0.8942 - val_tp0.5: 2748329.
             0000 - val_fp0.5: 3138657.0000 - val_tn0.5: 13359289.0000 - val_fn0.5: 414525.0000 - val_precision0.5: 0.4668 - val_recall0.5: 0.8689 - val_tp0.7: 2589983.0000 - val_fp0.7: 1878374.0000 -
             val_tn0.7: 14619572.0000 - val_fn0.7: 572871.0000 - val_precision0.7: 0.5796 - val_recall0.7: 0.8189 - val_tp0.9: 2101517.0000 - val_fp0.9: 517482.0000 - val_tn0.9: 15980464.0000 - val_fn0
             .9: 1061337.0000 - val_precision0.9: 0.8024 - val_recall0.9: 0.6644 - val_accuracy: 0.8193 - val_auc: 0.9128 - val_f1: 0.2772
             Epoch 5/20
             300/300 [==============================] - 109s 363ms/step - loss: 0.6529 - tp0.1: 10122261.0000 - fp0.1: 9591155.0000 - tn0.1: 57082268.0000 - fn0.1: 1847506.0000 - precision0.1: 0.5135 -
              recall0.1: 0.8457 - tp0.3: 9144708.0000 - fp0.3: 3989412.0000 - tn0.3: 62684028.0000 - fn0.3: 2825059.0000 - precision0.3: 0.6963 - recall0.3: 0.7640 - tp0.5: 8259383.0000 - fp0.5: 210977
             9.0000 - tn0.5: 64563668.0000 - fn0.5: 3710384.0000 - precision0.5: 0.7965 - recall0.5: 0.6900 - tp0.7: 7094469.0000 - fp0.7: 988158.0000 - tn0.7: 65685280.0000 - fn0.7: 4875298.0000 - pre
             cision0.7: 0.8777 - recall0.7: 0.5927 - tp0.9: 4946279.0000 - fp0.9: 215942.0000 - tn0.9: 66457496.0000 - fn0.9: 7023488.0000 - precision0.9: 0.9582 - recall0.9: 0.4132 - accuracy: 0.9260
             - auc: 0.8999 - f1: 0.2642 - val_loss: 0.9432 - val_tp0.1: 3012100.0000 - val_fp0.1: 7946515.0000 - val_tn0.1: 8551431.0000 - val_fn0.1: 150754.0000 - val_precision0.1: 0.2749 - val_recall
             0.1: 0.9523 - val_tp0.3: 2894544.0000 - val_fp0.3: 4511247.0000 - val_tn0.3: 11986699.0000 - val_fn0.3: 268310.0000 - val_precision0.3: 0.3908 - val_recall0.3: 0.9152 - val_tp0.5: 2779750.
             0000 - val_fp0.5: 2798125.0000 - val_tn0.5: 13699821.0000 - val_fn0.5: 383104.0000 - val_precision0.5: 0.4984 - val_recall0.5: 0.8789 - val_tp0.7: 2629141.0000 - val_fp0.7: 1703471.0000 -
             val_tn0.7: 14794475.0000 - val_fn0.7: 533713.0000 - val_precision0.7: 0.6068 - val_recall0.7: 0.8313 - val_tp0.9: 2267860.0000 - val_fp0.9: 655578.0000 - val_tn0.9: 15842368.0000 - val_fn0
             .9: 894994.0000 - val_precision0.9: 0.7758 - val_recall0.9: 0.7170 - val_accuracy: 0.8382 - val_auc: 0.9243 - val_f1: 0.2772
             Epoch 6/20
             300/300 [==============================] - 109s 363ms/step - loss: 0.6248 - tp0.1: 10165542.0000 - fp0.1: 8993953.0000 - tn0.1: 57679492.0000 - fn0.1: 1804225.0000 - precision0.1: 0.5306 -
              recall0.1: 0.8493 - tp0.3: 9220264.0000 - fp0.3: 3729094.0000 - tn0.3: 62944360.0000 - fn0.3: 2749503.0000 - precision0.3: 0.7120 - recall0.3: 0.7703 - tp0.5: 8427138.0000 - fp0.5: 202054
             3.0000 - tn0.5: 64652888.0000 - fn0.5: 3542629.0000 - precision0.5: 0.8066 - recall0.5: 0.7040 - tp0.7: 7328827.0000 - fp0.7: 939211.0000 - tn0.7: 65734200.0000 - fn0.7: 4640940.0000 - pre
             cision0.7: 0.8864 - recall0.7: 0.6123 - tp0.9: 5167941.0000 - fp0.9: 189519.0000 - tn0.9: 66483928.0000 - fn0.9: 6801826.0000 - precision0.9: 0.9646 - recall0.9: 0.4317 - accuracy: 0.9293
             - auc: 0.9044 - f1: 0.2642 - val_loss: 0.5511 - val_tp0.1: 2844793.0000 - val_fp0.1: 2570394.0000 - val_tn0.1: 13927552.0000 - val_fn0.1: 318061.0000 - val_precision0.1: 0.5253 - val_recal
             l0.1: 0.8994 - val_tp0.3: 2684206.0000 - val_fp0.3: 1367923.0000 - val_tn0.3: 15130023.0000 - val_fn0.3: 478648.0000 - val_precision0.3: 0.6624 - val_recall0.3: 0.8487 - val_tp0.5: 2475186
             .0000 - val_fp0.5: 730745.0000 - val_tn0.5: 15767201.0000 - val_fn0.5: 687668.0000 - val_precision0.5: 0.7721 - val_recall0.5: 0.7826 - val_tp0.7: 2218398.0000 - val_fp0.7: 388178.0000 - v
             al_tn0.7: 16109768.0000 - val_fn0.7: 944456.0000 - val_precision0.7: 0.8511 - val_recall0.7: 0.7014 - val_tp0.9: 1713349.0000 - val_fp0.9: 114270.0000 - val_tn0.9: 16383676.0000 - val_fn0.
             9: 1449505.0000 - val_precision0.9: 0.9375 - val_recall0.9: 0.5417 - val_accuracy: 0.9279 - val_auc: 0.9285 - val_f1: 0.2772
             Epoch 7/20
             300/300 [==============================] - 109s 364ms/step - loss: 0.6064 - tp0.1: 10229897.0000 - fp0.1: 8897750.0000 - tn0.1: 57775700.0000 - fn0.1: 1739870.0000 - precision0.1: 0.5348 -
              recall0.1: 0.8546 - tp0.3: 9283055.0000 - fp0.3: 3514175.0000 - tn0.3: 63159248.0000 - fn0.3: 2686712.0000 - precision0.3: 0.7254 - recall0.3: 0.7755 - tp0.5: 8533348.0000 - fp0.5: 192231
             9.0000 - tn0.5: 64751124.0000 - fn0.5: 3436419.0000 - precision0.5: 0.8161 - recall0.5: 0.7129 - tp0.7: 7491425.0000 - fp0.7: 917374.0000 - tn0.7: 65756056.0000 - fn0.7: 4478342.0000 - pre
             cision0.7: 0.8909 - recall0.7: 0.6259 - tp0.9: 5439611.0000 - fp0.9: 210848.0000 - tn0.9: 66462588.0000 - fn0.9: 6530156.0000 - precision0.9: 0.9627 - recall0.9: 0.4544 - accuracy: 0.9319
             - auc: 0.9082 - f1: 0.2642 - val_loss: 0.6010 - val_tp0.1: 2934541.0000 - val_fp0.1: 3995941.0000 - val_tn0.1: 12502005.0000 - val_fn0.1: 228313.0000 - val_precision0.1: 0.4234 - val_recal
             l0.1: 0.9278 - val_tp0.3: 2764037.0000 - val_fp0.3: 1908942.0000 - val_tn0.3: 14589004.0000 - val_fn0.3: 398817.0000 - val_precision0.3: 0.5915 - val_recall0.3: 0.8739 - val_tp0.5: 2611207
             .0000 - val_fp0.5: 1127029.0000 - val_tn0.5: 15370917.0000 - val_fn0.5: 551647.0000 - val_precision0.5: 0.6985 - val_recall0.5: 0.8256 - val_tp0.7: 2388708.0000 - val_fp0.7: 602484.0000 -
             val_tn0.7: 15895462.0000 - val_fn0.7: 774146.0000 - val_precision0.7: 0.7986 - val_recall0.7: 0.7552 - val_tp0.9: 1910700.0000 - val_fp0.9: 183899.0000 - val_tn0.9: 16314047.0000 - val_fn0
             .9: 1252154.0000 - val_precision0.9: 0.9122 - val_recall0.9: 0.6041 - val_accuracy: 0.9146 - val_auc: 0.9353 - val_f1: 0.2772
             Epoch 8/20
             300/300 [==============================] - 109s 364ms/step - loss: 0.5966 - tp0.1: 10258117.0000 - fp0.1: 8820090.0000 - tn0.1: 57853336.0000 - fn0.1: 1711650.0000 - precision0.1: 0.5377 -
              recall0.1: 0.8570 - tp0.3: 9332270.0000 - fp0.3: 3494563.0000 - tn0.3: 63178884.0000 - fn0.3: 2637497.0000 - precision0.3: 0.7276 - recall0.3: 0.7797 - tp0.5: 8607177.0000 - fp0.5: 193241
             9.0000 - tn0.5: 64741044.0000 - fn0.5: 3362590.0000 - precision0.5: 0.8167 - recall0.5: 0.7191 - tp0.7: 7560035.0000 - fp0.7: 907227.0000 - tn0.7: 65766188.0000 - fn0.7: 4409732.0000 - pre
             cision0.7: 0.8929 - recall0.7: 0.6316 - tp0.9: 5489005.0000 - fp0.9: 193323.0000 - tn0.9: 66480128.0000 - fn0.9: 6480762.0000 - precision0.9: 0.9660 - recall0.9: 0.4586 - accuracy: 0.9327
             - auc: 0.9098 - f1: 0.2642 - val_loss: 0.5360 - val_tp0.1: 2840705.0000 - val_fp0.1: 2432393.0000 - val_tn0.1: 14065553.0000 - val_fn0.1: 322149.0000 - val_precision0.1: 0.5387 - val_recal
             l0.1: 0.8981 - val_tp0.3: 2541562.0000 - val_fp0.3: 814687.0000 - val_tn0.3: 15683259.0000 - val_fn0.3: 621292.0000 - val_precision0.3: 0.7573 - val_recall0.3: 0.8036 - val_tp0.5: 2332487.
             0000 - val_fp0.5: 450050.0000 - val_tn0.5: 16047896.0000 - val_fn0.5: 830367.0000 - val_precision0.5: 0.8383 - val_recall0.5: 0.7375 - val_tp0.7: 2027801.0000 - val_fp0.7: 205102.0000 - va
             l_tn0.7: 16292844.0000 - val_fn0.7: 1135053.0000 - val_precision0.7: 0.9081 - val_recall0.7: 0.6411 - val_tp0.9: 1478341.0000 - val_fp0.9: 39136.0000 - val_tn0.9: 16458810.0000 - val_fn0.9
             : 1684513.0000 - val_precision0.9: 0.9742 - val_recall0.9: 0.4674 - val_accuracy: 0.9349 - val_auc: 0.9309 - val_f1: 0.2772
             Epoch 9/20
             300/300 [==============================] - 109s 363ms/step - loss: 0.5815 - tp0.1: 10317877.0000 - fp0.1: 8787663.0000 - tn0.1: 57885784.0000 - fn0.1: 1651890.0000 - precision0.1: 0.5400 -
              recall0.1: 0.8620 - tp0.3: 9391866.0000 - fp0.3: 3385982.0000 - tn0.3: 63287432.0000 - fn0.3: 2577901.0000 - precision0.3: 0.7350 - recall0.3: 0.7846 - tp0.5: 8683886.0000 - fp0.5: 185537
             9.0000 - tn0.5: 64818064.0000 - fn0.5: 3285881.0000 - precision0.5: 0.8240 - recall0.5: 0.7255 - tp0.7: 7664640.0000 - fp0.7: 872040.0000 - tn0.7: 65801404.0000 - fn0.7: 4305127.0000 - pre
             cision0.7: 0.8978 - recall0.7: 0.6403 - tp0.9: 5645583.0000 - fp0.9: 192263.0000 - tn0.9: 66481188.0000 - fn0.9: 6324184.0000 - precision0.9: 0.9671 - recall0.9: 0.4717 - accuracy: 0.9346
             - auc: 0.9130 - f1: 0.2642 - val_loss: 0.5508 - val_tp0.1: 2890310.0000 - val_fp0.1: 3133203.0000 - val_tn0.1: 13364743.0000 - val_fn0.1: 272544.0000 - val_precision0.1: 0.4798 - val_recal
             l0.1: 0.9138 - val_tp0.3: 2582821.0000 - val_fp0.3: 941605.0000 - val_tn0.3: 15556341.0000 - val_fn0.3: 580033.0000 - val_precision0.3: 0.7328 - val_recall0.3: 0.8166 - val_tp0.5: 2342586.
             0000 - val_fp0.5: 468856.0000 - val_tn0.5: 16029090.0000 - val_fn0.5: 820268.0000 - val_precision0.5: 0.8332 - val_recall0.5: 0.7407 - val_tp0.7: 2000631.0000 - val_fp0.7: 196312.0000 - va
             l_tn0.7: 16301634.0000 - val_fn0.7: 1162223.0000 - val_precision0.7: 0.9106 - val_recall0.7: 0.6325 - val_tp0.9: 1393863.0000 - val_fp0.9: 35445.0000 - val_tn0.9: 16462501.0000 - val_fn0.9
             : 1768991.0000 - val_precision0.9: 0.9752 - val_recall0.9: 0.4407 - val_accuracy: 0.9344 - val_auc: 0.9339 - val_f1: 0.2772
             Epoch 10/20
             300/300 [==============================] - 109s 363ms/step - loss: 0.5742 - tp0.1: 10342521.0000 - fp0.1: 8755470.0000 - tn0.1: 57917940.0000 - fn0.1: 1627246.0000 - precision0.1: 0.5416 -
              recall0.1: 0.8641 - tp0.3: 9412910.0000 - fp0.3: 3294713.0000 - tn0.3: 63378728.0000 - fn0.3: 2556857.0000 - precision0.3: 0.7407 - recall0.3: 0.7864 - tp0.5: 8709465.0000 - fp0.5: 179218
             3.0000 - tn0.5: 64881220.0000 - fn0.5: 3260302.0000 - precision0.5: 0.8293 - recall0.5: 0.7276 - tp0.7: 7716001.0000 - fp0.7: 846147.0000 - tn0.7: 65827296.0000 - fn0.7: 4253766.0000 - pre
             cision0.7: 0.9012 - recall0.7: 0.6446 - tp0.9: 5786134.0000 - fp0.9: 193748.0000 - tn0.9: 66479688.0000 - fn0.9: 6183633.0000 - precision0.9: 0.9676 - recall0.9: 0.4834 - accuracy: 0.9358
             - auc: 0.9142 - f1: 0.2642 - val_loss: 0.5714 - val_tp0.1: 2695380.0000 - val_fp0.1: 1362499.0000 - val_tn0.1: 15135447.0000 - val_fn0.1: 467474.0000 - val_precision0.1: 0.6642 - val_recal
             l0.1: 0.8522 - val_tp0.3: 2331121.0000 - val_fp0.3: 439292.0000 - val_tn0.3: 16058654.0000 - val_fn0.3: 831733.0000 - val_precision0.3: 0.8414 - val_recall0.3: 0.7370 - val_tp0.5: 2008752.
             0000 - val_fp0.5: 188756.0000 - val_tn0.5: 16309190.0000 - val_fn0.5: 1154102.0000 - val_precision0.5: 0.9141 - val_recall0.5: 0.6351 - val_tp0.7: 1582146.0000 - val_fp0.7: 59586.0000 - va
             l_tn0.7: 16438360.0000 - val_fn0.7: 1580708.0000 - val_precision0.7: 0.9637 - val_recall0.7: 0.5002 - val_tp0.9: 896176.0000 - val_fp0.9: 4415.0000 - val_tn0.9: 16493531.0000 - val_fn0.9:
             2266678.0000 - val_precision0.9: 0.9951 - val_recall0.9: 0.2833 - val_accuracy: 0.9317 - val_auc: 0.9152 - val_f1: 0.2772
             Epoch 11/20
             300/300 [==============================] - 109s 364ms/step - loss: 0.5695 - tp0.1: 10353763.0000 - fp0.1: 8713907.0000 - tn0.1: 57959528.0000 - fn0.1: 1616004.0000 - precision0.1: 0.5430 -
              recall0.1: 0.8650 - tp0.3: 9444896.0000 - fp0.3: 3321969.0000 - tn0.3: 63351480.0000 - fn0.3: 2524871.0000 - precision0.3: 0.7398 - recall0.3: 0.7891 - tp0.5: 8747813.0000 - fp0.5: 180398
             4.0000 - tn0.5: 64869452.0000 - fn0.5: 3221954.0000 - precision0.5: 0.8290 - recall0.5: 0.7308 - tp0.7: 7782574.0000 - fp0.7: 853915.0000 - tn0.7: 65819536.0000 - fn0.7: 4187193.0000 - pre
             cision0.7: 0.9011 - recall0.7: 0.6502 - tp0.9: 5870371.0000 - fp0.9: 194465.0000 - tn0.9: 66479000.0000 - fn0.9: 6099396.0000 - precision0.9: 0.9679 - recall0.9: 0.4904 - accuracy: 0.9361
             - auc: 0.9151 - f1: 0.2642 - val_loss: 0.5577 - val_tp0.1: 2892745.0000 - val_fp0.1: 3143327.0000 - val_tn0.1: 13354619.0000 - val_fn0.1: 270109.0000 - val_precision0.1: 0.4792 - val_recal
             l0.1: 0.9146 - val_tp0.3: 2706166.0000 - val_fp0.3: 1385967.0000 - val_tn0.3: 15111979.0000 - val_fn0.3: 456688.0000 - val_precision0.3: 0.6613 - val_recall0.3: 0.8556 - val_tp0.5: 2567444
             .0000 - val_fp0.5: 857066.0000 - val_tn0.5: 15640880.0000 - val_fn0.5: 595410.0000 - val_precision0.5: 0.7497 - val_recall0.5: 0.8117 - val_tp0.7: 2361482.0000 - val_fp0.7: 478495.0000 - v
             al_tn0.7: 16019451.0000 - val_fn0.7: 801372.0000 - val_precision0.7: 0.8315 - val_recall0.7: 0.7466 - val_tp0.9: 1980797.0000 - val_fp0.9: 176419.0000 - val_tn0.9: 16321527.0000 - val_fn0.
             9: 1182057.0000 - val_precision0.9: 0.9182 - val_recall0.9: 0.6263 - val_accuracy: 0.9261 - val_auc: 0.9342 - val_f1: 0.2772
             Epoch 12/20
             300/300 [==============================] - 109s 364ms/step - loss: 0.5631 - tp0.1: 10359789.0000 - fp0.1: 8488876.0000 - tn0.1: 58184560.0000 - fn0.1: 1609978.0000 - precision0.1: 0.5496 -
              recall0.1: 0.8655 - tp0.3: 9469292.0000 - fp0.3: 3249710.0000 - tn0.3: 63423736.0000 - fn0.3: 2500475.0000 - precision0.3: 0.7445 - recall0.3: 0.7911 - tp0.5: 8773908.0000 - fp0.5: 173654
             4.0000 - tn0.5: 64936880.0000 - fn0.5: 3195859.0000 - precision0.5: 0.8348 - recall0.5: 0.7330 - tp0.7: 7799121.0000 - fp0.7: 807785.0000 - tn0.7: 65865644.0000 - fn0.7: 4170646.0000 - pre
             cision0.7: 0.9061 - recall0.7: 0.6516 - tp0.9: 5889535.0000 - fp0.9: 186306.0000 - tn0.9: 66487124.0000 - fn0.9: 6080232.0000 - precision0.9: 0.9693 - recall0.9: 0.4920 - accuracy: 0.9373
             - auc: 0.9159 - f1: 0.2642 - val_loss: 0.5163 - val_tp0.1: 2823752.0000 - val_fp0.1: 2094434.0000 - val_tn0.1: 14403512.0000 - val_fn0.1: 339102.0000 - val_precision0.1: 0.5741 - val_recal
             l0.1: 0.8928 - val_tp0.3: 2583025.0000 - val_fp0.3: 825425.0000 - val_tn0.3: 15672521.0000 - val_fn0.3: 579829.0000 - val_precision0.3: 0.7578 - val_recall0.3: 0.8167 - val_tp0.5: 2379325.
             0000 - val_fp0.5: 447908.0000 - val_tn0.5: 16050038.0000 - val_fn0.5: 783529.0000 - val_precision0.5: 0.8416 - val_recall0.5: 0.7523 - val_tp0.7: 2087728.0000 - val_fp0.7: 207419.0000 - va
             l_tn0.7: 16290527.0000 - val_fn0.7: 1075126.0000 - val_precision0.7: 0.9096 - val_recall0.7: 0.6601 - val_tp0.9: 1527766.0000 - val_fp0.9: 40879.0000 - val_tn0.9: 16457067.0000 - val_fn0.9
             : 1635088.0000 - val_precision0.9: 0.9739 - val_recall0.9: 0.4830 - val_accuracy: 0.9374 - val_auc: 0.9303 - val_f1: 0.2772
             Epoch 13/20
             300/300 [==============================] - 109s 364ms/step - loss: 0.5583 - tp0.1: 10369243.0000 - fp0.1: 8417163.0000 - tn0.1: 58256252.0000 - fn0.1: 1600524.0000 - precision0.1: 0.5520 -
              recall0.1: 0.8663 - tp0.3: 9495979.0000 - fp0.3: 3288261.0000 - tn0.3: 63385168.0000 - fn0.3: 2473788.0000 - precision0.3: 0.7428 - recall0.3: 0.7933 - tp0.5: 8802292.0000 - fp0.5: 176251
             9.0000 - tn0.5: 64910900.0000 - fn0.5: 3167475.0000 - precision0.5: 0.8332 - recall0.5: 0.7354 - tp0.7: 7853085.0000 - fp0.7: 831023.0000 - tn0.7: 65842424.0000 - fn0.7: 4116682.0000 - pre
             cision0.7: 0.9043 - recall0.7: 0.6561 - tp0.9: 5967523.0000 - fp0.9: 191510.0000 - tn0.9: 66481912.0000 - fn0.9: 6002244.0000 - precision0.9: 0.9689 - recall0.9: 0.4985 - accuracy: 0.9373
             - auc: 0.9166 - f1: 0.2642 - val_loss: 0.5155 - val_tp0.1: 2810372.0000 - val_fp0.1: 1944105.0000 - val_tn0.1: 14553841.0000 - val_fn0.1: 352482.0000 - val_precision0.1: 0.5911 - val_recal
             l0.1: 0.8886 - val_tp0.3: 2550568.0000 - val_fp0.3: 737116.0000 - val_tn0.3: 15760830.0000 - val_fn0.3: 612286.0000 - val_precision0.3: 0.7758 - val_recall0.3: 0.8064 - val_tp0.5: 2338331.
             0000 - val_fp0.5: 398618.0000 - val_tn0.5: 16099328.0000 - val_fn0.5: 824523.0000 - val_precision0.5: 0.8544 - val_recall0.5: 0.7393 - val_tp0.7: 2056023.0000 - val_fp0.7: 191281.0000 - va
             l_tn0.7: 16306665.0000 - val_fn0.7: 1106831.0000 - val_precision0.7: 0.9149 - val_recall0.7: 0.6501 - val_tp0.9: 1536052.0000 - val_fp0.9: 42617.0000 - val_tn0.9: 16455329.0000 - val_fn0.9
             : 1626802.0000 - val_precision0.9: 0.9730 - val_recall0.9: 0.4857 - val_accuracy: 0.9378 - val_auc: 0.9292 - val_f1: 0.2772
             Epoch 14/20
             300/300 [==============================] - 109s 364ms/step - loss: 0.5545 - tp0.1: 10404673.0000 - fp0.1: 8594836.0000 - tn0.1: 58078576.0000 - fn0.1: 1565094.0000 - precision0.1: 0.5476 -
              recall0.1: 0.8692 - tp0.3: 9502698.0000 - fp0.3: 3265228.0000 - tn0.3: 63408216.0000 - fn0.3: 2467069.0000 - precision0.3: 0.7443 - recall0.3: 0.7939 - tp0.5: 8806002.0000 - fp0.5: 173452
             7.0000 - tn0.5: 64938912.0000 - fn0.5: 3163765.0000 - precision0.5: 0.8354 - recall0.5: 0.7357 - tp0.7: 7871330.0000 - fp0.7: 811976.0000 - tn0.7: 65861468.0000 - fn0.7: 4098437.0000 - pre
             cision0.7: 0.9065 - recall0.7: 0.6576 - tp0.9: 5995175.0000 - fp0.9: 182094.0000 - tn0.9: 66491348.0000 - fn0.9: 5974592.0000 - precision0.9: 0.9705 - recall0.9: 0.5009 - accuracy: 0.9377
             - auc: 0.9180 - f1: 0.2642 - val_loss: 0.5147 - val_tp0.1: 2829492.0000 - val_fp0.1: 2130176.0000 - val_tn0.1: 14367770.0000 - val_fn0.1: 333362.0000 - val_precision0.1: 0.5705 - val_recal
             l0.1: 0.8946 - val_tp0.3: 2583127.0000 - val_fp0.3: 813224.0000 - val_tn0.3: 15684722.0000 - val_fn0.3: 579727.0000 - val_precision0.3: 0.7606 - val_recall0.3: 0.8167 - val_tp0.5: 2383747.
             0000 - val_fp0.5: 446660.0000 - val_tn0.5: 16051286.0000 - val_fn0.5: 779107.0000 - val_precision0.5: 0.8422 - val_recall0.5: 0.7537 - val_tp0.7: 2116906.0000 - val_fp0.7: 219992.0000 - va
             l_tn0.7: 16277954.0000 - val_fn0.7: 1045948.0000 - val_precision0.7: 0.9059 - val_recall0.7: 0.6693 - val_tp0.9: 1607900.0000 - val_fp0.9: 51317.0000 - val_tn0.9: 16446629.0000 - val_fn0.9
             : 1554954.0000 - val_precision0.9: 0.9691 - val_recall0.9: 0.5084 - val_accuracy: 0.9377 - val_auc: 0.9312 - val_f1: 0.2772
             Epoch 15/20
             300/300 [==============================] - 109s 364ms/step - loss: 0.5536 - tp0.1: 10410305.0000 - fp0.1: 8632096.0000 - tn0.1: 58041320.0000 - fn0.1: 1559462.0000 - precision0.1: 0.5467 -
              recall0.1: 0.8697 - tp0.3: 9510984.0000 - fp0.3: 3242903.0000 - tn0.3: 63430520.0000 - fn0.3: 2458783.0000 - precision0.3: 0.7457 - recall0.3: 0.7946 - tp0.5: 8812511.0000 - fp0.5: 170138
             1.0000 - tn0.5: 64972056.0000 - fn0.5: 3157256.0000 - precision0.5: 0.8382 - recall0.5: 0.7362 - tp0.7: 7877931.0000 - fp0.7: 793039.0000 - tn0.7: 65880400.0000 - fn0.7: 4091836.0000 - pre
             cision0.7: 0.9085 - recall0.7: 0.6582 - tp0.9: 5978990.0000 - fp0.9: 174678.0000 - tn0.9: 66498776.0000 - fn0.9: 5990777.0000 - precision0.9: 0.9716 - recall0.9: 0.4995 - accuracy: 0.9382
             - auc: 0.9183 - f1: 0.2642 - val_loss: 0.5193 - val_tp0.1: 2813989.0000 - val_fp0.1: 2032257.0000 - val_tn0.1: 14465689.0000 - val_fn0.1: 348865.0000 - val_precision0.1: 0.5807 - val_recal
             l0.1: 0.8897 - val_tp0.3: 2577154.0000 - val_fp0.3: 819794.0000 - val_tn0.3: 15678152.0000 - val_fn0.3: 585700.0000 - val_precision0.3: 0.7587 - val_recall0.3: 0.8148 - val_tp0.5: 2385705.
             0000 - val_fp0.5: 459176.0000 - val_tn0.5: 16038770.0000 - val_fn0.5: 777149.0000 - val_precision0.5: 0.8386 - val_recall0.5: 0.7543 - val_tp0.7: 2130654.0000 - val_fp0.7: 230334.0000 - va
             l_tn0.7: 16267612.0000 - val_fn0.7: 1032200.0000 - val_precision0.7: 0.9024 - val_recall0.7: 0.6736 - val_tp0.9: 1640662.0000 - val_fp0.9: 55692.0000 - val_tn0.9: 16442254.0000 - val_fn0.9
             : 1522192.0000 - val_precision0.9: 0.9672 - val_recall0.9: 0.5187 - val_accuracy: 0.9371 - val_auc: 0.9291 - val_f1: 0.2772
             Epoch 16/20
             300/300 [==============================] - 109s 364ms/step - loss: 0.5574 - tp0.1: 10366848.0000 - fp0.1: 8351245.0000 - tn0.1: 58322184.0000 - fn0.1: 1602919.0000 - precision0.1: 0.5538 -
              recall0.1: 0.8661 - tp0.3: 9482187.0000 - fp0.3: 3195743.0000 - tn0.3: 63477668.0000 - fn0.3: 2487580.0000 - precision0.3: 0.7479 - recall0.3: 0.7922 - tp0.5: 8790251.0000 - fp0.5: 169760
             0.0000 - tn0.5: 64975828.0000 - fn0.5: 3179516.0000 - precision0.5: 0.8381 - recall0.5: 0.7344 - tp0.7: 7865829.0000 - fp0.7: 803359.0000 - tn0.7: 65870080.0000 - fn0.7: 4103938.0000 - pre
             cision0.7: 0.9073 - recall0.7: 0.6571 - tp0.9: 6012200.0000 - fp0.9: 181018.0000 - tn0.9: 66492408.0000 - fn0.9: 5957567.0000 - precision0.9: 0.9708 - recall0.9: 0.5023 - accuracy: 0.9380
             - auc: 0.9168 - f1: 0.2642 - val_loss: 0.5190 - val_tp0.1: 2815670.0000 - val_fp0.1: 2047710.0000 - val_tn0.1: 14450236.0000 - val_fn0.1: 347184.0000 - val_precision0.1: 0.5790 - val_recal
             l0.1: 0.8902 - val_tp0.3: 2576965.0000 - val_fp0.3: 816090.0000 - val_tn0.3: 15681856.0000 - val_fn0.3: 585889.0000 - val_precision0.3: 0.7595 - val_recall0.3: 0.8148 - val_tp0.5: 2382191.
             0000 - val_fp0.5: 452866.0000 - val_tn0.5: 16045080.0000 - val_fn0.5: 780663.0000 - val_precision0.5: 0.8403 - val_recall0.5: 0.7532 - val_tp0.7: 2122711.0000 - val_fp0.7: 224345.0000 - va
             l_tn0.7: 16273601.0000 - val_fn0.7: 1040143.0000 - val_precision0.7: 0.9044 - val_recall0.7: 0.6711 - val_tp0.9: 1623419.0000 - val_fp0.9: 52719.0000 - val_tn0.9: 16445227.0000 - val_fn0.9
             : 1539435.0000 - val_precision0.9: 0.9685 - val_recall0.9: 0.5133 - val_accuracy: 0.9373 - val_auc: 0.9293 - val_f1: 0.2772
             Epoch 17/20
             300/300 [==============================] - 109s 364ms/step - loss: 0.5518 - tp0.1: 10385606.0000 - fp0.1: 8322065.0000 - tn0.1: 58351360.0000 - fn0.1: 1584161.0000 - precision0.1: 0.5552 -
              recall0.1: 0.8677 - tp0.3: 9501942.0000 - fp0.3: 3183126.0000 - tn0.3: 63490304.0000 - fn0.3: 2467825.0000 - precision0.3: 0.7491 - recall0.3: 0.7938 - tp0.5: 8803116.0000 - fp0.5: 167708
             6.0000 - tn0.5: 64996332.0000 - fn0.5: 3166651.0000 - precision0.5: 0.8400 - recall0.5: 0.7354 - tp0.7: 7870926.0000 - fp0.7: 783130.0000 - tn0.7: 65890296.0000 - fn0.7: 4098841.0000 - pre
             cision0.7: 0.9095 - recall0.7: 0.6576 - tp0.9: 5981676.0000 - fp0.9: 175979.0000 - tn0.9: 66497456.0000 - fn0.9: 5988091.0000 - precision0.9: 0.9714 - recall0.9: 0.4997 - accuracy: 0.9384
             - auc: 0.9178 - f1: 0.2642 - val_loss: 0.5176 - val_tp0.1: 2814391.0000 - val_fp0.1: 2019842.0000 - val_tn0.1: 14478104.0000 - val_fn0.1: 348463.0000 - val_precision0.1: 0.5822 - val_recal
             l0.1: 0.8898 - val_tp0.3: 2575426.0000 - val_fp0.3: 804457.0000 - val_tn0.3: 15693489.0000 - val_fn0.3: 587428.0000 - val_precision0.3: 0.7620 - val_recall0.3: 0.8143 - val_tp0.5: 2377184.
             0000 - val_fp0.5: 443147.0000 - val_tn0.5: 16054799.0000 - val_fn0.5: 785670.0000 - val_precision0.5: 0.8429 - val_recall0.5: 0.7516 - val_tp0.7: 2111101.0000 - val_fp0.7: 215747.0000 - va
             l_tn0.7: 16282199.0000 - val_fn0.7: 1051753.0000 - val_precision0.7: 0.9073 - val_recall0.7: 0.6675 - val_tp0.9: 1598659.0000 - val_fp0.9: 48117.0000 - val_tn0.9: 16449829.0000 - val_fn0.9
             : 1564195.0000 - val_precision0.9: 0.9708 - val_recall0.9: 0.5054 - val_accuracy: 0.9375 - val_auc: 0.9293 - val_f1: 0.2772
             Epoch 18/20
             300/300 [==============================] - 109s 365ms/step - loss: 0.5527 - tp0.1: 10394599.0000 - fp0.1: 8422625.0000 - tn0.1: 58250828.0000 - fn0.1: 1575168.0000 - precision0.1: 0.5524 -
              recall0.1: 0.8684 - tp0.3: 9515719.0000 - fp0.3: 3245634.0000 - tn0.3: 63427764.0000 - fn0.3: 2454048.0000 - precision0.3: 0.7457 - recall0.3: 0.7950 - tp0.5: 8829115.0000 - fp0.5: 172580
             7.0000 - tn0.5: 64947624.0000 - fn0.5: 3140652.0000 - precision0.5: 0.8365 - recall0.5: 0.7376 - tp0.7: 7902699.0000 - fp0.7: 815002.0000 - tn0.7: 65858428.0000 - fn0.7: 4067068.0000 - pre
             cision0.7: 0.9065 - recall0.7: 0.6602 - tp0.9: 5992723.0000 - fp0.9: 181617.0000 - tn0.9: 66491804.0000 - fn0.9: 5977044.0000 - precision0.9: 0.9706 - recall0.9: 0.5007 - accuracy: 0.9381
             - auc: 0.9180 - f1: 0.2642 - val_loss: 0.5170 - val_tp0.1: 2818280.0000 - val_fp0.1: 2051127.0000 - val_tn0.1: 14446819.0000 - val_fn0.1: 344574.0000 - val_precision0.1: 0.5788 - val_recal
             l0.1: 0.8911 - val_tp0.3: 2582361.0000 - val_fp0.3: 822058.0000 - val_tn0.3: 15675888.0000 - val_fn0.3: 580493.0000 - val_precision0.3: 0.7585 - val_recall0.3: 0.8165 - val_tp0.5: 2386572.
             0000 - val_fp0.5: 453718.0000 - val_tn0.5: 16044228.0000 - val_fn0.5: 776282.0000 - val_precision0.5: 0.8403 - val_recall0.5: 0.7546 - val_tp0.7: 2123293.0000 - val_fp0.7: 221964.0000 - va
             l_tn0.7: 16275982.0000 - val_fn0.7: 1039561.0000 - val_precision0.7: 0.9054 - val_recall0.7: 0.6713 - val_tp0.9: 1613816.0000 - val_fp0.9: 50399.0000 - val_tn0.9: 16447547.0000 - val_fn0.9
             : 1549038.0000 - val_precision0.9: 0.9697 - val_recall0.9: 0.5102 - val_accuracy: 0.9374 - val_auc: 0.9297 - val_f1: 0.2772
             Epoch 19/20
             300/300 [==============================] - 109s 364ms/step - loss: 0.5502 - tp0.1: 10400846.0000 - fp0.1: 8405890.0000 - tn0.1: 58267520.0000 - fn0.1: 1568921.0000 - precision0.1: 0.5530 -
              recall0.1: 0.8689 - tp0.3: 9521394.0000 - fp0.3: 3231081.0000 - tn0.3: 63442368.0000 - fn0.3: 2448373.0000 - precision0.3: 0.7466 - recall0.3: 0.7955 - tp0.5: 8830551.0000 - fp0.5: 170937
             1.0000 - tn0.5: 64964080.0000 - fn0.5: 3139216.0000 - precision0.5: 0.8378 - recall0.5: 0.7377 - tp0.7: 7900201.0000 - fp0.7: 803691.0000 - tn0.7: 65869728.0000 - fn0.7: 4069566.0000 - pre
             cision0.7: 0.9077 - recall0.7: 0.6600 - tp0.9: 5995260.0000 - fp0.9: 181599.0000 - tn0.9: 66491848.0000 - fn0.9: 5974507.0000 - precision0.9: 0.9706 - recall0.9: 0.5009 - accuracy: 0.9383
             - auc: 0.9184 - f1: 0.2642 - val_loss: 0.5175 - val_tp0.1: 2819063.0000 - val_fp0.1: 2064294.0000 - val_tn0.1: 14433652.0000 - val_fn0.1: 343791.0000 - val_precision0.1: 0.5773 - val_recal
             l0.1: 0.8913 - val_tp0.3: 2584585.0000 - val_fp0.3: 828069.0000 - val_tn0.3: 15669877.0000 - val_fn0.3: 578269.0000 - val_precision0.3: 0.7574 - val_recall0.3: 0.8172 - val_tp0.5: 2390134.
             0000 - val_fp0.5: 458519.0000 - val_tn0.5: 16039427.0000 - val_fn0.5: 772720.0000 - val_precision0.5: 0.8390 - val_recall0.5: 0.7557 - val_tp0.7: 2128769.0000 - val_fp0.7: 225470.0000 - va
             l_tn0.7: 16272476.0000 - val_fn0.7: 1034085.0000 - val_precision0.7: 0.9042 - val_recall0.7: 0.6731 - val_tp0.9: 1617794.0000 - val_fp0.9: 50968.0000 - val_tn0.9: 16446978.0000 - val_fn0.9
             : 1545060.0000 - val_precision0.9: 0.9695 - val_recall0.9: 0.5115 - val_accuracy: 0.9374 - val_auc: 0.9298 - val_f1: 0.2772
             Epoch 20/20
             300/300 [==============================] - 109s 364ms/step - loss: 0.5540 - tp0.1: 10388304.0000 - fp0.1: 8427637.0000 - tn0.1: 58245784.0000 - fn0.1: 1581463.0000 - precision0.1: 0.5521 -
              recall0.1: 0.8679 - tp0.3: 9510729.0000 - fp0.3: 3244455.0000 - tn0.3: 63429016.0000 - fn0.3: 2459038.0000 - precision0.3: 0.7456 - recall0.3: 0.7946 - tp0.5: 8826300.0000 - fp0.5: 173006
             6.0000 - tn0.5: 64943372.0000 - fn0.5: 3143467.0000 - precision0.5: 0.8361 - recall0.5: 0.7374 - tp0.7: 7907765.0000 - fp0.7: 815687.0000 - tn0.7: 65857736.0000 - fn0.7: 4062002.0000 - pre
             cision0.7: 0.9065 - recall0.7: 0.6606 - tp0.9: 6007828.0000 - fp0.9: 181663.0000 - tn0.9: 66491748.0000 - fn0.9: 5961939.0000 - precision0.9: 0.9706 - recall0.9: 0.5019 - accuracy: 0.9380
             - auc: 0.9177 - f1: 0.2642 - val_loss: 0.5180 - val_tp0.1: 2817068.0000 - val_fp0.1: 2045853.0000 - val_tn0.1: 14452093.0000 - val_fn0.1: 345786.0000 - val_precision0.1: 0.5793 - val_recal
             l0.1: 0.8907 - val_tp0.3: 2578834.0000 - val_fp0.3: 815796.0000 - val_tn0.3: 15682150.0000 - val_fn0.3: 584020.0000 - val_precision0.3: 0.7597 - val_recall0.3: 0.8154 - val_tp0.5: 2382089.
             0000 - val_fp0.5: 450657.0000 - val_tn0.5: 16047289.0000 - val_fn0.5: 780765.0000 - val_precision0.5: 0.8409 - val_recall0.5: 0.7531 - val_tp0.7: 2118583.0000 - val_fp0.7: 220753.0000 - va
             l_tn0.7: 16277193.0000 - val_fn0.7: 1044271.0000 - val_precision0.7: 0.9056 - val_recall0.7: 0.6698 - val_tp0.9: 1609924.0000 - val_fp0.9: 50267.0000 - val_tn0.9: 16447679.0000 - val_fn0.9
             : 1552930.0000 - val_precision0.9: 0.9697 - val_recall0.9: 0.5090 - val_accuracy: 0.9374 - val_auc: 0.9295 - val_f1: 0.2772
             --- Running training session 59/140
             {'hp_epochs': 20, 'hp_batch_size': 6, 'hp_scaler': 'maxabs', 'hp_n_levels': 3, 'hp_first_filters': 16, 'hp_pool_size': 2, 'hp_input_size': 4096, 'hp_lr_start': 0.06810286704342322, 'hp_lr_
             power': 5.0}
             --- repeat #: 1
             input - shape:   (None, 4096, 1)
             output - shape:  (None, 4096, 1)
             Epoch 1/20
             800/800 [==============================] - 40s 33ms/step - loss: 1.2638 - tp0.1: 2568942.0000 - fp0.1: 8167222.0000 - tn0.1: 8515746.0000 - fn0.1: 408890.0000 - precision0.1: 0.2393 - reca
             ll0.1: 0.8627 - tp0.3: 1525563.0000 - fp0.3: 1857776.0000 - tn0.3: 14825192.0000 - fn0.3: 1452269.0000 - precision0.3: 0.4509 - recall0.3: 0.5123 - tp0.5: 952545.0000 - fp0.5: 543268.0000
             - tn0.5: 16139700.0000 - fn0.5: 2025287.0000 - precision0.5: 0.6368 - recall0.5: 0.3199 - tp0.7: 600606.0000 - fp0.7: 171741.0000 - tn0.7: 16511227.0000 - fn0.7: 2377226.0000 - precision0.
             7: 0.7776 - recall0.7: 0.2017 - tp0.9: 266111.0000 - fp0.9: 28495.0000 - tn0.9: 16654473.0000 - fn0.9: 2711721.0000 - precision0.9: 0.9033 - recall0.9: 0.0894 - accuracy: 0.8694 - auc: 0.7
             995 - f1: 0.2631 - val_loss: 3.2184 - val_tp0.1: 785569.0000 - val_fp0.1: 3481300.0000 - val_tn0.1: 630043.0000 - val_fn0.1: 18288.0000 - val_precision0.1: 0.1841 - val_recall0.1: 0.9772 -
              val_tp0.3: 774801.0000 - val_fp0.3: 3330916.0000 - val_tn0.3: 780427.0000 - val_fn0.3: 29056.0000 - val_precision0.3: 0.1887 - val_recall0.3: 0.9639 - val_tp0.5: 766485.0000 - val_fp0.5:
             3233476.0000 - val_tn0.5: 877867.0000 - val_fn0.5: 37372.0000 - val_precision0.5: 0.1916 - val_recall0.5: 0.9535 - val_tp0.7: 754282.0000 - val_fp0.7: 3093977.0000 - val_tn0.7: 1017366.000
             0 - val_fn0.7: 49575.0000 - val_precision0.7: 0.1960 - val_recall0.7: 0.9383 - val_tp0.9: 704600.0000 - val_fp0.9: 2525773.0000 - val_tn0.9: 1585570.0000 - val_fn0.9: 99257.0000 - val_prec
             ision0.9: 0.2181 - val_recall0.9: 0.8765 - val_accuracy: 0.3345 - val_auc: 0.7196 - val_f1: 0.2811
             Epoch 2/20
             800/800 [==============================] - 23s 28ms/step - loss: 1.0608 - tp0.1: 2627985.0000 - fp0.1: 7509687.0000 - tn0.1: 9173281.0000 - fn0.1: 349847.0000 - precision0.1: 0.2592 - reca
             ll0.1: 0.8825 - tp0.3: 1657396.0000 - fp0.3: 1642042.0000 - tn0.3: 15040926.0000 - fn0.3: 1320436.0000 - precision0.3: 0.5023 - recall0.3: 0.5566 - tp0.5: 1186375.0000 - fp0.5: 597404.0000
              - tn0.5: 16085564.0000 - fn0.5: 1791457.0000 - precision0.5: 0.6651 - recall0.5: 0.3984 - tp0.7: 796587.0000 - fp0.7: 190824.0000 - tn0.7: 16492144.0000 - fn0.7: 2181245.0000 - precision0
             .7: 0.8067 - recall0.7: 0.2675 - tp0.9: 382973.0000 - fp0.9: 30617.0000 - tn0.9: 16652351.0000 - fn0.9: 2594859.0000 - precision0.9: 0.9260 - recall0.9: 0.1286 - accuracy: 0.8785 - auc: 0.
             8268 - f1: 0.2631 - val_loss: 2.8384 - val_tp0.1: 770043.0000 - val_fp0.1: 3359592.0000 - val_tn0.1: 751751.0000 - val_fn0.1: 33814.0000 - val_precision0.1: 0.1865 - val_recall0.1: 0.9579
             - val_tp0.3: 728149.0000 - val_fp0.3: 3009354.0000 - val_tn0.3: 1101989.0000 - val_fn0.3: 75708.0000 - val_precision0.3: 0.1948 - val_recall0.3: 0.9058 - val_tp0.5: 698943.0000 - val_fp0.5
             : 2825281.0000 - val_tn0.5: 1286062.0000 - val_fn0.5: 104914.0000 - val_precision0.5: 0.1983 - val_recall0.5: 0.8695 - val_tp0.7: 650069.0000 - val_fp0.7: 2558191.0000 - val_tn0.7: 1553152
             .0000 - val_fn0.7: 153788.0000 - val_precision0.7: 0.2026 - val_recall0.7: 0.8087 - val_tp0.9: 523649.0000 - val_fp0.9: 1973892.0000 - val_tn0.9: 2137451.0000 - val_fn0.9: 280208.0000 - va
             l_precision0.9: 0.2097 - val_recall0.9: 0.6514 - val_accuracy: 0.4039 - val_auc: 0.6320 - val_f1: 0.2811
             Epoch 3/20
             800/800 [==============================] - 22s 28ms/step - loss: 0.9210 - tp0.1: 2627224.0000 - fp0.1: 6591219.0000 - tn0.1: 10091749.0000 - fn0.1: 350608.0000 - precision0.1: 0.2850 - rec
             all0.1: 0.8823 - tp0.3: 1806105.0000 - fp0.3: 1745398.0000 - tn0.3: 14937570.0000 - fn0.3: 1171727.0000 - precision0.3: 0.5085 - recall0.3: 0.6065 - tp0.5: 1334712.0000 - fp0.5: 661778.000
             0 - tn0.5: 16021190.0000 - fn0.5: 1643120.0000 - precision0.5: 0.6685 - recall0.5: 0.4482 - tp0.7: 898005.0000 - fp0.7: 202721.0000 - tn0.7: 16480247.0000 - fn0.7: 2079827.0000 - precision
             0.7: 0.8158 - recall0.7: 0.3016 - tp0.9: 425030.0000 - fp0.9: 26905.0000 - tn0.9: 16656063.0000 - fn0.9: 2552802.0000 - precision0.9: 0.9405 - recall0.9: 0.1427 - accuracy: 0.8828 - auc: 0
             .8423 - f1: 0.2631 - val_loss: 1.2386 - val_tp0.1: 748635.0000 - val_fp0.1: 2823638.0000 - val_tn0.1: 1287705.0000 - val_fn0.1: 55222.0000 - val_precision0.1: 0.2096 - val_recall0.1: 0.931
             3 - val_tp0.3: 581617.0000 - val_fp0.3: 1541416.0000 - val_tn0.3: 2569927.0000 - val_fn0.3: 222240.0000 - val_precision0.3: 0.2740 - val_recall0.3: 0.7235 - val_tp0.5: 438469.0000 - val_fp
             0.5: 838651.0000 - val_tn0.5: 3272692.0000 - val_fn0.5: 365388.0000 - val_precision0.5: 0.3433 - val_recall0.5: 0.5455 - val_tp0.7: 283136.0000 - val_fp0.7: 250330.0000 - val_tn0.7: 386101
             3.0000 - val_fn0.7: 520721.0000 - val_precision0.7: 0.5307 - val_recall0.7: 0.3522 - val_tp0.9: 100313.0000 - val_fp0.9: 12675.0000 - val_tn0.9: 4098668.0000 - val_fn0.9: 703544.0000 - val
             _precision0.9: 0.8878 - val_recall0.9: 0.1248 - val_accuracy: 0.7550 - val_auc: 0.7546 - val_f1: 0.2811
             Epoch 4/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.8790 - tp0.1: 2622979.0000 - fp0.1: 6082638.0000 - tn0.1: 10600330.0000 - fn0.1: 354853.0000 - precision0.1: 0.3013 - rec
             all0.1: 0.8808 - tp0.3: 1907681.0000 - fp0.3: 1754807.0000 - tn0.3: 14928161.0000 - fn0.3: 1070151.0000 - precision0.3: 0.5209 - recall0.3: 0.6406 - tp0.5: 1430397.0000 - fp0.5: 638842.000
             0 - tn0.5: 16044126.0000 - fn0.5: 1547435.0000 - precision0.5: 0.6913 - recall0.5: 0.4803 - tp0.7: 1005392.0000 - fp0.7: 200266.0000 - tn0.7: 16482702.0000 - fn0.7: 1972440.0000 - precisio
             n0.7: 0.8339 - recall0.7: 0.3376 - tp0.9: 537695.0000 - fp0.9: 32470.0000 - tn0.9: 16650498.0000 - fn0.9: 2440137.0000 - precision0.9: 0.9431 - recall0.9: 0.1806 - accuracy: 0.8888 - auc:
             0.8539 - f1: 0.2631 - val_loss: 1.4382 - val_tp0.1: 759788.0000 - val_fp0.1: 3033777.0000 - val_tn0.1: 1077566.0000 - val_fn0.1: 44069.0000 - val_precision0.1: 0.2003 - val_recall0.1: 0.94
             52 - val_tp0.3: 676790.0000 - val_fp0.3: 2190828.0000 - val_tn0.3: 1920515.0000 - val_fn0.3: 127067.0000 - val_precision0.3: 0.2360 - val_recall0.3: 0.8419 - val_tp0.5: 587381.0000 - val_f
             p0.5: 1457790.0000 - val_tn0.5: 2653553.0000 - val_fn0.5: 216476.0000 - val_precision0.5: 0.2872 - val_recall0.5: 0.7307 - val_tp0.7: 467177.0000 - val_fp0.7: 733730.0000 - val_tn0.7: 3377
             613.0000 - val_fn0.7: 336680.0000 - val_precision0.7: 0.3890 - val_recall0.7: 0.5812 - val_tp0.9: 265920.0000 - val_fp0.9: 128059.0000 - val_tn0.9: 3983284.0000 - val_fn0.9: 537937.0000 -
             val_precision0.9: 0.6750 - val_recall0.9: 0.3308 - val_accuracy: 0.6594 - val_auc: 0.7741 - val_f1: 0.2811
             Epoch 5/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.8323 - tp0.1: 2632941.0000 - fp0.1: 5640241.0000 - tn0.1: 11042727.0000 - fn0.1: 344891.0000 - precision0.1: 0.3183 - rec
             all0.1: 0.8842 - tp0.3: 1987373.0000 - fp0.3: 1723448.0000 - tn0.3: 14959520.0000 - fn0.3: 990459.0000 - precision0.3: 0.5356 - recall0.3: 0.6674 - tp0.5: 1504902.0000 - fp0.5: 660742.0000
              - tn0.5: 16022226.0000 - fn0.5: 1472930.0000 - precision0.5: 0.6949 - recall0.5: 0.5054 - tp0.7: 1062651.0000 - fp0.7: 214795.0000 - tn0.7: 16468173.0000 - fn0.7: 1915181.0000 - precision
             0.7: 0.8319 - recall0.7: 0.3569 - tp0.9: 582194.0000 - fp0.9: 33645.0000 - tn0.9: 16649323.0000 - fn0.9: 2395638.0000 - precision0.9: 0.9454 - recall0.9: 0.1955 - accuracy: 0.8915 - auc: 0
             .8647 - f1: 0.2631 - val_loss: 1.0148 - val_tp0.1: 708531.0000 - val_fp0.1: 1723364.0000 - val_tn0.1: 2387979.0000 - val_fn0.1: 95326.0000 - val_precision0.1: 0.2913 - val_recall0.1: 0.881
             4 - val_tp0.3: 592243.0000 - val_fp0.3: 884014.0000 - val_tn0.3: 3227329.0000 - val_fn0.3: 211614.0000 - val_precision0.3: 0.4012 - val_recall0.3: 0.7368 - val_tp0.5: 463295.0000 - val_fp0
             .5: 407207.0000 - val_tn0.5: 3704136.0000 - val_fn0.5: 340562.0000 - val_precision0.5: 0.5322 - val_recall0.5: 0.5763 - val_tp0.7: 324633.0000 - val_fp0.7: 153907.0000 - val_tn0.7: 3957436
             .0000 - val_fn0.7: 479224.0000 - val_precision0.7: 0.6784 - val_recall0.7: 0.4038 - val_tp0.9: 171994.0000 - val_fp0.9: 27494.0000 - val_tn0.9: 4083849.0000 - val_fn0.9: 631863.0000 - val_
             precision0.9: 0.8622 - val_recall0.9: 0.2140 - val_accuracy: 0.8479 - val_auc: 0.8326 - val_f1: 0.2811
             Epoch 6/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.8051 - tp0.1: 2656801.0000 - fp0.1: 5609482.0000 - tn0.1: 11073486.0000 - fn0.1: 321031.0000 - precision0.1: 0.3214 - rec
             all0.1: 0.8922 - tp0.3: 2004568.0000 - fp0.3: 1721622.0000 - tn0.3: 14961346.0000 - fn0.3: 973264.0000 - precision0.3: 0.5380 - recall0.3: 0.6732 - tp0.5: 1535081.0000 - fp0.5: 636708.0000
              - tn0.5: 16046260.0000 - fn0.5: 1442751.0000 - precision0.5: 0.7068 - recall0.5: 0.5155 - tp0.7: 1104868.0000 - fp0.7: 195727.0000 - tn0.7: 16487241.0000 - fn0.7: 1872964.0000 - precision
             0.7: 0.8495 - recall0.7: 0.3710 - tp0.9: 638669.0000 - fp0.9: 30016.0000 - tn0.9: 16652952.0000 - fn0.9: 2339163.0000 - precision0.9: 0.9551 - recall0.9: 0.2145 - accuracy: 0.8942 - auc: 0
             .8708 - f1: 0.2631 - val_loss: 1.1897 - val_tp0.1: 687813.0000 - val_fp0.1: 1965439.0000 - val_tn0.1: 2145904.0000 - val_fn0.1: 116044.0000 - val_precision0.1: 0.2592 - val_recall0.1: 0.85
             56 - val_tp0.3: 589213.0000 - val_fp0.3: 1346718.0000 - val_tn0.3: 2764625.0000 - val_fn0.3: 214644.0000 - val_precision0.3: 0.3044 - val_recall0.3: 0.7330 - val_tp0.5: 480400.0000 - val_f
             p0.5: 797605.0000 - val_tn0.5: 3313738.0000 - val_fn0.5: 323457.0000 - val_precision0.5: 0.3759 - val_recall0.5: 0.5976 - val_tp0.7: 356338.0000 - val_fp0.7: 349313.0000 - val_tn0.7: 37620
             30.0000 - val_fn0.7: 447519.0000 - val_precision0.7: 0.5050 - val_recall0.7: 0.4433 - val_tp0.9: 203593.0000 - val_fp0.9: 63510.0000 - val_tn0.9: 4047833.0000 - val_fn0.9: 600264.0000 - va
             l_precision0.9: 0.7622 - val_recall0.9: 0.2533 - val_accuracy: 0.7719 - val_auc: 0.7799 - val_f1: 0.2811
             Epoch 7/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.7730 - tp0.1: 2661167.0000 - fp0.1: 5252891.0000 - tn0.1: 11430077.0000 - fn0.1: 316665.0000 - precision0.1: 0.3363 - rec
             all0.1: 0.8937 - tp0.3: 2045078.0000 - fp0.3: 1661108.0000 - tn0.3: 15021860.0000 - fn0.3: 932754.0000 - precision0.3: 0.5518 - recall0.3: 0.6868 - tp0.5: 1572828.0000 - fp0.5: 627634.0000
              - tn0.5: 16055334.0000 - fn0.5: 1405004.0000 - precision0.5: 0.7148 - recall0.5: 0.5282 - tp0.7: 1148247.0000 - fp0.7: 206720.0000 - tn0.7: 16476248.0000 - fn0.7: 1829585.0000 - precision
             0.7: 0.8474 - recall0.7: 0.3856 - tp0.9: 702777.0000 - fp0.9: 37332.0000 - tn0.9: 16645636.0000 - fn0.9: 2275055.0000 - precision0.9: 0.9496 - recall0.9: 0.2360 - accuracy: 0.8966 - auc: 0
             .8779 - f1: 0.2631 - val_loss: 0.9848 - val_tp0.1: 705842.0000 - val_fp0.1: 1730539.0000 - val_tn0.1: 2380804.0000 - val_fn0.1: 98015.0000 - val_precision0.1: 0.2897 - val_recall0.1: 0.878
             1 - val_tp0.3: 495957.0000 - val_fp0.3: 601184.0000 - val_tn0.3: 3510159.0000 - val_fn0.3: 307900.0000 - val_precision0.3: 0.4520 - val_recall0.3: 0.6170 - val_tp0.5: 353962.0000 - val_fp0
             .5: 226006.0000 - val_tn0.5: 3885337.0000 - val_fn0.5: 449895.0000 - val_precision0.5: 0.6103 - val_recall0.5: 0.4403 - val_tp0.7: 232086.0000 - val_fp0.7: 57808.0000 - val_tn0.7: 4053535.
             0000 - val_fn0.7: 571771.0000 - val_precision0.7: 0.8006 - val_recall0.7: 0.2887 - val_tp0.9: 109899.0000 - val_fp0.9: 4377.0000 - val_tn0.9: 4106966.0000 - val_fn0.9: 693958.0000 - val_pr
             ecision0.9: 0.9617 - val_recall0.9: 0.1367 - val_accuracy: 0.8625 - val_auc: 0.8220 - val_f1: 0.2811
             Epoch 8/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.7537 - tp0.1: 2668427.0000 - fp0.1: 5092328.0000 - tn0.1: 11590640.0000 - fn0.1: 309405.0000 - precision0.1: 0.3438 - rec
             all0.1: 0.8961 - tp0.3: 2091292.0000 - fp0.3: 1655195.0000 - tn0.3: 15027773.0000 - fn0.3: 886540.0000 - precision0.3: 0.5582 - recall0.3: 0.7023 - tp0.5: 1591876.0000 - fp0.5: 604215.0000
              - tn0.5: 16078753.0000 - fn0.5: 1385956.0000 - precision0.5: 0.7249 - recall0.5: 0.5346 - tp0.7: 1154686.0000 - fp0.7: 198461.0000 - tn0.7: 16484507.0000 - fn0.7: 1823146.0000 - precision
             0.7: 0.8533 - recall0.7: 0.3878 - tp0.9: 706986.0000 - fp0.9: 36859.0000 - tn0.9: 16646109.0000 - fn0.9: 2270846.0000 - precision0.9: 0.9504 - recall0.9: 0.2374 - accuracy: 0.8988 - auc: 0
             .8827 - f1: 0.2631 - val_loss: 1.0536 - val_tp0.1: 717248.0000 - val_fp0.1: 2127277.0000 - val_tn0.1: 1984066.0000 - val_fn0.1: 86609.0000 - val_precision0.1: 0.2522 - val_recall0.1: 0.892
             3 - val_tp0.3: 516820.0000 - val_fp0.3: 718092.0000 - val_tn0.3: 3393251.0000 - val_fn0.3: 287037.0000 - val_precision0.3: 0.4185 - val_recall0.3: 0.6429 - val_tp0.5: 349749.0000 - val_fp0
             .5: 209234.0000 - val_tn0.5: 3902109.0000 - val_fn0.5: 454108.0000 - val_precision0.5: 0.6257 - val_recall0.5: 0.4351 - val_tp0.7: 217539.0000 - val_fp0.7: 55114.0000 - val_tn0.7: 4056229.
             0000 - val_fn0.7: 586318.0000 - val_precision0.7: 0.7979 - val_recall0.7: 0.2706 - val_tp0.9: 108545.0000 - val_fp0.9: 6637.0000 - val_tn0.9: 4104706.0000 - val_fn0.9: 695312.0000 - val_pr
             ecision0.9: 0.9424 - val_recall0.9: 0.1350 - val_accuracy: 0.8650 - val_auc: 0.8110 - val_f1: 0.2811
             Epoch 9/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.7245 - tp0.1: 2670184.0000 - fp0.1: 4736653.0000 - tn0.1: 11946315.0000 - fn0.1: 307648.0000 - precision0.1: 0.3605 - rec
             all0.1: 0.8967 - tp0.3: 2138051.0000 - fp0.3: 1655069.0000 - tn0.3: 15027899.0000 - fn0.3: 839781.0000 - precision0.3: 0.5637 - recall0.3: 0.7180 - tp0.5: 1658889.0000 - fp0.5: 602716.0000
              - tn0.5: 16080252.0000 - fn0.5: 1318943.0000 - precision0.5: 0.7335 - recall0.5: 0.5571 - tp0.7: 1231743.0000 - fp0.7: 199604.0000 - tn0.7: 16483364.0000 - fn0.7: 1746089.0000 - precision
             0.7: 0.8605 - recall0.7: 0.4136 - tp0.9: 770284.0000 - fp0.9: 38798.0000 - tn0.9: 16644170.0000 - fn0.9: 2207548.0000 - precision0.9: 0.9520 - recall0.9: 0.2587 - accuracy: 0.9023 - auc: 0
             .8890 - f1: 0.2631 - val_loss: 0.9833 - val_tp0.1: 684923.0000 - val_fp0.1: 1482632.0000 - val_tn0.1: 2628711.0000 - val_fn0.1: 118934.0000 - val_precision0.1: 0.3160 - val_recall0.1: 0.85
             20 - val_tp0.3: 378339.0000 - val_fp0.3: 205771.0000 - val_tn0.3: 3905572.0000 - val_fn0.3: 425518.0000 - val_precision0.3: 0.6477 - val_recall0.3: 0.4707 - val_tp0.5: 214088.0000 - val_fp
             0.5: 39231.0000 - val_tn0.5: 4072112.0000 - val_fn0.5: 589769.0000 - val_precision0.5: 0.8451 - val_recall0.5: 0.2663 - val_tp0.7: 124578.0000 - val_fp0.7: 7623.0000 - val_tn0.7: 4103720.0
             000 - val_fn0.7: 679279.0000 - val_precision0.7: 0.9423 - val_recall0.7: 0.1550 - val_tp0.9: 59851.0000 - val_fp0.9: 608.0000 - val_tn0.9: 4110735.0000 - val_fn0.9: 744006.0000 - val_preci
             sion0.9: 0.9899 - val_recall0.9: 0.0745 - val_accuracy: 0.8720 - val_auc: 0.8270 - val_f1: 0.2811
             Epoch 10/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.7278 - tp0.1: 2665983.0000 - fp0.1: 4770602.0000 - tn0.1: 11912366.0000 - fn0.1: 311849.0000 - precision0.1: 0.3585 - rec
             all0.1: 0.8953 - tp0.3: 2137054.0000 - fp0.3: 1618394.0000 - tn0.3: 15064574.0000 - fn0.3: 840778.0000 - precision0.3: 0.5691 - recall0.3: 0.7177 - tp0.5: 1657865.0000 - fp0.5: 592475.0000
              - tn0.5: 16090493.0000 - fn0.5: 1319967.0000 - precision0.5: 0.7367 - recall0.5: 0.5567 - tp0.7: 1234306.0000 - fp0.7: 193079.0000 - tn0.7: 16489889.0000 - fn0.7: 1743526.0000 - precision
             0.7: 0.8647 - recall0.7: 0.4145 - tp0.9: 773361.0000 - fp0.9: 37289.0000 - tn0.9: 16645679.0000 - fn0.9: 2204471.0000 - precision0.9: 0.9540 - recall0.9: 0.2597 - accuracy: 0.9027 - auc: 0
             .8886 - f1: 0.2631 - val_loss: 0.9507 - val_tp0.1: 693260.0000 - val_fp0.1: 1463538.0000 - val_tn0.1: 2647805.0000 - val_fn0.1: 110597.0000 - val_precision0.1: 0.3214 - val_recall0.1: 0.86
             24 - val_tp0.3: 398366.0000 - val_fp0.3: 212804.0000 - val_tn0.3: 3898539.0000 - val_fn0.3: 405491.0000 - val_precision0.3: 0.6518 - val_recall0.3: 0.4956 - val_tp0.5: 241139.0000 - val_fp
             0.5: 41379.0000 - val_tn0.5: 4069964.0000 - val_fn0.5: 562718.0000 - val_precision0.5: 0.8535 - val_recall0.5: 0.3000 - val_tp0.7: 143798.0000 - val_fp0.7: 8441.0000 - val_tn0.7: 4102902.0
             000 - val_fn0.7: 660059.0000 - val_precision0.7: 0.9446 - val_recall0.7: 0.1789 - val_tp0.9: 73993.0000 - val_fp0.9: 945.0000 - val_tn0.9: 4110398.0000 - val_fn0.9: 729864.0000 - val_preci
             sion0.9: 0.9874 - val_recall0.9: 0.0920 - val_accuracy: 0.8771 - val_auc: 0.8421 - val_f1: 0.2811
             Epoch 11/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.7098 - tp0.1: 2671173.0000 - fp0.1: 4583226.0000 - tn0.1: 12099742.0000 - fn0.1: 306659.0000 - precision0.1: 0.3682 - rec
             all0.1: 0.8970 - tp0.3: 2161831.0000 - fp0.3: 1611405.0000 - tn0.3: 15071563.0000 - fn0.3: 816001.0000 - precision0.3: 0.5729 - recall0.3: 0.7260 - tp0.5: 1683781.0000 - fp0.5: 593951.0000
              - tn0.5: 16089017.0000 - fn0.5: 1294051.0000 - precision0.5: 0.7392 - recall0.5: 0.5654 - tp0.7: 1246509.0000 - fp0.7: 197501.0000 - tn0.7: 16485467.0000 - fn0.7: 1731323.0000 - precision
             0.7: 0.8632 - recall0.7: 0.4186 - tp0.9: 780021.0000 - fp0.9: 37187.0000 - tn0.9: 16645781.0000 - fn0.9: 2197811.0000 - precision0.9: 0.9545 - recall0.9: 0.2619 - accuracy: 0.9040 - auc: 0
             .8921 - f1: 0.2631 - val_loss: 0.9881 - val_tp0.1: 684864.0000 - val_fp0.1: 1514096.0000 - val_tn0.1: 2597247.0000 - val_fn0.1: 118993.0000 - val_precision0.1: 0.3114 - val_recall0.1: 0.85
             20 - val_tp0.3: 448578.0000 - val_fp0.3: 437347.0000 - val_tn0.3: 3673996.0000 - val_fn0.3: 355279.0000 - val_precision0.3: 0.5063 - val_recall0.3: 0.5580 - val_tp0.5: 306480.0000 - val_fp
             0.5: 142586.0000 - val_tn0.5: 3968757.0000 - val_fn0.5: 497377.0000 - val_precision0.5: 0.6825 - val_recall0.5: 0.3813 - val_tp0.7: 196534.0000 - val_fp0.7: 34758.0000 - val_tn0.7: 4076585
             .0000 - val_fn0.7: 607323.0000 - val_precision0.7: 0.8497 - val_recall0.7: 0.2445 - val_tp0.9: 93543.0000 - val_fp0.9: 2618.0000 - val_tn0.9: 4108725.0000 - val_fn0.9: 710314.0000 - val_pr
             ecision0.9: 0.9728 - val_recall0.9: 0.1164 - val_accuracy: 0.8698 - val_auc: 0.8226 - val_f1: 0.2811
             Epoch 12/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.7115 - tp0.1: 2672752.0000 - fp0.1: 4630371.0000 - tn0.1: 12052597.0000 - fn0.1: 305080.0000 - precision0.1: 0.3660 - rec
             all0.1: 0.8975 - tp0.3: 2159193.0000 - fp0.3: 1616151.0000 - tn0.3: 15066817.0000 - fn0.3: 818639.0000 - precision0.3: 0.5719 - recall0.3: 0.7251 - tp0.5: 1689796.0000 - fp0.5: 588788.0000
              - tn0.5: 16094180.0000 - fn0.5: 1288036.0000 - precision0.5: 0.7416 - recall0.5: 0.5675 - tp0.7: 1257203.0000 - fp0.7: 187802.0000 - tn0.7: 16495166.0000 - fn0.7: 1720629.0000 - precision
             0.7: 0.8700 - recall0.7: 0.4222 - tp0.9: 781350.0000 - fp0.9: 35537.0000 - tn0.9: 16647431.0000 - fn0.9: 2196482.0000 - precision0.9: 0.9565 - recall0.9: 0.2624 - accuracy: 0.9045 - auc: 0
             .8920 - f1: 0.2631 - val_loss: 0.9426 - val_tp0.1: 694538.0000 - val_fp0.1: 1496227.0000 - val_tn0.1: 2615116.0000 - val_fn0.1: 109319.0000 - val_precision0.1: 0.3170 - val_recall0.1: 0.86
             40 - val_tp0.3: 506023.0000 - val_fp0.3: 520642.0000 - val_tn0.3: 3590701.0000 - val_fn0.3: 297834.0000 - val_precision0.3: 0.4929 - val_recall0.3: 0.6295 - val_tp0.5: 346422.0000 - val_fp
             0.5: 153015.0000 - val_tn0.5: 3958328.0000 - val_fn0.5: 457435.0000 - val_precision0.5: 0.6936 - val_recall0.5: 0.4309 - val_tp0.7: 221842.0000 - val_fp0.7: 37879.0000 - val_tn0.7: 4073464
             .0000 - val_fn0.7: 582015.0000 - val_precision0.7: 0.8542 - val_recall0.7: 0.2760 - val_tp0.9: 104244.0000 - val_fp0.9: 3502.0000 - val_tn0.9: 4107841.0000 - val_fn0.9: 699613.0000 - val_p
             recision0.9: 0.9675 - val_recall0.9: 0.1297 - val_accuracy: 0.8758 - val_auc: 0.8365 - val_f1: 0.2811
             Epoch 13/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.7049 - tp0.1: 2669030.0000 - fp0.1: 4503237.0000 - tn0.1: 12179731.0000 - fn0.1: 308802.0000 - precision0.1: 0.3721 - rec
             all0.1: 0.8963 - tp0.3: 2190933.0000 - fp0.3: 1671712.0000 - tn0.3: 15011256.0000 - fn0.3: 786899.0000 - precision0.3: 0.5672 - recall0.3: 0.7357 - tp0.5: 1721545.0000 - fp0.5: 613878.0000
              - tn0.5: 16069090.0000 - fn0.5: 1256287.0000 - precision0.5: 0.7371 - recall0.5: 0.5781 - tp0.7: 1280739.0000 - fp0.7: 198223.0000 - tn0.7: 16484745.0000 - fn0.7: 1697093.0000 - precision
             0.7: 0.8660 - recall0.7: 0.4301 - tp0.9: 795579.0000 - fp0.9: 35764.0000 - tn0.9: 16647204.0000 - fn0.9: 2182253.0000 - precision0.9: 0.9570 - recall0.9: 0.2672 - accuracy: 0.9049 - auc: 0
             .8932 - f1: 0.2631 - val_loss: 0.9456 - val_tp0.1: 699033.0000 - val_fp0.1: 1563859.0000 - val_tn0.1: 2547484.0000 - val_fn0.1: 104824.0000 - val_precision0.1: 0.3089 - val_recall0.1: 0.86
             96 - val_tp0.3: 540655.0000 - val_fp0.3: 610467.0000 - val_tn0.3: 3500876.0000 - val_fn0.3: 263202.0000 - val_precision0.3: 0.4697 - val_recall0.3: 0.6726 - val_tp0.5: 379380.0000 - val_fp
             0.5: 190187.0000 - val_tn0.5: 3921156.0000 - val_fn0.5: 424477.0000 - val_precision0.5: 0.6661 - val_recall0.5: 0.4719 - val_tp0.7: 250875.0000 - val_fp0.7: 56341.0000 - val_tn0.7: 4055002
             .0000 - val_fn0.7: 552982.0000 - val_precision0.7: 0.8166 - val_recall0.7: 0.3121 - val_tp0.9: 123390.0000 - val_fp0.9: 6935.0000 - val_tn0.9: 4104408.0000 - val_fn0.9: 680467.0000 - val_p
             recision0.9: 0.9468 - val_recall0.9: 0.1535 - val_accuracy: 0.8749 - val_auc: 0.8387 - val_f1: 0.2811
             Epoch 14/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.7025 - tp0.1: 2675299.0000 - fp0.1: 4563270.0000 - tn0.1: 12119698.0000 - fn0.1: 302533.0000 - precision0.1: 0.3696 - rec
             all0.1: 0.8984 - tp0.3: 2177828.0000 - fp0.3: 1603216.0000 - tn0.3: 15079752.0000 - fn0.3: 800004.0000 - precision0.3: 0.5760 - recall0.3: 0.7313 - tp0.5: 1706323.0000 - fp0.5: 592574.0000
              - tn0.5: 16090394.0000 - fn0.5: 1271509.0000 - precision0.5: 0.7422 - recall0.5: 0.5730 - tp0.7: 1267052.0000 - fp0.7: 191517.0000 - tn0.7: 16491451.0000 - fn0.7: 1710780.0000 - precision
             0.7: 0.8687 - recall0.7: 0.4255 - tp0.9: 779803.0000 - fp0.9: 33525.0000 - tn0.9: 16649443.0000 - fn0.9: 2198029.0000 - precision0.9: 0.9588 - recall0.9: 0.2619 - accuracy: 0.9052 - auc: 0
             .8942 - f1: 0.2631 - val_loss: 0.9513 - val_tp0.1: 685976.0000 - val_fp0.1: 1445496.0000 - val_tn0.1: 2665847.0000 - val_fn0.1: 117881.0000 - val_precision0.1: 0.3218 - val_recall0.1: 0.85
             34 - val_tp0.3: 502057.0000 - val_fp0.3: 484827.0000 - val_tn0.3: 3626516.0000 - val_fn0.3: 301800.0000 - val_precision0.3: 0.5087 - val_recall0.3: 0.6246 - val_tp0.5: 350620.0000 - val_fp
             0.5: 151636.0000 - val_tn0.5: 3959707.0000 - val_fn0.5: 453237.0000 - val_precision0.5: 0.6981 - val_recall0.5: 0.4362 - val_tp0.7: 231119.0000 - val_fp0.7: 44841.0000 - val_tn0.7: 4066502
             .0000 - val_fn0.7: 572738.0000 - val_precision0.7: 0.8375 - val_recall0.7: 0.2875 - val_tp0.9: 117775.0000 - val_fp0.9: 6325.0000 - val_tn0.9: 4105018.0000 - val_fn0.9: 686082.0000 - val_p
             recision0.9: 0.9490 - val_recall0.9: 0.1465 - val_accuracy: 0.8769 - val_auc: 0.8355 - val_f1: 0.2811
             Epoch 15/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.6970 - tp0.1: 2674241.0000 - fp0.1: 4479713.0000 - tn0.1: 12203255.0000 - fn0.1: 303591.0000 - precision0.1: 0.3738 - rec
             all0.1: 0.8980 - tp0.3: 2170500.0000 - fp0.3: 1588775.0000 - tn0.3: 15094193.0000 - fn0.3: 807332.0000 - precision0.3: 0.5774 - recall0.3: 0.7289 - tp0.5: 1716769.0000 - fp0.5: 596411.0000
              - tn0.5: 16086557.0000 - fn0.5: 1261063.0000 - precision0.5: 0.7422 - recall0.5: 0.5765 - tp0.7: 1295621.0000 - fp0.7: 194669.0000 - tn0.7: 16488299.0000 - fn0.7: 1682211.0000 - precision
             0.7: 0.8694 - recall0.7: 0.4351 - tp0.9: 814054.0000 - fp0.9: 35899.0000 - tn0.9: 16647069.0000 - fn0.9: 2163778.0000 - precision0.9: 0.9578 - recall0.9: 0.2734 - accuracy: 0.9055 - auc: 0
             .8945 - f1: 0.2631 - val_loss: 0.9517 - val_tp0.1: 688515.0000 - val_fp0.1: 1481139.0000 - val_tn0.1: 2630204.0000 - val_fn0.1: 115342.0000 - val_precision0.1: 0.3173 - val_recall0.1: 0.85
             65 - val_tp0.3: 506409.0000 - val_fp0.3: 477938.0000 - val_tn0.3: 3633405.0000 - val_fn0.3: 297448.0000 - val_precision0.3: 0.5145 - val_recall0.3: 0.6300 - val_tp0.5: 352279.0000 - val_fp
             0.5: 150937.0000 - val_tn0.5: 3960406.0000 - val_fn0.5: 451578.0000 - val_precision0.5: 0.7001 - val_recall0.5: 0.4382 - val_tp0.7: 231093.0000 - val_fp0.7: 45551.0000 - val_tn0.7: 4065792
             .0000 - val_fn0.7: 572764.0000 - val_precision0.7: 0.8353 - val_recall0.7: 0.2875 - val_tp0.9: 118279.0000 - val_fp0.9: 6604.0000 - val_tn0.9: 4104739.0000 - val_fn0.9: 685578.0000 - val_p
             recision0.9: 0.9471 - val_recall0.9: 0.1471 - val_accuracy: 0.8774 - val_auc: 0.8370 - val_f1: 0.2811
             Epoch 16/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.6972 - tp0.1: 2674892.0000 - fp0.1: 4478986.0000 - tn0.1: 12203982.0000 - fn0.1: 302940.0000 - precision0.1: 0.3739 - rec
             all0.1: 0.8983 - tp0.3: 2177848.0000 - fp0.3: 1577462.0000 - tn0.3: 15105506.0000 - fn0.3: 799984.0000 - precision0.3: 0.5799 - recall0.3: 0.7314 - tp0.5: 1710580.0000 - fp0.5: 588844.0000
              - tn0.5: 16094124.0000 - fn0.5: 1267252.0000 - precision0.5: 0.7439 - recall0.5: 0.5744 - tp0.7: 1276251.0000 - fp0.7: 191455.0000 - tn0.7: 16491513.0000 - fn0.7: 1701581.0000 - precision
             0.7: 0.8696 - recall0.7: 0.4286 - tp0.9: 794990.0000 - fp0.9: 33049.0000 - tn0.9: 16649919.0000 - fn0.9: 2182842.0000 - precision0.9: 0.9601 - recall0.9: 0.2670 - accuracy: 0.9056 - auc: 0
             .8951 - f1: 0.2631 - val_loss: 0.9505 - val_tp0.1: 684484.0000 - val_fp0.1: 1423827.0000 - val_tn0.1: 2687516.0000 - val_fn0.1: 119373.0000 - val_precision0.1: 0.3247 - val_recall0.1: 0.85
             15 - val_tp0.3: 507858.0000 - val_fp0.3: 511252.0000 - val_tn0.3: 3600091.0000 - val_fn0.3: 295999.0000 - val_precision0.3: 0.4983 - val_recall0.3: 0.6318 - val_tp0.5: 356641.0000 - val_fp
             0.5: 160219.0000 - val_tn0.5: 3951124.0000 - val_fn0.5: 447216.0000 - val_precision0.5: 0.6900 - val_recall0.5: 0.4437 - val_tp0.7: 236723.0000 - val_fp0.7: 47470.0000 - val_tn0.7: 4063873
             .0000 - val_fn0.7: 567134.0000 - val_precision0.7: 0.8330 - val_recall0.7: 0.2945 - val_tp0.9: 119706.0000 - val_fp0.9: 6487.0000 - val_tn0.9: 4104856.0000 - val_fn0.9: 684151.0000 - val_p
             recision0.9: 0.9486 - val_recall0.9: 0.1489 - val_accuracy: 0.8764 - val_auc: 0.8350 - val_f1: 0.2811
             Epoch 17/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.6981 - tp0.1: 2674601.0000 - fp0.1: 4489171.0000 - tn0.1: 12193797.0000 - fn0.1: 303231.0000 - precision0.1: 0.3734 - rec
             all0.1: 0.8982 - tp0.3: 2183675.0000 - fp0.3: 1573762.0000 - tn0.3: 15109206.0000 - fn0.3: 794157.0000 - precision0.3: 0.5812 - recall0.3: 0.7333 - tp0.5: 1713199.0000 - fp0.5: 586718.0000
              - tn0.5: 16096250.0000 - fn0.5: 1264633.0000 - precision0.5: 0.7449 - recall0.5: 0.5753 - tp0.7: 1283634.0000 - fp0.7: 195576.0000 - tn0.7: 16487392.0000 - fn0.7: 1694198.0000 - precision
             0.7: 0.8678 - recall0.7: 0.4311 - tp0.9: 805115.0000 - fp0.9: 36004.0000 - tn0.9: 16646964.0000 - fn0.9: 2172717.0000 - precision0.9: 0.9572 - recall0.9: 0.2704 - accuracy: 0.9058 - auc: 0
             .8950 - f1: 0.2631 - val_loss: 0.9465 - val_tp0.1: 687031.0000 - val_fp0.1: 1439264.0000 - val_tn0.1: 2672079.0000 - val_fn0.1: 116826.0000 - val_precision0.1: 0.3231 - val_recall0.1: 0.85
             47 - val_tp0.3: 508441.0000 - val_fp0.3: 510821.0000 - val_tn0.3: 3600522.0000 - val_fn0.3: 295416.0000 - val_precision0.3: 0.4988 - val_recall0.3: 0.6325 - val_tp0.5: 352823.0000 - val_fp
             0.5: 152954.0000 - val_tn0.5: 3958389.0000 - val_fn0.5: 451034.0000 - val_precision0.5: 0.6976 - val_recall0.5: 0.4389 - val_tp0.7: 231208.0000 - val_fp0.7: 43355.0000 - val_tn0.7: 4067988
             .0000 - val_fn0.7: 572649.0000 - val_precision0.7: 0.8421 - val_recall0.7: 0.2876 - val_tp0.9: 114713.0000 - val_fp0.9: 5450.0000 - val_tn0.9: 4105893.0000 - val_fn0.9: 689144.0000 - val_p
             recision0.9: 0.9546 - val_recall0.9: 0.1427 - val_accuracy: 0.8771 - val_auc: 0.8361 - val_f1: 0.2811
             Epoch 18/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.6969 - tp0.1: 2676617.0000 - fp0.1: 4470158.0000 - tn0.1: 12212810.0000 - fn0.1: 301215.0000 - precision0.1: 0.3745 - rec
             all0.1: 0.8988 - tp0.3: 2177086.0000 - fp0.3: 1601828.0000 - tn0.3: 15081140.0000 - fn0.3: 800746.0000 - precision0.3: 0.5761 - recall0.3: 0.7311 - tp0.5: 1715470.0000 - fp0.5: 611086.0000
              - tn0.5: 16071882.0000 - fn0.5: 1262362.0000 - precision0.5: 0.7373 - recall0.5: 0.5761 - tp0.7: 1288609.0000 - fp0.7: 198192.0000 - tn0.7: 16484776.0000 - fn0.7: 1689223.0000 - precision
             0.7: 0.8667 - recall0.7: 0.4327 - tp0.9: 807642.0000 - fp0.9: 37272.0000 - tn0.9: 16645696.0000 - fn0.9: 2170190.0000 - precision0.9: 0.9559 - recall0.9: 0.2712 - accuracy: 0.9047 - auc: 0
             .8948 - f1: 0.2631 - val_loss: 0.9503 - val_tp0.1: 684845.0000 - val_fp0.1: 1434583.0000 - val_tn0.1: 2676760.0000 - val_fn0.1: 119012.0000 - val_precision0.1: 0.3231 - val_recall0.1: 0.85
             19 - val_tp0.3: 501142.0000 - val_fp0.3: 471764.0000 - val_tn0.3: 3639579.0000 - val_fn0.3: 302715.0000 - val_precision0.3: 0.5151 - val_recall0.3: 0.6234 - val_tp0.5: 347005.0000 - val_fp
             0.5: 143102.0000 - val_tn0.5: 3968241.0000 - val_fn0.5: 456852.0000 - val_precision0.5: 0.7080 - val_recall0.5: 0.4317 - val_tp0.7: 226199.0000 - val_fp0.7: 40947.0000 - val_tn0.7: 4070396
             .0000 - val_fn0.7: 577658.0000 - val_precision0.7: 0.8467 - val_recall0.7: 0.2814 - val_tp0.9: 113524.0000 - val_fp0.9: 5443.0000 - val_tn0.9: 4105900.0000 - val_fn0.9: 690333.0000 - val_p
             recision0.9: 0.9542 - val_recall0.9: 0.1412 - val_accuracy: 0.8779 - val_auc: 0.8363 - val_f1: 0.2811
             Epoch 19/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.6974 - tp0.1: 2678075.0000 - fp0.1: 4501081.0000 - tn0.1: 12181887.0000 - fn0.1: 299757.0000 - precision0.1: 0.3730 - rec
             all0.1: 0.8993 - tp0.3: 2193569.0000 - fp0.3: 1620047.0000 - tn0.3: 15062921.0000 - fn0.3: 784263.0000 - precision0.3: 0.5752 - recall0.3: 0.7366 - tp0.5: 1721203.0000 - fp0.5: 604162.0000
              - tn0.5: 16078806.0000 - fn0.5: 1256629.0000 - precision0.5: 0.7402 - recall0.5: 0.5780 - tp0.7: 1284180.0000 - fp0.7: 199088.0000 - tn0.7: 16483880.0000 - fn0.7: 1693652.0000 - precision
             0.7: 0.8658 - recall0.7: 0.4312 - tp0.9: 797069.0000 - fp0.9: 36223.0000 - tn0.9: 16646745.0000 - fn0.9: 2180763.0000 - precision0.9: 0.9565 - recall0.9: 0.2677 - accuracy: 0.9054 - auc: 0
             .8954 - f1: 0.2631 - val_loss: 0.9439 - val_tp0.1: 694044.0000 - val_fp0.1: 1504048.0000 - val_tn0.1: 2607295.0000 - val_fn0.1: 109813.0000 - val_precision0.1: 0.3157 - val_recall0.1: 0.86
             34 - val_tp0.3: 523881.0000 - val_fp0.3: 545389.0000 - val_tn0.3: 3565954.0000 - val_fn0.3: 279976.0000 - val_precision0.3: 0.4899 - val_recall0.3: 0.6517 - val_tp0.5: 369154.0000 - val_fp
             0.5: 174373.0000 - val_tn0.5: 3936970.0000 - val_fn0.5: 434703.0000 - val_precision0.5: 0.6792 - val_recall0.5: 0.4592 - val_tp0.7: 245997.0000 - val_fp0.7: 52312.0000 - val_tn0.7: 4059031
             .0000 - val_fn0.7: 557860.0000 - val_precision0.7: 0.8246 - val_recall0.7: 0.3060 - val_tp0.9: 124029.0000 - val_fp0.9: 7043.0000 - val_tn0.9: 4104300.0000 - val_fn0.9: 679828.0000 - val_p
             recision0.9: 0.9463 - val_recall0.9: 0.1543 - val_accuracy: 0.8761 - val_auc: 0.8387 - val_f1: 0.2811
             Epoch 20/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.7034 - tp0.1: 2668995.0000 - fp0.1: 4472643.0000 - tn0.1: 12210325.0000 - fn0.1: 308837.0000 - precision0.1: 0.3737 - rec
             all0.1: 0.8963 - tp0.3: 2164194.0000 - fp0.3: 1572121.0000 - tn0.3: 15110847.0000 - fn0.3: 813638.0000 - precision0.3: 0.5792 - recall0.3: 0.7268 - tp0.5: 1680381.0000 - fp0.5: 579083.0000
              - tn0.5: 16103885.0000 - fn0.5: 1297451.0000 - precision0.5: 0.7437 - recall0.5: 0.5643 - tp0.7: 1241011.0000 - fp0.7: 190475.0000 - tn0.7: 16492493.0000 - fn0.7: 1736821.0000 - precision
             0.7: 0.8669 - recall0.7: 0.4167 - tp0.9: 785981.0000 - fp0.9: 34923.0000 - tn0.9: 16648045.0000 - fn0.9: 2191851.0000 - precision0.9: 0.9575 - recall0.9: 0.2639 - accuracy: 0.9046 - auc: 0
             .8932 - f1: 0.2631 - val_loss: 0.9520 - val_tp0.1: 682980.0000 - val_fp0.1: 1413218.0000 - val_tn0.1: 2698125.0000 - val_fn0.1: 120877.0000 - val_precision0.1: 0.3258 - val_recall0.1: 0.84
             96 - val_tp0.3: 500974.0000 - val_fp0.3: 498780.0000 - val_tn0.3: 3612563.0000 - val_fn0.3: 302883.0000 - val_precision0.3: 0.5011 - val_recall0.3: 0.6232 - val_tp0.5: 348018.0000 - val_fp
             0.5: 150788.0000 - val_tn0.5: 3960555.0000 - val_fn0.5: 455839.0000 - val_precision0.5: 0.6977 - val_recall0.5: 0.4329 - val_tp0.7: 228527.0000 - val_fp0.7: 42760.0000 - val_tn0.7: 4068583
             .0000 - val_fn0.7: 575330.0000 - val_precision0.7: 0.8424 - val_recall0.7: 0.2843 - val_tp0.9: 113851.0000 - val_fp0.9: 5410.0000 - val_tn0.9: 4105933.0000 - val_fn0.9: 690006.0000 - val_p
             recision0.9: 0.9546 - val_recall0.9: 0.1416 - val_accuracy: 0.8766 - val_auc: 0.8340 - val_f1: 0.2811
             --- Running training session 60/140
             {'hp_epochs': 20, 'hp_batch_size': 6, 'hp_scaler': 'maxabs', 'hp_n_levels': 3, 'hp_first_filters': 16, 'hp_pool_size': 2, 'hp_input_size': 4096, 'hp_lr_start': 0.06810286704342322, 'hp_lr_
             power': 5.0}
             --- repeat #: 2
             input - shape:   (None, 4096, 1)
             output - shape:  (None, 4096, 1)
             Epoch 1/20
             800/800 [==============================] - 41s 33ms/step - loss: 1.1728 - tp0.1: 2643619.0000 - fp0.1: 9398198.0000 - tn0.1: 7284770.0000 - fn0.1: 334213.0000 - precision0.1: 0.2195 - reca
             ll0.1: 0.8878 - tp0.3: 1267730.0000 - fp0.3: 3106478.0000 - tn0.3: 13576490.0000 - fn0.3: 1710102.0000 - precision0.3: 0.2898 - recall0.3: 0.4257 - tp0.5: 110715.0000 - fp0.5: 152305.0000
             - tn0.5: 16530663.0000 - fn0.5: 2867117.0000 - precision0.5: 0.4209 - recall0.5: 0.0372 - tp0.7: 22534.0000 - fp0.7: 27016.0000 - tn0.7: 16655952.0000 - fn0.7: 2955298.0000 - precision0.7:
              0.4548 - recall0.7: 0.0076 - tp0.9: 5370.0000 - fp0.9: 4276.0000 - tn0.9: 16678692.0000 - fn0.9: 2972462.0000 - precision0.9: 0.5567 - recall0.9: 0.0018 - accuracy: 0.8464 - auc: 0.7210 -
              f1: 0.2631 - val_loss: 1.3911 - val_tp0.1: 803682.0000 - val_fp0.1: 4109861.0000 - val_tn0.1: 1482.0000 - val_fn0.1: 175.0000 - val_precision0.1: 0.1636 - val_recall0.1: 0.9998 - val_tp0.
             3: 481990.0000 - val_fp0.3: 1381226.0000 - val_tn0.3: 2730117.0000 - val_fn0.3: 321867.0000 - val_precision0.3: 0.2587 - val_recall0.3: 0.5996 - val_tp0.5: 173457.0000 - val_fp0.5: 387503.
             0000 - val_tn0.5: 3723840.0000 - val_fn0.5: 630400.0000 - val_precision0.5: 0.3092 - val_recall0.5: 0.2158 - val_tp0.7: 62452.0000 - val_fp0.7: 51611.0000 - val_tn0.7: 4059732.0000 - val_f
             n0.7: 741405.0000 - val_precision0.7: 0.5475 - val_recall0.7: 0.0777 - val_tp0.9: 36.0000 - val_fp0.9: 0.0000e+00 - val_tn0.9: 4111343.0000 - val_fn0.9: 803821.0000 - val_precision0.9: 1.0
             000 - val_recall0.9: 4.4784e-05 - val_accuracy: 0.7929 - val_auc: 0.6622 - val_f1: 0.2811
             Epoch 2/20
             800/800 [==============================] - 23s 28ms/step - loss: 1.0815 - tp0.1: 2577878.0000 - fp0.1: 8005433.0000 - tn0.1: 8677535.0000 - fn0.1: 399954.0000 - precision0.1: 0.2436 - reca
             ll0.1: 0.8657 - tp0.3: 1447126.0000 - fp0.3: 2241046.0000 - tn0.3: 14441922.0000 - fn0.3: 1530706.0000 - precision0.3: 0.3924 - recall0.3: 0.4860 - tp0.5: 687354.0000 - fp0.5: 398807.0000
             - tn0.5: 16284161.0000 - fn0.5: 2290478.0000 - precision0.5: 0.6328 - recall0.5: 0.2308 - tp0.7: 413817.0000 - fp0.7: 98920.0000 - tn0.7: 16584048.0000 - fn0.7: 2564015.0000 - precision0.7
             : 0.8071 - recall0.7: 0.1390 - tp0.9: 186771.0000 - fp0.9: 14141.0000 - tn0.9: 16668827.0000 - fn0.9: 2791061.0000 - precision0.9: 0.9296 - recall0.9: 0.0627 - accuracy: 0.8632 - auc: 0.77
             95 - f1: 0.2631 - val_loss: 2.8986 - val_tp0.1: 803131.0000 - val_fp0.1: 4099762.0000 - val_tn0.1: 11581.0000 - val_fn0.1: 726.0000 - val_precision0.1: 0.1638 - val_recall0.1: 0.9991 - val
             _tp0.3: 802096.0000 - val_fp0.3: 4084853.0000 - val_tn0.3: 26490.0000 - val_fn0.3: 1761.0000 - val_precision0.3: 0.1641 - val_recall0.3: 0.9978 - val_tp0.5: 651539.0000 - val_fp0.5: 192398
             5.0000 - val_tn0.5: 2187358.0000 - val_fn0.5: 152318.0000 - val_precision0.5: 0.2530 - val_recall0.5: 0.8105 - val_tp0.7: 625381.0000 - val_fp0.7: 1805820.0000 - val_tn0.7: 2305523.0000 -
             val_fn0.7: 178476.0000 - val_precision0.7: 0.2572 - val_recall0.7: 0.7780 - val_tp0.9: 585910.0000 - val_fp0.9: 1628567.0000 - val_tn0.9: 2482776.0000 - val_fn0.9: 217947.0000 - val_precis
             ion0.9: 0.2646 - val_recall0.9: 0.7289 - val_accuracy: 0.5776 - val_auc: 0.7124 - val_f1: 0.2811
             Epoch 3/20
             800/800 [==============================] - 23s 28ms/step - loss: 1.0116 - tp0.1: 2624849.0000 - fp0.1: 7645828.0000 - tn0.1: 9037140.0000 - fn0.1: 352983.0000 - precision0.1: 0.2556 - reca
             ll0.1: 0.8815 - tp0.3: 1498713.0000 - fp0.3: 1695358.0000 - tn0.3: 14987610.0000 - fn0.3: 1479119.0000 - precision0.3: 0.4692 - recall0.3: 0.5033 - tp0.5: 975584.0000 - fp0.5: 420254.0000
             - tn0.5: 16262714.0000 - fn0.5: 2002248.0000 - precision0.5: 0.6989 - recall0.5: 0.3276 - tp0.7: 709358.0000 - fp0.7: 149271.0000 - tn0.7: 16533697.0000 - fn0.7: 2268474.0000 - precision0.
             7: 0.8262 - recall0.7: 0.2382 - tp0.9: 389012.0000 - fp0.9: 27027.0000 - tn0.9: 16655941.0000 - fn0.9: 2588820.0000 - precision0.9: 0.9350 - recall0.9: 0.1306 - accuracy: 0.8768 - auc: 0.8
             104 - f1: 0.2631 - val_loss: 1.5866 - val_tp0.1: 541567.0000 - val_fp0.1: 1371385.0000 - val_tn0.1: 2739958.0000 - val_fn0.1: 262290.0000 - val_precision0.1: 0.2831 - val_recall0.1: 0.6737
              - val_tp0.3: 350430.0000 - val_fp0.3: 695890.0000 - val_tn0.3: 3415453.0000 - val_fn0.3: 453427.0000 - val_precision0.3: 0.3349 - val_recall0.3: 0.4359 - val_tp0.5: 277275.0000 - val_fp0.
             5: 441168.0000 - val_tn0.5: 3670175.0000 - val_fn0.5: 526582.0000 - val_precision0.5: 0.3859 - val_recall0.5: 0.3449 - val_tp0.7: 207293.0000 - val_fp0.7: 222426.0000 - val_tn0.7: 3888917.
             0000 - val_fn0.7: 596564.0000 - val_precision0.7: 0.4824 - val_recall0.7: 0.2579 - val_tp0.9: 90589.0000 - val_fp0.9: 35047.0000 - val_tn0.9: 4076296.0000 - val_fn0.9: 713268.0000 - val_pr
             ecision0.9: 0.7210 - val_recall0.9: 0.1127 - val_accuracy: 0.8031 - val_auc: 0.7058 - val_f1: 0.2811
             Epoch 4/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.9534 - tp0.1: 2630735.0000 - fp0.1: 7252035.0000 - tn0.1: 9430933.0000 - fn0.1: 347097.0000 - precision0.1: 0.2662 - reca
             ll0.1: 0.8834 - tp0.3: 1613584.0000 - fp0.3: 1430388.0000 - tn0.3: 15252580.0000 - fn0.3: 1364248.0000 - precision0.3: 0.5301 - recall0.3: 0.5419 - tp0.5: 1188917.0000 - fp0.5: 484302.0000
              - tn0.5: 16198666.0000 - fn0.5: 1788915.0000 - precision0.5: 0.7106 - recall0.5: 0.3993 - tp0.7: 896123.0000 - fp0.7: 181140.0000 - tn0.7: 16501828.0000 - fn0.7: 2081709.0000 - precision0
             .7: 0.8319 - recall0.7: 0.3009 - tp0.9: 494120.0000 - fp0.9: 27734.0000 - tn0.9: 16655234.0000 - fn0.9: 2483712.0000 - precision0.9: 0.9469 - recall0.9: 0.1659 - accuracy: 0.8844 - auc: 0.
             8330 - f1: 0.2631 - val_loss: 1.2238 - val_tp0.1: 762287.0000 - val_fp0.1: 2841918.0000 - val_tn0.1: 1269425.0000 - val_fn0.1: 41570.0000 - val_precision0.1: 0.2115 - val_recall0.1: 0.9483
              - val_tp0.3: 473341.0000 - val_fp0.3: 934680.0000 - val_tn0.3: 3176663.0000 - val_fn0.3: 330516.0000 - val_precision0.3: 0.3362 - val_recall0.3: 0.5888 - val_tp0.5: 284941.0000 - val_fp0.
             5: 382747.0000 - val_tn0.5: 3728596.0000 - val_fn0.5: 518916.0000 - val_precision0.5: 0.4268 - val_recall0.5: 0.3545 - val_tp0.7: 199426.0000 - val_fp0.7: 215679.0000 - val_tn0.7: 3895664.
             0000 - val_fn0.7: 604431.0000 - val_precision0.7: 0.4804 - val_recall0.7: 0.2481 - val_tp0.9: 80714.0000 - val_fp0.9: 40538.0000 - val_tn0.9: 4070805.0000 - val_fn0.9: 723143.0000 - val_pr
             ecision0.9: 0.6657 - val_recall0.9: 0.1004 - val_accuracy: 0.8166 - val_auc: 0.7536 - val_f1: 0.2811
             Epoch 5/20
             800/800 [==============================] - 105s 132ms/step - loss: 0.9031 - tp0.1: 2615817.0000 - fp0.1: 6473866.0000 - tn0.1: 10209102.0000 - fn0.1: 362015.0000 - precision0.1: 0.2878 - r
             ecall0.1: 0.8784 - tp0.3: 1760338.0000 - fp0.3: 1552636.0000 - tn0.3: 15130332.0000 - fn0.3: 1217494.0000 - precision0.3: 0.5313 - recall0.3: 0.5911 - tp0.5: 1305140.0000 - fp0.5: 538907.0
             000 - tn0.5: 16144061.0000 - fn0.5: 1672692.0000 - precision0.5: 0.7078 - recall0.5: 0.4383 - tp0.7: 972649.0000 - fp0.7: 195218.0000 - tn0.7: 16487750.0000 - fn0.7: 2005183.0000 - precisi
             on0.7: 0.8328 - recall0.7: 0.3266 - tp0.9: 541205.0000 - fp0.9: 31289.0000 - tn0.9: 16651679.0000 - fn0.9: 2436627.0000 - precision0.9: 0.9453 - recall0.9: 0.1817 - accuracy: 0.8875 - auc:
              0.8476 - f1: 0.2631 - val_loss: 1.0983 - val_tp0.1: 685124.0000 - val_fp0.1: 1862694.0000 - val_tn0.1: 2248649.0000 - val_fn0.1: 118733.0000 - val_precision0.1: 0.2689 - val_recall0.1: 0.
             8523 - val_tp0.3: 408907.0000 - val_fp0.3: 510069.0000 - val_tn0.3: 3601274.0000 - val_fn0.3: 394950.0000 - val_precision0.3: 0.4450 - val_recall0.3: 0.5087 - val_tp0.5: 249171.0000 - val_
             fp0.5: 222225.0000 - val_tn0.5: 3889118.0000 - val_fn0.5: 554686.0000 - val_precision0.5: 0.5286 - val_recall0.5: 0.3100 - val_tp0.7: 157112.0000 - val_fp0.7: 77659.0000 - val_tn0.7: 40336
             84.0000 - val_fn0.7: 646745.0000 - val_precision0.7: 0.6692 - val_recall0.7: 0.1954 - val_tp0.9: 31306.0000 - val_fp0.9: 406.0000 - val_tn0.9: 4110937.0000 - val_fn0.9: 772551.0000 - val_p
             recision0.9: 0.9872 - val_recall0.9: 0.0389 - val_accuracy: 0.8419 - val_auc: 0.7829 - val_f1: 0.2811
             Epoch 6/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.8664 - tp0.1: 2613105.0000 - fp0.1: 5967389.0000 - tn0.1: 10715579.0000 - fn0.1: 364727.0000 - precision0.1: 0.3045 - rec
             all0.1: 0.8775 - tp0.3: 1833388.0000 - fp0.3: 1537464.0000 - tn0.3: 15145504.0000 - fn0.3: 1144444.0000 - precision0.3: 0.5439 - recall0.3: 0.6157 - tp0.5: 1388900.0000 - fp0.5: 539537.000
             0 - tn0.5: 16143431.0000 - fn0.5: 1588932.0000 - precision0.5: 0.7202 - recall0.5: 0.4664 - tp0.7: 1047260.0000 - fp0.7: 195978.0000 - tn0.7: 16486990.0000 - fn0.7: 1930572.0000 - precisio
             n0.7: 0.8424 - recall0.7: 0.3517 - tp0.9: 612618.0000 - fp0.9: 34165.0000 - tn0.9: 16648803.0000 - fn0.9: 2365214.0000 - precision0.9: 0.9472 - recall0.9: 0.2057 - accuracy: 0.8917 - auc:
             0.8558 - f1: 0.2631 - val_loss: 1.1906 - val_tp0.1: 589351.0000 - val_fp0.1: 1203883.0000 - val_tn0.1: 2907460.0000 - val_fn0.1: 214506.0000 - val_precision0.1: 0.3287 - val_recall0.1: 0.7
             332 - val_tp0.3: 396327.0000 - val_fp0.3: 557062.0000 - val_tn0.3: 3554281.0000 - val_fn0.3: 407530.0000 - val_precision0.3: 0.4157 - val_recall0.3: 0.4930 - val_tp0.5: 335193.0000 - val_f
             p0.5: 411860.0000 - val_tn0.5: 3699483.0000 - val_fn0.5: 468664.0000 - val_precision0.5: 0.4487 - val_recall0.5: 0.4170 - val_tp0.7: 273790.0000 - val_fp0.7: 273418.0000 - val_tn0.7: 38379
             25.0000 - val_fn0.7: 530067.0000 - val_precision0.7: 0.5003 - val_recall0.7: 0.3406 - val_tp0.9: 147281.0000 - val_fp0.9: 47498.0000 - val_tn0.9: 4063845.0000 - val_fn0.9: 656576.0000 - va
             l_precision0.9: 0.7561 - val_recall0.9: 0.1832 - val_accuracy: 0.8209 - val_auc: 0.7717 - val_f1: 0.2811
             Epoch 7/20
             800/800 [==============================] - 23s 29ms/step - loss: 0.8261 - tp0.1: 2610067.0000 - fp0.1: 5441450.0000 - tn0.1: 11241518.0000 - fn0.1: 367765.0000 - precision0.1: 0.3242 - rec
             all0.1: 0.8765 - tp0.3: 1926083.0000 - fp0.3: 1638761.0000 - tn0.3: 15044207.0000 - fn0.3: 1051749.0000 - precision0.3: 0.5403 - recall0.3: 0.6468 - tp0.5: 1451422.0000 - fp0.5: 566878.000
             0 - tn0.5: 16116090.0000 - fn0.5: 1526410.0000 - precision0.5: 0.7191 - recall0.5: 0.4874 - tp0.7: 1084565.0000 - fp0.7: 195437.0000 - tn0.7: 16487531.0000 - fn0.7: 1893267.0000 - precisio
             n0.7: 0.8473 - recall0.7: 0.3642 - tp0.9: 629952.0000 - fp0.9: 32457.0000 - tn0.9: 16650511.0000 - fn0.9: 2347880.0000 - precision0.9: 0.9510 - recall0.9: 0.2115 - accuracy: 0.8935 - auc:
             0.8646 - f1: 0.2631 - val_loss: 0.9781 - val_tp0.1: 706790.0000 - val_fp0.1: 1645956.0000 - val_tn0.1: 2465387.0000 - val_fn0.1: 97067.0000 - val_precision0.1: 0.3004 - val_recall0.1: 0.87
             92 - val_tp0.3: 517245.0000 - val_fp0.3: 647485.0000 - val_tn0.3: 3463858.0000 - val_fn0.3: 286612.0000 - val_precision0.3: 0.4441 - val_recall0.3: 0.6435 - val_tp0.5: 373721.0000 - val_fp
             0.5: 255513.0000 - val_tn0.5: 3855830.0000 - val_fn0.5: 430136.0000 - val_precision0.5: 0.5939 - val_recall0.5: 0.4649 - val_tp0.7: 242514.0000 - val_fp0.7: 84275.0000 - val_tn0.7: 4027068
             .0000 - val_fn0.7: 561343.0000 - val_precision0.7: 0.7421 - val_recall0.7: 0.3017 - val_tp0.9: 127788.0000 - val_fp0.9: 15373.0000 - val_tn0.9: 4095970.0000 - val_fn0.9: 676069.0000 - val_
             precision0.9: 0.8926 - val_recall0.9: 0.1590 - val_accuracy: 0.8605 - val_auc: 0.8289 - val_f1: 0.2811
             Epoch 8/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.7968 - tp0.1: 2628693.0000 - fp0.1: 5237949.0000 - tn0.1: 11445019.0000 - fn0.1: 349139.0000 - precision0.1: 0.3342 - rec
             all0.1: 0.8828 - tp0.3: 1990774.0000 - fp0.3: 1601561.0000 - tn0.3: 15081407.0000 - fn0.3: 987058.0000 - precision0.3: 0.5542 - recall0.3: 0.6685 - tp0.5: 1512649.0000 - fp0.5: 585437.0000
              - tn0.5: 16097531.0000 - fn0.5: 1465183.0000 - precision0.5: 0.7210 - recall0.5: 0.5080 - tp0.7: 1113359.0000 - fp0.7: 192219.0000 - tn0.7: 16490749.0000 - fn0.7: 1864473.0000 - precision
             0.7: 0.8528 - recall0.7: 0.3739 - tp0.9: 662809.0000 - fp0.9: 30877.0000 - tn0.9: 16652091.0000 - fn0.9: 2315023.0000 - precision0.9: 0.9555 - recall0.9: 0.2226 - accuracy: 0.8957 - auc: 0
             .8732 - f1: 0.2631 - val_loss: 1.0262 - val_tp0.1: 703581.0000 - val_fp0.1: 1905662.0000 - val_tn0.1: 2205681.0000 - val_fn0.1: 100276.0000 - val_precision0.1: 0.2696 - val_recall0.1: 0.87
             53 - val_tp0.3: 447413.0000 - val_fp0.3: 447251.0000 - val_tn0.3: 3664092.0000 - val_fn0.3: 356444.0000 - val_precision0.3: 0.5001 - val_recall0.3: 0.5566 - val_tp0.5: 293285.0000 - val_fp
             0.5: 134465.0000 - val_tn0.5: 3976878.0000 - val_fn0.5: 510572.0000 - val_precision0.5: 0.6856 - val_recall0.5: 0.3648 - val_tp0.7: 180739.0000 - val_fp0.7: 40494.0000 - val_tn0.7: 4070849
             .0000 - val_fn0.7: 623118.0000 - val_precision0.7: 0.8170 - val_recall0.7: 0.2248 - val_tp0.9: 86388.0000 - val_fp0.9: 5793.0000 - val_tn0.9: 4105550.0000 - val_fn0.9: 717469.0000 - val_pr
             ecision0.9: 0.9372 - val_recall0.9: 0.1075 - val_accuracy: 0.8688 - val_auc: 0.8159 - val_f1: 0.2811
             Epoch 9/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.7819 - tp0.1: 2640898.0000 - fp0.1: 5239761.0000 - tn0.1: 11443207.0000 - fn0.1: 336934.0000 - precision0.1: 0.3351 - rec
             all0.1: 0.8869 - tp0.3: 2019563.0000 - fp0.3: 1566552.0000 - tn0.3: 15116416.0000 - fn0.3: 958269.0000 - precision0.3: 0.5632 - recall0.3: 0.6782 - tp0.5: 1571033.0000 - fp0.5: 592615.0000
              - tn0.5: 16090353.0000 - fn0.5: 1406799.0000 - precision0.5: 0.7261 - recall0.5: 0.5276 - tp0.7: 1175144.0000 - fp0.7: 194680.0000 - tn0.7: 16488288.0000 - fn0.7: 1802688.0000 - precision
             0.7: 0.8579 - recall0.7: 0.3946 - tp0.9: 742669.0000 - fp0.9: 35986.0000 - tn0.9: 16646982.0000 - fn0.9: 2235163.0000 - precision0.9: 0.9538 - recall0.9: 0.2494 - accuracy: 0.8983 - auc: 0
             .8780 - f1: 0.2631 - val_loss: 1.0157 - val_tp0.1: 652637.0000 - val_fp0.1: 1329883.0000 - val_tn0.1: 2781460.0000 - val_fn0.1: 151220.0000 - val_precision0.1: 0.3292 - val_recall0.1: 0.81
             19 - val_tp0.3: 420948.0000 - val_fp0.3: 353053.0000 - val_tn0.3: 3758290.0000 - val_fn0.3: 382909.0000 - val_precision0.3: 0.5439 - val_recall0.3: 0.5237 - val_tp0.5: 281081.0000 - val_fp
             0.5: 123121.0000 - val_tn0.5: 3988222.0000 - val_fn0.5: 522776.0000 - val_precision0.5: 0.6954 - val_recall0.5: 0.3497 - val_tp0.7: 173940.0000 - val_fp0.7: 36200.0000 - val_tn0.7: 4075143
             .0000 - val_fn0.7: 629917.0000 - val_precision0.7: 0.8277 - val_recall0.7: 0.2164 - val_tp0.9: 89015.0000 - val_fp0.9: 6773.0000 - val_tn0.9: 4104570.0000 - val_fn0.9: 714842.0000 - val_pr
             ecision0.9: 0.9293 - val_recall0.9: 0.1107 - val_accuracy: 0.8686 - val_auc: 0.8166 - val_f1: 0.2811
             Epoch 10/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.7672 - tp0.1: 2635701.0000 - fp0.1: 4919057.0000 - tn0.1: 11763911.0000 - fn0.1: 342131.0000 - precision0.1: 0.3489 - rec
             all0.1: 0.8851 - tp0.3: 2036938.0000 - fp0.3: 1575677.0000 - tn0.3: 15107291.0000 - fn0.3: 940894.0000 - precision0.3: 0.5638 - recall0.3: 0.6840 - tp0.5: 1588676.0000 - fp0.5: 624407.0000
              - tn0.5: 16058561.0000 - fn0.5: 1389156.0000 - precision0.5: 0.7179 - recall0.5: 0.5335 - tp0.7: 1150076.0000 - fp0.7: 189388.0000 - tn0.7: 16493580.0000 - fn0.7: 1827756.0000 - precision
             0.7: 0.8586 - recall0.7: 0.3862 - tp0.9: 694637.0000 - fp0.9: 31558.0000 - tn0.9: 16651410.0000 - fn0.9: 2283195.0000 - precision0.9: 0.9565 - recall0.9: 0.2333 - accuracy: 0.8976 - auc: 0
             .8799 - f1: 0.2631 - val_loss: 0.9685 - val_tp0.1: 719258.0000 - val_fp0.1: 1852284.0000 - val_tn0.1: 2259059.0000 - val_fn0.1: 84599.0000 - val_precision0.1: 0.2797 - val_recall0.1: 0.894
             8 - val_tp0.3: 495938.0000 - val_fp0.3: 497006.0000 - val_tn0.3: 3614337.0000 - val_fn0.3: 307919.0000 - val_precision0.3: 0.4995 - val_recall0.3: 0.6169 - val_tp0.5: 339199.0000 - val_fp0
             .5: 177289.0000 - val_tn0.5: 3934054.0000 - val_fn0.5: 464658.0000 - val_precision0.5: 0.6567 - val_recall0.5: 0.4220 - val_tp0.7: 196231.0000 - val_fp0.7: 44292.0000 - val_tn0.7: 4067051.
             0000 - val_fn0.7: 607626.0000 - val_precision0.7: 0.8159 - val_recall0.7: 0.2441 - val_tp0.9: 84223.0000 - val_fp0.9: 4726.0000 - val_tn0.9: 4106617.0000 - val_fn0.9: 719634.0000 - val_pre
             cision0.9: 0.9469 - val_recall0.9: 0.1048 - val_accuracy: 0.8694 - val_auc: 0.8365 - val_f1: 0.2811
             Epoch 11/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.7657 - tp0.1: 2620304.0000 - fp0.1: 4756693.0000 - tn0.1: 11926275.0000 - fn0.1: 357528.0000 - precision0.1: 0.3552 - rec
             all0.1: 0.8799 - tp0.3: 2057463.0000 - fp0.3: 1595402.0000 - tn0.3: 15087566.0000 - fn0.3: 920369.0000 - precision0.3: 0.5632 - recall0.3: 0.6909 - tp0.5: 1629457.0000 - fp0.5: 652845.0000
              - tn0.5: 16030123.0000 - fn0.5: 1348375.0000 - precision0.5: 0.7140 - recall0.5: 0.5472 - tp0.7: 1159302.0000 - fp0.7: 181594.0000 - tn0.7: 16501374.0000 - fn0.7: 1818530.0000 - precision
             0.7: 0.8646 - recall0.7: 0.3893 - tp0.9: 691411.0000 - fp0.9: 29139.0000 - tn0.9: 16653829.0000 - fn0.9: 2286421.0000 - precision0.9: 0.9596 - recall0.9: 0.2322 - accuracy: 0.8982 - auc: 0
             .8794 - f1: 0.2631 - val_loss: 0.9798 - val_tp0.1: 650390.0000 - val_fp0.1: 1145138.0000 - val_tn0.1: 2966205.0000 - val_fn0.1: 153467.0000 - val_precision0.1: 0.3622 - val_recall0.1: 0.80
             91 - val_tp0.3: 416815.0000 - val_fp0.3: 345286.0000 - val_tn0.3: 3766057.0000 - val_fn0.3: 387042.0000 - val_precision0.3: 0.5469 - val_recall0.3: 0.5185 - val_tp0.5: 303813.0000 - val_fp
             0.5: 119881.0000 - val_tn0.5: 3991462.0000 - val_fn0.5: 500044.0000 - val_precision0.5: 0.7171 - val_recall0.5: 0.3779 - val_tp0.7: 186405.0000 - val_fp0.7: 34348.0000 - val_tn0.7: 4076995
             .0000 - val_fn0.7: 617452.0000 - val_precision0.7: 0.8444 - val_recall0.7: 0.2319 - val_tp0.9: 88035.0000 - val_fp0.9: 4840.0000 - val_tn0.9: 4106503.0000 - val_fn0.9: 715822.0000 - val_pr
             ecision0.9: 0.9479 - val_recall0.9: 0.1095 - val_accuracy: 0.8739 - val_auc: 0.8236 - val_f1: 0.2811
             Epoch 12/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.7483 - tp0.1: 2643606.0000 - fp0.1: 4772914.0000 - tn0.1: 11910054.0000 - fn0.1: 334226.0000 - precision0.1: 0.3564 - rec
             all0.1: 0.8878 - tp0.3: 2076874.0000 - fp0.3: 1529573.0000 - tn0.3: 15153395.0000 - fn0.3: 900958.0000 - precision0.3: 0.5759 - recall0.3: 0.6974 - tp0.5: 1673377.0000 - fp0.5: 652544.0000
              - tn0.5: 16030424.0000 - fn0.5: 1304455.0000 - precision0.5: 0.7194 - recall0.5: 0.5619 - tp0.7: 1197669.0000 - fp0.7: 195301.0000 - tn0.7: 16487667.0000 - fn0.7: 1780163.0000 - precision
             0.7: 0.8598 - recall0.7: 0.4022 - tp0.9: 723663.0000 - fp0.9: 34095.0000 - tn0.9: 16648873.0000 - fn0.9: 2254169.0000 - precision0.9: 0.9550 - recall0.9: 0.2430 - accuracy: 0.9005 - auc: 0
             .8854 - f1: 0.2631 - val_loss: 0.9661 - val_tp0.1: 682417.0000 - val_fp0.1: 1411604.0000 - val_tn0.1: 2699739.0000 - val_fn0.1: 121440.0000 - val_precision0.1: 0.3259 - val_recall0.1: 0.84
             89 - val_tp0.3: 393462.0000 - val_fp0.3: 248966.0000 - val_tn0.3: 3862377.0000 - val_fn0.3: 410395.0000 - val_precision0.3: 0.6125 - val_recall0.3: 0.4895 - val_tp0.5: 264605.0000 - val_fp
             0.5: 75544.0000 - val_tn0.5: 4035799.0000 - val_fn0.5: 539252.0000 - val_precision0.5: 0.7779 - val_recall0.5: 0.3292 - val_tp0.7: 151048.0000 - val_fp0.7: 18110.0000 - val_tn0.7: 4093233.
             0000 - val_fn0.7: 652809.0000 - val_precision0.7: 0.8929 - val_recall0.7: 0.1879 - val_tp0.9: 73096.0000 - val_fp0.9: 2503.0000 - val_tn0.9: 4108840.0000 - val_fn0.9: 730761.0000 - val_pre
             cision0.9: 0.9669 - val_recall0.9: 0.0909 - val_accuracy: 0.8749 - val_auc: 0.8348 - val_f1: 0.2811
             Epoch 13/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.7469 - tp0.1: 2638319.0000 - fp0.1: 4684335.0000 - tn0.1: 11998633.0000 - fn0.1: 339513.0000 - precision0.1: 0.3603 - rec
             all0.1: 0.8860 - tp0.3: 2075631.0000 - fp0.3: 1533614.0000 - tn0.3: 15149354.0000 - fn0.3: 902201.0000 - precision0.3: 0.5751 - recall0.3: 0.6970 - tp0.5: 1654093.0000 - fp0.5: 657052.0000
              - tn0.5: 16025916.0000 - fn0.5: 1323739.0000 - precision0.5: 0.7157 - recall0.5: 0.5555 - tp0.7: 1159144.0000 - fp0.7: 187558.0000 - tn0.7: 16495410.0000 - fn0.7: 1818688.0000 - precision
             0.7: 0.8607 - recall0.7: 0.3893 - tp0.9: 691098.0000 - fp0.9: 30329.0000 - tn0.9: 16652639.0000 - fn0.9: 2286734.0000 - precision0.9: 0.9580 - recall0.9: 0.2321 - accuracy: 0.8993 - auc: 0
             .8851 - f1: 0.2631 - val_loss: 0.9511 - val_tp0.1: 676012.0000 - val_fp0.1: 1300131.0000 - val_tn0.1: 2811212.0000 - val_fn0.1: 127845.0000 - val_precision0.1: 0.3421 - val_recall0.1: 0.84
             10 - val_tp0.3: 435613.0000 - val_fp0.3: 369776.0000 - val_tn0.3: 3741567.0000 - val_fn0.3: 368244.0000 - val_precision0.3: 0.5409 - val_recall0.3: 0.5419 - val_tp0.5: 315382.0000 - val_fp
             0.5: 126324.0000 - val_tn0.5: 3985019.0000 - val_fn0.5: 488475.0000 - val_precision0.5: 0.7140 - val_recall0.5: 0.3923 - val_tp0.7: 186834.0000 - val_fp0.7: 33643.0000 - val_tn0.7: 4077700
             .0000 - val_fn0.7: 617023.0000 - val_precision0.7: 0.8474 - val_recall0.7: 0.2324 - val_tp0.9: 86226.0000 - val_fp0.9: 4347.0000 - val_tn0.9: 4106996.0000 - val_fn0.9: 717631.0000 - val_pr
             ecision0.9: 0.9520 - val_recall0.9: 0.1073 - val_accuracy: 0.8749 - val_auc: 0.8317 - val_f1: 0.2811
             Epoch 14/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.7472 - tp0.1: 2640336.0000 - fp0.1: 4682320.0000 - tn0.1: 12000648.0000 - fn0.1: 337496.0000 - precision0.1: 0.3606 - rec
             all0.1: 0.8867 - tp0.3: 2072009.0000 - fp0.3: 1595973.0000 - tn0.3: 15086995.0000 - fn0.3: 905823.0000 - precision0.3: 0.5649 - recall0.3: 0.6958 - tp0.5: 1664556.0000 - fp0.5: 686406.0000
              - tn0.5: 15996562.0000 - fn0.5: 1313276.0000 - precision0.5: 0.7080 - recall0.5: 0.5590 - tp0.7: 1168681.0000 - fp0.7: 190677.0000 - tn0.7: 16492291.0000 - fn0.7: 1809151.0000 - precision
             0.7: 0.8597 - recall0.7: 0.3925 - tp0.9: 706963.0000 - fp0.9: 30254.0000 - tn0.9: 16652714.0000 - fn0.9: 2270869.0000 - precision0.9: 0.9590 - recall0.9: 0.2374 - accuracy: 0.8983 - auc: 0
             .8838 - f1: 0.2631 - val_loss: 0.9537 - val_tp0.1: 687713.0000 - val_fp0.1: 1442587.0000 - val_tn0.1: 2668756.0000 - val_fn0.1: 116144.0000 - val_precision0.1: 0.3228 - val_recall0.1: 0.85
             55 - val_tp0.3: 448956.0000 - val_fp0.3: 376999.0000 - val_tn0.3: 3734344.0000 - val_fn0.3: 354901.0000 - val_precision0.3: 0.5436 - val_recall0.3: 0.5585 - val_tp0.5: 322122.0000 - val_fp
             0.5: 133228.0000 - val_tn0.5: 3978115.0000 - val_fn0.5: 481735.0000 - val_precision0.5: 0.7074 - val_recall0.5: 0.4007 - val_tp0.7: 189079.0000 - val_fp0.7: 36378.0000 - val_tn0.7: 4074965
             .0000 - val_fn0.7: 614778.0000 - val_precision0.7: 0.8386 - val_recall0.7: 0.2352 - val_tp0.9: 87530.0000 - val_fp0.9: 4845.0000 - val_tn0.9: 4106498.0000 - val_fn0.9: 716327.0000 - val_pr
             ecision0.9: 0.9476 - val_recall0.9: 0.1089 - val_accuracy: 0.8749 - val_auc: 0.8339 - val_f1: 0.2811
             Epoch 15/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.7436 - tp0.1: 2645410.0000 - fp0.1: 4733153.0000 - tn0.1: 11949815.0000 - fn0.1: 332422.0000 - precision0.1: 0.3585 - rec
             all0.1: 0.8884 - tp0.3: 2099091.0000 - fp0.3: 1622697.0000 - tn0.3: 15060271.0000 - fn0.3: 878741.0000 - precision0.3: 0.5640 - recall0.3: 0.7049 - tp0.5: 1689821.0000 - fp0.5: 706002.0000
              - tn0.5: 15976966.0000 - fn0.5: 1288011.0000 - precision0.5: 0.7053 - recall0.5: 0.5675 - tp0.7: 1187271.0000 - fp0.7: 194662.0000 - tn0.7: 16488306.0000 - fn0.7: 1790561.0000 - precision
             0.7: 0.8591 - recall0.7: 0.3987 - tp0.9: 719432.0000 - fp0.9: 31350.0000 - tn0.9: 16651618.0000 - fn0.9: 2258400.0000 - precision0.9: 0.9582 - recall0.9: 0.2416 - accuracy: 0.8986 - auc: 0
             .8855 - f1: 0.2631 - val_loss: 0.9517 - val_tp0.1: 686003.0000 - val_fp0.1: 1413980.0000 - val_tn0.1: 2697363.0000 - val_fn0.1: 117854.0000 - val_precision0.1: 0.3267 - val_recall0.1: 0.85
             34 - val_tp0.3: 449760.0000 - val_fp0.3: 382567.0000 - val_tn0.3: 3728776.0000 - val_fn0.3: 354097.0000 - val_precision0.3: 0.5404 - val_recall0.3: 0.5595 - val_tp0.5: 324012.0000 - val_fp
             0.5: 130173.0000 - val_tn0.5: 3981170.0000 - val_fn0.5: 479845.0000 - val_precision0.5: 0.7134 - val_recall0.5: 0.4031 - val_tp0.7: 189632.0000 - val_fp0.7: 34603.0000 - val_tn0.7: 4076740
             .0000 - val_fn0.7: 614225.0000 - val_precision0.7: 0.8457 - val_recall0.7: 0.2359 - val_tp0.9: 86754.0000 - val_fp0.9: 4383.0000 - val_tn0.9: 4106960.0000 - val_fn0.9: 717103.0000 - val_pr
             ecision0.9: 0.9519 - val_recall0.9: 0.1079 - val_accuracy: 0.8759 - val_auc: 0.8345 - val_f1: 0.2811
             Epoch 16/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.7458 - tp0.1: 2641645.0000 - fp0.1: 4695396.0000 - tn0.1: 11987572.0000 - fn0.1: 336187.0000 - precision0.1: 0.3600 - rec
             all0.1: 0.8871 - tp0.3: 2084584.0000 - fp0.3: 1588554.0000 - tn0.3: 15094414.0000 - fn0.3: 893248.0000 - precision0.3: 0.5675 - recall0.3: 0.7000 - tp0.5: 1683391.0000 - fp0.5: 686943.0000
              - tn0.5: 15996025.0000 - fn0.5: 1294441.0000 - precision0.5: 0.7102 - recall0.5: 0.5653 - tp0.7: 1187166.0000 - fp0.7: 191714.0000 - tn0.7: 16491254.0000 - fn0.7: 1790666.0000 - precision
             0.7: 0.8610 - recall0.7: 0.3987 - tp0.9: 713157.0000 - fp0.9: 30164.0000 - tn0.9: 16652804.0000 - fn0.9: 2264675.0000 - precision0.9: 0.9594 - recall0.9: 0.2395 - accuracy: 0.8992 - auc: 0
             .8851 - f1: 0.2631 - val_loss: 0.9480 - val_tp0.1: 687202.0000 - val_fp0.1: 1416765.0000 - val_tn0.1: 2694578.0000 - val_fn0.1: 116655.0000 - val_precision0.1: 0.3266 - val_recall0.1: 0.85
             49 - val_tp0.3: 435185.0000 - val_fp0.3: 324375.0000 - val_tn0.3: 3786968.0000 - val_fn0.3: 368672.0000 - val_precision0.3: 0.5729 - val_recall0.3: 0.5414 - val_tp0.5: 310697.0000 - val_fp
             0.5: 114008.0000 - val_tn0.5: 3997335.0000 - val_fn0.5: 493160.0000 - val_precision0.5: 0.7316 - val_recall0.5: 0.3865 - val_tp0.7: 180896.0000 - val_fp0.7: 30514.0000 - val_tn0.7: 4080829
             .0000 - val_fn0.7: 622961.0000 - val_precision0.7: 0.8557 - val_recall0.7: 0.2250 - val_tp0.9: 85121.0000 - val_fp0.9: 4248.0000 - val_tn0.9: 4107095.0000 - val_fn0.9: 718736.0000 - val_pr
             ecision0.9: 0.9525 - val_recall0.9: 0.1059 - val_accuracy: 0.8765 - val_auc: 0.8372 - val_f1: 0.2811
             Epoch 17/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.7489 - tp0.1: 2637863.0000 - fp0.1: 4686124.0000 - tn0.1: 11996844.0000 - fn0.1: 339969.0000 - precision0.1: 0.3602 - rec
             all0.1: 0.8858 - tp0.3: 2075559.0000 - fp0.3: 1564588.0000 - tn0.3: 15118380.0000 - fn0.3: 902273.0000 - precision0.3: 0.5702 - recall0.3: 0.6970 - tp0.5: 1674724.0000 - fp0.5: 689631.0000
              - tn0.5: 15993337.0000 - fn0.5: 1303108.0000 - precision0.5: 0.7083 - recall0.5: 0.5624 - tp0.7: 1179885.0000 - fp0.7: 191863.0000 - tn0.7: 16491105.0000 - fn0.7: 1797947.0000 - precision
             0.7: 0.8601 - recall0.7: 0.3962 - tp0.9: 710902.0000 - fp0.9: 31154.0000 - tn0.9: 16651814.0000 - fn0.9: 2266930.0000 - precision0.9: 0.9580 - recall0.9: 0.2387 - accuracy: 0.8986 - auc: 0
             .8842 - f1: 0.2631 - val_loss: 0.9526 - val_tp0.1: 685383.0000 - val_fp0.1: 1407315.0000 - val_tn0.1: 2704028.0000 - val_fn0.1: 118474.0000 - val_precision0.1: 0.3275 - val_recall0.1: 0.85
             26 - val_tp0.3: 434253.0000 - val_fp0.3: 334816.0000 - val_tn0.3: 3776527.0000 - val_fn0.3: 369604.0000 - val_precision0.3: 0.5646 - val_recall0.3: 0.5402 - val_tp0.5: 309436.0000 - val_fp
             0.5: 113860.0000 - val_tn0.5: 3997483.0000 - val_fn0.5: 494421.0000 - val_precision0.5: 0.7310 - val_recall0.5: 0.3849 - val_tp0.7: 180756.0000 - val_fp0.7: 30132.0000 - val_tn0.7: 4081211
             .0000 - val_fn0.7: 623101.0000 - val_precision0.7: 0.8571 - val_recall0.7: 0.2249 - val_tp0.9: 85627.0000 - val_fp0.9: 4210.0000 - val_tn0.9: 4107133.0000 - val_fn0.9: 718230.0000 - val_pr
             ecision0.9: 0.9531 - val_recall0.9: 0.1065 - val_accuracy: 0.8762 - val_auc: 0.8351 - val_f1: 0.2811
             Epoch 18/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.7393 - tp0.1: 2648936.0000 - fp0.1: 4669640.0000 - tn0.1: 12013328.0000 - fn0.1: 328896.0000 - precision0.1: 0.3619 - rec
             all0.1: 0.8896 - tp0.3: 2088022.0000 - fp0.3: 1535327.0000 - tn0.3: 15147641.0000 - fn0.3: 889810.0000 - precision0.3: 0.5763 - recall0.3: 0.7012 - tp0.5: 1675010.0000 - fp0.5: 662872.0000
              - tn0.5: 16020096.0000 - fn0.5: 1302822.0000 - precision0.5: 0.7165 - recall0.5: 0.5625 - tp0.7: 1182736.0000 - fp0.7: 184372.0000 - tn0.7: 16498596.0000 - fn0.7: 1795096.0000 - precision
             0.7: 0.8651 - recall0.7: 0.3972 - tp0.9: 719695.0000 - fp0.9: 31350.0000 - tn0.9: 16651618.0000 - fn0.9: 2258137.0000 - precision0.9: 0.9583 - recall0.9: 0.2417 - accuracy: 0.9000 - auc: 0
             .8873 - f1: 0.2631 - val_loss: 0.9553 - val_tp0.1: 682153.0000 - val_fp0.1: 1382728.0000 - val_tn0.1: 2728615.0000 - val_fn0.1: 121704.0000 - val_precision0.1: 0.3304 - val_recall0.1: 0.84
             86 - val_tp0.3: 433097.0000 - val_fp0.3: 334545.0000 - val_tn0.3: 3776798.0000 - val_fn0.3: 370760.0000 - val_precision0.3: 0.5642 - val_recall0.3: 0.5388 - val_tp0.5: 307911.0000 - val_fp
             0.5: 113008.0000 - val_tn0.5: 3998335.0000 - val_fn0.5: 495946.0000 - val_precision0.5: 0.7315 - val_recall0.5: 0.3830 - val_tp0.7: 178664.0000 - val_fp0.7: 29733.0000 - val_tn0.7: 4081610
             .0000 - val_fn0.7: 625193.0000 - val_precision0.7: 0.8573 - val_recall0.7: 0.2223 - val_tp0.9: 83772.0000 - val_fp0.9: 4111.0000 - val_tn0.9: 4107232.0000 - val_fn0.9: 720085.0000 - val_pr
             ecision0.9: 0.9532 - val_recall0.9: 0.1042 - val_accuracy: 0.8761 - val_auc: 0.8340 - val_f1: 0.2811
             Epoch 19/20
             800/800 [==============================] - 23s 28ms/step - loss: 0.7452 - tp0.1: 2646665.0000 - fp0.1: 4698587.0000 - tn0.1: 11984381.0000 - fn0.1: 331167.0000 - precision0.1: 0.3603 - rec
             all0.1: 0.8888 - tp0.3: 2062641.0000 - fp0.3: 1557707.0000 - tn0.3: 15125261.0000 - fn0.3: 915191.0000 - precision0.3: 0.5697 - recall0.3: 0.6927 - tp0.5: 1648838.0000 - fp0.5: 680800.0000
              - tn0.5: 16002168.0000 - fn0.5: 1328994.0000 - precision0.5: 0.7078 - recall0.5: 0.5537 - tp0.7: 1164585.0000 - fp0.7: 186942.0000 - tn0.7: 16496026.0000 - fn0.7: 1813247.0000 - precision
             0.7: 0.8617 - recall0.7: 0.3911 - tp0.9: 705028.0000 - fp0.9: 30241.0000 - tn0.9: 16652727.0000 - fn0.9: 2272804.0000 - precision0.9: 0.9589 - recall0.9: 0.2368 - accuracy: 0.8978 - auc: 0
             .8850 - f1: 0.2631 - val_loss: 0.9544 - val_tp0.1: 689367.0000 - val_fp0.1: 1469991.0000 - val_tn0.1: 2641352.0000 - val_fn0.1: 114490.0000 - val_precision0.1: 0.3192 - val_recall0.1: 0.85
             76 - val_tp0.3: 451534.0000 - val_fp0.3: 363328.0000 - val_tn0.3: 3748015.0000 - val_fn0.3: 352323.0000 - val_precision0.3: 0.5541 - val_recall0.3: 0.5617 - val_tp0.5: 324284.0000 - val_fp
             0.5: 128372.0000 - val_tn0.5: 3982971.0000 - val_fn0.5: 479573.0000 - val_precision0.5: 0.7164 - val_recall0.5: 0.4034 - val_tp0.7: 190210.0000 - val_fp0.7: 35390.0000 - val_tn0.7: 4075953
             .0000 - val_fn0.7: 613647.0000 - val_precision0.7: 0.8431 - val_recall0.7: 0.2366 - val_tp0.9: 88933.0000 - val_fp0.9: 4874.0000 - val_tn0.9: 4106469.0000 - val_fn0.9: 714924.0000 - val_pr
             ecision0.9: 0.9480 - val_recall0.9: 0.1106 - val_accuracy: 0.8763 - val_auc: 0.8353 - val_f1: 0.2811
             Epoch 20/20
             800/800 [==============================] - 22s 28ms/step - loss: 0.7364 - tp0.1: 2654787.0000 - fp0.1: 4675725.0000 - tn0.1: 12007243.0000 - fn0.1: 323045.0000 - precision0.1: 0.3622 - rec
             all0.1: 0.8915 - tp0.3: 2081760.0000 - fp0.3: 1548676.0000 - tn0.3: 15134292.0000 - fn0.3: 896072.0000 - precision0.3: 0.5734 - recall0.3: 0.6991 - tp0.5: 1666321.0000 - fp0.5: 674703.0000
              - tn0.5: 16008265.0000 - fn0.5: 1311511.0000 - precision0.5: 0.7118 - recall0.5: 0.5596 - tp0.7: 1164069.0000 - fp0.7: 189776.0000 - tn0.7: 16493192.0000 - fn0.7: 1813763.0000 - precision
             0.7: 0.8598 - recall0.7: 0.3909 - tp0.9: 699952.0000 - fp0.9: 31138.0000 - tn0.9: 16651830.0000 - fn0.9: 2277880.0000 - precision0.9: 0.9574 - recall0.9: 0.2351 - accuracy: 0.8990 - auc: 0
             .8875 - f1: 0.2631 - val_loss: 0.9490 - val_tp0.1: 690953.0000 - val_fp0.1: 1466947.0000 - val_tn0.1: 2644396.0000 - val_fn0.1: 112904.0000 - val_precision0.1: 0.3202 - val_recall0.1: 0.85
             95 - val_tp0.3: 446418.0000 - val_fp0.3: 345263.0000 - val_tn0.3: 3766080.0000 - val_fn0.3: 357439.0000 - val_precision0.3: 0.5639 - val_recall0.3: 0.5553 - val_tp0.5: 321059.0000 - val_fp
             0.5: 123555.0000 - val_tn0.5: 3987788.0000 - val_fn0.5: 482798.0000 - val_precision0.5: 0.7221 - val_recall0.5: 0.3994 - val_tp0.7: 189576.0000 - val_fp0.7: 35232.0000 - val_tn0.7: 4076111
             .0000 - val_fn0.7: 614281.0000 - val_precision0.7: 0.8433 - val_recall0.7: 0.2358 - val_tp0.9: 90962.0000 - val_fp0.9: 5426.0000 - val_tn0.9: 4105917.0000 - val_fn0.9: 712895.0000 - val_pr
             ecision0.9: 0.9437 - val_recall0.9: 0.1132 - val_accuracy: 0.8766 - val_auc: 0.8372 - val_f1: 0.2811
             --- Running training session 61/140
             {'hp_epochs': 20, 'hp_batch_size': 20, 'hp_scaler': 'standard', 'hp_n_levels': 3, 'hp_first_filters': 128, 'hp_pool_size': 4, 'hp_input_size': 16384, 'hp_lr_start': 0.04354970735327304, 'h
             p_lr_power': 1.0}
             --- repeat #: 1
             input - shape:   (None, 16384, 1)
             output - shape:  (None, 16384, 1)
             Epoch 1/20
             240/240 [==============================] - 145s 530ms/step - loss: 0.7930 - tp0.1: 9902012.0000 - fp0.1: 12359941.0000 - tn0.1: 54313476.0000 - fn0.1: 2067755.0000 - precision0.1: 0.4448 -
              recall0.1: 0.8273 - tp0.3: 8813463.0000 - fp0.3: 7147978.0000 - tn0.3: 59525464.0000 - fn0.3: 3156304.0000 - precision0.3: 0.5522 - recall0.3: 0.7363 - tp0.5: 6775614.0000 - fp0.5: 236477
             6.0000 - tn0.5: 64308628.0000 - fn0.5: 5194153.0000 - precision0.5: 0.7413 - recall0.5: 0.5661 - tp0.7: 5269669.0000 - fp0.7: 804460.0000 - tn0.7: 65868980.0000 - fn0.7: 6700098.0000 - pre
             cision0.7: 0.8676 - recall0.7: 0.4402 - tp0.9: 3642391.0000 - fp0.9: 181910.0000 - tn0.9: 66491528.0000 - fn0.9: 8327376.0000 - precision0.9: 0.9524 - recall0.9: 0.3043 - accuracy: 0.9039
             - auc: 0.8736 - f1: 0.2642 - val_loss: 1.3831 - val_tp0.1: 1860092.0000 - val_fp0.1: 529606.0000 - val_tn0.1: 15968340.0000 - val_fn0.1: 1302762.0000 - val_precision0.1: 0.7784 - val_recal
             l0.1: 0.5881 - val_tp0.3: 1805849.0000 - val_fp0.3: 437765.0000 - val_tn0.3: 16060181.0000 - val_fn0.3: 1357005.0000 - val_precision0.3: 0.8049 - val_recall0.3: 0.5710 - val_tp0.5: 1737224
             .0000 - val_fp0.5: 360788.0000 - val_tn0.5: 16137158.0000 - val_fn0.5: 1425630.0000 - val_precision0.5: 0.8280 - val_recall0.5: 0.5493 - val_tp0.7: 1675344.0000 - val_fp0.7: 306812.0000 -
             val_tn0.7: 16191134.0000 - val_fn0.7: 1487510.0000 - val_precision0.7: 0.8452 - val_recall0.7: 0.5297 - val_tp0.9: 1555952.0000 - val_fp0.9: 227670.0000 - val_tn0.9: 16270276.0000 - val_fn
             0.9: 1606902.0000 - val_precision0.9: 0.8724 - val_recall0.9: 0.4919 - val_accuracy: 0.9091 - val_auc: 0.7866 - val_f1: 0.2772
             Epoch 2/20
             240/240 [==============================] - 123s 514ms/step - loss: 0.6145 - tp0.1: 10414504.0000 - fp0.1: 10347179.0000 - tn0.1: 56326272.0000 - fn0.1: 1555263.0000 - precision0.1: 0.5016
             - recall0.1: 0.8701 - tp0.3: 9433694.0000 - fp0.3: 4804465.0000 - tn0.3: 61868972.0000 - fn0.3: 2536073.0000 - precision0.3: 0.6626 - recall0.3: 0.7881 - tp0.5: 8253529.0000 - fp0.5: 21841
             43.0000 - tn0.5: 64489292.0000 - fn0.5: 3716238.0000 - precision0.5: 0.7907 - recall0.5: 0.6895 - tp0.7: 6893438.0000 - fp0.7: 964306.0000 - tn0.7: 65709120.0000 - fn0.7: 5076329.0000 - pr
             ecision0.7: 0.8773 - recall0.7: 0.5759 - tp0.9: 4825582.0000 - fp0.9: 253763.0000 - tn0.9: 66419652.0000 - fn0.9: 7144185.0000 - precision0.9: 0.9500 - recall0.9: 0.4031 - accuracy: 0.9250
              - auc: 0.9112 - f1: 0.2642 - val_loss: 0.7660 - val_tp0.1: 2600896.0000 - val_fp0.1: 1563848.0000 - val_tn0.1: 14934098.0000 - val_fn0.1: 561958.0000 - val_precision0.1: 0.6245 - val_reca
             ll0.1: 0.8223 - val_tp0.3: 2498170.0000 - val_fp0.3: 1105437.0000 - val_tn0.3: 15392509.0000 - val_fn0.3: 664684.0000 - val_precision0.3: 0.6932 - val_recall0.3: 0.7898 - val_tp0.5: 236736
             0.0000 - val_fp0.5: 720936.0000 - val_tn0.5: 15777010.0000 - val_fn0.5: 795494.0000 - val_precision0.5: 0.7666 - val_recall0.5: 0.7485 - val_tp0.7: 2247425.0000 - val_fp0.7: 512282.0000 -
             val_tn0.7: 15985664.0000 - val_fn0.7: 915429.0000 - val_precision0.7: 0.8144 - val_recall0.7: 0.7106 - val_tp0.9: 2064899.0000 - val_fp0.9: 341222.0000 - val_tn0.9: 16156724.0000 - val_fn0
             .9: 1097955.0000 - val_precision0.9: 0.8582 - val_recall0.9: 0.6529 - val_accuracy: 0.9229 - val_auc: 0.8919 - val_f1: 0.2772
             Epoch 3/20
             240/240 [==============================] - 123s 514ms/step - loss: 0.5296 - tp0.1: 10710507.0000 - fp0.1: 9627528.0000 - tn0.1: 57045904.0000 - fn0.1: 1259260.0000 - precision0.1: 0.5266 -
              recall0.1: 0.8948 - tp0.3: 9708967.0000 - fp0.3: 3890062.0000 - tn0.3: 62783372.0000 - fn0.3: 2260800.0000 - precision0.3: 0.7139 - recall0.3: 0.8111 - tp0.5: 8800137.0000 - fp0.5: 193587
             4.0000 - tn0.5: 64737520.0000 - fn0.5: 3169630.0000 - precision0.5: 0.8197 - recall0.5: 0.7352 - tp0.7: 7616621.0000 - fp0.7: 897975.0000 - tn0.7: 65775424.0000 - fn0.7: 4353146.0000 - pre
             cision0.7: 0.8945 - recall0.7: 0.6363 - tp0.9: 5653966.0000 - fp0.9: 272229.0000 - tn0.9: 66401216.0000 - fn0.9: 6315801.0000 - precision0.9: 0.9541 - recall0.9: 0.4724 - accuracy: 0.9351
             - auc: 0.9281 - f1: 0.2642 - val_loss: 0.6681 - val_tp0.1: 2593120.0000 - val_fp0.1: 1019904.0000 - val_tn0.1: 15478042.0000 - val_fn0.1: 569734.0000 - val_precision0.1: 0.7177 - val_recal
             l0.1: 0.8199 - val_tp0.3: 2244784.0000 - val_fp0.3: 338835.0000 - val_tn0.3: 16159111.0000 - val_fn0.3: 918070.0000 - val_precision0.3: 0.8689 - val_recall0.3: 0.7097 - val_tp0.5: 2014697.
             0000 - val_fp0.5: 180709.0000 - val_tn0.5: 16317237.0000 - val_fn0.5: 1148157.0000 - val_precision0.5: 0.9177 - val_recall0.5: 0.6370 - val_tp0.7: 1651445.0000 - val_fp0.7: 66392.0000 - va
             l_tn0.7: 16431554.0000 - val_fn0.7: 1511409.0000 - val_precision0.7: 0.9614 - val_recall0.7: 0.5221 - val_tp0.9: 1122584.0000 - val_fp0.9: 10626.0000 - val_tn0.9: 16487320.0000 - val_fn0.9
             : 2040270.0000 - val_precision0.9: 0.9906 - val_recall0.9: 0.3549 - val_accuracy: 0.9324 - val_auc: 0.9151 - val_f1: 0.2772
             Epoch 4/20
             240/240 [==============================] - 123s 514ms/step - loss: 0.4720 - tp0.1: 10877075.0000 - fp0.1: 8671019.0000 - tn0.1: 58002392.0000 - fn0.1: 1092692.0000 - precision0.1: 0.5564 -
              recall0.1: 0.9087 - tp0.3: 9936344.0000 - fp0.3: 3411676.0000 - tn0.3: 63261736.0000 - fn0.3: 2033423.0000 - precision0.3: 0.7444 - recall0.3: 0.8301 - tp0.5: 9211814.0000 - fp0.5: 187395
             8.0000 - tn0.5: 64799456.0000 - fn0.5: 2757953.0000 - precision0.5: 0.8310 - recall0.5: 0.7696 - tp0.7: 8139780.0000 - fp0.7: 898839.0000 - tn0.7: 65774596.0000 - fn0.7: 3829987.0000 - pre
             cision0.7: 0.9006 - recall0.7: 0.6800 - tp0.9: 6238056.0000 - fp0.9: 255726.0000 - tn0.9: 66417696.0000 - fn0.9: 5731711.0000 - precision0.9: 0.9606 - recall0.9: 0.5212 - accuracy: 0.9411
             - auc: 0.9384 - f1: 0.2642 - val_loss: 0.4134 - val_tp0.1: 3012908.0000 - val_fp0.1: 2692890.0000 - val_tn0.1: 13805056.0000 - val_fn0.1: 149946.0000 - val_precision0.1: 0.5280 - val_recal
             l0.1: 0.9526 - val_tp0.3: 2844859.0000 - val_fp0.3: 1085275.0000 - val_tn0.3: 15412671.0000 - val_fn0.3: 317995.0000 - val_precision0.3: 0.7239 - val_recall0.3: 0.8995 - val_tp0.5: 2702953
             .0000 - val_fp0.5: 596686.0000 - val_tn0.5: 15901260.0000 - val_fn0.5: 459901.0000 - val_precision0.5: 0.8192 - val_recall0.5: 0.8546 - val_tp0.7: 2523224.0000 - val_fp0.7: 328369.0000 - v
             al_tn0.7: 16169577.0000 - val_fn0.7: 639630.0000 - val_precision0.7: 0.8848 - val_recall0.7: 0.7978 - val_tp0.9: 2192428.0000 - val_fp0.9: 138765.0000 - val_tn0.9: 16359181.0000 - val_fn0.
             9: 970426.0000 - val_precision0.9: 0.9405 - val_recall0.9: 0.6932 - val_accuracy: 0.9463 - val_auc: 0.9625 - val_f1: 0.2772
             Epoch 5/20
             240/240 [==============================] - 124s 515ms/step - loss: 0.4310 - tp0.1: 10975989.0000 - fp0.1: 7934457.0000 - tn0.1: 58738992.0000 - fn0.1: 993778.0000 - precision0.1: 0.5804 -
             recall0.1: 0.9170 - tp0.3: 10114842.0000 - fp0.3: 3195737.0000 - tn0.3: 63477704.0000 - fn0.3: 1854925.0000 - precision0.3: 0.7599 - recall0.3: 0.8450 - tp0.5: 9339053.0000 - fp0.5: 161448
             5.0000 - tn0.5: 65058948.0000 - fn0.5: 2630714.0000 - precision0.5: 0.8526 - recall0.5: 0.7802 - tp0.7: 8449558.0000 - fp0.7: 805407.0000 - tn0.7: 65868032.0000 - fn0.7: 3520209.0000 - pre
             cision0.7: 0.9130 - recall0.7: 0.7059 - tp0.9: 6730077.0000 - fp0.9: 232993.0000 - tn0.9: 66440428.0000 - fn0.9: 5239690.0000 - precision0.9: 0.9665 - recall0.9: 0.5623 - accuracy: 0.9460
             - auc: 0.9454 - f1: 0.2642 - val_loss: 0.4139 - val_tp0.1: 3048945.0000 - val_fp0.1: 2758234.0000 - val_tn0.1: 13739712.0000 - val_fn0.1: 113909.0000 - val_precision0.1: 0.5250 - val_recal
             l0.1: 0.9640 - val_tp0.3: 2947363.0000 - val_fp0.3: 1444749.0000 - val_tn0.3: 15053197.0000 - val_fn0.3: 215491.0000 - val_precision0.3: 0.6711 - val_recall0.3: 0.9319 - val_tp0.5: 2843052
             .0000 - val_fp0.5: 901333.0000 - val_tn0.5: 15596613.0000 - val_fn0.5: 319802.0000 - val_precision0.5: 0.7593 - val_recall0.5: 0.8989 - val_tp0.7: 2732073.0000 - val_fp0.7: 569323.0000 - v
             al_tn0.7: 15928623.0000 - val_fn0.7: 430781.0000 - val_precision0.7: 0.8276 - val_recall0.7: 0.8638 - val_tp0.9: 2540735.0000 - val_fp0.9: 283228.0000 - val_tn0.9: 16214718.0000 - val_fn0.
             9: 622119.0000 - val_precision0.9: 0.8997 - val_recall0.9: 0.8033 - val_accuracy: 0.9379 - val_auc: 0.9680 - val_f1: 0.2772
             Epoch 6/20
             240/240 [==============================] - 123s 514ms/step - loss: 0.4055 - tp0.1: 11005938.0000 - fp0.1: 7117253.0000 - tn0.1: 59556168.0000 - fn0.1: 963829.0000 - precision0.1: 0.6073 -
             recall0.1: 0.9195 - tp0.3: 10252977.0000 - fp0.3: 2993472.0000 - tn0.3: 63679960.0000 - fn0.3: 1716790.0000 - precision0.3: 0.7740 - recall0.3: 0.8566 - tp0.5: 9600067.0000 - fp0.5: 159785
             2.0000 - tn0.5: 65075568.0000 - fn0.5: 2369700.0000 - precision0.5: 0.8573 - recall0.5: 0.8020 - tp0.7: 8735547.0000 - fp0.7: 775018.0000 - tn0.7: 65898436.0000 - fn0.7: 3234220.0000 - pre
             cision0.7: 0.9185 - recall0.7: 0.7298 - tp0.9: 7088496.0000 - fp0.9: 233616.0000 - tn0.9: 66439832.0000 - fn0.9: 4881271.0000 - precision0.9: 0.9681 - recall0.9: 0.5922 - accuracy: 0.9496
             - auc: 0.9484 - f1: 0.2642 - val_loss: 0.3925 - val_tp0.1: 3016157.0000 - val_fp0.1: 2494175.0000 - val_tn0.1: 14003771.0000 - val_fn0.1: 146697.0000 - val_precision0.1: 0.5474 - val_recal
             l0.1: 0.9536 - val_tp0.3: 2913629.0000 - val_fp0.3: 1206347.0000 - val_tn0.3: 15291599.0000 - val_fn0.3: 249225.0000 - val_precision0.3: 0.7072 - val_recall0.3: 0.9212 - val_tp0.5: 2794468
             .0000 - val_fp0.5: 707843.0000 - val_tn0.5: 15790103.0000 - val_fn0.5: 368386.0000 - val_precision0.5: 0.7979 - val_recall0.5: 0.8835 - val_tp0.7: 2631745.0000 - val_fp0.7: 409739.0000 - v
             al_tn0.7: 16088207.0000 - val_fn0.7: 531109.0000 - val_precision0.7: 0.8653 - val_recall0.7: 0.8321 - val_tp0.9: 2298554.0000 - val_fp0.9: 168326.0000 - val_tn0.9: 16329620.0000 - val_fn0.
             9: 864300.0000 - val_precision0.9: 0.9318 - val_recall0.9: 0.7267 - val_accuracy: 0.9453 - val_auc: 0.9633 - val_f1: 0.2772
             Epoch 7/20
             240/240 [==============================] - 123s 515ms/step - loss: 0.3854 - tp0.1: 11113311.0000 - fp0.1: 7284589.0000 - tn0.1: 59388840.0000 - fn0.1: 856456.0000 - precision0.1: 0.6041 -
             recall0.1: 0.9284 - tp0.3: 10356441.0000 - fp0.3: 3026811.0000 - tn0.3: 63646640.0000 - fn0.3: 1613326.0000 - precision0.3: 0.7738 - recall0.3: 0.8652 - tp0.5: 9718595.0000 - fp0.5: 163300
             4.0000 - tn0.5: 65040420.0000 - fn0.5: 2251172.0000 - precision0.5: 0.8561 - recall0.5: 0.8119 - tp0.7: 8835263.0000 - fp0.7: 784778.0000 - tn0.7: 65888660.0000 - fn0.7: 3134504.0000 - pre
             cision0.7: 0.9184 - recall0.7: 0.7381 - tp0.9: 7228050.0000 - fp0.9: 242511.0000 - tn0.9: 66430912.0000 - fn0.9: 4741717.0000 - precision0.9: 0.9675 - recall0.9: 0.6039 - accuracy: 0.9506
             - auc: 0.9535 - f1: 0.2642 - val_loss: 0.4443 - val_tp0.1: 2906183.0000 - val_fp0.1: 1626644.0000 - val_tn0.1: 14871302.0000 - val_fn0.1: 256671.0000 - val_precision0.1: 0.6411 - val_recal
             l0.1: 0.9188 - val_tp0.3: 2816271.0000 - val_fp0.3: 1160666.0000 - val_tn0.3: 15337280.0000 - val_fn0.3: 346583.0000 - val_precision0.3: 0.7082 - val_recall0.3: 0.8904 - val_tp0.5: 2689144
             .0000 - val_fp0.5: 809812.0000 - val_tn0.5: 15688134.0000 - val_fn0.5: 473710.0000 - val_precision0.5: 0.7686 - val_recall0.5: 0.8502 - val_tp0.7: 2488156.0000 - val_fp0.7: 481300.0000 - v
             al_tn0.7: 16016646.0000 - val_fn0.7: 674698.0000 - val_precision0.7: 0.8379 - val_recall0.7: 0.7867 - val_tp0.9: 2127831.0000 - val_fp0.9: 230399.0000 - val_tn0.9: 16267547.0000 - val_fn0.
             9: 1035023.0000 - val_precision0.9: 0.9023 - val_recall0.9: 0.6728 - val_accuracy: 0.9347 - val_auc: 0.9452 - val_f1: 0.2772
             Epoch 8/20
             240/240 [==============================] - 124s 515ms/step - loss: 0.3596 - tp0.1: 11147835.0000 - fp0.1: 6521359.0000 - tn0.1: 60152048.0000 - fn0.1: 821932.0000 - precision0.1: 0.6309 -
             recall0.1: 0.9313 - tp0.3: 10458403.0000 - fp0.3: 2774423.0000 - tn0.3: 63899012.0000 - fn0.3: 1511364.0000 - precision0.3: 0.7903 - recall0.3: 0.8737 - tp0.5: 9862220.0000 - fp0.5: 151598
             7.0000 - tn0.5: 65157436.0000 - fn0.5: 2107547.0000 - precision0.5: 0.8668 - recall0.5: 0.8239 - tp0.7: 9063431.0000 - fp0.7: 749399.0000 - tn0.7: 65924016.0000 - fn0.7: 2906336.0000 - pre
             cision0.7: 0.9236 - recall0.7: 0.7572 - tp0.9: 7504772.0000 - fp0.9: 226379.0000 - tn0.9: 66447060.0000 - fn0.9: 4464995.0000 - precision0.9: 0.9707 - recall0.9: 0.6270 - accuracy: 0.9539
             - auc: 0.9563 - f1: 0.2642 - val_loss: 0.5498 - val_tp0.1: 3055124.0000 - val_fp0.1: 4118468.0000 - val_tn0.1: 12379478.0000 - val_fn0.1: 107730.0000 - val_precision0.1: 0.4259 - val_recal
             l0.1: 0.9659 - val_tp0.3: 2939354.0000 - val_fp0.3: 2257326.0000 - val_tn0.3: 14240620.0000 - val_fn0.3: 223500.0000 - val_precision0.3: 0.5656 - val_recall0.3: 0.9293 - val_tp0.5: 2829932
             .0000 - val_fp0.5: 1526939.0000 - val_tn0.5: 14971007.0000 - val_fn0.5: 332922.0000 - val_precision0.5: 0.6495 - val_recall0.5: 0.8947 - val_tp0.7: 2642371.0000 - val_fp0.7: 901220.0000 -
             val_tn0.7: 15596726.0000 - val_fn0.7: 520483.0000 - val_precision0.7: 0.7457 - val_recall0.7: 0.8354 - val_tp0.9: 2236370.0000 - val_fp0.9: 400953.0000 - val_tn0.9: 16096993.0000 - val_fn0
             .9: 926484.0000 - val_precision0.9: 0.8480 - val_recall0.9: 0.7071 - val_accuracy: 0.9054 - val_auc: 0.9561 - val_f1: 0.2772
             Epoch 9/20
             240/240 [==============================] - 123s 514ms/step - loss: 0.3587 - tp0.1: 11154292.0000 - fp0.1: 6547650.0000 - tn0.1: 60125796.0000 - fn0.1: 815475.0000 - precision0.1: 0.6301 -
             recall0.1: 0.9319 - tp0.3: 10488369.0000 - fp0.3: 2868809.0000 - tn0.3: 63804604.0000 - fn0.3: 1481398.0000 - precision0.3: 0.7852 - recall0.3: 0.8762 - tp0.5: 9875989.0000 - fp0.5: 153301
             6.0000 - tn0.5: 65140432.0000 - fn0.5: 2093778.0000 - precision0.5: 0.8656 - recall0.5: 0.8251 - tp0.7: 9098782.0000 - fp0.7: 781237.0000 - tn0.7: 65892200.0000 - fn0.7: 2870985.0000 - pre
             cision0.7: 0.9209 - recall0.7: 0.7601 - tp0.9: 7462273.0000 - fp0.9: 220634.0000 - tn0.9: 66452784.0000 - fn0.9: 4507494.0000 - precision0.9: 0.9713 - recall0.9: 0.6234 - accuracy: 0.9539
             - auc: 0.9568 - f1: 0.2642 - val_loss: 0.3098 - val_tp0.1: 3044237.0000 - val_fp0.1: 1845158.0000 - val_tn0.1: 14652788.0000 - val_fn0.1: 118617.0000 - val_precision0.1: 0.6226 - val_recal
             l0.1: 0.9625 - val_tp0.3: 2952931.0000 - val_fp0.3: 1010870.0000 - val_tn0.3: 15487076.0000 - val_fn0.3: 209923.0000 - val_precision0.3: 0.7450 - val_recall0.3: 0.9336 - val_tp0.5: 2818007
             .0000 - val_fp0.5: 560464.0000 - val_tn0.5: 15937482.0000 - val_fn0.5: 344847.0000 - val_precision0.5: 0.8341 - val_recall0.5: 0.8910 - val_tp0.7: 2675497.0000 - val_fp0.7: 330511.0000 - v
             al_tn0.7: 16167435.0000 - val_fn0.7: 487357.0000 - val_precision0.7: 0.8900 - val_recall0.7: 0.8459 - val_tp0.9: 2356811.0000 - val_fp0.9: 121488.0000 - val_tn0.9: 16376458.0000 - val_fn0.
             9: 806043.0000 - val_precision0.9: 0.9510 - val_recall0.9: 0.7452 - val_accuracy: 0.9540 - val_auc: 0.9720 - val_f1: 0.2772
             Epoch 10/20
             240/240 [==============================] - 123s 514ms/step - loss: 0.3310 - tp0.1: 11220800.0000 - fp0.1: 6024418.0000 - tn0.1: 60649028.0000 - fn0.1: 748967.0000 - precision0.1: 0.6507 -
             recall0.1: 0.9374 - tp0.3: 10602011.0000 - fp0.3: 2619415.0000 - tn0.3: 64054032.0000 - fn0.3: 1367756.0000 - precision0.3: 0.8019 - recall0.3: 0.8857 - tp0.5: 10035760.0000 - fp0.5: 14108
             57.0000 - tn0.5: 65262568.0000 - fn0.5: 1934007.0000 - precision0.5: 0.8767 - recall0.5: 0.8384 - tp0.7: 9310399.0000 - fp0.7: 714073.0000 - tn0.7: 65959376.0000 - fn0.7: 2659368.0000 - pr
             ecision0.7: 0.9288 - recall0.7: 0.7778 - tp0.9: 7802441.0000 - fp0.9: 197965.0000 - tn0.9: 66475472.0000 - fn0.9: 4167326.0000 - precision0.9: 0.9753 - recall0.9: 0.6518 - accuracy: 0.9575
              - auc: 0.9608 - f1: 0.2642 - val_loss: 0.3701 - val_tp0.1: 3063278.0000 - val_fp0.1: 2656513.0000 - val_tn0.1: 13841433.0000 - val_fn0.1: 99576.0000 - val_precision0.1: 0.5356 - val_recal
             l0.1: 0.9685 - val_tp0.3: 2959133.0000 - val_fp0.3: 1261902.0000 - val_tn0.3: 15236044.0000 - val_fn0.3: 203721.0000 - val_precision0.3: 0.7010 - val_recall0.3: 0.9356 - val_tp0.5: 2866997
             .0000 - val_fp0.5: 802391.0000 - val_tn0.5: 15695555.0000 - val_fn0.5: 295857.0000 - val_precision0.5: 0.7813 - val_recall0.5: 0.9065 - val_tp0.7: 2730525.0000 - val_fp0.7: 462170.0000 - v
             al_tn0.7: 16035776.0000 - val_fn0.7: 432329.0000 - val_precision0.7: 0.8552 - val_recall0.7: 0.8633 - val_tp0.9: 2464570.0000 - val_fp0.9: 189700.0000 - val_tn0.9: 16308246.0000 - val_fn0.
             9: 698284.0000 - val_precision0.9: 0.9285 - val_recall0.9: 0.7792 - val_accuracy: 0.9441 - val_auc: 0.9728 - val_f1: 0.2772
             Epoch 11/20
             240/240 [==============================] - 123s 514ms/step - loss: 0.3233 - tp0.1: 11231645.0000 - fp0.1: 5931503.0000 - tn0.1: 60741932.0000 - fn0.1: 738122.0000 - precision0.1: 0.6544 -
             recall0.1: 0.9383 - tp0.3: 10598514.0000 - fp0.3: 2444604.0000 - tn0.3: 64228848.0000 - fn0.3: 1371253.0000 - precision0.3: 0.8126 - recall0.3: 0.8854 - tp0.5: 10075292.0000 - fp0.5: 13321
             40.0000 - tn0.5: 65341256.0000 - fn0.5: 1894475.0000 - precision0.5: 0.8832 - recall0.5: 0.8417 - tp0.7: 9378243.0000 - fp0.7: 674133.0000 - tn0.7: 65999280.0000 - fn0.7: 2591524.0000 - pr
             ecision0.7: 0.9329 - recall0.7: 0.7835 - tp0.9: 7966249.0000 - fp0.9: 193209.0000 - tn0.9: 66480236.0000 - fn0.9: 4003518.0000 - precision0.9: 0.9763 - recall0.9: 0.6655 - accuracy: 0.9590
              - auc: 0.9619 - f1: 0.2642 - val_loss: 0.2986 - val_tp0.1: 3049223.0000 - val_fp0.1: 1879104.0000 - val_tn0.1: 14618842.0000 - val_fn0.1: 113631.0000 - val_precision0.1: 0.6187 - val_reca
             ll0.1: 0.9641 - val_tp0.3: 2957119.0000 - val_fp0.3: 970547.0000 - val_tn0.3: 15527399.0000 - val_fn0.3: 205735.0000 - val_precision0.3: 0.7529 - val_recall0.3: 0.9350 - val_tp0.5: 2848369
             .0000 - val_fp0.5: 566365.0000 - val_tn0.5: 15931581.0000 - val_fn0.5: 314485.0000 - val_precision0.5: 0.8341 - val_recall0.5: 0.9006 - val_tp0.7: 2684500.0000 - val_fp0.7: 298668.0000 - v
             al_tn0.7: 16199278.0000 - val_fn0.7: 478354.0000 - val_precision0.7: 0.8999 - val_recall0.7: 0.8488 - val_tp0.9: 2264810.0000 - val_fp0.9: 80756.0000 - val_tn0.9: 16417190.0000 - val_fn0.9
             : 898044.0000 - val_precision0.9: 0.9656 - val_recall0.9: 0.7161 - val_accuracy: 0.9552 - val_auc: 0.9738 - val_f1: 0.2772
             Epoch 12/20
             240/240 [==============================] - 123s 514ms/step - loss: 0.3085 - tp0.1: 11270470.0000 - fp0.1: 5619369.0000 - tn0.1: 61054068.0000 - fn0.1: 699297.0000 - precision0.1: 0.6673 -
             recall0.1: 0.9416 - tp0.3: 10714167.0000 - fp0.3: 2487268.0000 - tn0.3: 64186176.0000 - fn0.3: 1255600.0000 - precision0.3: 0.8116 - recall0.3: 0.8951 - tp0.5: 10175108.0000 - fp0.5: 13504
             36.0000 - tn0.5: 65323020.0000 - fn0.5: 1794659.0000 - precision0.5: 0.8828 - recall0.5: 0.8501 - tp0.7: 9471869.0000 - fp0.7: 668828.0000 - tn0.7: 66004600.0000 - fn0.7: 2497898.0000 - pr
             ecision0.7: 0.9340 - recall0.7: 0.7913 - tp0.9: 8087818.0000 - fp0.9: 195376.0000 - tn0.9: 66478052.0000 - fn0.9: 3881949.0000 - precision0.9: 0.9764 - recall0.9: 0.6757 - accuracy: 0.9600
              - auc: 0.9640 - f1: 0.2642 - val_loss: 0.3350 - val_tp0.1: 3080571.0000 - val_fp0.1: 2712529.0000 - val_tn0.1: 13785417.0000 - val_fn0.1: 82283.0000 - val_precision0.1: 0.5318 - val_recal
             l0.1: 0.9740 - val_tp0.3: 2997438.0000 - val_fp0.3: 1233176.0000 - val_tn0.3: 15264770.0000 - val_fn0.3: 165416.0000 - val_precision0.3: 0.7085 - val_recall0.3: 0.9477 - val_tp0.5: 2901164
             .0000 - val_fp0.5: 678226.0000 - val_tn0.5: 15819720.0000 - val_fn0.5: 261690.0000 - val_precision0.5: 0.8105 - val_recall0.5: 0.9173 - val_tp0.7: 2761496.0000 - val_fp0.7: 360082.0000 - v
             al_tn0.7: 16137864.0000 - val_fn0.7: 401358.0000 - val_precision0.7: 0.8846 - val_recall0.7: 0.8731 - val_tp0.9: 2425682.0000 - val_fp0.9: 106600.0000 - val_tn0.9: 16391346.0000 - val_fn0.
             9: 737172.0000 - val_precision0.9: 0.9579 - val_recall0.9: 0.7669 - val_accuracy: 0.9522 - val_auc: 0.9775 - val_f1: 0.2772
             Epoch 13/20
             240/240 [==============================] - 123s 513ms/step - loss: 0.2998 - tp0.1: 11289427.0000 - fp0.1: 5435141.0000 - tn0.1: 61238288.0000 - fn0.1: 680340.0000 - precision0.1: 0.6750 -
             recall0.1: 0.9432 - tp0.3: 10775991.0000 - fp0.3: 2541120.0000 - tn0.3: 64132324.0000 - fn0.3: 1193776.0000 - precision0.3: 0.8092 - recall0.3: 0.9003 - tp0.5: 10236179.0000 - fp0.5: 13511
             65.0000 - tn0.5: 65322272.0000 - fn0.5: 1733588.0000 - precision0.5: 0.8834 - recall0.5: 0.8552 - tp0.7: 9552300.0000 - fp0.7: 667311.0000 - tn0.7: 66006116.0000 - fn0.7: 2417467.0000 - pr
             ecision0.7: 0.9347 - recall0.7: 0.7980 - tp0.9: 8197249.0000 - fp0.9: 192011.0000 - tn0.9: 66481424.0000 - fn0.9: 3772518.0000 - precision0.9: 0.9771 - recall0.9: 0.6848 - accuracy: 0.9608
              - auc: 0.9652 - f1: 0.2642 - val_loss: 0.2859 - val_tp0.1: 2992948.0000 - val_fp0.1: 1104053.0000 - val_tn0.1: 15393893.0000 - val_fn0.1: 169906.0000 - val_precision0.1: 0.7305 - val_reca
             ll0.1: 0.9463 - val_tp0.3: 2859768.0000 - val_fp0.3: 511820.0000 - val_tn0.3: 15986126.0000 - val_fn0.3: 303086.0000 - val_precision0.3: 0.8482 - val_recall0.3: 0.9042 - val_tp0.5: 2679052
             .0000 - val_fp0.5: 241764.0000 - val_tn0.5: 16256182.0000 - val_fn0.5: 483802.0000 - val_precision0.5: 0.9172 - val_recall0.5: 0.8470 - val_tp0.7: 2445930.0000 - val_fp0.7: 113353.0000 - v
             al_tn0.7: 16384593.0000 - val_fn0.7: 716924.0000 - val_precision0.7: 0.9557 - val_recall0.7: 0.7733 - val_tp0.9: 2024394.0000 - val_fp0.9: 30607.0000 - val_tn0.9: 16467339.0000 - val_fn0.9
             : 1138460.0000 - val_precision0.9: 0.9851 - val_recall0.9: 0.6401 - val_accuracy: 0.9631 - val_auc: 0.9677 - val_f1: 0.2772
             Epoch 14/20
             240/240 [==============================] - 123s 513ms/step - loss: 0.2873 - tp0.1: 11325492.0000 - fp0.1: 5158653.0000 - tn0.1: 61514784.0000 - fn0.1: 644275.0000 - precision0.1: 0.6871 -
             recall0.1: 0.9462 - tp0.3: 10839018.0000 - fp0.3: 2435459.0000 - tn0.3: 64237968.0000 - fn0.3: 1130749.0000 - precision0.3: 0.8165 - recall0.3: 0.9055 - tp0.5: 10316818.0000 - fp0.5: 13405
             37.0000 - tn0.5: 65332924.0000 - fn0.5: 1652949.0000 - precision0.5: 0.8850 - recall0.5: 0.8619 - tp0.7: 9615679.0000 - fp0.7: 663572.0000 - tn0.7: 66009872.0000 - fn0.7: 2354088.0000 - pr
             ecision0.7: 0.9354 - recall0.7: 0.8033 - tp0.9: 8226896.0000 - fp0.9: 190675.0000 - tn0.9: 66482748.0000 - fn0.9: 3742871.0000 - precision0.9: 0.9773 - recall0.9: 0.6873 - accuracy: 0.9619
              - auc: 0.9668 - f1: 0.2642 - val_loss: 0.2843 - val_tp0.1: 3018528.0000 - val_fp0.1: 1341368.0000 - val_tn0.1: 15156578.0000 - val_fn0.1: 144326.0000 - val_precision0.1: 0.6923 - val_reca
             ll0.1: 0.9544 - val_tp0.3: 2884535.0000 - val_fp0.3: 604165.0000 - val_tn0.3: 15893781.0000 - val_fn0.3: 278319.0000 - val_precision0.3: 0.8268 - val_recall0.3: 0.9120 - val_tp0.5: 2750904
             .0000 - val_fp0.5: 350090.0000 - val_tn0.5: 16147856.0000 - val_fn0.5: 411950.0000 - val_precision0.5: 0.8871 - val_recall0.5: 0.8698 - val_tp0.7: 2579988.0000 - val_fp0.7: 191060.0000 - v
             al_tn0.7: 16306886.0000 - val_fn0.7: 582866.0000 - val_precision0.7: 0.9311 - val_recall0.7: 0.8157 - val_tp0.9: 2263427.0000 - val_fp0.9: 74463.0000 - val_tn0.9: 16423483.0000 - val_fn0.9
             : 899427.0000 - val_precision0.9: 0.9681 - val_recall0.9: 0.7156 - val_accuracy: 0.9612 - val_auc: 0.9707 - val_f1: 0.2772
             Epoch 15/20
             240/240 [==============================] - 123s 513ms/step - loss: 0.2841 - tp0.1: 11339440.0000 - fp0.1: 5281029.0000 - tn0.1: 61392416.0000 - fn0.1: 630327.0000 - precision0.1: 0.6823 -
             recall0.1: 0.9473 - tp0.3: 10822522.0000 - fp0.3: 2360182.0000 - tn0.3: 64313252.0000 - fn0.3: 1147245.0000 - precision0.3: 0.8210 - recall0.3: 0.9042 - tp0.5: 10312399.0000 - fp0.5: 12761
             78.0000 - tn0.5: 65397248.0000 - fn0.5: 1657368.0000 - precision0.5: 0.8899 - recall0.5: 0.8615 - tp0.7: 9644338.0000 - fp0.7: 625693.0000 - tn0.7: 66047756.0000 - fn0.7: 2325429.0000 - pr
             ecision0.7: 0.9391 - recall0.7: 0.8057 - tp0.9: 8361871.0000 - fp0.9: 174964.0000 - tn0.9: 66498432.0000 - fn0.9: 3607896.0000 - precision0.9: 0.9795 - recall0.9: 0.6986 - accuracy: 0.9627
              - auc: 0.9678 - f1: 0.2642 - val_loss: 0.2785 - val_tp0.1: 3071530.0000 - val_fp0.1: 1940363.0000 - val_tn0.1: 14557583.0000 - val_fn0.1: 91324.0000 - val_precision0.1: 0.6128 - val_recal
             l0.1: 0.9711 - val_tp0.3: 2963120.0000 - val_fp0.3: 829784.0000 - val_tn0.3: 15668162.0000 - val_fn0.3: 199734.0000 - val_precision0.3: 0.7812 - val_recall0.3: 0.9369 - val_tp0.5: 2835343.
             0000 - val_fp0.5: 408144.0000 - val_tn0.5: 16089802.0000 - val_fn0.5: 327511.0000 - val_precision0.5: 0.8742 - val_recall0.5: 0.8965 - val_tp0.7: 2617565.0000 - val_fp0.7: 178411.0000 - va
             l_tn0.7: 16319535.0000 - val_fn0.7: 545289.0000 - val_precision0.7: 0.9362 - val_recall0.7: 0.8276 - val_tp0.9: 2212166.0000 - val_fp0.9: 48362.0000 - val_tn0.9: 16449584.0000 - val_fn0.9:
              950688.0000 - val_precision0.9: 0.9786 - val_recall0.9: 0.6994 - val_accuracy: 0.9626 - val_auc: 0.9783 - val_f1: 0.2772
             Epoch 16/20
             240/240 [==============================] - 123s 513ms/step - loss: 0.2733 - tp0.1: 11349878.0000 - fp0.1: 4939772.0000 - tn0.1: 61733644.0000 - fn0.1: 619889.0000 - precision0.1: 0.6968 -
             recall0.1: 0.9482 - tp0.3: 10872946.0000 - fp0.3: 2277823.0000 - tn0.3: 64395616.0000 - fn0.3: 1096821.0000 - precision0.3: 0.8268 - recall0.3: 0.9084 - tp0.5: 10390972.0000 - fp0.5: 12472
             64.0000 - tn0.5: 65426192.0000 - fn0.5: 1578795.0000 - precision0.5: 0.8928 - recall0.5: 0.8681 - tp0.7: 9736581.0000 - fp0.7: 597016.0000 - tn0.7: 66076408.0000 - fn0.7: 2233186.0000 - pr
             ecision0.7: 0.9422 - recall0.7: 0.8134 - tp0.9: 8491483.0000 - fp0.9: 164275.0000 - tn0.9: 66509160.0000 - fn0.9: 3478284.0000 - precision0.9: 0.9810 - recall0.9: 0.7094 - accuracy: 0.9641
              - auc: 0.9686 - f1: 0.2642 - val_loss: 0.2719 - val_tp0.1: 3021839.0000 - val_fp0.1: 1339815.0000 - val_tn0.1: 15158131.0000 - val_fn0.1: 141015.0000 - val_precision0.1: 0.6928 - val_reca
             ll0.1: 0.9554 - val_tp0.3: 2908072.0000 - val_fp0.3: 621879.0000 - val_tn0.3: 15876067.0000 - val_fn0.3: 254782.0000 - val_precision0.3: 0.8238 - val_recall0.3: 0.9194 - val_tp0.5: 2802958
             .0000 - val_fp0.5: 363679.0000 - val_tn0.5: 16134267.0000 - val_fn0.5: 359896.0000 - val_precision0.5: 0.8852 - val_recall0.5: 0.8862 - val_tp0.7: 2647510.0000 - val_fp0.7: 188747.0000 - v
             al_tn0.7: 16309199.0000 - val_fn0.7: 515344.0000 - val_precision0.7: 0.9335 - val_recall0.7: 0.8371 - val_tp0.9: 2292567.0000 - val_fp0.9: 53401.0000 - val_tn0.9: 16444545.0000 - val_fn0.9
             : 870287.0000 - val_precision0.9: 0.9772 - val_recall0.9: 0.7248 - val_accuracy: 0.9632 - val_auc: 0.9717 - val_f1: 0.2772
             Epoch 17/20
             240/240 [==============================] - 123s 512ms/step - loss: 0.2657 - tp0.1: 11376204.0000 - fp0.1: 4892198.0000 - tn0.1: 61781224.0000 - fn0.1: 593563.0000 - precision0.1: 0.6993 -
             recall0.1: 0.9504 - tp0.3: 10908750.0000 - fp0.3: 2245727.0000 - tn0.3: 64427696.0000 - fn0.3: 1061017.0000 - precision0.3: 0.8293 - recall0.3: 0.9114 - tp0.5: 10433698.0000 - fp0.5: 12316
             34.0000 - tn0.5: 65441800.0000 - fn0.5: 1536069.0000 - precision0.5: 0.8944 - recall0.5: 0.8717 - tp0.7: 9778950.0000 - fp0.7: 598659.0000 - tn0.7: 66074788.0000 - fn0.7: 2190817.0000 - pr
             ecision0.7: 0.9423 - recall0.7: 0.8170 - tp0.9: 8517790.0000 - fp0.9: 162128.0000 - tn0.9: 66511320.0000 - fn0.9: 3451977.0000 - precision0.9: 0.9813 - recall0.9: 0.7116 - accuracy: 0.9648
              - auc: 0.9699 - f1: 0.2642 - val_loss: 0.2613 - val_tp0.1: 3051492.0000 - val_fp0.1: 1505492.0000 - val_tn0.1: 14992454.0000 - val_fn0.1: 111362.0000 - val_precision0.1: 0.6696 - val_reca
             ll0.1: 0.9648 - val_tp0.3: 2939774.0000 - val_fp0.3: 659951.0000 - val_tn0.3: 15837995.0000 - val_fn0.3: 223080.0000 - val_precision0.3: 0.8167 - val_recall0.3: 0.9295 - val_tp0.5: 2833524
             .0000 - val_fp0.5: 395235.0000 - val_tn0.5: 16102711.0000 - val_fn0.5: 329330.0000 - val_precision0.5: 0.8776 - val_recall0.5: 0.8959 - val_tp0.7: 2680855.0000 - val_fp0.7: 215919.0000 - v
             al_tn0.7: 16282027.0000 - val_fn0.7: 481999.0000 - val_precision0.7: 0.9255 - val_recall0.7: 0.8476 - val_tp0.9: 2359116.0000 - val_fp0.9: 75353.0000 - val_tn0.9: 16422593.0000 - val_fn0.9
             : 803738.0000 - val_precision0.9: 0.9690 - val_recall0.9: 0.7459 - val_accuracy: 0.9631 - val_auc: 0.9765 - val_f1: 0.2772
             Epoch 18/20
             240/240 [==============================] - 123s 513ms/step - loss: 0.2598 - tp0.1: 11386263.0000 - fp0.1: 4766580.0000 - tn0.1: 61906832.0000 - fn0.1: 583504.0000 - precision0.1: 0.7049 -
             recall0.1: 0.9513 - tp0.3: 10931522.0000 - fp0.3: 2185962.0000 - tn0.3: 64487472.0000 - fn0.3: 1038245.0000 - precision0.3: 0.8334 - recall0.3: 0.9133 - tp0.5: 10479377.0000 - fp0.5: 12310
             07.0000 - tn0.5: 65442416.0000 - fn0.5: 1490390.0000 - precision0.5: 0.8949 - recall0.5: 0.8755 - tp0.7: 9829899.0000 - fp0.7: 592904.0000 - tn0.7: 66080536.0000 - fn0.7: 2139868.0000 - pr
             ecision0.7: 0.9431 - recall0.7: 0.8212 - tp0.9: 8602261.0000 - fp0.9: 161222.0000 - tn0.9: 66512188.0000 - fn0.9: 3367506.0000 - precision0.9: 0.9816 - recall0.9: 0.7187 - accuracy: 0.9654
              - auc: 0.9706 - f1: 0.2642 - val_loss: 0.2608 - val_tp0.1: 3020760.0000 - val_fp0.1: 1219927.0000 - val_tn0.1: 15278019.0000 - val_fn0.1: 142094.0000 - val_precision0.1: 0.7123 - val_reca
             ll0.1: 0.9551 - val_tp0.3: 2909302.0000 - val_fp0.3: 580392.0000 - val_tn0.3: 15917554.0000 - val_fn0.3: 253552.0000 - val_precision0.3: 0.8337 - val_recall0.3: 0.9198 - val_tp0.5: 2799018
             .0000 - val_fp0.5: 344609.0000 - val_tn0.5: 16153337.0000 - val_fn0.5: 363836.0000 - val_precision0.5: 0.8904 - val_recall0.5: 0.8850 - val_tp0.7: 2633849.0000 - val_fp0.7: 176599.0000 - v
             al_tn0.7: 16321347.0000 - val_fn0.7: 529005.0000 - val_precision0.7: 0.9372 - val_recall0.7: 0.8327 - val_tp0.9: 2302923.0000 - val_fp0.9: 54090.0000 - val_tn0.9: 16443856.0000 - val_fn0.9
             : 859931.0000 - val_precision0.9: 0.9771 - val_recall0.9: 0.7281 - val_accuracy: 0.9640 - val_auc: 0.9722 - val_f1: 0.2772
             Epoch 19/20
             240/240 [==============================] - 123s 514ms/step - loss: 0.2516 - tp0.1: 11404546.0000 - fp0.1: 4602276.0000 - tn0.1: 62071184.0000 - fn0.1: 565221.0000 - precision0.1: 0.7125 -
             recall0.1: 0.9528 - tp0.3: 10964712.0000 - fp0.3: 2131443.0000 - tn0.3: 64541984.0000 - fn0.3: 1005055.0000 - precision0.3: 0.8372 - recall0.3: 0.9160 - tp0.5: 10530069.0000 - fp0.5: 11977
             48.0000 - tn0.5: 65475676.0000 - fn0.5: 1439698.0000 - precision0.5: 0.8979 - recall0.5: 0.8797 - tp0.7: 9887845.0000 - fp0.7: 573172.0000 - tn0.7: 66100272.0000 - fn0.7: 2081922.0000 - pr
             ecision0.7: 0.9452 - recall0.7: 0.8261 - tp0.9: 8654050.0000 - fp0.9: 150095.0000 - tn0.9: 66523328.0000 - fn0.9: 3315717.0000 - precision0.9: 0.9830 - recall0.9: 0.7230 - accuracy: 0.9665
              - auc: 0.9717 - f1: 0.2642 - val_loss: 0.2481 - val_tp0.1: 3008011.0000 - val_fp0.1: 953689.0000 - val_tn0.1: 15544257.0000 - val_fn0.1: 154843.0000 - val_precision0.1: 0.7593 - val_recal
             l0.1: 0.9510 - val_tp0.3: 2881653.0000 - val_fp0.3: 443165.0000 - val_tn0.3: 16054781.0000 - val_fn0.3: 281201.0000 - val_precision0.3: 0.8667 - val_recall0.3: 0.9111 - val_tp0.5: 2768505.
             0000 - val_fp0.5: 264471.0000 - val_tn0.5: 16233475.0000 - val_fn0.5: 394349.0000 - val_precision0.5: 0.9128 - val_recall0.5: 0.8753 - val_tp0.7: 2606170.0000 - val_fp0.7: 136595.0000 - va
             l_tn0.7: 16361351.0000 - val_fn0.7: 556684.0000 - val_precision0.7: 0.9502 - val_recall0.7: 0.8240 - val_tp0.9: 2281582.0000 - val_fp0.9: 42534.0000 - val_tn0.9: 16455412.0000 - val_fn0.9:
              881272.0000 - val_precision0.9: 0.9817 - val_recall0.9: 0.7214 - val_accuracy: 0.9665 - val_auc: 0.9714 - val_f1: 0.2772
             Epoch 20/20
             240/240 [==============================] - 123s 513ms/step - loss: 0.2463 - tp0.1: 11418792.0000 - fp0.1: 4532019.0000 - tn0.1: 62141424.0000 - fn0.1: 550975.0000 - precision0.1: 0.7159 -
             recall0.1: 0.9540 - tp0.3: 10983398.0000 - fp0.3: 2088662.0000 - tn0.3: 64584768.0000 - fn0.3: 986369.0000 - precision0.3: 0.8402 - recall0.3: 0.9176 - tp0.5: 10555722.0000 - fp0.5: 118115
             9.0000 - tn0.5: 65492296.0000 - fn0.5: 1414045.0000 - precision0.5: 0.8994 - recall0.5: 0.8819 - tp0.7: 9935653.0000 - fp0.7: 569774.0000 - tn0.7: 66103648.0000 - fn0.7: 2034114.0000 - pre
             cision0.7: 0.9458 - recall0.7: 0.8301 - tp0.9: 8727770.0000 - fp0.9: 149122.0000 - tn0.9: 66524300.0000 - fn0.9: 3241997.0000 - precision0.9: 0.9832 - recall0.9: 0.7292 - accuracy: 0.9670
             - auc: 0.9724 - f1: 0.2642 - val_loss: 0.2428 - val_tp0.1: 3043089.0000 - val_fp0.1: 1254723.0000 - val_tn0.1: 15243223.0000 - val_fn0.1: 119765.0000 - val_precision0.1: 0.7081 - val_recal
             l0.1: 0.9621 - val_tp0.3: 2938943.0000 - val_fp0.3: 582622.0000 - val_tn0.3: 15915324.0000 - val_fn0.3: 223911.0000 - val_precision0.3: 0.8346 - val_recall0.3: 0.9292 - val_tp0.5: 2838207.
             0000 - val_fp0.5: 352144.0000 - val_tn0.5: 16145802.0000 - val_fn0.5: 324647.0000 - val_precision0.5: 0.8896 - val_recall0.5: 0.8974 - val_tp0.7: 2688032.0000 - val_fp0.7: 185761.0000 - va
             l_tn0.7: 16312185.0000 - val_fn0.7: 474822.0000 - val_precision0.7: 0.9354 - val_recall0.7: 0.8499 - val_tp0.9: 2371174.0000 - val_fp0.9: 57559.0000 - val_tn0.9: 16440387.0000 - val_fn0.9:
              791680.0000 - val_precision0.9: 0.9763 - val_recall0.9: 0.7497 - val_accuracy: 0.9656 - val_auc: 0.9761 - val_f1: 0.2772
             --- Running training session 62/140
             {'hp_epochs': 20, 'hp_batch_size': 20, 'hp_scaler': 'standard', 'hp_n_levels': 3, 'hp_first_filters': 128, 'hp_pool_size': 4, 'hp_input_size': 16384, 'hp_lr_start': 0.04354970735327304, 'h
             p_lr_power': 1.0}
             --- repeat #: 2
             input - shape:   (None, 16384, 1)
             output - shape:  (None, 16384, 1)
             Epoch 1/20
             240/240 [==============================] - 144s 534ms/step - loss: 1.1479 - tp0.1: 9906728.0000 - fp0.1: 13187183.0000 - tn0.1: 53486260.0000 - fn0.1: 2063039.0000 - precision0.1: 0.4290 -
              recall0.1: 0.8276 - tp0.3: 8671992.0000 - fp0.3: 5127913.0000 - tn0.3: 61545512.0000 - fn0.3: 3297775.0000 - precision0.3: 0.6284 - recall0.3: 0.7245 - tp0.5: 7568431.0000 - fp0.5: 253412
             2.0000 - tn0.5: 64139300.0000 - fn0.5: 4401336.0000 - precision0.5: 0.7492 - recall0.5: 0.6323 - tp0.7: 6054670.0000 - fp0.7: 1016029.0000 - tn0.7: 65657384.0000 - fn0.7: 5915097.0000 - pr
             ecision0.7: 0.8563 - recall0.7: 0.5058 - tp0.9: 3696361.0000 - fp0.9: 210116.0000 - tn0.9: 66463280.0000 - fn0.9: 8273406.0000 - precision0.9: 0.9462 - recall0.9: 0.3088 - accuracy: 0.9118
              - auc: 0.8839 - f1: 0.2642 - val_loss: 1.3309 - val_tp0.1: 1733257.0000 - val_fp0.1: 2884942.0000 - val_tn0.1: 13613004.0000 - val_fn0.1: 1429597.0000 - val_precision0.1: 0.3753 - val_rec
             all0.1: 0.5480 - val_tp0.3: 1371992.0000 - val_fp0.3: 689902.0000 - val_tn0.3: 15808044.0000 - val_fn0.3: 1790862.0000 - val_precision0.3: 0.6654 - val_recall0.3: 0.4338 - val_tp0.5: 12399
             93.0000 - val_fp0.5: 314549.0000 - val_tn0.5: 16183397.0000 - val_fn0.5: 1922861.0000 - val_precision0.5: 0.7977 - val_recall0.5: 0.3920 - val_tp0.7: 1088844.0000 - val_fp0.7: 172991.0000
             - val_tn0.7: 16324955.0000 - val_fn0.7: 2074010.0000 - val_precision0.7: 0.8629 - val_recall0.7: 0.3443 - val_tp0.9: 854487.0000 - val_fp0.9: 85499.0000 - val_tn0.9: 16412447.0000 - val_fn
             0.9: 2308367.0000 - val_precision0.9: 0.9090 - val_recall0.9: 0.2702 - val_accuracy: 0.8862 - val_auc: 0.7423 - val_f1: 0.2772
             Epoch 2/20
             240/240 [==============================] - 124s 516ms/step - loss: 0.8128 - tp0.1: 10386764.0000 - fp0.1: 10662276.0000 - tn0.1: 56011152.0000 - fn0.1: 1583003.0000 - precision0.1: 0.4935
             - recall0.1: 0.8677 - tp0.3: 9374552.0000 - fp0.3: 4301798.0000 - tn0.3: 62371648.0000 - fn0.3: 2595215.0000 - precision0.3: 0.6855 - recall0.3: 0.7832 - tp0.5: 8455753.0000 - fp0.5: 22081
             36.0000 - tn0.5: 64465300.0000 - fn0.5: 3514014.0000 - precision0.5: 0.7929 - recall0.5: 0.7064 - tp0.7: 7249754.0000 - fp0.7: 1037037.0000 - tn0.7: 65636376.0000 - fn0.7: 4720013.0000 - p
             recision0.7: 0.8749 - recall0.7: 0.6057 - tp0.9: 4971364.0000 - fp0.9: 253682.0000 - tn0.9: 66419772.0000 - fn0.9: 6998403.0000 - precision0.9: 0.9514 - recall0.9: 0.4153 - accuracy: 0.927
             2 - auc: 0.9156 - f1: 0.2642 - val_loss: 1.7318 - val_tp0.1: 1429651.0000 - val_fp0.1: 93149.0000 - val_tn0.1: 16404797.0000 - val_fn0.1: 1733203.0000 - val_precision0.1: 0.9388 - val_reca
             ll0.1: 0.4520 - val_tp0.3: 1260333.0000 - val_fp0.3: 61973.0000 - val_tn0.3: 16435973.0000 - val_fn0.3: 1902521.0000 - val_precision0.3: 0.9531 - val_recall0.3: 0.3985 - val_tp0.5: 1164560
             .0000 - val_fp0.5: 49155.0000 - val_tn0.5: 16448791.0000 - val_fn0.5: 1998294.0000 - val_precision0.5: 0.9595 - val_recall0.5: 0.3682 - val_tp0.7: 1052319.0000 - val_fp0.7: 36199.0000 - va
             l_tn0.7: 16461747.0000 - val_fn0.7: 2110535.0000 - val_precision0.7: 0.9667 - val_recall0.7: 0.3327 - val_tp0.9: 812871.0000 - val_fp0.9: 16636.0000 - val_tn0.9: 16481310.0000 - val_fn0.9:
              2349983.0000 - val_precision0.9: 0.9799 - val_recall0.9: 0.2570 - val_accuracy: 0.8959 - val_auc: 0.7346 - val_f1: 0.2772
             Epoch 3/20
             240/240 [==============================] - 124s 516ms/step - loss: 0.5249 - tp0.1: 10650727.0000 - fp0.1: 8971663.0000 - tn0.1: 57701744.0000 - fn0.1: 1319040.0000 - precision0.1: 0.5428 -
              recall0.1: 0.8898 - tp0.3: 9707938.0000 - fp0.3: 3584621.0000 - tn0.3: 63088792.0000 - fn0.3: 2261829.0000 - precision0.3: 0.7303 - recall0.3: 0.8110 - tp0.5: 8947919.0000 - fp0.5: 196644
             3.0000 - tn0.5: 64706976.0000 - fn0.5: 3021848.0000 - precision0.5: 0.8198 - recall0.5: 0.7475 - tp0.7: 7846298.0000 - fp0.7: 941117.0000 - tn0.7: 65732308.0000 - fn0.7: 4123469.0000 - pre
             cision0.7: 0.8929 - recall0.7: 0.6555 - tp0.9: 5813133.0000 - fp0.9: 247129.0000 - tn0.9: 66426308.0000 - fn0.9: 6156634.0000 - precision0.9: 0.9592 - recall0.9: 0.4857 - accuracy: 0.9366
             - auc: 0.9272 - f1: 0.2642 - val_loss: 0.6610 - val_tp0.1: 2455351.0000 - val_fp0.1: 660521.0000 - val_tn0.1: 15837425.0000 - val_fn0.1: 707503.0000 - val_precision0.1: 0.7880 - val_recall
             0.1: 0.7763 - val_tp0.3: 2077241.0000 - val_fp0.3: 245933.0000 - val_tn0.3: 16252013.0000 - val_fn0.3: 1085613.0000 - val_precision0.3: 0.8941 - val_recall0.3: 0.6568 - val_tp0.5: 1903683.
             0000 - val_fp0.5: 169535.0000 - val_tn0.5: 16328411.0000 - val_fn0.5: 1259171.0000 - val_precision0.5: 0.9182 - val_recall0.5: 0.6019 - val_tp0.7: 1686781.0000 - val_fp0.7: 108097.0000 - v
             al_tn0.7: 16389849.0000 - val_fn0.7: 1476073.0000 - val_precision0.7: 0.9398 - val_recall0.7: 0.5333 - val_tp0.9: 1239931.0000 - val_fp0.9: 39608.0000 - val_tn0.9: 16458338.0000 - val_fn0.
             9: 1922923.0000 - val_precision0.9: 0.9690 - val_recall0.9: 0.3920 - val_accuracy: 0.9273 - val_auc: 0.8923 - val_f1: 0.2772
             Epoch 4/20
             240/240 [==============================] - 124s 517ms/step - loss: 0.4701 - tp0.1: 10831550.0000 - fp0.1: 8197166.0000 - tn0.1: 58476288.0000 - fn0.1: 1138217.0000 - precision0.1: 0.5692 -
              recall0.1: 0.9049 - tp0.3: 10003164.0000 - fp0.3: 3493324.0000 - tn0.3: 63180092.0000 - fn0.3: 1966603.0000 - precision0.3: 0.7412 - recall0.3: 0.8357 - tp0.5: 9170982.0000 - fp0.5: 17747
             67.0000 - tn0.5: 64898668.0000 - fn0.5: 2798785.0000 - precision0.5: 0.8379 - recall0.5: 0.7662 - tp0.7: 8179901.0000 - fp0.7: 877946.0000 - tn0.7: 65795468.0000 - fn0.7: 3789866.0000 - pr
             ecision0.7: 0.9031 - recall0.7: 0.6834 - tp0.9: 6375174.0000 - fp0.9: 261023.0000 - tn0.9: 66412392.0000 - fn0.9: 5594593.0000 - precision0.9: 0.9607 - recall0.9: 0.5326 - accuracy: 0.9418
              - auc: 0.9378 - f1: 0.2642 - val_loss: 1.3899 - val_tp0.1: 3117692.0000 - val_fp0.1: 9912153.0000 - val_tn0.1: 6585793.0000 - val_fn0.1: 45162.0000 - val_precision0.1: 0.2393 - val_recall
             0.1: 0.9857 - val_tp0.3: 3079025.0000 - val_fp0.3: 7898193.0000 - val_tn0.3: 8599753.0000 - val_fn0.3: 83829.0000 - val_precision0.3: 0.2805 - val_recall0.3: 0.9735 - val_tp0.5: 3048909.00
             00 - val_fp0.5: 6769491.0000 - val_tn0.5: 9728455.0000 - val_fn0.5: 113945.0000 - val_precision0.5: 0.3105 - val_recall0.5: 0.9640 - val_tp0.7: 2994971.0000 - val_fp0.7: 5019595.0000 - val
             _tn0.7: 11478351.0000 - val_fn0.7: 167883.0000 - val_precision0.7: 0.3737 - val_recall0.7: 0.9469 - val_tp0.9: 2874370.0000 - val_fp0.9: 2531864.0000 - val_tn0.9: 13966082.0000 - val_fn0.9
             : 288484.0000 - val_precision0.9: 0.5317 - val_recall0.9: 0.9088 - val_accuracy: 0.6499 - val_auc: 0.9447 - val_f1: 0.2772
             Epoch 5/20
             240/240 [==============================] - 124s 517ms/step - loss: 0.4466 - tp0.1: 10915404.0000 - fp0.1: 7994592.0000 - tn0.1: 58678848.0000 - fn0.1: 1054363.0000 - precision0.1: 0.5772 -
              recall0.1: 0.9119 - tp0.3: 10101214.0000 - fp0.3: 3354053.0000 - tn0.3: 63319376.0000 - fn0.3: 1868553.0000 - precision0.3: 0.7507 - recall0.3: 0.8439 - tp0.5: 9363723.0000 - fp0.5: 17904
             83.0000 - tn0.5: 64882964.0000 - fn0.5: 2606044.0000 - precision0.5: 0.8395 - recall0.5: 0.7823 - tp0.7: 8326836.0000 - fp0.7: 857418.0000 - tn0.7: 65816000.0000 - fn0.7: 3642931.0000 - pr
             ecision0.7: 0.9066 - recall0.7: 0.6957 - tp0.9: 6486870.0000 - fp0.9: 255970.0000 - tn0.9: 66417480.0000 - fn0.9: 5482897.0000 - precision0.9: 0.9620 - recall0.9: 0.5419 - accuracy: 0.9441
              - auc: 0.9425 - f1: 0.2642 - val_loss: 0.9230 - val_tp0.1: 3093810.0000 - val_fp0.1: 6728709.0000 - val_tn0.1: 9769237.0000 - val_fn0.1: 69044.0000 - val_precision0.1: 0.3150 - val_recall
             0.1: 0.9782 - val_tp0.3: 2983445.0000 - val_fp0.3: 3338469.0000 - val_tn0.3: 13159477.0000 - val_fn0.3: 179409.0000 - val_precision0.3: 0.4719 - val_recall0.3: 0.9433 - val_tp0.5: 2913456.
             0000 - val_fp0.5: 2448590.0000 - val_tn0.5: 14049356.0000 - val_fn0.5: 249398.0000 - val_precision0.5: 0.5433 - val_recall0.5: 0.9211 - val_tp0.7: 2826495.0000 - val_fp0.7: 1728169.0000 -
             val_tn0.7: 14769777.0000 - val_fn0.7: 336359.0000 - val_precision0.7: 0.6206 - val_recall0.7: 0.8937 - val_tp0.9: 2684311.0000 - val_fp0.9: 1097331.0000 - val_tn0.9: 15400615.0000 - val_fn
             0.9: 478543.0000 - val_precision0.9: 0.7098 - val_recall0.9: 0.8487 - val_accuracy: 0.8628 - val_auc: 0.9474 - val_f1: 0.2772
             Epoch 6/20
             240/240 [==============================] - 124s 516ms/step - loss: 0.4071 - tp0.1: 11022248.0000 - fp0.1: 7374717.0000 - tn0.1: 59298728.0000 - fn0.1: 947519.0000 - precision0.1: 0.5991 -
             recall0.1: 0.9208 - tp0.3: 10241896.0000 - fp0.3: 3036735.0000 - tn0.3: 63636704.0000 - fn0.3: 1727871.0000 - precision0.3: 0.7713 - recall0.3: 0.8556 - tp0.5: 9584629.0000 - fp0.5: 165806
             9.0000 - tn0.5: 65015368.0000 - fn0.5: 2385138.0000 - precision0.5: 0.8525 - recall0.5: 0.8007 - tp0.7: 8694782.0000 - fp0.7: 820555.0000 - tn0.7: 65852888.0000 - fn0.7: 3274985.0000 - pre
             cision0.7: 0.9138 - recall0.7: 0.7264 - tp0.9: 6966857.0000 - fp0.9: 241359.0000 - tn0.9: 66432068.0000 - fn0.9: 5002910.0000 - precision0.9: 0.9665 - recall0.9: 0.5820 - accuracy: 0.9486
             - auc: 0.9486 - f1: 0.2642 - val_loss: 0.4390 - val_tp0.1: 2785859.0000 - val_fp0.1: 688884.0000 - val_tn0.1: 15809062.0000 - val_fn0.1: 376995.0000 - val_precision0.1: 0.8017 - val_recall
             0.1: 0.8808 - val_tp0.3: 2458538.0000 - val_fp0.3: 247679.0000 - val_tn0.3: 16250267.0000 - val_fn0.3: 704316.0000 - val_precision0.3: 0.9085 - val_recall0.3: 0.7773 - val_tp0.5: 2155525.0
             000 - val_fp0.5: 109573.0000 - val_tn0.5: 16388373.0000 - val_fn0.5: 1007329.0000 - val_precision0.5: 0.9516 - val_recall0.5: 0.6815 - val_tp0.7: 1802828.0000 - val_fp0.7: 45112.0000 - val
             _tn0.7: 16452834.0000 - val_fn0.7: 1360026.0000 - val_precision0.7: 0.9756 - val_recall0.7: 0.5700 - val_tp0.9: 1314546.0000 - val_fp0.9: 12049.0000 - val_tn0.9: 16485897.0000 - val_fn0.9:
              1848308.0000 - val_precision0.9: 0.9909 - val_recall0.9: 0.4156 - val_accuracy: 0.9432 - val_auc: 0.9435 - val_f1: 0.2772
             Epoch 7/20
             240/240 [==============================] - 124s 516ms/step - loss: 0.3853 - tp0.1: 11079386.0000 - fp0.1: 6940988.0000 - tn0.1: 59732460.0000 - fn0.1: 890381.0000 - precision0.1: 0.6148 -
             recall0.1: 0.9256 - tp0.3: 10346458.0000 - fp0.3: 3000615.0000 - tn0.3: 63672804.0000 - fn0.3: 1623309.0000 - precision0.3: 0.7752 - recall0.3: 0.8644 - tp0.5: 9690133.0000 - fp0.5: 161636
             9.0000 - tn0.5: 65057072.0000 - fn0.5: 2279634.0000 - precision0.5: 0.8570 - recall0.5: 0.8096 - tp0.7: 8843112.0000 - fp0.7: 822086.0000 - tn0.7: 65851372.0000 - fn0.7: 3126655.0000 - pre
             cision0.7: 0.9149 - recall0.7: 0.7388 - tp0.9: 7135245.0000 - fp0.9: 238695.0000 - tn0.9: 66434744.0000 - fn0.9: 4834522.0000 - precision0.9: 0.9676 - recall0.9: 0.5961 - accuracy: 0.9505
             - auc: 0.9518 - f1: 0.2642 - val_loss: 0.4072 - val_tp0.1: 3071232.0000 - val_fp0.1: 3190431.0000 - val_tn0.1: 13307515.0000 - val_fn0.1: 91622.0000 - val_precision0.1: 0.4905 - val_recall
             0.1: 0.9710 - val_tp0.3: 2969302.0000 - val_fp0.3: 1516252.0000 - val_tn0.3: 14981694.0000 - val_fn0.3: 193552.0000 - val_precision0.3: 0.6620 - val_recall0.3: 0.9388 - val_tp0.5: 2813331.
             0000 - val_fp0.5: 766580.0000 - val_tn0.5: 15731366.0000 - val_fn0.5: 349523.0000 - val_precision0.5: 0.7859 - val_recall0.5: 0.8895 - val_tp0.7: 2565842.0000 - val_fp0.7: 340498.0000 - va
             l_tn0.7: 16157448.0000 - val_fn0.7: 597012.0000 - val_precision0.7: 0.8828 - val_recall0.7: 0.8112 - val_tp0.9: 2014990.0000 - val_fp0.9: 79766.0000 - val_tn0.9: 16418180.0000 - val_fn0.9:
              1147864.0000 - val_precision0.9: 0.9619 - val_recall0.9: 0.6371 - val_accuracy: 0.9432 - val_auc: 0.9709 - val_f1: 0.2772
             Epoch 8/20
             240/240 [==============================] - 124s 517ms/step - loss: 0.3633 - tp0.1: 11135897.0000 - fp0.1: 6660915.0000 - tn0.1: 60012532.0000 - fn0.1: 833870.0000 - precision0.1: 0.6257 -
             recall0.1: 0.9303 - tp0.3: 10437033.0000 - fp0.3: 2736926.0000 - tn0.3: 63936496.0000 - fn0.3: 1532734.0000 - precision0.3: 0.7922 - recall0.3: 0.8719 - tp0.5: 9858968.0000 - fp0.5: 152258
             9.0000 - tn0.5: 65150856.0000 - fn0.5: 2110799.0000 - precision0.5: 0.8662 - recall0.5: 0.8237 - tp0.7: 9048624.0000 - fp0.7: 753519.0000 - tn0.7: 65919908.0000 - fn0.7: 2921143.0000 - pre
             cision0.7: 0.9231 - recall0.7: 0.7560 - tp0.9: 7412042.0000 - fp0.9: 213551.0000 - tn0.9: 66459872.0000 - fn0.9: 4557725.0000 - precision0.9: 0.9720 - recall0.9: 0.6192 - accuracy: 0.9538
             - auc: 0.9558 - f1: 0.2642 - val_loss: 0.4570 - val_tp0.1: 3014123.0000 - val_fp0.1: 2699685.0000 - val_tn0.1: 13798261.0000 - val_fn0.1: 148731.0000 - val_precision0.1: 0.5275 - val_recal
             l0.1: 0.9530 - val_tp0.3: 2936029.0000 - val_fp0.3: 1673840.0000 - val_tn0.3: 14824106.0000 - val_fn0.3: 226825.0000 - val_precision0.3: 0.6369 - val_recall0.3: 0.9283 - val_tp0.5: 2861446
             .0000 - val_fp0.5: 1230626.0000 - val_tn0.5: 15267320.0000 - val_fn0.5: 301408.0000 - val_precision0.5: 0.6993 - val_recall0.5: 0.9047 - val_tp0.7: 2733900.0000 - val_fp0.7: 781063.0000 -
             val_tn0.7: 15716883.0000 - val_fn0.7: 428954.0000 - val_precision0.7: 0.7778 - val_recall0.7: 0.8644 - val_tp0.9: 2482216.0000 - val_fp0.9: 390029.0000 - val_tn0.9: 16107917.0000 - val_fn0
             .9: 680638.0000 - val_precision0.9: 0.8642 - val_recall0.9: 0.7848 - val_accuracy: 0.9221 - val_auc: 0.9600 - val_f1: 0.2772
             Epoch 9/20
             240/240 [==============================] - 124s 518ms/step - loss: 0.3559 - tp0.1: 11134313.0000 - fp0.1: 6236820.0000 - tn0.1: 60436612.0000 - fn0.1: 835454.0000 - precision0.1: 0.6410 -
             recall0.1: 0.9302 - tp0.3: 10469952.0000 - fp0.3: 2640391.0000 - tn0.3: 64033040.0000 - fn0.3: 1499815.0000 - precision0.3: 0.7986 - recall0.3: 0.8747 - tp0.5: 9934376.0000 - fp0.5: 152988
             9.0000 - tn0.5: 65143560.0000 - fn0.5: 2035391.0000 - precision0.5: 0.8666 - recall0.5: 0.8300 - tp0.7: 9136907.0000 - fp0.7: 753965.0000 - tn0.7: 65919460.0000 - fn0.7: 2832860.0000 - pre
             cision0.7: 0.9238 - recall0.7: 0.7633 - tp0.9: 7562687.0000 - fp0.9: 213280.0000 - tn0.9: 66460156.0000 - fn0.9: 4407080.0000 - precision0.9: 0.9726 - recall0.9: 0.6318 - accuracy: 0.9547
             - auc: 0.9561 - f1: 0.2642 - val_loss: 0.3791 - val_tp0.1: 2856464.0000 - val_fp0.1: 956306.0000 - val_tn0.1: 15541640.0000 - val_fn0.1: 306390.0000 - val_precision0.1: 0.7492 - val_recall
             0.1: 0.9031 - val_tp0.3: 2644444.0000 - val_fp0.3: 392043.0000 - val_tn0.3: 16105903.0000 - val_fn0.3: 518410.0000 - val_precision0.3: 0.8709 - val_recall0.3: 0.8361 - val_tp0.5: 2503008.0
             000 - val_fp0.5: 246935.0000 - val_tn0.5: 16251011.0000 - val_fn0.5: 659846.0000 - val_precision0.5: 0.9102 - val_recall0.5: 0.7914 - val_tp0.7: 2293518.0000 - val_fp0.7: 135876.0000 - val
             _tn0.7: 16362070.0000 - val_fn0.7: 869336.0000 - val_precision0.7: 0.9441 - val_recall0.7: 0.7251 - val_tp0.9: 1878107.0000 - val_fp0.9: 37476.0000 - val_tn0.9: 16460470.0000 - val_fn0.9:
             1284747.0000 - val_precision0.9: 0.9804 - val_recall0.9: 0.5938 - val_accuracy: 0.9539 - val_auc: 0.9458 - val_f1: 0.2772
             Epoch 10/20
             240/240 [==============================] - 124s 517ms/step - loss: 0.3399 - tp0.1: 11192783.0000 - fp0.1: 6148473.0000 - tn0.1: 60524940.0000 - fn0.1: 776984.0000 - precision0.1: 0.6454 -
             recall0.1: 0.9351 - tp0.3: 10562088.0000 - fp0.3: 2647342.0000 - tn0.3: 64026076.0000 - fn0.3: 1407679.0000 - precision0.3: 0.7996 - recall0.3: 0.8824 - tp0.5: 10019446.0000 - fp0.5: 14919
             46.0000 - tn0.5: 65181488.0000 - fn0.5: 1950321.0000 - precision0.5: 0.8704 - recall0.5: 0.8371 - tp0.7: 9263641.0000 - fp0.7: 747160.0000 - tn0.7: 65926272.0000 - fn0.7: 2706126.0000 - pr
             ecision0.7: 0.9254 - recall0.7: 0.7739 - tp0.9: 7720186.0000 - fp0.9: 209487.0000 - tn0.9: 66463960.0000 - fn0.9: 4249581.0000 - precision0.9: 0.9736 - recall0.9: 0.6450 - accuracy: 0.9562
              - auc: 0.9595 - f1: 0.2642 - val_loss: 0.3522 - val_tp0.1: 3064550.0000 - val_fp0.1: 2487874.0000 - val_tn0.1: 14010072.0000 - val_fn0.1: 98304.0000 - val_precision0.1: 0.5519 - val_recal
             l0.1: 0.9689 - val_tp0.3: 2948761.0000 - val_fp0.3: 1064135.0000 - val_tn0.3: 15433811.0000 - val_fn0.3: 214093.0000 - val_precision0.3: 0.7348 - val_recall0.3: 0.9323 - val_tp0.5: 2865468
             .0000 - val_fp0.5: 718289.0000 - val_tn0.5: 15779657.0000 - val_fn0.5: 297386.0000 - val_precision0.5: 0.7996 - val_recall0.5: 0.9060 - val_tp0.7: 2741942.0000 - val_fp0.7: 426555.0000 - v
             al_tn0.7: 16071391.0000 - val_fn0.7: 420912.0000 - val_precision0.7: 0.8654 - val_recall0.7: 0.8669 - val_tp0.9: 2476605.0000 - val_fp0.9: 171677.0000 - val_tn0.9: 16326269.0000 - val_fn0.
             9: 686249.0000 - val_precision0.9: 0.9352 - val_recall0.9: 0.7830 - val_accuracy: 0.9483 - val_auc: 0.9739 - val_f1: 0.2772
             Epoch 11/20
             240/240 [==============================] - 124s 517ms/step - loss: 0.3283 - tp0.1: 11237515.0000 - fp0.1: 6025317.0000 - tn0.1: 60648124.0000 - fn0.1: 732252.0000 - precision0.1: 0.6510 -
             recall0.1: 0.9388 - tp0.3: 10617524.0000 - fp0.3: 2587448.0000 - tn0.3: 64085984.0000 - fn0.3: 1352243.0000 - precision0.3: 0.8041 - recall0.3: 0.8870 - tp0.5: 10090900.0000 - fp0.5: 14806
             86.0000 - tn0.5: 65192740.0000 - fn0.5: 1878867.0000 - precision0.5: 0.8720 - recall0.5: 0.8430 - tp0.7: 9347944.0000 - fp0.7: 746924.0000 - tn0.7: 65926508.0000 - fn0.7: 2621823.0000 - pr
             ecision0.7: 0.9260 - recall0.7: 0.7810 - tp0.9: 7842670.0000 - fp0.9: 222008.0000 - tn0.9: 66451408.0000 - fn0.9: 4127097.0000 - precision0.9: 0.9725 - recall0.9: 0.6552 - accuracy: 0.9573
              - auc: 0.9614 - f1: 0.2642 - val_loss: 0.3862 - val_tp0.1: 3085105.0000 - val_fp0.1: 3480345.0000 - val_tn0.1: 13017601.0000 - val_fn0.1: 77749.0000 - val_precision0.1: 0.4699 - val_recal
             l0.1: 0.9754 - val_tp0.3: 2931914.0000 - val_fp0.3: 986226.0000 - val_tn0.3: 15511720.0000 - val_fn0.3: 230940.0000 - val_precision0.3: 0.7483 - val_recall0.3: 0.9270 - val_tp0.5: 2759869.
             0000 - val_fp0.5: 439560.0000 - val_tn0.5: 16058386.0000 - val_fn0.5: 402985.0000 - val_precision0.5: 0.8626 - val_recall0.5: 0.8726 - val_tp0.7: 2487808.0000 - val_fp0.7: 172315.0000 - va
             l_tn0.7: 16325631.0000 - val_fn0.7: 675046.0000 - val_precision0.7: 0.9352 - val_recall0.7: 0.7866 - val_tp0.9: 1923553.0000 - val_fp0.9: 34623.0000 - val_tn0.9: 16463323.0000 - val_fn0.9:
              1239301.0000 - val_precision0.9: 0.9823 - val_recall0.9: 0.6082 - val_accuracy: 0.9571 - val_auc: 0.9755 - val_f1: 0.2772
             Epoch 12/20
             240/240 [==============================] - 124s 517ms/step - loss: 0.3149 - tp0.1: 11244552.0000 - fp0.1: 5636478.0000 - tn0.1: 61036940.0000 - fn0.1: 725215.0000 - precision0.1: 0.6661 -
             recall0.1: 0.9394 - tp0.3: 10645433.0000 - fp0.3: 2370845.0000 - tn0.3: 64302560.0000 - fn0.3: 1324334.0000 - precision0.3: 0.8179 - recall0.3: 0.8894 - tp0.5: 10139252.0000 - fp0.5: 13412
             79.0000 - tn0.5: 65332156.0000 - fn0.5: 1830515.0000 - precision0.5: 0.8832 - recall0.5: 0.8471 - tp0.7: 9434975.0000 - fp0.7: 668796.0000 - tn0.7: 66004652.0000 - fn0.7: 2534792.0000 - pr
             ecision0.7: 0.9338 - recall0.7: 0.7882 - tp0.9: 8010285.0000 - fp0.9: 191192.0000 - tn0.9: 66482252.0000 - fn0.9: 3959482.0000 - precision0.9: 0.9767 - recall0.9: 0.6692 - accuracy: 0.9597
              - auc: 0.9629 - f1: 0.2642 - val_loss: 0.3954 - val_tp0.1: 3008877.0000 - val_fp0.1: 2662719.0000 - val_tn0.1: 13835227.0000 - val_fn0.1: 153977.0000 - val_precision0.1: 0.5305 - val_reca
             ll0.1: 0.9513 - val_tp0.3: 2890670.0000 - val_fp0.3: 1167312.0000 - val_tn0.3: 15330634.0000 - val_fn0.3: 272184.0000 - val_precision0.3: 0.7123 - val_recall0.3: 0.9139 - val_tp0.5: 279631
             0.0000 - val_fp0.5: 773358.0000 - val_tn0.5: 15724588.0000 - val_fn0.5: 366544.0000 - val_precision0.5: 0.7834 - val_recall0.5: 0.8841 - val_tp0.7: 2635367.0000 - val_fp0.7: 412051.0000 -
             val_tn0.7: 16085895.0000 - val_fn0.7: 527487.0000 - val_precision0.7: 0.8648 - val_recall0.7: 0.8332 - val_tp0.9: 2302238.0000 - val_fp0.9: 140209.0000 - val_tn0.9: 16357737.0000 - val_fn0
             .9: 860616.0000 - val_precision0.9: 0.9426 - val_recall0.9: 0.7279 - val_accuracy: 0.9420 - val_auc: 0.9629 - val_f1: 0.2772
             Epoch 13/20
             240/240 [==============================] - 124s 516ms/step - loss: 0.3001 - tp0.1: 11285735.0000 - fp0.1: 5401576.0000 - tn0.1: 61271836.0000 - fn0.1: 684032.0000 - precision0.1: 0.6763 -
             recall0.1: 0.9429 - tp0.3: 10728442.0000 - fp0.3: 2362125.0000 - tn0.3: 64311320.0000 - fn0.3: 1241325.0000 - precision0.3: 0.8196 - recall0.3: 0.8963 - tp0.5: 10253499.0000 - fp0.5: 13693
             34.0000 - tn0.5: 65304092.0000 - fn0.5: 1716268.0000 - precision0.5: 0.8822 - recall0.5: 0.8566 - tp0.7: 9558014.0000 - fp0.7: 688333.0000 - tn0.7: 65985076.0000 - fn0.7: 2411753.0000 - pr
             ecision0.7: 0.9328 - recall0.7: 0.7985 - tp0.9: 8134971.0000 - fp0.9: 193269.0000 - tn0.9: 66480164.0000 - fn0.9: 3834796.0000 - precision0.9: 0.9768 - recall0.9: 0.6796 - accuracy: 0.9608
              - auc: 0.9650 - f1: 0.2642 - val_loss: 0.3591 - val_tp0.1: 2894724.0000 - val_fp0.1: 841367.0000 - val_tn0.1: 15656579.0000 - val_fn0.1: 268130.0000 - val_precision0.1: 0.7748 - val_recal
             l0.1: 0.9152 - val_tp0.3: 2569647.0000 - val_fp0.3: 243687.0000 - val_tn0.3: 16254259.0000 - val_fn0.3: 593207.0000 - val_precision0.3: 0.9134 - val_recall0.3: 0.8124 - val_tp0.5: 2323874.
             0000 - val_fp0.5: 112189.0000 - val_tn0.5: 16385757.0000 - val_fn0.5: 838980.0000 - val_precision0.5: 0.9539 - val_recall0.5: 0.7347 - val_tp0.7: 1996399.0000 - val_fp0.7: 37554.0000 - val
             _tn0.7: 16460392.0000 - val_fn0.7: 1166455.0000 - val_precision0.7: 0.9815 - val_recall0.7: 0.6312 - val_tp0.9: 1499767.0000 - val_fp0.9: 5568.0000 - val_tn0.9: 16492378.0000 - val_fn0.9:
             1663087.0000 - val_precision0.9: 0.9963 - val_recall0.9: 0.4742 - val_accuracy: 0.9516 - val_auc: 0.9540 - val_f1: 0.2772
             Epoch 14/20
             240/240 [==============================] - 124s 516ms/step - loss: 0.2927 - tp0.1: 11303319.0000 - fp0.1: 5310555.0000 - tn0.1: 61362872.0000 - fn0.1: 666448.0000 - precision0.1: 0.6804 -
             recall0.1: 0.9443 - tp0.3: 10769572.0000 - fp0.3: 2338920.0000 - tn0.3: 64334512.0000 - fn0.3: 1200195.0000 - precision0.3: 0.8216 - recall0.3: 0.8997 - tp0.5: 10293662.0000 - fp0.5: 13284
             81.0000 - tn0.5: 65344964.0000 - fn0.5: 1676105.0000 - precision0.5: 0.8857 - recall0.5: 0.8600 - tp0.7: 9608679.0000 - fp0.7: 652337.0000 - tn0.7: 66021108.0000 - fn0.7: 2361088.0000 - pr
             ecision0.7: 0.9364 - recall0.7: 0.8027 - tp0.9: 8281304.0000 - fp0.9: 189171.0000 - tn0.9: 66484272.0000 - fn0.9: 3688463.0000 - precision0.9: 0.9777 - recall0.9: 0.6919 - accuracy: 0.9618
              - auc: 0.9660 - f1: 0.2642 - val_loss: 0.3489 - val_tp0.1: 3071912.0000 - val_fp0.1: 2477377.0000 - val_tn0.1: 14020569.0000 - val_fn0.1: 90942.0000 - val_precision0.1: 0.5536 - val_recal
             l0.1: 0.9712 - val_tp0.3: 2983731.0000 - val_fp0.3: 1182747.0000 - val_tn0.3: 15315199.0000 - val_fn0.3: 179123.0000 - val_precision0.3: 0.7161 - val_recall0.3: 0.9434 - val_tp0.5: 2894503
             .0000 - val_fp0.5: 758141.0000 - val_tn0.5: 15739805.0000 - val_fn0.5: 268351.0000 - val_precision0.5: 0.7924 - val_recall0.5: 0.9152 - val_tp0.7: 2765944.0000 - val_fp0.7: 443418.0000 - v
             al_tn0.7: 16054528.0000 - val_fn0.7: 396910.0000 - val_precision0.7: 0.8618 - val_recall0.7: 0.8745 - val_tp0.9: 2524618.0000 - val_fp0.9: 206040.0000 - val_tn0.9: 16291906.0000 - val_fn0.
             9: 638236.0000 - val_precision0.9: 0.9245 - val_recall0.9: 0.7982 - val_accuracy: 0.9478 - val_auc: 0.9752 - val_f1: 0.2772
             Epoch 15/20
             240/240 [==============================] - 124s 516ms/step - loss: 0.2859 - tp0.1: 11302324.0000 - fp0.1: 4990158.0000 - tn0.1: 61683280.0000 - fn0.1: 667443.0000 - precision0.1: 0.6937 -
             recall0.1: 0.9442 - tp0.3: 10801269.0000 - fp0.3: 2296897.0000 - tn0.3: 64376528.0000 - fn0.3: 1168498.0000 - precision0.3: 0.8246 - recall0.3: 0.9024 - tp0.5: 10322016.0000 - fp0.5: 12928
             01.0000 - tn0.5: 65380632.0000 - fn0.5: 1647751.0000 - precision0.5: 0.8887 - recall0.5: 0.8623 - tp0.7: 9638120.0000 - fp0.7: 622814.0000 - tn0.7: 66050612.0000 - fn0.7: 2331647.0000 - pr
             ecision0.7: 0.9393 - recall0.7: 0.8052 - tp0.9: 8333108.0000 - fp0.9: 176077.0000 - tn0.9: 66497368.0000 - fn0.9: 3636659.0000 - precision0.9: 0.9793 - recall0.9: 0.6962 - accuracy: 0.9626
              - auc: 0.9664 - f1: 0.2642 - val_loss: 0.2609 - val_tp0.1: 3046775.0000 - val_fp0.1: 1468094.0000 - val_tn0.1: 15029852.0000 - val_fn0.1: 116079.0000 - val_precision0.1: 0.6748 - val_reca
             ll0.1: 0.9633 - val_tp0.3: 2926133.0000 - val_fp0.3: 616330.0000 - val_tn0.3: 15881616.0000 - val_fn0.3: 236721.0000 - val_precision0.3: 0.8260 - val_recall0.3: 0.9252 - val_tp0.5: 2805534
             .0000 - val_fp0.5: 344220.0000 - val_tn0.5: 16153726.0000 - val_fn0.5: 357320.0000 - val_precision0.5: 0.8907 - val_recall0.5: 0.8870 - val_tp0.7: 2613829.0000 - val_fp0.7: 161631.0000 - v
             al_tn0.7: 16336315.0000 - val_fn0.7: 549025.0000 - val_precision0.7: 0.9418 - val_recall0.7: 0.8264 - val_tp0.9: 2262420.0000 - val_fp0.9: 50786.0000 - val_tn0.9: 16447160.0000 - val_fn0.9
             : 900434.0000 - val_precision0.9: 0.9780 - val_recall0.9: 0.7153 - val_accuracy: 0.9643 - val_auc: 0.9756 - val_f1: 0.2772
             Epoch 16/20
             240/240 [==============================] - 124s 518ms/step - loss: 0.2760 - tp0.1: 11343439.0000 - fp0.1: 5034724.0000 - tn0.1: 61638692.0000 - fn0.1: 626328.0000 - precision0.1: 0.6926 -
             recall0.1: 0.9477 - tp0.3: 10839346.0000 - fp0.3: 2204383.0000 - tn0.3: 64469040.0000 - fn0.3: 1130421.0000 - precision0.3: 0.8310 - recall0.3: 0.9056 - tp0.5: 10384981.0000 - fp0.5: 12476
             08.0000 - tn0.5: 65425836.0000 - fn0.5: 1584786.0000 - precision0.5: 0.8927 - recall0.5: 0.8676 - tp0.7: 9712329.0000 - fp0.7: 596551.0000 - tn0.7: 66076892.0000 - fn0.7: 2257438.0000 - pr
             ecision0.7: 0.9421 - recall0.7: 0.8114 - tp0.9: 8432551.0000 - fp0.9: 162062.0000 - tn0.9: 66511360.0000 - fn0.9: 3537216.0000 - precision0.9: 0.9811 - recall0.9: 0.7045 - accuracy: 0.9640
              - auc: 0.9683 - f1: 0.2642 - val_loss: 0.2563 - val_tp0.1: 3029508.0000 - val_fp0.1: 1192309.0000 - val_tn0.1: 15305637.0000 - val_fn0.1: 133346.0000 - val_precision0.1: 0.7176 - val_reca
             ll0.1: 0.9578 - val_tp0.3: 2908219.0000 - val_fp0.3: 564874.0000 - val_tn0.3: 15933072.0000 - val_fn0.3: 254635.0000 - val_precision0.3: 0.8374 - val_recall0.3: 0.9195 - val_tp0.5: 2799190
             .0000 - val_fp0.5: 352643.0000 - val_tn0.5: 16145303.0000 - val_fn0.5: 363664.0000 - val_precision0.5: 0.8881 - val_recall0.5: 0.8850 - val_tp0.7: 2636887.0000 - val_fp0.7: 194123.0000 - v
             al_tn0.7: 16303823.0000 - val_fn0.7: 525967.0000 - val_precision0.7: 0.9314 - val_recall0.7: 0.8337 - val_tp0.9: 2320546.0000 - val_fp0.9: 72127.0000 - val_tn0.9: 16425819.0000 - val_fn0.9
             : 842308.0000 - val_precision0.9: 0.9699 - val_recall0.9: 0.7337 - val_accuracy: 0.9636 - val_auc: 0.9731 - val_f1: 0.2772
             Epoch 17/20
             240/240 [==============================] - 124s 518ms/step - loss: 0.2703 - tp0.1: 11357057.0000 - fp0.1: 4893464.0000 - tn0.1: 61779992.0000 - fn0.1: 612710.0000 - precision0.1: 0.6989 -
             recall0.1: 0.9488 - tp0.3: 10875567.0000 - fp0.3: 2221183.0000 - tn0.3: 64452244.0000 - fn0.3: 1094200.0000 - precision0.3: 0.8304 - recall0.3: 0.9086 - tp0.5: 10410193.0000 - fp0.5: 12391
             75.0000 - tn0.5: 65434264.0000 - fn0.5: 1559574.0000 - precision0.5: 0.8936 - recall0.5: 0.8697 - tp0.7: 9743863.0000 - fp0.7: 592187.0000 - tn0.7: 66081244.0000 - fn0.7: 2225904.0000 - pr
             ecision0.7: 0.9427 - recall0.7: 0.8140 - tp0.9: 8521739.0000 - fp0.9: 167850.0000 - tn0.9: 66505612.0000 - fn0.9: 3448028.0000 - precision0.9: 0.9807 - recall0.9: 0.7119 - accuracy: 0.9644
              - auc: 0.9690 - f1: 0.2642 - val_loss: 0.2701 - val_tp0.1: 3061862.0000 - val_fp0.1: 1755743.0000 - val_tn0.1: 14742203.0000 - val_fn0.1: 100992.0000 - val_precision0.1: 0.6356 - val_reca
             ll0.1: 0.9681 - val_tp0.3: 2945795.0000 - val_fp0.3: 710061.0000 - val_tn0.3: 15787885.0000 - val_fn0.3: 217059.0000 - val_precision0.3: 0.8058 - val_recall0.3: 0.9314 - val_tp0.5: 2833502
             .0000 - val_fp0.5: 394281.0000 - val_tn0.5: 16103665.0000 - val_fn0.5: 329352.0000 - val_precision0.5: 0.8778 - val_recall0.5: 0.8959 - val_tp0.7: 2650030.0000 - val_fp0.7: 181493.0000 - v
             al_tn0.7: 16316453.0000 - val_fn0.7: 512824.0000 - val_precision0.7: 0.9359 - val_recall0.7: 0.8379 - val_tp0.9: 2293107.0000 - val_fp0.9: 49911.0000 - val_tn0.9: 16448035.0000 - val_fn0.9
             : 869747.0000 - val_precision0.9: 0.9787 - val_recall0.9: 0.7250 - val_accuracy: 0.9632 - val_auc: 0.9773 - val_f1: 0.2772
             Epoch 18/20
             240/240 [==============================] - 124s 518ms/step - loss: 0.2628 - tp0.1: 11372952.0000 - fp0.1: 4780985.0000 - tn0.1: 61892464.0000 - fn0.1: 596815.0000 - precision0.1: 0.7040 -
             recall0.1: 0.9501 - tp0.3: 10899958.0000 - fp0.3: 2139815.0000 - tn0.3: 64533632.0000 - fn0.3: 1069809.0000 - precision0.3: 0.8359 - recall0.3: 0.9106 - tp0.5: 10471625.0000 - fp0.5: 12249
             84.0000 - tn0.5: 65448432.0000 - fn0.5: 1498142.0000 - precision0.5: 0.8953 - recall0.5: 0.8748 - tp0.7: 9815694.0000 - fp0.7: 581437.0000 - tn0.7: 66091992.0000 - fn0.7: 2154073.0000 - pr
             ecision0.7: 0.9441 - recall0.7: 0.8200 - tp0.9: 8590979.0000 - fp0.9: 158690.0000 - tn0.9: 66514760.0000 - fn0.9: 3378788.0000 - precision0.9: 0.9819 - recall0.9: 0.7177 - accuracy: 0.9654
              - auc: 0.9700 - f1: 0.2642 - val_loss: 0.2858 - val_tp0.1: 3079296.0000 - val_fp0.1: 2141364.0000 - val_tn0.1: 14356582.0000 - val_fn0.1: 83558.0000 - val_precision0.1: 0.5898 - val_recal
             l0.1: 0.9736 - val_tp0.3: 2982065.0000 - val_fp0.3: 935179.0000 - val_tn0.3: 15562767.0000 - val_fn0.3: 180789.0000 - val_precision0.3: 0.7613 - val_recall0.3: 0.9428 - val_tp0.5: 2881468.
             0000 - val_fp0.5: 536262.0000 - val_tn0.5: 15961684.0000 - val_fn0.5: 281386.0000 - val_precision0.5: 0.8431 - val_recall0.5: 0.9110 - val_tp0.7: 2708837.0000 - val_fp0.7: 237110.0000 - va
             l_tn0.7: 16260836.0000 - val_fn0.7: 454017.0000 - val_precision0.7: 0.9195 - val_recall0.7: 0.8565 - val_tp0.9: 2296651.0000 - val_fp0.9: 53102.0000 - val_tn0.9: 16444844.0000 - val_fn0.9:
              866203.0000 - val_precision0.9: 0.9774 - val_recall0.9: 0.7261 - val_accuracy: 0.9584 - val_auc: 0.9793 - val_f1: 0.2772
             Epoch 19/20
             240/240 [==============================] - 124s 516ms/step - loss: 0.2557 - tp0.1: 11390165.0000 - fp0.1: 4618150.0000 - tn0.1: 62055280.0000 - fn0.1: 579602.0000 - precision0.1: 0.7115 -
             recall0.1: 0.9516 - tp0.3: 10925273.0000 - fp0.3: 2091134.0000 - tn0.3: 64582276.0000 - fn0.3: 1044494.0000 - precision0.3: 0.8393 - recall0.3: 0.9127 - tp0.5: 10488558.0000 - fp0.5: 11931
             41.0000 - tn0.5: 65480284.0000 - fn0.5: 1481209.0000 - precision0.5: 0.8979 - recall0.5: 0.8763 - tp0.7: 9830525.0000 - fp0.7: 561047.0000 - tn0.7: 66112360.0000 - fn0.7: 2139242.0000 - pr
             ecision0.7: 0.9460 - recall0.7: 0.8213 - tp0.9: 8625871.0000 - fp0.9: 152724.0000 - tn0.9: 66520724.0000 - fn0.9: 3343896.0000 - precision0.9: 0.9826 - recall0.9: 0.7206 - accuracy: 0.9660
              - auc: 0.9711 - f1: 0.2642 - val_loss: 0.2528 - val_tp0.1: 3043668.0000 - val_fp0.1: 1335624.0000 - val_tn0.1: 15162322.0000 - val_fn0.1: 119186.0000 - val_precision0.1: 0.6950 - val_reca
             ll0.1: 0.9623 - val_tp0.3: 2935979.0000 - val_fp0.3: 619716.0000 - val_tn0.3: 15878230.0000 - val_fn0.3: 226875.0000 - val_precision0.3: 0.8257 - val_recall0.3: 0.9283 - val_tp0.5: 2834409
             .0000 - val_fp0.5: 367871.0000 - val_tn0.5: 16130075.0000 - val_fn0.5: 328445.0000 - val_precision0.5: 0.8851 - val_recall0.5: 0.8962 - val_tp0.7: 2670269.0000 - val_fp0.7: 182097.0000 - v
             al_tn0.7: 16315849.0000 - val_fn0.7: 492585.0000 - val_precision0.7: 0.9362 - val_recall0.7: 0.8443 - val_tp0.9: 2324993.0000 - val_fp0.9: 54375.0000 - val_tn0.9: 16443571.0000 - val_fn0.9
             : 837861.0000 - val_precision0.9: 0.9771 - val_recall0.9: 0.7351 - val_accuracy: 0.9646 - val_auc: 0.9758 - val_f1: 0.2772
             Epoch 20/20
             240/240 [==============================] - 124s 518ms/step - loss: 0.2510 - tp0.1: 11400658.0000 - fp0.1: 4532014.0000 - tn0.1: 62141432.0000 - fn0.1: 569109.0000 - precision0.1: 0.7156 -
             recall0.1: 0.9525 - tp0.3: 10961511.0000 - fp0.3: 2108269.0000 - tn0.3: 64565152.0000 - fn0.3: 1008256.0000 - precision0.3: 0.8387 - recall0.3: 0.9158 - tp0.5: 10542090.0000 - fp0.5: 12141
             91.0000 - tn0.5: 65459224.0000 - fn0.5: 1427677.0000 - precision0.5: 0.8967 - recall0.5: 0.8807 - tp0.7: 9900824.0000 - fp0.7: 577656.0000 - tn0.7: 66095784.0000 - fn0.7: 2068943.0000 - pr
             ecision0.7: 0.9449 - recall0.7: 0.8272 - tp0.9: 8716202.0000 - fp0.9: 157381.0000 - tn0.9: 66516056.0000 - fn0.9: 3253565.0000 - precision0.9: 0.9823 - recall0.9: 0.7282 - accuracy: 0.9664
              - auc: 0.9716 - f1: 0.2642 - val_loss: 0.2602 - val_tp0.1: 3022436.0000 - val_fp0.1: 1215092.0000 - val_tn0.1: 15282854.0000 - val_fn0.1: 140418.0000 - val_precision0.1: 0.7133 - val_reca
             ll0.1: 0.9556 - val_tp0.3: 2889313.0000 - val_fp0.3: 511507.0000 - val_tn0.3: 15986439.0000 - val_fn0.3: 273541.0000 - val_precision0.3: 0.8496 - val_recall0.3: 0.9135 - val_tp0.5: 2761628
             .0000 - val_fp0.5: 283172.0000 - val_tn0.5: 16214774.0000 - val_fn0.5: 401226.0000 - val_precision0.5: 0.9070 - val_recall0.5: 0.8731 - val_tp0.7: 2568361.0000 - val_fp0.7: 130133.0000 - v
             al_tn0.7: 16367813.0000 - val_fn0.7: 594493.0000 - val_precision0.7: 0.9518 - val_recall0.7: 0.8120 - val_tp0.9: 2202966.0000 - val_fp0.9: 36402.0000 - val_tn0.9: 16461544.0000 - val_fn0.9
             : 959888.0000 - val_precision0.9: 0.9837 - val_recall0.9: 0.6965 - val_accuracy: 0.9652 - val_auc: 0.9728 - val_f1: 0.2772
             --- Running training session 63/140
             {'hp_epochs': 20, 'hp_batch_size': 14, 'hp_scaler': 'quant_g', 'hp_n_levels': 7, 'hp_first_filters': 16, 'hp_pool_size': 2, 'hp_input_size': 4096, 'hp_lr_start': 0.027144629354532844, 'hp_
             lr_power': 5.0}
             --- repeat #: 1
             input - shape:   (None, 4096, 1)
             output - shape:  (None, 4096, 1)
             Epoch 1/20
             2021-08-08 13:46:55.765737: I tensorflow/core/kernels/data/shuffle_dataset_op.cc:177] Filling up shuffle buffer (this may take a while): 3624 of 4800
             2021-08-08 13:46:58.998412: I tensorflow/core/kernels/data/shuffle_dataset_op.cc:230] Shuffle buffer filled.
             342/342 [==============================] - 60s 96ms/step - loss: 0.9388 - tp0.1: 2551056.0000 - fp0.1: 5602226.0000 - tn0.1: 11036673.0000 - fn0.1: 421693.0000 - precision0.1: 0.3129 - rec
             all0.1: 0.8581 - tp0.3: 1927079.0000 - fp0.3: 2492968.0000 - tn0.3: 14145931.0000 - fn0.3: 1045670.0000 - precision0.3: 0.4360 - recall0.3: 0.6482 - tp0.5: 1246353.0000 - fp0.5: 839125.000
             0 - tn0.5: 15799774.0000 - fn0.5: 1726396.0000 - precision0.5: 0.5976 - recall0.5: 0.4193 - tp0.7: 687790.0000 - fp0.7: 234530.0000 - tn0.7: 16404369.0000 - fn0.7: 2284959.0000 - precision
             0.7: 0.7457 - recall0.7: 0.2314 - tp0.9: 115373.0000 - fp0.9: 19205.0000 - tn0.9: 16619694.0000 - fn0.9: 2857376.0000 - precision0.9: 0.8573 - recall0.9: 0.0388 - accuracy: 0.8692 - auc: 0
             .8319 - f1: 0.2633 - val_loss: 1.2163 - val_tp0.1: 649575.0000 - val_fp0.1: 1129986.0000 - val_tn0.1: 2947304.0000 - val_fn0.1: 147375.0000 - val_precision0.1: 0.3650 - val_recall0.1: 0.81
             51 - val_tp0.3: 600297.0000 - val_fp0.3: 897583.0000 - val_tn0.3: 3179707.0000 - val_fn0.3: 196653.0000 - val_precision0.3: 0.4008 - val_recall0.3: 0.7532 - val_tp0.5: 562997.0000 - val_fp
             0.5: 731818.0000 - val_tn0.5: 3345472.0000 - val_fn0.5: 233953.0000 - val_precision0.5: 0.4348 - val_recall0.5: 0.7064 - val_tp0.7: 521584.0000 - val_fp0.7: 583432.0000 - val_tn0.7: 349385
             8.0000 - val_fn0.7: 275366.0000 - val_precision0.7: 0.4720 - val_recall0.7: 0.6545 - val_tp0.9: 432196.0000 - val_fp0.9: 357157.0000 - val_tn0.9: 3720133.0000 - val_fn0.9: 364754.0000 - va
             l_precision0.9: 0.5475 - val_recall0.9: 0.5423 - val_accuracy: 0.8019 - val_auc: 0.8254 - val_f1: 0.2811
             Epoch 2/20
             342/342 [==============================] - 27s 79ms/step - loss: 0.8637 - tp0.1: 2563159.0000 - fp0.1: 5123938.0000 - tn0.1: 11520950.0000 - fn0.1: 403601.0000 - precision0.1: 0.3334 - rec
             all0.1: 0.8640 - tp0.3: 2082014.0000 - fp0.3: 2404817.0000 - tn0.3: 14240071.0000 - fn0.3: 884746.0000 - precision0.3: 0.4640 - recall0.3: 0.7018 - tp0.5: 1378923.0000 - fp0.5: 865967.0000
              - tn0.5: 15778921.0000 - fn0.5: 1587837.0000 - precision0.5: 0.6142 - recall0.5: 0.4648 - tp0.7: 747621.0000 - fp0.7: 249304.0000 - tn0.7: 16395584.0000 - fn0.7: 2219139.0000 - precision0
             .7: 0.7499 - recall0.7: 0.2520 - tp0.9: 156922.0000 - fp0.9: 25309.0000 - tn0.9: 16619579.0000 - fn0.9: 2809838.0000 - precision0.9: 0.8611 - recall0.9: 0.0529 - accuracy: 0.8749 - auc: 0.
             8499 - f1: 0.2628 - val_loss: 6.7415 - val_tp0.1: 794760.0000 - val_fp0.1: 3364179.0000 - val_tn0.1: 712620.0000 - val_fn0.1: 2681.0000 - val_precision0.1: 0.1911 - val_recall0.1: 0.9966 -
              val_tp0.3: 790967.0000 - val_fp0.3: 2758328.0000 - val_tn0.3: 1318471.0000 - val_fn0.3: 6474.0000 - val_precision0.3: 0.2229 - val_recall0.3: 0.9919 - val_tp0.5: 786264.0000 - val_fp0.5:
             2520461.0000 - val_tn0.5: 1556338.0000 - val_fn0.5: 11177.0000 - val_precision0.5: 0.2378 - val_recall0.5: 0.9860 - val_tp0.7: 779634.0000 - val_fp0.7: 2343349.0000 - val_tn0.7: 1733450.00
             00 - val_fn0.7: 17807.0000 - val_precision0.7: 0.2496 - val_recall0.7: 0.9777 - val_tp0.9: 763809.0000 - val_fp0.9: 2124191.0000 - val_tn0.9: 1952608.0000 - val_fn0.9: 33632.0000 - val_pre
             cision0.9: 0.2645 - val_recall0.9: 0.9578 - val_accuracy: 0.4806 - val_auc: 0.7467 - val_f1: 0.2812
             Epoch 3/20
             342/342 [==============================] - 30s 88ms/step - loss: 0.7536 - tp0.1: 2653716.0000 - fp0.1: 4711992.0000 - tn0.1: 11929767.0000 - fn0.1: 316173.0000 - precision0.1: 0.3603 - rec
             all0.1: 0.8935 - tp0.3: 2203201.0000 - fp0.3: 2044395.0000 - tn0.3: 14597364.0000 - fn0.3: 766688.0000 - precision0.3: 0.5187 - recall0.3: 0.7418 - tp0.5: 1692995.0000 - fp0.5: 943961.0000
              - tn0.5: 15697798.0000 - fn0.5: 1276894.0000 - precision0.5: 0.6420 - recall0.5: 0.5701 - tp0.7: 1039318.0000 - fp0.7: 338210.0000 - tn0.7: 16303549.0000 - fn0.7: 1930571.0000 - precision
             0.7: 0.7545 - recall0.7: 0.3500 - tp0.9: 234516.0000 - fp0.9: 36668.0000 - tn0.9: 16605091.0000 - fn0.9: 2735373.0000 - precision0.9: 0.8648 - recall0.9: 0.0790 - accuracy: 0.8868 - auc: 0
             .8820 - f1: 0.2630 - val_loss: 1.5030 - val_tp0.1: 736916.0000 - val_fp0.1: 1516908.0000 - val_tn0.1: 2557738.0000 - val_fn0.1: 62678.0000 - val_precision0.1: 0.3270 - val_recall0.1: 0.921
             6 - val_tp0.3: 720401.0000 - val_fp0.3: 1289822.0000 - val_tn0.3: 2784824.0000 - val_fn0.3: 79193.0000 - val_precision0.3: 0.3584 - val_recall0.3: 0.9010 - val_tp0.5: 705808.0000 - val_fp0
             .5: 1149637.0000 - val_tn0.5: 2925009.0000 - val_fn0.5: 93786.0000 - val_precision0.5: 0.3804 - val_recall0.5: 0.8827 - val_tp0.7: 685398.0000 - val_fp0.7: 986538.0000 - val_tn0.7: 3088108
             .0000 - val_fn0.7: 114196.0000 - val_precision0.7: 0.4099 - val_recall0.7: 0.8572 - val_tp0.9: 644148.0000 - val_fp0.9: 756371.0000 - val_tn0.9: 3318275.0000 - val_fn0.9: 155446.0000 - val
             _precision0.9: 0.4599 - val_recall0.9: 0.8056 - val_accuracy: 0.7449 - val_auc: 0.8651 - val_f1: 0.2819
             Epoch 4/20
             342/342 [==============================] - 30s 88ms/step - loss: 0.6853 - tp0.1: 2703897.0000 - fp0.1: 4342508.0000 - tn0.1: 12288832.0000 - fn0.1: 276411.0000 - precision0.1: 0.3837 - rec
             all0.1: 0.9073 - tp0.3: 2293716.0000 - fp0.3: 1900715.0000 - tn0.3: 14730625.0000 - fn0.3: 686592.0000 - precision0.3: 0.5468 - recall0.3: 0.7696 - tp0.5: 1860758.0000 - fp0.5: 965942.0000
              - tn0.5: 15665398.0000 - fn0.5: 1119550.0000 - precision0.5: 0.6583 - recall0.5: 0.6244 - tp0.7: 1232630.0000 - fp0.7: 369641.0000 - tn0.7: 16261699.0000 - fn0.7: 1747678.0000 - precision
             0.7: 0.7693 - recall0.7: 0.4136 - tp0.9: 331288.0000 - fp0.9: 50757.0000 - tn0.9: 16580583.0000 - fn0.9: 2649020.0000 - precision0.9: 0.8671 - recall0.9: 0.1112 - accuracy: 0.8937 - auc: 0
             .8982 - f1: 0.2638 - val_loss: 0.9547 - val_tp0.1: 735656.0000 - val_fp0.1: 1474945.0000 - val_tn0.1: 2608195.0000 - val_fn0.1: 55444.0000 - val_precision0.1: 0.3328 - val_recall0.1: 0.929
             9 - val_tp0.3: 692992.0000 - val_fp0.3: 1096764.0000 - val_tn0.3: 2986376.0000 - val_fn0.3: 98108.0000 - val_precision0.3: 0.3872 - val_recall0.3: 0.8760 - val_tp0.5: 651741.0000 - val_fp0
             .5: 858021.0000 - val_tn0.5: 3225119.0000 - val_fn0.5: 139359.0000 - val_precision0.5: 0.4317 - val_recall0.5: 0.8238 - val_tp0.7: 578859.0000 - val_fp0.7: 602934.0000 - val_tn0.7: 3480206
             .0000 - val_fn0.7: 212241.0000 - val_precision0.7: 0.4898 - val_recall0.7: 0.7317 - val_tp0.9: 421648.0000 - val_fp0.9: 292420.0000 - val_tn0.9: 3790720.0000 - val_fn0.9: 369452.0000 - val
             _precision0.9: 0.5905 - val_recall0.9: 0.5330 - val_accuracy: 0.7954 - val_auc: 0.8742 - val_f1: 0.2793
             Epoch 5/20
             342/342 [==============================] - 30s 89ms/step - loss: 0.6168 - tp0.1: 2714795.0000 - fp0.1: 3825827.0000 - tn0.1: 12828162.0000 - fn0.1: 242864.0000 - precision0.1: 0.4151 - rec
             all0.1: 0.9179 - tp0.3: 2360594.0000 - fp0.3: 1759953.0000 - tn0.3: 14894036.0000 - fn0.3: 597065.0000 - precision0.3: 0.5729 - recall0.3: 0.7981 - tp0.5: 1993009.0000 - fp0.5: 943846.0000
              - tn0.5: 15710143.0000 - fn0.5: 964650.0000 - precision0.5: 0.6786 - recall0.5: 0.6738 - tp0.7: 1426514.0000 - fp0.7: 393147.0000 - tn0.7: 16260842.0000 - fn0.7: 1531145.0000 - precision0
             .7: 0.7839 - recall0.7: 0.4823 - tp0.9: 433784.0000 - fp0.9: 59911.0000 - tn0.9: 16594078.0000 - fn0.9: 2523875.0000 - precision0.9: 0.8786 - recall0.9: 0.1467 - accuracy: 0.9027 - auc: 0.
             9117 - f1: 0.2621 - val_loss: 0.6248 - val_tp0.1: 740961.0000 - val_fp0.1: 952224.0000 - val_tn0.1: 3122967.0000 - val_fn0.1: 58088.0000 - val_precision0.1: 0.4376 - val_recall0.1: 0.9273
             - val_tp0.3: 664317.0000 - val_fp0.3: 488340.0000 - val_tn0.3: 3586851.0000 - val_fn0.3: 134732.0000 - val_precision0.3: 0.5763 - val_recall0.3: 0.8314 - val_tp0.5: 563011.0000 - val_fp0.5
             : 245735.0000 - val_tn0.5: 3829456.0000 - val_fn0.5: 236038.0000 - val_precision0.5: 0.6962 - val_recall0.5: 0.7046 - val_tp0.7: 395949.0000 - val_fp0.7: 88632.0000 - val_tn0.7: 3986559.00
             00 - val_fn0.7: 403100.0000 - val_precision0.7: 0.8171 - val_recall0.7: 0.4955 - val_tp0.9: 112039.0000 - val_fp0.9: 5626.0000 - val_tn0.9: 4069565.0000 - val_fn0.9: 687010.0000 - val_prec
             ision0.9: 0.9522 - val_recall0.9: 0.1402 - val_accuracy: 0.9012 - val_auc: 0.9231 - val_f1: 0.2817
             Epoch 6/20
             342/342 [==============================] - 29s 84ms/step - loss: 0.5810 - tp0.1: 2723990.0000 - fp0.1: 3427161.0000 - tn0.1: 13216327.0000 - fn0.1: 244170.0000 - precision0.1: 0.4428 - rec
             all0.1: 0.9177 - tp0.3: 2397859.0000 - fp0.3: 1591770.0000 - tn0.3: 15051718.0000 - fn0.3: 570301.0000 - precision0.3: 0.6010 - recall0.3: 0.8079 - tp0.5: 2062821.0000 - fp0.5: 894260.0000
              - tn0.5: 15749228.0000 - fn0.5: 905339.0000 - precision0.5: 0.6976 - recall0.5: 0.6950 - tp0.7: 1513878.0000 - fp0.7: 385604.0000 - tn0.7: 16257884.0000 - fn0.7: 1454282.0000 - precision0
             .7: 0.7970 - recall0.7: 0.5100 - tp0.9: 521178.0000 - fp0.9: 63769.0000 - tn0.9: 16579719.0000 - fn0.9: 2446982.0000 - precision0.9: 0.8910 - recall0.9: 0.1756 - accuracy: 0.9082 - auc: 0.
             9187 - f1: 0.2629 - val_loss: 0.5978 - val_tp0.1: 736458.0000 - val_fp0.1: 812942.0000 - val_tn0.1: 3258937.0000 - val_fn0.1: 65903.0000 - val_precision0.1: 0.4753 - val_recall0.1: 0.9179
             - val_tp0.3: 673047.0000 - val_fp0.3: 451203.0000 - val_tn0.3: 3620676.0000 - val_fn0.3: 129314.0000 - val_precision0.3: 0.5987 - val_recall0.3: 0.8388 - val_tp0.5: 622273.0000 - val_fp0.5
             : 311162.0000 - val_tn0.5: 3760717.0000 - val_fn0.5: 180088.0000 - val_precision0.5: 0.6666 - val_recall0.5: 0.7756 - val_tp0.7: 543103.0000 - val_fp0.7: 183256.0000 - val_tn0.7: 3888623.0
             000 - val_fn0.7: 259258.0000 - val_precision0.7: 0.7477 - val_recall0.7: 0.6769 - val_tp0.9: 367886.0000 - val_fp0.9: 60748.0000 - val_tn0.9: 4011131.0000 - val_fn0.9: 434475.0000 - val_pr
             ecision0.9: 0.8583 - val_recall0.9: 0.4585 - val_accuracy: 0.8992 - val_auc: 0.9218 - val_f1: 0.2827
             Epoch 7/20
             342/342 [==============================] - 30s 87ms/step - loss: 0.5618 - tp0.1: 2753144.0000 - fp0.1: 3391488.0000 - tn0.1: 13244099.0000 - fn0.1: 222917.0000 - precision0.1: 0.4481 - rec
             all0.1: 0.9251 - tp0.3: 2430470.0000 - fp0.3: 1601144.0000 - tn0.3: 15034443.0000 - fn0.3: 545591.0000 - precision0.3: 0.6029 - recall0.3: 0.8167 - tp0.5: 2105059.0000 - fp0.5: 906072.0000
              - tn0.5: 15729515.0000 - fn0.5: 871002.0000 - precision0.5: 0.6991 - recall0.5: 0.7073 - tp0.7: 1566971.0000 - fp0.7: 391164.0000 - tn0.7: 16244423.0000 - fn0.7: 1409090.0000 - precision0
             .7: 0.8002 - recall0.7: 0.5265 - tp0.9: 568695.0000 - fp0.9: 65221.0000 - tn0.9: 16570366.0000 - fn0.9: 2407366.0000 - precision0.9: 0.8971 - recall0.9: 0.1911 - accuracy: 0.9094 - auc: 0.
             9229 - f1: 0.2635 - val_loss: 0.5711 - val_tp0.1: 744203.0000 - val_fp0.1: 929725.0000 - val_tn0.1: 3153721.0000 - val_fn0.1: 46591.0000 - val_precision0.1: 0.4446 - val_recall0.1: 0.9411
             - val_tp0.3: 640265.0000 - val_fp0.3: 353301.0000 - val_tn0.3: 3730145.0000 - val_fn0.3: 150529.0000 - val_precision0.3: 0.6444 - val_recall0.3: 0.8096 - val_tp0.5: 490709.0000 - val_fp0.5
             : 135186.0000 - val_tn0.5: 3948260.0000 - val_fn0.5: 300085.0000 - val_precision0.5: 0.7840 - val_recall0.5: 0.6205 - val_tp0.7: 277364.0000 - val_fp0.7: 34487.0000 - val_tn0.7: 4048959.00
             00 - val_fn0.7: 513430.0000 - val_precision0.7: 0.8894 - val_recall0.7: 0.3507 - val_tp0.9: 24614.0000 - val_fp0.9: 1054.0000 - val_tn0.9: 4082392.0000 - val_fn0.9: 766180.0000 - val_preci
             sion0.9: 0.9589 - val_recall0.9: 0.0311 - val_accuracy: 0.9107 - val_auc: 0.9298 - val_f1: 0.2792
             Epoch 8/20
             342/342 [==============================] - 28s 81ms/step - loss: 0.5408 - tp0.1: 2752489.0000 - fp0.1: 3321723.0000 - tn0.1: 13326977.0000 - fn0.1: 210459.0000 - precision0.1: 0.4531 - rec
             all0.1: 0.9290 - tp0.3: 2438347.0000 - fp0.3: 1518540.0000 - tn0.3: 15130160.0000 - fn0.3: 524601.0000 - precision0.3: 0.6162 - recall0.3: 0.8229 - tp0.5: 2124376.0000 - fp0.5: 851682.0000
              - tn0.5: 15797018.0000 - fn0.5: 838572.0000 - precision0.5: 0.7138 - recall0.5: 0.7170 - tp0.7: 1623433.0000 - fp0.7: 378788.0000 - tn0.7: 16269912.0000 - fn0.7: 1339515.0000 - precision0
             .7: 0.8108 - recall0.7: 0.5479 - tp0.9: 664330.0000 - fp0.9: 71506.0000 - tn0.9: 16577194.0000 - fn0.9: 2298618.0000 - precision0.9: 0.9028 - recall0.9: 0.2242 - accuracy: 0.9138 - auc: 0.
             9275 - f1: 0.2625 - val_loss: 0.5804 - val_tp0.1: 719809.0000 - val_fp0.1: 677691.0000 - val_tn0.1: 3399808.0000 - val_fn0.1: 76932.0000 - val_precision0.1: 0.5151 - val_recall0.1: 0.9034
             - val_tp0.3: 629328.0000 - val_fp0.3: 315236.0000 - val_tn0.3: 3762263.0000 - val_fn0.3: 167413.0000 - val_precision0.3: 0.6663 - val_recall0.3: 0.7899 - val_tp0.5: 549596.0000 - val_fp0.5
             : 183412.0000 - val_tn0.5: 3894087.0000 - val_fn0.5: 247145.0000 - val_precision0.5: 0.7498 - val_recall0.5: 0.6898 - val_tp0.7: 420608.0000 - val_fp0.7: 82009.0000 - val_tn0.7: 3995490.00
             00 - val_fn0.7: 376133.0000 - val_precision0.7: 0.8368 - val_recall0.7: 0.5279 - val_tp0.9: 188872.0000 - val_fp0.9: 12738.0000 - val_tn0.9: 4064761.0000 - val_fn0.9: 607869.0000 - val_pre
             cision0.9: 0.9368 - val_recall0.9: 0.2371 - val_accuracy: 0.9117 - val_auc: 0.9182 - val_f1: 0.2810
             Epoch 9/20
             342/342 [==============================] - 31s 90ms/step - loss: 0.5325 - tp0.1: 2770579.0000 - fp0.1: 3319105.0000 - tn0.1: 13319456.0000 - fn0.1: 202508.0000 - precision0.1: 0.4550 - rec
             all0.1: 0.9319 - tp0.3: 2466041.0000 - fp0.3: 1533716.0000 - tn0.3: 15104845.0000 - fn0.3: 507046.0000 - precision0.3: 0.6165 - recall0.3: 0.8295 - tp0.5: 2177107.0000 - fp0.5: 886546.0000
              - tn0.5: 15752015.0000 - fn0.5: 795980.0000 - precision0.5: 0.7106 - recall0.5: 0.7323 - tp0.7: 1685024.0000 - fp0.7: 402104.0000 - tn0.7: 16236457.0000 - fn0.7: 1288063.0000 - precision0
             .7: 0.8073 - recall0.7: 0.5668 - tp0.9: 684970.0000 - fp0.9: 71002.0000 - tn0.9: 16567559.0000 - fn0.9: 2288117.0000 - precision0.9: 0.9061 - recall0.9: 0.2304 - accuracy: 0.9142 - auc: 0.
             9299 - f1: 0.2633 - val_loss: 0.6069 - val_tp0.1: 776068.0000 - val_fp0.1: 1351519.0000 - val_tn0.1: 2726452.0000 - val_fn0.1: 20201.0000 - val_precision0.1: 0.3648 - val_recall0.1: 0.9746
              - val_tp0.3: 720731.0000 - val_fp0.3: 628859.0000 - val_tn0.3: 3449112.0000 - val_fn0.3: 75538.0000 - val_precision0.3: 0.5340 - val_recall0.3: 0.9051 - val_tp0.5: 648641.0000 - val_fp0.5
             : 344147.0000 - val_tn0.5: 3733824.0000 - val_fn0.5: 147628.0000 - val_precision0.5: 0.6534 - val_recall0.5: 0.8146 - val_tp0.7: 538210.0000 - val_fp0.7: 168258.0000 - val_tn0.7: 3909713.0
             000 - val_fn0.7: 258059.0000 - val_precision0.7: 0.7618 - val_recall0.7: 0.6759 - val_tp0.9: 289556.0000 - val_fp0.9: 34074.0000 - val_tn0.9: 4043897.0000 - val_fn0.9: 506713.0000 - val_pr
             ecision0.9: 0.8947 - val_recall0.9: 0.3636 - val_accuracy: 0.8991 - val_auc: 0.9424 - val_f1: 0.2808
             Epoch 10/20
             342/342 [==============================] - 29s 86ms/step - loss: 0.5031 - tp0.1: 2780826.0000 - fp0.1: 3016769.0000 - tn0.1: 13618075.0000 - fn0.1: 195978.0000 - precision0.1: 0.4797 - rec
             all0.1: 0.9342 - tp0.3: 2488133.0000 - fp0.3: 1399371.0000 - tn0.3: 15235473.0000 - fn0.3: 488671.0000 - precision0.3: 0.6400 - recall0.3: 0.8358 - tp0.5: 2202797.0000 - fp0.5: 811436.0000
              - tn0.5: 15823408.0000 - fn0.5: 774007.0000 - precision0.5: 0.7308 - recall0.5: 0.7400 - tp0.7: 1728965.0000 - fp0.7: 377368.0000 - tn0.7: 16257476.0000 - fn0.7: 1247839.0000 - precision0
             .7: 0.8208 - recall0.7: 0.5808 - tp0.9: 720528.0000 - fp0.9: 68075.0000 - tn0.9: 16566769.0000 - fn0.9: 2256276.0000 - precision0.9: 0.9137 - recall0.9: 0.2420 - accuracy: 0.9192 - auc: 0.
             9351 - f1: 0.2636 - val_loss: 0.5387 - val_tp0.1: 760105.0000 - val_fp0.1: 938438.0000 - val_tn0.1: 3135229.0000 - val_fn0.1: 40468.0000 - val_precision0.1: 0.4475 - val_recall0.1: 0.9495
             - val_tp0.3: 691484.0000 - val_fp0.3: 448766.0000 - val_tn0.3: 3624901.0000 - val_fn0.3: 109089.0000 - val_precision0.3: 0.6064 - val_recall0.3: 0.8637 - val_tp0.5: 628663.0000 - val_fp0.5
             : 268056.0000 - val_tn0.5: 3805611.0000 - val_fn0.5: 171910.0000 - val_precision0.5: 0.7011 - val_recall0.5: 0.7853 - val_tp0.7: 517637.0000 - val_fp0.7: 128039.0000 - val_tn0.7: 3945628.0
             000 - val_fn0.7: 282936.0000 - val_precision0.7: 0.8017 - val_recall0.7: 0.6466 - val_tp0.9: 267423.0000 - val_fp0.9: 24096.0000 - val_tn0.9: 4049571.0000 - val_fn0.9: 533150.0000 - val_pr
             ecision0.9: 0.9173 - val_recall0.9: 0.3340 - val_accuracy: 0.9097 - val_auc: 0.9378 - val_f1: 0.2821
             Epoch 11/20
             342/342 [==============================] - 30s 88ms/step - loss: 0.5001 - tp0.1: 2760834.0000 - fp0.1: 2989115.0000 - tn0.1: 13662862.0000 - fn0.1: 198837.0000 - precision0.1: 0.4801 - rec
             all0.1: 0.9328 - tp0.3: 2478896.0000 - fp0.3: 1396965.0000 - tn0.3: 15255012.0000 - fn0.3: 480775.0000 - precision0.3: 0.6396 - recall0.3: 0.8376 - tp0.5: 2214110.0000 - fp0.5: 817049.0000
              - tn0.5: 15834928.0000 - fn0.5: 745561.0000 - precision0.5: 0.7304 - recall0.5: 0.7481 - tp0.7: 1770056.0000 - fp0.7: 384025.0000 - tn0.7: 16267952.0000 - fn0.7: 1189615.0000 - precision0
             .7: 0.8217 - recall0.7: 0.5981 - tp0.9: 798931.0000 - fp0.9: 75031.0000 - tn0.9: 16576946.0000 - fn0.9: 2160740.0000 - precision0.9: 0.9141 - recall0.9: 0.2699 - accuracy: 0.9203 - auc: 0.
             9351 - f1: 0.2623 - val_loss: 0.5461 - val_tp0.1: 730695.0000 - val_fp0.1: 658715.0000 - val_tn0.1: 3417454.0000 - val_fn0.1: 67376.0000 - val_precision0.1: 0.5259 - val_recall0.1: 0.9156
             - val_tp0.3: 621793.0000 - val_fp0.3: 261105.0000 - val_tn0.3: 3815064.0000 - val_fn0.3: 176278.0000 - val_precision0.3: 0.7043 - val_recall0.3: 0.7791 - val_tp0.5: 521488.0000 - val_fp0.5
             : 133143.0000 - val_tn0.5: 3943026.0000 - val_fn0.5: 276583.0000 - val_precision0.5: 0.7966 - val_recall0.5: 0.6534 - val_tp0.7: 362988.0000 - val_fp0.7: 49452.0000 - val_tn0.7: 4026717.00
             00 - val_fn0.7: 435083.0000 - val_precision0.7: 0.8801 - val_recall0.7: 0.4548 - val_tp0.9: 99821.0000 - val_fp0.9: 3904.0000 - val_tn0.9: 4072265.0000 - val_fn0.9: 698250.0000 - val_preci
             sion0.9: 0.9624 - val_recall0.9: 0.1251 - val_accuracy: 0.9159 - val_auc: 0.9274 - val_f1: 0.2814
             Epoch 12/20
             342/342 [==============================] - 30s 87ms/step - loss: 0.4965 - tp0.1: 2780843.0000 - fp0.1: 3042674.0000 - tn0.1: 13597784.0000 - fn0.1: 190347.0000 - precision0.1: 0.4775 - rec
             all0.1: 0.9359 - tp0.3: 2483369.0000 - fp0.3: 1382732.0000 - tn0.3: 15257726.0000 - fn0.3: 487821.0000 - precision0.3: 0.6423 - recall0.3: 0.8358 - tp0.5: 2206966.0000 - fp0.5: 794121.0000
              - tn0.5: 15846337.0000 - fn0.5: 764224.0000 - precision0.5: 0.7354 - recall0.5: 0.7428 - tp0.7: 1750172.0000 - fp0.7: 362712.0000 - tn0.7: 16277746.0000 - fn0.7: 1221018.0000 - precision0
             .7: 0.8283 - recall0.7: 0.5890 - tp0.9: 762690.0000 - fp0.9: 68788.0000 - tn0.9: 16571670.0000 - fn0.9: 2208500.0000 - precision0.9: 0.9173 - recall0.9: 0.2567 - accuracy: 0.9205 - auc: 0.
             9366 - f1: 0.2631 - val_loss: 0.5341 - val_tp0.1: 758000.0000 - val_fp0.1: 932695.0000 - val_tn0.1: 3144776.0000 - val_fn0.1: 38769.0000 - val_precision0.1: 0.4483 - val_recall0.1: 0.9513
             - val_tp0.3: 691823.0000 - val_fp0.3: 454271.0000 - val_tn0.3: 3623200.0000 - val_fn0.3: 104946.0000 - val_precision0.3: 0.6036 - val_recall0.3: 0.8683 - val_tp0.5: 633340.0000 - val_fp0.5
             : 278624.0000 - val_tn0.5: 3798847.0000 - val_fn0.5: 163429.0000 - val_precision0.5: 0.6945 - val_recall0.5: 0.7949 - val_tp0.7: 534109.0000 - val_fp0.7: 146703.0000 - val_tn0.7: 3930768.0
             000 - val_fn0.7: 262660.0000 - val_precision0.7: 0.7845 - val_recall0.7: 0.6703 - val_tp0.9: 318438.0000 - val_fp0.9: 38771.0000 - val_tn0.9: 4038700.0000 - val_fn0.9: 478331.0000 - val_pr
             ecision0.9: 0.8915 - val_recall0.9: 0.3997 - val_accuracy: 0.9093 - val_auc: 0.9388 - val_f1: 0.2810
             Epoch 13/20
             342/342 [==============================] - 29s 84ms/step - loss: 0.4892 - tp0.1: 2779063.0000 - fp0.1: 2979477.0000 - tn0.1: 13665550.0000 - fn0.1: 187558.0000 - precision0.1: 0.4826 - rec
             all0.1: 0.9368 - tp0.3: 2496191.0000 - fp0.3: 1375175.0000 - tn0.3: 15269852.0000 - fn0.3: 470430.0000 - precision0.3: 0.6448 - recall0.3: 0.8414 - tp0.5: 2236501.0000 - fp0.5: 810489.0000
              - tn0.5: 15834538.0000 - fn0.5: 730120.0000 - precision0.5: 0.7340 - recall0.5: 0.7539 - tp0.7: 1787849.0000 - fp0.7: 380585.0000 - tn0.7: 16264442.0000 - fn0.7: 1178772.0000 - precision0
             .7: 0.8245 - recall0.7: 0.6027 - tp0.9: 798725.0000 - fp0.9: 77694.0000 - tn0.9: 16567333.0000 - fn0.9: 2167896.0000 - precision0.9: 0.9114 - recall0.9: 0.2692 - accuracy: 0.9214 - auc: 0.
             9378 - f1: 0.2628 - val_loss: 0.5294 - val_tp0.1: 755023.0000 - val_fp0.1: 867873.0000 - val_tn0.1: 3206834.0000 - val_fn0.1: 44510.0000 - val_precision0.1: 0.4652 - val_recall0.1: 0.9443
             - val_tp0.3: 673836.0000 - val_fp0.3: 383349.0000 - val_tn0.3: 3691358.0000 - val_fn0.3: 125697.0000 - val_precision0.3: 0.6374 - val_recall0.3: 0.8428 - val_tp0.5: 597569.0000 - val_fp0.5
             : 210770.0000 - val_tn0.5: 3863937.0000 - val_fn0.5: 201964.0000 - val_precision0.5: 0.7393 - val_recall0.5: 0.7474 - val_tp0.7: 457652.0000 - val_fp0.7: 91160.0000 - val_tn0.7: 3983547.00
             00 - val_fn0.7: 341881.0000 - val_precision0.7: 0.8339 - val_recall0.7: 0.5724 - val_tp0.9: 170366.0000 - val_fp0.9: 11587.0000 - val_tn0.9: 4063120.0000 - val_fn0.9: 629167.0000 - val_pre
             cision0.9: 0.9363 - val_recall0.9: 0.2131 - val_accuracy: 0.9153 - val_auc: 0.9368 - val_f1: 0.2818
             Epoch 14/20
             342/342 [==============================] - 30s 87ms/step - loss: 0.4909 - tp0.1: 2796281.0000 - fp0.1: 2993242.0000 - tn0.1: 13633299.0000 - fn0.1: 188826.0000 - precision0.1: 0.4830 - rec
             all0.1: 0.9367 - tp0.3: 2509770.0000 - fp0.3: 1365834.0000 - tn0.3: 15260707.0000 - fn0.3: 475337.0000 - precision0.3: 0.6476 - recall0.3: 0.8408 - tp0.5: 2246662.0000 - fp0.5: 798278.0000
              - tn0.5: 15828263.0000 - fn0.5: 738445.0000 - precision0.5: 0.7378 - recall0.5: 0.7526 - tp0.7: 1791881.0000 - fp0.7: 369480.0000 - tn0.7: 16257061.0000 - fn0.7: 1193226.0000 - precision0
             .7: 0.8291 - recall0.7: 0.6003 - tp0.9: 775898.0000 - fp0.9: 73458.0000 - tn0.9: 16553083.0000 - fn0.9: 2209209.0000 - precision0.9: 0.9135 - recall0.9: 0.2599 - accuracy: 0.9216 - auc: 0.
             9379 - f1: 0.2642 - val_loss: 0.5282 - val_tp0.1: 755947.0000 - val_fp0.1: 899285.0000 - val_tn0.1: 3177862.0000 - val_fn0.1: 41146.0000 - val_precision0.1: 0.4567 - val_recall0.1: 0.9484
             - val_tp0.3: 680024.0000 - val_fp0.3: 410533.0000 - val_tn0.3: 3666614.0000 - val_fn0.3: 117069.0000 - val_precision0.3: 0.6236 - val_recall0.3: 0.8531 - val_tp0.5: 611482.0000 - val_fp0.5
             : 236410.0000 - val_tn0.5: 3840737.0000 - val_fn0.5: 185611.0000 - val_precision0.5: 0.7212 - val_recall0.5: 0.7671 - val_tp0.7: 485673.0000 - val_fp0.7: 108280.0000 - val_tn0.7: 3968867.0
             000 - val_fn0.7: 311420.0000 - val_precision0.7: 0.8177 - val_recall0.7: 0.6093 - val_tp0.9: 216751.0000 - val_fp0.9: 17398.0000 - val_tn0.9: 4059749.0000 - val_fn0.9: 580342.0000 - val_pr
             ecision0.9: 0.9257 - val_recall0.9: 0.2719 - val_accuracy: 0.9134 - val_auc: 0.9380 - val_f1: 0.2811
             Epoch 15/20
             342/342 [==============================] - 27s 80ms/step - loss: 0.4895 - tp0.1: 2778517.0000 - fp0.1: 2946222.0000 - tn0.1: 13695622.0000 - fn0.1: 191287.0000 - precision0.1: 0.4854 - rec
             all0.1: 0.9356 - tp0.3: 2488194.0000 - fp0.3: 1341585.0000 - tn0.3: 15300259.0000 - fn0.3: 481610.0000 - precision0.3: 0.6497 - recall0.3: 0.8378 - tp0.5: 2226779.0000 - fp0.5: 783374.0000
              - tn0.5: 15858470.0000 - fn0.5: 743025.0000 - precision0.5: 0.7398 - recall0.5: 0.7498 - tp0.7: 1768572.0000 - fp0.7: 363199.0000 - tn0.7: 16278645.0000 - fn0.7: 1201232.0000 - precision0
             .7: 0.8296 - recall0.7: 0.5955 - tp0.9: 771789.0000 - fp0.9: 70077.0000 - tn0.9: 16571767.0000 - fn0.9: 2198015.0000 - precision0.9: 0.9168 - recall0.9: 0.2599 - accuracy: 0.9222 - auc: 0.
             9375 - f1: 0.2630 - val_loss: 0.5272 - val_tp0.1: 756550.0000 - val_fp0.1: 886258.0000 - val_tn0.1: 3189329.0000 - val_fn0.1: 42103.0000 - val_precision0.1: 0.4605 - val_recall0.1: 0.9473
             - val_tp0.3: 683180.0000 - val_fp0.3: 415168.0000 - val_tn0.3: 3660419.0000 - val_fn0.3: 115473.0000 - val_precision0.3: 0.6220 - val_recall0.3: 0.8554 - val_tp0.5: 618115.0000 - val_fp0.5
             : 244352.0000 - val_tn0.5: 3831235.0000 - val_fn0.5: 180538.0000 - val_precision0.5: 0.7167 - val_recall0.5: 0.7739 - val_tp0.7: 498018.0000 - val_fp0.7: 115297.0000 - val_tn0.7: 3960290.0
             000 - val_fn0.7: 300635.0000 - val_precision0.7: 0.8120 - val_recall0.7: 0.6236 - val_tp0.9: 233878.0000 - val_fp0.9: 19740.0000 - val_tn0.9: 4055847.0000 - val_fn0.9: 564775.0000 - val_pr
             ecision0.9: 0.9222 - val_recall0.9: 0.2928 - val_accuracy: 0.9128 - val_auc: 0.9378 - val_f1: 0.2816
             Epoch 16/20
             342/342 [==============================] - 29s 86ms/step - loss: 0.4848 - tp0.1: 2781482.0000 - fp0.1: 2957469.0000 - tn0.1: 13686899.0000 - fn0.1: 185798.0000 - precision0.1: 0.4847 - rec
             all0.1: 0.9374 - tp0.3: 2494189.0000 - fp0.3: 1353502.0000 - tn0.3: 15290866.0000 - fn0.3: 473091.0000 - precision0.3: 0.6482 - recall0.3: 0.8406 - tp0.5: 2230152.0000 - fp0.5: 792220.0000
              - tn0.5: 15852148.0000 - fn0.5: 737128.0000 - precision0.5: 0.7379 - recall0.5: 0.7516 - tp0.7: 1783255.0000 - fp0.7: 363318.0000 - tn0.7: 16281050.0000 - fn0.7: 1184025.0000 - precision0
             .7: 0.8307 - recall0.7: 0.6010 - tp0.9: 789040.0000 - fp0.9: 65516.0000 - tn0.9: 16578852.0000 - fn0.9: 2178240.0000 - precision0.9: 0.9233 - recall0.9: 0.2659 - accuracy: 0.9220 - auc: 0.
             9387 - f1: 0.2628 - val_loss: 0.5289 - val_tp0.1: 757278.0000 - val_fp0.1: 905312.0000 - val_tn0.1: 3170851.0000 - val_fn0.1: 40799.0000 - val_precision0.1: 0.4555 - val_recall0.1: 0.9489
             - val_tp0.3: 686534.0000 - val_fp0.3: 428363.0000 - val_tn0.3: 3647800.0000 - val_fn0.3: 111543.0000 - val_precision0.3: 0.6158 - val_recall0.3: 0.8602 - val_tp0.5: 623130.0000 - val_fp0.5
             : 254259.0000 - val_tn0.5: 3821904.0000 - val_fn0.5: 174947.0000 - val_precision0.5: 0.7102 - val_recall0.5: 0.7808 - val_tp0.7: 505552.0000 - val_fp0.7: 121120.0000 - val_tn0.7: 3955043.0
             000 - val_fn0.7: 292525.0000 - val_precision0.7: 0.8067 - val_recall0.7: 0.6335 - val_tp0.9: 244234.0000 - val_fp0.9: 21695.0000 - val_tn0.9: 4054468.0000 - val_fn0.9: 553843.0000 - val_pr
             ecision0.9: 0.9184 - val_recall0.9: 0.3060 - val_accuracy: 0.9119 - val_auc: 0.9382 - val_f1: 0.2814
             Epoch 17/20
             342/342 [==============================] - 30s 86ms/step - loss: 0.4849 - tp0.1: 2790598.0000 - fp0.1: 2957998.0000 - tn0.1: 13679248.0000 - fn0.1: 183804.0000 - precision0.1: 0.4854 - rec
             all0.1: 0.9382 - tp0.3: 2505785.0000 - fp0.3: 1360823.0000 - tn0.3: 15276423.0000 - fn0.3: 468617.0000 - precision0.3: 0.6481 - recall0.3: 0.8425 - tp0.5: 2243181.0000 - fp0.5: 797599.0000
              - tn0.5: 15839647.0000 - fn0.5: 731221.0000 - precision0.5: 0.7377 - recall0.5: 0.7542 - tp0.7: 1792202.0000 - fp0.7: 377983.0000 - tn0.7: 16259263.0000 - fn0.7: 1182200.0000 - precision0
             .7: 0.8258 - recall0.7: 0.6025 - tp0.9: 784914.0000 - fp0.9: 75124.0000 - tn0.9: 16562122.0000 - fn0.9: 2189488.0000 - precision0.9: 0.9127 - recall0.9: 0.2639 - accuracy: 0.9220 - auc: 0.
             9387 - f1: 0.2634 - val_loss: 0.5301 - val_tp0.1: 751131.0000 - val_fp0.1: 924609.0000 - val_tn0.1: 3159383.0000 - val_fn0.1: 39117.0000 - val_precision0.1: 0.4482 - val_recall0.1: 0.9505
             - val_tp0.3: 682847.0000 - val_fp0.3: 443618.0000 - val_tn0.3: 3640374.0000 - val_fn0.3: 107401.0000 - val_precision0.3: 0.6062 - val_recall0.3: 0.8641 - val_tp0.5: 620126.0000 - val_fp0.5
             : 265041.0000 - val_tn0.5: 3818951.0000 - val_fn0.5: 170122.0000 - val_precision0.5: 0.7006 - val_recall0.5: 0.7847 - val_tp0.7: 505243.0000 - val_fp0.7: 127349.0000 - val_tn0.7: 3956643.0
             000 - val_fn0.7: 285005.0000 - val_precision0.7: 0.7987 - val_recall0.7: 0.6393 - val_tp0.9: 248302.0000 - val_fp0.9: 23740.0000 - val_tn0.9: 4060252.0000 - val_fn0.9: 541946.0000 - val_pr
             ecision0.9: 0.9127 - val_recall0.9: 0.3142 - val_accuracy: 0.9107 - val_auc: 0.9382 - val_f1: 0.2790
             Epoch 18/20
             342/342 [==============================] - 30s 88ms/step - loss: 0.4853 - tp0.1: 2805900.0000 - fp0.1: 2941444.0000 - tn0.1: 13677897.0000 - fn0.1: 186407.0000 - precision0.1: 0.4882 - rec
             all0.1: 0.9377 - tp0.3: 2517150.0000 - fp0.3: 1335602.0000 - tn0.3: 15283739.0000 - fn0.3: 475157.0000 - precision0.3: 0.6533 - recall0.3: 0.8412 - tp0.5: 2248387.0000 - fp0.5: 781307.0000
              - tn0.5: 15838034.0000 - fn0.5: 743920.0000 - precision0.5: 0.7421 - recall0.5: 0.7514 - tp0.7: 1790819.0000 - fp0.7: 356494.0000 - tn0.7: 16262847.0000 - fn0.7: 1201488.0000 - precision0
             .7: 0.8340 - recall0.7: 0.5985 - tp0.9: 783564.0000 - fp0.9: 70623.0000 - tn0.9: 16548718.0000 - fn0.9: 2208743.0000 - precision0.9: 0.9173 - recall0.9: 0.2619 - accuracy: 0.9222 - auc: 0.
             9390 - f1: 0.2648 - val_loss: 0.5309 - val_tp0.1: 759007.0000 - val_fp0.1: 906199.0000 - val_tn0.1: 3168039.0000 - val_fn0.1: 40995.0000 - val_precision0.1: 0.4558 - val_recall0.1: 0.9488
             - val_tp0.3: 688612.0000 - val_fp0.3: 432765.0000 - val_tn0.3: 3641473.0000 - val_fn0.3: 111390.0000 - val_precision0.3: 0.6141 - val_recall0.3: 0.8608 - val_tp0.5: 625381.0000 - val_fp0.5
             : 258408.0000 - val_tn0.5: 3815830.0000 - val_fn0.5: 174621.0000 - val_precision0.5: 0.7076 - val_recall0.5: 0.7817 - val_tp0.7: 508544.0000 - val_fp0.7: 124098.0000 - val_tn0.7: 3950140.0
             000 - val_fn0.7: 291458.0000 - val_precision0.7: 0.8038 - val_recall0.7: 0.6357 - val_tp0.9: 247680.0000 - val_fp0.9: 22653.0000 - val_tn0.9: 4051585.0000 - val_fn0.9: 552322.0000 - val_pr
             ecision0.9: 0.9162 - val_recall0.9: 0.3096 - val_accuracy: 0.9112 - val_auc: 0.9378 - val_f1: 0.2820
             Epoch 19/20
             342/342 [==============================] - 30s 87ms/step - loss: 0.4853 - tp0.1: 2765154.0000 - fp0.1: 2965014.0000 - tn0.1: 13695648.0000 - fn0.1: 185832.0000 - precision0.1: 0.4826 - rec
             all0.1: 0.9370 - tp0.3: 2489223.0000 - fp0.3: 1363429.0000 - tn0.3: 15297233.0000 - fn0.3: 461763.0000 - precision0.3: 0.6461 - recall0.3: 0.8435 - tp0.5: 2236269.0000 - fp0.5: 805108.0000
              - tn0.5: 15855554.0000 - fn0.5: 714717.0000 - precision0.5: 0.7353 - recall0.5: 0.7578 - tp0.7: 1791573.0000 - fp0.7: 372427.0000 - tn0.7: 16288235.0000 - fn0.7: 1159413.0000 - precision0
             .7: 0.8279 - recall0.7: 0.6071 - tp0.9: 777165.0000 - fp0.9: 72719.0000 - tn0.9: 16587943.0000 - fn0.9: 2173821.0000 - precision0.9: 0.9144 - recall0.9: 0.2634 - accuracy: 0.9225 - auc: 0.
             9385 - f1: 0.2616 - val_loss: 0.5302 - val_tp0.1: 757018.0000 - val_fp0.1: 914987.0000 - val_tn0.1: 3162308.0000 - val_fn0.1: 39927.0000 - val_precision0.1: 0.4528 - val_recall0.1: 0.9499
             - val_tp0.3: 687887.0000 - val_fp0.3: 439024.0000 - val_tn0.3: 3638271.0000 - val_fn0.3: 109058.0000 - val_precision0.3: 0.6104 - val_recall0.3: 0.8632 - val_tp0.5: 624960.0000 - val_fp0.5
             : 262546.0000 - val_tn0.5: 3814749.0000 - val_fn0.5: 171985.0000 - val_precision0.5: 0.7042 - val_recall0.5: 0.7842 - val_tp0.7: 509687.0000 - val_fp0.7: 126771.0000 - val_tn0.7: 3950524.0
             000 - val_fn0.7: 287258.0000 - val_precision0.7: 0.8008 - val_recall0.7: 0.6396 - val_tp0.9: 251547.0000 - val_fp0.9: 23931.0000 - val_tn0.9: 4053364.0000 - val_fn0.9: 545398.0000 - val_pr
             ecision0.9: 0.9131 - val_recall0.9: 0.3156 - val_accuracy: 0.9109 - val_auc: 0.9382 - val_f1: 0.2811
             Epoch 20/20
             342/342 [==============================] - 29s 84ms/step - loss: 0.4987 - tp0.1: 2765147.0000 - fp0.1: 2972400.0000 - tn0.1: 13672870.0000 - fn0.1: 201231.0000 - precision0.1: 0.4819 - rec
             all0.1: 0.9322 - tp0.3: 2475699.0000 - fp0.3: 1368612.0000 - tn0.3: 15276658.0000 - fn0.3: 490679.0000 - precision0.3: 0.6440 - recall0.3: 0.8346 - tp0.5: 2217066.0000 - fp0.5: 801284.0000
              - tn0.5: 15843986.0000 - fn0.5: 749312.0000 - precision0.5: 0.7345 - recall0.5: 0.7474 - tp0.7: 1769267.0000 - fp0.7: 376020.0000 - tn0.7: 16269250.0000 - fn0.7: 1197111.0000 - precision0
             .7: 0.8247 - recall0.7: 0.5964 - tp0.9: 778944.0000 - fp0.9: 72985.0000 - tn0.9: 16572285.0000 - fn0.9: 2187434.0000 - precision0.9: 0.9143 - recall0.9: 0.2626 - accuracy: 0.9209 - auc: 0.
             9352 - f1: 0.2628 - val_loss: 0.5304 - val_tp0.1: 756740.0000 - val_fp0.1: 911039.0000 - val_tn0.1: 3166007.0000 - val_fn0.1: 40454.0000 - val_precision0.1: 0.4537 - val_recall0.1: 0.9493
             - val_tp0.3: 686440.0000 - val_fp0.3: 434245.0000 - val_tn0.3: 3642801.0000 - val_fn0.3: 110754.0000 - val_precision0.3: 0.6125 - val_recall0.3: 0.8611 - val_tp0.5: 622523.0000 - val_fp0.5
             : 258158.0000 - val_tn0.5: 3818888.0000 - val_fn0.5: 174671.0000 - val_precision0.5: 0.7069 - val_recall0.5: 0.7809 - val_tp0.7: 505054.0000 - val_fp0.7: 122534.0000 - val_tn0.7: 3954512.0
             000 - val_fn0.7: 292140.0000 - val_precision0.7: 0.8048 - val_recall0.7: 0.6335 - val_tp0.9: 241926.0000 - val_fp0.9: 21836.0000 - val_tn0.9: 4055210.0000 - val_fn0.9: 555268.0000 - val_pr
             ecision0.9: 0.9172 - val_recall0.9: 0.3035 - val_accuracy: 0.9112 - val_auc: 0.9379 - val_f1: 0.2811
             --- Running training session 64/140
             {'hp_epochs': 20, 'hp_batch_size': 14, 'hp_scaler': 'quant_g', 'hp_n_levels': 7, 'hp_first_filters': 16, 'hp_pool_size': 2, 'hp_input_size': 4096, 'hp_lr_start': 0.027144629354532844, 'hp_
             lr_power': 5.0}
             --- repeat #: 2
             input - shape:   (None, 4096, 1)
             output - shape:  (None, 4096, 1)
             bash: line 1: 36008 Segmentation fault      python src/fluotracify/training/search_hparams.py --num_session_groups 70 --fluotracify_path /beegfs/ye53nis/drmed-git/src --csv_path_train /bee
             gfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_path_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3
             2021/08/08 13:58:32 ERROR mlflow.cli: === Run (ID '0a91e997b0884a00bd6c932104f84722') failed ===
             (tf) [ye53nis@node130 drmed-git]$
    

2.4.3 Run 2 - new hparams

2.4.3.1 Record metadata
  1. Current directory, last 5 git commits
              pwd
              git log -5
    
              (tf) [ye53nis@node130 drmed-git]$ pwd
              /beegfs/ye53nis/drmed-git
              (tf) [ye53nis@node130 drmed-git]$ git log -5
              commit 150ad647300f3306635fa7f5d75fa0d66165df25
              Author: Apoplex <oligolex@vivaldi.net>
              Date:   Sun Aug 8 17:28:49 2021 +0200
    
                  Fix missing brackets
    
              commit 6cef8d3f9166fe6cb19b6ec064573907a0ca50a6
              Author: Apoplex <oligolex@vivaldi.net>
              Date:   Sun Aug 8 17:26:06 2021 +0200
    
                  Adjust batch size hparam to upper limit 30
    
              commit 609a75bccfd08fa36b2d55861ec5d7954e1adbe7
              Author: Apoplex <oligolex@vivaldi.net>
              Date:   Sun Aug 8 17:05:12 2021 +0200
    
                  Adjust hyperparameters
    
              commit 739b18bf64ef886d7ae0468b4fc3d5b9b4ccf12c
              Author: Apoplex <oligolex@vivaldi.net>
              Date:   Sun Aug 8 16:42:16 2021 +0200
    
                  Change random seed to enable different 2nd run
    
              commit aa5b9bc35c53c4fd1525c6b812b2a28532ae7afb
              Author: Apoplex <oligolex@vivaldi.net>
              Date:   Sat Aug 7 22:15:02 2021 +0200
    
                  Add hparams combi restriction; add metadata
    
                  problems arise, if in the random combination of hparams, 2*pool_size**n_levels
                  is bigger than the input_size. That's why these cases are skipped now.
              (tf) [ye53nis@node130 drmed-git]$
    
  2. system and conda env didn’t change, see above.
2.4.3.2 Mlflow run 2 (failed mid run)
  • The last parent run failed to an unkown error (bash: line 1: 36008 Segmentation fault). That means only 63/140 sessions could be run, while also only 45 sessions were eligible (for the rest, the hparams were not compatible with each other). Still, these first 45 runs delivered a lot of interesting information, so I decided to skim through MLflow to look for improvements in the hparam space and I came up with the following:
    • leave out smallest batch sizes and go from 4 to 30
    • make number of levels an integer interval from 1 to 9
    • make first filters an integer interval from 1 to 128
    • add poolsize (+ stride + kernel size) 8
    • adjust starting learning rate real interval to 1e-6 to 0.06
    • make learning rate power integer interval from 1 to 7
  • now the run:
             mlflow run . -e search_hparams -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN -P num_session_groups=60
    
             2021-08-09 03:52:38.082134: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba5fe00 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_f/_843 action_count 94195455584406 step 0 next 151
             2021-08-09 03:52:38.082152: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba5ff00 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_t/_844 action_count 94195455584407 step 0 next 2585
             2021-08-09 03:52:38.082174: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60000 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_f/_853 action_count 94195455584408 step 0 next 2261
             2021-08-09 03:52:38.082198: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60100 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_t/_854 action_count 94195455584409 step 0 next 1893
             2021-08-09 03:52:38.082216: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60200 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_f/_871 action_count 94195455584410 step 0 next 2158
             2021-08-09 03:52:38.082234: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60300 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_t/_872 action_count 94195455584411 step 0 next 2224
             2021-08-09 03:52:38.082258: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60400 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_f/_881 action_count 94195455584412 step 0 next 172
             2021-08-09 03:52:38.082277: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60500 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_t/_882 action_count 94195455584413 step 0 next 2654
             2021-08-09 03:52:38.082295: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60600 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_f/_899 action_count 94195455584414 step 0 next 1354
             2021-08-09 03:52:38.082316: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60700 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_t/_900 action_count 94195455584415 step 0 next 2250
             2021-08-09 03:52:38.082338: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60800 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_f/_909 action_count 94195455584416 step 0 next 2458
             2021-08-09 03:52:38.082359: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60900 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_t/_910 action_count 94195455584417 step 0 next 1032
             2021-08-09 03:52:38.082380: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60a00 of size 256 by op Sub action_count 94195480110816 step 0 next 970
             2021-08-09 03:52:38.082401: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60b00 of size 256 by op AssignAddVariableOp_2 action_count 94195467561410 step 17436438550591945738 next 1371
             2021-08-09 03:52:38.082422: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60c00 of size 512 by op Fill action_count 94195467562918 step 0 next 2415
             2021-08-09 03:52:38.082443: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60e00 of size 512 by op Fill action_count 94195467562919 step 0 next 2029
             2021-08-09 03:52:38.082466: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61000 of size 256 by op AssignAddVariableOp_52 action_count 94195467505890 step 11647544380785529683 next 2491
             2021-08-09 03:52:38.082487: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61100 of size 768 by op Fill action_count 94195467562905 step 0 next 1453
             2021-08-09 03:52:38.082508: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61400 of size 256 by op AssignAddVariableOp_20 action_count 94195467561512 step 17436438550591945738 next 1396
             2021-08-09 03:52:38.082538: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61500 of size 256 by op AssignAddVariableOp_18 action_count 94195467561452 step 17436438550591945738 next 2965
             2021-08-09 03:52:38.082558: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61600 of size 256 by op Sub action_count 94195480110817 step 0 next 1920
             2021-08-09 03:52:38.082575: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61700 of size 256 by op AssignAddVariableOp_28 action_count 94195467561516 step 17436438550591945738 next 730
             2021-08-09 03:52:38.082593: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61800 of size 256 by op AssignAddVariableOp_26 action_count 94195467561464 step 17436438550591945738 next 3037
             2021-08-09 03:52:38.082616: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61900 of size 256 by op AssignAddVariableOp_36 action_count 94195467561520 step 17436438550591945738 next 1876
             2021-08-09 03:52:38.082636: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61a00 of size 256 by op AssignAddVariableOp_34 action_count 94195467561476 step 17436438550591945738 next 1958
             2021-08-09 03:52:38.082657: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61b00 of size 1536 by op Fill action_count 94195467562929 step 0 next 1889
             2021-08-09 03:52:38.082678: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba62100 of size 256 by op Sub action_count 94195299053113 step 0 next 1087
             2021-08-09 03:52:38.082698: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba62200 of size 256 by op Sub action_count 94195299053114 step 0 next 680
             2021-08-09 03:52:38.082718: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba62300 of size 2048 by op Fill action_count 94195455013702 step 0 next 2691
             2021-08-09 03:52:38.082738: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba62b00 of size 2048 by op Fill action_count 94195455013703 step 0 next 3049
             2021-08-09 03:52:38.082759: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba63300 of size 2048 by op Fill action_count 94195455013704 step 0 next 2707
             2021-08-09 03:52:38.082780: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba63b00 of size 2048 by op Fill action_count 94195455013706 step 0 next 1505
             2021-08-09 03:52:38.082801: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64300 of size 256 by op Sub action_count 94195365012693 step 0 next 2311
             2021-08-09 03:52:38.082821: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64400 of size 256 by op Sub action_count 94195365012694 step 0 next 638
             2021-08-09 03:52:38.082843: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64500 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_f/_787 action_count 94195455013959 step 0 next 2355
             2021-08-09 03:52:38.082866: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64600 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_t/_788 action_count 94195455013960 step 0 next 2332
             2021-08-09 03:52:38.082890: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64700 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_f/_797 action_count 94195455013961 step 0 next 2330
             2021-08-09 03:52:38.082910: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64800 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_t/_798 action_count 94195455013962 step 0 next 2402
             2021-08-09 03:52:38.082933: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64900 of size 256 by op gradient_tape/unet_depth3/encode0/batch_normalization_546/moments/scalar action_count 94195455013963 step 0 nex
             t 114
             2021-08-09 03:52:38.082952: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64a00 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_f/_815 action_count 94195455013964 step 0 next 2297
             2021-08-09 03:52:38.082974: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64b00 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_t/_816 action_count 94195455013965 step 0 next 2106
             2021-08-09 03:52:38.082997: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64c00 of size 256 by op Adam/Adam/Const action_count 94195455013966 step 0 next 2308
             2021-08-09 03:52:38.083015: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64d00 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_f/_825 action_count 94195455013967 step 0 next 2318
             2021-08-09 03:52:38.083036: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64e00 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_t/_826 action_count 94195455013968 step 0 next 2323
             2021-08-09 03:52:38.083059: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64f00 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_f/_843 action_count 94195455013969 step 0 next 2391
             2021-08-09 03:52:38.083079: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65000 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_t/_844 action_count 94195455013970 step 0 next 1074
             2021-08-09 03:52:38.083097: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65100 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_f/_853 action_count 94195455013971 step 0 next 2382
             2021-08-09 03:52:38.083118: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65200 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_t/_854 action_count 94195455013972 step 0 next 2272
             2021-08-09 03:52:38.083140: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65300 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_f/_871 action_count 94195455013973 step 0 next 1355
             2021-08-09 03:52:38.083158: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65400 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_t/_872 action_count 94195455013974 step 0 next 2378
             2021-08-09 03:52:38.083178: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65500 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_f/_881 action_count 94195455013975 step 0 next 2306
             2021-08-09 03:52:38.083201: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65600 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_t/_882 action_count 94195455013976 step 0 next 2294
             2021-08-09 03:52:38.083220: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65700 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_f/_899 action_count 94195455013977 step 0 next 2331
             2021-08-09 03:52:38.083243: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65800 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_t/_900 action_count 94195455013978 step 0 next 2322
             2021-08-09 03:52:38.083263: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65900 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_f/_909 action_count 94195455013979 step 0 next 2221
             2021-08-09 03:52:38.083283: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65a00 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_t/_910 action_count 94195455013980 step 0 next 2336
             2021-08-09 03:52:38.083306: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65b00 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_f/_423 action_count 94195455584346 step 0 next 2019
             2021-08-09 03:52:38.083324: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65c00 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_t/_424 action_count 94195455584347 step 0 next 2376
             2021-08-09 03:52:38.083346: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65d00 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_f/_433 action_count 94195455584348 step 0 next 1688
             2021-08-09 03:52:38.083369: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65e00 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_t/_434 action_count 94195455584349 step 0 next 2620
             2021-08-09 03:52:38.083391: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65f00 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_f/_451 action_count 94195455584350 step 0 next 391
             2021-08-09 03:52:38.083414: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66000 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_t/_452 action_count 94195455584351 step 0 next 1462
             2021-08-09 03:52:38.083435: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66100 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_f/_461 action_count 94195455584352 step 0 next 985
             2021-08-09 03:52:38.083453: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66200 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_t/_462 action_count 94195455584353 step 0 next 2287
             2021-08-09 03:52:38.083475: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66300 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_f/_479 action_count 94195455584354 step 0 next 2292
             2021-08-09 03:52:38.083495: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66400 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_t/_480 action_count 94195455584355 step 0 next 2350
             2021-08-09 03:52:38.083522: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66500 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_f/_489 action_count 94195455584356 step 0 next 2256
             2021-08-09 03:52:38.083546: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66600 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_t/_490 action_count 94195455584357 step 0 next 2310
             2021-08-09 03:52:38.083566: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66700 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_f/_507 action_count 94195455584358 step 0 next 60
             2021-08-09 03:52:38.083587: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66800 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_t/_508 action_count 94195455584359 step 0 next 1380
             2021-08-09 03:52:38.083608: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66900 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_f/_517 action_count 94195455584360 step 0 next 2375
             2021-08-09 03:52:38.083628: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66a00 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_t/_518 action_count 94195455584361 step 0 next 2497
             2021-08-09 03:52:38.083646: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66b00 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_f/_535 action_count 94195455584362 step 0 next 677
             2021-08-09 03:52:38.083663: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66c00 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_t/_536 action_count 94195455584363 step 0 next 2326
             2021-08-09 03:52:38.083687: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66d00 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_f/_545 action_count 94195455584364 step 0 next 2928
             2021-08-09 03:52:38.083707: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66e00 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_t/_546 action_count 94195455584365 step 0 next 2116
             2021-08-09 03:52:38.083728: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66f00 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_f/_563 action_count 94195455584366 step 0 next 411
             2021-08-09 03:52:38.083751: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67000 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_t/_564 action_count 94195455584367 step 0 next 1778
             2021-08-09 03:52:38.083770: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67100 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_f/_573 action_count 94195455584368 step 0 next 2345
             2021-08-09 03:52:38.083791: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67200 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_t/_574 action_count 94195455584369 step 0 next 315
             2021-08-09 03:52:38.083810: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67300 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_f/_591 action_count 94195455584370 step 0 next 373
             2021-08-09 03:52:38.083831: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67400 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_t/_592 action_count 94195455584371 step 0 next 1535
             2021-08-09 03:52:38.083854: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67500 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_f/_601 action_count 94195455584372 step 0 next 1914
             2021-08-09 03:52:38.083872: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67600 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_t/_602 action_count 94195455584373 step 0 next 2521
             2021-08-09 03:52:38.083894: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67700 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_f/_619 action_count 94195455584374 step 0 next 2110
             2021-08-09 03:52:38.083915: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67800 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_t/_620 action_count 94195455584375 step 0 next 968
             2021-08-09 03:52:38.083932: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67900 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_f/_629 action_count 94195455584376 step 0 next 2437
             2021-08-09 03:52:38.083954: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67a00 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_t/_630 action_count 94195455584377 step 0 next 218
             2021-08-09 03:52:38.083975: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67b00 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_f/_647 action_count 94195455584378 step 0 next 1581
             2021-08-09 03:52:38.083992: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67c00 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_t/_648 action_count 94195455584379 step 0 next 2337
             2021-08-09 03:52:38.084013: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67d00 of size 256 by op Sub action_count 94195299053151 step 0 next 976
             2021-08-09 03:52:38.084034: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67e00 of size 256 by op Sub action_count 94195299053152 step 0 next 1112
             2021-08-09 03:52:38.084055: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67f00 of size 2048 by op Fill action_count 94195455013774 step 0 next 1401
             2021-08-09 03:52:38.084076: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba68700 of size 2048 by op Fill action_count 94195455013776 step 0 next 1101
             2021-08-09 03:52:38.084097: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba68f00 of size 2048 by op Fill action_count 94195455013777 step 0 next 519
             2021-08-09 03:52:38.084114: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba69700 of size 2048 by op Fill action_count 94195455013778 step 0 next 799
             2021-08-09 03:52:38.084135: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba69f00 of size 3072 by op Fill action_count 94195455013780 step 0 next 607
             2021-08-09 03:52:38.084156: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba6ab00 of size 256 by op Sub action_count 94195299053177 step 0 next 2325
             2021-08-09 03:52:38.084173: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba6ac00 of size 256 by op Sub action_count 94195299053178 step 0 next 1838
             2021-08-09 03:52:38.084194: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba6ad00 of size 995328 by op Fill action_count 94195455013725 step 0 next 335
             2021-08-09 03:52:38.084211: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5dd00 of size 256 by op Sub action_count 94195129464776 step 0 next 1993
             2021-08-09 03:52:38.084230: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5de00 of size 4352 by op Fill action_count 94195455013478 step 0 next 1049
             2021-08-09 03:52:38.084251: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5ef00 of size 256 by op Sub action_count 94195299052776 step 0 next 2327
             2021-08-09 03:52:38.084268: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f000 of size 512 by op Fill action_count 94195455013382 step 0 next 444
             2021-08-09 03:52:38.084291: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f200 of size 256 by op AssignAddVariableOp_12 action_count 94195455011283 step 18076379956407770847 next 3070
             2021-08-09 03:52:38.084333: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f300 of size 256 by op AssignAddVariableOp_10 action_count 94195455011215 step 18076379956407770847 next 1540
             2021-08-09 03:52:38.084353: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f400 of size 256 by op Sub action_count 94195299052789 step 0 next 1949
             2021-08-09 03:52:38.084374: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f500 of size 256 by op Sub action_count 94195129464761 step 0 next 988
             2021-08-09 03:52:38.084394: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f600 of size 256 by op Sub action_count 94195152301775 step 0 next 1907
             2021-08-09 03:52:38.084414: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f700 of size 256 by op Sub action_count 94195152301788 step 0 next 1591
             2021-08-09 03:52:38.084430: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f800 of size 256 by op Sub action_count 94195129464762 step 0 next 2090
             2021-08-09 03:52:38.084448: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f900 of size 4673536 by op Fill action_count 94195455013689 step 0 next 59
             2021-08-09 03:52:38.084468: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd4900 of size 256 by op Sub action_count 94195065726202 step 0 next 659
             2021-08-09 03:52:38.084490: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd4a00 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_f/_461 action_count 94195455013907 step 0 next 2217
             2021-08-09 03:52:38.084508: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd4b00 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_t/_462 action_count 94195455013908 step 0 next 1616
             2021-08-09 03:52:38.084539: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd4c00 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_f/_479 action_count 94195455013909 step 0 next 2204
             2021-08-09 03:52:38.084577: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd4d00 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_t/_480 action_count 94195455013910 step 0 next 339
             2021-08-09 03:52:38.084611: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd4e00 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_f/_489 action_count 94195455013911 step 0 next 701
             2021-08-09 03:52:38.084635: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd4f00 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_t/_490 action_count 94195455013912 step 0 next 1708
             2021-08-09 03:52:38.084657: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5000 of size 256 by op gradient_tape/unet_depth3/two_conv_center/batch_normalization_552/moments/scalar action_count 94195455013913 st
             ep 0 next 903
             2021-08-09 03:52:38.084675: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5100 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_f/_507 action_count 94195455013914 step 0 next 2371
             2021-08-09 03:52:38.084698: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5200 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_t/_508 action_count 94195455013915 step 0 next 263
             2021-08-09 03:52:38.084721: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5300 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_f/_517 action_count 94195455013916 step 0 next 154
             2021-08-09 03:52:38.084744: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5400 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_t/_518 action_count 94195455013917 step 0 next 2321
             2021-08-09 03:52:38.084765: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5500 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_f/_535 action_count 94195455013918 step 0 next 2253
             2021-08-09 03:52:38.084783: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5600 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_t/_536 action_count 94195455013919 step 0 next 2236
             2021-08-09 03:52:38.084802: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5700 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_f/_545 action_count 94195455013920 step 0 next 2222
             2021-08-09 03:52:38.084823: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5800 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_t/_546 action_count 94195455013921 step 0 next 1262
             2021-08-09 03:52:38.084847: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5900 of size 256 by op gradient_tape/unet_depth3/encode2/batch_normalization_551/moments/scalar action_count 94195455013922 step 0 nex
             t 2443
             2021-08-09 03:52:38.084868: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5a00 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_f/_563 action_count 94195455013923 step 0 next 2313
             2021-08-09 03:52:38.084889: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5b00 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_t/_564 action_count 94195455013924 step 0 next 2293
             2021-08-09 03:52:38.084912: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5c00 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_f/_573 action_count 94195455013925 step 0 next 2387
             2021-08-09 03:52:38.084934: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5d00 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_t/_574 action_count 94195455013926 step 0 next 2328
             2021-08-09 03:52:38.084956: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5e00 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_f/_591 action_count 94195455013927 step 0 next 2270
             2021-08-09 03:52:38.084977: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5f00 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_t/_592 action_count 94195455013928 step 0 next 2252
             2021-08-09 03:52:38.085000: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6000 of size 256 by op gradient_tape/unet_depth3/encode2/batch_normalization_550/moments/scalar action_count 94195455013929 step 0 nex
             t 2392
             2021-08-09 03:52:38.085023: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6100 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_f/_601 action_count 94195455013930 step 0 next 2368
             2021-08-09 03:52:38.085044: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6200 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_t/_602 action_count 94195455013931 step 0 next 2385
             2021-08-09 03:52:38.085067: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6300 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_f/_619 action_count 94195455013932 step 0 next 1296
             2021-08-09 03:52:38.085088: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6400 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_t/_620 action_count 94195455013933 step 0 next 2303
             2021-08-09 03:52:38.085105: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6500 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_f/_629 action_count 94195455013934 step 0 next 2357
             2021-08-09 03:52:38.085124: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6600 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_t/_630 action_count 94195455013935 step 0 next 2273
             2021-08-09 03:52:38.085148: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6700 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_f/_647 action_count 94195455013936 step 0 next 2365
             2021-08-09 03:52:38.085170: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6800 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_t/_648 action_count 94195455013937 step 0 next 517
             2021-08-09 03:52:38.085191: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6900 of size 256 by op gradient_tape/unet_depth3/encode1/batch_normalization_549/moments/scalar action_count 94195455013938 step 0 nex
             t 2242
             2021-08-09 03:52:38.085214: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6a00 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_f/_657 action_count 94195455013939 step 0 next 1406
             2021-08-09 03:52:38.085234: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6b00 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_t/_658 action_count 94195455013940 step 0 next 1781
             2021-08-09 03:52:38.085257: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6c00 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_f/_675 action_count 94195455013941 step 0 next 1698
             2021-08-09 03:52:38.085277: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6d00 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_t/_676 action_count 94195455013942 step 0 next 2302
             2021-08-09 03:52:38.085296: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6e00 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_f/_685 action_count 94195455013943 step 0 next 468
             2021-08-09 03:52:38.085317: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6f00 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_t/_686 action_count 94195455013944 step 0 next 2380
             2021-08-09 03:52:38.085338: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7000 of size 256 by op gradient_tape/unet_depth3/encode1/batch_normalization_548/moments/scalar action_count 94195455013945 step 0 nex
             t 2277
             2021-08-09 03:52:38.085357: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7100 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_f/_703 action_count 94195455013946 step 0 next 1686
             2021-08-09 03:52:38.085379: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7200 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_t/_704 action_count 94195455013947 step 0 next 2362
             2021-08-09 03:52:38.085397: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7300 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_f/_713 action_count 94195455013948 step 0 next 2245
             2021-08-09 03:52:38.085420: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7400 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_t/_714 action_count 94195455013949 step 0 next 2309
             2021-08-09 03:52:38.085444: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7500 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_f/_731 action_count 94195455013950 step 0 next 2461
             2021-08-09 03:52:38.085465: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7600 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_t/_732 action_count 94195455013951 step 0 next 2377
             2021-08-09 03:52:38.085486: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7700 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_f/_741 action_count 94195455013952 step 0 next 2298
             2021-08-09 03:52:38.085509: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7800 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_t/_742 action_count 94195455013953 step 0 next 2219
             2021-08-09 03:52:38.085535: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7900 of size 256 by op gradient_tape/unet_depth3/encode0/batch_normalization_547/moments/scalar action_count 94195455013954 step 0 nex
             t 1821
             2021-08-09 03:52:38.085555: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7a00 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_f/_759 action_count 94195455013955 step 0 next 1829
             2021-08-09 03:52:38.085577: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7b00 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_t/_760 action_count 94195455013956 step 0 next 2396
             2021-08-09 03:52:38.085598: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7c00 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_f/_769 action_count 94195455013957 step 0 next 2255
             2021-08-09 03:52:38.085620: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7d00 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_t/_770 action_count 94195455013958 step 0 next 573
             2021-08-09 03:52:38.085641: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7e00 of size 256 by op Sub action_count 94195065726203 step 0 next 63
             2021-08-09 03:52:38.085658: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7f00 of size 256 by op Sub action_count 94195085385179 step 0 next 1215
             2021-08-09 03:52:38.085675: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8000 of size 256 by op Sub action_count 94195085385180 step 0 next 631
             2021-08-09 03:52:38.085696: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8100 of size 256 by op Sub action_count 94195094149558 step 0 next 1733
             2021-08-09 03:52:38.085716: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8200 of size 256 by op Sub action_count 94195094149559 step 0 next 1648
             2021-08-09 03:52:38.085736: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8300 of size 1792 by op Fill action_count 94195455013451 step 0 next 430
             2021-08-09 03:52:38.085753: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8a00 of size 256 by op Sub action_count 94195065726216 step 0 next 425
             2021-08-09 03:52:38.085770: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8b00 of size 512 by op Fill action_count 94195455013383 step 0 next 446
             2021-08-09 03:52:38.085790: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8d00 of size 256 by op Sub action_count 94195065726217 step 0 next 1124
             2021-08-09 03:52:38.085810: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8e00 of size 256 by op Sub action_count 94195085385138 step 0 next 1065
             2021-08-09 03:52:38.085830: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8f00 of size 256 by op Sub action_count 94195065726230 step 0 next 921
             2021-08-09 03:52:38.085847: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9000 of size 256 by op Sub action_count 94195094149517 step 0 next 1149
             2021-08-09 03:52:38.085868: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9100 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_f/_489 action_count 94195467563408 step 0 next 2477
             2021-08-09 03:52:38.085889: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9200 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_t/_490 action_count 94195467563409 step 0 next 2456
             2021-08-09 03:52:38.085909: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9300 of size 256 by op gradient_tape/unet_depth3/two_conv_center/batch_normalization_569/moments/scalar action_count 94195467563410 st
             ep 0 next 1570
             2021-08-09 03:52:38.085930: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9400 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_f/_507 action_count 94195467563411 step 0 next 2063
             2021-08-09 03:52:38.085950: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9500 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_t/_508 action_count 94195467563412 step 0 next 2061
             2021-08-09 03:52:38.085968: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9600 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_f/_517 action_count 94195467563413 step 0 next 244
             2021-08-09 03:52:38.085989: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9700 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_t/_518 action_count 94195467563414 step 0 next 305
             2021-08-09 03:52:38.086010: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9800 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_f/_535 action_count 94195467563415 step 0 next 317
             2021-08-09 03:52:38.086027: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9900 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_t/_536 action_count 94195467563416 step 0 next 1228
             2021-08-09 03:52:38.086045: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9a00 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_f/_545 action_count 94195467563417 step 0 next 746
             2021-08-09 03:52:38.086063: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9b00 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_t/_546 action_count 94195467563418 step 0 next 979
             2021-08-09 03:52:38.086084: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9c00 of size 256 by op gradient_tape/unet_depth3/encode2/batch_normalization_568/moments/scalar action_count 94195467563419 step 0 nex
             t 1375
             2021-08-09 03:52:38.086104: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9d00 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_f/_563 action_count 94195467563420 step 0 next 1207
             2021-08-09 03:52:38.086125: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9e00 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_t/_564 action_count 94195467563421 step 0 next 1117
             2021-08-09 03:52:38.086148: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9f00 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_f/_573 action_count 94195467563422 step 0 next 959
             2021-08-09 03:52:38.086170: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda000 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_t/_574 action_count 94195467563423 step 0 next 1059
             2021-08-09 03:52:38.086191: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda100 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_f/_591 action_count 94195467563424 step 0 next 246
             2021-08-09 03:52:38.086213: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda200 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_t/_592 action_count 94195467563425 step 0 next 2589
             2021-08-09 03:52:38.086235: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda300 of size 256 by op gradient_tape/unet_depth3/encode2/batch_normalization_567/moments/scalar action_count 94195467563426 step 0 nex
             t 2465
             2021-08-09 03:52:38.086257: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda400 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_f/_601 action_count 94195467563427 step 0 next 175
             2021-08-09 03:52:38.086274: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda500 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_t/_602 action_count 94195467563428 step 0 next 1502
             2021-08-09 03:52:38.086295: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda600 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_f/_619 action_count 94195467563429 step 0 next 1057
             2021-08-09 03:52:38.086314: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda700 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_t/_620 action_count 94195467563430 step 0 next 173
             2021-08-09 03:52:38.086338: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda800 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_f/_629 action_count 94195467563431 step 0 next 148
             2021-08-09 03:52:38.086360: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda900 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_t/_630 action_count 94195467563432 step 0 next 532
             2021-08-09 03:52:38.086380: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdaa00 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_f/_647 action_count 94195467563433 step 0 next 2431
             2021-08-09 03:52:38.086401: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdab00 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_t/_648 action_count 94195467563434 step 0 next 288
             2021-08-09 03:52:38.086424: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdac00 of size 256 by op gradient_tape/unet_depth3/encode1/batch_normalization_566/moments/scalar action_count 94195467563435 step 0 nex
             t 1144
             2021-08-09 03:52:38.086444: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdad00 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_f/_657 action_count 94195467563436 step 0 next 1242
             2021-08-09 03:52:38.086467: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdae00 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_t/_658 action_count 94195467563437 step 0 next 774
             2021-08-09 03:52:38.086489: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdaf00 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_f/_675 action_count 94195467563438 step 0 next 593
             2021-08-09 03:52:38.086507: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb000 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_t/_676 action_count 94195467563439 step 0 next 1856
             2021-08-09 03:52:38.086533: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb100 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_f/_685 action_count 94195467563440 step 0 next 1759
             2021-08-09 03:52:38.086551: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb200 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_t/_686 action_count 94195467563441 step 0 next 86
             2021-08-09 03:52:38.086574: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb300 of size 256 by op gradient_tape/unet_depth3/encode1/batch_normalization_565/moments/scalar action_count 94195467563442 step 0 nex
             t 295
             2021-08-09 03:52:38.086595: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb400 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_f/_703 action_count 94195467563443 step 0 next 2052
             2021-08-09 03:52:38.086615: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb500 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_t/_704 action_count 94195467563444 step 0 next 1063
             2021-08-09 03:52:38.086633: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb600 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_f/_713 action_count 94195467563445 step 0 next 2449
             2021-08-09 03:52:38.086653: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb700 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_t/_714 action_count 94195467563446 step 0 next 2414
             2021-08-09 03:52:38.086671: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb800 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_f/_731 action_count 94195467563447 step 0 next 1213
             2021-08-09 03:52:38.086691: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb900 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_t/_732 action_count 94195467563448 step 0 next 2266
             2021-08-09 03:52:38.086712: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdba00 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_f/_741 action_count 94195467563449 step 0 next 866
             2021-08-09 03:52:38.086732: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdbb00 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_t/_742 action_count 94195467563450 step 0 next 42
             2021-08-09 03:52:38.086753: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdbc00 of size 256 by op gradient_tape/unet_depth3/encode0/batch_normalization_564/moments/scalar action_count 94195467563451 step 0 nex
             t 935
             2021-08-09 03:52:38.086775: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdbd00 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_f/_759 action_count 94195467563452 step 0 next 929
             2021-08-09 03:52:38.086792: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdbe00 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_t/_760 action_count 94195467563453 step 0 next 533
             2021-08-09 03:52:38.086814: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdbf00 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_f/_769 action_count 94195467563454 step 0 next 763
             2021-08-09 03:52:38.086838: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc000 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_t/_770 action_count 94195467563455 step 0 next 1804
             2021-08-09 03:52:38.086859: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc100 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_f/_787 action_count 94195467563456 step 0 next 1857
             2021-08-09 03:52:38.086880: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc200 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_t/_788 action_count 94195467563457 step 0 next 1084
             2021-08-09 03:52:38.086902: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc300 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_f/_797 action_count 94195467563458 step 0 next 1122
             2021-08-09 03:52:38.086920: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc400 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_t/_798 action_count 94195467563459 step 0 next 2180
             2021-08-09 03:52:38.086941: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc500 of size 256 by op gradient_tape/unet_depth3/encode0/batch_normalization_563/moments/scalar action_count 94195467563460 step 0 nex
             t 1080
             2021-08-09 03:52:38.086962: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc600 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_f/_815 action_count 94195467563461 step 0 next 89
             2021-08-09 03:52:38.086979: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc700 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_t/_816 action_count 94195467563462 step 0 next 2442
             2021-08-09 03:52:38.087001: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc800 of size 256 by op Adam/Adam/Const action_count 94195467563463 step 0 next 1158
             2021-08-09 03:52:38.087023: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc900 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_f/_825 action_count 94195467563464 step 0 next 580
             2021-08-09 03:52:38.087041: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdca00 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_t/_826 action_count 94195467563465 step 0 next 71
             2021-08-09 03:52:38.087058: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdcb00 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_f/_843 action_count 94195467563466 step 0 next 993
             2021-08-09 03:52:38.087076: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdcc00 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_t/_844 action_count 94195467563467 step 0 next 1831
             2021-08-09 03:52:38.087098: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdcd00 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_f/_853 action_count 94195467563468 step 0 next 1884
             2021-08-09 03:52:38.087118: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdce00 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_t/_854 action_count 94195467563469 step 0 next 1294
             2021-08-09 03:52:38.087139: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdcf00 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_f/_871 action_count 94195467563470 step 0 next 1901
             2021-08-09 03:52:38.087159: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd000 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_t/_872 action_count 94195467563471 step 0 next 331
             2021-08-09 03:52:38.087178: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd100 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_f/_881 action_count 94195467563472 step 0 next 1340
             2021-08-09 03:52:38.087199: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd200 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_t/_882 action_count 94195467563473 step 0 next 208
             2021-08-09 03:52:38.087217: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd300 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_f/_899 action_count 94195467563474 step 0 next 2434
             2021-08-09 03:52:38.087234: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd400 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_t/_900 action_count 94195467563475 step 0 next 287
             2021-08-09 03:52:38.087251: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd500 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_f/_909 action_count 94195467563476 step 0 next 745
             2021-08-09 03:52:38.087273: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd600 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_t/_910 action_count 94195467563477 step 0 next 206
             2021-08-09 03:52:38.087297: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd700 of size 256 by op assert_greater_equal_5/Assert/AssertGuard/pivot_f/_143 action_count 94195468133277 step 0 next 455
             2021-08-09 03:52:38.087314: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd800 of size 256 by op assert_greater_equal_5/Assert/AssertGuard/pivot_t/_144 action_count 94195468133278 step 0 next 400
             2021-08-09 03:52:38.087336: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd900 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_f/_153 action_count 94195468133279 step 0 next 1081
             2021-08-09 03:52:38.087357: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdda00 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_t/_154 action_count 94195468133280 step 0 next 2184
             2021-08-09 03:52:38.087380: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfddb00 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_f/_171 action_count 94195468133281 step 0 next 2247
             2021-08-09 03:52:38.087401: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfddc00 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_t/_172 action_count 94195468133282 step 0 next 1551
             2021-08-09 03:52:38.087422: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfddd00 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_f/_181 action_count 94195468133283 step 0 next 2030
             2021-08-09 03:52:38.087443: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdde00 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_t/_182 action_count 94195468133284 step 0 next 1665
             2021-08-09 03:52:38.087460: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfddf00 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_f/_199 action_count 94195468133285 step 0 next 1352
             2021-08-09 03:52:38.087483: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde000 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_t/_200 action_count 94195468133286 step 0 next 714
             2021-08-09 03:52:38.087506: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde100 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_f/_209 action_count 94195468133287 step 0 next 149
             2021-08-09 03:52:38.087528: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde200 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_t/_210 action_count 94195468133288 step 0 next 2132
             2021-08-09 03:52:38.087546: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde300 of size 256 by op assert_greater_equal_8/Assert/AssertGuard/pivot_f/_227 action_count 94195468133289 step 0 next 374
             2021-08-09 03:52:38.087564: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde400 of size 256 by op assert_greater_equal_8/Assert/AssertGuard/pivot_t/_228 action_count 94195468133290 step 0 next 1025
             2021-08-09 03:52:38.087588: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde500 of size 256 by op assert_less_equal_8/Assert/AssertGuard/pivot_f/_237 action_count 94195468133291 step 0 next 2645
             2021-08-09 03:52:38.087609: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde600 of size 256 by op assert_less_equal_8/Assert/AssertGuard/pivot_t/_238 action_count 94195468133292 step 0 next 2179
             2021-08-09 03:52:38.087630: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde700 of size 256 by op assert_greater_equal_9/Assert/AssertGuard/pivot_f/_255 action_count 94195468133293 step 0 next 800
             2021-08-09 03:52:38.087649: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde800 of size 256 by op assert_greater_equal_9/Assert/AssertGuard/pivot_t/_256 action_count 94195468133294 step 0 next 2136
             2021-08-09 03:52:38.087672: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde900 of size 256 by op assert_less_equal_9/Assert/AssertGuard/pivot_f/_265 action_count 94195468133295 step 0 next 1320
             2021-08-09 03:52:38.087695: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdea00 of size 256 by op assert_less_equal_9/Assert/AssertGuard/pivot_t/_266 action_count 94195468133296 step 0 next 1892
             2021-08-09 03:52:38.087717: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdeb00 of size 256 by op assert_greater_equal_10/Assert/AssertGuard/pivot_f/_283 action_count 94195468133297 step 0 next 1601
             2021-08-09 03:52:38.087736: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdec00 of size 256 by op assert_greater_equal_10/Assert/AssertGuard/pivot_t/_284 action_count 94195468133298 step 0 next 196
             2021-08-09 03:52:38.087754: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfded00 of size 256 by op assert_less_equal_10/Assert/AssertGuard/pivot_f/_293 action_count 94195468133299 step 0 next 591
             2021-08-09 03:52:38.087776: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdee00 of size 256 by op assert_less_equal_10/Assert/AssertGuard/pivot_t/_294 action_count 94195468133300 step 0 next 396
             2021-08-09 03:52:38.087799: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdef00 of size 256 by op assert_greater_equal_11/Assert/AssertGuard/pivot_f/_311 action_count 94195468133301 step 0 next 1814
             2021-08-09 03:52:38.087820: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf000 of size 256 by op assert_greater_equal_11/Assert/AssertGuard/pivot_t/_312 action_count 94195468133302 step 0 next 1236
             2021-08-09 03:52:38.087843: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf100 of size 256 by op assert_less_equal_11/Assert/AssertGuard/pivot_f/_321 action_count 94195468133303 step 0 next 2579
             2021-08-09 03:52:38.087863: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf200 of size 256 by op assert_less_equal_11/Assert/AssertGuard/pivot_t/_322 action_count 94195468133304 step 0 next 2426
             2021-08-09 03:52:38.087884: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf300 of size 256 by op assert_greater_equal_12/Assert/AssertGuard/pivot_f/_339 action_count 94195468133305 step 0 next 1668
             2021-08-09 03:52:38.087904: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf400 of size 256 by op assert_greater_equal_12/Assert/AssertGuard/pivot_t/_340 action_count 94195468133306 step 0 next 1310
             2021-08-09 03:52:38.087928: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf500 of size 256 by op assert_less_equal_12/Assert/AssertGuard/pivot_f/_349 action_count 94195468133307 step 0 next 479
             2021-08-09 03:52:38.087945: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf600 of size 256 by op assert_less_equal_12/Assert/AssertGuard/pivot_t/_350 action_count 94195468133308 step 0 next 19
             2021-08-09 03:52:38.087968: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf700 of size 256 by op assert_greater_equal_13/Assert/AssertGuard/pivot_f/_367 action_count 94195468133309 step 0 next 2079
             2021-08-09 03:52:38.087988: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf800 of size 256 by op assert_greater_equal_13/Assert/AssertGuard/pivot_t/_368 action_count 94195468133310 step 0 next 585
             2021-08-09 03:52:38.088011: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf900 of size 256 by op assert_less_equal_13/Assert/AssertGuard/pivot_f/_377 action_count 94195468133311 step 0 next 1988
             2021-08-09 03:52:38.088032: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdfa00 of size 256 by op assert_less_equal_13/Assert/AssertGuard/pivot_t/_378 action_count 94195468133312 step 0 next 1580
             2021-08-09 03:52:38.088054: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdfb00 of size 256 by op assert_greater_equal_14/Assert/AssertGuard/pivot_f/_395 action_count 94195468133313 step 0 next 277
             2021-08-09 03:52:38.088072: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdfc00 of size 256 by op assert_greater_equal_14/Assert/AssertGuard/pivot_t/_396 action_count 94195468133314 step 0 next 2467
             2021-08-09 03:52:38.088089: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdfd00 of size 256 by op assert_less_equal_14/Assert/AssertGuard/pivot_f/_405 action_count 94195468133315 step 0 next 870
             2021-08-09 03:52:38.088109: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdfe00 of size 256 by op assert_less_equal_14/Assert/AssertGuard/pivot_t/_406 action_count 94195468133316 step 0 next 702
             2021-08-09 03:52:38.088130: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdff00 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_f/_423 action_count 94195468133317 step 0 next 2279
             2021-08-09 03:52:38.088152: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0000 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_t/_424 action_count 94195468133318 step 0 next 452
             2021-08-09 03:52:38.088173: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0100 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_f/_433 action_count 94195468133319 step 0 next 1777
             2021-08-09 03:52:38.088194: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0200 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_t/_434 action_count 94195468133320 step 0 next 974
             2021-08-09 03:52:38.088213: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0300 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_f/_451 action_count 94195468133321 step 0 next 831
             2021-08-09 03:52:38.088235: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0400 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_t/_452 action_count 94195468133322 step 0 next 302
             2021-08-09 03:52:38.088252: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0500 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_f/_461 action_count 94195468133323 step 0 next 1034
             2021-08-09 03:52:38.088270: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0600 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_t/_462 action_count 94195468133324 step 0 next 1976
             2021-08-09 03:52:38.088293: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0700 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_f/_479 action_count 94195468133325 step 0 next 660
             2021-08-09 03:52:38.088314: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0800 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_t/_480 action_count 94195468133326 step 0 next 618
             2021-08-09 03:52:38.088337: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0900 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_f/_489 action_count 94195468133327 step 0 next 1226
             2021-08-09 03:52:38.088360: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0a00 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_t/_490 action_count 94195468133328 step 0 next 688
             2021-08-09 03:52:38.088383: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0b00 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_f/_507 action_count 94195468133329 step 0 next 1711
             2021-08-09 03:52:38.088405: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0c00 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_t/_508 action_count 94195468133330 step 0 next 1005
             2021-08-09 03:52:38.088425: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0d00 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_f/_517 action_count 94195468133331 step 0 next 77
             2021-08-09 03:52:38.088445: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0e00 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_t/_518 action_count 94195468133332 step 0 next 639
             2021-08-09 03:52:38.088466: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0f00 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_f/_535 action_count 94195468133333 step 0 next 1977
             2021-08-09 03:52:38.088484: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1000 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_t/_536 action_count 94195468133334 step 0 next 190
             2021-08-09 03:52:38.088505: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1100 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_f/_545 action_count 94195468133335 step 0 next 476
             2021-08-09 03:52:38.088539: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1200 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_t/_546 action_count 94195468133336 step 0 next 923
             2021-08-09 03:52:38.088580: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1300 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_f/_563 action_count 94195468133337 step 0 next 624
             2021-08-09 03:52:38.088613: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1400 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_t/_564 action_count 94195468133338 step 0 next 1916
             2021-08-09 03:52:38.088638: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1500 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_f/_573 action_count 94195468133339 step 0 next 1308
             2021-08-09 03:52:38.088661: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1600 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_t/_574 action_count 94195468133340 step 0 next 251
             2021-08-09 03:52:38.088682: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1700 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_f/_591 action_count 94195468133341 step 0 next 2471
             2021-08-09 03:52:38.088703: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1800 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_t/_592 action_count 94195468133342 step 0 next 35
             2021-08-09 03:52:38.088725: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1900 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_f/_601 action_count 94195468133343 step 0 next 2394
             2021-08-09 03:52:38.088743: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1a00 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_t/_602 action_count 94195468133344 step 0 next 880
             2021-08-09 03:52:38.088765: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1b00 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_f/_619 action_count 94195468133345 step 0 next 977
             2021-08-09 03:52:38.088787: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1c00 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_t/_620 action_count 94195468133346 step 0 next 682
             2021-08-09 03:52:38.088809: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1d00 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_f/_629 action_count 94195468133347 step 0 next 1531
             2021-08-09 03:52:38.088827: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1e00 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_t/_630 action_count 94195468133348 step 0 next 904
             2021-08-09 03:52:38.088850: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1f00 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_f/_647 action_count 94195468133349 step 0 next 1524
             2021-08-09 03:52:38.088872: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2000 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_t/_648 action_count 94195468133350 step 0 next 1713
             2021-08-09 03:52:38.088893: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2100 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_f/_657 action_count 94195468133351 step 0 next 829
             2021-08-09 03:52:38.088913: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2200 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_t/_658 action_count 94195468133352 step 0 next 1533
             2021-08-09 03:52:38.088932: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2300 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_f/_675 action_count 94195468133353 step 0 next 1279
             2021-08-09 03:52:38.088954: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2400 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_t/_676 action_count 94195468133354 step 0 next 1639
             2021-08-09 03:52:38.088977: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2500 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_f/_685 action_count 94195468133355 step 0 next 179
             2021-08-09 03:52:38.088998: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2600 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_t/_686 action_count 94195468133356 step 0 next 1984
             2021-08-09 03:52:38.089019: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2700 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_f/_703 action_count 94195468133357 step 0 next 1918
             2021-08-09 03:52:38.089040: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2800 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_t/_704 action_count 94195468133358 step 0 next 329
             2021-08-09 03:52:38.089059: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2900 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_f/_713 action_count 94195468133359 step 0 next 2060
             2021-08-09 03:52:38.089083: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2a00 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_t/_714 action_count 94195468133360 step 0 next 1820
             2021-08-09 03:52:38.089100: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2b00 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_f/_731 action_count 94195468133361 step 0 next 1874
             2021-08-09 03:52:38.089122: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2c00 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_t/_732 action_count 94195468133362 step 0 next 1408
             2021-08-09 03:52:38.089154: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2d00 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_f/_741 action_count 94195468133363 step 0 next 584
             2021-08-09 03:52:38.089170: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2e00 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_t/_742 action_count 94195468133364 step 0 next 1372
             2021-08-09 03:52:38.089192: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2f00 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_f/_759 action_count 94195468133365 step 0 next 43
             2021-08-09 03:52:38.089213: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3000 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_t/_760 action_count 94195468133366 step 0 next 1041
             2021-08-09 03:52:38.089233: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3100 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_f/_769 action_count 94195468133367 step 0 next 1261
             2021-08-09 03:52:38.089254: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3200 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_t/_770 action_count 94195468133368 step 0 next 1939
             2021-08-09 03:52:38.089275: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3300 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_f/_787 action_count 94195468133369 step 0 next 576
             2021-08-09 03:52:38.089295: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3400 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_t/_788 action_count 94195468133370 step 0 next 1836
             2021-08-09 03:52:38.089315: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3500 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_f/_797 action_count 94195468133371 step 0 next 1749
             2021-08-09 03:52:38.089335: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3600 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_t/_798 action_count 94195468133372 step 0 next 36
             2021-08-09 03:52:38.089356: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3700 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_f/_815 action_count 94195468133373 step 0 next 1938
             2021-08-09 03:52:38.089377: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3800 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_t/_816 action_count 94195468133374 step 0 next 2130
             2021-08-09 03:52:38.089396: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3900 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_f/_825 action_count 94195468133375 step 0 next 2473
             2021-08-09 03:52:38.089416: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3a00 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_t/_826 action_count 94195468133376 step 0 next 348
             2021-08-09 03:52:38.089436: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3b00 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_f/_843 action_count 94195468133377 step 0 next 1911
             2021-08-09 03:52:38.089455: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3c00 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_t/_844 action_count 94195468133378 step 0 next 555
             2021-08-09 03:52:38.089476: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3d00 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_f/_853 action_count 94195468133379 step 0 next 2120
             2021-08-09 03:52:38.089497: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3e00 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_t/_854 action_count 94195468133380 step 0 next 543
             2021-08-09 03:52:38.089523: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3f00 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_f/_871 action_count 94195468133381 step 0 next 2594
             2021-08-09 03:52:38.089546: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4000 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_t/_872 action_count 94195468133382 step 0 next 625
             2021-08-09 03:52:38.089565: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4100 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_f/_881 action_count 94195468133383 step 0 next 2083
             2021-08-09 03:52:38.089585: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4200 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_t/_882 action_count 94195468133384 step 0 next 239
             2021-08-09 03:52:38.089604: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4300 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_f/_899 action_count 94195468133385 step 0 next 319
             2021-08-09 03:52:38.089624: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4400 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_t/_900 action_count 94195468133386 step 0 next 327
             2021-08-09 03:52:38.089646: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4500 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_f/_909 action_count 94195468133387 step 0 next 93
             2021-08-09 03:52:38.089666: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4600 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_t/_910 action_count 94195468133388 step 0 next 1947
             2021-08-09 03:52:38.089685: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4700 of size 256 by op Sub action_count 94195480110842 step 0 next 540
             2021-08-09 03:52:38.089704: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4800 of size 256 by op AssignVariableOp action_count 94195480053210 step 0 next 316
             2021-08-09 03:52:38.089724: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4900 of size 256 by op AssignVariableOp action_count 94195480053212 step 0 next 2347
             2021-08-09 03:52:38.089743: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4a00 of size 512 by op Fill action_count 94195480110824 step 0 next 2410
             2021-08-09 03:52:38.089762: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4c00 of size 256 by op AssignVariableOp action_count 94195480053246 step 0 next 1466
             2021-08-09 03:52:38.089782: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4d00 of size 256 by op AssignVariableOp action_count 94195480053250 step 0 next 2149
             2021-08-09 03:52:38.089802: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4e00 of size 256 by op AssignVariableOp action_count 94195480053252 step 0 next 356
             2021-08-09 03:52:38.089821: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4f00 of size 256 by op AssignVariableOp action_count 94195480053254 step 0 next 2000
             2021-08-09 03:52:38.089840: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5000 of size 256 by op AssignVariableOp action_count 94195480053256 step 0 next 2212
             2021-08-09 03:52:38.089859: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5100 of size 512 by op AssignVariableOp action_count 94195480053258 step 0 next 872
             2021-08-09 03:52:38.089879: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5300 of size 512 by op AssignVariableOp action_count 94195480053262 step 0 next 23
             2021-08-09 03:52:38.089899: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5500 of size 256 by op AssignVariableOp action_count 94195480053266 step 0 next 518
             2021-08-09 03:52:38.089918: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5600 of size 256 by op AssignVariableOp action_count 94195480053268 step 0 next 1096
             2021-08-09 03:52:38.089937: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5700 of size 256 by op AssignVariableOp action_count 94195480053270 step 0 next 2493
             2021-08-09 03:52:38.089956: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5800 of size 256 by op AssignVariableOp action_count 94195480053272 step 0 next 2173
             2021-08-09 03:52:38.089975: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5900 of size 512 by op AssignVariableOp action_count 94195480053260 step 0 next 1908
             2021-08-09 03:52:38.089995: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5b00 of size 512 by op AssignVariableOp action_count 94195480053264 step 0 next 1606
             2021-08-09 03:52:38.090013: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5d00 of size 512 by op Fill action_count 94195480110825 step 0 next 1046
             2021-08-09 03:52:38.090031: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5f00 of size 256 by op AssignAddVariableOp_3 action_count 94195480109333 step 17368542405085625385 next 811
             2021-08-09 03:52:38.090050: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6000 of size 256 by op Sub action_count 94195480110843 step 0 next 854
             2021-08-09 03:52:38.090070: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6100 of size 256 by op AssignAddVariableOp_13 action_count 94195480109431 step 17368542405085625385 next 2268
             2021-08-09 03:52:38.090091: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6200 of size 256 by op AssignAddVariableOp_19 action_count 94195480109375 step 17368542405085625385 next 1085
             2021-08-09 03:52:38.090112: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6300 of size 256 by op AssignAddVariableOp_21 action_count 94195480109435 step 17368542405085625385 next 1013
             2021-08-09 03:52:38.090131: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6400 of size 256 by op Sub action_count 94195094149710 step 0 next 1794
             2021-08-09 03:52:38.090150: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6500 of size 256 by op Sub action_count 94195094149711 step 0 next 1075
             2021-08-09 03:52:38.090169: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6600 of size 1792 by op Fill action_count 94195455013684 step 0 next 1463
             2021-08-09 03:52:38.090188: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6d00 of size 1792 by op Fill action_count 94195455013686 step 0 next 401
             2021-08-09 03:52:38.090207: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe7400 of size 1792 by op Fill action_count 94195455013687 step 0 next 1373
             2021-08-09 03:52:38.090226: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe7b00 of size 2304 by op Fill action_count 94195455013688 step 0 next 1595
             2021-08-09 03:52:38.090244: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe8400 of size 256 by op Sub action_count 94195094149724 step 0 next 1589
             2021-08-09 03:52:38.090263: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe8500 of size 256 by op Sub action_count 94195094149725 step 0 next 1735
             2021-08-09 03:52:38.090282: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe8600 of size 2048 by op Fill action_count 94195467563205 step 0 next 1792
             2021-08-09 03:52:38.090302: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe8e00 of size 1792 by op Fill action_count 94195467563207 step 0 next 528
             2021-08-09 03:52:38.090323: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe9500 of size 1792 by op Fill action_count 94195467563208 step 0 next 711
             2021-08-09 03:52:38.090341: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe9c00 of size 1792 by op Fill action_count 94195467563209 step 0 next 437
             2021-08-09 03:52:38.090362: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfea300 of size 1792 by op Fill action_count 94195467563211 step 0 next 2070
             2021-08-09 03:52:38.090381: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfeaa00 of size 1792 by op Fill action_count 94195467563212 step 0 next 2169
             2021-08-09 03:52:38.090400: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfeb100 of size 1792 by op Fill action_count 94195467563213 step 0 next 1646
             2021-08-09 03:52:38.090419: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfeb800 of size 1792 by op Fill action_count 94195467563215 step 0 next 1692
             2021-08-09 03:52:38.090438: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfebf00 of size 1792 by op Fill action_count 94195467563216 step 0 next 1654
             2021-08-09 03:52:38.090457: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfec600 of size 1792 by op Fill action_count 94195467563217 step 0 next 87
             2021-08-09 03:52:38.090476: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfecd00 of size 1024 by op Fill action_count 94195467563219 step 0 next 2186
             2021-08-09 03:52:38.090495: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfed100 of size 1024 by op Fill action_count 94195467563220 step 0 next 1407
             2021-08-09 03:52:38.090513: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfed500 of size 1024 by op Fill action_count 94195467563221 step 0 next 937
             2021-08-09 03:52:38.090544: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfed900 of size 1024 by op Fill action_count 94195467563223 step 0 next 1812
             2021-08-09 03:52:38.090561: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfedd00 of size 1024 by op Fill action_count 94195467563224 step 0 next 2446
             2021-08-09 03:52:38.090576: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfee100 of size 1024 by op Fill action_count 94195467563225 step 0 next 1989
             2021-08-09 03:52:38.090595: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfee500 of size 1024 by op Fill action_count 94195467563227 step 0 next 2192
             2021-08-09 03:52:38.090614: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfee900 of size 1024 by op Fill action_count 94195467563228 step 0 next 473
             2021-08-09 03:52:38.090635: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfeed00 of size 1024 by op Fill action_count 94195467563229 step 0 next 1201
             2021-08-09 03:52:38.090653: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfef100 of size 1024 by op Fill action_count 94195467563230 step 0 next 2573
             2021-08-09 03:52:38.090672: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfef500 of size 256 by op Fill action_count 94195467563231 step 0 next 508
             2021-08-09 03:52:38.090691: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfef600 of size 1536 by op Fill action_count 94195467563232 step 0 next 684
             2021-08-09 03:52:38.090710: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfefc00 of size 512 by op Fill action_count 94195467563233 step 0 next 579
             2021-08-09 03:52:38.090730: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfefe00 of size 512 by op Fill action_count 94195467563234 step 0 next 1756
             2021-08-09 03:52:38.090749: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff0000 of size 512 by op Fill action_count 94195467563235 step 0 next 1766
             2021-08-09 03:52:38.090768: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff0200 of size 512 by op Fill action_count 94195467563237 step 0 next 648
             2021-08-09 03:52:38.090787: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff0400 of size 512 by op Fill action_count 94195467563238 step 0 next 2663
             2021-08-09 03:52:38.090806: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff0600 of size 512 by op Fill action_count 94195467563239 step 0 next 527
             2021-08-09 03:52:38.090825: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff0800 of size 1024 by op Fill action_count 94195467563241 step 0 next 267
             2021-08-09 03:52:38.090844: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff0c00 of size 1024 by op Fill action_count 94195467563242 step 0 next 553
             2021-08-09 03:52:38.090860: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff1000 of size 1024 by op Fill action_count 94195467563243 step 0 next 1850
             2021-08-09 03:52:38.090880: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff1400 of size 1024 by op Fill action_count 94195467563245 step 0 next 235
             2021-08-09 03:52:38.090899: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff1800 of size 1024 by op Fill action_count 94195467563246 step 0 next 550
             2021-08-09 03:52:38.090918: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff1c00 of size 1024 by op Fill action_count 94195467563247 step 0 next 323
             2021-08-09 03:52:38.090937: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff2000 of size 1792 by op Fill action_count 94195467563249 step 0 next 723
             2021-08-09 03:52:38.090956: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff2700 of size 1792 by op Fill action_count 94195467563250 step 0 next 152
             2021-08-09 03:52:38.090975: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff2e00 of size 2304 by op Fill action_count 94195467563251 step 0 next 1742
             2021-08-09 03:52:38.090992: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff3700 of size 256 by op Sub action_count 94195094149762 step 0 next 1696
             2021-08-09 03:52:38.091008: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff3800 of size 256 by op Sub action_count 94195094149763 step 0 next 1624
             2021-08-09 03:52:38.091027: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff3900 of size 3584 by op Fill action_count 94195455013762 step 0 next 495
             2021-08-09 03:52:38.091047: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff4700 of size 6656 by op Fill action_count 94195455013764 step 0 next 464
             2021-08-09 03:52:38.091063: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6100 of size 256 by op Sub action_count 94195094149800 step 0 next 1592
             2021-08-09 03:52:38.091079: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6200 of size 256 by op Sub action_count 94195094149801 step 0 next 1619
             2021-08-09 03:52:38.091095: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6300 of size 1024 by op Fill action_count 94195455013599 step 0 next 1110
             2021-08-09 03:52:38.091115: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6700 of size 1024 by op Fill action_count 94195455013600 step 0 next 1927
             2021-08-09 03:52:38.091134: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6b00 of size 256 by op Fill action_count 94195455013610 step 0 next 2528
             2021-08-09 03:52:38.091153: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6c00 of size 256 by op Sub action_count 94195480110856 step 0 next 842
             2021-08-09 03:52:38.091175: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6d00 of size 256 by op AssignAddVariableOp_10 action_count 94195467561440 step 17436438550591945738 next 2050
             2021-08-09 03:52:38.091192: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6e00 of size 256 by op Sub action_count 94195480110857 step 0 next 1259
             2021-08-09 03:52:38.091208: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6f00 of size 256 by op Sub action_count 94195455013602 step 0 next 2800
             2021-08-09 03:52:38.091224: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7000 of size 256 by op Sub action_count 94195455013603 step 0 next 2780
             2021-08-09 03:52:38.091239: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7100 of size 256 by op AssignVariableOp action_count 94195467505275 step 0 next 44
             2021-08-09 03:52:38.091260: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7200 of size 256 by op AssignVariableOp action_count 94195467505273 step 0 next 823
             2021-08-09 03:52:38.091279: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7300 of size 256 by op AssignVariableOp action_count 94195467505277 step 0 next 819
             2021-08-09 03:52:38.091298: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7400 of size 256 by op Sub action_count 94195480110870 step 0 next 2018
             2021-08-09 03:52:38.091318: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7500 of size 256 by op Const action_count 94195455640678 step 0 next 3047
             2021-08-09 03:52:38.091339: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7600 of size 1536 by op Add action_count 94195455013607 step 0 next 1651
             2021-08-09 03:52:38.091355: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7c00 of size 256 by op Sub action_count 94195094149838 step 0 next 1743
             2021-08-09 03:52:38.091371: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7d00 of size 256 by op Sub action_count 94195094149839 step 0 next 1559
             2021-08-09 03:52:38.091387: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7e00 of size 256 by op Sub action_count 94195299052790 step 0 next 409
             2021-08-09 03:52:38.091403: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7f00 of size 2560 by op Fill action_count 94195455013495 step 0 next 2405
             2021-08-09 03:52:38.091419: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff8900 of size 256 by op Sub action_count 94195299052803 step 0 next 343
             2021-08-09 03:52:38.091435: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff8a00 of size 256 by op Sub action_count 94195455013498 step 0 next 2753
             2021-08-09 03:52:38.091454: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff8b00 of size 256 by op Sub action_count 94195455013499 step 0 next 2925
             2021-08-09 03:52:38.091470: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff8c00 of size 2304 by op Fill action_count 94195455013506 step 0 next 1906
             2021-08-09 03:52:38.091487: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff9500 of size 256 by op Sub action_count 94195299052804 step 0 next 264
             2021-08-09 03:52:38.091503: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff9600 of size 256 by op Sub action_count 94195273335761 step 0 next 2479
             2021-08-09 03:52:38.091527: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff9700 of size 1536 by op Fill action_count 94195455013424 step 0 next 2409
             2021-08-09 03:52:38.091563: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff9d00 of size 256 by op Sub action_count 94195273335762 step 0 next 213
             2021-08-09 03:52:38.091596: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff9e00 of size 1536 by op Fill action_count 94195455013665 step 0 next 1614
             2021-08-09 03:52:38.091630: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffa400 of size 512 by op Fill action_count 94195455013667 step 0 next 2799
             2021-08-09 03:52:38.091652: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffa600 of size 512 by op Fill action_count 94195455013668 step 0 next 3076
             2021-08-09 03:52:38.091671: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffa800 of size 512 by op Fill action_count 94195455013670 step 0 next 1341
             2021-08-09 03:52:38.091690: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffaa00 of size 512 by op Fill action_count 94195455013671 step 0 next 2899
             2021-08-09 03:52:38.091709: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffac00 of size 512 by op Fill action_count 94195455013672 step 0 next 2602
             2021-08-09 03:52:38.091728: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffae00 of size 1024 by op Fill action_count 94195455013674 step 0 next 2624
             2021-08-09 03:52:38.091747: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffb200 of size 1024 by op Fill action_count 94195455013675 step 0 next 3042
             2021-08-09 03:52:38.091766: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffb600 of size 1280 by op Fill action_count 94195455013676 step 0 next 1868
             2021-08-09 03:52:38.091785: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffbb00 of size 256 by op Sub action_count 94195273335803 step 0 next 536
             2021-08-09 03:52:38.091804: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffbc00 of size 256 by op Sub action_count 94195273335804 step 0 next 1269
             2021-08-09 03:52:38.091823: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffbd00 of size 3840 by op Fill action_count 94195455013467 step 0 next 332
             2021-08-09 03:52:38.091841: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffcc00 of size 256 by op Sub action_count 94195273335775 step 0 next 403
             2021-08-09 03:52:38.091858: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffcd00 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_f/_153 action_count 94195455013856 step 0 next 1672
             2021-08-09 03:52:38.091876: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffce00 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_t/_154 action_count 94195455013857 step 0 next 2153
             2021-08-09 03:52:38.091896: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffcf00 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_f/_171 action_count 94195455013858 step 0 next 2223
             2021-08-09 03:52:38.091916: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd000 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_t/_172 action_count 94195455013859 step 0 next 978
             2021-08-09 03:52:38.091933: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd100 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_f/_181 action_count 94195455013860 step 0 next 2072
             2021-08-09 03:52:38.091950: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd200 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_t/_182 action_count 94195455013861 step 0 next 1554
             2021-08-09 03:52:38.091968: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd300 of size 256 by op gradient_tape/unet_depth3/two_conv_decoder1/batch_normalization_559/moments/scalar action_count 94195455013862
             step 0 next 2185
             2021-08-09 03:52:38.091989: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd400 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_f/_199 action_count 94195455013863 step 0 next 2208
             2021-08-09 03:52:38.092011: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd500 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_t/_200 action_count 94195455013864 step 0 next 1883
             2021-08-09 03:52:38.092032: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd600 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_f/_209 action_count 94195455013865 step 0 next 2040
             2021-08-09 03:52:38.092052: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd700 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_t/_210 action_count 94195455013866 step 0 next 2211
             2021-08-09 03:52:38.092071: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd800 of size 256 by op assert_greater_equal_8/Assert/AssertGuard/pivot_f/_227 action_count 94195455013867 step 0 next 924
             2021-08-09 03:52:38.092091: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd900 of size 256 by op assert_greater_equal_8/Assert/AssertGuard/pivot_t/_228 action_count 94195455013868 step 0 next 24
             2021-08-09 03:52:38.092109: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffda00 of size 256 by op gradient_tape/unet_depth3/two_conv_decoder1/batch_normalization_558/moments/scalar action_count 94195455013869
             step 0 next 2162
             2021-08-09 03:52:38.092131: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffdb00 of size 256 by op assert_less_equal_8/Assert/AssertGuard/pivot_f/_237 action_count 94195455013870 step 0 next 2206
             2021-08-09 03:52:38.092148: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffdc00 of size 256 by op assert_less_equal_8/Assert/AssertGuard/pivot_t/_238 action_count 94195455013871 step 0 next 2085
             2021-08-09 03:52:38.092166: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffdd00 of size 256 by op assert_greater_equal_9/Assert/AssertGuard/pivot_f/_255 action_count 94195455013872 step 0 next 1053
             2021-08-09 03:52:38.092188: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffde00 of size 256 by op assert_greater_equal_9/Assert/AssertGuard/pivot_t/_256 action_count 94195455013873 step 0 next 2159
             2021-08-09 03:52:38.092205: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffdf00 of size 256 by op assert_less_equal_9/Assert/AssertGuard/pivot_f/_265 action_count 94195455013874 step 0 next 891
             2021-08-09 03:52:38.092226: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe000 of size 256 by op assert_less_equal_9/Assert/AssertGuard/pivot_t/_266 action_count 94195455013875 step 0 next 728
             2021-08-09 03:52:38.092245: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe100 of size 256 by op gradient_tape/unet_depth3/conv_transpose_decoder1/batch_normalization_557/moments/scalar action_count 941954550
             13876 step 0 next 2077
             2021-08-09 03:52:38.092265: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe200 of size 256 by op assert_greater_equal_10/Assert/AssertGuard/pivot_f/_283 action_count 94195455013877 step 0 next 2230
             2021-08-09 03:52:38.092285: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe300 of size 256 by op assert_greater_equal_10/Assert/AssertGuard/pivot_t/_284 action_count 94195455013878 step 0 next 2237
             2021-08-09 03:52:38.092307: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe400 of size 256 by op assert_less_equal_10/Assert/AssertGuard/pivot_f/_293 action_count 94195455013879 step 0 next 2207
             2021-08-09 03:52:38.092329: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe500 of size 256 by op assert_less_equal_10/Assert/AssertGuard/pivot_t/_294 action_count 94195455013880 step 0 next 1983
             2021-08-09 03:52:38.092346: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe600 of size 256 by op assert_greater_equal_11/Assert/AssertGuard/pivot_f/_311 action_count 94195455013881 step 0 next 712
             2021-08-09 03:52:38.092364: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe700 of size 256 by op assert_greater_equal_11/Assert/AssertGuard/pivot_t/_312 action_count 94195455013882 step 0 next 1848
             2021-08-09 03:52:38.092381: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe800 of size 256 by op gradient_tape/unet_depth3/two_conv_decoder2/batch_normalization_556/moments/scalar action_count 94195455013883
             step 0 next 2205
             2021-08-09 03:52:38.092399: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe900 of size 256 by op assert_less_equal_11/Assert/AssertGuard/pivot_f/_321 action_count 94195455013884 step 0 next 1795
             2021-08-09 03:52:38.092419: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffea00 of size 256 by op assert_less_equal_11/Assert/AssertGuard/pivot_t/_322 action_count 94195455013885 step 0 next 2227
             2021-08-09 03:52:38.092441: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffeb00 of size 256 by op assert_greater_equal_12/Assert/AssertGuard/pivot_f/_339 action_count 94195455013886 step 0 next 2231
             2021-08-09 03:52:38.092462: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffec00 of size 256 by op assert_greater_equal_12/Assert/AssertGuard/pivot_t/_340 action_count 94195455013887 step 0 next 1767
             2021-08-09 03:52:38.092483: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffed00 of size 256 by op assert_less_equal_12/Assert/AssertGuard/pivot_f/_349 action_count 94195455013888 step 0 next 1785
             2021-08-09 03:52:38.092501: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffee00 of size 256 by op assert_less_equal_12/Assert/AssertGuard/pivot_t/_350 action_count 94195455013889 step 0 next 1151
             2021-08-09 03:52:38.092528: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffef00 of size 256 by op gradient_tape/unet_depth3/two_conv_decoder2/batch_normalization_555/moments/scalar action_count 94195455013890
             step 0 next 2139
             2021-08-09 03:52:38.092562: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff000 of size 256 by op assert_greater_equal_13/Assert/AssertGuard/pivot_f/_367 action_count 94195455013891 step 0 next 192
             2021-08-09 03:52:38.092595: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff100 of size 256 by op assert_greater_equal_13/Assert/AssertGuard/pivot_t/_368 action_count 94195455013892 step 0 next 2203
             2021-08-09 03:52:38.092618: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff200 of size 256 by op assert_less_equal_13/Assert/AssertGuard/pivot_f/_377 action_count 94195455013893 step 0 next 2020
             2021-08-09 03:52:38.092635: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff300 of size 256 by op assert_less_equal_13/Assert/AssertGuard/pivot_t/_378 action_count 94195455013894 step 0 next 2234
             2021-08-09 03:52:38.092652: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff400 of size 256 by op assert_greater_equal_14/Assert/AssertGuard/pivot_f/_395 action_count 94195455013895 step 0 next 2428
             2021-08-09 03:52:38.092672: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff500 of size 256 by op assert_greater_equal_14/Assert/AssertGuard/pivot_t/_396 action_count 94195455013896 step 0 next 2429
             2021-08-09 03:52:38.092692: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff600 of size 256 by op assert_less_equal_14/Assert/AssertGuard/pivot_f/_405 action_count 94195455013897 step 0 next 2167
             2021-08-09 03:52:38.092712: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff700 of size 256 by op assert_less_equal_14/Assert/AssertGuard/pivot_t/_406 action_count 94195455013898 step 0 next 186
             2021-08-09 03:52:38.092732: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff800 of size 256 by op gradient_tape/unet_depth3/conv_transpose_decoder2/batch_normalization_554/moments/scalar action_count 941954550
             13899 step 0 next 1800
             2021-08-09 03:52:38.092752: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff900 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_f/_423 action_count 94195455013900 step 0 next 650
             2021-08-09 03:52:38.092772: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfffa00 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_t/_424 action_count 94195455013901 step 0 next 2488
             2021-08-09 03:52:38.092793: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfffb00 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_f/_433 action_count 94195455013902 step 0 next 2124
             2021-08-09 03:52:38.092815: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfffc00 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_t/_434 action_count 94195455013903 step 0 next 82
             2021-08-09 03:52:38.092838: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfffd00 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_f/_451 action_count 94195455013904 step 0 next 2047
             2021-08-09 03:52:38.092856: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfffe00 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_t/_452 action_count 94195455013905 step 0 next 2183
             2021-08-09 03:52:38.092876: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffff00 of size 256 by op gradient_tape/unet_depth3/two_conv_center/batch_normalization_553/moments/scalar action_count 94195455013906 st
             ep 0 next 18446744073709551615
             2021-08-09 03:52:38.092894: I tensorflow/core/common_runtime/bfc_allocator.cc:1027] Next region of size 1073741824
             2021-08-09 03:52:38.092914: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8000000 of size 3328 by op Fill action_count 94195455013519 step 0 next 2009
             2021-08-09 03:52:38.092931: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8000d00 of size 256 by op Sub action_count 94195162895941 step 0 next 934
             2021-08-09 03:52:38.092948: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8000e00 of size 13459968 by op Add action_count 94195455013475 step 0 next 1093
             2021-08-09 03:52:38.092968: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7000 of size 512 by op Fill action_count 94195410012592 step 0 next 2129
             2021-08-09 03:52:38.092987: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7200 of size 512 by op Fill action_count 94195410012593 step 0 next 2577
             2021-08-09 03:52:38.093010: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7400 of size 256 by op AssignAddVariableOp_28 action_count 94195455011291 step 18076379956407770847 next 340
             2021-08-09 03:52:38.093028: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7500 of size 256 by op AssignAddVariableOp_26 action_count 94195455011239 step 18076379956407770847 next 1402
             2021-08-09 03:52:38.093051: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7600 of size 256 by op AssignAddVariableOp_36 action_count 94195455011295 step 18076379956407770847 next 2803
             2021-08-09 03:52:38.093069: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7700 of size 256 by op AssignAddVariableOp_34 action_count 94195455011251 step 18076379956407770847 next 183
             2021-08-09 03:52:38.093089: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7800 of size 256 by op Fill action_count 94195410012556 step 0 next 758
             2021-08-09 03:52:38.093110: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7900 of size 256 by op AssignVariableOp action_count 94195454831374 step 0 next 810
             2021-08-09 03:52:38.093130: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7a00 of size 256 by op Fill action_count 94195410012572 step 0 next 253
             2021-08-09 03:52:38.093149: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7b00 of size 256 by op Fill action_count 94195410012880 step 0 next 2035
             2021-08-09 03:52:38.093168: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7c00 of size 256 by op AssignVariableOp action_count 94195454831376 step 0 next 621
             2021-08-09 03:52:38.093188: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7d00 of size 512 by op Fill action_count 94195410012594 step 0 next 809
             2021-08-09 03:52:38.093207: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7f00 of size 512 by op Fill action_count 94195410012595 step 0 next 840
             2021-08-09 03:52:38.093226: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd8100 of size 512 by op Fill action_count 94195410012596 step 0 next 1291
             2021-08-09 03:52:38.093242: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd8300 of size 256 by op Sub action_count 94195455013457 step 0 next 1971
             2021-08-09 03:52:38.093258: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd8400 of size 768 by op Fill action_count 94195410012607 step 0 next 1035
             2021-08-09 03:52:38.093274: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd8700 of size 768 by op Fill action_count 94195410012608 step 0 next 2087
             2021-08-09 03:52:38.093290: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd8a00 of size 1024 by op Fill action_count 94195410012616 step 0 next 1381
             2021-08-09 03:52:38.093306: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd8e00 of size 2048 by op Fill action_count 94195467563027 step 0 next 1329
             2021-08-09 03:52:38.093322: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd9600 of size 1792 by op Fill action_count 94195467563035 step 0 next 266
             2021-08-09 03:52:38.093342: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd9d00 of size 1792 by op Fill action_count 94195467563036 step 0 next 2370
             2021-08-09 03:52:38.093362: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cda400 of size 1792 by op Fill action_count 94195467563037 step 0 next 2210
             2021-08-09 03:52:38.093382: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdab00 of size 1792 by op Fill action_count 94195467563038 step 0 next 3059
             2021-08-09 03:52:38.093401: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdb200 of size 1792 by op Fill action_count 94195467563039 step 0 next 595
             2021-08-09 03:52:38.093420: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdb900 of size 1792 by op Fill action_count 94195467563047 step 0 next 2412
             2021-08-09 03:52:38.093439: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdc000 of size 1792 by op Fill action_count 94195467563048 step 0 next 2597
             2021-08-09 03:52:38.093459: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdc700 of size 1792 by op Fill action_count 94195467563049 step 0 next 2039
             2021-08-09 03:52:38.093483: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdce00 of size 1792 by op Fill action_count 94195467563050 step 0 next 2016
             2021-08-09 03:52:38.093503: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdd500 of size 1792 by op Fill action_count 94195467563051 step 0 next 2422
             2021-08-09 03:52:38.093526: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cddc00 of size 1792 by op Fill action_count 94195467563059 step 0 next 789
             2021-08-09 03:52:38.093546: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cde300 of size 1792 by op Fill action_count 94195467563060 step 0 next 1337
             2021-08-09 03:52:38.093567: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdea00 of size 1792 by op Fill action_count 94195467563061 step 0 next 2351
             2021-08-09 03:52:38.093583: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdf100 of size 1792 by op Fill action_count 94195467563062 step 0 next 1763
             2021-08-09 03:52:38.093603: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdf800 of size 1792 by op Fill action_count 94195467563063 step 0 next 732
             2021-08-09 03:52:38.093619: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdff00 of size 1024 by op Fill action_count 94195467563071 step 0 next 2430
             2021-08-09 03:52:38.093635: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce0300 of size 1024 by op Fill action_count 94195467563072 step 0 next 1969
             2021-08-09 03:52:38.093651: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce0700 of size 1024 by op Fill action_count 94195467563073 step 0 next 1127
             2021-08-09 03:52:38.093671: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce0b00 of size 1024 by op Fill action_count 94195467563074 step 0 next 1752
             2021-08-09 03:52:38.093690: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce0f00 of size 1024 by op Fill action_count 94195467563075 step 0 next 1139
             2021-08-09 03:52:38.093707: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1300 of size 1024 by op Fill action_count 94195467563083 step 0 next 1652
             2021-08-09 03:52:38.093726: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1700 of size 768 by op Fill action_count 94195410012582 step 0 next 1429
             2021-08-09 03:52:38.093748: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1a00 of size 256 by op AssignAddVariableOp_11 action_count 94195455011217 step 18076379956407770847 next 2936
             2021-08-09 03:52:38.093769: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1b00 of size 256 by op AssignAddVariableOp_20 action_count 94195455011287 step 18076379956407770847 next 1330
             2021-08-09 03:52:38.093787: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1c00 of size 256 by op AssignAddVariableOp_18 action_count 94195455011227 step 18076379956407770847 next 2503
             2021-08-09 03:52:38.093807: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1d00 of size 256 by op Fill action_count 94195410012557 step 0 next 1716
             2021-08-09 03:52:38.093827: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1e00 of size 256 by op AssignVariableOp action_count 94195454831386 step 0 next 1521
             2021-08-09 03:52:38.093843: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1f00 of size 256 by op Fill action_count 94195410012558 step 0 next 2619
             2021-08-09 03:52:38.093863: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce2000 of size 512 by op Fill action_count 94195455013397 step 0 next 1784
             2021-08-09 03:52:38.093882: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce2200 of size 512 by op Fill action_count 94195455013398 step 0 next 1957
             2021-08-09 03:52:38.093898: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce2400 of size 512 by op Fill action_count 94195410012580 step 0 next 1687
             2021-08-09 03:52:38.093914: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce2600 of size 1536 by op Fill action_count 94195455013425 step 0 next 864
             2021-08-09 03:52:38.093930: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce2c00 of size 768 by op Fill action_count 94195410012617 step 0 next 1205
             2021-08-09 03:52:38.093946: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce2f00 of size 768 by op Fill action_count 94195410012618 step 0 next 2439
             2021-08-09 03:52:38.093962: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce3200 of size 768 by op Fill action_count 94195410012619 step 0 next 328
             2021-08-09 03:52:38.093982: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce3500 of size 768 by op Fill action_count 94195410012620 step 0 next 1959
             2021-08-09 03:52:38.093998: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce3800 of size 2304 by op Fill action_count 94195410012628 step 0 next 806
             2021-08-09 03:52:38.094017: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce4100 of size 256 by op Sub action_count 94195455013470 step 0 next 807
             2021-08-09 03:52:38.094037: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce4200 of size 6291456 by op Add action_count 94195410012673 step 0 next 285
             2021-08-09 03:52:38.094056: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac92e4200 of size 6291456 by op Fill action_count 94195410012975 step 0 next 2275
             2021-08-09 03:52:38.094073: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac98e4200 of size 18874368 by op Fill action_count 94195410012979 step 0 next 766
             2021-08-09 03:52:38.094092: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acaae4200 of size 12582912 by op Add action_count 94195410012685 step 0 next 2480
             2021-08-09 03:52:38.094109: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acb6e4200 of size 3145728 by op Add action_count 94195410012757 step 0 next 1350
             2021-08-09 03:52:38.094128: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acb9e4200 of size 3145728 by op Fill action_count 94195410012971 step 0 next 1449
             2021-08-09 03:52:38.094148: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acbce4200 of size 6291456 by op Add action_count 94195410012709 step 0 next 1797
             2021-08-09 03:52:38.094164: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acc2e4200 of size 4767744 by op Fill action_count 94195410012983 step 0 next 1516
             2021-08-09 03:52:38.094184: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acc770200 of size 7193600 by op Add action_count 94195410012745 step 0 next 1899
             2021-08-09 03:52:38.094200: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acce4c600 of size 3072 by op Fill action_count 94195455013509 step 0 next 140
             2021-08-09 03:52:38.094217: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acce4d200 of size 256 by op Sub action_count 94195347535784 step 0 next 80
             2021-08-09 03:52:38.094236: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acce4d300 of size 256 by op Sub action_count 94195347535785 step 0 next 2606
             2021-08-09 03:52:38.094252: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acce4d400 of size 256 by op Sub action_count 94195347535798 step 0 next 174
             2021-08-09 03:52:38.094272: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acce4d500 of size 256 by op Sub action_count 94195347535799 step 0 next 1629
             2021-08-09 03:52:38.094291: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acce4d600 of size 256 by op Sub action_count 94195347535824 step 0 next 2022
             2021-08-09 03:52:38.094310: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acce4d700 of size 2198272 by op Add action_count 94195455013555 step 0 next 3068
             2021-08-09 03:52:38.094327: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd066200 of size 824576 by op Add action_count 94195455013593 step 0 next 2543
             2021-08-09 03:52:38.094346: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd12f700 of size 1532928 by op Add action_count 94195455013581 step 0 next 237
             2021-08-09 03:52:38.094366: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd2a5b00 of size 256 by op Sub action_count 94195347535825 step 0 next 342
             2021-08-09 03:52:38.094382: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd2a5c00 of size 2048 by op Fill action_count 94195455013522 step 0 next 2807
             2021-08-09 03:52:38.094401: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd2a6400 of size 256 by op Sub action_count 94195455013524 step 0 next 2157
             2021-08-09 03:52:38.094420: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd2a6500 of size 256 by op Sub action_count 94195455013525 step 0 next 2992
             2021-08-09 03:52:38.094440: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd2a6600 of size 2304 by op Fill action_count 94195455013532 step 0 next 1806
             2021-08-09 03:52:38.094459: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd2a6f00 of size 256 by op Sub action_count 94195365012495 step 0 next 2064
             2021-08-09 03:52:38.094480: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd2a7000 of size 4046080 by op Add action_count 94195455013447 step 0 next 364
             2021-08-09 03:52:38.094497: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd682d00 of size 256 by op Sub action_count 94195347535729 step 0 next 385
             2021-08-09 03:52:38.094512: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd682e00 of size 256 by op Sub action_count 94195347535742 step 0 next 2240
             2021-08-09 03:52:38.094542: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd682f00 of size 1024 by op Fill action_count 94195455013572 step 0 next 3089
             2021-08-09 03:52:38.094563: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd683300 of size 1024 by op Fill action_count 94195455013573 step 0 next 613
             2021-08-09 03:52:38.094582: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd683700 of size 1024 by op Fill action_count 94195455013574 step 0 next 1338
             2021-08-09 03:52:38.094602: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd683b00 of size 256 by op Sub action_count 94195455013576 step 0 next 1873
             2021-08-09 03:52:38.094618: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd683c00 of size 256 by op Sub action_count 94195455013577 step 0 next 792
             2021-08-09 03:52:38.094638: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd683d00 of size 1024 by op Fill action_count 94195455013584 step 0 next 2937
             2021-08-09 03:52:38.094657: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd684100 of size 1280 by op Fill action_count 94195455013585 step 0 next 1544
             2021-08-09 03:52:38.094677: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd684600 of size 256 by op Sub action_count 94195347535743 step 0 next 604
             2021-08-09 03:52:38.094697: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd684700 of size 256 by op Sub action_count 94195347535756 step 0 next 1271
             2021-08-09 03:52:38.094716: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd684800 of size 14024704 by op Add action_count 94195455013489 step 0 next 2985
             2021-08-09 03:52:38.094733: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ace3e4800 of size 5775360 by op Fill action_count 94195455013701 step 0 next 1295
             2021-08-09 03:52:38.094752: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ace966800 of size 7012352 by op Fill action_count 94195455013709 step 0 next 1346
             2021-08-09 03:52:38.094771: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acf016800 of size 3297536 by op Fill action_count 94195455013713 step 0 next 2856
             2021-08-09 03:52:38.094788: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acf33b900 of size 2198272 by op Fill action_count 94195455013717 step 0 next 1339
             2021-08-09 03:52:38.094806: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acf554400 of size 2930944 by op Fill action_count 94195455013721 step 0 next 3051
             2021-08-09 03:52:38.094825: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acf81fd00 of size 1099264 by op Fill action_count 94195455013751 step 0 next 1099
             2021-08-09 03:52:38.094844: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acf92c300 of size 2198272 by op Fill action_count 94195455013755 step 0 next 2264
             2021-08-09 03:52:38.094864: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acfb44e00 of size 4396544 by op Fill action_count 94195455013759 step 0 next 1717
             2021-08-09 03:52:38.094881: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acff76400 of size 8792832 by op Fill action_count 94195455013763 step 0 next 1770
             2021-08-09 03:52:38.094901: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad07d8f00 of size 10772736 by op Fill action_count 94195455013771 step 0 next 1790
             2021-08-09 03:52:38.094921: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad121f000 of size 256 by op Sub action_count 94195273335776 step 0 next 825
             2021-08-09 03:52:38.094941: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad121f100 of size 256 by op Sub action_count 94195455013538 step 0 next 566
             2021-08-09 03:52:38.094960: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad121f200 of size 256 by op Sub action_count 94195455013539 step 0 next 3050
             2021-08-09 03:52:38.094979: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad121f300 of size 1792 by op Fill action_count 94195455013546 step 0 next 197
             2021-08-09 03:52:38.094995: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad121fa00 of size 3072 by op Fill action_count 94195455013547 step 0 next 1496
             2021-08-09 03:52:38.095015: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1220600 of size 256 by op Sub action_count 94195273335789 step 0 next 908
             2021-08-09 03:52:38.095035: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1220700 of size 256 by op Sub action_count 94195273335790 step 0 next 744
             2021-08-09 03:52:38.095055: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1220800 of size 256 by op Adam/Pow action_count 94195480111529 step 13755587135625806913 next 3045
             2021-08-09 03:52:38.095094: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1220900 of size 256 by op Adam/Cast action_count 94195480111527 step 13755587135625806913 next 2731
             2021-08-09 03:52:38.095116: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1220a00 of size 1441792 by op SameWorkerRecvDone action_count 94195480111530 step 0 next 3056
             2021-08-09 03:52:38.095136: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1380a00 of size 1441792 by op SameWorkerRecvDone action_count 94195480111531 step 0 next 2916
             2021-08-09 03:52:38.095153: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad14e0a00 of size 1441792 by op binary_ce_dice/mul action_count 94195480111532 step 13755587135625806913 next 2802
             2021-08-09 03:52:38.095174: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1640a00 of size 360448 by op Cast_4 action_count 94195480111533 step 13755587135625806913 next 2990
             2021-08-09 03:52:38.095191: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1698a00 of size 360448 by op LogicalNot action_count 94195480111534 step 13755587135625806913 next 2876
             2021-08-09 03:52:38.095209: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad16f0a00 of size 36044800 by op Tile_92 action_count 94195480111535 step 13755587135625806913 next 3077
             2021-08-09 03:52:38.095230: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad3950a00 of size 36044800 by op LogicalNot_31 action_count 94195480111536 step 13755587135625806913 next 2974
             2021-08-09 03:52:38.095247: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad5bb0a00 of size 1441792 by op gradient_tape/binary_ce_dice/logistic_loss/mul/Mul action_count 94195480111537 step 13755587135625806913 ne
             xt 2846
             2021-08-09 03:52:38.095267: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad5d10a00 of size 512 by op unet_depth4/encode0/batch_normalization_580/moments/mean action_count 94195480111555 step 13755587135625806913
             next 3067
             2021-08-09 03:52:38.095288: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad5d10c00 of size 512 by op unet_depth4/encode0/batch_normalization_580/batchnorm/mul action_count 94195480111567 step 13755587135625806913
              next 3027
             2021-08-09 03:52:38.095305: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad5d10e00 of size 245764096 by op unet_depth4/encode0/batch_normalization_580/batchnorm/mul_1 action_count 94195480111568 step 137555871356
             25806913 next 1011
             2021-08-09 03:52:38.095322: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4771e00 of size 256 by op Sub action_count 94195129464801 step 0 next 1921
             2021-08-09 03:52:38.095340: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4771f00 of size 256 by op Sub action_count 94195129464802 step 0 next 2051
             2021-08-09 03:52:38.095360: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4772000 of size 1024 by op Fill action_count 94195455013678 step 0 next 2527
             2021-08-09 03:52:38.095379: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4772400 of size 1024 by op Fill action_count 94195455013679 step 0 next 2929
             2021-08-09 03:52:38.095398: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4772800 of size 1024 by op Fill action_count 94195455013680 step 0 next 2596
             2021-08-09 03:52:38.095414: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4772c00 of size 1792 by op Fill action_count 94195455013682 step 0 next 1426
             2021-08-09 03:52:38.095434: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4773300 of size 2560 by op Fill action_count 94195455013683 step 0 next 2441
             2021-08-09 03:52:38.095453: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4773d00 of size 256 by op Sub action_count 94195299052817 step 0 next 906
             2021-08-09 03:52:38.095473: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4773e00 of size 256 by op AssignVariableOp action_count 94195454831358 step 0 next 1573
             2021-08-09 03:52:38.095492: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4773f00 of size 256 by op Sub action_count 94195299052818 step 0 next 2171
             2021-08-09 03:52:38.095508: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4774000 of size 2816 by op Fill action_count 94195455013507 step 0 next 2490
             2021-08-09 03:52:38.095531: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4774b00 of size 256 by op Sub action_count 94195299052831 step 0 next 399
             2021-08-09 03:52:38.095550: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4774c00 of size 1280 by op Fill action_count 94195455013411 step 0 next 748
             2021-08-09 03:52:38.095569: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4775100 of size 256 by op Sub action_count 94195299052832 step 0 next 1298
             2021-08-09 03:52:38.095588: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4775200 of size 2304 by op Fill action_count 94195455013493 step 0 next 1658
             2021-08-09 03:52:38.095604: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4775b00 of size 256 by op Sub action_count 94195365012481 step 0 next 505
             2021-08-09 03:52:38.095624: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4775c00 of size 2816 by op Fill action_count 94195455013508 step 0 next 1954
             2021-08-09 03:52:38.095643: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4776700 of size 256 by op Sub action_count 94195129464851 step 0 next 2154
             2021-08-09 03:52:38.095662: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4776800 of size 256 by op Sub action_count 94195129464852 step 0 next 1941
             2021-08-09 03:52:38.095681: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4776900 of size 3584 by op Fill action_count 94195455013690 step 0 next 2822
             2021-08-09 03:52:38.095697: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4777700 of size 4096 by op Fill action_count 94195455013691 step 0 next 2004
             2021-08-09 03:52:38.095717: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4778700 of size 256 by op Sub action_count 94195129464865 step 0 next 2138
             2021-08-09 03:52:38.095735: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4778800 of size 256 by op Sub action_count 94195129464866 step 0 next 1897
             2021-08-09 03:52:38.095755: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4778900 of size 205568 by op Fill action_count 94195467563236 step 0 next 1042
             2021-08-09 03:52:38.095771: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47aac00 of size 256 by op Sub action_count 94195129464999 step 0 next 2123
             2021-08-09 03:52:38.095791: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47aad00 of size 256 by op Sub action_count 94195129465000 step 0 next 1919
             2021-08-09 03:52:38.095810: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47aae00 of size 768 by op Fill action_count 94195480110828 step 0 next 2305
             2021-08-09 03:52:38.095830: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab100 of size 256 by op AssignAddVariableOp_27 action_count 94195480109387 step 17368542405085625385 next 2028
             2021-08-09 03:52:38.095852: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab200 of size 256 by op AssignAddVariableOp_29 action_count 94195480109439 step 17368542405085625385 next 740
             2021-08-09 03:52:38.095873: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab300 of size 256 by op AssignAddVariableOp_35 action_count 94195480109399 step 17368542405085625385 next 324
             2021-08-09 03:52:38.095890: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab400 of size 512 by op Fill action_count 94195480110826 step 0 next 2241
             2021-08-09 03:52:38.095911: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab600 of size 256 by op AssignAddVariableOp_37 action_count 94195480109443 step 17368542405085625385 next 892
             2021-08-09 03:52:38.095928: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab700 of size 256 by op AssignAddVariableOp_4 action_count 94195480109414 step 17368542405085625385 next 413
             2021-08-09 03:52:38.095950: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab800 of size 256 by op AssignAddVariableOp_2 action_count 94195480109331 step 17368542405085625385 next 1324
             2021-08-09 03:52:38.095966: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab900 of size 512 by op Fill action_count 94195480110827 step 0 next 957
             2021-08-09 03:52:38.095990: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47abb00 of size 256 by op AssignAddVariableOp_5 action_count 94195480109416 step 17368542405085625385 next 1237
             2021-08-09 03:52:38.096009: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47abc00 of size 256 by op Sub action_count 94195480110871 step 0 next 917
             2021-08-09 03:52:38.096029: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47abd00 of size 256 by op AssignAddVariableOp_26 action_count 94195480109385 step 17368542405085625385 next 2161
             2021-08-09 03:52:38.096045: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47abe00 of size 256 by op AssignAddVariableOp_36 action_count 94195480109441 step 17368542405085625385 next 1557
             2021-08-09 03:52:38.096066: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47abf00 of size 256 by op AssignAddVariableOp_34 action_count 94195480109397 step 17368542405085625385 next 2251
             2021-08-09 03:52:38.096083: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ac000 of size 1024 by op Fill action_count 94195480110865 step 0 next 181
             2021-08-09 03:52:38.096099: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ac400 of size 1024 by op Fill action_count 94195480110866 step 0 next 1358
             2021-08-09 03:52:38.096119: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ac800 of size 1024 by op Fill action_count 94195480110867 step 0 next 1461
             2021-08-09 03:52:38.096138: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47acc00 of size 1024 by op Fill action_count 94195480110868 step 0 next 2290
             2021-08-09 03:52:38.096154: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ad000 of size 2048 by op Fill action_count 94195480110878 step 0 next 68
             2021-08-09 03:52:38.096170: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ad800 of size 2048 by op Fill action_count 94195480110879 step 0 next 314
             2021-08-09 03:52:38.096189: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ae000 of size 2048 by op Fill action_count 94195480110880 step 0 next 1031
             2021-08-09 03:52:38.096207: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ae800 of size 3072 by op Fill action_count 94195480110881 step 0 next 2388
             2021-08-09 03:52:38.096227: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47af400 of size 256 by op AssignVariableOp action_count 94195480053214 step 0 next 256
             2021-08-09 03:52:38.096243: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47af500 of size 512 by op Fill action_count 94195480110838 step 0 next 1188
             2021-08-09 03:52:38.096262: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47af700 of size 512 by op Fill action_count 94195480110839 step 0 next 123
             2021-08-09 03:52:38.096282: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47af900 of size 512 by op Fill action_count 94195480110840 step 0 next 1211
             2021-08-09 03:52:38.096301: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47afb00 of size 1536 by op Add action_count 94195480110821 step 0 next 848
             2021-08-09 03:52:38.096320: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b0100 of size 1024 by op Fill action_count 94195480110852 step 0 next 414
             2021-08-09 03:52:38.096339: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b0500 of size 1024 by op Fill action_count 94195480110853 step 0 next 2495
             2021-08-09 03:52:38.096355: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b0900 of size 1024 by op Fill action_count 94195480110854 step 0 next 1517
             2021-08-09 03:52:38.096374: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b0d00 of size 1024 by op Fill action_count 94195480110864 step 0 next 1878
             2021-08-09 03:52:38.096393: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b1100 of size 256 by op AssignVariableOp action_count 94195480053222 step 0 next 743
             2021-08-09 03:52:38.096409: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b1200 of size 256 by op AssignVariableOp action_count 94195480053224 step 0 next 637
             2021-08-09 03:52:38.096428: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b1300 of size 256 by op AssignVariableOp action_count 94195480053228 step 0 next 261
             2021-08-09 03:52:38.096445: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b1400 of size 2048 by op Fill action_count 94195480110882 step 0 next 667
             2021-08-09 03:52:38.096464: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b1c00 of size 2048 by op Fill action_count 94195480110890 step 0 next 796
             2021-08-09 03:52:38.096483: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b2400 of size 2048 by op Fill action_count 94195480110891 step 0 next 262
             2021-08-09 03:52:38.096499: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b2c00 of size 2048 by op Fill action_count 94195480110892 step 0 next 383
             2021-08-09 03:52:38.096525: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b3400 of size 2048 by op Fill action_count 94195480110893 step 0 next 1383
             2021-08-09 03:52:38.096560: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b3c00 of size 2048 by op Fill action_count 94195480110894 step 0 next 249
             2021-08-09 03:52:38.096592: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b4400 of size 2048 by op Fill action_count 94195480110904 step 0 next 26
             2021-08-09 03:52:38.096612: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b4c00 of size 2048 by op Fill action_count 94195480110905 step 0 next 421
             2021-08-09 03:52:38.096632: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b5400 of size 2048 by op Fill action_count 94195480110906 step 0 next 1905
             2021-08-09 03:52:38.096648: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b5c00 of size 2816 by op Fill action_count 94195480110907 step 0 next 568
             2021-08-09 03:52:38.096671: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6700 of size 256 by op binary_ce_dice/weighted_loss/num_elements/Cast action_count 94195468133245 step 0 next 896
             2021-08-09 03:52:38.096690: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6800 of size 512 by op Reshape_92 action_count 94195468133247 step 0 next 1389
             2021-08-09 03:52:38.096709: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6a00 of size 256 by op Cast_181/x action_count 94195468133253 step 0 next 2512
             2021-08-09 03:52:38.096726: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6b00 of size 256 by op unet_depth3/encode0/batch_normalization_563/batchnorm/add/y action_count 94195468133254 step 0 next 1801
             2021-08-09 03:52:38.096748: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6c00 of size 256 by op Cast_180/x action_count 94195468133255 step 0 next 1841
             2021-08-09 03:52:38.096770: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6d00 of size 256 by op assert_greater_equal/Assert/AssertGuard/pivot_f/_3 action_count 94195468133256 step 0 next 1181
             2021-08-09 03:52:38.096791: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6e00 of size 256 by op assert_greater_equal/Assert/AssertGuard/pivot_t/_4 action_count 94195468133257 step 0 next 368
             2021-08-09 03:52:38.096813: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6f00 of size 256 by op Const_35 action_count 94195468133258 step 0 next 1382
             2021-08-09 03:52:38.096834: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7000 of size 256 by op assert_less_equal/Assert/AssertGuard/pivot_f/_13 action_count 94195468133259 step 0 next 1314
             2021-08-09 03:52:38.096851: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7100 of size 256 by op assert_less_equal/Assert/AssertGuard/pivot_t/_14 action_count 94195468133260 step 0 next 1702
             2021-08-09 03:52:38.096872: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7200 of size 256 by op assert_greater_equal_1/Assert/AssertGuard/pivot_f/_31 action_count 94195468133261 step 0 next 180
             2021-08-09 03:52:38.096892: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7300 of size 256 by op assert_greater_equal_1/Assert/AssertGuard/pivot_t/_32 action_count 94195468133262 step 0 next 2133
             2021-08-09 03:52:38.096912: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7400 of size 256 by op assert_less_equal_1/Assert/AssertGuard/pivot_f/_41 action_count 94195468133263 step 0 next 15
             2021-08-09 03:52:38.096931: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7500 of size 256 by op assert_less_equal_1/Assert/AssertGuard/pivot_t/_42 action_count 94195468133264 step 0 next 434
             2021-08-09 03:52:38.096948: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7600 of size 256 by op assert_greater_equal_2/Assert/AssertGuard/pivot_f/_59 action_count 94195468133265 step 0 next 1844
             2021-08-09 03:52:38.096969: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7700 of size 256 by op assert_greater_equal_2/Assert/AssertGuard/pivot_t/_60 action_count 94195468133266 step 0 next 310
             2021-08-09 03:52:38.096987: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7800 of size 256 by op assert_less_equal_2/Assert/AssertGuard/pivot_f/_69 action_count 94195468133267 step 0 next 352
             2021-08-09 03:52:38.097008: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7900 of size 256 by op assert_less_equal_2/Assert/AssertGuard/pivot_t/_70 action_count 94195468133268 step 0 next 1970
             2021-08-09 03:52:38.097029: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7a00 of size 256 by op assert_greater_equal_3/Assert/AssertGuard/pivot_f/_87 action_count 94195468133269 step 0 next 894
             2021-08-09 03:52:38.097046: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7b00 of size 256 by op assert_greater_equal_3/Assert/AssertGuard/pivot_t/_88 action_count 94195468133270 step 0 next 30
             2021-08-09 03:52:38.097066: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7c00 of size 256 by op assert_less_equal_3/Assert/AssertGuard/pivot_f/_97 action_count 94195468133271 step 0 next 1882
             2021-08-09 03:52:38.097083: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7d00 of size 256 by op assert_less_equal_3/Assert/AssertGuard/pivot_t/_98 action_count 94195468133272 step 0 next 300
             2021-08-09 03:52:38.097101: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7e00 of size 256 by op assert_greater_equal_4/Assert/AssertGuard/pivot_f/_115 action_count 94195468133273 step 0 next 936
             2021-08-09 03:52:38.097123: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7f00 of size 256 by op assert_greater_equal_4/Assert/AssertGuard/pivot_t/_116 action_count 94195468133274 step 0 next 2197
             2021-08-09 03:52:38.097144: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b8000 of size 256 by op assert_less_equal_4/Assert/AssertGuard/pivot_f/_125 action_count 94195468133275 step 0 next 1837
             2021-08-09 03:52:38.097162: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b8100 of size 256 by op assert_less_equal_4/Assert/AssertGuard/pivot_t/_126 action_count 94195468133276 step 0 next 1143
             2021-08-09 03:52:38.097182: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b8200 of size 256 by op AssignAddVariableOp_52 action_count 94195467564196 step 10280291020125615045 next 998
             2021-08-09 03:52:38.097202: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b8300 of size 256 by op Sub action_count 94195480110896 step 0 next 645
             2021-08-09 03:52:38.097220: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b8400 of size 256 by op Sub action_count 94195339127952 step 0 next 1973
             2021-08-09 03:52:38.097240: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b8500 of size 3584 by op Fill action_count 94195455013464 step 0 next 1432
             2021-08-09 03:52:38.097259: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9300 of size 256 by op Sub action_count 94195339127981 step 0 next 178
             2021-08-09 03:52:38.097275: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9400 of size 256 by op Sub action_count 94195339127994 step 0 next 925
             2021-08-09 03:52:38.097294: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9500 of size 256 by op Sub action_count 94195455013471 step 0 next 620
             2021-08-09 03:52:38.097313: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9600 of size 256 by op AssignVariableOp action_count 94195454831394 step 0 next 1634
             2021-08-09 03:52:38.097329: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9700 of size 256 by op Sub action_count 94195339127953 step 0 next 1683
             2021-08-09 03:52:38.097345: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9800 of size 256 by op Sub action_count 94195455013484 step 0 next 2419
             2021-08-09 03:52:38.097361: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9900 of size 256 by op Sub action_count 94195339128020 step 0 next 2170
             2021-08-09 03:52:38.097376: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9a00 of size 256 by op Sub action_count 94195339128021 step 0 next 210
             2021-08-09 03:52:38.097396: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9b00 of size 256 by op Sub action_count 94195365012496 step 0 next 1286
             2021-08-09 03:52:38.097416: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9c00 of size 1536 by op Fill action_count 94195455013426 step 0 next 45
             2021-08-09 03:52:38.097432: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ba200 of size 256 by op Sub action_count 94195365012569 step 0 next 2105
             2021-08-09 03:52:38.097448: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ba300 of size 256 by op Sub action_count 94195365012570 step 0 next 1869
             2021-08-09 03:52:38.097467: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ba400 of size 2048 by op Fill action_count 94195455013707 step 0 next 3084
             2021-08-09 03:52:38.097486: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bac00 of size 2048 by op Fill action_count 94195455013708 step 0 next 2958
             2021-08-09 03:52:38.097502: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bb400 of size 1792 by op Fill action_count 94195455013710 step 0 next 2896
             2021-08-09 03:52:38.097526: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bbb00 of size 2304 by op Fill action_count 94195455013711 step 0 next 547
             2021-08-09 03:52:38.097542: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bc400 of size 256 by op Sub action_count 94195365012482 step 0 next 2659
             2021-08-09 03:52:38.097561: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bc500 of size 256 by op Sub action_count 94195455013485 step 0 next 2155
             2021-08-09 03:52:38.097580: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bc600 of size 256 by op Sub action_count 94195129465085 step 0 next 1069
             2021-08-09 03:52:38.097599: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bc700 of size 256 by op Sub action_count 94195129465086 step 0 next 2037
             2021-08-09 03:52:38.097618: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bc800 of size 256 by op AssignVariableOp action_count 94195467505299 step 0 next 2374
             2021-08-09 03:52:38.097638: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bc900 of size 256 by op AssignVariableOp action_count 94195467505301 step 0 next 1012
             2021-08-09 03:52:38.097654: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bca00 of size 256 by op AssignVariableOp action_count 94195467505303 step 0 next 847
             2021-08-09 03:52:38.097673: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bcb00 of size 256 by op Sub action_count 94195480110897 step 0 next 1660
             2021-08-09 03:52:38.097693: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bcc00 of size 256 by op AssignVariableOp action_count 94195467505329 step 0 next 1388
             2021-08-09 03:52:38.097712: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bcd00 of size 256 by op AssignVariableOp action_count 94195467505331 step 0 next 2156
             2021-08-09 03:52:38.097728: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bce00 of size 1024 by op Fill action_count 94195467562927 step 0 next 54
             2021-08-09 03:52:38.097744: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bd200 of size 256 by op Sum_1 action_count 94195455584270 step 0 next 1890
             2021-08-09 03:52:38.097760: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bd300 of size 256 by op truediv/y action_count 94195455584272 step 0 next 511
             2021-08-09 03:52:38.097782: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bd400 of size 256 by op binary_ce_dice/add_1/y action_count 94195455584273 step 0 next 1136
             2021-08-09 03:52:38.097800: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bd500 of size 256 by op binary_ce_dice/weighted_loss/num_elements/Cast action_count 94195455584274 step 0 next 1994
             2021-08-09 03:52:38.097820: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bd600 of size 1792 by op Fill action_count 94195467562951 step 0 next 1932
             2021-08-09 03:52:38.097840: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bdd00 of size 1792 by op Fill action_count 94195467562952 step 0 next 2316
             2021-08-09 03:52:38.097859: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47be400 of size 1792 by op Fill action_count 94195467562953 step 0 next 2172
             2021-08-09 03:52:38.097875: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47beb00 of size 1792 by op Fill action_count 94195467562954 step 0 next 2921
             2021-08-09 03:52:38.097893: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bf200 of size 1792 by op Fill action_count 94195467562955 step 0 next 2489
             2021-08-09 03:52:38.097913: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bf900 of size 2048 by op Fill action_count 94195467562963 step 0 next 2348
             2021-08-09 03:52:38.097933: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0100 of size 256 by op assert_less_equal_2/Assert/AssertGuard/pivot_f/_69 action_count 94195455584296 step 0 next 1946
             2021-08-09 03:52:38.097950: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0200 of size 256 by op assert_less_equal_2/Assert/AssertGuard/pivot_t/_70 action_count 94195455584297 step 0 next 1886
             2021-08-09 03:52:38.097969: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0300 of size 256 by op assert_greater_equal_3/Assert/AssertGuard/pivot_f/_87 action_count 94195455584298 step 0 next 1458
             2021-08-09 03:52:38.097988: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0400 of size 256 by op assert_greater_equal_3/Assert/AssertGuard/pivot_t/_88 action_count 94195455584299 step 0 next 2400
             2021-08-09 03:52:38.098007: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0500 of size 256 by op assert_less_equal_3/Assert/AssertGuard/pivot_f/_97 action_count 94195455584300 step 0 next 1070
             2021-08-09 03:52:38.098024: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0600 of size 256 by op assert_less_equal_3/Assert/AssertGuard/pivot_t/_98 action_count 94195455584301 step 0 next 2291
             2021-08-09 03:52:38.098043: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0700 of size 256 by op assert_greater_equal_4/Assert/AssertGuard/pivot_f/_115 action_count 94195455584302 step 0 next 1394
             2021-08-09 03:52:38.098060: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0800 of size 256 by op assert_greater_equal_4/Assert/AssertGuard/pivot_t/_116 action_count 94195455584303 step 0 next 2324
             2021-08-09 03:52:38.098079: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0900 of size 256 by op assert_less_equal_4/Assert/AssertGuard/pivot_f/_125 action_count 94195455584304 step 0 next 2372
             2021-08-09 03:52:38.098098: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0a00 of size 256 by op assert_less_equal_4/Assert/AssertGuard/pivot_t/_126 action_count 94195455584305 step 0 next 2271
             2021-08-09 03:52:38.098114: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0b00 of size 256 by op assert_greater_equal_5/Assert/AssertGuard/pivot_f/_143 action_count 94195455584306 step 0 next 1843
             2021-08-09 03:52:38.098134: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0c00 of size 256 by op assert_greater_equal_5/Assert/AssertGuard/pivot_t/_144 action_count 94195455584307 step 0 next 2416
             2021-08-09 03:52:38.098155: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0d00 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_f/_153 action_count 94195455584308 step 0 next 2407
             2021-08-09 03:52:38.098175: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0e00 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_t/_154 action_count 94195455584309 step 0 next 1783
             2021-08-09 03:52:38.098197: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0f00 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_f/_171 action_count 94195455584310 step 0 next 2274
             2021-08-09 03:52:38.098218: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1000 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_t/_172 action_count 94195455584311 step 0 next 2379
             2021-08-09 03:52:38.098236: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1100 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_f/_181 action_count 94195455584312 step 0 next 2435
             2021-08-09 03:52:38.098255: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1200 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_t/_182 action_count 94195455584313 step 0 next 2280
             2021-08-09 03:52:38.098272: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1300 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_f/_199 action_count 94195455584314 step 0 next 2447
             2021-08-09 03:52:38.098293: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1400 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_t/_200 action_count 94195455584315 step 0 next 1721
             2021-08-09 03:52:38.098314: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1500 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_f/_209 action_count 94195455584316 step 0 next 1588
             2021-08-09 03:52:38.098335: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1600 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_t/_210 action_count 94195455584317 step 0 next 2259
             2021-08-09 03:52:38.098351: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1700 of size 256 by op assert_greater_equal_8/Assert/AssertGuard/pivot_f/_227 action_count 94195455584318 step 0 next 1805
             2021-08-09 03:52:38.098367: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1800 of size 256 by op Sub action_count 94195129465111 step 0 next 2174
             2021-08-09 03:52:38.098386: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1900 of size 256 by op Sub action_count 94195129465112 step 0 next 2091
             2021-08-09 03:52:38.098406: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1a00 of size 1024 by op Fill action_count 94195480111064 step 0 next 1925
             2021-08-09 03:52:38.098422: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1e00 of size 1024 by op Fill action_count 94195480111065 step 0 next 1834
             2021-08-09 03:52:38.098442: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c2200 of size 1024 by op Fill action_count 94195480111066 step 0 next 1061
             2021-08-09 03:52:38.098460: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c2600 of size 1024 by op Fill action_count 94195480111067 step 0 next 1048
             2021-08-09 03:52:38.098476: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c2a00 of size 1024 by op Fill action_count 94195480111068 step 0 next 284
             2021-08-09 03:52:38.098495: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c2e00 of size 1024 by op Fill action_count 94195480111078 step 0 next 2346
             2021-08-09 03:52:38.098515: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c3200 of size 1024 by op Fill action_count 94195480111079 step 0 next 2238
             2021-08-09 03:52:38.098545: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c3600 of size 1024 by op Fill action_count 94195480111080 step 0 next 1526
             2021-08-09 03:52:38.098565: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c3a00 of size 1024 by op Fill action_count 94195480111081 step 0 next 1710
             2021-08-09 03:52:38.098584: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c3e00 of size 1024 by op Fill action_count 94195480111082 step 0 next 644
             2021-08-09 03:52:38.098603: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c4200 of size 1024 by op Fill action_count 94195480111090 step 0 next 1791
             2021-08-09 03:52:38.098619: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c4600 of size 1024 by op Fill action_count 94195480111091 step 0 next 1623
             2021-08-09 03:52:38.098640: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c4a00 of size 1024 by op Fill action_count 94195480111092 step 0 next 2074
             2021-08-09 03:52:38.098658: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c4e00 of size 1024 by op Fill action_count 94195480111093 step 0 next 2059
             2021-08-09 03:52:38.098677: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5200 of size 1024 by op Fill action_count 94195480111094 step 0 next 2095
             2021-08-09 03:52:38.098694: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5600 of size 256 by op Fill action_count 94195480111104 step 0 next 544
             2021-08-09 03:52:38.098713: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5700 of size 256 by op Fill action_count 94195480111105 step 0 next 1572
             2021-08-09 03:52:38.098732: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5800 of size 256 by op Fill action_count 94195480111106 step 0 next 18
             2021-08-09 03:52:38.098751: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5900 of size 256 by op Fill action_count 94195480111107 step 0 next 578
             2021-08-09 03:52:38.098767: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5a00 of size 256 by op Fill action_count 94195480111108 step 0 next 1311
             2021-08-09 03:52:38.098782: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5b00 of size 256 by op Fill action_count 94195480111109 step 0 next 1385
             2021-08-09 03:52:38.098801: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5c00 of size 256 by op Fill action_count 94195480111110 step 0 next 1664
             2021-08-09 03:52:38.098820: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5d00 of size 256 by op Fill action_count 94195480111111 step 0 next 596
             2021-08-09 03:52:38.098852: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5e00 of size 1024 by op Add action_count 94195480111099 step 0 next 2190
             2021-08-09 03:52:38.098872: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6200 of size 256 by op Fill action_count 94195480111112 step 0 next 2621
             2021-08-09 03:52:38.098890: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6300 of size 256 by op Fill action_count 94195480111113 step 0 next 2146
             2021-08-09 03:52:38.098909: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6400 of size 256 by op Fill action_count 94195480111114 step 0 next 2195
             2021-08-09 03:52:38.098927: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6500 of size 256 by op Fill action_count 94195480111115 step 0 next 1111
             2021-08-09 03:52:38.098945: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6600 of size 256 by op Fill action_count 94195480111116 step 0 next 1789
             2021-08-09 03:52:38.098963: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6700 of size 256 by op Fill action_count 94195480111117 step 0 next 1301
             2021-08-09 03:52:38.098981: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6800 of size 256 by op Fill action_count 94195480111118 step 0 next 2286
             2021-08-09 03:52:38.098998: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6900 of size 256 by op Fill action_count 94195480111119 step 0 next 1706
             2021-08-09 03:52:38.099016: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6a00 of size 256 by op Fill action_count 94195480111120 step 0 next 858
             2021-08-09 03:52:38.099033: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6b00 of size 256 by op Fill action_count 94195480111121 step 0 next 2147
             2021-08-09 03:52:38.099048: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6c00 of size 256 by op Fill action_count 94195480111122 step 0 next 2592
             2021-08-09 03:52:38.099063: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6d00 of size 256 by op Fill action_count 94195480111123 step 0 next 826
             2021-08-09 03:52:38.099078: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6e00 of size 256 by op Fill action_count 94195480111124 step 0 next 449
             2021-08-09 03:52:38.099093: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6f00 of size 256 by op Fill action_count 94195480111125 step 0 next 767
             2021-08-09 03:52:38.099107: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7000 of size 256 by op Fill action_count 94195480111126 step 0 next 347
             2021-08-09 03:52:38.099122: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7100 of size 256 by op Fill action_count 94195480111127 step 0 next 524
             2021-08-09 03:52:38.099140: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7200 of size 256 by op Fill action_count 94195480111128 step 0 next 653
             2021-08-09 03:52:38.099158: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7300 of size 256 by op Fill action_count 94195480111129 step 0 next 764
             2021-08-09 03:52:38.099175: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7400 of size 256 by op Fill action_count 94195480111130 step 0 next 938
             2021-08-09 03:52:38.099193: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7500 of size 256 by op Fill action_count 94195480111131 step 0 next 999
             2021-08-09 03:52:38.099211: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7600 of size 256 by op Fill action_count 94195480111132 step 0 next 916
             2021-08-09 03:52:38.099229: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7700 of size 256 by op Fill action_count 94195480111133 step 0 next 2140
             2021-08-09 03:52:38.099246: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7800 of size 256 by op Fill action_count 94195480111134 step 0 next 523
             2021-08-09 03:52:38.099264: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7900 of size 256 by op Fill action_count 94195480111135 step 0 next 1146
             2021-08-09 03:52:38.099282: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7a00 of size 256 by op Fill action_count 94195480111136 step 0 next 952
             2021-08-09 03:52:38.099300: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7b00 of size 256 by op Fill action_count 94195480111137 step 0 next 423
             2021-08-09 03:52:38.099318: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7c00 of size 256 by op Fill action_count 94195480111138 step 0 next 2423
             2021-08-09 03:52:38.099336: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7d00 of size 256 by op Fill action_count 94195480111139 step 0 next 250
             2021-08-09 03:52:38.099354: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7e00 of size 256 by op Fill action_count 94195480111140 step 0 next 859
             2021-08-09 03:52:38.099373: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7f00 of size 256 by op Fill action_count 94195480111141 step 0 next 1186
             2021-08-09 03:52:38.099391: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8000 of size 256 by op Fill action_count 94195480111142 step 0 next 1299
             2021-08-09 03:52:38.099408: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8100 of size 256 by op Fill action_count 94195480111143 step 0 next 2622
             2021-08-09 03:52:38.099427: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8200 of size 256 by op Fill action_count 94195480111144 step 0 next 2076
             2021-08-09 03:52:38.099446: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8300 of size 512 by op Fill action_count 94195480111145 step 0 next 671
             2021-08-09 03:52:38.099461: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8500 of size 512 by op Fill action_count 94195480111146 step 0 next 1923
             2021-08-09 03:52:38.099479: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8700 of size 512 by op Fill action_count 94195480111147 step 0 next 2044
             2021-08-09 03:52:38.099497: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8900 of size 512 by op Fill action_count 94195480111148 step 0 next 1859
             2021-08-09 03:52:38.099515: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8b00 of size 256 by op Fill action_count 94195480111149 step 0 next 603
             2021-08-09 03:52:38.099535: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8c00 of size 256 by op Fill action_count 94195480111150 step 0 next 447
             2021-08-09 03:52:38.099550: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8d00 of size 256 by op Fill action_count 94195480111151 step 0 next 362
             2021-08-09 03:52:38.099565: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8e00 of size 256 by op Fill action_count 94195480111152 step 0 next 2367
             2021-08-09 03:52:38.099583: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8f00 of size 256 by op Fill action_count 94195480111153 step 0 next 467
             2021-08-09 03:52:38.099601: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9000 of size 256 by op Fill action_count 94195480111154 step 0 next 1100
             2021-08-09 03:52:38.099619: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9100 of size 256 by op AssignVariableOp action_count 94195480111155 step 0 next 91
             2021-08-09 03:52:38.099637: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9200 of size 256 by op Fill action_count 94195480111156 step 0 next 236
             2021-08-09 03:52:38.099655: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9300 of size 1536 by op Fill action_count 94195480111157 step 0 next 857
             2021-08-09 03:52:38.099673: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9900 of size 512 by op Fill action_count 94195480111158 step 0 next 1779
             2021-08-09 03:52:38.099691: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9b00 of size 512 by op Fill action_count 94195480111159 step 0 next 879
             2021-08-09 03:52:38.099708: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9d00 of size 512 by op Fill action_count 94195480111160 step 0 next 1191
             2021-08-09 03:52:38.099723: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9f00 of size 512 by op Fill action_count 94195480111162 step 0 next 2373
             2021-08-09 03:52:38.099742: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ca100 of size 512 by op Fill action_count 94195480111163 step 0 next 212
             2021-08-09 03:52:38.099760: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ca300 of size 512 by op Fill action_count 94195480111164 step 0 next 27
             2021-08-09 03:52:38.099778: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ca500 of size 1024 by op Fill action_count 94195480111166 step 0 next 2453
             2021-08-09 03:52:38.099796: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ca900 of size 1024 by op Fill action_count 94195480111167 step 0 next 120
             2021-08-09 03:52:38.099814: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cad00 of size 1024 by op Fill action_count 94195480111168 step 0 next 398
             2021-08-09 03:52:38.099833: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cb100 of size 1024 by op Fill action_count 94195480111170 step 0 next 394
             2021-08-09 03:52:38.099851: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cb500 of size 1024 by op Fill action_count 94195480111171 step 0 next 1774
             2021-08-09 03:52:38.099869: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cb900 of size 1024 by op Fill action_count 94195480111172 step 0 next 881
             2021-08-09 03:52:38.099887: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cbd00 of size 2048 by op Fill action_count 94195480111174 step 0 next 1019
             2021-08-09 03:52:38.099905: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cc500 of size 2048 by op Fill action_count 94195480111175 step 0 next 1787
             2021-08-09 03:52:38.099923: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ccd00 of size 2048 by op Fill action_count 94195480111176 step 0 next 768
             2021-08-09 03:52:38.099941: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cd500 of size 2048 by op Fill action_count 94195480111178 step 0 next 756
             2021-08-09 03:52:38.099959: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cdd00 of size 2048 by op Fill action_count 94195480111179 step 0 next 1265
             2021-08-09 03:52:38.099978: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ce500 of size 2048 by op Fill action_count 94195480111180 step 0 next 724
             2021-08-09 03:52:38.099997: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ced00 of size 2048 by op Fill action_count 94195480111182 step 0 next 2571
             2021-08-09 03:52:38.100015: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cf500 of size 2048 by op Fill action_count 94195480111183 step 0 next 562
             2021-08-09 03:52:38.100033: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cfd00 of size 2048 by op Fill action_count 94195480111184 step 0 next 1038
             2021-08-09 03:52:38.100051: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d0500 of size 2048 by op Fill action_count 94195480111186 step 0 next 145
             2021-08-09 03:52:38.100069: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d0d00 of size 2048 by op Fill action_count 94195480111187 step 0 next 1627
             2021-08-09 03:52:38.100086: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d1500 of size 2048 by op Fill action_count 94195480111188 step 0 next 84
             2021-08-09 03:52:38.100101: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d1d00 of size 4096 by op Fill action_count 94195480111190 step 0 next 882
             2021-08-09 03:52:38.100116: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d2d00 of size 4096 by op Fill action_count 94195480111191 step 0 next 529
             2021-08-09 03:52:38.100131: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d3d00 of size 4096 by op Fill action_count 94195480111192 step 0 next 944
             2021-08-09 03:52:38.100146: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d4d00 of size 4096 by op Fill action_count 94195480111194 step 0 next 1955
             2021-08-09 03:52:38.100161: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d5d00 of size 4096 by op Fill action_count 94195480111195 step 0 next 122
             2021-08-09 03:52:38.100176: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d6d00 of size 4096 by op Fill action_count 94195480111196 step 0 next 1974
             2021-08-09 03:52:38.100194: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d7d00 of size 2048 by op Fill action_count 94195480111198 step 0 next 1647
             2021-08-09 03:52:38.100212: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d8500 of size 2048 by op Fill action_count 94195480111199 step 0 next 1830
             2021-08-09 03:52:38.100230: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d8d00 of size 2048 by op Fill action_count 94195480111200 step 0 next 1244
             2021-08-09 03:52:38.100248: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d9500 of size 2048 by op Fill action_count 94195480111202 step 0 next 967
             2021-08-09 03:52:38.100266: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d9d00 of size 2048 by op Fill action_count 94195480111203 step 0 next 1488
             2021-08-09 03:52:38.100285: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47da500 of size 2048 by op Fill action_count 94195480111204 step 0 next 561
             2021-08-09 03:52:38.100303: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47dad00 of size 2048 by op Fill action_count 94195480111206 step 0 next 803
             2021-08-09 03:52:38.100321: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47db500 of size 2048 by op Fill action_count 94195480111207 step 0 next 281
             2021-08-09 03:52:38.100339: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47dbd00 of size 2048 by op Fill action_count 94195480111208 step 0 next 1849
             2021-08-09 03:52:38.100357: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47dc500 of size 2048 by op Fill action_count 94195480111210 step 0 next 1810
             2021-08-09 03:52:38.100375: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47dcd00 of size 2048 by op Fill action_count 94195480111211 step 0 next 535
             2021-08-09 03:52:38.100394: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47dd500 of size 2048 by op Fill action_count 94195480111212 step 0 next 1798
             2021-08-09 03:52:38.100411: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ddd00 of size 2048 by op Fill action_count 94195480111214 step 0 next 2084
             2021-08-09 03:52:38.100425: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47de500 of size 2304 by op Fill action_count 94195480111215 step 0 next 2168
             2021-08-09 03:52:38.100440: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47dee00 of size 256 by op Sub action_count 94195129465161 step 0 next 2177
             2021-08-09 03:52:38.100455: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47def00 of size 256 by op Sub action_count 94195129465162 step 0 next 2086
             2021-08-09 03:52:38.100470: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47df000 of size 3584 by op Fill action_count 94195455013692 step 0 next 415
             2021-08-09 03:52:38.100488: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47dfe00 of size 4096 by op Fill action_count 94195455013694 step 0 next 1246
             2021-08-09 03:52:38.100507: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e0e00 of size 256 by op Sub action_count 94195129465199 step 0 next 989
             2021-08-09 03:52:38.100561: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e0f00 of size 256 by op Sub action_count 94195129465200 step 0 next 2109
             2021-08-09 03:52:38.100592: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e1000 of size 1792 by op Fill action_count 94195455013712 step 0 next 2066
             2021-08-09 03:52:38.100604: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e1700 of size 1792 by op Fill action_count 94195455013714 step 0 next 2933
             2021-08-09 03:52:38.100613: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e1e00 of size 1792 by op Fill action_count 94195455013715 step 0 next 1104
             2021-08-09 03:52:38.100623: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e2500 of size 2816 by op Fill action_count 94195455013716 step 0 next 2454
             2021-08-09 03:52:38.100632: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e3000 of size 256 by op Sub action_count 94195365012667 step 0 next 1811
             2021-08-09 03:52:38.100642: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e3100 of size 256 by op Sub action_count 94195365012668 step 0 next 1998
             2021-08-09 03:52:38.100651: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e3200 of size 1792 by op Fill action_count 94195455013781 step 0 next 602
             2021-08-09 03:52:38.100660: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e3900 of size 1792 by op Fill action_count 94195455013782 step 0 next 214
             2021-08-09 03:52:38.100670: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e4000 of size 1792 by op Fill action_count 94195455013784 step 0 next 1253
             2021-08-09 03:52:38.100679: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e4700 of size 1792 by op Fill action_count 94195455013785 step 0 next 2398
             2021-08-09 03:52:38.100688: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e4e00 of size 1792 by op Fill action_count 94195455013786 step 0 next 1972
             2021-08-09 03:52:38.100697: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e5500 of size 3328 by op Fill action_count 94195455013788 step 0 next 2285
             2021-08-09 03:52:38.100706: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e6200 of size 256 by op Sub action_count 94195339127966 step 0 next 1832
             2021-08-09 03:52:38.100716: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e6300 of size 1024 by op Fill action_count 94195455013408 step 0 next 333
             2021-08-09 03:52:38.100725: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e6700 of size 256 by op Sub action_count 94195339127967 step 0 next 1754
             2021-08-09 03:52:38.100734: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e6800 of size 2048 by op Fill action_count 94195455013454 step 0 next 721
             2021-08-09 03:52:38.100744: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e7000 of size 256 by op Sub action_count 94195339127980 step 0 next 853
             2021-08-09 03:52:38.100753: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e7100 of size 1792 by op Fill action_count 94195455013558 step 0 next 2745
             2021-08-09 03:52:38.100762: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e7800 of size 1792 by op Fill action_count 94195455013559 step 0 next 890
             2021-08-09 03:52:38.100771: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e7f00 of size 2048 by op Fill action_count 94195455013560 step 0 next 2358
             2021-08-09 03:52:38.100780: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e8700 of size 256 by op Sub action_count 94195339127995 step 0 next 845
             2021-08-09 03:52:38.100789: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e8800 of size 2048 by op Fill action_count 94195480110908 step 0 next 2413
             2021-08-09 03:52:38.100798: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e9000 of size 2048 by op Fill action_count 94195480110916 step 0 next 1780
             2021-08-09 03:52:38.100808: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e9800 of size 2048 by op Fill action_count 94195480110917 step 0 next 61
             2021-08-09 03:52:38.100817: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ea000 of size 2048 by op Fill action_count 94195480110918 step 0 next 865
             2021-08-09 03:52:38.100826: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ea800 of size 2048 by op Fill action_count 94195480110919 step 0 next 1054
             2021-08-09 03:52:38.100835: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47eb000 of size 2048 by op Fill action_count 94195480110920 step 0 next 510
             2021-08-09 03:52:38.100845: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47eb800 of size 4096 by op Fill action_count 94195480110928 step 0 next 1992
             2021-08-09 03:52:38.100854: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ec800 of size 4096 by op Fill action_count 94195480110929 step 0 next 1912
             2021-08-09 03:52:38.100863: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ed800 of size 4096 by op Fill action_count 94195480110930 step 0 next 1156
             2021-08-09 03:52:38.100892: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ee800 of size 4096 by op Fill action_count 94195480110931 step 0 next 167
             2021-08-09 03:52:38.100902: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ef800 of size 4096 by op Fill action_count 94195480110932 step 0 next 1745
             2021-08-09 03:52:38.100911: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f0800 of size 4096 by op Fill action_count 94195480110940 step 0 next 805
             2021-08-09 03:52:38.100920: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f1800 of size 4096 by op Fill action_count 94195480110941 step 0 next 105
             2021-08-09 03:52:38.100929: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f2800 of size 4096 by op Fill action_count 94195480110942 step 0 next 1729
             2021-08-09 03:52:38.100938: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f3800 of size 4096 by op Fill action_count 94195480110943 step 0 next 1659
             2021-08-09 03:52:38.100947: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f4800 of size 4096 by op Fill action_count 94195480110944 step 0 next 1107
             2021-08-09 03:52:38.100956: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f5800 of size 2048 by op Fill action_count 94195480110952 step 0 next 1086
             2021-08-09 03:52:38.100965: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f6000 of size 2048 by op Fill action_count 94195480110953 step 0 next 353
             2021-08-09 03:52:38.100974: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f6800 of size 2048 by op Fill action_count 94195480110954 step 0 next 556
             2021-08-09 03:52:38.100983: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f7000 of size 2048 by op Fill action_count 94195480110955 step 0 next 1860
             2021-08-09 03:52:38.100992: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f7800 of size 3840 by op Fill action_count 94195480110956 step 0 next 1247
             2021-08-09 03:52:38.101001: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f8700 of size 256 by op Sub action_count 94195129465225 step 0 next 2092
             2021-08-09 03:52:38.101010: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f8800 of size 256 by op Sub action_count 94195129465226 step 0 next 1900
             2021-08-09 03:52:38.101021: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f8900 of size 1792 by op Fill action_count 94195455013752 step 0 next 2603
             2021-08-09 03:52:38.101031: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f9000 of size 1792 by op Fill action_count 94195455013753 step 0 next 1335
             2021-08-09 03:52:38.101041: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f9700 of size 1792 by op Fill action_count 94195455013754 step 0 next 1537
             2021-08-09 03:52:38.101051: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f9e00 of size 1792 by op Fill action_count 94195455013756 step 0 next 182
             2021-08-09 03:52:38.101061: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47fa500 of size 2304 by op Fill action_count 94195455013757 step 0 next 946
             2021-08-09 03:52:38.101071: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47fae00 of size 256 by op Sub action_count 94195152301760 step 0 next 442
             2021-08-09 03:52:38.101081: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47faf00 of size 1280 by op Fill action_count 94195455013412 step 0 next 274
             2021-08-09 03:52:38.101091: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47fb400 of size 256 by op Sub action_count 94195152301802 step 0 next 966
             2021-08-09 03:52:38.101101: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47fb500 of size 256 by op Sub action_count 94195152301803 step 0 next 110
             2021-08-09 03:52:38.101317: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47fb600 of size 256 by op Sub action_count 94195152301828 step 0 next 1865
             2021-08-09 03:52:38.101375: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47fb700 of size 7012352 by op Add action_count 94195455013529 step 0 next 781
             2021-08-09 03:52:38.101423: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4eab700 of size 24661504 by op Fill action_count 94195455013697 step 0 next 614
             2021-08-09 03:52:38.101475: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6630500 of size 256 by op Sub action_count 94195273335853 step 0 next 630
             2021-08-09 03:52:38.101507: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6630600 of size 256 by op Sub action_count 94195273335854 step 0 next 1017
             2021-08-09 03:52:38.101661: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6630700 of size 3584 by op Fill action_count 94195455013695 step 0 next 2225
             2021-08-09 03:52:38.101692: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6631500 of size 4096 by op Fill action_count 94195455013696 step 0 next 559
             2021-08-09 03:52:38.101715: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6632500 of size 256 by op Sub action_count 94195273335867 step 0 next 918
             2021-08-09 03:52:38.101739: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6632600 of size 256 by op Sub action_count 94195273335868 step 0 next 780
             2021-08-09 03:52:38.101765: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6632700 of size 2048 by op Fill action_count 94195455013698 step 0 next 2417
             2021-08-09 03:52:38.101793: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6632f00 of size 2048 by op Fill action_count 94195455013699 step 0 next 1044
             2021-08-09 03:52:38.101819: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6633700 of size 3584 by op Fill action_count 94195455013700 step 0 next 1815
             2021-08-09 03:52:38.101846: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6634500 of size 256 by op Sub action_count 94195273335881 step 0 next 827
             2021-08-09 03:52:38.101871: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6634600 of size 256 by op Sub action_count 94195273335882 step 0 next 1995
             2021-08-09 03:52:38.101895: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6634700 of size 1024 by op Fill action_count 94195467563084 step 0 next 1248
             2021-08-09 03:52:38.101920: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6634b00 of size 1024 by op Fill action_count 94195467563085 step 0 next 1328
             2021-08-09 03:52:38.101946: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6634f00 of size 1024 by op Fill action_count 94195467563086 step 0 next 873
             2021-08-09 03:52:38.101984: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6635300 of size 1024 by op Fill action_count 94195467563087 step 0 next 384
             2021-08-09 03:52:38.102011: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6635700 of size 1024 by op Fill action_count 94195467563095 step 0 next 1325
             2021-08-09 03:52:38.102037: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6635b00 of size 1024 by op Fill action_count 94195467563096 step 0 next 537
             2021-08-09 03:52:38.102062: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6635f00 of size 1024 by op Fill action_count 94195467563097 step 0 next 2634
             2021-08-09 03:52:38.102087: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6636300 of size 1024 by op Fill action_count 94195467563098 step 0 next 1950
             2021-08-09 03:52:38.102114: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6636700 of size 1024 by op Fill action_count 94195467563099 step 0 next 2660
             2021-08-09 03:52:38.102143: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6636b00 of size 256 by op AssignVariableOp action_count 94195480053238 step 0 next 1239
             2021-08-09 03:52:38.102171: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6636c00 of size 256 by op AssignVariableOp action_count 94195480053240 step 0 next 478
             2021-08-09 03:52:38.102197: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6636d00 of size 256 by op Sub action_count 94195480110994 step 0 next 821
             2021-08-09 03:52:38.102240: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6636e00 of size 256 by op AssignAddVariableOp_12 action_count 94195480109429 step 17368542405085625385 next 778
             2021-08-09 03:52:38.102270: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6636f00 of size 256 by op Sub action_count 94195480110995 step 0 next 1693
             2021-08-09 03:52:38.102299: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637000 of size 256 by op AssignVariableOp action_count 94195480053234 step 0 next 1852
             2021-08-09 03:52:38.102327: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637100 of size 256 by op AssignVariableOp action_count 94195480053236 step 0 next 1129
             2021-08-09 03:52:38.102352: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637200 of size 256 by op Sub action_count 94195480111032 step 0 next 1961
             2021-08-09 03:52:38.102378: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637300 of size 1024 by op Add action_count 94195467563104 step 0 next 2418
             2021-08-09 03:52:38.102405: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637700 of size 256 by op Sub action_count 94195480111033 step 0 next 2315
             2021-08-09 03:52:38.102429: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637800 of size 256 by op AssignVariableOp action_count 94195480053226 step 0 next 1180
             2021-08-09 03:52:38.102466: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637900 of size 256 by op Sub action_count 94195480111070 step 0 next 710
             2021-08-09 03:52:38.102495: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637a00 of size 256 by op AssignAddVariableOp_10 action_count 94195480109361 step 17368542405085625385 next 2555
             2021-08-09 03:52:38.102540: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637b00 of size 1024 by op Fill action_count 94195480110850 step 0 next 1888
             2021-08-09 03:52:38.102570: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637f00 of size 1280 by op Fill action_count 94195480110851 step 0 next 2317
             2021-08-09 03:52:38.102595: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638400 of size 256 by op AssignAddVariableOp_52 action_count 94195480053815 step 12509324397843644032 next 153
             2021-08-09 03:52:38.102624: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638500 of size 512 by op Fill action_count 94195480110836 step 0 next 835
             2021-08-09 03:52:38.102652: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638700 of size 768 by op Fill action_count 94195480110837 step 0 next 958
             2021-08-09 03:52:38.102683: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638a00 of size 256 by op AssignAddVariableOp_20 action_count 94195480109433 step 17368542405085625385 next 1113
             2021-08-09 03:52:38.102710: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638b00 of size 256 by op AssignAddVariableOp_18 action_count 94195480109373 step 17368542405085625385 next 292
             2021-08-09 03:52:38.102742: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638c00 of size 256 by op AssignAddVariableOp_28 action_count 94195480109437 step 17368542405085625385 next 610
             2021-08-09 03:52:38.102778: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638d00 of size 256 by op AssignVariableOp action_count 94195480053198 step 0 next 226
             2021-08-09 03:52:38.102804: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638e00 of size 256 by op AssignVariableOp action_count 94195480053204 step 0 next 1951
             2021-08-09 03:52:38.102844: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638f00 of size 256 by op AssignAddVariableOp_11 action_count 94195480109363 step 17368542405085625385 next 2366
             2021-08-09 03:52:38.102873: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639000 of size 256 by op Sub action_count 94195480111071 step 0 next 2282
             2021-08-09 03:52:38.102898: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639100 of size 256 by op AssignVariableOp action_count 94195479483519 step 0 next 299
             2021-08-09 03:52:38.102926: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639200 of size 256 by op AssignVariableOp action_count 94195480053200 step 0 next 1839
             2021-08-09 03:52:38.102955: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639300 of size 256 by op Fill action_count 94195480111102 step 0 next 1398
             2021-08-09 03:52:38.102990: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639400 of size 256 by op ConstantFolding/truediv_recip action_count 94195468133239 step 0 next 2053
             2021-08-09 03:52:38.103020: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639500 of size 256 by op add_16/y action_count 94195468133240 step 0 next 2983
             2021-08-09 03:52:38.103048: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639600 of size 256 by op Sum_1 action_count 94195468133241 step 0 next 1948
             2021-08-09 03:52:38.103075: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639700 of size 256 by op truediv/y action_count 94195468133243 step 0 next 1020
             2021-08-09 03:52:38.103099: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639800 of size 256 by op binary_ce_dice/add_1/y action_count 94195468133244 step 0 next 1875
             2021-08-09 03:52:38.103134: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639900 of size 256 by op AssignVariableOp action_count 94195480053248 step 0 next 436
             2021-08-09 03:52:38.103163: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639a00 of size 256 by op AssignVariableOp action_count 94195480053216 step 0 next 1527
             2021-08-09 03:52:38.103186: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639b00 of size 256 by op Fill action_count 94195480111103 step 0 next 1241
             2021-08-09 03:52:38.103210: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639c00 of size 256 by op Fill action_count 94195467563161 step 0 next 1855
             2021-08-09 03:52:38.103236: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639d00 of size 1536 by op Fill action_count 94195467563162 step 0 next 487
             2021-08-09 03:52:38.103263: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663a300 of size 512 by op Fill action_count 94195467563163 step 0 next 2496
             2021-08-09 03:52:38.103296: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663a500 of size 512 by op Fill action_count 94195467563164 step 0 next 969
             2021-08-09 03:52:38.103324: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663a700 of size 512 by op Fill action_count 94195467563165 step 0 next 1968
             2021-08-09 03:52:38.103346: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663a900 of size 512 by op Fill action_count 94195467563167 step 0 next 1922
             2021-08-09 03:52:38.103371: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663ab00 of size 512 by op Fill action_count 94195467563168 step 0 next 698
             2021-08-09 03:52:38.103397: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663ad00 of size 512 by op Fill action_count 94195467563169 step 0 next 1397
             2021-08-09 03:52:38.103423: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663af00 of size 1024 by op Fill action_count 94195467563171 step 0 next 1202
             2021-08-09 03:52:38.103450: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663b300 of size 1024 by op Fill action_count 94195467563172 step 0 next 2420
             2021-08-09 03:52:38.103484: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663b700 of size 1024 by op Fill action_count 94195467563173 step 0 next 194
             2021-08-09 03:52:38.103512: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663bb00 of size 1024 by op Fill action_count 94195467563175 step 0 next 2276
             2021-08-09 03:52:38.103546: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663bf00 of size 1024 by op Fill action_count 94195467563176 step 0 next 2593
             2021-08-09 03:52:38.103571: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663c300 of size 1024 by op Fill action_count 94195467563177 step 0 next 1395
             2021-08-09 03:52:38.103593: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663c700 of size 1792 by op Fill action_count 94195467563179 step 0 next 217
             2021-08-09 03:52:38.103618: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663ce00 of size 1792 by op Fill action_count 94195467563180 step 0 next 804
             2021-08-09 03:52:38.103664: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663d500 of size 1792 by op Fill action_count 94195467563181 step 0 next 1966
             2021-08-09 03:52:38.103693: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663dc00 of size 1792 by op Fill action_count 94195467563183 step 0 next 1491
             2021-08-09 03:52:38.103719: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663e300 of size 256 by op Sub action_count 94195273335919 step 0 next 1963
             2021-08-09 03:52:38.103746: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663e400 of size 256 by op Sub action_count 94195273335920 step 0 next 424
             2021-08-09 03:52:38.103774: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663e500 of size 3584 by op Fill action_count 94195455013765 step 0 next 963
             2021-08-09 03:52:38.103800: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663f300 of size 6656 by op Fill action_count 94195455013766 step 0 next 867
             2021-08-09 03:52:38.103835: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6640d00 of size 256 by op Sub action_count 94195273335957 step 0 next 920
             2021-08-09 03:52:38.103864: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6640e00 of size 256 by op Sub action_count 94195273335958 step 0 next 1318
             2021-08-09 03:52:38.103891: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6640f00 of size 1792 by op Fill action_count 94195455013561 step 0 next 85
             2021-08-09 03:52:38.103917: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6641600 of size 1792 by op Fill action_count 94195455013562 step 0 next 1266
             2021-08-09 03:52:38.103943: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6641d00 of size 1024 by op Fill action_count 94195455013570 step 0 next 1684
             2021-08-09 03:52:38.103968: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6642100 of size 1024 by op Fill action_count 94195455013571 step 0 next 211
             2021-08-09 03:52:38.104005: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6642500 of size 256 by op Sub action_count 94195273335983 step 0 next 841
             2021-08-09 03:52:38.104031: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6642600 of size 256 by op Sub action_count 94195273335984 step 0 next 1782
             2021-08-09 03:52:38.104062: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6642700 of size 8192000 by op Tile_90/_0__cf__3862 action_count 94195410013342 step 0 next 1480
             2021-08-09 03:52:38.104090: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6e12700 of size 1099264 by op Fill action_count 94195455013681 step 0 next 2749
             2021-08-09 03:52:38.104118: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6f1ed00 of size 549632 by op Fill action_count 94195455013747 step 0 next 1434
             2021-08-09 03:52:38.104146: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6fa5000 of size 1055488 by op Fill action_count 94195455013795 step 0 next 2865
             2021-08-09 03:52:38.104181: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae70a6b00 of size 256 by op AssignAddVariableOp_52 action_count 94195410014265 step 11906430663947522641 next 2684
             2021-08-09 03:52:38.104211: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae70a6c00 of size 8192000 by op Tile_90/_0__cf__3864 action_count 94195412081363 step 0 next 2864
             2021-08-09 03:52:38.104238: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae7876c00 of size 8792832 by op Fill action_count 94195467563190 step 0 next 2262
             2021-08-09 03:52:38.104266: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae80d9700 of size 8792832 by op Add action_count 94195467562984 step 0 next 2484
             2021-08-09 03:52:38.104292: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae893c200 of size 5775360 by op Add action_count 94195467563008 step 0 next 888
             2021-08-09 03:52:38.104329: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae8ebe200 of size 3297536 by op Add action_count 94195467563056 step 0 next 308
             2021-08-09 03:52:38.104359: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae91e3300 of size 3714816 by op Add action_count 94195467563044 step 0 next 1489
             2021-08-09 03:52:38.104385: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae956e200 of size 7012352 by op Add action_count 94195467563032 step 0 next 2216
             2021-08-09 03:52:38.104411: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae9c1e200 of size 2930944 by op Fill action_count 94195467563182 step 0 next 1615
             2021-08-09 03:52:38.104449: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae9ee9b00 of size 5318400 by op Add action_count 94195467563068 step 0 next 2220
             2021-08-09 03:52:38.104478: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aea3fc200 of size 14024704 by op Add action_count 94195467562996 step 0 next 1230
             2021-08-09 03:52:38.104504: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aeb15c200 of size 14024704 by op Fill action_count 94195467563194 step 0 next 1924
             2021-08-09 03:52:38.104538: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aebebc200 of size 5775360 by op Fill action_count 94195467563198 step 0 next 875
             2021-08-09 03:52:38.104577: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aec43e200 of size 3145728 by op Fill action_count 94195467563202 step 0 next 1655
             2021-08-09 03:52:38.104607: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aec73e200 of size 7012352 by op Fill action_count 94195467563206 step 0 next 940
             2021-08-09 03:52:38.104635: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aecdee200 of size 3297536 by op Fill action_count 94195467563210 step 0 next 325
             2021-08-09 03:52:38.104661: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aed113300 of size 2198272 by op Fill action_count 94195467563214 step 0 next 1562
             2021-08-09 03:52:38.104695: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aed32be00 of size 2930944 by op Fill action_count 94195467563218 step 0 next 2478
             2021-08-09 03:52:38.104732: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aed5f7700 of size 824576 by op Fill action_count 94195467563222 step 0 next 1762
             2021-08-09 03:52:38.104761: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aed6c0c00 of size 274944 by op Fill action_count 94195467563240 step 0 next 990
             2021-08-09 03:52:38.104787: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aed703e00 of size 549632 by op Fill action_count 94195467563244 step 0 next 2485
             2021-08-09 03:52:38.104813: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aed78a100 of size 1099264 by op Fill action_count 94195467563248 step 0 next 646
             2021-08-09 03:52:38.104838: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aed896700 of size 2198272 by op Fill action_count 94195467563252 step 0 next 359
             2021-08-09 03:52:38.104876: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aedaaf200 of size 4396544 by op Fill action_count 94195467563256 step 0 next 480
             2021-08-09 03:52:38.104902: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aedee0800 of size 8792832 by op Fill action_count 94195467563260 step 0 next 1417
             2021-08-09 03:52:38.104929: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aee743300 of size 14024704 by op Fill action_count 94195467563264 step 0 next 2389
             2021-08-09 03:52:38.104957: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aef4a3300 of size 5775360 by op Fill action_count 94195467563268 step 0 next 1738
             2021-08-09 03:52:38.104985: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aefa25300 of size 3145728 by op Fill action_count 94195467563272 step 0 next 207
             2021-08-09 03:52:38.105021: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aefd25300 of size 7012352 by op Fill action_count 94195467563276 step 0 next 1300
             2021-08-09 03:52:38.105048: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af03d5300 of size 3297536 by op Fill action_count 94195467563280 step 0 next 2101
             2021-08-09 03:52:38.105074: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af06fa400 of size 2198272 by op Fill action_count 94195467563284 step 0 next 2381
             2021-08-09 03:52:38.105102: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0912f00 of size 2930944 by op Fill action_count 94195467563288 step 0 next 790
             2021-08-09 03:52:38.105128: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0bde800 of size 824576 by op Fill action_count 94195467563292 step 0 next 759
             2021-08-09 03:52:38.105165: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0ca7d00 of size 549632 by op Fill action_count 94195467563296 step 0 next 2598
             2021-08-09 03:52:38.105196: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0d2e000 of size 425984 by op gradient_tape/binary_ce_dice/logistic_loss/zeros_like action_count 94195467563312 step 0 next 1368
             2021-08-09 03:52:38.105224: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0d96000 of size 425984 by op Tile_36 action_count 94195467563317 step 0 next 1772
             2021-08-09 03:52:38.105253: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0dfe000 of size 425984 by op Tile_54 action_count 94195467563318 step 0 next 2232
             2021-08-09 03:52:38.105289: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0e66000 of size 425984 by op Tile_72 action_count 94195467563319 step 0 next 1208
             2021-08-09 03:52:38.105321: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0ece000 of size 425984 by op Tile_93 action_count 94195467563321 step 0 next 704
             2021-08-09 03:52:38.105350: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0f36000 of size 425984 by op Tile_18 action_count 94195467563322 step 0 next 534
             2021-08-09 03:52:38.105377: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0f9e000 of size 425984 by op Tile action_count 94195467563323 step 0 next 216
             2021-08-09 03:52:38.105416: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1006000 of size 425984 by op gradient_tape/binary_ce_dice/logistic_loss/sub/Neg/_0__cf__4148 action_count 94195467563478 step 0 next 1578
             2021-08-09 03:52:38.105447: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af106e000 of size 425984 by op gradient_tape/binary_ce_dice/weighted_loss/Tile_1/_1__cf__4149 action_count 94195467563479 step 0 next 1495
             2021-08-09 03:52:38.105474: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af10d6000 of size 425984 by op binary_ce_dice/logistic_loss/zeros_like action_count 94195468133242 step 0 next 1119
             2021-08-09 03:52:38.105501: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af113e000 of size 425984 by op Tile action_count 94195468133246 step 0 next 372
             2021-08-09 03:52:38.105544: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af11a6000 of size 425984 by op Tile_93 action_count 94195468133248 step 0 next 1447
             2021-08-09 03:52:38.105573: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af120e000 of size 425984 by op Tile_18 action_count 94195468133249 step 0 next 142
             2021-08-09 03:52:38.105601: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1276000 of size 425984 by op Tile_36 action_count 94195468133250 step 0 next 48
             2021-08-09 03:52:38.105627: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af12de000 of size 425984 by op Tile_54 action_count 94195468133251 step 0 next 554
             2021-08-09 03:52:38.105661: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1346000 of size 425984 by op Tile_72 action_count 94195468133252 step 0 next 2450
             2021-08-09 03:52:38.105688: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af13ae000 of size 167168 by op Fill action_count 94195480111161 step 0 next 1695
             2021-08-09 03:52:38.105715: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af13d6d00 of size 167168 by op Fill action_count 94195480111251 step 0 next 801
             2021-08-09 03:52:38.105741: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af13ffa00 of size 167168 by op Add action_count 94195480110833 step 0 next 1896
             2021-08-09 03:52:38.105779: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1428700 of size 334336 by op Fill action_count 94195480111165 step 0 next 2100
             2021-08-09 03:52:38.105806: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af147a100 of size 334336 by op Add action_count 94195480110847 step 0 next 243
             2021-08-09 03:52:38.105832: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af14cbb00 of size 668416 by op Fill action_count 94195480111169 step 0 next 1256
             2021-08-09 03:52:38.105854: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af156ee00 of size 668416 by op Add action_count 94195480111087 step 0 next 885
             2021-08-09 03:52:38.105891: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1612100 of size 668416 by op Add action_count 94195480110861 step 0 next 69
             2021-08-09 03:52:38.105917: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af16b5400 of size 1336832 by op Add action_count 94195480111075 step 0 next 522
             2021-08-09 03:52:38.105943: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af17fba00 of size 1336832 by op Add action_count 94195480110875 step 0 next 2605
             2021-08-09 03:52:38.105970: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1942000 of size 2673408 by op Add action_count 94195480111049 step 0 next 1528
             2021-08-09 03:52:38.106007: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1bceb00 of size 2673408 by op Fill action_count 94195480111173 step 0 next 420
             2021-08-09 03:52:38.106037: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1e5b600 of size 2673408 by op Add action_count 94195480110887 step 0 next 1731
             2021-08-09 03:52:38.106064: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af20e8100 of size 2899968 by op Fill action_count 94195480111177 step 0 next 2014
             2021-08-09 03:52:38.106090: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af23ac100 of size 2899968 by op Add action_count 94195480110901 step 0 next 997
             2021-08-09 03:52:38.106127: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af2670100 of size 3145728 by op Add action_count 94195480111023 step 0 next 2104
             2021-08-09 03:52:38.106156: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af2970100 of size 3145728 by op Add action_count 94195480110913 step 0 next 90
             2021-08-09 03:52:38.106184: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af2c70100 of size 2097152 by op Add action_count 94195480110985 step 0 next 346
             2021-08-09 03:52:38.106211: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af2e70100 of size 891136 by op Add action_count 94195480111061 step 0 next 51
             2021-08-09 03:52:38.106248: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af2f49a00 of size 1206016 by op Fill action_count 94195480111233 step 0 next 651
             2021-08-09 03:52:38.106275: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af3070100 of size 4194304 by op Add action_count 94195480110949 step 0 next 1880
             2021-08-09 03:52:38.106301: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af3470100 of size 4194304 by op Add action_count 94195480110973 step 0 next 125
             2021-08-09 03:52:38.106338: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af3870100 of size 6291456 by op Add action_count 94195480110925 step 0 next 787
             2021-08-09 03:52:38.106367: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af3e70100 of size 3145728 by op Add action_count 94195480111011 step 0 next 1250
             2021-08-09 03:52:38.106396: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af4170100 of size 4010240 by op Fill action_count 94195480111181 step 0 next 282
             2021-08-09 03:52:38.106433: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af4543200 of size 5426944 by op Add action_count 94195480111037 step 0 next 1109
             2021-08-09 03:52:38.106463: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af4a70100 of size 14162944 by op Add action_count 94195480110937 step 0 next 2163
             2021-08-09 03:52:38.106489: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af57f1d00 of size 256 by op Sub action_count 94195129464775 step 0 next 135
             2021-08-09 03:52:38.106531: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af57f1e00 of size 1099264 by op Add action_count 94195455013433 step 0 next 2920
             2021-08-09 03:52:38.106562: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af58fe400 of size 2723840 by op Fill action_count 94195455013685 step 0 next 1741
             2021-08-09 03:52:38.106588: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97400 of size 256 by op Sub action_count 94195347535728 step 0 next 312
             2021-08-09 03:52:38.106624: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97500 of size 512 by op Reshape_92 action_count 94195455584276 step 0 next 1165
             2021-08-09 03:52:38.106653: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97700 of size 256 by op Cast_181/x action_count 94195455584282 step 0 next 1894
             2021-08-09 03:52:38.106685: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97800 of size 256 by op unet_depth3/encode0/batch_normalization_546/batchnorm/add/y action_count 94195455584283 step 0 next 2269
             2021-08-09 03:52:38.106722: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97900 of size 256 by op Cast_180/x action_count 94195455584284 step 0 next 2460
             2021-08-09 03:52:38.106751: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97a00 of size 256 by op assert_greater_equal/Assert/AssertGuard/pivot_f/_3 action_count 94195455584285 step 0 next 669
             2021-08-09 03:52:38.106779: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97b00 of size 256 by op assert_greater_equal/Assert/AssertGuard/pivot_t/_4 action_count 94195455584286 step 0 next 2847
             2021-08-09 03:52:38.106814: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97c00 of size 256 by op Const_35 action_count 94195455584287 step 0 next 2542
             2021-08-09 03:52:38.106843: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97d00 of size 256 by op assert_less_equal/Assert/AssertGuard/pivot_f/_13 action_count 94195455584288 step 0 next 2314
             2021-08-09 03:52:38.106870: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97e00 of size 256 by op assert_less_equal/Assert/AssertGuard/pivot_t/_14 action_count 94195455584289 step 0 next 2364
             2021-08-09 03:52:38.106897: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97f00 of size 256 by op assert_greater_equal_1/Assert/AssertGuard/pivot_f/_31 action_count 94195455584290 step 0 next 2687
             2021-08-09 03:52:38.106933: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98000 of size 256 by op assert_greater_equal_1/Assert/AssertGuard/pivot_t/_32 action_count 94195455584291 step 0 next 2565
             2021-08-09 03:52:38.106963: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98100 of size 256 by op assert_less_equal_1/Assert/AssertGuard/pivot_f/_41 action_count 94195455584292 step 0 next 2320
             2021-08-09 03:52:38.106990: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98200 of size 256 by op assert_less_equal_1/Assert/AssertGuard/pivot_t/_42 action_count 94195455584293 step 0 next 1703
             2021-08-09 03:52:38.107017: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98300 of size 256 by op assert_greater_equal_2/Assert/AssertGuard/pivot_f/_59 action_count 94195455584294 step 0 next 2452
             2021-08-09 03:52:38.107053: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98400 of size 256 by op assert_greater_equal_2/Assert/AssertGuard/pivot_t/_60 action_count 94195455584295 step 0 next 3058
             2021-08-09 03:52:38.107081: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98500 of size 256 by op AssignVariableOp action_count 94195467505291 step 0 next 2676
             2021-08-09 03:52:38.107107: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98600 of size 256 by op AssignVariableOp action_count 94195480053202 step 0 next 2558
             2021-08-09 03:52:38.107129: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98700 of size 256 by op AssignVariableOp action_count 94195467505325 step 0 next 779
             2021-08-09 03:52:38.107162: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98800 of size 256 by op AssignVariableOp action_count 94195467505327 step 0 next 2591
             2021-08-09 03:52:38.107191: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98900 of size 512 by op AssignVariableOp action_count 94195467505337 step 0 next 797
             2021-08-09 03:52:38.107217: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98b00 of size 768 by op Fill action_count 94195467562906 step 0 next 716
             2021-08-09 03:52:38.107243: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98e00 of size 256 by op Sub action_count 94195347535757 step 0 next 485
             2021-08-09 03:52:38.107265: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98f00 of size 256 by op Sub action_count 94195347535770 step 0 next 233
             2021-08-09 03:52:38.107301: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b99000 of size 256 by op Sub action_count 94195347535771 step 0 next 1231
             2021-08-09 03:52:38.107328: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b99100 of size 6291456 by op Add action_count 94195480110961 step 0 next 1088
             2021-08-09 03:52:38.107355: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af6199100 of size 6045696 by op Add action_count 94195480110999 step 0 next 445
             2021-08-09 03:52:38.107382: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af675d100 of size 3145728 by op Fill action_count 94195480111185 step 0 next 460
             2021-08-09 03:52:38.107408: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af6a5d100 of size 6291456 by op Fill action_count 94195480111189 step 0 next 78
             2021-08-09 03:52:38.107445: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af705d100 of size 12582912 by op Fill action_count 94195480111193 step 0 next 1485
             2021-08-09 03:52:38.107473: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af7c5d100 of size 4194304 by op Fill action_count 94195480111197 step 0 next 694
             2021-08-09 03:52:38.107499: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af805d100 of size 6291456 by op Fill action_count 94195480111201 step 0 next 1071
             2021-08-09 03:52:38.107528: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af865d100 of size 3145728 by op Fill action_count 94195480111205 step 0 next 1285
             2021-08-09 03:52:38.107563: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af895d100 of size 2097152 by op Fill action_count 94195480111209 step 0 next 627
             2021-08-09 03:52:38.107592: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af8b5d100 of size 6045696 by op Fill action_count 94195480111213 step 0 next 1817
             2021-08-09 03:52:38.107620: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af9121100 of size 3145728 by op Fill action_count 94195480111217 step 0 next 531
             2021-08-09 03:52:38.107648: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af9421100 of size 1933312 by op Fill action_count 94195480111221 step 0 next 1690
             2021-08-09 03:52:38.107685: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af95f9100 of size 4010240 by op Fill action_count 94195480111225 step 0 next 34
             2021-08-09 03:52:38.107714: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af99cc200 of size 2673408 by op Fill action_count 94195480111229 step 0 next 2339
             2021-08-09 03:52:38.107744: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af9c58d00 of size 1002752 by op Fill action_count 94195480111237 step 0 next 202
             2021-08-09 03:52:38.107771: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af9d4da00 of size 668416 by op Fill action_count 94195480111241 step 0 next 1126
             2021-08-09 03:52:38.107800: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af9df0d00 of size 334336 by op Fill action_count 94195480111255 step 0 next 753
             2021-08-09 03:52:38.107827: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af9e42700 of size 668416 by op Fill action_count 94195480111259 step 0 next 99
             2021-08-09 03:52:38.107854: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af9ee5a00 of size 1336832 by op Fill action_count 94195480111263 step 0 next 70
             2021-08-09 03:52:38.107880: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afa02c000 of size 2673408 by op Fill action_count 94195480111267 step 0 next 483
             2021-08-09 03:52:38.107904: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afa2b8b00 of size 2899968 by op Fill action_count 94195480111271 step 0 next 1603
             2021-08-09 03:52:38.107926: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afa57cb00 of size 3145728 by op Fill action_count 94195480111275 step 0 next 1661
             2021-08-09 03:52:38.107950: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afa87cb00 of size 6291456 by op Fill action_count 94195480111279 step 0 next 1123
             2021-08-09 03:52:38.107988: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afae7cb00 of size 12582912 by op Fill action_count 94195480111283 step 0 next 92
             2021-08-09 03:52:38.108018: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afba7cb00 of size 4194304 by op Fill action_count 94195480111287 step 0 next 1326
             2021-08-09 03:52:38.108046: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afbe7cb00 of size 6291456 by op Fill action_count 94195480111291 step 0 next 695
             2021-08-09 03:52:38.108073: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afc47cb00 of size 3145728 by op Fill action_count 94195480111295 step 0 next 626
             2021-08-09 03:52:38.108099: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afc77cb00 of size 2097152 by op Fill action_count 94195480111299 step 0 next 1067
             2021-08-09 03:52:38.108126: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afc97cb00 of size 6045696 by op Fill action_count 94195480111303 step 0 next 1103
             2021-08-09 03:52:38.108162: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afcf40b00 of size 2048 by op Fill action_count 94195480111305 step 0 next 472
             2021-08-09 03:52:38.108190: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afcf41300 of size 2048 by op Fill action_count 94195480111306 step 0 next 1367
             2021-08-09 03:52:38.108216: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afcf41b00 of size 3145728 by op Fill action_count 94195480111307 step 0 next 750
             2021-08-09 03:52:38.108238: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd241b00 of size 2048 by op Fill action_count 94195480111308 step 0 next 286
             2021-08-09 03:52:38.108262: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd242300 of size 2048 by op Fill action_count 94195480111309 step 0 next 658
             2021-08-09 03:52:38.108284: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd242b00 of size 2048 by op Fill action_count 94195480111310 step 0 next 1090
             2021-08-09 03:52:38.108316: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd243300 of size 1933312 by op Fill action_count 94195480111311 step 0 next 370
             2021-08-09 03:52:38.108343: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd41b300 of size 2048 by op Fill action_count 94195480111312 step 0 next 1555
             2021-08-09 03:52:38.108369: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd41bb00 of size 2048 by op Fill action_count 94195480111313 step 0 next 947
             2021-08-09 03:52:38.108394: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd41c300 of size 2048 by op Fill action_count 94195480111314 step 0 next 1504
             2021-08-09 03:52:38.108421: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd41cb00 of size 4010240 by op Fill action_count 94195480111315 step 0 next 1336
             2021-08-09 03:52:38.108450: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd7efc00 of size 2048 by op Fill action_count 94195480111316 step 0 next 492
             2021-08-09 03:52:38.108476: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd7f0400 of size 2048 by op Fill action_count 94195480111317 step 0 next 1171
             2021-08-09 03:52:38.108503: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd7f0c00 of size 2048 by op Fill action_count 94195480111318 step 0 next 469
             2021-08-09 03:52:38.108541: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd7f1400 of size 2673408 by op Fill action_count 94195480111319 step 0 next 1529
             2021-08-09 03:52:38.108570: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afda7df00 of size 2048 by op Fill action_count 94195480111320 step 0 next 948
             2021-08-09 03:52:38.108607: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afda7e700 of size 2048 by op Fill action_count 94195480111321 step 0 next 1599
             2021-08-09 03:52:38.108636: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afda7ef00 of size 2048 by op Fill action_count 94195480111322 step 0 next 1009
             2021-08-09 03:52:38.108662: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afda7f700 of size 891136 by op Fill action_count 94195480111323 step 0 next 569
             2021-08-09 03:52:38.108689: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdb59000 of size 1024 by op Fill action_count 94195480111324 step 0 next 1520
             2021-08-09 03:52:38.108717: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdb59400 of size 1024 by op Fill action_count 94195480111325 step 0 next 463
             2021-08-09 03:52:38.108745: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdb59800 of size 1024 by op Fill action_count 94195480111326 step 0 next 1293
             2021-08-09 03:52:38.108780: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdb59c00 of size 1002752 by op Fill action_count 94195480111327 step 0 next 1486
             2021-08-09 03:52:38.108808: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdc4e900 of size 1024 by op Fill action_count 94195480111328 step 0 next 1642
             2021-08-09 03:52:38.108830: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdc4ed00 of size 1024 by op Fill action_count 94195480111329 step 0 next 296
             2021-08-09 03:52:38.108854: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdc4f100 of size 1024 by op Fill action_count 94195480111330 step 0 next 654
             2021-08-09 03:52:38.108882: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdc4f500 of size 668416 by op Fill action_count 94195480111331 step 0 next 187
             2021-08-09 03:52:38.108908: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf2800 of size 1024 by op Fill action_count 94195480111332 step 0 next 1851
             2021-08-09 03:52:38.108934: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf2c00 of size 1024 by op Fill action_count 94195480111333 step 0 next 713
             2021-08-09 03:52:38.108962: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3000 of size 1024 by op Fill action_count 94195480111334 step 0 next 116
             2021-08-09 03:52:38.108995: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3400 of size 1024 by op Fill action_count 94195480111335 step 0 next 2017
             2021-08-09 03:52:38.109022: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3800 of size 256 by op Fill action_count 94195480111336 step 0 next 1222
             2021-08-09 03:52:38.109058: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3900 of size 256 by op ConstantFolding/truediv_recip action_count 94195480111337 step 0 next 1538
             2021-08-09 03:52:38.109088: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3a00 of size 256 by op ConstantFolding/gradient_tape/unet_depth4/encode0/batch_normalization_580/moments/truediv_recip action_count 94
             195480111338 step 0 next 563
             2021-08-09 03:52:38.109118: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3b00 of size 256 by op ConstantFolding/gradient_tape/unet_depth4/encode1/batch_normalization_582/moments/truediv_recip action_count 94
             195480111339 step 0 next 1699
             2021-08-09 03:52:38.109148: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3c00 of size 256 by op ConstantFolding/gradient_tape/unet_depth4/encode2/batch_normalization_584/moments/truediv_recip action_count 94
             195480111340 step 0 next 960
             2021-08-09 03:52:38.109178: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3d00 of size 256 by op ConstantFolding/gradient_tape/unet_depth4/encode3/batch_normalization_586/moments/truediv_recip action_count 94
             195480111341 step 0 next 1704
             2021-08-09 03:52:38.109207: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3e00 of size 256 by op ConstantFolding/gradient_tape/unet_depth4/two_conv_center/batch_normalization_588/moments/truediv_recip action_
             count 94195480111342 step 0 next 1345
             2021-08-09 03:52:38.109234: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3f00 of size 256 by op Adam/add/y action_count 94195480111343 step 0 next 1887
             2021-08-09 03:52:38.109261: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf4000 of size 256 by op add_16/y action_count 94195480111344 step 0 next 1579
             2021-08-09 03:52:38.109298: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf4100 of size 256 by op gradient_tape/binary_ce_dice/weighted_loss/Reshape_1 action_count 94195480111345 step 0 next 2117
             2021-08-09 03:52:38.109329: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf4200 of size 256 by op gradient_tape/binary_ce_dice/logistic_loss/zeros_like/Const action_count 94195480111346 step 0 next 690
             2021-08-09 03:52:38.109355: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf4300 of size 256 by op Sum_1 action_count 94195480111347 step 0 next 1701
             2021-08-09 03:52:38.109391: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf4400 of size 1441792 by op gradient_tape/binary_ce_dice/logistic_loss/zeros_like action_count 94195480111348 step 0 next 2114
             2021-08-09 03:52:38.109420: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afde54400 of size 256 by op Adam/gradients/ones action_count 94195480111349 step 0 next 1058
             2021-08-09 03:52:38.109447: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afde54500 of size 256 by op truediv/y action_count 94195480111350 step 0 next 1822
             2021-08-09 03:52:38.109473: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afde54600 of size 256 by op binary_ce_dice/add_1/y action_count 94195480111351 step 0 next 17
             2021-08-09 03:52:38.109510: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afde54700 of size 1441792 by op Tile_93 action_count 94195480111352 step 0 next 223
             2021-08-09 03:52:38.109544: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdfb4700 of size 256 by op binary_ce_dice/weighted_loss/num_elements/Cast action_count 94195480111353 step 0 next 2135
             2021-08-09 03:52:38.109571: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdfb4800 of size 1441792 by op Tile_18 action_count 94195480111354 step 0 next 692
             2021-08-09 03:52:38.109597: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe114800 of size 1441792 by op Tile_36 action_count 94195480111355 step 0 next 1499
             2021-08-09 03:52:38.109619: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe274800 of size 1441792 by op Tile_54 action_count 94195480111356 step 0 next 1747
             2021-08-09 03:52:38.109644: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe3d4800 of size 1441792 by op Tile_72 action_count 94195480111357 step 0 next 1220
             2021-08-09 03:52:38.109672: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe534800 of size 1441792 by op Tile action_count 94195480111358 step 0 next 1840
             2021-08-09 03:52:38.109709: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe694800 of size 512 by op Reshape_92 action_count 94195480111359 step 0 next 941
             2021-08-09 03:52:38.109740: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe694a00 of size 256 by op unet_depth4/conv_transpose_decoder0/batch_normalization_599/AssignMovingAvg/decay action_count 94195480111360 s
             tep 0 next 283
             2021-08-09 03:52:38.109767: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe694b00 of size 256 by op unet_depth4/two_conv_decoder0/batch_normalization_601/batchnorm/add/y action_count 94195480111361 step 0 next 3
             86
             2021-08-09 03:52:38.109794: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe694c00 of size 256 by op gradient_tape/binary_ce_dice/logistic_loss/add/x action_count 94195480111362 step 0 next 1243
             2021-08-09 03:52:38.109820: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe694d00 of size 256 by op assert_greater_equal/Assert/AssertGuard/pivot_f/_3 action_count 94195480111363 step 0 next 2145
             2021-08-09 03:52:38.109847: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe694e00 of size 256 by op assert_greater_equal/Assert/AssertGuard/pivot_t/_4 action_count 94195480111364 step 0 next 1275
             2021-08-09 03:52:38.109884: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe694f00 of size 256 by op assert_less_equal/Assert/AssertGuard/pivot_f/_13 action_count 94195480111365 step 0 next 1304
             2021-08-09 03:52:38.109912: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695000 of size 256 by op assert_less_equal/Assert/AssertGuard/pivot_t/_14 action_count 94195480111366 step 0 next 1317
             2021-08-09 03:52:38.109938: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695100 of size 256 by op Const_35 action_count 94195480111367 step 0 next 720
             2021-08-09 03:52:38.109965: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695200 of size 256 by op ArithmeticOptimizer/AddOpsRewrite_add_16/tmp_var_zeros action_count 94195480111368 step 0 next 1796
             2021-08-09 03:52:38.109991: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695300 of size 256 by op assert_greater_equal_1/Assert/AssertGuard/pivot_f/_31 action_count 94195480111369 step 0 next 1288
             2021-08-09 03:52:38.110018: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695400 of size 256 by op assert_greater_equal_1/Assert/AssertGuard/pivot_t/_32 action_count 94195480111370 step 0 next 1833
             2021-08-09 03:52:38.110052: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695500 of size 256 by op assert_less_equal_1/Assert/AssertGuard/pivot_f/_41 action_count 94195480111371 step 0 next 1133
             2021-08-09 03:52:38.110080: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695600 of size 256 by op assert_less_equal_1/Assert/AssertGuard/pivot_t/_42 action_count 94195480111372 step 0 next 474
             2021-08-09 03:52:38.110109: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695700 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder0/batch_normalization_601/moments/scalar action_count 94195480111373
             step 0 next 224
             2021-08-09 03:52:38.110137: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695800 of size 256 by op assert_greater_equal_2/Assert/AssertGuard/pivot_f/_59 action_count 94195480111375 step 0 next 1522
             2021-08-09 03:52:38.110163: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695900 of size 256 by op assert_greater_equal_2/Assert/AssertGuard/pivot_t/_60 action_count 94195480111376 step 0 next 598
             2021-08-09 03:52:38.110190: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695a00 of size 256 by op assert_less_equal_2/Assert/AssertGuard/pivot_f/_69 action_count 94195480111377 step 0 next 1673
             2021-08-09 03:52:38.110226: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695b00 of size 256 by op assert_less_equal_2/Assert/AssertGuard/pivot_t/_70 action_count 94195480111378 step 0 next 1565
             2021-08-09 03:52:38.110257: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695c00 of size 256 by op assert_greater_equal_3/Assert/AssertGuard/pivot_f/_87 action_count 94195480111379 step 0 next 1719
             2021-08-09 03:52:38.110282: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695d00 of size 256 by op assert_greater_equal_3/Assert/AssertGuard/pivot_t/_88 action_count 94195480111380 step 0 next 1730
             2021-08-09 03:52:38.110309: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695e00 of size 256 by op assert_less_equal_3/Assert/AssertGuard/pivot_f/_97 action_count 94195480111381 step 0 next 1514
             2021-08-09 03:52:38.110337: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695f00 of size 256 by op assert_less_equal_3/Assert/AssertGuard/pivot_t/_98 action_count 94195480111382 step 0 next 1671
             2021-08-09 03:52:38.110365: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696000 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder0/batch_normalization_600/moments/scalar action_count 94195480111383
             step 0 next 1576
             2021-08-09 03:52:38.110403: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696100 of size 256 by op assert_greater_equal_4/Assert/AssertGuard/pivot_f/_115 action_count 94195480111384 step 0 next 1597
             2021-08-09 03:52:38.110431: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696200 of size 256 by op assert_greater_equal_4/Assert/AssertGuard/pivot_t/_116 action_count 94195480111385 step 0 next 1512
             2021-08-09 03:52:38.110458: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696300 of size 256 by op assert_less_equal_4/Assert/AssertGuard/pivot_f/_125 action_count 94195480111386 step 0 next 1558
             2021-08-09 03:52:38.110484: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696400 of size 256 by op assert_less_equal_4/Assert/AssertGuard/pivot_t/_126 action_count 94195480111387 step 0 next 1539
             2021-08-09 03:52:38.110511: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696500 of size 256 by op assert_greater_equal_5/Assert/AssertGuard/pivot_f/_143 action_count 94195480111388 step 0 next 1536
             2021-08-09 03:52:38.110545: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696600 of size 256 by op assert_greater_equal_5/Assert/AssertGuard/pivot_t/_144 action_count 94195480111389 step 0 next 1590
             2021-08-09 03:52:38.110583: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696700 of size 256 by op gradient_tape/unet_depth4/conv_transpose_decoder0/batch_normalization_599/moments/scalar action_count 941954801
             11390 step 0 next 1725
             2021-08-09 03:52:38.110613: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696800 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_f/_153 action_count 94195480111391 step 0 next 1676
             2021-08-09 03:52:38.110642: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696900 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_t/_154 action_count 94195480111392 step 0 next 1632
             2021-08-09 03:52:38.110669: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696a00 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_f/_171 action_count 94195480111393 step 0 next 1532
             2021-08-09 03:52:38.110696: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696b00 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_t/_172 action_count 94195480111394 step 0 next 1718
             2021-08-09 03:52:38.110722: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696c00 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_f/_181 action_count 94195480111395 step 0 next 427
             2021-08-09 03:52:38.110758: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696d00 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_t/_182 action_count 94195480111396 step 0 next 1553
             2021-08-09 03:52:38.110788: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696e00 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder1/batch_normalization_598/moments/scalar action_count 94195480111397
             step 0 next 516
             2021-08-09 03:52:38.110814: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696f00 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_f/_199 action_count 94195480111398 step 0 next 1550
             2021-08-09 03:52:38.110841: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697000 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_t/_200 action_count 94195480111399 step 0 next 129
             2021-08-09 03:52:38.110867: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697100 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_f/_209 action_count 94195480111400 step 0 next 369
             2021-08-09 03:52:38.110894: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697200 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_t/_210 action_count 94195480111401 step 0 next 1542
             2021-08-09 03:52:38.110920: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697300 of size 256 by op assert_greater_equal_8/Assert/AssertGuard/pivot_f/_227 action_count 94195480111402 step 0 next 433
             2021-08-09 03:52:38.110958: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697400 of size 256 by op assert_greater_equal_8/Assert/AssertGuard/pivot_t/_228 action_count 94195480111403 step 0 next 1678
             2021-08-09 03:52:38.110986: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697500 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder1/batch_normalization_597/moments/scalar action_count 94195480111404
             step 0 next 241
             2021-08-09 03:52:38.111015: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697600 of size 256 by op assert_less_equal_8/Assert/AssertGuard/pivot_f/_237 action_count 94195480111405 step 0 next 1776
             2021-08-09 03:52:38.111052: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697700 of size 256 by op assert_less_equal_8/Assert/AssertGuard/pivot_t/_238 action_count 94195480111406 step 0 next 1568
             2021-08-09 03:52:38.111081: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697800 of size 256 by op assert_greater_equal_9/Assert/AssertGuard/pivot_f/_255 action_count 94195480111407 step 0 next 951
             2021-08-09 03:52:38.111109: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697900 of size 256 by op assert_greater_equal_9/Assert/AssertGuard/pivot_t/_256 action_count 94195480111408 step 0 next 1720
             2021-08-09 03:52:38.111135: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697a00 of size 256 by op assert_less_equal_9/Assert/AssertGuard/pivot_f/_265 action_count 94195480111409 step 0 next 538
             2021-08-09 03:52:38.111161: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697b00 of size 256 by op assert_less_equal_9/Assert/AssertGuard/pivot_t/_266 action_count 94195480111410 step 0 next 1287
             2021-08-09 03:52:38.111190: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697c00 of size 256 by op assert_greater_equal_10/Assert/AssertGuard/pivot_f/_283 action_count 94195480111411 step 0 next 549
             2021-08-09 03:52:38.111218: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697d00 of size 256 by op assert_greater_equal_10/Assert/AssertGuard/pivot_t/_284 action_count 94195480111412 step 0 next 605
             2021-08-09 03:52:38.111243: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697e00 of size 256 by op gradient_tape/unet_depth4/conv_transpose_decoder1/batch_normalization_596/moments/scalar action_count 941954801
             11413 step 0 next 1567
             2021-08-09 03:52:38.111283: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697f00 of size 256 by op assert_less_equal_10/Assert/AssertGuard/pivot_f/_293 action_count 94195480111414 step 0 next 111
             2021-08-09 03:52:38.111311: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698000 of size 256 by op assert_less_equal_10/Assert/AssertGuard/pivot_t/_294 action_count 94195480111415 step 0 next 390
             2021-08-09 03:52:38.111340: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698100 of size 256 by op assert_greater_equal_11/Assert/AssertGuard/pivot_f/_311 action_count 94195480111416 step 0 next 907
             2021-08-09 03:52:38.111366: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698200 of size 256 by op assert_greater_equal_11/Assert/AssertGuard/pivot_t/_312 action_count 94195480111417 step 0 next 1209
             2021-08-09 03:52:38.111393: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698300 of size 256 by op assert_less_equal_11/Assert/AssertGuard/pivot_f/_321 action_count 94195480111418 step 0 next 289
             2021-08-09 03:52:38.111430: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698400 of size 256 by op assert_less_equal_11/Assert/AssertGuard/pivot_t/_322 action_count 94195480111419 step 0 next 1891
             2021-08-09 03:52:38.111458: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698500 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder2/batch_normalization_595/moments/scalar action_count 94195480111420
             step 0 next 268
             2021-08-09 03:52:38.111485: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698600 of size 256 by op assert_greater_equal_12/Assert/AssertGuard/pivot_f/_339 action_count 94195480111421 step 0 next 118
             2021-08-09 03:52:38.111511: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698700 of size 256 by op assert_greater_equal_12/Assert/AssertGuard/pivot_t/_340 action_count 94195480111422 step 0 next 1145
             2021-08-09 03:52:38.111545: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698800 of size 256 by op assert_less_equal_12/Assert/AssertGuard/pivot_f/_349 action_count 94195480111423 step 0 next 893
             2021-08-09 03:52:38.111574: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698900 of size 256 by op assert_less_equal_12/Assert/AssertGuard/pivot_t/_350 action_count 94195480111424 step 0 next 1114
             2021-08-09 03:52:38.111603: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698a00 of size 256 by op assert_greater_equal_13/Assert/AssertGuard/pivot_f/_367 action_count 94195480111425 step 0 next 1753
             2021-08-09 03:52:38.111640: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698b00 of size 256 by op assert_greater_equal_13/Assert/AssertGuard/pivot_t/_368 action_count 94195480111426 step 0 next 1264
             2021-08-09 03:52:38.111667: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698c00 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder2/batch_normalization_594/moments/scalar action_count 94195480111427
             step 0 next 475
             2021-08-09 03:52:38.111706: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698d00 of size 256 by op assert_less_equal_13/Assert/AssertGuard/pivot_f/_377 action_count 94195480111428 step 0 next 1060
             2021-08-09 03:52:38.111730: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698e00 of size 256 by op assert_less_equal_13/Assert/AssertGuard/pivot_t/_378 action_count 94195480111429 step 0 next 1700
             2021-08-09 03:52:38.111755: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698f00 of size 256 by op assert_greater_equal_14/Assert/AssertGuard/pivot_f/_395 action_count 94195480111430 step 0 next 1755
             2021-08-09 03:52:38.111789: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699000 of size 256 by op assert_greater_equal_14/Assert/AssertGuard/pivot_t/_396 action_count 94195480111431 step 0 next 2062
             2021-08-09 03:52:38.111813: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699100 of size 256 by op assert_less_equal_14/Assert/AssertGuard/pivot_f/_405 action_count 94195480111432 step 0 next 1877
             2021-08-09 03:52:38.111838: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699200 of size 256 by op assert_less_equal_14/Assert/AssertGuard/pivot_t/_406 action_count 94195480111433 step 0 next 1596
             2021-08-09 03:52:38.111862: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699300 of size 256 by op gradient_tape/unet_depth4/conv_transpose_decoder2/batch_normalization_593/moments/scalar action_count 941954801
             11434 step 0 next 1140
             2021-08-09 03:52:38.111888: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699400 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_f/_423 action_count 94195480111435 step 0 next 418
             2021-08-09 03:52:38.111913: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699500 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_t/_424 action_count 94195480111436 step 0 next 2194
             2021-08-09 03:52:38.111947: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699600 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_f/_433 action_count 94195480111437 step 0 next 876
             2021-08-09 03:52:38.111975: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699700 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_t/_434 action_count 94195480111438 step 0 next 387
             2021-08-09 03:52:38.112003: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699800 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_f/_451 action_count 94195480111439 step 0 next 2048
             2021-08-09 03:52:38.112030: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699900 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_t/_452 action_count 94195480111440 step 0 next 1297
             2021-08-09 03:52:38.112060: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699a00 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder3/batch_normalization_592/moments/scalar action_count 94195480111441
             step 0 next 1552
             2021-08-09 03:52:38.112095: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699b00 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_f/_461 action_count 94195480111442 step 0 next 1858
             2021-08-09 03:52:38.112124: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699c00 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_t/_462 action_count 94195480111443 step 0 next 1274
             2021-08-09 03:52:38.112150: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699d00 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_f/_479 action_count 94195480111444 step 0 next 2097
             2021-08-09 03:52:38.112177: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699e00 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_t/_480 action_count 94195480111445 step 0 next 55
             2021-08-09 03:52:38.112203: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699f00 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_f/_489 action_count 94195480111446 step 0 next 1333
             2021-08-09 03:52:38.112230: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a000 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_t/_490 action_count 94195480111447 step 0 next 1263
             2021-08-09 03:52:38.112256: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a100 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_f/_507 action_count 94195480111448 step 0 next 1277
             2021-08-09 03:52:38.112286: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a200 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_t/_508 action_count 94195480111449 step 0 next 1079
             2021-08-09 03:52:38.112314: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a300 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder3/batch_normalization_591/moments/scalar action_count 94195480111450
             step 0 next 1543
             2021-08-09 03:52:38.112339: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a400 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_f/_517 action_count 94195480111451 step 0 next 1722
             2021-08-09 03:52:38.112365: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a500 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_t/_518 action_count 94195480111452 step 0 next 2614
             2021-08-09 03:52:38.112403: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a600 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_f/_535 action_count 94195480111453 step 0 next 365
             2021-08-09 03:52:38.112429: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a700 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_t/_536 action_count 94195480111454 step 0 next 1068
             2021-08-09 03:52:38.112456: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a800 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_f/_545 action_count 94195480111455 step 0 next 900
             2021-08-09 03:52:38.112481: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a900 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_t/_546 action_count 94195480111456 step 0 next 802
             2021-08-09 03:52:38.112508: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69aa00 of size 256 by op gradient_tape/unet_depth4/conv_transpose_decoder3/batch_normalization_590/moments/scalar action_count 941954801
             11457 step 0 next 2922
             2021-08-09 03:52:38.112542: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ab00 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_f/_563 action_count 94195480111458 step 0 next 2994
             2021-08-09 03:52:38.112566: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ac00 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_t/_564 action_count 94195480111459 step 0 next 1443
             2021-08-09 03:52:38.112589: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ad00 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_f/_573 action_count 94195480111460 step 0 next 3039
             2021-08-09 03:52:38.112612: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ae00 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_t/_574 action_count 94195480111461 step 0 next 2814
             2021-08-09 03:52:38.112646: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69af00 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_f/_591 action_count 94195480111462 step 0 next 2808
             2021-08-09 03:52:38.112673: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b000 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_t/_592 action_count 94195480111463 step 0 next 3093
             2021-08-09 03:52:38.112697: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b100 of size 256 by op gradient_tape/unet_depth4/two_conv_center/batch_normalization_589/moments/scalar action_count 94195480111464 st
             ep 0 next 2882
             2021-08-09 03:52:38.112721: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b200 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_f/_601 action_count 94195480111465 step 0 next 2963
             2021-08-09 03:52:38.112755: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b300 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_t/_602 action_count 94195480111466 step 0 next 1412
             2021-08-09 03:52:38.112781: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b400 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_f/_619 action_count 94195480111467 step 0 next 2849
             2021-08-09 03:52:38.112805: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b500 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_t/_620 action_count 94195480111468 step 0 next 2795
             2021-08-09 03:52:38.112830: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b600 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_f/_629 action_count 94195480111469 step 0 next 2932
             2021-08-09 03:52:38.112856: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b700 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_t/_630 action_count 94195480111470 step 0 next 2770
             2021-08-09 03:52:38.112880: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b800 of size 256 by op gradient_tape/unet_depth4/two_conv_center/batch_normalization_588/moments/scalar action_count 94195480111471 st
             ep 0 next 2243
             2021-08-09 03:52:38.112905: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b900 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_f/_647 action_count 94195480111472 step 0 next 2759
             2021-08-09 03:52:38.112929: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ba00 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_t/_648 action_count 94195480111473 step 0 next 2741
             2021-08-09 03:52:38.112965: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69bb00 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_f/_657 action_count 94195480111474 step 0 next 443
             2021-08-09 03:52:38.113001: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69bc00 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_t/_658 action_count 94195480111475 step 0 next 2897
             2021-08-09 03:52:38.113027: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69bd00 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_f/_675 action_count 94195480111476 step 0 next 2857
             2021-08-09 03:52:38.113050: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69be00 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_t/_676 action_count 94195480111477 step 0 next 3087
             2021-08-09 03:52:38.113073: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69bf00 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_f/_685 action_count 94195480111478 step 0 next 3055
             2021-08-09 03:52:38.113100: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c000 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_t/_686 action_count 94195480111479 step 0 next 2949
             2021-08-09 03:52:38.113125: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c100 of size 256 by op gradient_tape/unet_depth4/encode3/batch_normalization_587/moments/scalar action_count 94195480111480 step 0 nex
             t 2981
             2021-08-09 03:52:38.113159: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c200 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_f/_703 action_count 94195480111481 step 0 next 3083
             2021-08-09 03:52:38.113180: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c300 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_t/_704 action_count 94195480111482 step 0 next 3088
             2021-08-09 03:52:38.113203: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c400 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_f/_713 action_count 94195480111483 step 0 next 2752
             2021-08-09 03:52:38.113226: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c500 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_t/_714 action_count 94195480111484 step 0 next 3048
             2021-08-09 03:52:38.113253: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c600 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_f/_731 action_count 94195480111485 step 0 next 3002
             2021-08-09 03:52:38.113285: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c700 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_t/_732 action_count 94195480111486 step 0 next 349
             2021-08-09 03:52:38.113310: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c800 of size 256 by op gradient_tape/unet_depth4/encode3/batch_normalization_586/moments/scalar action_count 94195480111487 step 0 nex
             t 2859
             2021-08-09 03:52:38.113334: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c900 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_f/_741 action_count 94195480111488 step 0 next 2696
             2021-08-09 03:52:38.113358: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ca00 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_t/_742 action_count 94195480111489 step 0 next 2629
             2021-08-09 03:52:38.113385: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69cb00 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_f/_759 action_count 94195480111490 step 0 next 3008
             2021-08-09 03:52:38.113405: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69cc00 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_t/_760 action_count 94195480111491 step 0 next 2093
             2021-08-09 03:52:38.113428: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69cd00 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_f/_769 action_count 94195480111492 step 0 next 2978
             2021-08-09 03:52:38.113459: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ce00 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_t/_770 action_count 94195480111493 step 0 next 3074
             2021-08-09 03:52:38.113485: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69cf00 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_f/_787 action_count 94195480111494 step 0 next 3075
             2021-08-09 03:52:38.113509: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d000 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_t/_788 action_count 94195480111495 step 0 next 3018
             2021-08-09 03:52:38.113550: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d100 of size 256 by op gradient_tape/unet_depth4/encode2/batch_normalization_585/moments/scalar action_count 94195480111496 step 0 nex
             t 2844
             2021-08-09 03:52:38.113577: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d200 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_f/_797 action_count 94195480111497 step 0 next 1422
             2021-08-09 03:52:38.113601: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d300 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_t/_798 action_count 94195480111498 step 0 next 3025
             2021-08-09 03:52:38.113625: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d400 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_f/_815 action_count 94195480111499 step 0 next 3003
             2021-08-09 03:52:38.113649: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d500 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_t/_816 action_count 94195480111500 step 0 next 2735
             2021-08-09 03:52:38.113674: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d600 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_f/_825 action_count 94195480111501 step 0 next 2969
             2021-08-09 03:52:38.113706: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d700 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_t/_826 action_count 94195480111502 step 0 next 2940
             2021-08-09 03:52:38.113731: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d800 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_f/_843 action_count 94195480111503 step 0 next 2957
             2021-08-09 03:52:38.113756: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d900 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_t/_844 action_count 94195480111504 step 0 next 2811
             2021-08-09 03:52:38.113780: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69da00 of size 256 by op gradient_tape/unet_depth4/encode2/batch_normalization_584/moments/scalar action_count 94195480111505 step 0 nex
             t 3012
             2021-08-09 03:52:38.113805: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69db00 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_f/_853 action_count 94195480111506 step 0 next 2782
             2021-08-09 03:52:38.113828: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69dc00 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_t/_854 action_count 94195480111507 step 0 next 2816
             2021-08-09 03:52:38.113851: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69dd00 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_f/_871 action_count 94195480111508 step 0 next 1605
             2021-08-09 03:52:38.113876: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69de00 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_t/_872 action_count 94195480111509 step 0 next 2740
             2021-08-09 03:52:38.113900: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69df00 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_f/_881 action_count 94195480111510 step 0 next 2942
             2021-08-09 03:52:38.113923: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e000 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_t/_882 action_count 94195480111511 step 0 next 2905
             2021-08-09 03:52:38.113957: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e100 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_f/_899 action_count 94195480111512 step 0 next 2806
             2021-08-09 03:52:38.113981: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e200 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_t/_900 action_count 94195480111513 step 0 next 2987
             2021-08-09 03:52:38.114006: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e300 of size 256 by op gradient_tape/unet_depth4/encode1/batch_normalization_583/moments/scalar action_count 94195480111514 step 0 nex
             t 2968
             2021-08-09 03:52:38.114031: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e400 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_f/_909 action_count 94195480111515 step 0 next 3052
             2021-08-09 03:52:38.114055: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e500 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_t/_910 action_count 94195480111516 step 0 next 3020
             2021-08-09 03:52:38.114080: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e600 of size 256 by op gradient_tape/unet_depth4/encode1/batch_normalization_582/moments/scalar action_count 94195480111517 step 0 nex
             t 2773
             2021-08-09 03:52:38.114105: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e700 of size 256 by op gradient_tape/unet_depth4/encode0/batch_normalization_581/moments/scalar action_count 94195480111518 step 0 nex
             t 2792
             2021-08-09 03:52:38.114141: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e800 of size 256 by op gradient_tape/unet_depth4/encode0/batch_normalization_580/moments/scalar action_count 94195480111519 step 0 nex
             t 2842
             2021-08-09 03:52:38.114166: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e900 of size 256 by op Adam/Adam/Const action_count 94195480111520 step 0 next 3023
             2021-08-09 03:52:38.114200: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ea00 of size 1441792 by op gradient_tape/binary_ce_dice/logistic_loss/sub/Neg/_0__cf__4291 action_count 94195480111521 step 0 next 279
             8
             2021-08-09 03:52:38.114227: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe7fea00 of size 1441792 by op gradient_tape/binary_ce_dice/weighted_loss/Tile_1/_1__cf__4292 action_count 94195480111522 step 0 next 2948
             2021-08-09 03:52:38.114252: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe95ea00 of size 157947392 by op Tile_90 action_count 94195480111525 step 13755587135625806913 next 18446744073709551615
             2021-08-09 03:52:38.114277: I tensorflow/core/common_runtime/bfc_allocator.cc:1027] Next region of size 2147483648
             2021-08-09 03:52:38.114304: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3b96000000 of size 340262912 by op Adam/gradients/AddN_3/tmp_var_zeros action_count 94195480111374 step 0 next 1663
             2021-08-09 03:52:38.114340: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3baa480000 of size 170131456 by op unet_depth4/encode0/conv1d_506/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111553
              step 13755587135625806913 next 2699
             2021-08-09 03:52:38.114370: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bb46c0000 of size 512 by op unet_depth4/encode0/batch_normalization_580/moments/variance action_count 94195480111559 step 13755587135625806
             913 next 3044
             2021-08-09 03:52:38.114396: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bb46c0200 of size 170131456 by op gradient_tape/unet_depth4/encode0/conv1d_507/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOpti
             mizer action_count 94195480111571 step 13755587135625806913 next 2506
             2021-08-09 03:52:38.114424: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bbe900200 of size 512 by op unet_depth4/encode0/batch_normalization_581/moments/mean action_count 94195480111593 step 13755587135625806913
             next 2970
             2021-08-09 03:52:38.114457: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bbe900400 of size 512 by op unet_depth4/encode0/batch_normalization_581/moments/variance action_count 94195480111597 step 13755587135625806
             913 next 2492
             2021-08-09 03:52:38.114485: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bbe900600 of size 512 by op unet_depth4/encode0/batch_normalization_581/batchnorm/mul action_count 94195480111605 step 13755587135625806913
              next 3019
             2021-08-09 03:52:38.114512: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bbe900800 of size 170129920 by op unet_depth4/mp_encode0/MaxPool action_count 94195480111610 step 13755587135625806913 next 2951
             2021-08-09 03:52:38.114545: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bc8b40200 of size 170131456 by op unet_depth4/encode0/conv1d_507/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111591
              step 13755587135625806913 next 3090
             2021-08-09 03:52:38.114581: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bd2d80200 of size 170131456 by op unet_depth4/encode0/batch_normalization_581/batchnorm/mul_1 action_count 94195480111606 step 137555871356
             25806913 next 2838
             2021-08-09 03:52:38.114610: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bdcfc0200 of size 170131456 by op gradient_tape/unet_depth4/mp_encode0/MaxPool/MaxPoolGrad-0-TransposeNHWCToNCHW-LayoutOptimizer action_cou
             nt 94195480111609 step 13755587135625806913 next 2829
             2021-08-09 03:52:38.114638: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7200200 of size 1024 by op unet_depth4/encode1/batch_normalization_582/moments/mean action_count 94195480111635 step 13755587135625806913
              next 1051
             2021-08-09 03:52:38.114663: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7200600 of size 1024 by op unet_depth4/encode1/batch_normalization_582/moments/variance action_count 94195480111639 step 1375558713562580
             6913 next 2989
             2021-08-09 03:52:38.114696: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7200a00 of size 1024 by op unet_depth4/encode1/batch_normalization_582/batchnorm/mul action_count 94195480111647 step 1375558713562580691
             3 next 3040
             2021-08-09 03:52:38.114724: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7200e00 of size 1024 by op unet_depth4/encode1/batch_normalization_583/moments/mean action_count 94195480111673 step 13755587135625806913
              next 2344
             2021-08-09 03:52:38.114751: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7201200 of size 1024 by op unet_depth4/encode1/batch_normalization_583/moments/variance action_count 94195480111677 step 1375558713562580
             6913 next 2890
             2021-08-09 03:52:38.114778: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7201600 of size 1024 by op unet_depth4/encode1/batch_normalization_583/batchnorm/mul action_count 94195480111685 step 1375558713562580691
             3 next 2930
             2021-08-09 03:52:38.114802: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7201a00 of size 2048 by op unet_depth4/encode2/batch_normalization_584/moments/mean action_count 94195480111715 step 13755587135625806913
              next 3034
             2021-08-09 03:52:38.114836: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7202200 of size 2048 by op unet_depth4/encode2/batch_normalization_584/moments/variance action_count 94195480111719 step 1375558713562580
             6913 next 2704
             2021-08-09 03:52:38.114862: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7202a00 of size 2048 by op unet_depth4/encode2/batch_normalization_584/batchnorm/mul action_count 94195480111727 step 1375558713562580691
             3 next 3066
             2021-08-09 03:52:38.114888: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7203200 of size 2048 by op unet_depth4/encode2/batch_normalization_585/moments/mean action_count 94195480111753 step 13755587135625806913
              next 1476
             2021-08-09 03:52:38.114914: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7203a00 of size 2048 by op unet_depth4/encode2/batch_normalization_585/moments/variance action_count 94195480111757 step 1375558713562580
             6913 next 3091
             2021-08-09 03:52:38.114942: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7204200 of size 2048 by op unet_depth4/encode2/batch_normalization_585/batchnorm/mul action_count 94195480111765 step 1375558713562580691
             3 next 2729
             2021-08-09 03:52:38.114976: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7204a00 of size 2048 by op unet_depth4/encode3/batch_normalization_586/moments/mean action_count 94195480111795 step 13755587135625806913
              next 3041
             2021-08-09 03:52:38.115002: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7205200 of size 2048 by op unet_depth4/encode3/batch_normalization_586/moments/variance action_count 94195480111797 step 1375558713562580
             6913 next 3065
             2021-08-09 03:52:38.115027: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7205a00 of size 2048 by op unet_depth4/encode3/batch_normalization_586/batchnorm/mul action_count 94195480111803 step 1375558713562580691
             3 next 2971
             2021-08-09 03:52:38.115052: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7206200 of size 2048 by op unet_depth4/encode3/batch_normalization_587/moments/mean action_count 94195480111829 step 13755587135625806913
              next 1680
             2021-08-09 03:52:38.115076: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7206a00 of size 2048 by op unet_depth4/encode3/batch_normalization_587/moments/variance action_count 94195480111831 step 1375558713562580
             6913 next 2880
             2021-08-09 03:52:38.115112: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7207200 of size 2048 by op unet_depth4/encode3/batch_normalization_587/batchnorm/mul action_count 94195480111837 step 1375558713562580691
             3 next 2712
             2021-08-09 03:52:38.115140: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7207a00 of size 85035008 by op unet_depth4/mp_encode3/MaxPool action_count 94195480111842 step 13755587135625806913 next 2763
             2021-08-09 03:52:38.115167: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bec320200 of size 85065728 by op gradient_tape/unet_depth4/encode1/conv1d_508/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOptim
             izer action_count 94195480111612 step 13755587135625806913 next 2765
             2021-08-09 03:52:38.115195: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bf1440200 of size 170131456 by op unet_depth4/encode1/batch_normalization_582/batchnorm/mul_1 action_count 94195480111648 step 137555871356
             25806913 next 3086
             2021-08-09 03:52:38.115220: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bfb680200 of size 170131456 by op unet_depth4/encode1/conv1d_508/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111633
              step 13755587135625806913 next 2790
             2021-08-09 03:52:38.115257: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c058c0200 of size 276037120 by op gradient_tape/unet_depth4/encode1/conv1d_509/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOpti
             mizer action_count 94195480111651 step 13755587135625806913 next 18446744073709551615
             2021-08-09 03:52:38.115285: I tensorflow/core/common_runtime/bfc_allocator.cc:1027] Next region of size 4294967296
             2021-08-09 03:52:38.115309: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c36000000 of size 170131456 by op unet_depth4/encode1/batch_normalization_583/batchnorm/mul_1 action_count 94195480111686 step 137555871356
             25806913 next 3009
             2021-08-09 03:52:38.115334: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c40240000 of size 170131456 by op unet_depth4/encode1/conv1d_509/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111671
              step 13755587135625806913 next 2924
             2021-08-09 03:52:38.115360: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c4a480000 of size 170131456 by op gradient_tape/unet_depth4/mp_encode1/MaxPool/MaxPoolGrad-0-TransposeNHWCToNCHW-LayoutOptimizer action_cou
             nt 94195480111689 step 13755587135625806913 next 3072
             2021-08-09 03:52:38.115388: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c546c0000 of size 85065728 by op unet_depth4/mp_encode1/MaxPool action_count 94195480111690 step 13755587135625806913 next 2768
             2021-08-09 03:52:38.115423: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c597e0000 of size 85065728 by op unet_depth4/mp_encode2/MaxPool action_count 94195480111770 step 13755587135625806913 next 737
             2021-08-09 03:52:38.115450: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c5e900000 of size 85065728 by op gradient_tape/unet_depth4/encode2/conv1d_510/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOptim
             izer action_count 94195480111692 step 13755587135625806913 next 3006
             2021-08-09 03:52:38.115479: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c63a20000 of size 170131456 by op unet_depth4/encode2/batch_normalization_584/batchnorm/mul_1 action_count 94195480111728 step 137555871356
             25806913 next 3013
             2021-08-09 03:52:38.115504: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c6dc60000 of size 170131456 by op unet_depth4/encode2/conv1d_510/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111713
              step 13755587135625806913 next 3035
             2021-08-09 03:52:38.115548: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c77ea0000 of size 170131456 by op gradient_tape/unet_depth4/encode2/conv1d_511/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOpti
             mizer action_count 94195480111731 step 13755587135625806913 next 2953
             2021-08-09 03:52:38.115576: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c820e0000 of size 170131456 by op unet_depth4/encode2/batch_normalization_585/batchnorm/mul_1 action_count 94195480111766 step 137555871356
             25806913 next 2995
             2021-08-09 03:52:38.115602: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c8c320000 of size 170131456 by op unet_depth4/encode2/conv1d_511/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111751
              step 13755587135625806913 next 2966
             2021-08-09 03:52:38.115628: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c96560000 of size 170131456 by op gradient_tape/unet_depth4/mp_encode2/MaxPool/MaxPoolGrad-0-TransposeNHWCToNCHW-LayoutOptimizer action_cou
             nt 94195480111769 step 13755587135625806913 next 2819
             2021-08-09 03:52:38.115655: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a0000 of size 4096 by op unet_depth4/two_conv_center/batch_normalization_588/moments/mean action_count 94195480111867 step 137555871356
             25806913 next 2956
             2021-08-09 03:52:38.115680: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a1000 of size 4096 by op unet_depth4/two_conv_center/batch_normalization_588/moments/variance action_count 94195480111869 step 13755587
             135625806913 next 2939
             2021-08-09 03:52:38.115705: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a2000 of size 4096 by op unet_depth4/two_conv_center/batch_normalization_588/batchnorm/mul action_count 94195480111875 step 13755587135
             625806913 next 2727
             2021-08-09 03:52:38.115730: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a3000 of size 4096 by op unet_depth4/two_conv_center/batch_normalization_589/moments/mean action_count 94195480111901 step 137555871356
             25806913 next 3085
             2021-08-09 03:52:38.115767: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a4000 of size 4096 by op unet_depth4/two_conv_center/batch_normalization_589/moments/variance action_count 94195480111903 step 13755587
             135625806913 next 3046
             2021-08-09 03:52:38.115793: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a5000 of size 4096 by op unet_depth4/two_conv_center/batch_normalization_589/batchnorm/mul action_count 94195480111909 step 13755587135
             625806913 next 2783
             2021-08-09 03:52:38.115819: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a6000 of size 2048 by op unet_depth4/conv_transpose_decoder3/batch_normalization_590/moments/mean action_count 94195480111923 step 1375
             5587135625806913 next 2980
             2021-08-09 03:52:38.115844: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a6800 of size 2048 by op unet_depth4/conv_transpose_decoder3/batch_normalization_590/batchnorm/mul action_count 94195480111931 step 137
             55587135625806913 next 2935
             2021-08-09 03:52:38.115880: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a7000 of size 2048 by op unet_depth4/conv_transpose_decoder3/batch_normalization_590/moments/variance action_count 94195480111926 step
             13755587135625806913 next 2919
             2021-08-09 03:52:38.115908: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a7800 of size 2048 by op unet_depth4/two_conv_decoder3/batch_normalization_591/moments/mean action_count 94195480111959 step 1375558713
             5625806913 next 3064
             2021-08-09 03:52:38.115934: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a8000 of size 2048 by op unet_depth4/two_conv_decoder3/batch_normalization_591/batchnorm/mul action_count 94195480111967 step 137555871
             35625806913 next 2746
             2021-08-09 03:52:38.115962: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a8800 of size 2048 by op unet_depth4/two_conv_decoder3/batch_normalization_591/moments/variance action_count 94195480111962 step 137555
             87135625806913 next 2778
             2021-08-09 03:52:38.115988: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a9000 of size 2048 by op unet_depth4/two_conv_decoder3/batch_normalization_592/moments/mean action_count 94195480111979 step 1375558713
             5625806913 next 3014
             2021-08-09 03:52:38.116011: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a9800 of size 2048 by op unet_depth4/two_conv_decoder3/batch_normalization_592/batchnorm/add action_count 94195480111985 step 137555871
             35625806913 next 3005
             2021-08-09 03:52:38.116045: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07aa000 of size 2048 by op unet_depth4/conv_transpose_decoder2/batch_normalization_593/moments/mean action_count 94195480112001 step 1375
             5587135625806913 next 3038
             2021-08-09 03:52:38.116073: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07aa800 of size 2048 by op unet_depth4/two_conv_decoder3/batch_normalization_592/batchnorm/mul action_count 94195480111986 step 137555871
             35625806913 next 2885
             2021-08-09 03:52:38.116106: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ab000 of size 2048 by op unet_depth4/conv_transpose_decoder2/batch_normalization_593/batchnorm/mul action_count 94195480112009 step 137
             55587135625806913 next 2738
             2021-08-09 03:52:38.116135: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ab800 of size 2048 by op unet_depth4/conv_transpose_decoder2/batch_normalization_593/moments/variance action_count 94195480112004 step
             13755587135625806913 next 2695
             2021-08-09 03:52:38.116161: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ac000 of size 2048 by op unet_depth4/two_conv_decoder2/batch_normalization_594/moments/mean action_count 94195480112037 step 1375558713
             5625806913 next 2869
             2021-08-09 03:52:38.116186: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ac800 of size 2048 by op unet_depth4/two_conv_decoder2/batch_normalization_594/batchnorm/mul action_count 94195480112045 step 137555871
             35625806913 next 3054
             2021-08-09 03:52:38.116210: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ad000 of size 2048 by op unet_depth4/two_conv_decoder2/batch_normalization_594/moments/variance action_count 94195480112040 step 137555
             87135625806913 next 2959
             2021-08-09 03:52:38.116237: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ad800 of size 2048 by op unet_depth4/two_conv_decoder2/batch_normalization_595/moments/mean action_count 94195480112071 step 1375558713
             5625806913 next 2760
             2021-08-09 03:52:38.116260: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ae000 of size 2048 by op unet_depth4/two_conv_decoder2/batch_normalization_595/batchnorm/add action_count 94195480112077 step 137555871
             35625806913 next 3031
             2021-08-09 03:52:38.116296: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ae800 of size 2048 by op unet_depth4/conv_transpose_decoder1/batch_normalization_596/moments/mean action_count 94195480112093 step 1375
             5587135625806913 next 2972
             2021-08-09 03:52:38.116323: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07af000 of size 2048 by op unet_depth4/two_conv_decoder2/batch_normalization_595/batchnorm/mul action_count 94195480112078 step 137555871
             35625806913 next 2903
             2021-08-09 03:52:38.116360: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07af800 of size 2048 by op unet_depth4/conv_transpose_decoder1/batch_normalization_596/batchnorm/mul action_count 94195480112105 step 137
             55587135625806913 next 2788
             2021-08-09 03:52:38.116387: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b0000 of size 2048 by op unet_depth4/conv_transpose_decoder1/batch_normalization_596/moments/variance action_count 94195480112098 step
             13755587135625806913 next 3004
             2021-08-09 03:52:38.116413: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b0800 of size 2048 by op unet_depth4/two_conv_decoder1/batch_normalization_597/moments/mean action_count 94195480112133 step 1375558713
             5625806913 next 2706
             2021-08-09 03:52:38.116438: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b1000 of size 2048 by op unet_depth4/two_conv_decoder1/batch_normalization_597/batchnorm/mul action_count 94195480112145 step 137555871
             35625806913 next 3061
             2021-08-09 03:52:38.116463: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b1800 of size 2048 by op unet_depth4/two_conv_decoder1/batch_normalization_597/moments/variance action_count 94195480112138 step 137555
             87135625806913 next 2962
             2021-08-09 03:52:38.116499: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b2000 of size 2048 by op unet_depth4/two_conv_decoder1/batch_normalization_598/moments/mean action_count 94195480112171 step 1375558713
             5625806913 next 2889
             2021-08-09 03:52:38.116533: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b2800 of size 2048 by op unet_depth4/two_conv_decoder1/batch_normalization_598/batchnorm/add action_count 94195480112181 step 137555871
             35625806913 next 2926
             2021-08-09 03:52:38.116561: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b3000 of size 1024 by op unet_depth4/conv_transpose_decoder0/batch_normalization_599/moments/mean action_count 94195480112197 step 1375
             5587135625806913 next 3043
             2021-08-09 03:52:38.116587: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b3400 of size 1024 by op unet_depth4/conv_transpose_decoder0/batch_normalization_599/batchnorm/mul action_count 94195480112209 step 137
             55587135625806913 next 2955
             2021-08-09 03:52:38.116622: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b3800 of size 2048 by op unet_depth4/two_conv_decoder1/batch_normalization_598/batchnorm/mul action_count 94195480112182 step 137555871
             35625806913 next 3028
             2021-08-09 03:52:38.116648: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b4000 of size 1024 by op unet_depth4/conv_transpose_decoder0/batch_normalization_599/moments/variance action_count 94195480112202 step
             13755587135625806913 next 3081
             2021-08-09 03:52:38.116675: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] Free  at 2b3ca07b4400 of size 84982784 by op UNUSED action_count 94195480112212 step 13755587135625806913 next 1631
             2021-08-09 03:52:38.116700: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca58c0000 of size 85065728 by op gradient_tape/unet_depth4/encode3/conv1d_512/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOptim
             izer action_count 94195480111772 step 13755587135625806913 next 2950
             2021-08-09 03:52:38.116727: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3caa9e0000 of size 92274688 by op unet_depth4/encode3/batch_normalization_586/batchnorm/mul_1 action_count 94195480111804 step 1375558713562
             5806913 next 3082
             2021-08-09 03:52:38.116762: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cb01e0000 of size 92274688 by op unet_depth4/encode3/conv1d_512/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111793
             step 13755587135625806913 next 412
             2021-08-09 03:52:38.116790: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cb59e0000 of size 92274688 by op gradient_tape/unet_depth4/encode3/conv1d_513/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOptim
             izer action_count 94195480111807 step 13755587135625806913 next 3053
             2021-08-09 03:52:38.116817: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cbb1e0000 of size 92274688 by op unet_depth4/encode3/batch_normalization_587/batchnorm/mul_1 action_count 94195480111838 step 1375558713562
             5806913 next 2988
             2021-08-09 03:52:38.116842: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cc09e0000 of size 92274688 by op unet_depth4/encode3/conv1d_513/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111827
             step 13755587135625806913 next 2982
             2021-08-09 03:52:38.116869: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cc61e0000 of size 92274688 by op gradient_tape/unet_depth4/mp_encode3/MaxPool/MaxPoolGrad-0-TransposeNHWCToNCHW-LayoutOptimizer action_coun
             t 94195480111841 step 13755587135625806913 next 2944
             2021-08-09 03:52:38.116905: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ccb9e0000 of size 46137344 by op gradient_tape/unet_depth4/two_conv_center/conv1d_514/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-Lay
             outOptimizer action_count 94195480111844 step 13755587135625806913 next 2964
             2021-08-09 03:52:38.116933: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cce5e0000 of size 92274688 by op unet_depth4/two_conv_center/batch_normalization_588/batchnorm/mul_1 action_count 94195480111876 step 13755
             587135625806913 next 2991
             2021-08-09 03:52:38.116960: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cd3de0000 of size 92274688 by op unet_depth4/two_conv_center/conv1d_514/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 9419548
             0111865 step 13755587135625806913 next 2719
             2021-08-09 03:52:38.116986: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cd95e0000 of size 92274688 by op gradient_tape/unet_depth4/two_conv_center/conv1d_515/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-Lay
             outOptimizer action_count 94195480111879 step 13755587135625806913 next 2694
             2021-08-09 03:52:38.117012: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cdede0000 of size 92274688 by op unet_depth4/two_conv_center/batch_normalization_589/batchnorm/mul_1 action_count 94195480111910 step 13755
             587135625806913 next 770
             2021-08-09 03:52:38.117049: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ce45e0000 of size 92274688 by op unet_depth4/two_conv_center/conv1d_515/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 9419548
             0111899 step 13755587135625806913 next 2979
             2021-08-09 03:52:38.117077: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ce9de0000 of size 92274688 by op gradient_tape/unet_depth4/conv_transpose_decoder3/conv1d_transpose_104/conv1d_transpose/Conv2DBackpropFilt
             er-2-TransposeNHWCToNCHW-LayoutOptimizer action_count 94195480111913 step 13755587135625806913 next 2999
             2021-08-09 03:52:38.117104: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cef5e0000 of size 92274688 by op unet_depth4/conv_transpose_decoder3/conv1d_transpose_104/conv1d_transpose-0-0-TransposeNCHWToNHWC-LayoutOp
             timizer action_count 94195480111921 step 13755587135625806913 next 2993
             2021-08-09 03:52:38.117131: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cf4de0000 of size 92274688 by op unet_depth4/conv_transpose_decoder3/batch_normalization_590/batchnorm/mul_1 action_count 94195480111933 st
             ep 13755587135625806913 next 3071
             2021-08-09 03:52:38.117167: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cfa5e0000 of size 92274688 by op unet_depth4/two_conv_decoder3/batch_normalization_591/batchnorm/mul_1 action_count 94195480111969 step 137
             55587135625806913 next 3001
             2021-08-09 03:52:38.117195: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cffde0000 of size 92274688 by op unet_depth4/two_conv_decoder3/conv1d_516/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195
             480111957 step 13755587135625806913 next 2908
             2021-08-09 03:52:38.117223: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d055e0000 of size 184549376 by op gradient_tape/unet_depth4/two_conv_decoder3/conv1d_516/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-
             LayoutOptimizer action_count 94195480111936 step 13755587135625806913 next 2977
             2021-08-09 03:52:38.117251: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d105e0000 of size 92274688 by op gradient_tape/unet_depth4/two_conv_decoder3/conv1d_517/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-L
             ayoutOptimizer action_count 94195480111971 step 13755587135625806913 next 2736
             2021-08-09 03:52:38.117278: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d15de0000 of size 92274688 by op unet_depth4/two_conv_decoder3/batch_normalization_592/batchnorm/mul_1 action_count 94195480111989 step 137
             55587135625806913 next 2910
             2021-08-09 03:52:38.117304: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d1b5e0000 of size 92274688 by op unet_depth4/two_conv_decoder3/conv1d_517/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195
             480111977 step 13755587135625806913 next 2685
             2021-08-09 03:52:38.117331: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d20de0000 of size 92274688 by op gradient_tape/unet_depth4/conv_transpose_decoder2/conv1d_transpose_105/conv1d_transpose/Conv2DBackpropFilt
             er-2-TransposeNHWCToNCHW-LayoutOptimizer action_count 94195480111991 step 13755587135625806913 next 3073
             2021-08-09 03:52:38.117358: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d265e0000 of size 262275072 by op unet_depth4/conv_transpose_decoder2/conv1d_transpose_105/conv1d_transpose-0-0-TransposeNCHWToNHWC-LayoutO
             ptimizer action_count 94195480111999 step 13755587135625806913 next 18446744073709551615
             2021-08-09 03:52:38.117392: I tensorflow/core/common_runtime/bfc_allocator.cc:1027] Next region of size 6764888064
             2021-08-09 03:52:38.117420: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d70000000 of size 184549376 by op unet_depth4/conv_transpose_decoder2/batch_normalization_593/batchnorm/mul_1 action_count 94195480112011 s
             tep 13755587135625806913 next 3032
             2021-08-09 03:52:38.117447: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d7b000000 of size 184549376 by op unet_depth4/two_conv_decoder2/batch_normalization_594/batchnorm/mul_1 action_count 94195480112047 step 13
             755587135625806913 next 2626
             2021-08-09 03:52:38.117473: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] Free  at 2b3d86000000 of size 170131456 by op UNUSED action_count 94195421079702 step 17448270550709606267 next 2997
             2021-08-09 03:52:38.117499: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d90240000 of size 354680832 by op gradient_tape/unet_depth4/two_conv_decoder2/conv1d_518/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-
             LayoutOptimizer action_count 94195480112014 step 13755587135625806913 next 2883
             2021-08-09 03:52:38.117543: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3da5480000 of size 184549376 by op unet_depth4/two_conv_decoder2/conv1d_518/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 9419
             5480112035 step 13755587135625806913 next 3010
             2021-08-09 03:52:38.117571: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3db0480000 of size 184549376 by op gradient_tape/unet_depth4/two_conv_decoder2/conv1d_519/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-
             LayoutOptimizer action_count 94195480112049 step 13755587135625806913 next 2943
             2021-08-09 03:52:38.117597: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3dbb480000 of size 184549376 by op unet_depth4/two_conv_decoder2/batch_normalization_595/batchnorm/mul_1 action_count 94195480112081 step 13
             755587135625806913 next 2973
             2021-08-09 03:52:38.117624: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3dc6480000 of size 184549376 by op unet_depth4/two_conv_decoder2/conv1d_519/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 9419
             5480112069 step 13755587135625806913 next 2984
             2021-08-09 03:52:38.117650: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3dd1480000 of size 184549376 by op gradient_tape/unet_depth4/conv_transpose_decoder1/conv1d_transpose_106/conv1d_transpose/Conv2DBackpropFil
             ter-2-TransposeNHWCToNCHW-LayoutOptimizer action_count 94195480112083 step 13755587135625806913 next 2946
             2021-08-09 03:52:38.117677: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ddc480000 of size 340262912 by op unet_depth4/conv_transpose_decoder1/conv1d_transpose_106/conv1d_transpose-0-0-TransposeNCHWToNHWC-LayoutO
             ptimizer action_count 94195480112091 step 13755587135625806913 next 2002
             2021-08-09 03:52:38.117713: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3df0900000 of size 340262912 by op unet_depth4/conv_transpose_decoder1/batch_normalization_596/batchnorm/mul_1 action_count 94195480112107 s
             tep 13755587135625806913 next 3036
             2021-08-09 03:52:38.117741: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3e04d80000 of size 340262912 by op unet_depth4/two_conv_decoder1/batch_normalization_597/batchnorm/mul_1 action_count 94195480112147 step 13
             755587135625806913 next 3062
             2021-08-09 03:52:38.117777: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] Free  at 2b3e19200000 of size 170131456 by op UNUSED action_count 94195419013976 step 17479529273785244716 next 2934
             2021-08-09 03:52:38.117806: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3e23440000 of size 510394368 by op gradient_tape/unet_depth4/two_conv_decoder1/conv1d_520/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-
             LayoutOptimizer action_count 94195480112110 step 13755587135625806913 next 3033
             2021-08-09 03:52:38.117832: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3e41b00000 of size 340262912 by op unet_depth4/two_conv_decoder1/conv1d_520/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 9419
             5480112131 step 13755587135625806913 next 2927
             2021-08-09 03:52:38.117861: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3e55f80000 of size 340262912 by op gradient_tape/unet_depth4/two_conv_decoder1/conv1d_521/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-
             LayoutOptimizer action_count 94195480112149 step 13755587135625806913 next 3022
             2021-08-09 03:52:38.117889: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3e6a400000 of size 340262912 by op unet_depth4/two_conv_decoder1/batch_normalization_598/batchnorm/mul_1 action_count 94195480112185 step 13
             755587135625806913 next 2998
             2021-08-09 03:52:38.117922: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3e7e880000 of size 340262912 by op unet_depth4/two_conv_decoder1/conv1d_521/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 9419
             5480112169 step 13755587135625806913 next 3029
             2021-08-09 03:52:38.117951: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3e92d00000 of size 340262912 by op gradient_tape/unet_depth4/conv_transpose_decoder0/conv1d_transpose_107/conv1d_transpose/Conv2DBackpropFil
             ter-2-TransposeNHWCToNCHW-LayoutOptimizer action_count 94195480112187 step 13755587135625806913 next 2938
             2021-08-09 03:52:38.117978: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ea7180000 of size 340262912 by op unet_depth4/conv_transpose_decoder0/conv1d_transpose_107/conv1d_transpose-0-0-TransposeNCHWToNHWC-LayoutO
             ptimizer action_count 94195480112195 step 13755587135625806913 next 2945
             2021-08-09 03:52:38.118005: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ebb600000 of size 340262912 by op unet_depth4/conv_transpose_decoder0/batch_normalization_599/batchnorm/mul_1 action_count 94195480112211 s
             tep 13755587135625806913 next 3021
             2021-08-09 03:52:38.118031: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ecfa80000 of size 510394368 by op unet_depth4/decoder0/concat action_count 94195480112213 step 13755587135625806913 next 3080
             2021-08-09 03:52:38.118055: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] Free  at 2b3eee140000 of size 354680832 by op UNUSED action_count 94195419013931 step 17479529273785244716 next 18446744073709551615
             2021-08-09 03:52:38.118090: I tensorflow/core/common_runtime/bfc_allocator.cc:1051]      Summary of in-use Chunks by size:
             2021-08-09 03:52:38.118121: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1712 Chunks of size 256 totalling 428.0KiB
             2021-08-09 03:52:38.118149: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 140 Chunks of size 512 totalling 70.0KiB
             2021-08-09 03:52:38.118185: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 66 Chunks of size 768 totalling 49.5KiB
             2021-08-09 03:52:38.118212: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 167 Chunks of size 1024 totalling 167.0KiB
             2021-08-09 03:52:38.118237: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 64 Chunks of size 1280 totalling 80.0KiB
             2021-08-09 03:52:38.118262: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 16 Chunks of size 1536 totalling 24.0KiB
             2021-08-09 03:52:38.118290: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 95 Chunks of size 1792 totalling 166.2KiB
             2021-08-09 03:52:38.118326: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 317 Chunks of size 2048 totalling 634.0KiB
             2021-08-09 03:52:38.118354: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 11 Chunks of size 2304 totalling 24.8KiB
             2021-08-09 03:52:38.118377: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 2560 totalling 12.5KiB
             2021-08-09 03:52:38.118402: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 8 Chunks of size 2816 totalling 22.0KiB
             2021-08-09 03:52:38.118437: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 3072 totalling 15.0KiB
             2021-08-09 03:52:38.118463: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 6 Chunks of size 3328 totalling 19.5KiB
             2021-08-09 03:52:38.118488: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 28 Chunks of size 3584 totalling 98.0KiB
             2021-08-09 03:52:38.118511: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 3840 totalling 18.8KiB
             2021-08-09 03:52:38.118554: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 54 Chunks of size 4096 totalling 216.0KiB
             2021-08-09 03:52:38.118581: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 4352 totalling 4.2KiB
             2021-08-09 03:52:38.118605: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 4 Chunks of size 4608 totalling 18.0KiB
             2021-08-09 03:52:38.118639: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 4864 totalling 9.5KiB
             2021-08-09 03:52:38.118666: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 5632 totalling 5.5KiB
             2021-08-09 03:52:38.118693: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 6656 totalling 13.0KiB
             2021-08-09 03:52:38.118716: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 13312 totalling 39.0KiB
             2021-08-09 03:52:38.118752: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 26368 totalling 25.8KiB
             2021-08-09 03:52:38.118782: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 29696 totalling 29.0KiB
             2021-08-09 03:52:38.118812: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 31488 totalling 30.8KiB
             2021-08-09 03:52:38.118849: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 4 Chunks of size 52480 totalling 205.0KiB
             2021-08-09 03:52:38.118878: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 69888 totalling 136.5KiB
             2021-08-09 03:52:38.118904: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 77056 totalling 75.2KiB
             2021-08-09 03:52:38.118943: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 78592 totalling 230.2KiB
             2021-08-09 03:52:38.118971: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 15 Chunks of size 81920 totalling 1.17MiB
             2021-08-09 03:52:38.118999: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 96512 totalling 94.2KiB
             2021-08-09 03:52:38.119035: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 100352 totalling 98.0KiB
             2021-08-09 03:52:38.119063: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 104704 totalling 306.8KiB
             2021-08-09 03:52:38.119091: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 137472 totalling 268.5KiB
             2021-08-09 03:52:38.119127: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 139264 totalling 136.0KiB
             2021-08-09 03:52:38.119155: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 167168 totalling 489.8KiB
             2021-08-09 03:52:38.119183: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 171008 totalling 167.0KiB
             2021-08-09 03:52:38.119219: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 190208 totalling 185.8KiB
             2021-08-09 03:52:38.119247: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 205568 totalling 200.8KiB
             2021-08-09 03:52:38.119276: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 6 Chunks of size 209152 totalling 1.20MiB
             2021-08-09 03:52:38.119308: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 270336 totalling 264.0KiB
             2021-08-09 03:52:38.119334: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 4 Chunks of size 274944 totalling 1.05MiB
             2021-08-09 03:52:38.119360: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 278784 totalling 816.8KiB
             2021-08-09 03:52:38.119396: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 313856 totalling 613.0KiB
             2021-08-09 03:52:38.119424: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 334336 totalling 979.5KiB
             2021-08-09 03:52:38.119450: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 360448 totalling 704.0KiB
             2021-08-09 03:52:38.119487: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 397824 totalling 388.5KiB
             2021-08-09 03:52:38.119514: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 418304 totalling 1.20MiB
             2021-08-09 03:52:38.119557: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 32 Chunks of size 425984 totalling 13.00MiB
             2021-08-09 03:52:38.119582: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 9 Chunks of size 549632 totalling 4.72MiB
             2021-08-09 03:52:38.119607: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 549888 totalling 537.0KiB
             2021-08-09 03:52:38.119642: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 557568 totalling 544.5KiB
             2021-08-09 03:52:38.119667: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 7 Chunks of size 668416 totalling 4.46MiB
             2021-08-09 03:52:38.119702: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 824320 totalling 805.0KiB
             2021-08-09 03:52:38.119728: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 4 Chunks of size 824576 totalling 3.15MiB
             2021-08-09 03:52:38.119751: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 4 Chunks of size 836352 totalling 3.19MiB
             2021-08-09 03:52:38.119786: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 891136 totalling 1.70MiB
             2021-08-09 03:52:38.119815: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 994560 totalling 971.2KiB
             2021-08-09 03:52:38.119839: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 995328 totalling 972.0KiB
             2021-08-09 03:52:38.119872: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 1002752 totalling 1.91MiB
             2021-08-09 03:52:38.119898: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 1054720 totalling 1.01MiB
             2021-08-09 03:52:38.119923: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 1055488 totalling 1.01MiB
             2021-08-09 03:52:38.119959: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 1081344 totalling 2.06MiB
             2021-08-09 03:52:38.119985: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 1099264 totalling 5.24MiB
             2021-08-09 03:52:38.120012: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 1206016 totalling 1.15MiB
             2021-08-09 03:52:38.120035: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 1254656 totalling 3.59MiB
             2021-08-09 03:52:38.120072: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 1336832 totalling 3.82MiB
             2021-08-09 03:52:38.120100: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 13 Chunks of size 1441792 totalling 17.88MiB
             2021-08-09 03:52:38.120127: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 1532928 totalling 1.46MiB
             2021-08-09 03:52:38.120163: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 1622016 totalling 3.09MiB
             2021-08-09 03:52:38.120192: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 1933312 totalling 3.69MiB
             2021-08-09 03:52:38.120218: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 1964800 totalling 1.87MiB
             2021-08-09 03:52:38.120255: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 7 Chunks of size 2097152 totalling 14.00MiB
             2021-08-09 03:52:38.120283: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 9 Chunks of size 2198272 totalling 18.87MiB
             2021-08-09 03:52:38.120310: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 6 Chunks of size 2673408 totalling 15.30MiB
             2021-08-09 03:52:38.120345: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 2723840 totalling 2.60MiB
             2021-08-09 03:52:38.120373: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 2899968 totalling 8.30MiB
             2021-08-09 03:52:38.120400: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 6 Chunks of size 2930944 totalling 16.77MiB
             2021-08-09 03:52:38.120437: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 22 Chunks of size 3145728 totalling 66.00MiB
             2021-08-09 03:52:38.120465: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 6 Chunks of size 3297536 totalling 18.87MiB
             2021-08-09 03:52:38.120491: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 3714816 totalling 3.54MiB
             2021-08-09 03:52:38.120534: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 4010240 totalling 11.47MiB
             2021-08-09 03:52:38.120560: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 4046080 totalling 3.86MiB
             2021-08-09 03:52:38.120586: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 4194304 totalling 20.00MiB
             2021-08-09 03:52:38.120621: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 4396544 totalling 8.39MiB
             2021-08-09 03:52:38.120647: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 4673536 totalling 4.46MiB
             2021-08-09 03:52:38.120672: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 4767744 totalling 13.64MiB
             2021-08-09 03:52:38.120696: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 4894464 totalling 4.67MiB
             2021-08-09 03:52:38.120728: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 5318400 totalling 5.07MiB
             2021-08-09 03:52:38.120755: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 5426944 totalling 5.17MiB
             2021-08-09 03:52:38.120780: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 5647360 totalling 5.39MiB
             2021-08-09 03:52:38.120805: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 5775360 totalling 27.54MiB
             2021-08-09 03:52:38.120841: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 6045696 totalling 17.30MiB
             2021-08-09 03:52:38.120866: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 6225920 totalling 5.94MiB
             2021-08-09 03:52:38.120891: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 12 Chunks of size 6291456 totalling 72.00MiB
             2021-08-09 03:52:38.120925: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 6381568 totalling 6.09MiB
             2021-08-09 03:52:38.120953: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 6754048 totalling 6.44MiB
             2021-08-09 03:52:38.120978: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 6 Chunks of size 7012352 totalling 40.12MiB
             2021-08-09 03:52:38.121003: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 7193600 totalling 6.86MiB
             2021-08-09 03:52:38.121036: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 7728640 totalling 7.37MiB
             2021-08-09 03:52:38.121062: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 8192000 totalling 15.62MiB
             2021-08-09 03:52:38.121088: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 4 Chunks of size 8792832 totalling 33.54MiB
             2021-08-09 03:52:38.121111: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 9883392 totalling 9.42MiB
             2021-08-09 03:52:38.121146: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 10772736 totalling 10.27MiB
             2021-08-09 03:52:38.121174: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 4 Chunks of size 12582912 totalling 48.00MiB
             2021-08-09 03:52:38.121199: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 13459968 totalling 12.84MiB
             2021-08-09 03:52:38.121232: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 14024704 totalling 66.88MiB
             2021-08-09 03:52:38.121259: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 14162944 totalling 13.51MiB
             2021-08-09 03:52:38.121288: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 18874368 totalling 18.00MiB
             2021-08-09 03:52:38.121323: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 24661504 totalling 23.52MiB
             2021-08-09 03:52:38.121350: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 36044800 totalling 68.75MiB
             2021-08-09 03:52:38.121373: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 46137344 totalling 44.00MiB
             2021-08-09 03:52:38.121406: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 78643200 totalling 75.00MiB
             2021-08-09 03:52:38.121434: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 85035008 totalling 81.10MiB
             2021-08-09 03:52:38.121473: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 85065728 totalling 405.62MiB
             2021-08-09 03:52:38.121506: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 20 Chunks of size 92274688 totalling 1.72GiB
             2021-08-09 03:52:38.121535: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 143653632 totalling 137.00MiB
             2021-08-09 03:52:38.121560: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 157947392 totalling 150.63MiB
             2021-08-09 03:52:38.121594: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 170129920 totalling 162.25MiB
             2021-08-09 03:52:38.121619: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 16 Chunks of size 170131456 totalling 2.54GiB
             2021-08-09 03:52:38.121646: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 8 Chunks of size 184549376 totalling 1.38GiB
             2021-08-09 03:52:38.121671: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 245764096 totalling 234.38MiB
             2021-08-09 03:52:38.121706: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 262275072 totalling 250.12MiB
             2021-08-09 03:52:38.121732: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 276037120 totalling 263.25MiB
             2021-08-09 03:52:38.121757: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 314572800 totalling 600.00MiB
             2021-08-09 03:52:38.121789: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 11 Chunks of size 340262912 totalling 3.49GiB
             2021-08-09 03:52:38.121817: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 354680832 totalling 338.25MiB
             2021-08-09 03:52:38.121844: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 510394368 totalling 973.50MiB
             2021-08-09 03:52:38.121879: I tensorflow/core/common_runtime/bfc_allocator.cc:1058] Sum Total of in-use chunks: 13.57GiB
             2021-08-09 03:52:38.121906: I tensorflow/core/common_runtime/bfc_allocator.cc:1060] total_region_allocated_bytes_: 15354822656 memory_limit_: 15354822656 available bytes: 0 curr_region_allocation_bytes_: 17179869184
             2021-08-09 03:52:38.121937: I tensorflow/core/common_runtime/bfc_allocator.cc:1066] Stats:
             Limit:                     15354822656
             InUse:                     14574896128
             MaxInUse:                  14574896128
             NumAllocs:                   225920650
             MaxAllocSize:               3306898944
             Reserved:                            0
             PeakReserved:                        0
             LargestFreeBlock:                    0
    
             2021-08-09 03:52:38.122399: W tensorflow/core/common_runtime/bfc_allocator.cc:467] **************************************************************************************************__
             2021-08-09 03:52:38.122475: W tensorflow/core/framework/op_kernel.cc:1767] OP_REQUIRES failed at transpose_op.cc:184 : Resource exhausted: OOM when allocating tensor with shape[22,354,1,16384] and type float on /job:localhost/replica:0
             /task:0/device:GPU:0 by allocator GPU_0_bfc
             Traceback (most recent call last):
               File "/beegfs/ye53nis/drmed-git/src/fluotracify/training/search_hparams.py", line 446, in <module>
                 hparams_run()
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/click/core.py", line 1137, in __call__
                 return self.main(*args, **kwargs)
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/click/core.py", line 1062, in main
                 rv = self.invoke(ctx)
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/click/core.py", line 1404, in invoke
                 return ctx.invoke(self.callback, **ctx.params)
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/click/core.py", line 763, in invoke
                 return __callback(*args, **kwargs)
               File "/beegfs/ye53nis/drmed-git/src/fluotracify/training/search_hparams.py", line 405, in hparams_run
                 best_auc_val = run_one(
               File "/beegfs/ye53nis/drmed-git/src/fluotracify/training/search_hparams.py", line 306, in run_one
                 result = model.fit(
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/mlflow/utils/autologging_utils/safety.py", line 490, in safe_patch_function
                 patch_function.call(call_original, *args, **kwargs)
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/mlflow/utils/autologging_utils/safety.py", line 156, in call
                 return cls().__call__(original, *args, **kwargs)
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/mlflow/utils/autologging_utils/safety.py", line 167, in __call__
                 raise e
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/mlflow/utils/autologging_utils/safety.py", line 160, in __call__
                 return self._patch_implementation(original, *args, **kwargs)
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/mlflow/utils/autologging_utils/safety.py", line 218, in _patch_implementation
                 result = super(PatchWithManagedRun, self)._patch_implementation(
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/mlflow/tensorflow.py", line 1097, in _patch_implementation
                 history = original(inst, *args, **kwargs)
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/mlflow/utils/autologging_utils/safety.py", line 448, in call_original
                 original_result = original(*og_args, **og_kwargs)
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/tensorflow/python/keras/engine/training.py", line 1183, in fit
                 tmp_logs = self.train_function(iterator)
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py", line 889, in __call__
                 result = self._call(*args, **kwds)
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py", line 950, in _call
                 return self._stateless_fn(*args, **kwds)
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/tensorflow/python/eager/function.py", line 3023, in __call__
                 return graph_function._call_flat(
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/tensorflow/python/eager/function.py", line 1960, in _call_flat
                 return self._build_call_outputs(self._inference_function.call(
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/tensorflow/python/eager/function.py", line 591, in call
                 outputs = execute.execute(
               File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/tensorflow/python/eager/execute.py", line 59, in quick_execute
                 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
             tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found.
               (0) Resource exhausted:  OOM when allocating tensor with shape[22,354,1,16384] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
                      [[{{node gradient_tape/unet_depth4/two_conv_decoder0/conv1d_522/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOptimizer}}]]
             Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
    
                      [[assert_less_equal_4/Assert/AssertGuard/pivot_f/_125/_159]]
             Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
    
               (1) Resource exhausted:  OOM when allocating tensor with shape[22,354,1,16384] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
                      [[{{node gradient_tape/unet_depth4/two_conv_decoder0/conv1d_522/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOptimizer}}]]
             Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
    
             0 successful operations.
             0 derived errors ignored. [Op:__inference_train_function_65983138]
    
             Function call stack:
             train_function -> train_function
    
             2021/08/09 03:52:57 ERROR mlflow.cli: === Run (ID 'b6cbd5623eb44c6c8158c97b7a40c651') failed ===
             (tf) [ye53nis@node130 drmed-git]$
    

2.4.4 Analyze run 1 and 2

  1. start
             %cd /beegfs/ye53nis/drmed-git
    
    /beegfs/ye53nis/drmed-git
    
             import mlflow
             import sys
    
             import matplotlib.pyplot as plt
             import numpy as np
             import pandas as pd
    
             sys.path.append('src/')
             from fluotracify.training import build_model as bm, preprocess_data as ppd
             from fluotracify.applications import correlate, plots, correction
             from fluotracify.imports import ptu_utils as ptu
    
  2. Out of convenience, I used Mlflowui to compare the two runs with all parameters and metrics. Since a nice exporting option was missing, I copied the comparison into libreoffice calc by hand and saved it as a csv. Now lets load it and print the validation AUC as an example.
             run1_2 = pd.read_csv('data/exp-210807-hparams/run1-2_comparison.csv', index_col=0)
             run1_2_valauc = run1_2.loc['val_auc'].astype(float)
             run1_2_valauc
    
             2761cb4ad23244beafac36189b805c3a    0.975
             d92021ec45f5415283a8e5643c7e3449    0.975
             e6b70d64227f42bcb647289d2af2afb4    0.944
             876fa57de00643b1902f3a0be74e0682    0.940
             29905abbb90344798ee59f1f40775880    0.929
                                                 ...
             158bfabc0fcc448dada729967f924574    0.969
             3423b9fa10e44eb7b2cffd78596a193f    0.897
             985ec48a8e1b4101abb8a153cee69b57    0.891
             5c3e5090c67f4340bf207f949e925758    0.601
             ff0bc51f1cd3413bbdebb97b0e127e75    0.889
             Name: val_auc, Length: 75, dtype: float64
    
  3. I ran each hparams run twice for each random parameter sample. As a minimal statistical move, lets take the average of the metrics which have 2 identical parameter runs. Unfortunately, one run is only single, since the program crashed. We have to remove it and later add it again.
             singles_ls = ['5441e71efe0f4dae868648e7cc795c65']
             run1_2_singles = run1_2.loc[:, singles_ls]
             run1_2_singles.iloc[35:, :] = run1_2_singles.iloc[35:, :].astype(np.float64)
             run1_2_singles
    
    5441e71efe0f4dae868648e7cc795c65
    Run ID:
    Run Name: NaN
    Start Time: 2021-08-08 13:46:29
    batch_size None
    class_weight None
    epochs 20
    ... ...
    val_tp0.1 756740.0
    val_tp0.3 686440.0
    val_tp0.5 622523.0
    val_tp0.7 505054.0
    val_tp0.9 241926.0

    104 rows × 1 columns

             run1_2 = run1_2.drop(columns=singles_ls)
    
             assert len(run1_2.iloc[35:, :].columns) % 2 == 0
    
             run1_2_doubleparams = pd.DataFrame()
             run1_2_doublemetrics = pd.DataFrame()
             double_cols = []
             for left, right in zip(run1_2.iloc[:, ::2].items(), run1_2.iloc[:, 1::2].items()):
                 double_cols.append((left[0], right[0]))
                 current_metrics = left[1].iloc[35:].combine(other=right[1].iloc[35:],
                                                             func=(lambda x1, x2: (float(x1) + float(x2)) / 2))
                 current_params = left[1].iloc[:35].combine(other=right[1].iloc[:35],
                                                            func=(lambda x1, x2: set((x1, x2)) if x1 != x2 else x1))
                 run1_2_doubleparams = pd.concat([run1_2_doubleparams, current_params], axis=1)
                 run1_2_doublemetrics = pd.concat([run1_2_doublemetrics, current_metrics], axis=1)
    
             run1_2_doublemetrics = pd.DataFrame(data=run1_2_doublemetrics.to_numpy(),
                                                 index=run1_2.iloc[35:, :].index,
                                                 columns=double_cols)
    
             run1_2_doubleparams = pd.DataFrame(data=run1_2_doubleparams.to_numpy(),
                                                index=run1_2.iloc[:35, :].index,
                                                columns=double_cols)
    
             run1_2_combimetrics = pd.concat([run1_2_doublemetrics, run1_2_singles.iloc[35:, :]], axis=1)
             run1_2_combiparams = pd.concat([run1_2_doubleparams, run1_2_singles.iloc[:35, :]], axis=1)
             run1_2_combiparams
    
    (2761cb4ad23244beafac36189b805c3a, d92021ec45f5415283a8e5643c7e3449) (e6b70d64227f42bcb647289d2af2afb4, 876fa57de00643b1902f3a0be74e0682) (29905abbb90344798ee59f1f40775880, 5a89360285384c728e9e06421ab97c8d) (ab0ff6fff89c4db6983aa98c7eee9663, b9d383f0e9ef4755a801376130594f2a) (481bacb91dcb4d63b16d0a8fe5d198ec, 2ef6df0c95b34b338c4b930f41695ed0) (d36564aa214c41bc966fc7b890df31a8, ba34b505ba324f208d428bd7797233e7) (0a484d3116ab436d8b4cf4a938d470c0, 5a2dfcd776014637bdaef2da3ab1d132) (b72a292b214c462480cbe2e66e811c78, 50c7e9bba0534a27801143bda2e88d35) (9051e32b87d84f3485b980067addec30, 61ff87bdb89b4e2ba64f8dacc774992d) (93b168c0ff7942c8a908a94129daf973, f243b3b742de4dbcb7ccfbd4244706f8) ... (3cbd945b62ec4634839372e403f6f377, 458b36a70db843719d202a8eda448f17) (2648b86e7ef54a0e9f7b57340703150e, 0aae5a802f5342cebed9e51839d48b41) (7719d9fbef8f4c22b710caf91cd527d2, 2b7aab186fad48158d53b78610550d73) (5bbaee372809482ea6d2d985b554cc4b, b8200ec9fb884c12b390e1a5b20299bc) (37ab5992ecdf4760a6292bc64e61e309, 91e4770c10ac4cceb405bfdcebf7c966) (90a949129948495fb7f3b955e8258461, ce09d20be06745fb84c9ff177c8a9cef) (d320b958bde94b1e998d210fd2e53efa, 158bfabc0fcc448dada729967f924574) (3423b9fa10e44eb7b2cffd78596a193f, 985ec48a8e1b4101abb8a153cee69b57) (5c3e5090c67f4340bf207f949e925758, ff0bc51f1cd3413bbdebb97b0e127e75) 5441e71efe0f4dae868648e7cc795c65
    Run ID:
    Run Name: {nan} {nan} {nan} {nan} {nan} {nan} {nan} {nan} {nan} {nan} ... {nan} {nan} {nan} {nan} {nan} {nan} {nan} {nan} {nan} NaN
    Start Time: {2021-08-09 03:35:27, 2021-08-09 03:18:38} {2021-08-09 03:00:40, 2021-08-09 02:43:08} {2021-08-09 02:21:19, 2021-08-09 01:59:18} {2021-08-09 01:45:12, 2021-08-09 01:52:15} {2021-08-09 01:01:03, 2021-08-09 00:16:49} {2021-08-09 00:01:24, 2021-08-08 23:46:06} {2021-08-08 23:09:26, 2021-08-08 23:27:50} {2021-08-08 23:00:25, 2021-08-08 22:51:22} {2021-08-08 22:10:33, 2021-08-08 21:29:38} {2021-08-08 21:15:24, 2021-08-08 21:01:49} ... {2021-08-08 04:30:30, 2021-08-08 04:19:31} {2021-08-08 03:58:55, 2021-08-08 03:38:13} {2021-08-08 03:12:28, 2021-08-08 03:25:26} {2021-08-08 03:05:58, 2021-08-08 02:59:20} {2021-08-08 02:04:14, 2021-08-08 01:12:38} {2021-08-08 01:05:46, 2021-08-08 00:58:39} {2021-08-08 00:26:43, 2021-08-08 00:43:13} {2021-08-07 23:57:58, 2021-08-07 23:31:44} {2021-08-07 22:57:43, 2021-08-07 22:23:42} 2021-08-08 13:46:29
    batch_size None None None None None None None None None None ... None None None None None None None None None None
    class_weight None None None None None None None None None None ... None None None None None None None None None None
    epochs 20 20 20 20 20 20 20 20 20 20 ... 20 20 20 20 20 20 20 20 20 20
    hp_batch_size 13 5 11 23 13 13 4 18 26 15 ... 9 4 18 10 4 20 14 5 18 14
    hp_epochs 20 20 20 20 20 20 20 20 20 20 ... 20 20 20 20 20 20 20 20 20 20
    hp_first_filters 107 33 102 58 108 41 64 59 44 23 ... 64 128 32 16 64 32 128 64 32 16
    hp_input_size 8192 4096 16384 8192 8192 16384 4096 4096 16384 16384 ... 4096 4096 16384 4096 8192 4096 4096 16384 16384 4096
    hp_lr_power 5 7 6 6 6 6 2 2 1 7 ... 1 5 5 1 1 5 1 5 1 5
    hp_lr_start 0.00782433731433605 0.0183838908333744 0.0482033274205359 0.00878855796222036 0.00652659278503235 0.0571175071464742 0.047837465592254 0.0330458251501699 0.0136170138242663 0.0305060808685107 ... 0.0100697459464075 0.024311131849965 0.0275283294963226 0.0923388677844686 0.0183950335666331 0.00805377739706802 0.0730305548495589 0.0100791137947559 0.0799422633823613 0.0271446293545328
    hp_n_levels 3 5 1 1 6 3 5 1 7 6 ... 5 3 5 3 9 5 3 3 7 7
    hp_pool_size 8 2 8 2 2 4 4 8 2 4 ... 4 4 4 2 2 4 4 4 2 2
    hp_scaler maxabs robust quant_g minmax minmax l1 standard quant_g standard quant_g ... maxabs maxabs maxabs minmax quant_g l2 robust robust l2 quant_g
    initial_epoch 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
    lr schedule [0.00782433731433605, 0.0060543230624031785, 0... [0.01838389083337442, 0.012838156616261365, 0.... [0.04820332742053588, 0.035433875087977615, 0.... [0.00878855796222036, 0.0064603976883159595, 0... [0.0065265927850323546, 0.004797645429688916, ... [0.057117507146474185, 0.041986616316088646, 0... [0.04783746559225395, 0.043173312697009185, 0.... [0.03304582515016993, 0.029823857198028363, 0.... [0.01361701382426631, 0.012936163133052994, 0.... [0.030506080868510657, 0.021303534028133002, 0... ... [0.010069745946407459, 0.009566258649087086, 0... [0.024311131849965008, 0.018811490394552027, 0... [0.02752832949632261, 0.021300896605473404, 0.... [0.0923388677844686, 0.08772192439524518, 0.08... [0.018395033566633148, 0.01747528188830149, 0.... [0.008053777397068015, 0.0062318594247195965, ... [0.07303055484955895, 0.06937902710708099, 0.0... [0.010079113794755897, 0.007799026121275398, 0... [0.0799422633823613, 0.07594515021324323, 0.07... [0.027144629354532844, 0.021003996750040436, 0...
    max_queue_size 10 10 10 10 10 10 10 10 10 10 ... 10 10 10 10 10 10 10 10 10 10
    num_train_examples 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 ... 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800
    num_val_examples 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 ... 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200
    opt_amsgrad False False False False False False False False False False ... False False False False False False False False False False
    opt_beta_1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 ... 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
    opt_beta_2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 ... 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
    opt_decay 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
    opt_epsilon 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 ... 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001
    opt_learning_rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 ... 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    opt_name Adam Adam Adam Adam Adam Adam Adam Adam Adam Adam ... Adam Adam Adam Adam Adam Adam Adam Adam Adam Adam
    sample_weight None None None None None None None None None None ... None None None None None None None None None None
    shuffle True True True True True True True True True True ... True True True True True True True True True True
    steps_per_epoch 369 960 436 208 369 369 1200 266 184 320 ... 533 1200 266 480 1200 240 342 960 266 342
    use_multiprocessing False False False False False False False False False False ... False False False False False False False False False False
    validation_batch_size None None None None None None None None None None ... None None None None None None None None None None
    validation_freq 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1
    validation_split 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
    validation_steps 92 240 109 52 92 92 300 66 46 80 ... 133 300 66 120 300 60 85 240 66 85
    workers 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1

    35 rows × 38 columns

  4. Now choose the “most successful” runs. I don’t just choose a high AUC, but especially a high Recall as well:
             cond1 = run1_2_combimetrics.loc['val_auc'] > 0.95
             cond2 = run1_2_combimetrics.loc['val_recall0.5'] > 0.85
             cond3 = run1_2_combimetrics.loc['val_precision0.5'] > 0.85
    
             with pd.option_context('display.max_rows', None, 'display.max_columns', None):  # more options can be specified also
                 display(run1_2_combiparams.loc[:, cond1 & cond2 & cond3])
                 display(run1_2_combimetrics.loc[:, cond1 & cond2 & cond3])
    
    (9051e32b87d84f3485b980067addec30, 61ff87bdb89b4e2ba64f8dacc774992d) (93b168c0ff7942c8a908a94129daf973, f243b3b742de4dbcb7ccfbd4244706f8) (a5b8551144ff46e697a39cd1551e1475, 98cf8cdef9c54b5286e277e75e2ab8c1) (00f2635d9fa2463c9a066722163405be, d0a8e1748b194f3290d471b6b44f19f8) (5604d43c1ece461b8e6eaa0dfb65d6dc, 3612536a77f34f22bc83d1d809140aa6) (7cafab027cdd4fc9bf20a43e989df510, 16dff15d935f45e2a836b1f41b07b4e3) (0e328920e86049928202db95e8cfb7be, bf9d2725eb16462d9a101f0a077ce2b5) (1c954fbc02b747bc813c587ac703c74a, ba49a80c2616407a8f1fe1fd12096fe0) (3cbd945b62ec4634839372e403f6f377, 458b36a70db843719d202a8eda448f17)
    Run ID:
    Run Name: {nan} {nan} {nan} {nan} {nan} {nan} {nan} {nan} {nan}
    Start Time: {2021-08-08 22:10:33, 2021-08-08 21:29:38} {2021-08-08 21:15:24, 2021-08-08 21:01:49} {2021-08-08 19:41:51, 2021-08-08 19:14:27} {2021-08-08 19:07:59, 2021-08-08 19:01:30} {2021-08-08 12:21:05, 2021-08-08 13:03:41} {2021-08-08 10:37:39, 2021-08-08 10:29:07} {2021-08-08 07:47:04, 2021-08-08 08:10:44} {2021-08-08 05:49:55, 2021-08-08 05:42:04} {2021-08-08 04:30:30, 2021-08-08 04:19:31}
    batch_size None None None None None None None None None
    class_weight None None None None None None None None None
    epochs 20 20 20 20 20 20 20 20 20
    hp_batch_size 26 15 20 28 20 10 14 17 9
    hp_epochs 20 20 20 20 20 20 20 20 20
    hp_first_filters 44 23 78 6 128 16 16 16 64
    hp_input_size 16384 16384 16384 16384 16384 8192 16384 16384 4096
    hp_lr_power 1 7 4 1 1 1 5 5 1
    hp_lr_start 0.0136170138242663 0.0305060808685107 0.0584071108418767 0.0553313915596308 0.043549707353273 0.0627676336651573 0.0192390310290551 0.0101590069352232 0.0100697459464075
    hp_n_levels 7 6 4 5 3 5 9 3 5
    hp_pool_size 2 4 4 4 4 4 2 4 4
    hp_scaler standard quant_g standard minmax standard robust robust l2 maxabs
    initial_epoch 0 0 0 0 0 0 0 0 0
    lr schedule [0.01361701382426631, 0.012936163133052994, 0.... [0.030506080868510657, 0.021303534028133002, 0... [0.05840711084187669, 0.04757295682515132, 0.0... [0.05533139155963077, 0.05256482198164923, 0.0... [0.04354970735327304, 0.041372221985609386, 0.... [0.06276763366515732, 0.05962925198189945, 0.0... [0.019239031029055137, 0.014886795466253868, 0... [0.010159006935223234, 0.007860845910406034, 0... [0.010069745946407459, 0.009566258649087086, 0...
    max_queue_size 10 10 10 10 10 10 10 10 10
    num_train_examples 4800 4800 4800 4800 4800 4800 4800 4800 4800
    num_val_examples 1200 1200 1200 1200 1200 1200 1200 1200 1200
    opt_amsgrad False False False False False False False False False
    opt_beta_1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
    opt_beta_2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
    opt_decay 0 0 0 0 0 0 0 0 0
    opt_epsilon 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001
    opt_learning_rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    opt_name Adam Adam Adam Adam Adam Adam Adam Adam Adam
    sample_weight None None None None None None None None None
    shuffle True True True True True True True True True
    steps_per_epoch 184 320 240 171 240 480 342 282 533
    use_multiprocessing False False False False False False False False False
    validation_batch_size None None None None None None None None None
    validation_freq 1 1 1 1 1 1 1 1 1
    validation_split 0 0 0 0 0 0 0 0 0
    validation_steps 46 80 60 42 60 120 85 70 133
    workers 1 1 1 1 1 1 1 1 1
    (9051e32b87d84f3485b980067addec30, 61ff87bdb89b4e2ba64f8dacc774992d) (93b168c0ff7942c8a908a94129daf973, f243b3b742de4dbcb7ccfbd4244706f8) (a5b8551144ff46e697a39cd1551e1475, 98cf8cdef9c54b5286e277e75e2ab8c1) (00f2635d9fa2463c9a066722163405be, d0a8e1748b194f3290d471b6b44f19f8) (5604d43c1ece461b8e6eaa0dfb65d6dc, 3612536a77f34f22bc83d1d809140aa6) (7cafab027cdd4fc9bf20a43e989df510, 16dff15d935f45e2a836b1f41b07b4e3) (0e328920e86049928202db95e8cfb7be, bf9d2725eb16462d9a101f0a077ce2b5) (1c954fbc02b747bc813c587ac703c74a, ba49a80c2616407a8f1fe1fd12096fe0) (3cbd945b62ec4634839372e403f6f377, 458b36a70db843719d202a8eda448f17)
    Run ID:
    accuracy 9.710000e-01 9.600000e-01 9.725000e-01 9.735000e-01 9.665000e-01 9.705000e-01 9.640000e-01 9.615000e-01 9.705000e-01
    auc 9.810000e-01 9.730000e-01 9.820000e-01 9.840000e-01 9.720000e-01 9.810000e-01 9.730000e-01 9.625000e-01 9.800000e-01
    f1 2.640000e-01 2.640000e-01 2.640000e-01 2.650000e-01 2.640000e-01 2.620000e-01 2.650000e-01 2.635000e-01 2.630000e-01
    fn0.1 3.682675e+05 4.621365e+05 3.568190e+05 3.122355e+05 5.600420e+05 1.845900e+05 5.070725e+05 7.945210e+05 1.017630e+05
    fn0.3 7.227145e+05 9.977800e+05 6.926625e+05 6.512465e+05 9.973125e+05 3.611175e+05 1.124122e+06 1.259410e+06 1.843830e+05
    fn0.5 1.136268e+06 1.521807e+06 1.071660e+06 1.004638e+06 1.420861e+06 5.911320e+05 1.642768e+06 1.763400e+06 2.860370e+05
    fn0.7 1.738792e+06 2.319607e+06 1.661646e+06 1.556141e+06 2.051528e+06 8.906325e+05 2.305407e+06 2.409087e+06 4.321115e+05
    fn0.9 2.890862e+06 4.209348e+06 2.778182e+06 2.663333e+06 3.247781e+06 1.448880e+06 3.677228e+06 3.719575e+06 7.203375e+05
    fp0.1 3.958967e+06 5.572852e+06 3.626632e+06 3.504270e+06 4.532016e+06 1.989762e+06 5.707579e+06 4.813038e+06 9.582675e+05
    fp0.3 1.991625e+06 2.699346e+06 1.887159e+06 1.789370e+06 2.098466e+06 1.039760e+06 2.281552e+06 2.328430e+06 5.024380e+05
    fp0.5 1.120762e+06 1.617764e+06 1.093034e+06 1.072950e+06 1.197675e+06 5.652505e+05 1.199354e+06 1.254754e+06 2.843205e+05
    fp0.7 5.437065e+05 8.631090e+05 5.284415e+05 5.297935e+05 5.737150e+05 2.738040e+05 5.788060e+05 6.135885e+05 1.421470e+05
    fp0.9 1.503025e+05 2.542905e+05 1.457025e+05 1.390835e+05 1.532515e+05 7.276600e+04 1.507885e+05 1.525270e+05 3.853750e+04
    loss 1.950000e-01 2.620000e-01 1.850000e-01 1.710000e-01 2.485000e-01 1.955000e-01 2.645000e-01 3.070000e-01 2.005000e-01
    lr 6.809000e-04 2.383000e-11 3.650000e-07 3.000000e-03 2.000000e-03 3.000000e-03 6.012000e-09 3.175000e-09 5.035000e-04
    precision0.1 7.455000e-01 6.740000e-01 7.620000e-01 7.690000e-01 7.160000e-01 7.430000e-01 6.675000e-01 6.980000e-01 7.500000e-01
    precision0.3 8.490000e-01 8.030000e-01 8.565000e-01 8.640000e-01 8.395000e-01 8.425000e-01 8.260000e-01 8.205000e-01 8.470000e-01
    precision0.5 9.060000e-01 8.660000e-01 9.090000e-01 9.110000e-01 8.980000e-01 9.045000e-01 8.960000e-01 8.900000e-01 9.040000e-01
    precision0.7 9.495000e-01 9.180000e-01 9.510000e-01 9.515000e-01 9.455000e-01 9.485000e-01 9.435000e-01 9.395000e-01 9.470000e-01
    precision0.9 9.835000e-01 9.680000e-01 9.840000e-01 9.850000e-01 9.825000e-01 9.840000e-01 9.825000e-01 9.815000e-01 9.830000e-01
    recall0.1 9.690000e-01 9.615000e-01 9.700000e-01 9.740000e-01 9.530000e-01 9.690000e-01 9.575000e-01 9.335000e-01 9.660000e-01
    recall0.3 9.395000e-01 9.165000e-01 9.420000e-01 9.455000e-01 9.170000e-01 9.390000e-01 9.060000e-01 8.940000e-01 9.380000e-01
    recall0.5 9.050000e-01 8.730000e-01 9.105000e-01 9.160000e-01 8.815000e-01 9.005000e-01 8.625000e-01 8.520000e-01 9.040000e-01
    recall0.7 8.545000e-01 8.065000e-01 8.610000e-01 8.705000e-01 8.285000e-01 8.500000e-01 8.070000e-01 7.980000e-01 8.545000e-01
    recall0.9 7.580000e-01 6.485000e-01 7.675000e-01 7.775000e-01 7.285000e-01 7.560000e-01 6.925000e-01 6.880000e-01 7.575000e-01
    tn0.1 6.248249e+07 6.110056e+07 6.304679e+07 6.295906e+07 6.214143e+07 3.139506e+07 6.077990e+07 6.181710e+07 1.572065e+07
    tn0.3 6.444982e+07 6.397410e+07 6.478628e+07 6.467399e+07 6.457496e+07 3.234507e+07 6.420593e+07 6.430173e+07 1.617648e+07
    tn0.5 6.532068e+07 6.505565e+07 6.558039e+07 6.539041e+07 6.547576e+07 3.281958e+07 6.528812e+07 6.537538e+07 1.639460e+07
    tn0.7 6.589775e+07 6.581032e+07 6.614497e+07 6.593356e+07 6.609972e+07 3.311101e+07 6.590870e+07 6.601654e+07 1.653677e+07
    tn0.9 6.629115e+07 6.641916e+07 6.652773e+07 6.632426e+07 6.652018e+07 3.331206e+07 6.633670e+07 6.647764e+07 1.664038e+07
    tp0.1 1.157134e+07 1.150763e+07 1.161295e+07 1.167101e+07 1.140972e+07 5.752186e+06 1.145204e+07 1.112024e+07 2.867828e+06
    tp0.3 1.121689e+07 1.097199e+07 1.127710e+07 1.133200e+07 1.097245e+07 5.575658e+06 1.083499e+07 1.065535e+07 2.785208e+06
    tp0.5 1.080334e+07 1.044796e+07 1.089811e+07 1.097861e+07 1.054891e+07 5.345644e+06 1.031634e+07 1.015136e+07 2.683554e+06
    tp0.7 1.020082e+07 9.650160e+06 1.030812e+07 1.042710e+07 9.918238e+06 5.046144e+06 9.653704e+06 9.505670e+06 2.537480e+06
    tp0.9 9.048746e+06 7.760420e+06 9.191586e+06 9.319910e+06 8.721986e+06 4.487896e+06 8.281883e+06 8.195182e+06 2.249254e+06
    val_accuracy 9.705000e-01 9.580000e-01 9.715000e-01 9.730000e-01 9.655000e-01 9.650000e-01 9.620000e-01 9.540000e-01 9.655000e-01
    val_auc 9.810000e-01 9.760000e-01 9.840000e-01 9.870000e-01 9.745000e-01 9.780000e-01 9.760000e-01 9.620000e-01 9.720000e-01
    val_f1 2.765000e-01 2.770000e-01 2.770000e-01 2.765000e-01 2.770000e-01 2.770000e-01 2.775000e-01 2.775000e-01 2.810000e-01
    val_fn0.1 9.953900e+04 1.018855e+05 8.291750e+04 6.491900e+04 1.300915e+05 5.183400e+04 1.083685e+05 1.989905e+05 4.027450e+04
    val_fn0.3 2.065230e+05 2.225190e+05 1.673150e+05 1.418270e+05 2.487260e+05 1.058955e+05 2.645855e+05 3.249370e+05 6.900850e+04
    val_fn0.5 3.215935e+05 3.389065e+05 2.659300e+05 2.205875e+05 3.629365e+05 1.735790e+05 3.913830e+05 4.524360e+05 1.028930e+05
    val_fn0.7 4.900970e+05 5.129575e+05 4.164020e+05 3.444560e+05 5.346575e+05 2.454170e+05 5.597010e+05 6.320105e+05 1.485405e+05
    val_fn0.9 8.184030e+05 9.663815e+05 7.104005e+05 6.000115e+05 8.757840e+05 3.997180e+05 9.522080e+05 9.742990e+05 2.333430e+05
    val_fp0.1 9.453770e+05 1.601886e+06 9.806695e+05 1.017959e+06 1.234908e+06 6.305910e+05 1.691592e+06 1.263437e+06 2.185595e+05
    val_fp0.3 4.490195e+05 8.010390e+05 5.028105e+05 4.986330e+05 5.470645e+05 3.102420e+05 6.715845e+05 7.084290e+05 1.185620e+05
    val_fp0.5 2.523625e+05 4.911005e+05 2.909235e+05 2.976760e+05 3.176580e+05 1.722175e+05 3.474940e+05 4.435775e+05 6.640450e+04
    val_fp0.7 1.222830e+05 2.638220e+05 1.435500e+05 1.506035e+05 1.579470e+05 9.873550e+04 1.668495e+05 2.509655e+05 3.329950e+04
    val_fp0.9 3.509800e+04 7.686200e+04 4.052800e+04 4.137150e+04 4.698050e+04 3.210800e+04 4.534800e+04 9.132200e+04 9.003000e+03
    val_loss 1.985000e-01 2.665000e-01 1.855000e-01 1.735000e-01 2.515000e-01 2.360000e-01 2.725000e-01 3.290000e-01 2.440000e-01
    val_precision0.1 7.635000e-01 6.570000e-01 7.585000e-01 7.495000e-01 7.105000e-01 7.095000e-01 6.420000e-01 6.995000e-01 7.770000e-01
    val_precision0.3 8.675000e-01 7.860000e-01 8.565000e-01 8.560000e-01 8.425000e-01 8.270000e-01 8.110000e-01 7.990000e-01 8.610000e-01
    val_precision0.5 9.180000e-01 8.520000e-01 9.090000e-01 9.065000e-01 8.985000e-01 8.910000e-01 8.880000e-01 8.585000e-01 9.135000e-01
    val_precision0.7 9.560000e-01 9.095000e-01 9.505000e-01 9.480000e-01 9.435000e-01 9.315000e-01 9.395000e-01 9.090000e-01 9.515000e-01
    val_precision0.9 9.850000e-01 9.660000e-01 9.840000e-01 9.835000e-01 9.800000e-01 9.735000e-01 9.795000e-01 9.595000e-01 9.845000e-01
    val_recall0.1 9.685000e-01 9.680000e-01 9.740000e-01 9.790000e-01 9.590000e-01 9.670000e-01 9.655000e-01 9.365000e-01 9.500000e-01
    val_recall0.3 9.345000e-01 9.300000e-01 9.470000e-01 9.540000e-01 9.215000e-01 9.330000e-01 9.160000e-01 8.965000e-01 9.140000e-01
    val_recall0.5 8.975000e-01 8.930000e-01 9.160000e-01 9.290000e-01 8.850000e-01 8.905000e-01 8.750000e-01 8.560000e-01 8.720000e-01
    val_recall0.7 8.445000e-01 8.380000e-01 8.685000e-01 8.890000e-01 8.310000e-01 8.450000e-01 8.215000e-01 7.985000e-01 8.145000e-01
    val_recall0.9 7.400000e-01 6.945000e-01 7.750000e-01 8.060000e-01 7.235000e-01 7.475000e-01 6.965000e-01 6.890000e-01 7.090000e-01
    val_tn0.1 1.550422e+07 1.489606e+07 1.551728e+07 1.515836e+07 1.526304e+07 7.617204e+06 1.466611e+07 1.509811e+07 3.882080e+06
    val_tn0.3 1.600058e+07 1.569691e+07 1.599514e+07 1.567769e+07 1.595088e+07 7.937553e+06 1.568612e+07 1.565312e+07 3.982077e+06
    val_tn0.5 1.619724e+07 1.600685e+07 1.620702e+07 1.587864e+07 1.618029e+07 8.075578e+06 1.601021e+07 1.591797e+07 4.034234e+06
    val_tn0.7 1.632732e+07 1.623412e+07 1.635440e+07 1.602572e+07 1.634000e+07 8.149060e+06 1.619086e+07 1.611058e+07 4.067340e+06
    val_tn0.9 1.641450e+07 1.642108e+07 1.645742e+07 1.613495e+07 1.645097e+07 8.215687e+06 1.631236e+07 1.627022e+07 4.091636e+06
    val_tp0.1 3.046124e+06 3.060968e+06 3.079936e+06 3.026346e+06 3.032762e+06 1.530771e+06 3.030885e+06 2.936426e+06 7.619985e+05
    val_tp0.3 2.939140e+06 2.940335e+06 2.995539e+06 2.949438e+06 2.914128e+06 1.476710e+06 2.874668e+06 2.810479e+06 7.332645e+05
    val_tp0.5 2.824070e+06 2.823948e+06 2.896924e+06 2.870677e+06 2.799918e+06 1.409026e+06 2.747870e+06 2.682980e+06 6.993800e+05
    val_tp0.7 2.655566e+06 2.649896e+06 2.746452e+06 2.746808e+06 2.628196e+06 1.337188e+06 2.579552e+06 2.503406e+06 6.537325e+05
    val_tp0.9 2.327260e+06 2.196472e+06 2.452454e+06 2.491253e+06 2.287070e+06 1.182887e+06 2.187046e+06 2.161117e+06 5.689300e+05

    This looks promising with a wide variety of approaches leading to success. Sadly, only run 00f2635d9fa2463c9a066722163405be had the model saved out for immediate testing. The other models have to be trained again with the same settings.

    Lets look at some plots of successful runs as well: High validation AUC: run1-2_highvalauc.png High validation AUC, high validation precision: run1-2_highvalauc-highvalprecision.png High validation AUC, high validation recall: run1-2_highvalauc-highvalrecall.png High validation AUC, high validation recall, high validation precision: run1-2_highvalauc-highvalrecall-highvalprecision.png

  5. Now lets look at some unsuccessful runs and some interesting runs: High training AUC, low validation AUC (these models overfitted). Here a clear predictor seems to be lr_power=1, a small batch size, and a small pool size. run1-2_highauc-lowvalauc.png Low validation AUC, low validation recall: run1-2_lowvalrecall-lowvalauc.png Low validation precision, but still reasonably high validation AUC: run1-2_lowvalprecision-highvalauc.png Low validation recall, but still reasonably high validation AUC: run1-2_lowvalrecall-highvalauc.png
  6. Lets inspect input sizes. Their might be a slight preference for 2**14 length of traces, but it could also be negligible. Input size of 4096 time steps run1-2_input-size_4096.png Input size of 8192 time steps run1-2_input-size_8192.png Input size of 16384 time steps run1-2_input-size_16384.png
  7. Next lets inspect a complicated hyperparameter, which adjusts the pool size of the encoder, as well as the strides and the kernel size of the decoder. It is connected to the input size and nlevels in model building, as well. The following condition has to hold: input_size >= 2 * pool_size**n_levels. Because of that, a poolsize of 8 is only possible with smaller nlevels. Still, a higher poolsize seems to be useful in this project. pool size, kernel size and strides of 2: run1-2_poolsize-strides-kernelsize_2.png pool size, kernel size and strides of 4: run1-2_poolsize-strides-kernelsize_4.png pool size, kernel size and strides of 8: run1-2_poolsize-strides-kernelsize_8.png
  8. Another complicated hyperparameter is nlevels. It refers to the “depth” of the unet. How many times will the input trace be pooled and skip connections made? This parameter strongly influences the amount of total model parameters and smaller values make the model much more portable and “simpler”, which could be viewed as a positive thing itself. A larger value raises the learning capacity of the network, but also raises the possibility of overfitting. Number of unet levels 1 to 3 run1-2_n-levels_1-3.png Number of unet levels 4 to 6 run1-2_n-levels_4-6.png Number of unet levels 7 to 9 run1-2_n-levels_7-9.png
  9. Lets take a look at the different first filters (starting from this value, the number of filters was doubled for each unet level till a maximum of 512 filters was reached). More filters mean more capacity for learning, but also more risk of overfitting and model size. Here, no real trend is visible, so a lower number of filters should be sufficient. from 6 to 45 first filters run1-2_first-filters_6-45.png from 57 to 77 first filters run1-2_first-filters_57-77.png from 100 to 128 first filters run1-2_first-filters_100-128.png
  10. Now lets take a look at the starting learning rates and the learning rate power, which together are used to construct a learning rate schedule. For the learning rate starting value, the lower category seemed to perform better than the upper category. The power of 1 is simpler than the values between 4 and 7. Start learning rate between 0.0065 and 0.035: run1-2_lr-start_0.0065-0.035.png Start learning rate between 0.045 and 0.065: run1-2_lr-start_0.045-0.065.png Start learning rate between 0.065 and 0.1: run1-2_lr-start_0.065-0.1.png Power of learning rate equation = 1, meaning a linear decay: run1-2_lr-power_1.png Power of learning rate equation = 4 to 7, meaning a polynomial decay: run1-2_lr-power_2-7.png
  11. The next parameter is the batch size, which is directly coupled to the steps per epoch of the training (since I chose the step size to equal the total number of examples divided by the batch size). A larger batch size pools more training examples for decisions. We see that batch size >7 seem to be benefitial. Batch size of 2 to 8, with steps per epoch between 600 and 2400 run1-2_batch-size_2-8_higher-steps-per-epoch.png Batch size of 8 to 20, with steps per epoch between 165 and 550 run1-2_batch-size_8-20_lower-steps-per-epoch.png
  12. Lastly, lets take a look at the different scalers. I used a scaler from the beginning, because in learning algorithms this guarantees some numerical stability. As a naive approach I chose one - the Min-Max scaler. After evaluating the first training approaches I noticed that there might be problems with this scaler, if the trace has no artifacts in it, see this example plot, where I plotted a variety of scalers from sklearn on some simulated data: scalers_simulations.png From these I chose Standard, Robust, Max-Abs, Quantile (Gaussian), Min-Max, L1 and L2, because they looked most promising. Now, let’s load some of the experimental data and see how these scalers look on this data.
              path_tb_pex5_egfp = '/beegfs/ye53nis/data/Pablo_structured_experiment'
              length_delimiter = 2**13  # for U-Net
              bin_for_correlation = 1e6
              ptu_1ms, _ = ptu.import_from_ptu(
                    path=path_tb_pex5_egfp,
                    file_delimiter=2,
                    photon_count_bin=1e6,
                    verbose=True)
              ptu_1ms = ptu_1ms
    
    1 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu
    2 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu
    
              scalers = {'Unscaled data': None,
                         'Data after standard scaling (z-score)': 'standard',
                         'Data after robust scaling': 'robust',
                         'Data after max-abs scaling': 'maxabs',
                         'Data after quantile transformation (gaussian pdf)': 'quant_g',
                         'Data after min-max scaling': 'minmax',
                         'Data after sample-wise L1 normalization (taxicab, LASSO)': 'l1',
                         'Data after sample-wise L2 normalization (Euclidian)': 'l2'}
              plt.figure(figsize=(16,14), facecolor='white')
              for i, (text, s) in enumerate(scalers.items()):
                  plt.subplot(3, 3, i+1, title=text)
                  if s is None:
                      plt.plot(ptu_1ms, alpha=0.75)
                  else:
                      print(np.array(ptu_1ms.iloc[:, 0]))
                      # We have to circumvent the following error because we want to dropna() for scaling:
                      # /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/numpy/core/_asarray.py:136:
                      # VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which
                      # is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes)
                      # is deprecated. If you meant to do this, you must specify 'dtype=object' when creating
                      # the ndarray: return array(a, dtype, copy=False, order=order, subok=True)
                      # And the sklearn error:
                      # ValueError: Expected 2D array, got 1D array instead:
                      # array=[486. 455. 622. ... 580. 522. 682.].
                      # Reshape your data either using array.reshape(-1, 1) if your data has a single feature
                      # or array.reshape(1, -1) if it contains a single sample.
                      tscaled = [ppd.scale_trace(np.array(ptu_1ms.iloc[:, j].dropna(), dtype=object).reshape(-1, 1),
                                                 scaler=s) for j in range(2)]
                      [plt.plot(tscaled[k], alpha=0.75) for k in range(2)]
              plt.tight_layout()
    
    

    with reshape(-1, 1) to say that data has a single feature scalers_experimental.png . We already see that the quantile transformation might not be so useful here. In the simulated data with slower cluster speeds it made the peaks clearly distinct, here this is not the case.

    using reshape(1, -1) to say that data contains a single sample does not work e.g. each timestep normalized to 0…

    First, let’s look at L1 and L2. L1 was only chosen once, L2 got chosen more often. In runs with the highest val_auc, this norm especially seems to lead to a high recall (which is a problem with minmax). But we also see that depending on the other parameters there is a wide variation of results, including very bad ones run1-2_scaler_l1.png run1-2_scaler_l2.png

    Second, let’s look at Max-Abs (from 0 to the maximum value) and Min-Max (from the minimum to the maximum value). Both are conceptually somewhat similar, although Max-Abs keeps the distance from 0 to the minimal value, and Min-Max does not. We see that both lead to good results, with some variation. In Max-Abs, the spread seems to be wider. run1-2_scaler_maxabs.png run1-2_scaler_minmax.png

    Third, Quantile Transformation (Gaussian distribution). We see that this transformation suffers from bad valprecision values. Higher recall values can be reached with other transformations. Thus, I think I can neglect this transformation in the future. run1-2_scaler_quant-g.png

    Fourth, the Robust Scaler. It robustly (haha) achieves good precision and recall values run1-2_scaler_robust.png

    Fifth, the Standard Scaler. It achieves some of the best results, even though there is some variation, both in precision and recall. run1-2_scaler_standard.png

2.4.5 Look at training logging of training run 00f2635d9fa2463c9a066722163405be

This run is one of the few very good runs where the model got saved out.

  1. Let’s look at some prediction plots after 1 epoch: plot0.png after 5 epochs: plot4.png after 10 epochs: plot9.png after 15 epochs: plot14.png after 20 epochs: plot19.png
  2. Now let’s print out the model architecture. -n prints out line numbers.
             cat -n data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model_summary.txt
    
           |  1 | unet_depth5                                                                                        |
           |  2 | __________________________________________________________________________________________________ |
           |  3 | Layer (type)                    Output Shape         Param #     Connected to                      |
           |  4 | ================================================================================================== |
           |  5 | input_6 (InputLayer)            [(None, 16384, 1)]   0                                             |
           |  6 | __________________________________________________________________________________________________ |
           |  7 | encode0 (Sequential)            (None, 16384, 6)     186         input_6[0][0]                     |
           |  8 | __________________________________________________________________________________________________ |
           |  9 | mp_encode0 (MaxPooling1D)       (None, 4096, 6)      0           encode0[0][0]                     |
           | 10 | __________________________________________________________________________________________________ |
           | 11 | encode1 (Sequential)            (None, 4096, 12)     768         mp_encode0[0][0]                  |
           | 12 | __________________________________________________________________________________________________ |
           | 13 | mp_encode1 (MaxPooling1D)       (None, 1024, 12)     0           encode1[0][0]                     |
           | 14 | __________________________________________________________________________________________________ |
           | 15 | encode2 (Sequential)            (None, 1024, 24)     2832        mp_encode1[0][0]                  |
           | 16 | __________________________________________________________________________________________________ |
           | 17 | mp_encode2 (MaxPooling1D)       (None, 256, 24)      0           encode2[0][0]                     |
           | 18 | __________________________________________________________________________________________________ |
           | 19 | encode3 (Sequential)            (None, 256, 48)      10848       mp_encode2[0][0]                  |
           | 20 | __________________________________________________________________________________________________ |
           | 21 | mp_encode3 (MaxPooling1D)       (None, 64, 48)       0           encode3[0][0]                     |
           | 22 | __________________________________________________________________________________________________ |
           | 23 | encode4 (Sequential)            (None, 64, 96)       42432       mp_encode3[0][0]                  |
           | 24 | __________________________________________________________________________________________________ |
           | 25 | mp_encode4 (MaxPooling1D)       (None, 16, 96)       0           encode4[0][0]                     |
           | 26 | __________________________________________________________________________________________________ |
           | 27 | two_conv_center (Sequential)    (None, 16, 192)      167808      mp_encode4[0][0]                  |
           | 28 | __________________________________________________________________________________________________ |
           | 29 | conv_transpose_decoder4 (Sequen (None, 64, 192)      148416      two_conv_center[0][0]             |
           | 30 | __________________________________________________________________________________________________ |
           | 31 | decoder4 (Concatenate)          (None, 64, 288)      0           encode4[0][0]                     |
           | 32 | conv_transpose_decoder4[0][0]                                                                      |
           | 33 | __________________________________________________________________________________________________ |
           | 34 | two_conv_decoder4 (Sequential)  (None, 64, 192)      278400      decoder4[0][0]                    |
           | 35 | __________________________________________________________________________________________________ |
           | 36 | conv_transpose_decoder3 (Sequen (None, 256, 96)      74208       two_conv_decoder4[0][0]           |
           | 37 | __________________________________________________________________________________________________ |
           | 38 | decoder3 (Concatenate)          (None, 256, 144)     0           encode3[0][0]                     |
           | 39 | conv_transpose_decoder3[0][0]                                                                      |
           | 40 | __________________________________________________________________________________________________ |
           | 41 | two_conv_decoder3 (Sequential)  (None, 256, 96)      70080       decoder3[0][0]                    |
           | 42 | __________________________________________________________________________________________________ |
           | 43 | conv_transpose_decoder2 (Sequen (None, 1024, 48)     18672       two_conv_decoder3[0][0]           |
           | 44 | __________________________________________________________________________________________________ |
           | 45 | decoder2 (Concatenate)          (None, 1024, 72)     0           encode2[0][0]                     |
           | 46 | conv_transpose_decoder2[0][0]                                                                      |
           | 47 | __________________________________________________________________________________________________ |
           | 48 | two_conv_decoder2 (Sequential)  (None, 1024, 48)     17760       decoder2[0][0]                    |
           | 49 | __________________________________________________________________________________________________ |
           | 50 | conv_transpose_decoder1 (Sequen (None, 4096, 24)     4728        two_conv_decoder2[0][0]           |
           | 51 | __________________________________________________________________________________________________ |
           | 52 | decoder1 (Concatenate)          (None, 4096, 36)     0           encode1[0][0]                     |
           | 53 | conv_transpose_decoder1[0][0]                                                                      |
           | 54 | __________________________________________________________________________________________________ |
           | 55 | two_conv_decoder1 (Sequential)  (None, 4096, 24)     4560        decoder1[0][0]                    |
           | 56 | __________________________________________________________________________________________________ |
           | 57 | conv_transpose_decoder0 (Sequen (None, 16384, 12)    1212        two_conv_decoder1[0][0]           |
           | 58 | __________________________________________________________________________________________________ |
           | 59 | decoder0 (Concatenate)          (None, 16384, 18)    0           encode0[0][0]                     |
           | 60 | conv_transpose_decoder0[0][0]                                                                      |
           | 61 | __________________________________________________________________________________________________ |
           | 62 | two_conv_decoder0 (Sequential)  (None, 16384, 12)    1200        decoder0[0][0]                    |
           | 63 | __________________________________________________________________________________________________ |
           | 64 | conv1d_89 (Conv1D)              (None, 16384, 1)     13          two_conv_decoder0[0][0]           |
           | 65 | ================================================================================================== |
           | 66 | Total params: 844,123                                                                              |
           | 67 | Trainable params: 840,379                                                                          |
           | 68 | Non-trainable params: 3,744                                                                        |
           | 69 | __________________________________________________________________________________________________ |
    
  3. Print out mlflow Model parameters
             cat -n data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model/MLmodel
    
           |  1 | artifact_path: model                           |
           |  2 | flavors:                                       |
           |  3 | keras:                                         |
           |  4 | data: data                                     |
           |  5 | keras_module: tensorflow.keras                 |
           |  6 | keras_version: 2.5.0                           |
           |  7 | save_format: tf                                |
           |  8 | python_function:                               |
           |  9 | data: data                                     |
           | 10 | env: conda.yaml                                |
           | 11 | loader_module: mlflow.keras                    |
           | 12 | python_version: 3.9.6                          |
           | 13 | run_id: 00f2635d9fa2463c9a066722163405be       |
           | 14 | utc_time_created: '2021-08-08 17:14:06.771348' |
    
  4. Print out training data parameters. One learning: The f1-metric does not work!
             echo "time val_recall0.5 epoch"
             cat data/mlruns/8/00f2635d9fa2463c9a066722163405be/metrics/val_recall0.5
             echo ""
             echo "time val_precision0.5 epoch"
             cat data/mlruns/8/00f2635d9fa2463c9a066722163405be/metrics/val_precision0.5
             echo ""
             echo "time val_auc epoch"
             cat data/mlruns/8/00f2635d9fa2463c9a066722163405be/metrics/val_auc
             echo ""
             echo "time val_f1 epoch"
             cat data/mlruns/8/00f2635d9fa2463c9a066722163405be/metrics/val_f1
    
    time val\recall0.5 epoch
    1628442521951 1.0 0
    1628442538552 1.0 1
    1628442555029 0.9884297847747803 2
    1628442571921 0.9939945340156555 3
    1628442588629 0.9871219396591187 4
    1628442605537 0.9595196843147278 5
    1628442622450 0.9733913540840149 6
    1628442642363 0.9914226531982422 7
    1628442659452 0.9950642585754395 8
    1628442676492 0.7978640794754028 9
    1628442693576 0.9715087413787842 10
    1628442710632 0.9640132188796997 11
    1628442727806 0.9724437594413757 12
    1628442744594 0.9310197234153748 13
    1628442761707 0.8998530507087708 14
    1628442778890 0.9342276453971863 15
    1628442795829 0.9401260018348694 16
    1628442812832 0.9072213768959045 17
    1628442829592 0.8626136183738708 18
    1628442846600 0.9356982707977295 19
         
    time val\precision0.5 epoch
    1628442521951 0.161118745803833 0
    1628442538552 0.16019564867019653 1
    1628442555029 0.17915846407413483 2
    1628442571921 0.243782639503479 3
    1628442588629 0.2357945740222931 4
    1628442605537 0.24214163422584534 5
    1628442622450 0.5458978414535522 6
    1628442642363 0.4380616247653961 7
    1628442659452 0.2929491698741913 8
    1628442676492 0.8729878067970276 9
    1628442693576 0.7323421835899353 10
    1628442710632 0.5339199304580688 11
    1628442727806 0.7172960042953491 12
    1628442744594 0.8843752145767212 13
    1628442761707 0.9003584980964661 14
    1628442778890 0.8853111267089844 15
    1628442795829 0.8726167678833008 16
    1628442812832 0.9290499091148376 17
    1628442829592 0.9494153261184692 18
    1628442846600 0.8976160287857056 19
         
    time val\auc epoch
    1628442521951 0.5 0
    1628442538552 0.5000137686729431 1
    1628442555029 0.5814657211303711 2
    1628442571921 0.8558493852615356 3
    1628442588629 0.7804751396179199 4
    1628442605537 0.7518471479415894 5
    1628442622450 0.9729548096656799 6
    1628442642363 0.980221688747406 7
    1628442659452 0.9016830325126648 8
    1628442676492 0.9798668026924133 9
    1628442693576 0.9884295463562012 10
    1628442710632 0.9497971534729004 11
    1628442727806 0.9887964129447937 12
    1628442744594 0.9877431392669678 13
    1628442761707 0.9804221987724304 14
    1628442778890 0.9873037338256836 15
    1628442795829 0.9889394640922546 16
    1628442812832 0.9840959310531616 17
    1628442829592 0.9767916202545166 18
    1628442846600 0.9875953793525696 19
         
    time val\f1 epoch
    1628442521951 0.2775232493877411 0
    1628442538552 0.2761525511741638 1
    1628442555029 0.27699539065361023 2
    1628442571921 0.27680331468582153 3
    1628442588629 0.27761173248291016 4
    1628442605537 0.2781853973865509 5
    1628442622450 0.27713820338249207 6
    1628442642363 0.27754780650138855 7
    1628442659452 0.27742522954940796 8
    1628442676492 0.2759542465209961 9
    1628442693576 0.27791914343833923 10
    1628442710632 0.2769533693790436 11
    1628442727806 0.2773088812828064 12
    1628442744594 0.2751254439353943 13
    1628442761707 0.2785097658634186 14
    1628442778890 0.27688315510749817 15
    1628442795829 0.2764797508716583 16
    1628442812832 0.27767083048820496 17
    1628442829592 0.2765066623687744 18
    1628442846600 0.27736371755599976 19
  5. Of course I have plotted out a lot of further info (tensorflow, mlflow, experiment parameters, etc). But I will plot this out in the dedicated training run, not in the hparams run.

2.4.6 Apply model from run 2 to experimental data

      %cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
      from pathlib import Path

      import sys
      import mlflow
      import matplotlib.pyplot as plt
      import numpy as np
      import pandas as pd
      import seaborn as sns
      import tensorflow as tf
      print("tf version: ", tf.version.VERSION)
      print("tf.keras version: ", tf.keras.__version__)
      print("mlflow version: ", mlflow.version.VERSION)
tf version:  2.5.0
tf.keras version:  2.5.0
mlflow version:  1.19.0
      sys.path.append('src/')
      from fluotracify.simulations import (
         import_simulation_from_csv as isfc,
         analyze_simulations as ans,
      )
      from fluotracify.training import build_model as bm, preprocess_data as ppd
      from fluotracify.applications import correlate, plots, correction
      from fluotracify.imports import ptu_utils as ptu
      import importlib
      importlib.reload(correction)
      logged_model = 'file:///beegfs/ye53nis/drmed-git/data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model'
      metrics_thresholds = [0.1, 0.3, 0.5, 0.7, 0.9]

      loaded_model = mlflow.keras.load_model(logged_model, compile=False)
      loaded_model.compile(loss=bm.binary_ce_dice_loss(),
                           optimizer=tf.keras.optimizers.Adam(),
                           metrics = bm.unet_metrics(metrics_thresholds))
      loaded_model
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
<tensorflow.python.keras.engine.functional.Functional at 0x2b21c027e8b0>
      # The following block has to be executed multiple times with different array lengths
      # e.g. 2**14, 2**13, 2**12
      # note that: after executing 2**14, then 2**13, there will be an error
      # if you then execute 2**12 and then 2**13 again, the error will be gone
      test_features = np.zeros((2**14)).reshape(1, -1, 1)
      print(test_features.shape)
      predictions = loaded_model.predict(test_features, verbose=0).flatten()
      predictions
(1, 16384, 1)
array([1.4064237e-01, 1.3650321e-08, 7.4799689e-10, ..., 3.1755112e-10,
       1.8236226e-10, 6.6588524e-10], dtype=float32)
      test_features2 = np.zeros((2**13)).reshape(1, -1, 1)
      print(test_features2.shape)
      predictions = loaded_model.predict(test_features2, verbose=0).flatten()
      predictions
(1, 8192, 1)
array([1.4064237e-01, 1.3650321e-08, 7.4799689e-10, ..., 3.1755112e-10,
       1.8236226e-10, 6.6588524e-10], dtype=float32)
      path_tb_pex5_egfp = '/beegfs/ye53nis/data/Pablo_structured_experiment'
      pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9]
      length_delimiter = 2**13  # for U-Net
      bin_for_correlation = 1e6
      out = correction.correct_experimental_traces_from_ptu_by_unet_prediction(
        path_list=path_tb_pex5_egfp,
        model=loaded_model,
        pred_thresh=pred_thresh,
        photon_count_bin=bin_for_correlation,
        ntraces=None,
        save_as_csv=True)
      out
Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment with bin=1e6. This can take a while...
1 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu
2 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu
Processing correlation of unprocessed dataset 1
Processing correlation with correction by prediction of dataset 1
  \(D\) in \(\frac{{\mu m^2}}{{s}}\) \(\tau_{{D}}\) in \(ms\) Trace lengths folderid-tracesused Photon count bin for correlation in \(ns\) FileGUID FileCreatingTime MeasurementSubMode FileComment TTResultStopReason MeasDescGlobalResolution TTResultNumberOfRecords MeasDescAcquisitionTime TTResultMDescWarningFlags TTResultStopAfter TTResultFormatTTTRRecType TTResultFormatBitsPerRecord UsrPowerDiode HeaderEnd Number of Channels
0 0.898516 12.544077 8192 0-orig 1000000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
1 1.488758 7.570775 8192 0-orig 1000000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1
2 7.747958 1.454713 5053 0-pred-0.1 1000000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
3 2.388373 4.719135 5926 0-pred-0.1 1000000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1
4 5.875199 1.918413 5729 0-pred-0.3 1000000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
5 2.144527 5.255731 6707 0-pred-0.3 1000000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1
6 3.673109 3.068532 6179 0-pred-0.5 1000000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
7 1.816449 6.204994 7164 0-pred-0.5 1000000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1
8 1.857476 6.067942 6576 0-pred-0.7 1000000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
9 1.45624 7.739836 7446 0-pred-0.7 1000000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1
10 0.986952 11.420058 7081 0-pred-0.9 1000000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
11 1.150654 9.795347 7735 0-pred-0.9 1000000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1

12 rows × 94 columns

      path_pex5_exp = ['/beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu', '/beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu']
      pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9]
      length_delimiter = 2**13  # for U-Net
      bin_for_correlation = 1e5
      out = correction.correct_experimental_traces_from_ptu_by_unet_prediction(
        path_list=path_pex5_exp,
        model=loaded_model,
        pred_thresh=pred_thresh,
        photon_count_bin=bin_for_correlation,
        ntraces=400,
        save_as_csv=True)
      out
      Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu with bin=1e6. This can take a while...
      1 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1082s_1.ptu
      2 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1537s_1.ptu
      3 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488210_T2505s_1.ptu
      4 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488199_T2375s_1.ptu
      5 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2040s_1.ptu
      6 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488229_T2733s_1.ptu
      7 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1070s_1.ptu
      8 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1352s_1.ptu
      9 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T986s_1.ptu10 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488227_T2709s_1.ptu
      11 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2088s_1.ptu
      12 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1214s_1.ptu
      13 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1561s_1.ptu
      14 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T302s_1.ptu
      15 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1932s_1.ptu
      16 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2267s_1.ptu
      17 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2255s_1.ptu
      18 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488208_T2481s_1.ptu
      19 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T314s_1.ptu
      20 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488221_T2637s_1.ptu
      21 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1834s_1.ptu
      22 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1883s_1.ptu
      23 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488197_T2351s_1.ptu
      24 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T254s_1.ptu
      25 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48816_T182s_1.ptu
      26 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2148s_1.ptu
      27 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1238s_1.ptu
      28 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T833s_1.ptu
      29 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T676s_1.ptu
      30 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1496s_1.ptu
      31 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T459s_1.ptu
      32 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1610s_1.ptu
      33 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T592s_1.ptu
      34 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1907s_1.ptu
      35 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T604s_1.ptu
      36 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1895s_1.ptu
      37 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T926s_1.ptu
      38 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T447s_1.ptu
      39 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T821s_1.ptu
      40 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48834_T399s_1.ptu
      41 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T506s_1.ptu
      42 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1076s_1.ptu
      43 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2209s_1.ptu
      44 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T748s_1.ptu
      45 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1232s_1.ptu
      46 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2159s_1.ptu
      47 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T698s_1.ptu
      48 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T855s_1.ptu
      49 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1789s_1.ptu
      50 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488241_T2877s_1.ptu
      51 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488204_T2434s_1.ptu
      52 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T918s_1.ptu
      53 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2147s_1.ptu
      54 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2197s_1.ptu
      55 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1908s_1.ptu
      56 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488238_T2842s_1.ptu
      57 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1968s_1.ptu
      58 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488234_T2793s_1.ptu
      59 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T979s_1.ptu
      60 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1148s_1.ptu
      61 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1280s_1.ptu
      62 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1654s_1.ptu
      63 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1484s_1.ptu
      64 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2245s_1.ptu
      65 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T879s_1.ptu
      66 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1896s_1.ptu
      67 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2124s_1.ptu
      68 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1328s_1.ptu
      69 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T867s_1.ptu
      70 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T962s_1.ptu
      71 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T628s_1.ptu
      72 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48842_T496s_1.ptu
      73 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T590s_1.ptu
      74 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1184s_1.ptu
      75 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488196_T2339s_1.ptu
      76 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1956s_1.ptu
      77 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488217_T2589s_1.ptu
      78 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488218_T2601s_1.ptu
      79 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1418s_1.ptu
      80 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488206_T2458s_1.ptu
      81 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T785s_1.ptu
      82 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1226s_1.ptu
      83 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T278s_1.ptu
      84 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4887_T74s_1.ptu
      85 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2099s_1.ptu
      86 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48817_T194s_1.ptu
      87 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1346s_1.ptu
      88 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T688s_1.ptu
      89 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488211_T2517s_1.ptu
      90 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T712s_1.ptu
      91 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48833_T387s_1.ptu
      92 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T686s_1.ptu
      93 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48813_T146s_1.ptu
      94 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488126_T1502s_1.ptu
      95 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1118s_1.ptu
      96 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1316s_1.ptu
      97 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2243s_1.ptu
      98 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1430s_1.ptu
      99 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488219_T2613s_1.ptu
      100 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1646s_1.ptu
      101 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2231s_1.ptu
      102 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488146_T1742s_1.ptu
      103 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488155_T1859s_1.ptu
      104 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2075s_1.ptu
      105 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1884s_1.ptu
      106 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488244_T2914s_1.ptu
      107 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4886_T62s_1.ptu
      108 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1015s_1.ptu
      109 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1979s_1.ptu
      110 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T674s_1.ptu
      111 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2279s_1.ptu
      112 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2183s_1.ptu
      113 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1689s_1.ptu
      114 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2269s_1.ptu
      115 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T266s_1.ptu
      116 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488209_T2493s_1.ptu
      117 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1630s_1.ptu
      118 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488185_T2221s_1.ptu
      119 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2135s_1.ptu
      120 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T782s_1.ptu
      121 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1472s_1.ptu
      122 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1919s_1.ptu
      123 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T664s_1.ptu
      124 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T351s_1.ptu
      125 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T375s_1.ptu
      126 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T700s_1.ptu
      127 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1545s_1.ptu
      128 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1714s_1.ptu
      129 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1022s_1.ptu
      130 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1754s_1.ptu
      131 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488193_T2303s_1.ptu
      132 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1250s_1.ptu
      133 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488228_T2721s_1.ptu
      134 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1088s_1.ptu
      135 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2040s_1.ptu
      136 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48835_T411s_1.ptu
      137 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1046s_1.ptu
      138 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1466s_1.ptu
      139 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T906s_1.ptu
      140 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T255s_1.ptu
      141 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1730s_1.ptu
      142 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1358s_1.ptu
      143 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T279s_1.ptu
      144 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T638s_1.ptu
      145 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2949s_1.ptu
      146 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T519s_1.ptu
      147 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T482s_1.ptu
      148 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T327s_1.ptu
      149 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T471s_1.ptu
      150 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488225_T2685s_1.ptu
      151 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T362s_1.ptu
      152 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T578s_1.ptu
      153 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T722s_1.ptu
      154 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T614s_1.ptu
      155 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T616s_1.ptu
      156 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1778s_1.ptu
      157 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2028s_1.ptu
      158 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4883_T26s_1.ptu
      159 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T966s_1.ptu
      160 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T435s_1.ptu
      161 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1666s_1.ptu
      162 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2315s_1.ptu
      163 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488205_T2446s_1.ptu
      164 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48818_T206s_1.ptu
      165 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1533s_1.ptu
      166 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T602s_1.ptu
      167 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488116_T1388s_1.ptu
      168 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2196s_1.ptu
      169 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1394s_1.ptu
      170 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T818s_1.ptu
      171 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1130s_1.ptu
      172 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2076s_1.ptu
      173 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1262s_1.ptu
      174 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2993s_1.ptu
      175 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1063s_1.ptu
      176 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48845_T531s_1.ptu
      177 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1400s_1.ptu
      178 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488192_T2291s_1.ptu
      179 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1992s_1.ptu
      180 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1142s_1.ptu
      181 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1124s_1.ptu
      182 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2111s_1.ptu
      183 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48862_T736s_1.ptu
      184 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1412s_1.ptu
      185 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1100s_1.ptu
      186 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T555s_1.ptu
      187 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488223_T2661s_1.ptu
      188 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T626s_1.ptu
      189 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1622s_1.ptu
      190 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1810s_1.ptu
      191 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2925s_1.ptu
      192 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T942s_1.ptu
      193 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1448s_1.ptu
      194 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T809s_1.ptu
      195 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488201_T2398s_1.ptu
      196 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1670s_1.ptu
      197 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488250_T3006s_1.ptu
      198 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4884_T38s_1.ptu
      199 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1514s_1.ptu
      200 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1244s_1.ptu
      201 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2172s_1.ptu
      202 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1370s_1.ptu
      203 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1678s_1.ptu
      204 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T652s_1.ptu
      205 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T1003s_1.ptu
      206 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T544s_1.ptu
      207 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1569s_1.ptu
      208 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488236_T2817s_1.ptu
      209 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2123s_1.ptu
      210 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T869s_1.ptu
      211 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1968s_1.ptu
      212 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2973s_1.ptu
      213 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1801s_1.ptu
      214 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488235_T2805s_1.ptu
      215 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2028s_1.ptu
      216 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2160s_1.ptu
      217 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1618s_1.ptu
      218 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2281s_1.ptu
      219 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T758s_1.ptu
      220 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T794s_1.ptu
      221 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T891s_1.ptu
      222 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T842s_1.ptu
      223 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488213_T2541s_1.ptu
      224 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2184s_1.ptu
      225 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T484s_1.ptu
      226 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2052s_1.ptu
      227 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1825s_1.ptu
      228 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1581s_1.ptu
      229 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1762s_1.ptu
      230 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1310s_1.ptu
      231 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1010s_1.ptu
      232 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T290s_1.ptu
      233 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488168_T2004s_1.ptu
      234 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48820_T230s_1.ptu
      235 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1944s_1.ptu
      236 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488203_T2422s_1.ptu
      237 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488152_T1822s_1.ptu
      238 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T243s_1.ptu
      239 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T2004s_1.ptu
      240 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T436s_1.ptu
      241 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1980s_1.ptu
      242 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488200_T2386s_1.ptu
      243 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1454s_1.ptu
      244 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T508s_1.ptu
      245 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1220s_1.ptu
      246 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T773s_1.ptu
      247 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1920s_1.ptu
      248 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T267s_1.ptu
      249 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T746s_1.ptu
      250 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1573s_1.ptu
      251 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T797s_1.ptu
      252 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1726s_1.ptu
      253 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1738s_1.ptu
      254 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2016s_1.ptu
      255 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1058s_1.ptu
      256 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T710s_1.ptu
      257 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T363s_1.ptu
      258 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488215_T2565s_1.ptu
      259 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T930s_1.ptu
      260 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T770s_1.ptu
      261 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T830s_1.ptu
      262 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1364s_1.ptu
      263 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488148_T1774s_1.ptu
      264 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488224_T2673s_1.ptu
      265 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488172_T2052s_1.ptu
      266 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T1992s_1.ptu
      267 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488100_T1190s_1.ptu
      268 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T242s_1.ptu
      269 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488240_T2865s_1.ptu
      270 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1701s_1.ptu
      271 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1549s_1.ptu
      272 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T520s_1.ptu
      273 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T724s_1.ptu
      274 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48814_T158s_1.ptu
      275 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1956s_1.ptu
      276 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2064s_1.ptu
      277 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4885_T50s_1.ptu
      278 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T580s_1.ptu
      279 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T472s_1.ptu
      280 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T991s_1.ptu
      281 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2969s_1.ptu
      282 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1798s_1.ptu
      283 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T566s_1.ptu
      284 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1160s_1.ptu
      285 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1406s_1.ptu
      286 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4889_T98s_1.ptu
      287 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T134s_1.ptu
      288 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488222_T2649s_1.ptu
      289 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1039s_1.ptu
      290 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T938s_1.ptu
      291 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1051s_1.ptu
      292 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T902s_1.ptu
      293 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48819_T218s_1.ptu
      294 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1112s_1.ptu
      295 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1442s_1.ptu
      296 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488101_T1208s_1.ptu
      297 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488109_T1304s_1.ptu
      298 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1526s_1.ptu
      299 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488207_T2470s_1.ptu
      300 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2937s_1.ptu
      301 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488242_T2890s_1.ptu
      302 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T640s_1.ptu
      303 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T554s_1.ptu
      304 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1292s_1.ptu
      305 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1597s_1.ptu
      306 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4888_T86s_1.ptu
      307 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T857s_1.ptu
      308 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1786s_1.ptu
      309 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T291s_1.ptu
      310 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2171s_1.ptu
      311 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1871s_1.ptu
      312 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488220_T2624s_1.ptu
      313 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2981s_1.ptu
      314 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1154s_1.ptu
      315 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T568s_1.ptu
      316 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2100s_1.ptu
      317 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1847s_1.ptu
      318 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2945s_1.ptu
      319 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1658s_1.ptu
      320 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T350s_1.ptu
      321 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2087s_1.ptu
      322 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T662s_1.ptu
      323 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488230_T2745s_1.ptu
      324 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T894s_1.ptu
      325 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1521s_1.ptu
      326 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488195_T2327s_1.ptu
      327 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T998s_1.ptu
      328 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2219s_1.ptu
      329 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T974s_1.ptu
      330 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1606s_1.ptu
      331 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1286s_1.ptu
      332 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T315s_1.ptu
      333 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488214_T2553s_1.ptu
      334 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1944s_1.ptu
      335 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T460s_1.ptu
      336 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2233s_1.ptu
      337 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488243_T2902s_1.ptu
      338 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1642s_1.ptu
      339 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1861s_1.ptu
      340 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4882_T14s_1.ptu
      341 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1694s_1.ptu
      342 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T123s_1.ptu
      343 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2961s_1.ptu
      344 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1136s_1.ptu
      345 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T303s_1.ptu
      346 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2293s_1.ptu
      347 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1634s_1.ptu
      348 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488133_T1585s_1.ptu
      349 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488216_T2577s_1.ptu
      350 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1274s_1.ptu
      351 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1557s_1.ptu
      352 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1436s_1.ptu
      353 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T806s_1.ptu
      354 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1490s_1.ptu
      355 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T374s_1.ptu
      356 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1424s_1.ptu
      357 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T914s_1.ptu
      358 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2257s_1.ptu
      359 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48836_T423s_1.ptu
      360 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2112s_1.ptu
      361 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488112_T1334s_1.ptu
      362 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48815_T170s_1.ptu
      363 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T448s_1.ptu
      364 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2136s_1.ptu
      365 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488198_T2363s_1.ptu
      366 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T650s_1.ptu
      367 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1178s_1.ptu
      368 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1931s_1.ptu
      369 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2957s_1.ptu
      370 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488231_T2757s_1.ptu
      371 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1460s_1.ptu
      372 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1873s_1.ptu
      373 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2329s_1.ptu
      374 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T542s_1.ptu
      375 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1718s_1.ptu
      376 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1322s_1.ptu
      377 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1705s_1.ptu
      378 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T882s_1.ptu
      379 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1478s_1.ptu
      380 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1268s_1.ptu
      381 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1094s_1.ptu
      382 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1376s_1.ptu
      383 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T761s_1.ptu
      384 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488239_T2853s_1.ptu
      385 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1106s_1.ptu
      386 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1837s_1.ptu
      387 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1256s_1.ptu
      388 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48829_T338s_1.ptu
      389 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T845s_1.ptu
      390 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1172s_1.ptu
      391 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48880_T954s_1.ptu
      392 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T122s_1.ptu
      393 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1682s_1.ptu
      394 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488237_T2829s_1.ptu
      395 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48810_T110s_1.ptu
      396 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1166s_1.ptu
      397 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T135s_1.ptu
      398 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1034s_1.ptu
      399 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488202_T2410s_1.ptu
      400 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T326s_1.ptu
      401 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1027s_1.ptu
      Different binning was chosen for correlation. Loading dataset 1 with bin=100000.0. This can take a while...
      Processing correlation of unprocessed dataset 1
      Processing correlation with correction by prediction of dataset 1
      Loading dataset 2 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu with bin=1e6. This can take a while...
      1 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48869_T825s_1.ptu
      2 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488196_T2359s_1.ptu
      3 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488146_T1755s_1.ptu
      4 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488227_T2733s_1.ptu
      5 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T287s_1.ptu
      6 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T342s_1.ptu
      7 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488194_T2334s_1.ptu
      8 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48851_T607s_1.ptu
      9 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488210_T2528s_1.ptu
      10 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488234_T2818s_1.ptu
      11 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48882_T982s_1.ptu
      12 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488251_T3022s_1.ptu
      13 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T610s_1.ptu
      14 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488160_T1924s_1.ptu
      15 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T584s_1.ptu
      16 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488268_T3227s_1.ptu
      17 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T268s_1.ptu
      18 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48832_T378s_1.ptu
      19 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488241_T2902s_1.ptu
      20 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488198_T2383s_1.ptu
      21 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48869_T823s_1.ptu
      22 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48895_T1139s_1.ptu
      23 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48878_T934s_1.ptu
      24 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488100_T1197s_1.ptu
      25 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488155_T1864s_1.ptu
      26 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488132_T1585s_1.ptu
      27 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48866_T787s_1.ptu
      28 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48877_T922s_1.ptu
      29 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48861_T728s_1.ptu
      30 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488129_T1548s_1.ptu
      31 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T292s_1.ptu
      32 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488205_T2468s_1.ptu
      33 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4889_T106s_1.ptu
      34 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T474s_1.ptu
      35 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T546s_1.ptu
      36 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48887_T1042s_1.ptu
      37 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488116_T1391s_1.ptu
      38 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4884_T39s_1.ptu
      39 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488110_T1318s_1.ptu
      40 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488218_T2625s_1.ptu
      41 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48870_T834s_1.ptu
      42 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488270_T3251s_1.ptu
      43 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488177_T2129s_1.ptu
      44 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488136_T1633s_1.ptu
      45 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T521s_1.ptu
      46 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T341s_1.ptu
      47 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T75s_1.ptu
      48 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T497s_1.ptu
      49 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488291_T3505s_1.ptu
      50 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488117_T1403s_1.ptu
      51 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T159s_1.ptu
      52 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488215_T2589s_1.ptu
      53 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488128_T1536s_1.ptu
      54 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488135_T1621s_1.ptu
      55 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48870_T837s_1.ptu
      56 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488239_T2878s_1.ptu
      57 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T317s_1.ptu
      58 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488231_T2781s_1.ptu
      59 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488294_T3541s_1.ptu
      60 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488247_T2974s_1.ptu
      61 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488226_T2721s_1.ptu
      62 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488182_T2189s_1.ptu
      63 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488248_T2986s_1.ptu
      64 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488216_T2601s_1.ptu
      65 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T282s_1.ptu
      66 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488152_T1827s_1.ptu
      67 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48868_T811s_1.ptu
      68 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488112_T1342s_1.ptu
      69 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T123s_1.ptu
      70 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488185_T2225s_1.ptu
      71 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T330s_1.ptu
      72 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488232_T2793s_1.ptu
      73 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488293_T3529s_1.ptu
      74 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T294s_1.ptu
      75 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4886_T66s_1.ptu
      76 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu
      77 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48889_T1067s_1.ptu
      78 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T183s_1.ptu
      79 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48879_T946s_1.ptu
      80 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48876_T910s_1.ptu
      81 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T507s_1.ptu
      82 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T583s_1.ptu
      83 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T595s_1.ptu
      84 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T257s_1.ptu
      85 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488184_T2213s_1.ptu
      86 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T148s_1.ptu
      87 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488121_T1452s_1.ptu
      88 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488254_T3059s_1.ptu
      89 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T171s_1.ptu
      90 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T581s_1.ptu
      91 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488122_T1464s_1.ptu
      92 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488153_T1839s_1.ptu
      93 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48851_T605s_1.ptu
      94 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T222s_1.ptu
      95 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488104_T1246s_1.ptu
      96 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488179_T2153s_1.ptu
      97 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488130_T1560s_1.ptu
      98 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48874_T885s_1.ptu
      99 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488115_T1379s_1.ptu
      100 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488282_T3397s_1.ptu
      101 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488259_T3119s_1.ptu
      102 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48858_T690s_1.ptu
      103 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T244s_1.ptu
      104 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T313s_1.ptu
      105 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48861_T726s_1.ptu
      106 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T196s_1.ptu
      107 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488265_T3191s_1.ptu
      108 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48834_T400s_1.ptu
      109 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48854_T643s_1.ptu
      110 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48873_T873s_1.ptu
      111 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48857_T678s_1.ptu
      112 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488208_T2504s_1.ptu
      113 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4884_T41s_1.ptu
      114 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T120s_1.ptu
      115 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48873_T870s_1.ptu
      116 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48872_T859s_1.ptu
      117 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488180_T2165s_1.ptu
      118 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T328s_1.ptu
      119 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488224_T2697s_1.ptu
      120 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488167_T2009s_1.ptu
      121 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488237_T2854s_1.ptu
      122 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488258_T3107s_1.ptu
      123 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488222_T2673s_1.ptu
      124 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T534s_1.ptu
      125 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488280_T3373s_1.ptu
      126 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T569s_1.ptu
      127 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T145s_1.ptu
      128 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T522s_1.ptu
      129 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T351s_1.ptu
      130 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488173_T2081s_1.ptu
      131 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48893_T1115s_1.ptu
      132 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48865_T774s_1.ptu
      133 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48862_T740s_1.ptu
      134 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488187_T2250s_1.ptu
      135 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T136s_1.ptu
      136 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48853_T631s_1.ptu
      137 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T509s_1.ptu
      138 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48880_T955s_1.ptu
      139 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T535s_1.ptu
      140 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488133_T1597s_1.ptu
      141 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48836_T426s_1.ptu
      142 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488138_T1658s_1.ptu
      143 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488235_T2830s_1.ptu
      144 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488111_T1330s_1.ptu
      145 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488156_T1876s_1.ptu
      146 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48855_T655s_1.ptu
      147 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T80s_1.ptu
      148 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T365s_1.ptu
      149 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48854_T642s_1.ptu
      150 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48872_T861s_1.ptu
      151 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488107_T1282s_1.ptu
      152 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T280s_1.ptu
      153 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488256_T3083s_1.ptu
      154 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488204_T2456s_1.ptu
      155 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488197_T2371s_1.ptu
      156 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48852_T619s_1.ptu
      157 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488176_T2117s_1.ptu
      158 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488229_T2757s_1.ptu
      159 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T498s_1.ptu
      160 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T305s_1.ptu
      161 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48864_T762s_1.ptu
      162 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488289_T3481s_1.ptu
      163 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T624s_1.ptu
      164 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488249_T2998s_1.ptu
      165 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T184s_1.ptu
      166 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T197s_1.ptu
      167 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48884_T1006s_1.ptu
      168 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488178_T2141s_1.ptu
      169 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48855_T654s_1.ptu
      170 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T158s_1.ptu
      171 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488118_T1415s_1.ptu
      172 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488127_T1524s_1.ptu
      173 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48836_T425s_1.ptu
      174 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T352s_1.ptu
      175 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T340s_1.ptu
      176 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488261_T3143s_1.ptu
      177 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48837_T468s_1.ptu
      178 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T354s_1.ptu
      179 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T220s_1.ptu
      180 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488236_T2842s_1.ptu
      181 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488257_T3095s_1.ptu
      182 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T219s_1.ptu
      183 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488253_T3047s_1.ptu
      184 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T485s_1.ptu
      185 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T377s_1.ptu
      186 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488201_T2420s_1.ptu
      187 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T412s_1.ptu
      188 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488269_T3239s_1.ptu
      189 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T545s_1.ptu
      190 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T416s_1.ptu
      191 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T461s_1.ptu
      192 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T637s_1.ptu
      193 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488276_T3324s_1.ptu
      194 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488286_T3445s_1.ptu
      195 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488181_T2177s_1.ptu
      196 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488199_T2395s_1.ptu
      197 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488244_T2938s_1.ptu
      198 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488101_T1209s_1.ptu
      199 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48881_T970s_1.ptu
      200 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488126_T1512s_1.ptu
      201 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488223_T2685s_1.ptu
      202 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T557s_1.ptu
      203 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488158_T1900s_1.ptu
      204 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488139_T1670s_1.ptu
      205 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T281s_1.ptu
      206 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48859_T702s_1.ptu
      207 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T546s_1.ptu
      208 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488267_T3215s_1.ptu
      209 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4883_T28s_1.ptu
      210 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T318s_1.ptu
      211 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T232s_1.ptu
      212 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48860_T716s_1.ptu
      213 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4882_T15s_1.ptu
      214 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48896_T1151s_1.ptu
      215 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T353s_1.ptu
      216 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488262_T3155s_1.ptu
      217 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48899_T1187s_1.ptu
      218 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488209_T2516s_1.ptu
      219 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488150_T1803s_1.ptu
      220 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488147_T1767s_1.ptu
      221 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488134_T1609s_1.ptu
      222 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48815_T171s_1.ptu
      223 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488264_T3179s_1.ptu
      224 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488298_T3590s_1.ptu
      225 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488193_T2322s_1.ptu
      226 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4888_T87s_1.ptu
      227 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488106_T1270s_1.ptu
      228 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488284_T3421s_1.ptu
      229 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488145_T1743s_1.ptu
      230 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T329s_1.ptu
      231 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488183_T2201s_1.ptu
      232 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48856_T668s_1.ptu
      233 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4888_T93s_1.ptu
      234 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4889_T100s_1.ptu
      235 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T222s_1.ptu
      236 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T442s_1.ptu
      237 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488175_T2105s_1.ptu
      238 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T486s_1.ptu
      239 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T390s_1.ptu
      240 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488245_T2950s_1.ptu
      241 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488195_T2347s_1.ptu
      242 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48867_T799s_1.ptu
      243 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T494s_1.ptu
      244 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T195s_1.ptu
      245 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488105_T1258s_1.ptu
      246 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48897_T1163s_1.ptu
      247 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T413s_1.ptu
      248 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T248s_1.ptu
      249 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T520s_1.ptu
      250 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4881_T0s_1.ptu
      251 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488165_T1984s_1.ptu
      252 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48887_T1040s_1.ptu
      253 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T210s_1.ptu
      254 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4883_T27s_1.ptu
      255 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48891_T1091s_1.ptu
      256 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488233_T2806s_1.ptu
      257 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T132s_1.ptu
      258 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48876_T906s_1.ptu
      259 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T462s_1.ptu
      260 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488109_T1306s_1.ptu
      261 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488162_T1948s_1.ptu
      262 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48858_T692s_1.ptu
      263 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488151_T1815s_1.ptu
      264 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488203_T2444s_1.ptu
      265 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48815_T184s_1.ptu
      266 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T366s_1.ptu
      267 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48883_T991s_1.ptu
      268 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48881_T967s_1.ptu
      269 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488287_T3457s_1.ptu
      270 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48884_T1003s_1.ptu
      271 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48886_T1031s_1.ptu
      272 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T234s_1.ptu
      273 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T533s_1.ptu
      274 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488100_T1199s_1.ptu
      275 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488214_T2577s_1.ptu
      276 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T571s_1.ptu
      277 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48856_T666s_1.ptu
      278 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488172_T2069s_1.ptu
      279 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48837_T438s_1.ptu
      280 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T256s_1.ptu
      281 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488243_T2926s_1.ptu
      282 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488240_T2890s_1.ptu
      283 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488206_T2480s_1.ptu
      284 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T208s_1.ptu
      285 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48866_T788s_1.ptu
      286 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48863_T752s_1.ptu
      287 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488238_T2866s_1.ptu
      288 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488260_T3131s_1.ptu
      289 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T210s_1.ptu
      290 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48892_T1103s_1.ptu
      291 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T147s_1.ptu
      292 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48834_T402s_1.ptu
      293 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48853_T630s_1.ptu
      294 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488114_T1367s_1.ptu
      295 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488300_T3614s_1.ptu
      296 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488119_T1427s_1.ptu
      297 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48868_T813s_1.ptu
      298 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488157_T1888s_1.ptu
      299 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488188_T2262s_1.ptu
      300 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488212_T2552s_1.ptu
      301 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T388s_1.ptu
      302 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48864_T764s_1.ptu
      303 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T269s_1.ptu
      304 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488252_T3035s_1.ptu
      305 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488169_T2032s_1.ptu
      306 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48890_T1079s_1.ptu
      307 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48871_T847s_1.ptu
      308 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488137_T1646s_1.ptu
      309 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488166_T1997s_1.ptu
      310 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488283_T3409s_1.ptu
      311 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488279_T3360s_1.ptu
      312 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488125_T1500s_1.ptu
      313 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488200_T2408s_1.ptu
      314 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48882_T979s_1.ptu
      315 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488281_T3385s_1.ptu
      316 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T124s_1.ptu
      317 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488102_T1221s_1.ptu
      318 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T293s_1.ptu
      319 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488186_T2237s_1.ptu
      320 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488274_T3299s_1.ptu
      321 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T450s_1.ptu
      322 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T304s_1.ptu
      323 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488163_T1960s_1.ptu
      324 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488174_T2093s_1.ptu
      325 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488250_T3010s_1.ptu
      326 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488255_T3071s_1.ptu
      327 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T597s_1.ptu
      328 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488288_T3469s_1.ptu
      329 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488103_T1234s_1.ptu
      330 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488164_T1972s_1.ptu
      331 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48885_T1018s_1.ptu
      332 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T246s_1.ptu
      333 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T135s_1.ptu
      334 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488242_T2914s_1.ptu
      335 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488142_T1706s_1.ptu
      336 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488159_T1912s_1.ptu
      337 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T76s_1.ptu
      338 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48886_T1028s_1.ptu
      339 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488263_T3167s_1.ptu
      340 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T299s_1.ptu
      341 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488113_T1354s_1.ptu
      342 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488108_T1294s_1.ptu
      343 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T197s_1.ptu
      344 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48863_T750s_1.ptu
      345 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488140_T1682s_1.ptu
      346 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488230_T2769s_1.ptu
      347 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488131_T1573s_1.ptu
      348 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488220_T2649s_1.ptu
      349 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T449s_1.ptu
      350 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488154_T1852s_1.ptu
      351 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T481s_1.ptu
      352 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488120_T1439s_1.ptu
      353 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488207_T2492s_1.ptu
      354 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488171_T2056s_1.ptu
      355 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488190_T2286s_1.ptu
      356 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T558s_1.ptu
      357 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48898_T1175s_1.ptu
      358 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48862_T738s_1.ptu
      359 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T186s_1.ptu
      360 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488299_T3602s_1.ptu
      361 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488219_T2637s_1.ptu
      362 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T111s_1.ptu
      363 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488278_T3348s_1.ptu
      364 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488189_T2274s_1.ptu
      365 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48859_T704s_1.ptu
      366 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48832_T376s_1.ptu
      367 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48865_T776s_1.ptu
      368 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488225_T2709s_1.ptu
      369 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48871_T849s_1.ptu
      370 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48883_T994s_1.ptu
      371 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T390s_1.ptu
      372 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488272_T3276s_1.ptu
      373 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488148_T1779s_1.ptu
      374 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48875_T898s_1.ptu
      375 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T532s_1.ptu
      376 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488290_T3493s_1.ptu
      377 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48877_T918s_1.ptu
      378 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488297_T3578s_1.ptu
      379 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488191_T2298s_1.ptu
      380 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T160s_1.ptu
      381 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T558s_1.ptu
      382 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488221_T2661s_1.ptu
      383 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488211_T2540s_1.ptu
      384 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu
      385 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488123_T1475s_1.ptu
      386 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48852_T617s_1.ptu
      387 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488149_T1791s_1.ptu
      388 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488141_T1694s_1.ptu
      389 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T338s_1.ptu
      390 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488217_T2613s_1.ptu
      391 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T571s_1.ptu
      392 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4886_T63s_1.ptu
      393 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T510s_1.ptu
      394 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T112s_1.ptu
      395 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488124_T1488s_1.ptu
      396 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488271_T3263s_1.ptu
      397 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T473s_1.ptu
      398 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T306s_1.ptu
      399 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4885_T54s_1.ptu
      400 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T316s_1.ptu
      401 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T593s_1.ptu
      Different binning was chosen for correlation. Loading dataset 2 with bin=100000.0. This can take a while...
      Processing correlation of unprocessed dataset 2
      Processing correlation with correction by prediction of dataset 2
      /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py:508: UserWarning: Metadata is not saved with data. Reason: the correlation algorithm failed for one or more traces which were shorter than 32 time steps after correction.Since metadata is loaded in the beginning, it is not sure, which correlation is missing to ensure proper joining of data and metadata.
        warnings.warn('Metadata is not saved with data. Reason: the '
      corr_out = pd.read_csv(filepath_or_buffer='data/exp-210807-hparams/2021-08-26_correlations.csv')
      corr_out
  \(D\) in \(\frac{{\mu m^2}}{{s}}\) \(\tau_{{D}}\) in \(ms\) Trace lengths folderid-tracesused Photon count bin for correlation in \(ns\)
0 19.078159 0.590783 8192.0 0-orig 100000.0
1 20.314897 0.554817 8192.0 0-orig 100000.0
2 21.007772 0.536518 8192.0 0-orig 100000.0
3 22.716317 0.496166 8192.0 0-orig 100000.0
4 24.089236 0.467888 8192.0 0-orig 100000.0
4795 0.577566 19.514749 7240.0 1-pred-0.9 100000.0
4796 0.236147 47.728941 7078.0 1-pred-0.9 100000.0
4797 1.860295 6.058745 7819.0 1-pred-0.9 100000.0
4798 1.946114 5.791570 7520.0 1-pred-0.9 100000.0
4799 0.859799 13.108948 7841.0 1-pred-0.9 100000.0

4800 rows × 5 columns

  1. Check out the nan values
             corr_out[corr_out['$D$ in $\\frac{{\mu m^2}}{{s}}$'].isna()]
    

    \(D\) in \(\frac{{\mu m^2}}{{s}}\) \(\tau_{{D}}\) in \(ms\) Trace lengths folderid-tracesused Photon count bin for correlation in \(ns\)

    Good news! This time there are no nan values. In exp-210204-unet, we had 31 of them in the clean dataset with pred-0.1, which suggested a lot of false positives in the clean data, which led to traces shorter than 32 time steps, where the multipletau algorithm fails. Still, I am not sure why the metadata was not saved out in the correlation program. I will investigate another time…

  2. Refactor folder-id_traces-used into 2 columns
             corr_out['folder_id-traces_used']
    
             0           0-orig
             1           0-orig
             2           0-orig
             3           0-orig
             4           0-orig
                        ...
             4795    1-pred-0.9
             4796    1-pred-0.9
             4797    1-pred-0.9
             4798    1-pred-0.9
             4799    1-pred-0.9
             Name: folder_id-traces_used, Length: 4800, dtype: object
    
             corr_out[['Folder ID', 'Traces used']] = corr_out['folder_id-traces_used'].str.split(pat='-', n=1, expand=True)
    
  3. Some basic statistical descriptions
             corr_stats = pd.DataFrame()
             for fid in sorted(set(corr_out['Folder ID'])):
                 for tu in sorted(set(corr_out['Traces used'])):
                     corr_new = corr_out[(corr_out['Folder ID'] == fid) & (corr_out['Traces used'] == tu)].describe()
                     new_index_tuple = zip(((fid),)*8, ((tu),)*8, ('count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'))
                     corr_new.index = pd.MultiIndex.from_tuples(new_index_tuple, names=['Folder ID', 'Traces used', 'Stats'])
                     corr_stats = pd.concat([corr_stats, corr_new], axis=0)
             with pd.option_context('display.max_rows', None, 'display.max_columns', None):
                 display(corr_stats)
    
    $D$ in $\frac{{\mu m^2}}{{s}}$ $\tau_{{D}}$ in $ms$ Trace lengths Photon count bin for correlation in $ns$
    Folder ID Traces used Stats
    0 orig count 400.000000 400.000000 400.000000 400.0
    mean 22.397754 0.507013 8192.000000 100000.0
    std 1.994998 0.042972 0.000000 0.0
    min 18.207878 0.379407 8192.000000 100000.0
    25% 20.921029 0.481523 8192.000000 100000.0
    50% 22.149393 0.508866 8192.000000 100000.0
    75% 23.407135 0.538743 8192.000000 100000.0
    max 29.707022 0.619021 8192.000000 100000.0
    pred-0.1 count 400.000000 400.000000 400.000000 400.0
    mean 22.444596 0.502583 8182.360000 100000.0
    std 0.645526 0.014330 8.417990 0.0
    min 20.681787 0.460807 8124.000000 100000.0
    25% 21.961521 0.492386 8179.000000 100000.0
    50% 22.368956 0.503870 8184.000000 100000.0
    75% 22.890670 0.513218 8188.000000 100000.0
    max 24.459398 0.544975 8192.000000 100000.0
    pred-0.3 count 400.000000 400.000000 400.000000 400.0
    mean 22.420126 0.503131 8190.077500 100000.0
    std 0.644112 0.014326 2.892648 0.0
    min 20.668056 0.461330 8174.000000 100000.0
    25% 21.946382 0.493151 8189.000000 100000.0
    50% 22.342680 0.504463 8191.000000 100000.0
    75% 22.855193 0.513572 8192.000000 100000.0
    max 24.431668 0.545337 8192.000000 100000.0
    pred-0.5 count 400.000000 400.000000 400.000000 400.0
    mean 22.411363 0.503324 8191.300000 100000.0
    std 0.641300 0.014276 1.488469 0.0
    min 20.666124 0.462115 8183.000000 100000.0
    25% 21.944307 0.493346 8191.000000 100000.0
    50% 22.325232 0.504857 8192.000000 100000.0
    75% 22.846137 0.513621 8192.000000 100000.0
    max 24.390149 0.545388 8192.000000 100000.0
    pred-0.7 count 400.000000 400.000000 400.000000 400.0
    mean 22.403669 0.503500 8191.810000 100000.0
    std 0.643185 0.014327 0.797175 0.0
    min 20.615435 0.462115 8184.000000 100000.0
    25% 21.935997 0.493728 8192.000000 100000.0
    50% 22.323219 0.504903 8192.000000 100000.0
    75% 22.828459 0.513816 8192.000000 100000.0
    max 24.390149 0.546729 8192.000000 100000.0
    pred-0.9 count 400.000000 400.000000 400.000000 400.0
    mean 22.401607 0.503547 8191.937500 100000.0
    std 0.643493 0.014338 0.509158 0.0
    min 20.615435 0.462115 8185.000000 100000.0
    25% 21.917571 0.493728 8192.000000 100000.0
    50% 22.323219 0.504903 8192.000000 100000.0
    75% 22.828459 0.514247 8192.000000 100000.0
    max 24.390149 0.546729 8192.000000 100000.0
    1 orig count 400.000000 400.000000 400.000000 400.0
    mean 2.089838 106.604322 8192.000000 100000.0
    std 4.867448 244.689593 0.000000 0.0
    min 0.005636 0.370469 8192.000000 100000.0
    25% 0.110612 9.232342 8192.000000 100000.0
    50% 0.277676 40.594163 8192.000000 100000.0
    75% 1.220995 101.904123 8192.000000 100000.0
    max 30.423708 2000.000000 8192.000000 100000.0
    pred-0.1 count 400.000000 400.000000 400.000000 400.0
    mean 23.487424 0.729772 6014.930000 100000.0
    std 11.632062 0.978357 655.329984 0.0
    min 0.704858 0.213925 4055.000000 100000.0
    25% 14.296784 0.349318 5582.750000 100000.0
    50% 22.055818 0.511024 6069.500000 100000.0
    75% 32.266393 0.788363 6477.250000 100000.0
    max 52.686940 15.990532 7586.000000 100000.0
    pred-0.3 count 400.000000 400.000000 400.000000 400.0
    mean 16.200632 1.809016 6649.735000 100000.0
    std 10.841992 4.819835 535.204704 0.0
    min 0.204291 0.221455 4702.000000 100000.0
    25% 7.332725 0.495671 6317.250000 100000.0
    50% 14.302030 0.788074 6699.500000 100000.0
    75% 22.739144 1.537091 7043.250000 100000.0
    max 50.895517 55.171591 7781.000000 100000.0
    pred-0.5 count 400.000000 400.000000 400.000000 400.0
    mean 10.787920 4.217836 7002.527500 100000.0
    std 8.761952 11.682295 448.347782 0.0
    min 0.080967 0.273684 5168.000000 100000.0
    25% 3.713476 0.730534 6733.500000 100000.0
    50% 8.729210 1.291190 7049.000000 100000.0
    75% 15.428534 3.035206 7327.750000 100000.0
    max 41.182749 139.205234 7887.000000 100000.0
    pred-0.7 count 400.000000 400.000000 400.000000 400.0
    mean 6.669685 9.416059 7267.402500 100000.0
    std 6.356652 21.185204 368.356589 0.0
    min 0.065038 0.375238 5715.000000 100000.0
    25% 1.657642 1.154375 7053.500000 100000.0
    50% 4.786510 2.355174 7323.000000 100000.0
    75% 9.763811 6.803933 7543.250000 100000.0
    max 30.037104 173.299931 7969.000000 100000.0
    pred-0.9 count 400.000000 400.000000 400.000000 400.0
    mean 3.074691 21.394545 7556.762500 100000.0
    std 3.639749 36.676351 269.188535 0.0
    min 0.038601 0.593323 6349.000000 100000.0
    25% 0.459359 2.485594 7406.750000 100000.0
    50% 1.544961 7.295842 7603.500000 100000.0
    75% 4.534553 24.536530 7750.000000 100000.0
    max 18.996487 291.988834 8072.000000 100000.0
  4. Have a look at the trace lengths
             x = 'Trace lengths'
    
             g = sns.FacetGrid(data=corr_out,
                               col='Folder ID',
                               col_wrap=1,
                               sharex=True,
                               aspect=1.5,
                               height=5,
                               legend_out=True)
             g.map_dataframe(sns.boxplot,
                   x=x,
                   y='Traces used',
                   palette='colorblind',
                   showfliers=False)
             g.map_dataframe(sns.stripplot,
                   x=x,
                   y='Traces used',
                   dodge=True,
                   palette=sns.color_palette(['0.3']),
                   size=4,
                   jitter=0.2)
             g.set_xlabels(x)
             g.fig.patch.set_facecolor('white')
             g.tight_layout()
             plt.show()
    

    Trace lengths: 2021-08-26_correlations_tracelength.png

    First of all: the extension of simulated training data clearly helped to avoid the enormous amount of false positives in the run exp-210204-unet in folder 0. Here, only few traces are shortened, which is to be expected, since it represents a negative control. Looking at folder 1, the reduction of trace length increased with all prediction thresholds. I later plot trace length vs tau to see if this reduction in trace length introduces artifacts or if it is mainly a desired outcome of more found artifacts.

  5. Have a look at diffusion coefficient and transit times
             # '$D$ in $\\frac{{\mu m^2}}{{s}}$'
             # '$\\tau_{{D}}$ in $ms$'
             x = '$D$ in $\\frac{{\mu m^2}}{{s}}$'
    
             g = sns.FacetGrid(data=corr_out,
                               col='Folder ID',
                               col_wrap=1,
                               sharex=True,
                               aspect=1.5,
                               height=5,
                               legend_out=True)
             g.map_dataframe(sns.boxplot,
                   x=x,
                   y='Traces used',
                   palette='colorblind',
                   showfliers=False).set(xscale = 'log')
             g.map_dataframe(sns.stripplot,
                   x=x,
                   y='Traces used',
                   dodge=True,
                   palette=sns.color_palette(['0.3']),
                   size=4,
                   jitter=0.2).set(xscale = 'log')
             g.set_xlabels(x)
             g.tight_layout()
             g.fig.patch.set_facecolor('white')
             plt.show()
    

    tau: 2021-08-26_correlations_tau.png D: 2021-08-26_correlations_diffrate.png

  6. This scatterplot shows Diffusion rates / transit times against trace lengths. I used a subsample to avoid overplotting.
             # '$D$ in $\\frac{{\mu m^2}}{{s}}$'
             # '$\\tau_{{D}}$ in $ms$'
             x = '$\\tau_{{D}}$ in $ms$'
    
             g = sns.FacetGrid(data=corr_out,
                               row='Traces used',
                               col='Folder ID',
                               hue='Traces used',
                               sharex=True,
                               sharey=True,
                               aspect=1.5,
                               height=3.5,
                               margin_titles=True,
                               legend_out=True)
             g.map_dataframe(sns.scatterplot,
                   x=x,
                   y='Trace lengths',
                   palette='colorblind').set(xscale = 'log')
             g.add_legend(title='Traces used')
             g.set_xlabels(x)
             g.tight_layout()
             g.fig.patch.set_facecolor('white')
             plt.show()
    

    2021-08-26_correlations_tlvstau.png

             # '$D$ in $\\frac{{\mu m^2}}{{s}}$'
             # '$\\tau_{{D}}$ in $ms$'
             x = '$\\tau_{{D}}$ in $ms$'
    
             g = sns.FacetGrid(data=corr_out.sample(1000),
                               row='Folder ID',
                               hue='Traces used',
                               hue_order=['orig', 'pred-0.1', 'pred-0.3', 'pred-0.5', 'pred-0.7', 'pred-0.9'],
                               sharex=True,
                               sharey=True,
                               aspect=1.5,
                               height=4,
                               margin_titles=True,
                               legend_out=True)
             g.map_dataframe(sns.scatterplot,
                   x=x,
                   y='Trace lengths',
                   palette='colorblind').set(xscale = 'log')
             g.add_legend(title='Traces used')
             g.set_xlabels(x)
             g.tight_layout()
             g.fig.patch.set_facecolor('white')
             plt.show()
    

    2021-08-26_correlations_tlvstau2.png

    For me, this plot shows that the reduction of trace length is not too severe even with low prediction thresholds. Also, the reduction in trace length mainly seems to be due to better recognition of artifacts.

2.4.7 Apply model from run 2 to simulated data

      %cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
      from pathlib import Path

      import sys
      import mlflow
      import matplotlib.pyplot as plt
      import numpy as np
      import pandas as pd
      import seaborn as sns
      import tensorflow as tf
      print("tf version: ", tf.version.VERSION)
      print("tf.keras version: ", tf.keras.__version__)
      print("mlflow version: ", mlflow.version.VERSION)
tf version:  2.5.0
tf.keras version:  2.5.0
mlflow version:  1.19.0
      sys.path.append('src/')
      from fluotracify.simulations import (
         import_simulation_from_csv as isfc,
         analyze_simulations as ans,
      )
      from fluotracify.training import build_model as bm, preprocess_data as ppd
      from fluotracify.applications import correlate, plots, correction
      from fluotracify.imports import ptu_utils as ptu
      folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020_test'
      col_per_example = 3
      lab_thresh = 0.04
      pred_thresh = 0.5
      artifact = 0
      model_type = 1
      fwhm = 250
      logged_model = 'file:///beegfs/ye53nis/drmed-git/data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model'
      metrics_thresholds = [0.1, 0.3, 0.5, 0.7, 0.9]
      loaded_model = mlflow.keras.load_model(logged_model, compile=False)
      loaded_model.compile(loss=bm.binary_ce_dice_loss(),
                           optimizer=tf.keras.optimizers.Adam(),
                           metrics = bm.unet_metrics(metrics_thresholds))
      loaded_model
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
<tensorflow.python.keras.engine.functional.Functional at 0x2b01891b62e0>
      # The following block has to be executed multiple times with different array lengths
      # e.g. 2**14, 2**13, 2**12
      # note that: after executing 2**14, then 2**13, there will be an error
      # if you then execute 2**12 and then 2**13 again, the error will be gone
      test_features = np.zeros((2**13)).reshape(1, -1, 1)
      print(test_features.shape)
      predictions = loaded_model.predict(test_features, verbose=0).flatten()
      predictions
(1, 8192, 1)
array([1.4064237e-01, 1.3650321e-08, 7.4799689e-10, ..., 3.1755112e-10,
       1.8236226e-10, 6.6588524e-10], dtype=float32)

The simulated data was separated in train, val, and test beforehand. Now, I only load test data.

      dataset, _, nsamples, experiment_params = isfc.import_from_csv(
          folder=folder,
          header=12,
          frac_train=1,
          col_per_example=col_per_example,
          dropindex=None,
          dropcolumns=None)
      0 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/1.0/traces_brightclust_Nov2020_D0.069_set010.csv
      1 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/0.1/traces_brightclust_Nov2020_D50_set003.csv
      2 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/0.1/traces_brightclust_Nov2020_D0.4_set001.csv
      3 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/0.1/traces_brightclust_Nov2020_D0.2_set007.csv
      4 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/1.0/traces_brightclust_Nov2020_D3.0_set002.csv
      5 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/0.01/traces_brightclust_Nov2020_D3.0_set004.csv
      6 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/0.01/traces_brightclust_Nov2020_D50_set002.csv
      7 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/1.0/traces_brightclust_Nov2020_D0.2_set005.csv
      8 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/1.0/traces_brightclust_Nov2020_D0.6_set009.csv
      9 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/0.1/traces_brightclust_Nov2020_D10_set001.csv10 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/1.0/traces_brightclust_Nov2020_D0.08_set001.csv
      11 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/0.1/traces_brightclust_Nov2020_D0.6_set003.csv
      12 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/1.0/traces_brightclust_Nov2020_D0.1_set001.csv
      13 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/1.0/traces_brightclust_Nov2020_D0.4_set005.csv
      14 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/1.0/traces_brightclust_Nov2020_D10_set005.csv
      15 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/1.0/traces_brightclust_Nov2020_D1.0_set005.csv
      16 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/0.1/traces_brightclust_Nov2020_D0.069_set001.csv
      17 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/1.0/traces_brightclust_Nov2020_D50_set001.csv
      18 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/0.01/traces_brightclust_Nov2020_D0.1_set002.csv
      19 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/0.1/traces_brightclust_Nov2020_D0.08_set003.csv
      20 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/0.01/traces_brightclust_Nov2020_D1.0_set006.csv
      21 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/0.1/traces_brightclust_Nov2020_D1.0_set003.csv
      22 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/0.01/traces_brightclust_Nov2020_D0.2_set002.csv
      23 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/0.1/traces_brightclust_Nov2020_D0.1_set005.csv
      24 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/0.1/traces_brightclust_Nov2020_D3.0_set007.csv
      25 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/0.01/traces_brightclust_Nov2020_D0.08_set005.csv
      26 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/0.01/traces_brightclust_Nov2020_D0.069_set005.csv
      27 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/0.01/traces_brightclust_Nov2020_D10_set002.csv
      28 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/0.01/traces_brightclust_Nov2020_D0.6_set008.csv
      29 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/0.01/traces_brightclust_Nov2020_D0.4_set008.csv
      experiment_params.T.sort_values(by='diffusion rate of molecules in micrometer^2 / s', ignore_index=True)
  unique identifier path and file name FWHMs of excitation PSFs used in nm Extent of simulated PSF (distance to center of Gaussian) in nm total simulation time in ms time step in ms number of fast molecules diffusion rate of molecules in micrometer2 / s width of the simulation in nm height of the simulation in nm number of slow clusters diffusion rate of clusters in micrometer2 / s trace001
0 bebf4d6b-0ffe-4dcf-be78-93bfa70dd04c /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 679 0.069 3000.0 3000.0 3 1.0 label0011
1 5abeceef-c30b-46d8-96a6-dfd623820542 /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 1930 0.069 3000.0 3000.0 10 0.01 label0011
2 daf0898c-38d3-48e5-8d97-41490fb30cd7 /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 897 0.069 3000.0 3000.0 7 0.1 label0011
3 cae1a0a7-6d83-49fe-b0b7-fb1f7fa3d541 /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 1673 0.08 3000.0 3000.0 10 0.01 label0011
4 b85aeec3-5e79-444f-b0c5-5ba7057fad8c /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 856 0.08 3000.0 3000.0 7 0.1 label0011
5 9f7d64ef-5e20-4a2a-bf66-adefc770d2d3 /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 2569 0.08 3000.0 3000.0 3 1.0 label0011
6 0d5dcb67-7e31-43dd-8036-11b7243daf14 /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 1156 0.1 3000.0 3000.0 7 0.1 label0011
7 9a2f89bd-c64e-4324-910c-46a5b8a657ba /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 2975 0.1 3000.0 3000.0 10 0.01 label0011
8 db48ccc0-e770-4570-8cf0-d0ea83bfc588 /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 1456 0.1 3000.0 3000.0 3 1.0 label0011
9 33ee5002-7064-4882-88de-79c773d741cd /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 895 0.2 3000.0 3000.0 7 0.1 label0011
10 e3fd87db-7a9e-4f0a-a7f3-30acd95752eb /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 1844 0.2 3000.0 3000.0 10 0.01 label0011
11 511e911a-aaa3-4d9d-a14e-d172bd4d8dbb /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 2735 0.2 3000.0 3000.0 3 1.0 label0011
12 eb3f3035-955f-4e86-bfbd-16421eede63f /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 560 0.4 3000.0 3000.0 3 1.0 label0011
13 20f0a9df-2c4d-409f-86de-ceda40d1aafe /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 1724 0.4 3000.0 3000.0 10 0.01 label0011
14 2c825894-5e96-4acb-9d4d-c6d0c21e71bf /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 1939 0.4 3000.0 3000.0 7 0.1 label0011
15 dd3aef12-414f-4cb7-9330-8db192d67143 /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 2545 0.6 3000.0 3000.0 10 0.01 label0011
16 87d9374a-3ae4-4dfb-8dc3-ec401df4961d /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 1296 0.6 3000.0 3000.0 3 1.0 label0011
17 f43754f2-e756-405f-89a4-9eae43dbf996 /beegfs/ye53nis/saves/firstartifactNov2020/0…. [250] 4000 16384 1.0 2535 0.6 3000.0 3000.0 7 0.1 label0011
18 84116b56-7264-4f63-833a-2fa1af968288 /beegfs/ye53nis/saves/firstartifactNov2020/1…. [250] 4000 16384 1.0 2059 1.0 3000.0 3000.0 3 1.0 label0011
19 c1a85eb4-f202-40f7-8bce-cd3fd3a843dc /beegfs/ye53nis/saves/firstartifactNov2020/1…. [250] 4000 16384 1.0 1357 1.0 3000.0 3000.0 10 0.01 label0011
20 e0118d21-73cf-4c2d-bc3f-f48a44e1b5b8 /beegfs/ye53nis/saves/firstartifactNov2020/1…. [250] 4000 16384 1.0 627 1.0 3000.0 3000.0 7 0.1 label0011
21 6a3c00e3-24e6-4758-9c6d-f2a9dc23f7d9 /beegfs/ye53nis/saves/firstartifactNov2020/10… [250] 4000 16384 1.0 1376 10 3000.0 3000.0 7 0.1 label0011
22 9246b720-b8d4-4390-82b6-71404ced9bea /beegfs/ye53nis/saves/firstartifactNov2020/10… [250] 4000 16384 1.0 1396 10 3000.0 3000.0 10 0.01 label0011
23 e26d94e4-c2d0-46da-b571-91b8fba15f0a /beegfs/ye53nis/saves/firstartifactNov2020/10… [250] 4000 16384 1.0 2618 10 3000.0 3000.0 3 1.0 label0011
24 cf57c545-933f-41b8-bcfe-19723d79b7bf /beegfs/ye53nis/saves/firstartifactNov2020/3…. [250] 4000 16384 1.0 1785 3.0 3000.0 3000.0 10 0.01 label0011
25 f2dcf7ee-f180-4b26-9706-526ceb6b9fe6 /beegfs/ye53nis/saves/firstartifactNov2020/3…. [250] 4000 16384 1.0 2900 3.0 3000.0 3000.0 3 1.0 label0011
26 4f56e86f-7912-4308-b273-1d2cbe919555 /beegfs/ye53nis/saves/firstartifactNov2020/3…. [250] 4000 16384 1.0 3042 3.0 3000.0 3000.0 7 0.1 label0011
27 4a6c04ea-6d95-4c9a-8985-4e2845cd4372 /beegfs/ye53nis/saves/firstartifactNov2020/50… [250] 4000 16384 1.0 3083 50 3000.0 3000.0 3 1.0 label0011
28 0953132e-d7d6-44bb-b1ee-df54b288beb0 /beegfs/ye53nis/saves/firstartifactNov2020/50… [250] 4000 16384 1.0 2323 50 3000.0 3000.0 10 0.01 label0011
29 b2b78a0f-278b-4b7d-82a3-5e625fbc91de /beegfs/ye53nis/saves/firstartifactNov2020/50… [250] 4000 16384 1.0 2561 50 3000.0 3000.0 7 0.1 label0011
      diffrates = experiment_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32)
      nmols = experiment_params.loc['number of fast molecules'].astype(np.float32)
      clusters = experiment_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32)

      dataset_sep = isfc.separate_data_and_labels(array=dataset,
                                                  nsamples=nsamples,
                                                  col_per_example=col_per_example)

      features = dataset_sep['0']
      labels_artifact = dataset_sep['1']
      labels_artifact_bool = labels_artifact > lab_thresh
      labels_puretrace = dataset_sep['2']
The given DataFrame was split into 3 parts with shapes: [(16384, 3000), (16384, 3000), (16384, 3000)]

Let’s correct the traces with the new model and correlate them!

      corr_out = ans.correlate_simulations_corrected_by_prediction(
          model=loaded_model,
          lab_thresh=lab_thresh,
          pred_thresh=pred_thresh,
          artifact=artifact,
          model_type=model_type,
          experiment_params=experiment_params,
          nsamples=nsamples,
          features=features,
          labels_artifact=labels_artifact,
          labels_puretrace=labels_puretrace,
          save_as_csv=True)
    corr_out
processed correlation of 3000 traces with correction by label
processed correlation of 3000 traces with correction by prediction
processed correlation of 3000 traces without correction
processed correlation of pure 3000 traces
      corr_out = pd.read_csv(filepath_or_buffer='data/exp-210807-hparams/2021-12-15_correlations.csv')
      corr_out
  Simulated \(D\) Simulated \(D_{{clust}}\) nmol \(D\) in \(\frac{{\mu m^2}}{{s}}\) \(\tau_{{D}}\) in \(ms\) Trace lengths Traces used
0 0.069 1.00 679.0 1.037836 10.860146 16384 corrupted without correction
1 0.069 1.00 679.0 0.814030 13.846002 16384 corrupted without correction
2 0.069 1.00 679.0 1.053716 10.696482 16384 corrupted without correction
3 0.069 1.00 679.0 0.897022 12.564974 16384 corrupted without correction
4 0.069 1.00 679.0 1.083577 10.401707 16384 corrupted without correction
11995 0.400 0.01 1724.0 0.337877 33.358455 16267 corrected by prediction
11996 0.400 0.01 1724.0 0.317319 35.519585 7942 corrected by prediction
11997 0.400 0.01 1724.0 0.380969 29.585216 5315 corrected by prediction
11998 0.400 0.01 1724.0 0.376623 29.926600 12591 corrected by prediction
11999 0.400 0.01 1724.0 0.167653 67.228585 13305 corrected by prediction

12000 rows × 7 columns

  1. Check out the NaN values.
             print('All NaN values: {}'.format(corr_out[corr_out['$D$ in $\\frac{{\mu m^2}}{{s}}$'].isna()]))
    
    All NaN values: Empty DataFrame
    Columns: [Simulated $D$, Simulated $D_{{clust}}$, nmol, $D$ in $\frac{{\mu m^2}}{{s}}$, $\tau_{{D}}$ in $ms$, Trace lengths, Traces used]
    Index: []
    

    We confirmed that the correlation did not fail on none of the test traces (no NaN values).

  2. Now, first plot the trace lengths.
             x = 'Trace lengths'
    
             g = sns.FacetGrid(data=corr_out,
                               col='Simulated $D$',
                               col_wrap=2,
                               sharex=True,
                               aspect=1.5,
                               height=5,
                               legend_out=True)
             g.map_dataframe(sns.boxplot,
                   x=x,
                   y='Traces used',
                   hue='Simulated $D_{{clust}}$',
                   palette='colorblind',
                   showfliers=False)
             g.add_legend(title='Simulated $D_{{clust}}$')
             g.map_dataframe(sns.stripplot,
                   x=x,
                   y='Traces used',
                   hue='Simulated $D_{{clust}}$',
                   dodge=True,
                   palette=sns.color_palette(['0.3']),
                   size=4,
                   jitter=0.2)
             g.set_xlabels(x)
             g.fig.patch.set_facecolor('white')
             g.tight_layout()
             plt.show()
    

    Check out the trace lengths. The reduction seems similar over all simulated data. This speaks to a good generalization. Compared to exp-210204-unet, there is especially an improvement in the Simulated D of 0.1, and 0.4 to 50 and Simulated \(D_{clust}\) of 0.01. 2021-12-15_correlations_trace-lengths.png

  3. Now let’s take a look at the diffrates and transit times. Since the distribution follows a log normal, use a log scale.
             # '$D$ in $\\frac{{\mu m^2}}{{s}}$'
             # '$\\tau_{{D}}$ in $ms$'
             x = '$\\tau_{{D}}$ in $ms$'
    
             g = sns.FacetGrid(data=corr_out,
                               col='Simulated $D$',
                               col_wrap=2,
                               sharex=False,  # False for x=D or x=tau, True for x=Trace lengths
                               aspect=1.5,
                               height=5,
                               legend_out=True)
             g.map_dataframe(sns.boxplot,
                   x=x,
                   y='Traces used',
                   hue='Simulated $D_{{clust}}$',
                   palette='colorblind',
                   showfliers=False).set(xscale = 'log')
             g.add_legend(title='Simulated $D_{{clust}}$')
             g.map_dataframe(sns.stripplot,
                   x=x,
                   y='Traces used',
                   hue='Simulated $D_{{clust}}$',
                   dodge=True,
                   palette=sns.color_palette(['0.3']),
                   size=4,
                   jitter=0.2).set(xscale = 'log')
             g.set_xlabels(x)
             g.fig.patch.set_facecolor('white')
             g.tight_layout()
             plt.show()
    

    D: 2021-12-15_correlations_diffrates.png

    We see again a strong improvement in \(D_{clust} = 0.01\), this time with all simulated \(D\). We also see that there are occasional outliers in the prediction group (e.g. \(D = 50\) and \(D_{clust} = 0.01\)), but the statistics are in general okay now.

    Still things to look out for: for \(D=50\) we see a slight distortion to lower transit times / faster diffrates, in both reduction by label and prediction. Here seems to lie a boundary of the correction method.

  4. Lastly, let’s take a look at a scatterplot of transit times vs trace lengths using a subsample to avoid overplotting.
             corr_scatter = corr_out[corr_out['Traces used'].isin(['corrected by labels (control)', 'corrected by prediction'])].sample(1000)
             corr_scatter
    
      Simulated \(D\) Simulated \(D_{{clust}}\) nmol \(D\) in \(\frac{{\mu m^2}}{{s}}\) \(\tau_{{D}}\) in \(ms\) Trace lengths Traces used
    9099 0.069 1.00 679.0 0.053497 210.684366 15232 corrected by prediction
    9032 0.069 1.00 679.0 0.065549 171.949847 15583 corrected by prediction
    10678 0.069 0.10 897.0 0.023812 473.327986 15480 corrected by prediction
    9556 3.000 0.01 1785.0 3.321410 3.393455 13251 corrected by prediction
    11319 0.100 0.10 1156.0 0.075619 149.050995 14235 corrected by prediction
    6002 0.069 1.00 679.0 0.060130 187.443486 14908 corrected by labels (control)
    9256 0.400 0.10 1939.0 0.398673 28.271429 15496 corrected by prediction
    9094 0.069 1.00 679.0 0.016429 686.039288 14580 corrected by prediction
    11329 0.100 0.10 1156.0 0.165504 68.101517 9384 corrected by prediction
    11012 1.000 0.01 1357.0 1.491715 7.555768 4462 corrected by prediction

    1000 rows × 7 columns

             # '$D$ in $\\frac{{\mu m^2}}{{s}}$'
             # '$\\tau_{{D}}$ in $ms$'
             x = '$D$ in $\\frac{{\mu m^2}}{{s}}$'
             g = sns.relplot(
                       data=corr_scatter,
                       x=x, y="Trace lengths",
                       row="Traces used",
                       hue="Simulated $D$",
                       style="Simulated $D_{{clust}}$",
                       kind="scatter",
                       aspect=1.5,
                       palette='colorblind').set(xscale='log')
             g.set_xlabels(x)
             g.tight_layout()
             g.fig.patch.set_facecolor('white')
             plt.show()
    

    We see that the distribution for \(D\) starts to spread out after rougly 10% of a trace has been deleted. The traces which had the most artifacts in them and thus were corrected most, were with a \(D_{clust}\) of 0.01. 2021-12-15_correlations_tracelengths-vs-diffrate-scatterplot.png

2.4.8 Learnings from run 1 and 2

  • The f1 metric does not work
  • I need to fix the fitting algorithm - as can be seen in <exp-…> the binning to 100um is not sufficient to correlate the plateau, thus we fit only the tail. This could be one reason why we get an average / median transit time of 0.5ms for uncorrupted traces, even though Pablo fitted 0.225ms in FOCUSpoint.
  • Boundary of correction method seems to be D=50, here correction by label and correction by prediction reduce the transit times too much, as in the achieved transit times are too low / diffrates are too fast.

2.5 exp-220120-correlate-ptu

2.5.1 Setup: Jupyter 1 on HPC compute node 1

  1. Setup tmux (#+CALL: setup-tmux[:session remote])
         
    sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:
    > ye53nis@ara-login01.rz.uni-jena.de’s password:
  2. Request compute node via tmux
            cd /
            srun -p s_standard --time=7-10:00:00 --nodes=1 --ntasks-per-node=24 --mem=150000 --pty bash
    
            (base) [ye53nis@node305 /]$
    
  3. Branch out git branch exp-220120-correlate-ptu from main (done via magit) and make sure ou are on the correct branch
            cd /beegfs/ye53nis/drmed-git
            git checkout exp-220120-correlate-ptu
    
            (base) [ye53nis@node165 drmed-git]$ git checkout exp-220120-correlate-ptu
            Checking out files: 100% (147/147), done.
            M       src/nanosimpy
            Branch exp-220120-correlate-ptu set up to track remote branch exp-220120-correlate-ptu from origin.
            Switched to a new branch 'exp-220120-correlate-ptu'
            (base) [ye53nis@node165 drmed-git]$
    
  4. Make directory for experiment
            mkdir data/exp-220120-correlate-ptu/jupyter
    
  5. Customize the output folder using the following org-mode variable
            (setq org-babel-jupyter-resource-directory "./exp-220120-correlate-ptu/jupyter")
    
    ./exp-220120-correlate-ptu/jupyter
    
  6. Load conda environment, and start jupyter (#+CALL: jpt-tmux[:session jpmux])
            (tf) [ye53nis@node205 /]$ jupyter lab --no-browser --port=$PORT
            [I 2022-02-17 18:56:48.700 ServerApp] jupyterlab | extension was successfully linked.
            [I 2022-02-17 18:57:23.918 ServerApp] nbclassic | extension was successfully linked.
            [I 2022-02-17 18:57:27.274 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab
            [I 2022-02-17 18:57:27.275 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab
            [I 2022-02-17 18:57:27.405 ServerApp] jupyterlab | extension was successfully loaded.
            [I 2022-02-17 18:57:28.130 ServerApp] nbclassic | extension was successfully loaded.
            [I 2022-02-17 18:57:28.130 ServerApp] Serving notebooks from local directory: /
            [I 2022-02-17 18:57:28.131 ServerApp] Jupyter Server 1.4.1 is running at:
            [I 2022-02-17 18:57:28.131 ServerApp] http://localhost:8889/lab?token=6f26a99296b37cdb05f3969fb347c51d49b9552c75ee7eb4
            [I 2022-02-17 18:57:28.131 ServerApp]  or http://127.0.0.1:8889/lab?token=6f26a99296b37cdb05f3969fb347c51d49b9552c75ee7eb4
            [I 2022-02-17 18:57:28.131 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
            [C 2022-02-17 18:57:28.499 ServerApp]
    
                To access the server, open this file in a browser:
                    file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-308527-open.html
                Or copy and paste one of these URLs:
                    http://localhost:8889/lab?token=6f26a99296b37cdb05f3969fb347c51d49b9552c75ee7eb4
                 or http://127.0.0.1:8889/lab?token=6f26a99296b37cdb05f3969fb347c51d49b9552c75ee7eb4
    
  7. Create ssh tunnel (#+CALL: ssh-tunnel(port="8889", node="node165"))
                         
    sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:              
    Warning: Permanently added ’node305,192.168.194.50’ (ECDSA) to the list of known hosts.
    ye53nis@node305’s password:                  
  8. I started a Python3 kernel using jupyter-server-list-kernels. Then I added the kernel ID to the :PROPERTIES: drawer of this (and following) subtrees.
          python3           03038b73-b2b5-49ce-a1dc-21afb6247d0f   a few seconds ago    starting   0
    
  9. Test and save metadata (including the python packages before the update in Experiment 2a):
            No of CPUs in system: 72
            No of CPUs the current process can use: 24
            load average: (6.14, 6.09, 6.06)
            os.uname():  posix.uname_result(sysname='Linux', nodename='node154', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64')
            PID of process: 59210
            RAM total: 199G, RAM used: 27G, RAM free: 85G
            the current directory: /
            My disk usage:
            Filesystem           Size  Used Avail Use% Mounted on
            /dev/sda1             50G  3.8G   47G   8% /
            devtmpfs              94G     0   94G   0% /dev
            tmpfs                 94G  3.1M   94G   1% /dev/shm
            tmpfs                 94G  107M   94G   1% /run
            tmpfs                 94G     0   94G   0% /sys/fs/cgroup
            nfs01-ib:/home        80T   67T   14T  84% /home
            nfs01-ib:/cluster    2.0T  468G  1.6T  23% /cluster
            nfs03-ib:/pool/work  100T   79T   22T  79% /nfsdata
            nfs02-ib:/data01      88T   72T   16T  82% /data01
            /dev/sda3            6.0G  407M  5.6G   7% /var
            /dev/sda6            169G   11G  158G   7% /local
            /dev/sda5            2.0G   34M  2.0G   2% /tmp
            beegfs_nodev         524T  476T   49T  91% /beegfs
            tmpfs                 19G     0   19G   0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf:
            #
            # Name                    Version                   Build  Channel
            _libgcc_mutex             0.1                        main
            _openmp_mutex             4.5                       1_gnu
            absl-py                   0.13.0                   pypi_0    pypi
            alembic                   1.4.1                    pypi_0    pypi
            anyio                     2.2.0            py39h06a4308_1
            argon2-cffi               20.1.0           py39h27cfd23_1
            asteval                   0.9.25                   pypi_0    pypi
            astunparse                1.6.3                    pypi_0    pypi
            async_generator           1.10               pyhd3eb1b0_0
            attrs                     21.2.0             pyhd3eb1b0_0
            babel                     2.9.1              pyhd3eb1b0_0
            backcall                  0.2.0              pyhd3eb1b0_0
            bleach                    3.3.1              pyhd3eb1b0_0
            brotlipy                  0.7.0           py39h27cfd23_1003
            ca-certificates           2021.7.5             h06a4308_1
            cachetools                4.2.2                    pypi_0    pypi
            certifi                   2021.5.30        py39h06a4308_0
            cffi                      1.14.6           py39h400218f_0
            chardet                   4.0.0           py39h06a4308_1003
            click                     8.0.1                    pypi_0    pypi
            cloudpickle               1.6.0                    pypi_0    pypi
            cryptography              3.4.7            py39hd23ed53_0
            cycler                    0.10.0                   pypi_0    pypi
            databricks-cli            0.14.3                   pypi_0    pypi
            decorator                 5.0.9              pyhd3eb1b0_0
            defusedxml                0.7.1              pyhd3eb1b0_0
            docker                    5.0.0                    pypi_0    pypi
            entrypoints               0.3              py39h06a4308_0
            fcsfiles                  2021.6.6                 pypi_0    pypi
            flask                     2.0.1                    pypi_0    pypi
            flatbuffers               1.12                     pypi_0    pypi
            future                    0.18.2                   pypi_0    pypi
            gast                      0.4.0                    pypi_0    pypi
            gitdb                     4.0.7                    pypi_0    pypi
            gitpython                 3.1.18                   pypi_0    pypi
            google-auth               1.34.0                   pypi_0    pypi
            google-auth-oauthlib      0.4.5                    pypi_0    pypi
            google-pasta              0.2.0                    pypi_0    pypi
            greenlet                  1.1.0                    pypi_0    pypi
            grpcio                    1.34.1                   pypi_0    pypi
            gunicorn                  20.1.0                   pypi_0    pypi
            h5py                      3.1.0                    pypi_0    pypi
            idna                      2.10               pyhd3eb1b0_0
            importlib-metadata        3.10.0           py39h06a4308_0
            importlib_metadata        3.10.0               hd3eb1b0_0
            ipykernel                 5.3.4            py39hb070fc8_0
            ipython                   7.22.0           py39hb070fc8_0
            ipython_genutils          0.2.0              pyhd3eb1b0_1
            itsdangerous              2.0.1                    pypi_0    pypi
            jedi                      0.17.2           py39h06a4308_1
            jinja2                    3.0.1              pyhd3eb1b0_0
            joblib                    1.0.1                    pypi_0    pypi
            json5                     0.9.6              pyhd3eb1b0_0
            jsonschema                3.2.0                      py_2
            jupyter-packaging         0.7.12             pyhd3eb1b0_0
            jupyter_client            6.1.12             pyhd3eb1b0_0
            jupyter_core              4.7.1            py39h06a4308_0
            jupyter_server            1.4.1            py39h06a4308_0
            jupyterlab                3.0.14             pyhd3eb1b0_1
            jupyterlab_pygments       0.1.2                      py_0
            jupyterlab_server         2.6.1              pyhd3eb1b0_0
            keras-nightly             2.5.0.dev2021032900          pypi_0    pypi
            keras-preprocessing       1.1.2                    pypi_0    pypi
            kiwisolver                1.3.1                    pypi_0    pypi
            ld_impl_linux-64          2.35.1               h7274673_9
            libffi                    3.3                  he6710b0_2
            libgcc-ng                 9.3.0               h5101ec6_17
            libgomp                   9.3.0               h5101ec6_17
            libsodium                 1.0.18               h7b6447c_0
            libstdcxx-ng              9.3.0               hd4cf53a_17
            lmfit                     1.0.2                    pypi_0    pypi
            mako                      1.1.4                    pypi_0    pypi
            markdown                  3.3.4                    pypi_0    pypi
            markupsafe                2.0.1            py39h27cfd23_0
            matplotlib                3.4.2                    pypi_0    pypi
            mistune                   0.8.4           py39h27cfd23_1000
            mlflow                    1.19.0                   pypi_0    pypi
            multipletau               0.3.3                    pypi_0    pypi
            nbclassic                 0.2.6              pyhd3eb1b0_0
            nbclient                  0.5.3              pyhd3eb1b0_0
            nbconvert                 6.1.0            py39h06a4308_0
            nbformat                  5.1.3              pyhd3eb1b0_0
            ncurses                   6.2                  he6710b0_1
            nest-asyncio              1.5.1              pyhd3eb1b0_0
            notebook                  6.4.0            py39h06a4308_0
            numpy                     1.19.5                   pypi_0    pypi
            oauthlib                  3.1.1                    pypi_0    pypi
            openssl                   1.1.1k               h27cfd23_0
            opt-einsum                3.3.0                    pypi_0    pypi
            packaging                 21.0               pyhd3eb1b0_0
            pandas                    1.3.1                    pypi_0    pypi
            pandocfilters             1.4.3            py39h06a4308_1
            parso                     0.7.0                      py_0
            pexpect                   4.8.0              pyhd3eb1b0_3
            pickleshare               0.7.5           pyhd3eb1b0_1003
            pillow                    8.3.1                    pypi_0    pypi
            pip                       21.1.3           py39h06a4308_0
            prometheus-flask-exporter 0.18.2                   pypi_0    pypi
            prometheus_client         0.11.0             pyhd3eb1b0_0
            prompt-toolkit            3.0.17             pyh06a4308_0
            protobuf                  3.17.3                   pypi_0    pypi
            ptyprocess                0.7.0              pyhd3eb1b0_2
            pyasn1                    0.4.8                    pypi_0    pypi
            pyasn1-modules            0.2.8                    pypi_0    pypi
            pycparser                 2.20                       py_2
            pygments                  2.9.0              pyhd3eb1b0_0
            pyopenssl                 20.0.1             pyhd3eb1b0_1
            pyparsing                 2.4.7              pyhd3eb1b0_0
            pyrsistent                0.18.0           py39h7f8727e_0
            pysocks                   1.7.1            py39h06a4308_0
            python                    3.9.5                h12debd9_4
            python-dateutil           2.8.2              pyhd3eb1b0_0
            python-editor             1.0.4                    pypi_0    pypi
            pytz                      2021.1             pyhd3eb1b0_0
            pyyaml                    5.4.1                    pypi_0    pypi
            pyzmq                     20.0.0           py39h2531618_1
            querystring-parser        1.2.4                    pypi_0    pypi
            readline                  8.1                  h27cfd23_0
            requests                  2.25.1             pyhd3eb1b0_0
            requests-oauthlib         1.3.0                    pypi_0    pypi
            rsa                       4.7.2                    pypi_0    pypi
            scikit-learn              0.24.2                   pypi_0    pypi
            scipy                     1.7.0                    pypi_0    pypi
            seaborn                   0.11.1                   pypi_0    pypi
            send2trash                1.5.0              pyhd3eb1b0_1
            setuptools                52.0.0           py39h06a4308_0
            six                       1.15.0                   pypi_0    pypi
            smmap                     4.0.0                    pypi_0    pypi
            sniffio                   1.2.0            py39h06a4308_1
            sqlalchemy                1.4.22                   pypi_0    pypi
            sqlite                    3.36.0               hc218d9a_0
            sqlparse                  0.4.1                    pypi_0    pypi
            tabulate                  0.8.9                    pypi_0    pypi
            tensorboard               2.5.0                    pypi_0    pypi
            tensorboard-data-server   0.6.1                    pypi_0    pypi
            tensorboard-plugin-wit    1.8.0                    pypi_0    pypi
            tensorflow                2.5.0                    pypi_0    pypi
            tensorflow-estimator      2.5.0                    pypi_0    pypi
            termcolor                 1.1.0                    pypi_0    pypi
            terminado                 0.9.4            py39h06a4308_0
            testpath                  0.5.0              pyhd3eb1b0_0
            threadpoolctl             2.2.0                    pypi_0    pypi
            tifffile                  2021.7.30                pypi_0    pypi
            tk                        8.6.10               hbc83047_0
            tornado                   6.1              py39h27cfd23_0
            traitlets                 5.0.5              pyhd3eb1b0_0
            typing-extensions         3.7.4.3                  pypi_0    pypi
            tzdata                    2021a                h52ac0ba_0
            uncertainties             3.1.6                    pypi_0    pypi
            urllib3                   1.26.6             pyhd3eb1b0_1
            wcwidth                   0.2.5                      py_0
            webencodings              0.5.1            py39h06a4308_1
            websocket-client          1.1.0                    pypi_0    pypi
            werkzeug                  2.0.1                    pypi_0    pypi
            wheel                     0.36.2             pyhd3eb1b0_0
            wrapt                     1.12.1                   pypi_0    pypi
            xz                        5.2.5                h7b6447c_0
            zeromq                    4.3.4                h2531618_0
            zipp                      3.5.0              pyhd3eb1b0_0
            zlib                      1.2.11               h7b6447c_3
    
            Note: you may need to restart the kernel to use updated packages.
            {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint',
             'SLURM_NODELIST': 'node154',
             'SLURM_JOB_NAME': 'bash',
             'XDG_SESSION_ID': '44301',
             'SLURMD_NODENAME': 'node154',
             'SLURM_TOPOLOGY_ADDR': 'node154',
             'SLURM_NTASKS_PER_NODE': '24',
             'HOSTNAME': 'login01',
             'SLURM_PRIO_PROCESS': '0',
             'SLURM_SRUN_COMM_PORT': '41523',
             'SHELL': '/bin/bash',
             'TERM': 'xterm-color',
             'SLURM_JOB_QOS': 'qstand',
             'SLURM_PTY_WIN_ROW': '34',
             'HISTSIZE': '1000',
             'TMPDIR': '/tmp',
             'SLURM_TOPOLOGY_ADDR_PATTERN': 'node',
             'SSH_CLIENT': '10.231.181.128 49370 22',
             'CONDA_SHLVL': '2',
             'CONDA_PROMPT_MODIFIER': '(tf) ',
             'QTDIR': '/usr/lib64/qt-3.3',
             'QTINC': '/usr/lib64/qt-3.3/include',
             'SSH_TTY': '/dev/pts/79',
             'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
             'QT_GRAPHICSSYSTEM_CHECKED': '1',
             'SLURM_NNODES': '1',
             'USER': 'ye53nis',
             'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
             'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:',
             'CONDA_EXE': '/cluster/miniconda3/bin/conda',
             'SLURM_STEP_NUM_NODES': '1',
             'SLURM_JOBID': '1608805',
             'SRUN_DEBUG': '3',
             'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
             'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
             'SLURM_NTASKS': '24',
             'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5',
             'SLURM_STEP_ID': '0',
             'TMUX': '/tmp/tmux-67339/default,20557,4',
             '_CE_CONDA': '',
             'CONDA_PREFIX_1': '/cluster/miniconda3',
             'SLURM_STEP_LAUNCHER_PORT': '41523',
             'SLURM_TASKS_PER_NODE': '24',
             'MAIL': '/var/spool/mail/ye53nis',
             'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin',
             'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448',
             'SLURM_JOB_ID': '1608805',
             'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf',
             'SLURM_JOB_USER': 'ye53nis',
             'SLURM_STEPID': '0',
             'PWD': '/',
             'SLURM_SRUN_COMM_HOST': '192.168.192.5',
             'LANG': 'en_US.UTF-8',
             'SLURM_PTY_WIN_COL': '236',
             'SLURM_UMASK': '0022',
             'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles',
             'SLURM_JOB_UID': '67339',
             'LOADEDMODULES': '',
             'SLURM_NODEID': '0',
             'TMUX_PANE': '%4',
             'SLURM_SUBMIT_DIR': '/',
             'SLURM_TASK_PID': '57304',
             'SLURM_NPROCS': '24',
             'SLURM_CPUS_ON_NODE': '24',
             'SLURM_DISTRIBUTION': 'block',
             'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
             'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
             'SLURM_PROCID': '0',
             'HISTCONTROL': 'ignoredups',
             '_CE_M': '',
             'SLURM_JOB_NODELIST': 'node154',
             'SLURM_PTY_PORT': '38987',
             'HOME': '/home/ye53nis',
             'SHLVL': '3',
             'SLURM_LOCALID': '0',
             'SLURM_JOB_GID': '13280',
             'SLURM_JOB_CPUS_PER_NODE': '24',
             'SLURM_CLUSTER_NAME': 'hpc',
             'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
             'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23',
             'SLURM_SUBMIT_HOST': 'login01',
             'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
             'SLURM_JOB_PARTITION': 's_standard',
             'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3',
             'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python',
             'LOGNAME': 'ye53nis',
             'SLURM_STEP_NUM_TASKS': '24',
             'QTLIB': '/usr/lib64/qt-3.3/lib',
             'SLURM_JOB_ACCOUNT': 'iaob',
             'SLURM_JOB_NUM_NODES': '1',
             'MODULESHOME': '/usr/share/Modules',
             'CONDA_DEFAULT_ENV': 'tf',
             'LESSOPEN': '||/usr/bin/lesspipe.sh %s',
             'SLURM_STEP_TASKS_PER_NODE': '24',
             'PORT': '8889',
             'SLURM_STEP_NODELIST': 'node154',
             'DISPLAY': ':0',
             'XDG_RUNTIME_DIR': '',
             'XAUTHORITY': '/home/lex/.Xauthority',
             'BASH_FUNC_module()': '() {  eval `/usr/bin/modulecmd bash $*`\n}',
             '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter',
             'JPY_PARENT_PID': '58148',
             'CLICOLOR': '1',
             'PAGER': 'cat',
             'GIT_PAGER': 'cat',
             'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
    
  10. Test and save metadata after update in Experiment 2a
             No of CPUs in system: 72
             No of CPUs the current process can use: 24
             load average: (8.76, 8.8, 8.92)
             os.uname():  posix.uname_result(sysname='Linux', nodename='node154', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64')
             PID of process: 151057
             RAM total: 199G, RAM used: 45G, RAM free: 66G
             the current directory: /beegfs/ye53nis/drmed-git
             My disk usage:
             Filesystem           Size  Used Avail Use% Mounted on
             /dev/sda1             50G  3.8G   47G   8% /
             devtmpfs              94G     0   94G   0% /dev
             tmpfs                 94G  3.1M   94G   1% /dev/shm
             tmpfs                 94G  107M   94G   1% /run
             tmpfs                 94G     0   94G   0% /sys/fs/cgroup
             nfs01-ib:/home        80T   67T   14T  84% /home
             nfs01-ib:/cluster    2.0T  468G  1.6T  23% /cluster
             nfs03-ib:/pool/work  100T   79T   22T  79% /nfsdata
             nfs02-ib:/data01      88T   72T   16T  82% /data01
             /dev/sda3            6.0G  406M  5.6G   7% /var
             /dev/sda6            169G   11G  158G   7% /local
             /dev/sda5            2.0G   34M  2.0G   2% /tmp
             beegfs_nodev         524T  476T   49T  91% /beegfs
             tmpfs                 19G     0   19G   0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf:
             #
             # Name                    Version                   Build  Channel
             _libgcc_mutex             0.1                        main
             _openmp_mutex             4.5                       1_gnu
             absl-py                   1.0.0                    pypi_0    pypi
             alembic                   1.7.6                    pypi_0    pypi
             anyio                     2.2.0            py39h06a4308_1
             argon2-cffi               20.1.0           py39h27cfd23_1
             asteval                   0.9.26                   pypi_0    pypi
             astunparse                1.6.3                    pypi_0    pypi
             async_generator           1.10               pyhd3eb1b0_0
             attrs                     21.4.0             pyhd3eb1b0_0
             babel                     2.9.1              pyhd3eb1b0_0
             backcall                  0.2.0              pyhd3eb1b0_0
             bleach                    4.1.0              pyhd3eb1b0_0
             brotlipy                  0.7.0           py39h27cfd23_1003
             ca-certificates           2021.10.26           h06a4308_2
             cachetools                5.0.0                    pypi_0    pypi
             certifi                   2021.10.8        py39h06a4308_2
             cffi                      1.15.0           py39hd667e15_1
             charset-normalizer        2.0.4              pyhd3eb1b0_0
             click                     8.0.3                    pypi_0    pypi
             cloudpickle               2.0.0                    pypi_0    pypi
             cryptography              36.0.0           py39h9ce1e76_0
             cycler                    0.11.0                   pypi_0    pypi
             cython                    0.29.27                  pypi_0    pypi
             databricks-cli            0.16.4                   pypi_0    pypi
             debugpy                   1.5.1            py39h295c915_0
             decorator                 5.1.1              pyhd3eb1b0_0
             defusedxml                0.7.1              pyhd3eb1b0_0
             docker                    5.0.3                    pypi_0    pypi
             entrypoints               0.3              py39h06a4308_0
             fcsfiles                  2022.2.2                 pypi_0    pypi
             flask                     2.0.2                    pypi_0    pypi
             flatbuffers               2.0                      pypi_0    pypi
             fonttools                 4.29.1                   pypi_0    pypi
             future                    0.18.2                   pypi_0    pypi
             gast                      0.5.3                    pypi_0    pypi
             gitdb                     4.0.9                    pypi_0    pypi
             gitpython                 3.1.26                   pypi_0    pypi
             google-auth               2.6.0                    pypi_0    pypi
             google-auth-oauthlib      0.4.6                    pypi_0    pypi
             google-pasta              0.2.0                    pypi_0    pypi
             greenlet                  1.1.2                    pypi_0    pypi
             grpcio                    1.43.0                   pypi_0    pypi
             gunicorn                  20.1.0                   pypi_0    pypi
             h5py                      3.6.0                    pypi_0    pypi
             idna                      3.3                pyhd3eb1b0_0
             importlib-metadata        4.8.2            py39h06a4308_0
             importlib_metadata        4.8.2                hd3eb1b0_0
             ipykernel                 6.4.1            py39h06a4308_1
             ipython                   7.31.1           py39h06a4308_0
             ipython_genutils          0.2.0              pyhd3eb1b0_1
             itsdangerous              2.0.1                    pypi_0    pypi
             jedi                      0.18.1           py39h06a4308_1
             jinja2                    3.0.2              pyhd3eb1b0_0
             joblib                    1.1.0                    pypi_0    pypi
             json5                     0.9.6              pyhd3eb1b0_0
             jsonschema                3.2.0              pyhd3eb1b0_2
             jupyter_client            7.1.2              pyhd3eb1b0_0
             jupyter_core              4.9.1            py39h06a4308_0
             jupyter_server            1.4.1            py39h06a4308_0
             jupyterlab                3.2.1              pyhd3eb1b0_1
             jupyterlab_pygments       0.1.2                      py_0
             jupyterlab_server         2.10.2             pyhd3eb1b0_1
             keras                     2.8.0                    pypi_0    pypi
             keras-preprocessing       1.1.2                    pypi_0    pypi
             kiwisolver                1.3.2                    pypi_0    pypi
             ld_impl_linux-64          2.35.1               h7274673_9
             libclang                  13.0.0                   pypi_0    pypi
             libffi                    3.3                  he6710b0_2
             libgcc-ng                 9.3.0               h5101ec6_17
             libgomp                   9.3.0               h5101ec6_17
             libsodium                 1.0.18               h7b6447c_0
             libstdcxx-ng              9.3.0               hd4cf53a_17
             lmfit                     1.0.3                    pypi_0    pypi
             mako                      1.1.6                    pypi_0    pypi
             markdown                  3.3.6                    pypi_0    pypi
             markupsafe                2.0.1            py39h27cfd23_0
             matplotlib                3.5.1                    pypi_0    pypi
             matplotlib-inline         0.1.2              pyhd3eb1b0_2
             mistune                   0.8.4           py39h27cfd23_1000
             mlflow                    1.23.1                   pypi_0    pypi
             multipletau               0.3.3                    pypi_0    pypi
             nbclassic                 0.2.6              pyhd3eb1b0_0
             nbclient                  0.5.3              pyhd3eb1b0_0
             nbconvert                 6.3.0            py39h06a4308_0
             nbformat                  5.1.3              pyhd3eb1b0_0
             ncurses                   6.3                  h7f8727e_2
             nest-asyncio              1.5.1              pyhd3eb1b0_0
             notebook                  6.4.6            py39h06a4308_0
             numpy                     1.22.2                   pypi_0    pypi
             oauthlib                  3.2.0                    pypi_0    pypi
             openssl                   1.1.1m               h7f8727e_0
             opt-einsum                3.3.0                    pypi_0    pypi
             packaging                 21.3               pyhd3eb1b0_0
             pandas                    1.4.0                    pypi_0    pypi
             pandocfilters             1.5.0              pyhd3eb1b0_0
             parso                     0.8.3              pyhd3eb1b0_0
             pexpect                   4.8.0              pyhd3eb1b0_3
             pickleshare               0.7.5           pyhd3eb1b0_1003
             pillow                    9.0.1                    pypi_0    pypi
             pip                       21.2.4           py39h06a4308_0
             prometheus-flask-exporter 0.18.7                   pypi_0    pypi
             prometheus_client         0.13.1             pyhd3eb1b0_0
             prompt-toolkit            3.0.20             pyhd3eb1b0_0
             protobuf                  3.19.4                   pypi_0    pypi
             ptyprocess                0.7.0              pyhd3eb1b0_2
             pyasn1                    0.4.8                    pypi_0    pypi
             pyasn1-modules            0.2.8                    pypi_0    pypi
             pycparser                 2.21               pyhd3eb1b0_0
             pygments                  2.11.2             pyhd3eb1b0_0
             pyopenssl                 22.0.0             pyhd3eb1b0_0
             pyparsing                 3.0.4              pyhd3eb1b0_0
             pyrsistent                0.18.0           py39heee7806_0
             pysocks                   1.7.1            py39h06a4308_0
             python                    3.9.7                h12debd9_1
             python-dateutil           2.8.2              pyhd3eb1b0_0
             pytz                      2021.3             pyhd3eb1b0_0
             pyyaml                    6.0                      pypi_0    pypi
             pyzmq                     22.3.0           py39h295c915_2
             querystring-parser        1.2.4                    pypi_0    pypi
             readline                  8.1.2                h7f8727e_1
             requests                  2.27.1             pyhd3eb1b0_0
             requests-oauthlib         1.3.1                    pypi_0    pypi
             rsa                       4.8                      pypi_0    pypi
             scikit-learn              1.0.2                    pypi_0    pypi
             scipy                     1.8.0                    pypi_0    pypi
             seaborn                   0.11.2                   pypi_0    pypi
             send2trash                1.8.0              pyhd3eb1b0_1
             setuptools                58.0.4           py39h06a4308_0
             six                       1.16.0             pyhd3eb1b0_0
             smmap                     5.0.0                    pypi_0    pypi
             sniffio                   1.2.0            py39h06a4308_1
             sqlalchemy                1.4.31                   pypi_0    pypi
             sqlite                    3.37.2               hc218d9a_0
             sqlparse                  0.4.2                    pypi_0    pypi
             tabulate                  0.8.9                    pypi_0    pypi
             tensorboard               2.8.0                    pypi_0    pypi
             tensorboard-data-server   0.6.1                    pypi_0    pypi
             tensorboard-plugin-wit    1.8.1                    pypi_0    pypi
             tensorflow                2.8.0                    pypi_0    pypi
             tensorflow-io-gcs-filesystem 0.24.0                   pypi_0    pypi
             termcolor                 1.1.0                    pypi_0    pypi
             terminado                 0.9.4            py39h06a4308_0
             testpath                  0.5.0              pyhd3eb1b0_0
             tf-estimator-nightly      2.8.0.dev2021122109          pypi_0    pypi
             threadpoolctl             3.1.0                    pypi_0    pypi
             tk                        8.6.11               h1ccaba5_0
             tornado                   6.1              py39h27cfd23_0
             traitlets                 5.1.1              pyhd3eb1b0_0
             typing-extensions         4.0.1                    pypi_0    pypi
             tzdata                    2021e                hda174b7_0
             uncertainties             3.1.6                    pypi_0    pypi
             urllib3                   1.26.8             pyhd3eb1b0_0
             wcwidth                   0.2.5              pyhd3eb1b0_0
             webencodings              0.5.1            py39h06a4308_1
             websocket-client          1.2.3                    pypi_0    pypi
             werkzeug                  2.0.3                    pypi_0    pypi
             wheel                     0.37.1             pyhd3eb1b0_0
             wrapt                     1.13.3                   pypi_0    pypi
             xz                        5.2.5                h7b6447c_0
             zeromq                    4.3.4                h2531618_0
             zipp                      3.7.0              pyhd3eb1b0_0
             zlib                      1.2.11               h7f8727e_4
    
             Note: you may need to restart the kernel to use updated packages.
             {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint',
              'SLURM_NODELIST': 'node154',
              'SLURM_JOB_NAME': 'bash',
              'XDG_SESSION_ID': '44301',
              'SLURMD_NODENAME': 'node154',
              'SLURM_TOPOLOGY_ADDR': 'node154',
              'SLURM_NTASKS_PER_NODE': '24',
              'HOSTNAME': 'login01',
              'SLURM_PRIO_PROCESS': '0',
              'SLURM_SRUN_COMM_PORT': '41523',
              'SHELL': '/bin/bash',
              'TERM': 'xterm-color',
              'SLURM_JOB_QOS': 'qstand',
              'SLURM_PTY_WIN_ROW': '34',
              'HISTSIZE': '1000',
              'TMPDIR': '/tmp',
              'SLURM_TOPOLOGY_ADDR_PATTERN': 'node',
              'SSH_CLIENT': '10.231.181.128 49370 22',
              'CONDA_SHLVL': '2',
              'CONDA_PROMPT_MODIFIER': '(tf) ',
              'QTDIR': '/usr/lib64/qt-3.3',
              'QTINC': '/usr/lib64/qt-3.3/include',
              'SSH_TTY': '/dev/pts/79',
              'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
              'QT_GRAPHICSSYSTEM_CHECKED': '1',
              'SLURM_NNODES': '1',
              'USER': 'ye53nis',
              'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:',
              'CONDA_EXE': '/cluster/miniconda3/bin/conda',
              'SLURM_STEP_NUM_NODES': '1',
              'SLURM_JOBID': '1608805',
              'SRUN_DEBUG': '3',
              'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
              'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'SLURM_NTASKS': '24',
              'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5',
              'SLURM_STEP_ID': '0',
              'TMUX': '/tmp/tmux-67339/default,20557,4',
              '_CE_CONDA': '',
              'CONDA_PREFIX_1': '/cluster/miniconda3',
              'SLURM_STEP_LAUNCHER_PORT': '41523',
              'SLURM_TASKS_PER_NODE': '24',
              'MAIL': '/var/spool/mail/ye53nis',
              'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin',
              'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448',
              'SLURM_JOB_ID': '1608805',
              'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf',
              'SLURM_JOB_USER': 'ye53nis',
              'SLURM_STEPID': '0',
              'PWD': '/',
              'SLURM_SRUN_COMM_HOST': '192.168.192.5',
              'LANG': 'en_US.UTF-8',
              'SLURM_PTY_WIN_COL': '236',
              'SLURM_UMASK': '0022',
              'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles',
              'SLURM_JOB_UID': '67339',
              'LOADEDMODULES': '',
              'SLURM_NODEID': '0',
              'TMUX_PANE': '%4',
              'SLURM_SUBMIT_DIR': '/',
              'SLURM_TASK_PID': '57304',
              'SLURM_NPROCS': '24',
              'SLURM_CPUS_ON_NODE': '24',
              'SLURM_DISTRIBUTION': 'block',
              'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
              'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'SLURM_PROCID': '0',
              'HISTCONTROL': 'ignoredups',
              '_CE_M': '',
              'SLURM_JOB_NODELIST': 'node154',
              'SLURM_PTY_PORT': '38987',
              'HOME': '/home/ye53nis',
              'SHLVL': '3',
              'SLURM_LOCALID': '0',
              'SLURM_JOB_GID': '13280',
              'SLURM_JOB_CPUS_PER_NODE': '24',
              'SLURM_CLUSTER_NAME': 'hpc',
              'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
              'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23',
              'SLURM_SUBMIT_HOST': 'login01',
              'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
              'SLURM_JOB_PARTITION': 's_standard',
              'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3',
              'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python',
              'LOGNAME': 'ye53nis',
              'SLURM_STEP_NUM_TASKS': '24',
              'QTLIB': '/usr/lib64/qt-3.3/lib',
              'SLURM_JOB_ACCOUNT': 'iaob',
              'SLURM_JOB_NUM_NODES': '1',
              'MODULESHOME': '/usr/share/Modules',
              'CONDA_DEFAULT_ENV': 'tf',
              'LESSOPEN': '||/usr/bin/lesspipe.sh %s',
              'SLURM_STEP_TASKS_PER_NODE': '24',
              'PORT': '8889',
              'SLURM_STEP_NODELIST': 'node154',
              'DISPLAY': ':0',
              'XDG_RUNTIME_DIR': '',
              'XAUTHORITY': '/home/lex/.Xauthority',
              'BASH_FUNC_module()': '() {  eval `/usr/bin/modulecmd bash $*`\n}',
              '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter',
              'JPY_PARENT_PID': '58148',
              'PYDEVD_USE_FRAME_EVAL': 'NO',
              'CLICOLOR': '1',
              'PAGER': 'cat',
              'GIT_PAGER': 'cat',
              'MPLBACKEND': 'module://matplotlib_inline.backend_inline',
              'TF2_BEHAVIOR': '1',
              'KMP_DUPLICATE_LIB_OK': 'True',
              'KMP_INIT_AT_FORK': 'FALSE'}
    
  11. Test and save metadata for Analysis 4 (190327_detectordropout needs a lot of RAM)
             No of CPUs in system: 72
             No of CPUs the current process can use: 24
             load average: (0.0, 0.01, 0.05)
             os.uname():  posix.uname_result(sysname='Linux', nodename='node305', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64')
             PID of process: 215732
             RAM total: 199G, RAM used: 4.9G, RAM free: 110G
             the current directory: /
             My disk usage:
             Filesystem           Size  Used Avail Use% Mounted on
             /dev/sda1             50G  3.8G   47G   8% /
             devtmpfs              94G     0   94G   0% /dev
             tmpfs                 94G  5.6G   89G   6% /dev/shm
             tmpfs                 94G  155M   94G   1% /run
             tmpfs                 94G     0   94G   0% /sys/fs/cgroup
             nfs01-ib:/home        80T   68T   13T  85% /home
             nfs03-ib:/pool/work  100T   71T   29T  71% /nfsdata
             nfs01-ib:/cluster    2.0T  468G  1.6T  23% /cluster
             nfs02-ib:/data01      88T   72T   16T  82% /data01
             /dev/sda6            169G  2.6G  166G   2% /local
             /dev/sda5            2.0G   34M  2.0G   2% /tmp
             /dev/sda3            6.0G  419M  5.6G   7% /var
             beegfs_nodev         524T  491T   34T  94% /beegfs
             tmpfs                 19G     0   19G   0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf:
             #
             # Name                    Version                   Build  Channel
             _libgcc_mutex             0.1                        main
             _openmp_mutex             4.5                       1_gnu
             absl-py                   1.0.0                    pypi_0    pypi
             alembic                   1.7.6                    pypi_0    pypi
             anyio                     2.2.0            py39h06a4308_1
             argon2-cffi               20.1.0           py39h27cfd23_1
             asteval                   0.9.26                   pypi_0    pypi
             astunparse                1.6.3                    pypi_0    pypi
             async_generator           1.10               pyhd3eb1b0_0
             attrs                     21.4.0             pyhd3eb1b0_0
             babel                     2.9.1              pyhd3eb1b0_0
             backcall                  0.2.0              pyhd3eb1b0_0
             bleach                    4.1.0              pyhd3eb1b0_0
             brotlipy                  0.7.0           py39h27cfd23_1003
             ca-certificates           2021.10.26           h06a4308_2
             cachetools                5.0.0                    pypi_0    pypi
             certifi                   2021.10.8        py39h06a4308_2
             cffi                      1.15.0           py39hd667e15_1
             charset-normalizer        2.0.4              pyhd3eb1b0_0
             click                     8.0.3                    pypi_0    pypi
             cloudpickle               2.0.0                    pypi_0    pypi
             cryptography              36.0.0           py39h9ce1e76_0
             cycler                    0.11.0                   pypi_0    pypi
             cython                    0.29.27                  pypi_0    pypi
             databricks-cli            0.16.4                   pypi_0    pypi
             debugpy                   1.5.1            py39h295c915_0
             decorator                 5.1.1              pyhd3eb1b0_0
             defusedxml                0.7.1              pyhd3eb1b0_0
             docker                    5.0.3                    pypi_0    pypi
             entrypoints               0.3              py39h06a4308_0
             fcsfiles                  2022.2.2                 pypi_0    pypi
             flask                     2.0.2                    pypi_0    pypi
             flatbuffers               2.0                      pypi_0    pypi
             fonttools                 4.29.1                   pypi_0    pypi
             future                    0.18.2                   pypi_0    pypi
             gast                      0.5.3                    pypi_0    pypi
             gitdb                     4.0.9                    pypi_0    pypi
             gitpython                 3.1.26                   pypi_0    pypi
             google-auth               2.6.0                    pypi_0    pypi
             google-auth-oauthlib      0.4.6                    pypi_0    pypi
             google-pasta              0.2.0                    pypi_0    pypi
             greenlet                  1.1.2                    pypi_0    pypi
             grpcio                    1.43.0                   pypi_0    pypi
             gunicorn                  20.1.0                   pypi_0    pypi
             h5py                      3.6.0                    pypi_0    pypi
             idna                      3.3                pyhd3eb1b0_0
             importlib-metadata        4.8.2            py39h06a4308_0
             importlib_metadata        4.8.2                hd3eb1b0_0
             ipykernel                 6.4.1            py39h06a4308_1
             ipython                   7.31.1           py39h06a4308_0
             ipython_genutils          0.2.0              pyhd3eb1b0_1
             itsdangerous              2.0.1                    pypi_0    pypi
             jedi                      0.18.1           py39h06a4308_1
             jinja2                    3.0.2              pyhd3eb1b0_0
             joblib                    1.1.0                    pypi_0    pypi
             json5                     0.9.6              pyhd3eb1b0_0
             jsonschema                3.2.0              pyhd3eb1b0_2
             jupyter_client            7.1.2              pyhd3eb1b0_0
             jupyter_core              4.9.1            py39h06a4308_0
             jupyter_server            1.4.1            py39h06a4308_0
             jupyterlab                3.2.1              pyhd3eb1b0_1
             jupyterlab_pygments       0.1.2                      py_0
             jupyterlab_server         2.10.2             pyhd3eb1b0_1
             keras                     2.8.0                    pypi_0    pypi
             keras-preprocessing       1.1.2                    pypi_0    pypi
             kiwisolver                1.3.2                    pypi_0    pypi
             ld_impl_linux-64          2.35.1               h7274673_9
             libclang                  13.0.0                   pypi_0    pypi
             libffi                    3.3                  he6710b0_2
             libgcc-ng                 9.3.0               h5101ec6_17
             libgomp                   9.3.0               h5101ec6_17
             libsodium                 1.0.18               h7b6447c_0
             libstdcxx-ng              9.3.0               hd4cf53a_17
             lmfit                     1.0.3                    pypi_0    pypi
             mako                      1.1.6                    pypi_0    pypi
             markdown                  3.3.6                    pypi_0    pypi
             markupsafe                2.0.1            py39h27cfd23_0
             matplotlib                3.5.1                    pypi_0    pypi
             matplotlib-inline         0.1.2              pyhd3eb1b0_2
             mistune                   0.8.4           py39h27cfd23_1000
             mlflow                    1.23.1                   pypi_0    pypi
             multipletau               0.3.3                    pypi_0    pypi
             nbclassic                 0.2.6              pyhd3eb1b0_0
             nbclient                  0.5.3              pyhd3eb1b0_0
             nbconvert                 6.3.0            py39h06a4308_0
             nbformat                  5.1.3              pyhd3eb1b0_0
             ncurses                   6.3                  h7f8727e_2
             nest-asyncio              1.5.1              pyhd3eb1b0_0
             notebook                  6.4.6            py39h06a4308_0
             numpy                     1.22.2                   pypi_0    pypi
             oauthlib                  3.2.0                    pypi_0    pypi
             openssl                   1.1.1m               h7f8727e_0
             opt-einsum                3.3.0                    pypi_0    pypi
             packaging                 21.3               pyhd3eb1b0_0
             pandas                    1.4.0                    pypi_0    pypi
             pandocfilters             1.5.0              pyhd3eb1b0_0
             parso                     0.8.3              pyhd3eb1b0_0
             pexpect                   4.8.0              pyhd3eb1b0_3
             pickleshare               0.7.5           pyhd3eb1b0_1003
             pillow                    9.0.1                    pypi_0    pypi
             pip                       21.2.4           py39h06a4308_0
             prometheus-flask-exporter 0.18.7                   pypi_0    pypi
             prometheus_client         0.13.1             pyhd3eb1b0_0
             prompt-toolkit            3.0.20             pyhd3eb1b0_0
             protobuf                  3.19.4                   pypi_0    pypi
             ptyprocess                0.7.0              pyhd3eb1b0_2
             pyasn1                    0.4.8                    pypi_0    pypi
             pyasn1-modules            0.2.8                    pypi_0    pypi
             pycparser                 2.21               pyhd3eb1b0_0
             pygments                  2.11.2             pyhd3eb1b0_0
             pyopenssl                 22.0.0             pyhd3eb1b0_0
             pyparsing                 3.0.4              pyhd3eb1b0_0
             pyrsistent                0.18.0           py39heee7806_0
             pysocks                   1.7.1            py39h06a4308_0
             python                    3.9.7                h12debd9_1
             python-dateutil           2.8.2              pyhd3eb1b0_0
             pytz                      2021.3             pyhd3eb1b0_0
             pyyaml                    6.0                      pypi_0    pypi
             pyzmq                     22.3.0           py39h295c915_2
             querystring-parser        1.2.4                    pypi_0    pypi
             readline                  8.1.2                h7f8727e_1
             requests                  2.27.1             pyhd3eb1b0_0
             requests-oauthlib         1.3.1                    pypi_0    pypi
             rsa                       4.8                      pypi_0    pypi
             scikit-learn              1.0.2                    pypi_0    pypi
             scipy                     1.8.0                    pypi_0    pypi
             seaborn                   0.11.2                   pypi_0    pypi
             send2trash                1.8.0              pyhd3eb1b0_1
             setuptools                58.0.4           py39h06a4308_0
             six                       1.16.0             pyhd3eb1b0_0
             smmap                     5.0.0                    pypi_0    pypi
             sniffio                   1.2.0            py39h06a4308_1
             sqlalchemy                1.4.31                   pypi_0    pypi
             sqlite                    3.37.2               hc218d9a_0
             sqlparse                  0.4.2                    pypi_0    pypi
             tabulate                  0.8.9                    pypi_0    pypi
             tensorboard               2.8.0                    pypi_0    pypi
             tensorboard-data-server   0.6.1                    pypi_0    pypi
             tensorboard-plugin-wit    1.8.1                    pypi_0    pypi
             tensorflow                2.8.0                    pypi_0    pypi
             tensorflow-io-gcs-filesystem 0.24.0                   pypi_0    pypi
             termcolor                 1.1.0                    pypi_0    pypi
             terminado                 0.9.4            py39h06a4308_0
             testpath                  0.5.0              pyhd3eb1b0_0
             tf-estimator-nightly      2.8.0.dev2021122109          pypi_0    pypi
             threadpoolctl             3.1.0                    pypi_0    pypi
             tk                        8.6.11               h1ccaba5_0
             tornado                   6.1              py39h27cfd23_0
             traitlets                 5.1.1              pyhd3eb1b0_0
             typing-extensions         4.0.1                    pypi_0    pypi
             tzdata                    2021e                hda174b7_0
             uncertainties             3.1.6                    pypi_0    pypi
             urllib3                   1.26.8             pyhd3eb1b0_0
             wcwidth                   0.2.5              pyhd3eb1b0_0
             webencodings              0.5.1            py39h06a4308_1
             websocket-client          1.2.3                    pypi_0    pypi
             werkzeug                  2.0.3                    pypi_0    pypi
             wheel                     0.37.1             pyhd3eb1b0_0
             wrapt                     1.13.3                   pypi_0    pypi
             xz                        5.2.5                h7b6447c_0
             zeromq                    4.3.4                h2531618_0
             zipp                      3.7.0              pyhd3eb1b0_0
             zlib                      1.2.11               h7f8727e_4
    
             Note: you may need to restart the kernel to use updated packages.
             {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint',
              'SLURM_NODELIST': 'node305',
              'SLURM_JOB_NAME': 'bash',
              'XDG_SESSION_ID': '44301',
              'SLURMD_NODENAME': 'node305',
              'SLURM_TOPOLOGY_ADDR': 'node305',
              'SLURM_NTASKS_PER_NODE': '24',
              'HOSTNAME': 'login01',
              'SLURM_PRIO_PROCESS': '0',
              'SLURM_SRUN_COMM_PORT': '44912',
              'SHELL': '/bin/bash',
              'TERM': 'xterm-color',
              'SLURM_JOB_QOS': 'qstand',
              'SLURM_PTY_WIN_ROW': '34',
              'HISTSIZE': '1000',
              'TMPDIR': '/tmp',
              'SLURM_TOPOLOGY_ADDR_PATTERN': 'node',
              'SSH_CLIENT': '10.231.181.128 49370 22',
              'CONDA_SHLVL': '2',
              'CONDA_PROMPT_MODIFIER': '(tf) ',
              'QTDIR': '/usr/lib64/qt-3.3',
              'QTINC': '/usr/lib64/qt-3.3/include',
              'SSH_TTY': '/dev/pts/79',
              'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
              'QT_GRAPHICSSYSTEM_CHECKED': '1',
              'SLURM_NNODES': '1',
              'USER': 'ye53nis',
              'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:',
              'CONDA_EXE': '/cluster/miniconda3/bin/conda',
              'SLURM_STEP_NUM_NODES': '1',
              'SLURM_JOBID': '1612149',
              'SRUN_DEBUG': '3',
              'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
              'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'SLURM_NTASKS': '24',
              'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5',
              'SLURM_STEP_ID': '0',
              'TMUX': '/tmp/tmux-67339/default,20557,4',
              '_CE_CONDA': '',
              'CONDA_PREFIX_1': '/cluster/miniconda3',
              'SLURM_STEP_LAUNCHER_PORT': '44912',
              'SLURM_TASKS_PER_NODE': '24',
              'MAIL': '/var/spool/mail/ye53nis',
              'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin',
              'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448',
              'SLURM_JOB_ID': '1612149',
              'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf',
              'SLURM_JOB_USER': 'ye53nis',
              'SLURM_STEPID': '0',
              'PWD': '/',
              'SLURM_SRUN_COMM_HOST': '192.168.192.5',
              'LANG': 'en_US.UTF-8',
              'SLURM_PTY_WIN_COL': '236',
              'SLURM_UMASK': '0022',
              'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles',
              'SLURM_JOB_UID': '67339',
              'LOADEDMODULES': '',
              'SLURM_NODEID': '0',
              'TMUX_PANE': '%4',
              'SLURM_SUBMIT_DIR': '/',
              'SLURM_TASK_PID': '214733',
              'SLURM_NPROCS': '24',
              'SLURM_CPUS_ON_NODE': '24',
              'SLURM_DISTRIBUTION': 'block',
              'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
              'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'SLURM_PROCID': '0',
              'HISTCONTROL': 'ignoredups',
              '_CE_M': '',
              'SLURM_JOB_NODELIST': 'node305',
              'SLURM_PTY_PORT': '44825',
              'HOME': '/home/ye53nis',
              'SHLVL': '3',
              'SLURM_LOCALID': '0',
              'SLURM_JOB_GID': '13280',
              'SLURM_JOB_CPUS_PER_NODE': '24',
              'SLURM_CLUSTER_NAME': 'hpc',
              'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
              'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23',
              'SLURM_SUBMIT_HOST': 'login01',
              'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
              'SLURM_JOB_PARTITION': 's_standard',
              'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3',
              'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python',
              'LOGNAME': 'ye53nis',
              'SLURM_STEP_NUM_TASKS': '24',
              'QTLIB': '/usr/lib64/qt-3.3/lib',
              'SLURM_JOB_ACCOUNT': 'iaob',
              'SLURM_JOB_NUM_NODES': '1',
              'MODULESHOME': '/usr/share/Modules',
              'CONDA_DEFAULT_ENV': 'tf',
              'LESSOPEN': '||/usr/bin/lesspipe.sh %s',
              'SLURM_STEP_TASKS_PER_NODE': '24',
              'PORT': '8889',
              'SLURM_STEP_NODELIST': 'node305',
              'DISPLAY': ':0',
              'XDG_RUNTIME_DIR': '',
              'XAUTHORITY': '/home/lex/.Xauthority',
              'BASH_FUNC_module()': '() {  eval `/usr/bin/modulecmd bash $*`\n}',
              '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter',
              'PYDEVD_USE_FRAME_EVAL': 'NO',
              'JPY_PARENT_PID': '214856',
              'CLICOLOR': '1',
              'PAGER': 'cat',
              'GIT_PAGER': 'cat',
              'MPLBACKEND': 'module://matplotlib_inline.backend_inline'}
    

2.5.2 Setup: Jupyter 2 on HPC compute node 2

  1. Setup tmux (#+CALL: setup-tmux[:session remote]) - done already above
  2. Request compute node via tmux
            cd /
            srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
    
            (base) [ye53nis@login01 /]$ srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2
            000 --pty bash
            (base) [ye53nis@node169 /]$
    
  3. Branch out git branch exp-220120-correlate-ptu from main (done via magit) and make sure ou are on the correct branch
            cd /beegfs/ye53nis/drmed-git
            git checkout exp-220120-correlate-ptu
    
            (base) [ye53nis@node145 drmed-git]$ git checkout exp-220120-correlate-ptu
            M       src/nanosimpy
            Already on 'exp-220120-correlate-ptu'
            (base) [ye53nis@node145 drmed-git]$
    
  4. Make directory for experiment - already done above
            ls data/exp-220120-correlate-ptu
    
            (base) [ye53nis@node145 drmed-git]$ ls data/exp-220120-correlate-ptu
            jupyter
    
  5. Set output folder using the following org-mode variable - already done above
  6. Load conda environment, and start jupyter
            conda activate tf
            export PORT=9997
            export XDG_RUNTIME_DIR=''
            export XDG_RUNTIME_DIR=""
            jupyter lab --no-browser --port=$PORT
    
            (tf) [ye53nis@node169 /]$ jupyter lab --no-browser --port=$PORT
            [I 2022-02-08 15:21:03.957 ServerApp] jupyterlab | extension was successfully linked.
            [I 2022-02-08 15:21:04.593 ServerApp] nbclassic | extension was successfully linked.
            [I 2022-02-08 15:21:04.659 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/
            python3.9/site-packages/jupyterlab
            [I 2022-02-08 15:21:04.659 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/s
            hare/jupyter/lab
            [I 2022-02-08 15:21:04.670 ServerApp] jupyterlab | extension was successfully loaded.
            [I 2022-02-08 15:21:04.684 ServerApp] nbclassic | extension was successfully loaded.
            [I 2022-02-08 15:21:04.685 ServerApp] Serving notebooks from local directory: /
            [I 2022-02-08 15:21:04.685 ServerApp] Jupyter Server 1.4.1 is running at:
            [I 2022-02-08 15:21:04.685 ServerApp] http://localhost:9997/lab?token=9ac76fb054cea3bc3b076004eac0489
            60ff38213a8a87ed2
            [I 2022-02-08 15:21:04.685 ServerApp]  or http://127.0.0.1:9997/lab?token=9ac76fb054cea3bc3b076004eac
            048960ff38213a8a87ed2
            [I 2022-02-08 15:21:04.685 ServerApp] Use Control-C to stop this server and shut down all kernels (tw
            ice to skip confirmation).
            [C 2022-02-08 15:21:04.697 ServerApp]
    
                To access the server, open this file in a browser:
                    file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-319063-open.html
                Or copy and paste one of these URLs:
                    http://localhost:9997/lab?token=9ac76fb054cea3bc3b076004eac048960ff38213a8a87ed2
                 or http://127.0.0.1:9997/lab?token=9ac76fb054cea3bc3b076004eac048960ff38213a8a87ed2
    
  7. Create ssh tunnel (#+CALL: ssh-tunnel[:session org-tunnel2](port="9997", node="node169"))
                     
    sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:          
    ye53nis@node169’s password:              
    Last login: Wed Feb 9 13:54:20 2022 from login01.ara
  8. I started a Python3 kernel using jupyter-server-list-kernels. Then I added the kernel ID to the :PROPERTIES: drawer of this (and following) subtrees.
          python3           03038b73-b2b5-49ce-a1dc-21afb6247d0f   a few seconds ago    starting   0
    
  9. Test: (#+CALL: jp-metadata(_long='True)) before update in Experiment 2a
            No of CPUs in system: 72
            No of CPUs the current process can use: 24
            load average: (35.8, 34.75, 28.33)
            os.uname():  posix.uname_result(sysname='Linux', nodename='node169', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64')
            PID of process: 320784
            RAM total: 199G, RAM used: 75G, RAM free: 75G
            the current directory: /
            My disk usage:
            Filesystem           Size  Used Avail Use% Mounted on
            /dev/sda1             50G  3.8G   47G   8% /
            devtmpfs              94G     0   94G   0% /dev
            tmpfs                 94G  7.5M   94G   1% /dev/shm
            tmpfs                 94G  403M   94G   1% /run
            tmpfs                 94G     0   94G   0% /sys/fs/cgroup
            nfs03-ib:/pool/work  100T   79T   22T  79% /nfsdata
            nfs02-ib:/data01      88T   72T   16T  82% /data01
            nfs01-ib:/home        80T   67T   14T  84% /home
            nfs01-ib:/cluster    2.0T  468G  1.6T  23% /cluster
            /dev/sda6            169G  750M  168G   1% /local
            /dev/sda3            6.0G  414M  5.6G   7% /var
            /dev/sda5            2.0G   34M  2.0G   2% /tmp
            beegfs_nodev         524T  476T   49T  91% /beegfs
            tmpfs                 19G     0   19G   0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf:
            #
            # Name                    Version                   Build  Channel
            _libgcc_mutex             0.1                        main
            _openmp_mutex             4.5                       1_gnu
            absl-py                   0.13.0                   pypi_0    pypi
            alembic                   1.4.1                    pypi_0    pypi
            anyio                     2.2.0            py39h06a4308_1
            argon2-cffi               20.1.0           py39h27cfd23_1
            asteval                   0.9.25                   pypi_0    pypi
            astunparse                1.6.3                    pypi_0    pypi
            async_generator           1.10               pyhd3eb1b0_0
            attrs                     21.2.0             pyhd3eb1b0_0
            babel                     2.9.1              pyhd3eb1b0_0
            backcall                  0.2.0              pyhd3eb1b0_0
            bleach                    3.3.1              pyhd3eb1b0_0
            brotlipy                  0.7.0           py39h27cfd23_1003
            ca-certificates           2021.7.5             h06a4308_1
            cachetools                4.2.2                    pypi_0    pypi
            certifi                   2021.5.30        py39h06a4308_0
            cffi                      1.14.6           py39h400218f_0
            chardet                   4.0.0           py39h06a4308_1003
            click                     8.0.1                    pypi_0    pypi
            cloudpickle               1.6.0                    pypi_0    pypi
            cryptography              3.4.7            py39hd23ed53_0
            cycler                    0.10.0                   pypi_0    pypi
            databricks-cli            0.14.3                   pypi_0    pypi
            decorator                 5.0.9              pyhd3eb1b0_0
            defusedxml                0.7.1              pyhd3eb1b0_0
            docker                    5.0.0                    pypi_0    pypi
            entrypoints               0.3              py39h06a4308_0
            fcsfiles                  2021.6.6                 pypi_0    pypi
            flask                     2.0.1                    pypi_0    pypi
            flatbuffers               1.12                     pypi_0    pypi
            future                    0.18.2                   pypi_0    pypi
            gast                      0.4.0                    pypi_0    pypi
            gitdb                     4.0.7                    pypi_0    pypi
            gitpython                 3.1.18                   pypi_0    pypi
            google-auth               1.34.0                   pypi_0    pypi
            google-auth-oauthlib      0.4.5                    pypi_0    pypi
            google-pasta              0.2.0                    pypi_0    pypi
            greenlet                  1.1.0                    pypi_0    pypi
            grpcio                    1.34.1                   pypi_0    pypi
            gunicorn                  20.1.0                   pypi_0    pypi
            h5py                      3.1.0                    pypi_0    pypi
            idna                      2.10               pyhd3eb1b0_0
            importlib-metadata        3.10.0           py39h06a4308_0
            importlib_metadata        3.10.0               hd3eb1b0_0
            ipykernel                 5.3.4            py39hb070fc8_0
            ipython                   7.22.0           py39hb070fc8_0
            ipython_genutils          0.2.0              pyhd3eb1b0_1
            itsdangerous              2.0.1                    pypi_0    pypi
            jedi                      0.17.2           py39h06a4308_1
            jinja2                    3.0.1              pyhd3eb1b0_0
            joblib                    1.0.1                    pypi_0    pypi
            json5                     0.9.6              pyhd3eb1b0_0
            jsonschema                3.2.0                      py_2
            jupyter-packaging         0.7.12             pyhd3eb1b0_0
            jupyter_client            6.1.12             pyhd3eb1b0_0
            jupyter_core              4.7.1            py39h06a4308_0
            jupyter_server            1.4.1            py39h06a4308_0
            jupyterlab                3.0.14             pyhd3eb1b0_1
            jupyterlab_pygments       0.1.2                      py_0
            jupyterlab_server         2.6.1              pyhd3eb1b0_0
            keras-nightly             2.5.0.dev2021032900          pypi_0    pypi
            keras-preprocessing       1.1.2                    pypi_0    pypi
            kiwisolver                1.3.1                    pypi_0    pypi
            ld_impl_linux-64          2.35.1               h7274673_9
            libffi                    3.3                  he6710b0_2
            libgcc-ng                 9.3.0               h5101ec6_17
            libgomp                   9.3.0               h5101ec6_17
            libsodium                 1.0.18               h7b6447c_0
            libstdcxx-ng              9.3.0               hd4cf53a_17
            lmfit                     1.0.2                    pypi_0    pypi
            mako                      1.1.4                    pypi_0    pypi
            markdown                  3.3.4                    pypi_0    pypi
            markupsafe                2.0.1            py39h27cfd23_0
            matplotlib                3.4.2                    pypi_0    pypi
            mistune                   0.8.4           py39h27cfd23_1000
            mlflow                    1.19.0                   pypi_0    pypi
            multipletau               0.3.3                    pypi_0    pypi
            nbclassic                 0.2.6              pyhd3eb1b0_0
            nbclient                  0.5.3              pyhd3eb1b0_0
            nbconvert                 6.1.0            py39h06a4308_0
            nbformat                  5.1.3              pyhd3eb1b0_0
            ncurses                   6.2                  he6710b0_1
            nest-asyncio              1.5.1              pyhd3eb1b0_0
            notebook                  6.4.0            py39h06a4308_0
            numpy                     1.19.5                   pypi_0    pypi
            oauthlib                  3.1.1                    pypi_0    pypi
            openssl                   1.1.1k               h27cfd23_0
            opt-einsum                3.3.0                    pypi_0    pypi
            packaging                 21.0               pyhd3eb1b0_0
            pandas                    1.3.1                    pypi_0    pypi
            pandocfilters             1.4.3            py39h06a4308_1
            parso                     0.7.0                      py_0
            pexpect                   4.8.0              pyhd3eb1b0_3
            pickleshare               0.7.5           pyhd3eb1b0_1003
            pillow                    8.3.1                    pypi_0    pypi
            pip                       21.1.3           py39h06a4308_0
            prometheus-flask-exporter 0.18.2                   pypi_0    pypi
            prometheus_client         0.11.0             pyhd3eb1b0_0
            prompt-toolkit            3.0.17             pyh06a4308_0
            protobuf                  3.17.3                   pypi_0    pypi
            ptyprocess                0.7.0              pyhd3eb1b0_2
            pyasn1                    0.4.8                    pypi_0    pypi
            pyasn1-modules            0.2.8                    pypi_0    pypi
            pycparser                 2.20                       py_2
            pygments                  2.9.0              pyhd3eb1b0_0
            pyopenssl                 20.0.1             pyhd3eb1b0_1
            pyparsing                 2.4.7              pyhd3eb1b0_0
            pyrsistent                0.18.0           py39h7f8727e_0
            pysocks                   1.7.1            py39h06a4308_0
            python                    3.9.5                h12debd9_4
            python-dateutil           2.8.2              pyhd3eb1b0_0
            python-editor             1.0.4                    pypi_0    pypi
            pytz                      2021.1             pyhd3eb1b0_0
            pyyaml                    5.4.1                    pypi_0    pypi
            pyzmq                     20.0.0           py39h2531618_1
            querystring-parser        1.2.4                    pypi_0    pypi
            readline                  8.1                  h27cfd23_0
            requests                  2.25.1             pyhd3eb1b0_0
            requests-oauthlib         1.3.0                    pypi_0    pypi
            rsa                       4.7.2                    pypi_0    pypi
            scikit-learn              0.24.2                   pypi_0    pypi
            scipy                     1.7.0                    pypi_0    pypi
            seaborn                   0.11.1                   pypi_0    pypi
            send2trash                1.5.0              pyhd3eb1b0_1
            setuptools                52.0.0           py39h06a4308_0
            six                       1.15.0                   pypi_0    pypi
            smmap                     4.0.0                    pypi_0    pypi
            sniffio                   1.2.0            py39h06a4308_1
            sqlalchemy                1.4.22                   pypi_0    pypi
            sqlite                    3.36.0               hc218d9a_0
            sqlparse                  0.4.1                    pypi_0    pypi
            tabulate                  0.8.9                    pypi_0    pypi
            tensorboard               2.5.0                    pypi_0    pypi
            tensorboard-data-server   0.6.1                    pypi_0    pypi
            tensorboard-plugin-wit    1.8.0                    pypi_0    pypi
            tensorflow                2.5.0                    pypi_0    pypi
            tensorflow-estimator      2.5.0                    pypi_0    pypi
            termcolor                 1.1.0                    pypi_0    pypi
            terminado                 0.9.4            py39h06a4308_0
            testpath                  0.5.0              pyhd3eb1b0_0
            threadpoolctl             2.2.0                    pypi_0    pypi
            tifffile                  2021.7.30                pypi_0    pypi
            tk                        8.6.10               hbc83047_0
            tornado                   6.1              py39h27cfd23_0
            traitlets                 5.0.5              pyhd3eb1b0_0
            typing-extensions         3.7.4.3                  pypi_0    pypi
            tzdata                    2021a                h52ac0ba_0
            uncertainties             3.1.6                    pypi_0    pypi
            urllib3                   1.26.6             pyhd3eb1b0_1
            wcwidth                   0.2.5                      py_0
            webencodings              0.5.1            py39h06a4308_1
            websocket-client          1.1.0                    pypi_0    pypi
            werkzeug                  2.0.1                    pypi_0    pypi
            wheel                     0.36.2             pyhd3eb1b0_0
            wrapt                     1.12.1                   pypi_0    pypi
            xz                        5.2.5                h7b6447c_0
            zeromq                    4.3.4                h2531618_0
            zipp                      3.5.0              pyhd3eb1b0_0
            zlib                      1.2.11               h7b6447c_3
    
            Note: you may need to restart the kernel to use updated packages.
            {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint',
             'SLURM_NODELIST': 'node169',
             'SLURM_JOB_NAME': 'bash',
             'XDG_SESSION_ID': '44301',
             'SLURMD_NODENAME': 'node169',
             'SLURM_TOPOLOGY_ADDR': 'node169',
             'SLURM_NTASKS_PER_NODE': '24',
             'HOSTNAME': 'login01',
             'SLURM_PRIO_PROCESS': '0',
             'SLURM_SRUN_COMM_PORT': '41490',
             'SHELL': '/bin/bash',
             'TERM': 'xterm-color',
             'SLURM_JOB_QOS': 'qstand',
             'SLURM_PTY_WIN_ROW': '27',
             'HISTSIZE': '1000',
             'TMPDIR': '/tmp',
             'SLURM_TOPOLOGY_ADDR_PATTERN': 'node',
             'SSH_CLIENT': '10.231.181.128 49370 22',
             'CONDA_SHLVL': '2',
             'CONDA_PROMPT_MODIFIER': '(tf) ',
             'QTDIR': '/usr/lib64/qt-3.3',
             'QTINC': '/usr/lib64/qt-3.3/include',
             'SSH_TTY': '/dev/pts/79',
             'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
             'QT_GRAPHICSSYSTEM_CHECKED': '1',
             'SLURM_NNODES': '1',
             'USER': 'ye53nis',
             'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
             'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:',
             'CONDA_EXE': '/cluster/miniconda3/bin/conda',
             'SLURM_STEP_NUM_NODES': '1',
             'SLURM_JOBID': '1608816',
             'SRUN_DEBUG': '3',
             'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
             'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
             'SLURM_NTASKS': '24',
             'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5',
             'SLURM_STEP_ID': '0',
             'TMUX': '/tmp/tmux-67339/default,20557,9',
             '_CE_CONDA': '',
             'CONDA_PREFIX_1': '/cluster/miniconda3',
             'SLURM_STEP_LAUNCHER_PORT': '41490',
             'SLURM_TASKS_PER_NODE': '24',
             'MAIL': '/var/spool/mail/ye53nis',
             'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin',
             'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448',
             'SLURM_JOB_ID': '1608816',
             'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf',
             'SLURM_JOB_USER': 'ye53nis',
             'SLURM_STEPID': '0',
             'PWD': '/',
             'SLURM_SRUN_COMM_HOST': '192.168.192.5',
             'LANG': 'en_US.UTF-8',
             'SLURM_PTY_WIN_COL': '101',
             'SLURM_UMASK': '0022',
             'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles',
             'SLURM_JOB_UID': '67339',
             'LOADEDMODULES': '',
             'SLURM_NODEID': '0',
             'TMUX_PANE': '%9',
             'SLURM_SUBMIT_DIR': '/',
             'SLURM_TASK_PID': '318230',
             'SLURM_NPROCS': '24',
             'SLURM_CPUS_ON_NODE': '24',
             'SLURM_DISTRIBUTION': 'block',
             'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
             'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
             'SLURM_PROCID': '0',
             'HISTCONTROL': 'ignoredups',
             '_CE_M': '',
             'SLURM_JOB_NODELIST': 'node169',
             'SLURM_PTY_PORT': '38396',
             'HOME': '/home/ye53nis',
             'SHLVL': '3',
             'SLURM_LOCALID': '0',
             'SLURM_JOB_GID': '13280',
             'SLURM_JOB_CPUS_PER_NODE': '24',
             'SLURM_CLUSTER_NAME': 'hpc',
             'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
             'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23',
             'SLURM_SUBMIT_HOST': 'login01',
             'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
             'SLURM_JOB_PARTITION': 's_standard',
             'MATHEMATICA_HOME': '/cluster/apps/mathematica/12.3',
             'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python',
             'LOGNAME': 'ye53nis',
             'SLURM_STEP_NUM_TASKS': '24',
             'QTLIB': '/usr/lib64/qt-3.3/lib',
             'SLURM_JOB_ACCOUNT': 'iaob',
             'SLURM_JOB_NUM_NODES': '1',
             'MODULESHOME': '/usr/share/Modules',
             'CONDA_DEFAULT_ENV': 'tf',
             'LESSOPEN': '||/usr/bin/lesspipe.sh %s',
             'SLURM_STEP_TASKS_PER_NODE': '24',
             'PORT': '9997',
             'SLURM_STEP_NODELIST': 'node169',
             'DISPLAY': ':0',
             'XDG_RUNTIME_DIR': '',
             'XAUTHORITY': '/home/lex/.Xauthority',
             'BASH_FUNC_module()': '() {  eval `/usr/bin/modulecmd bash $*`\n}',
             '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter',
             'JPY_PARENT_PID': '319063',
             'CLICOLOR': '1',
             'PAGER': 'cat',
             'GIT_PAGER': 'cat',
             'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
    
  10. Test and save metadata after update in Experiment 2a
            No of CPUs in system: 72
            No of CPUs the current process can use: 24
            load average: (35.7, 25.74, 18.03)
            os.uname():  posix.uname_result(sysname='Linux', nodename='node169', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64')
            PID of process: 320784
            RAM total: 199G, RAM used: 75G, RAM free: 74G
            the current directory: /
            My disk usage:
            Filesystem           Size  Used Avail Use% Mounted on
            /dev/sda1             50G  3.8G   47G   8% /
            devtmpfs              94G     0   94G   0% /dev
            tmpfs                 94G  7.5M   94G   1% /dev/shm
            tmpfs                 94G  403M   94G   1% /run
            tmpfs                 94G     0   94G   0% /sys/fs/cgroup
            nfs03-ib:/pool/work  100T   79T   22T  79% /nfsdata
            nfs02-ib:/data01      88T   72T   16T  82% /data01
            nfs01-ib:/home        80T   67T   14T  84% /home
            nfs01-ib:/cluster    2.0T  468G  1.6T  23% /cluster
            /dev/sda6            169G  750M  168G   1% /local
            /dev/sda3            6.0G  414M  5.6G   7% /var
            /dev/sda5            2.0G   34M  2.0G   2% /tmp
            beegfs_nodev         524T  476T   49T  91% /beegfs
            tmpfs                 19G     0   19G   0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf:
            #
            # Name                    Version                   Build  Channel
            _libgcc_mutex             0.1                        main
            _openmp_mutex             4.5                       1_gnu
            absl-py                   1.0.0                    pypi_0    pypi
            alembic                   1.7.6                    pypi_0    pypi
            anyio                     2.2.0            py39h06a4308_1
            argon2-cffi               20.1.0           py39h27cfd23_1
            asteval                   0.9.26                   pypi_0    pypi
            astunparse                1.6.3                    pypi_0    pypi
            async_generator           1.10               pyhd3eb1b0_0
            attrs                     21.4.0             pyhd3eb1b0_0
            babel                     2.9.1              pyhd3eb1b0_0
            backcall                  0.2.0              pyhd3eb1b0_0
            bleach                    4.1.0              pyhd3eb1b0_0
            brotlipy                  0.7.0           py39h27cfd23_1003
            ca-certificates           2021.10.26           h06a4308_2
            cachetools                5.0.0                    pypi_0    pypi
            certifi                   2021.10.8        py39h06a4308_2
            cffi                      1.15.0           py39hd667e15_1
            charset-normalizer        2.0.4              pyhd3eb1b0_0
            click                     8.0.3                    pypi_0    pypi
            cloudpickle               2.0.0                    pypi_0    pypi
            cryptography              36.0.0           py39h9ce1e76_0
            cycler                    0.11.0                   pypi_0    pypi
            cython                    0.29.27                  pypi_0    pypi
            databricks-cli            0.16.4                   pypi_0    pypi
            debugpy                   1.5.1            py39h295c915_0
            decorator                 5.1.1              pyhd3eb1b0_0
            defusedxml                0.7.1              pyhd3eb1b0_0
            docker                    5.0.3                    pypi_0    pypi
            entrypoints               0.3              py39h06a4308_0
            fcsfiles                  2022.2.2                 pypi_0    pypi
            flask                     2.0.2                    pypi_0    pypi
            flatbuffers               2.0                      pypi_0    pypi
            fonttools                 4.29.1                   pypi_0    pypi
            future                    0.18.2                   pypi_0    pypi
            gast                      0.5.3                    pypi_0    pypi
            gitdb                     4.0.9                    pypi_0    pypi
            gitpython                 3.1.26                   pypi_0    pypi
            google-auth               2.6.0                    pypi_0    pypi
            google-auth-oauthlib      0.4.6                    pypi_0    pypi
            google-pasta              0.2.0                    pypi_0    pypi
            greenlet                  1.1.2                    pypi_0    pypi
            grpcio                    1.43.0                   pypi_0    pypi
            gunicorn                  20.1.0                   pypi_0    pypi
            h5py                      3.6.0                    pypi_0    pypi
            idna                      3.3                pyhd3eb1b0_0
            importlib-metadata        4.8.2            py39h06a4308_0
            importlib_metadata        4.8.2                hd3eb1b0_0
            ipykernel                 6.4.1            py39h06a4308_1
            ipython                   7.31.1           py39h06a4308_0
            ipython_genutils          0.2.0              pyhd3eb1b0_1
            itsdangerous              2.0.1                    pypi_0    pypi
            jedi                      0.18.1           py39h06a4308_1
            jinja2                    3.0.2              pyhd3eb1b0_0
            joblib                    1.1.0                    pypi_0    pypi
            json5                     0.9.6              pyhd3eb1b0_0
            jsonschema                3.2.0              pyhd3eb1b0_2
            jupyter_client            7.1.2              pyhd3eb1b0_0
            jupyter_core              4.9.1            py39h06a4308_0
            jupyter_server            1.4.1            py39h06a4308_0
            jupyterlab                3.2.1              pyhd3eb1b0_1
            jupyterlab_pygments       0.1.2                      py_0
            jupyterlab_server         2.10.2             pyhd3eb1b0_1
            keras                     2.8.0                    pypi_0    pypi
            keras-preprocessing       1.1.2                    pypi_0    pypi
            kiwisolver                1.3.2                    pypi_0    pypi
            ld_impl_linux-64          2.35.1               h7274673_9
            libclang                  13.0.0                   pypi_0    pypi
            libffi                    3.3                  he6710b0_2
            libgcc-ng                 9.3.0               h5101ec6_17
            libgomp                   9.3.0               h5101ec6_17
            libsodium                 1.0.18               h7b6447c_0
            libstdcxx-ng              9.3.0               hd4cf53a_17
            lmfit                     1.0.3                    pypi_0    pypi
            mako                      1.1.6                    pypi_0    pypi
            markdown                  3.3.6                    pypi_0    pypi
            markupsafe                2.0.1            py39h27cfd23_0
            matplotlib                3.5.1                    pypi_0    pypi
            matplotlib-inline         0.1.2              pyhd3eb1b0_2
            mistune                   0.8.4           py39h27cfd23_1000
            mlflow                    1.23.1                   pypi_0    pypi
            multipletau               0.3.3                    pypi_0    pypi
            nbclassic                 0.2.6              pyhd3eb1b0_0
            nbclient                  0.5.3              pyhd3eb1b0_0
            nbconvert                 6.3.0            py39h06a4308_0
            nbformat                  5.1.3              pyhd3eb1b0_0
            ncurses                   6.3                  h7f8727e_2
            nest-asyncio              1.5.1              pyhd3eb1b0_0
            notebook                  6.4.6            py39h06a4308_0
            numpy                     1.22.2                   pypi_0    pypi
            oauthlib                  3.2.0                    pypi_0    pypi
            openssl                   1.1.1m               h7f8727e_0
            opt-einsum                3.3.0                    pypi_0    pypi
            packaging                 21.3               pyhd3eb1b0_0
            pandas                    1.4.0                    pypi_0    pypi
            pandocfilters             1.5.0              pyhd3eb1b0_0
            parso                     0.8.3              pyhd3eb1b0_0
            pexpect                   4.8.0              pyhd3eb1b0_3
            pickleshare               0.7.5           pyhd3eb1b0_1003
            pillow                    9.0.1                    pypi_0    pypi
            pip                       21.2.4           py39h06a4308_0
            prometheus-flask-exporter 0.18.7                   pypi_0    pypi
            prometheus_client         0.13.1             pyhd3eb1b0_0
            prompt-toolkit            3.0.20             pyhd3eb1b0_0
            protobuf                  3.19.4                   pypi_0    pypi
            ptyprocess                0.7.0              pyhd3eb1b0_2
            pyasn1                    0.4.8                    pypi_0    pypi
            pyasn1-modules            0.2.8                    pypi_0    pypi
            pycparser                 2.21               pyhd3eb1b0_0
            pygments                  2.11.2             pyhd3eb1b0_0
            pyopenssl                 22.0.0             pyhd3eb1b0_0
            pyparsing                 3.0.4              pyhd3eb1b0_0
            pyrsistent                0.18.0           py39heee7806_0
            pysocks                   1.7.1            py39h06a4308_0
            python                    3.9.7                h12debd9_1
            python-dateutil           2.8.2              pyhd3eb1b0_0
            pytz                      2021.3             pyhd3eb1b0_0
            pyyaml                    6.0                      pypi_0    pypi
            pyzmq                     22.3.0           py39h295c915_2
            querystring-parser        1.2.4                    pypi_0    pypi
            readline                  8.1.2                h7f8727e_1
            requests                  2.27.1             pyhd3eb1b0_0
            requests-oauthlib         1.3.1                    pypi_0    pypi
            rsa                       4.8                      pypi_0    pypi
            scikit-learn              1.0.2                    pypi_0    pypi
            scipy                     1.8.0                    pypi_0    pypi
            seaborn                   0.11.2                   pypi_0    pypi
            send2trash                1.8.0              pyhd3eb1b0_1
            setuptools                58.0.4           py39h06a4308_0
            six                       1.16.0             pyhd3eb1b0_0
            smmap                     5.0.0                    pypi_0    pypi
            sniffio                   1.2.0            py39h06a4308_1
            sqlalchemy                1.4.31                   pypi_0    pypi
            sqlite                    3.37.2               hc218d9a_0
            sqlparse                  0.4.2                    pypi_0    pypi
            tabulate                  0.8.9                    pypi_0    pypi
            tensorboard               2.8.0                    pypi_0    pypi
            tensorboard-data-server   0.6.1                    pypi_0    pypi
            tensorboard-plugin-wit    1.8.1                    pypi_0    pypi
            tensorflow                2.8.0                    pypi_0    pypi
            tensorflow-io-gcs-filesystem 0.24.0                   pypi_0    pypi
            termcolor                 1.1.0                    pypi_0    pypi
            terminado                 0.9.4            py39h06a4308_0
            testpath                  0.5.0              pyhd3eb1b0_0
            tf-estimator-nightly      2.8.0.dev2021122109          pypi_0    pypi
            threadpoolctl             3.1.0                    pypi_0    pypi
            tk                        8.6.11               h1ccaba5_0
            tornado                   6.1              py39h27cfd23_0
            traitlets                 5.1.1              pyhd3eb1b0_0
            typing-extensions         4.0.1                    pypi_0    pypi
            tzdata                    2021e                hda174b7_0
            uncertainties             3.1.6                    pypi_0    pypi
            urllib3                   1.26.8             pyhd3eb1b0_0
            wcwidth                   0.2.5              pyhd3eb1b0_0
            webencodings              0.5.1            py39h06a4308_1
            websocket-client          1.2.3                    pypi_0    pypi
            werkzeug                  2.0.3                    pypi_0    pypi
            wheel                     0.37.1             pyhd3eb1b0_0
            wrapt                     1.13.3                   pypi_0    pypi
            xz                        5.2.5                h7b6447c_0
            zeromq                    4.3.4                h2531618_0
            zipp                      3.7.0              pyhd3eb1b0_0
            zlib                      1.2.11               h7f8727e_4
    
            Note: you may need to restart the kernel to use updated packages.
            {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint',
             'SLURM_NODELIST': 'node169',
             'SLURM_JOB_NAME': 'bash',
             'XDG_SESSION_ID': '44301',
             'SLURMD_NODENAME': 'node169',
             'SLURM_TOPOLOGY_ADDR': 'node169',
             'SLURM_NTASKS_PER_NODE': '24',
             'HOSTNAME': 'login01',
             'SLURM_PRIO_PROCESS': '0',
             'SLURM_SRUN_COMM_PORT': '41490',
             'SHELL': '/bin/bash',
             'TERM': 'xterm-color',
             'SLURM_JOB_QOS': 'qstand',
             'SLURM_PTY_WIN_ROW': '27',
             'HISTSIZE': '1000',
             'TMPDIR': '/tmp',
             'SLURM_TOPOLOGY_ADDR_PATTERN': 'node',
             'SSH_CLIENT': '10.231.181.128 49370 22',
             'CONDA_SHLVL': '2',
             'CONDA_PROMPT_MODIFIER': '(tf) ',
             'QTDIR': '/usr/lib64/qt-3.3',
             'QTINC': '/usr/lib64/qt-3.3/include',
             'SSH_TTY': '/dev/pts/79',
             'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
             'QT_GRAPHICSSYSTEM_CHECKED': '1',
             'SLURM_NNODES': '1',
             'USER': 'ye53nis',
             'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
             'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:',
             'CONDA_EXE': '/cluster/miniconda3/bin/conda',
             'SLURM_STEP_NUM_NODES': '1',
             'SLURM_JOBID': '1608816',
             'SRUN_DEBUG': '3',
             'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
             'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
             'SLURM_NTASKS': '24',
             'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5',
             'SLURM_STEP_ID': '0',
             'TMUX': '/tmp/tmux-67339/default,20557,9',
             '_CE_CONDA': '',
             'CONDA_PREFIX_1': '/cluster/miniconda3',
             'SLURM_STEP_LAUNCHER_PORT': '41490',
             'SLURM_TASKS_PER_NODE': '24',
             'MAIL': '/var/spool/mail/ye53nis',
             'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin',
             'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448',
             'SLURM_JOB_ID': '1608816',
             'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf',
             'SLURM_JOB_USER': 'ye53nis',
             'SLURM_STEPID': '0',
             'PWD': '/',
             'SLURM_SRUN_COMM_HOST': '192.168.192.5',
             'LANG': 'en_US.UTF-8',
             'SLURM_PTY_WIN_COL': '101',
             'SLURM_UMASK': '0022',
             'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles',
             'SLURM_JOB_UID': '67339',
             'LOADEDMODULES': '',
             'SLURM_NODEID': '0',
             'TMUX_PANE': '%9',
             'SLURM_SUBMIT_DIR': '/',
             'SLURM_TASK_PID': '318230',
             'SLURM_NPROCS': '24',
             'SLURM_CPUS_ON_NODE': '24',
             'SLURM_DISTRIBUTION': 'block',
             'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
             'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
             'SLURM_PROCID': '0',
             'HISTCONTROL': 'ignoredups',
             '_CE_M': '',
             'SLURM_JOB_NODELIST': 'node169',
             'SLURM_PTY_PORT': '38396',
             'HOME': '/home/ye53nis',
             'SHLVL': '3',
             'SLURM_LOCALID': '0',
             'SLURM_JOB_GID': '13280',
             'SLURM_JOB_CPUS_PER_NODE': '24',
             'SLURM_CLUSTER_NAME': 'hpc',
             'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
             'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23',
             'SLURM_SUBMIT_HOST': 'login01',
             'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
             'SLURM_JOB_PARTITION': 's_standard',
             'MATHEMATICA_HOME': '/cluster/apps/mathematica/12.3',
             'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python',
             'LOGNAME': 'ye53nis',
             'SLURM_STEP_NUM_TASKS': '24',
             'QTLIB': '/usr/lib64/qt-3.3/lib',
             'SLURM_JOB_ACCOUNT': 'iaob',
             'SLURM_JOB_NUM_NODES': '1',
             'MODULESHOME': '/usr/share/Modules',
             'CONDA_DEFAULT_ENV': 'tf',
             'LESSOPEN': '||/usr/bin/lesspipe.sh %s',
             'SLURM_STEP_TASKS_PER_NODE': '24',
             'PORT': '9997',
             'SLURM_STEP_NODELIST': 'node169',
             'DISPLAY': ':0',
             'XDG_RUNTIME_DIR': '',
             'XAUTHORITY': '/home/lex/.Xauthority',
             'BASH_FUNC_module()': '() {  eval `/usr/bin/modulecmd bash $*`\n}',
             '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter',
             'JPY_PARENT_PID': '319063',
             'CLICOLOR': '1',
             'PAGER': 'cat',
             'GIT_PAGER': 'cat',
             'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
    

2.5.3 Setup: Jupyter 3 on local computer

  1. on our local machine we don’t need tmux. A simple sh command is enough. So let’s start the conda environment in the sh session local and start jupterlab there.
            conda activate tf
            jupyter lab --no-browser --port=8888
    
    sh-5.1$ [I 2022-01-25 13:54:15.779 ServerApp] jupyterlab | extension was successfully linked.
    [I 2022-01-25 13:54:16.426 ServerApp] nbclassic | extension was successfully linked.
    [I 2022-01-25 13:54:16.509 LabApp] JupyterLab extension loaded from /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/jupyterlab
    [I 2022-01-25 13:54:16.509 LabApp] JupyterLab application directory is /home/lex/Programme/miniconda3/envs/tf/share/jupyter/lab
    [I 2022-01-25 13:54:16.517 ServerApp] jupyterlab | extension was successfully loaded.
    [I 2022-01-25 13:54:16.529 ServerApp] nbclassic | extension was successfully loaded.
    [I 2022-01-25 13:54:16.530 ServerApp] Serving notebooks from local directory: /home/lex/Programme/drmed-git
    [I 2022-01-25 13:54:16.530 ServerApp] Jupyter Server 1.4.1 is running at:
    [I 2022-01-25 13:54:16.530 ServerApp] http://localhost:8888/lab?token=a45ac98a52ac86cdccd87547a734345bdc338322def30d98
    [I 2022-01-25 13:54:16.530 ServerApp]  or http://127.0.0.1:8888/lab?token=a45ac98a52ac86cdccd87547a734345bdc338322def30d98
    [I 2022-01-25 13:54:16.530 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
    [C 2022-01-25 13:54:16.540 ServerApp]
    
        To access the server, open this file in a browser:
            file:///home/lex/.local/share/jupyter/runtime/jpserver-62432-open.html
        Or copy and paste one of these URLs:
            http://localhost:8888/lab?token=a45ac98a52ac86cdccd87547a734345bdc338322def30d98
         or http://127.0.0.1:8888/lab?token=a45ac98a52ac86cdccd87547a734345bdc338322def30d98
    
  2. I started a Python3 kernel using jupyter-server-list-kernels. Then I added the kernel ID to the :PROPERTIES: drawer of this (and following) subtrees.
          python3           03038b73-b2b5-49ce-a1dc-21afb6247d0f   a few seconds ago    starting   0
    
  3. Test: (#+CALL: jp-metadata(_long='True))
            No of CPUs in system: 4
            No of CPUs the current process can use: 4
            load average: (3.83, 4.72, 5.29)
            os.uname():  posix.uname_result(sysname='Linux', nodename='Topialex', release='5.13.19-2-MANJARO', version='#1 SMP PREEMPT Sun Sep 19 21:31:53 UTC 2021', machine='x86_64')
            PID of process: 321569
            RAM total: 16Gi, RAM used: 3,2Gi, RAM free: 9,1Gi
            the current directory: /home/lex/Programme/drmed-git
            My disk usage:
            Filesystem      Size  Used Avail Use% Mounted on
            dev             3,9G     0  3,9G   0% /dev
            run             3,9G  1,5M  3,9G   1% /run
            /dev/sda2       167G  130G   29G  82% /
            tmpfs           3,9G   96M  3,8G   3% /dev/shm
            tmpfs           3,9G   18M  3,9G   1% /tmp
            /dev/sda1       300M  264K  300M   1% /boot/efi
            tmpfs           784M  100K  784M   1% /run/user/1000# packages in environment at /home/lex/Programme/miniconda3/envs/tf:
            #
            # Name                    Version                   Build  Channel
            _libgcc_mutex             0.1                        main
            _openmp_mutex             4.5                       1_gnu
            absl-py                   1.0.0                    pypi_0    pypi
            alembic                   1.4.1                    pypi_0    pypi
            anyio                     2.2.0            py39h06a4308_1
            argon2-cffi               20.1.0           py39h27cfd23_1
            asteval                   0.9.25                   pypi_0    pypi
            astroid                   2.9.2                    pypi_0    pypi
            astunparse                1.6.3                    pypi_0    pypi
            async_generator           1.10               pyhd3eb1b0_0
            attrs                     21.2.0             pyhd3eb1b0_0
            babel                     2.9.1              pyhd3eb1b0_0
            backcall                  0.2.0              pyhd3eb1b0_0
            bleach                    4.0.0              pyhd3eb1b0_0
            brotlipy                  0.7.0           py39h27cfd23_1003
            ca-certificates           2021.10.26           h06a4308_2
            cachetools                4.2.4                    pypi_0    pypi
            certifi                   2021.10.8        py39h06a4308_0
            cffi                      1.14.6           py39h400218f_0
            charset-normalizer        2.0.4              pyhd3eb1b0_0
            click                     8.0.3                    pypi_0    pypi
            cloudpickle               2.0.0                    pypi_0    pypi
            cryptography              36.0.0           py39h9ce1e76_0
            cycler                    0.11.0                   pypi_0    pypi
            cython                    0.29.26                  pypi_0    pypi
            databricks-cli            0.16.2                   pypi_0    pypi
            debugpy                   1.5.1            py39h295c915_0
            decorator                 5.1.0              pyhd3eb1b0_0
            defusedxml                0.7.1              pyhd3eb1b0_0
            docker                    5.0.3                    pypi_0    pypi
            entrypoints               0.3              py39h06a4308_0
            fcsfiles                  2021.6.6                 pypi_0    pypi
            flake8                    4.0.1                    pypi_0    pypi
            flask                     2.0.2                    pypi_0    pypi
            flatbuffers               2.0                      pypi_0    pypi
            focuspoint                0.1                      pypi_0    pypi
            fonttools                 4.28.5                   pypi_0    pypi
            future                    0.18.2                   pypi_0    pypi
            gast                      0.4.0                    pypi_0    pypi
            gitdb                     4.0.9                    pypi_0    pypi
            gitpython                 3.1.24                   pypi_0    pypi
            google-auth               2.3.3                    pypi_0    pypi
            google-auth-oauthlib      0.4.6                    pypi_0    pypi
            google-pasta              0.2.0                    pypi_0    pypi
            greenlet                  1.1.2                    pypi_0    pypi
            grpcio                    1.43.0                   pypi_0    pypi
            gunicorn                  20.1.0                   pypi_0    pypi
            h5py                      3.6.0                    pypi_0    pypi
            idna                      3.3                pyhd3eb1b0_0
            importlib-metadata        4.8.2            py39h06a4308_0
            importlib_metadata        4.8.2                hd3eb1b0_0
            ipykernel                 6.4.1            py39h06a4308_1
            ipython                   7.29.0           py39hb070fc8_0
            ipython_genutils          0.2.0              pyhd3eb1b0_1
            isort                     5.10.1                   pypi_0    pypi
            itsdangerous              2.0.1                    pypi_0    pypi
            jedi                      0.18.0           py39h06a4308_1
            jinja2                    3.0.2              pyhd3eb1b0_0
            joblib                    1.1.0                    pypi_0    pypi
            json5                     0.9.6              pyhd3eb1b0_0
            jsonschema                3.2.0              pyhd3eb1b0_2
            jupyter_client            7.1.0              pyhd3eb1b0_0
            jupyter_core              4.9.1            py39h06a4308_0
            jupyter_server            1.4.1            py39h06a4308_0
            jupyterlab                3.2.1              pyhd3eb1b0_1
            jupyterlab_pygments       0.1.2                      py_0
            jupyterlab_server         2.8.2              pyhd3eb1b0_0
            keras                     2.7.0                    pypi_0    pypi
            keras-preprocessing       1.1.2                    pypi_0    pypi
            kiwisolver                1.3.2                    pypi_0    pypi
            lazy-object-proxy         1.7.1                    pypi_0    pypi
            ld_impl_linux-64          2.35.1               h7274673_9
            libclang                  12.0.0                   pypi_0    pypi
            libffi                    3.3                  he6710b0_2
            libgcc-ng                 9.3.0               h5101ec6_17
            libgomp                   9.3.0               h5101ec6_17
            libsodium                 1.0.18               h7b6447c_0
            libstdcxx-ng              9.3.0               hd4cf53a_17
            lmfit                     1.0.3                    pypi_0    pypi
            mako                      1.1.6                    pypi_0    pypi
            markdown                  3.3.6                    pypi_0    pypi
            markupsafe                2.0.1            py39h27cfd23_0
            matplotlib                3.5.1                    pypi_0    pypi
            matplotlib-inline         0.1.2              pyhd3eb1b0_2
            mccabe                    0.6.1                    pypi_0    pypi
            mistune                   0.8.4           py39h27cfd23_1000
            mlflow                    1.22.0                   pypi_0    pypi
            multipletau               0.3.3                    pypi_0    pypi
            mypy                      0.930                    pypi_0    pypi
            mypy-extensions           0.4.3                    pypi_0    pypi
            nbclassic                 0.2.6              pyhd3eb1b0_0
            nbclient                  0.5.3              pyhd3eb1b0_0
            nbconvert                 6.1.0            py39h06a4308_0
            nbformat                  5.1.3              pyhd3eb1b0_0
            ncurses                   6.3                  h7f8727e_2
            nest-asyncio              1.5.1              pyhd3eb1b0_0
            nodeenv                   1.6.0                    pypi_0    pypi
            notebook                  6.4.6            py39h06a4308_0
            numpy                     1.21.5                   pypi_0    pypi
            oauthlib                  3.1.1                    pypi_0    pypi
            openssl                   1.1.1l               h7f8727e_0
            opt-einsum                3.3.0                    pypi_0    pypi
            packaging                 21.3               pyhd3eb1b0_0
            pandas                    1.3.5                    pypi_0    pypi
            pandocfilters             1.4.3            py39h06a4308_1
            parso                     0.8.2              pyhd3eb1b0_0
            pexpect                   4.8.0              pyhd3eb1b0_3
            pickleshare               0.7.5           pyhd3eb1b0_1003
            pillow                    8.4.0                    pypi_0    pypi
            pip                       21.2.4           py39h06a4308_0
            platformdirs              2.4.1                    pypi_0    pypi
            prometheus-flask-exporter 0.18.7                   pypi_0    pypi
            prometheus_client         0.12.0             pyhd3eb1b0_0
            prompt-toolkit            3.0.20             pyhd3eb1b0_0
            protobuf                  3.19.1                   pypi_0    pypi
            ptyprocess                0.7.0              pyhd3eb1b0_2
            pyasn1                    0.4.8                    pypi_0    pypi
            pyasn1-modules            0.2.8                    pypi_0    pypi
            pycodestyle               2.8.0                    pypi_0    pypi
            pycparser                 2.21               pyhd3eb1b0_0
            pyflakes                  2.4.0                    pypi_0    pypi
            pygments                  2.10.0             pyhd3eb1b0_0
            pylint                    2.12.2                   pypi_0    pypi
            pyopenssl                 21.0.0             pyhd3eb1b0_1
            pyparsing                 3.0.4              pyhd3eb1b0_0
            pyright                   0.0.13                   pypi_0    pypi
            pyrsistent                0.18.0           py39heee7806_0
            pysocks                   1.7.1            py39h06a4308_0
            python                    3.9.7                h12debd9_1
            python-dateutil           2.8.2              pyhd3eb1b0_0
            python-editor             1.0.4                    pypi_0    pypi
            pytz                      2021.3             pyhd3eb1b0_0
            pyyaml                    6.0                      pypi_0    pypi
            pyzmq                     22.3.0           py39h295c915_2
            querystring-parser        1.2.4                    pypi_0    pypi
            readline                  8.1                  h27cfd23_0
            requests                  2.26.0             pyhd3eb1b0_0
            requests-oauthlib         1.3.0                    pypi_0    pypi
            rsa                       4.8                      pypi_0    pypi
            scikit-learn              1.0.2                    pypi_0    pypi
            scipy                     1.7.3                    pypi_0    pypi
            seaborn                   0.11.2                   pypi_0    pypi
            send2trash                1.8.0              pyhd3eb1b0_1
            setuptools                58.0.4           py39h06a4308_0
            six                       1.16.0             pyhd3eb1b0_0
            smmap                     5.0.0                    pypi_0    pypi
            sniffio                   1.2.0            py39h06a4308_1
            sqlalchemy                1.4.29                   pypi_0    pypi
            sqlite                    3.37.0               hc218d9a_0
            sqlparse                  0.4.2                    pypi_0    pypi
            tabulate                  0.8.9                    pypi_0    pypi
            tensorboard               2.7.0                    pypi_0    pypi
            tensorboard-data-server   0.6.1                    pypi_0    pypi
            tensorboard-plugin-wit    1.8.0                    pypi_0    pypi
            tensorflow                2.7.0                    pypi_0    pypi
            tensorflow-estimator      2.7.0                    pypi_0    pypi
            tensorflow-io-gcs-filesystem 0.23.1                   pypi_0    pypi
            termcolor                 1.1.0                    pypi_0    pypi
            terminado                 0.9.4            py39h06a4308_0
            testpath                  0.5.0              pyhd3eb1b0_0
            threadpoolctl             3.0.0                    pypi_0    pypi
            tk                        8.6.11               h1ccaba5_0
            toml                      0.10.2                   pypi_0    pypi
            tomli                     2.0.0                    pypi_0    pypi
            tornado                   6.1              py39h27cfd23_0
            traitlets                 5.1.1              pyhd3eb1b0_0
            typing-extensions         4.0.1                    pypi_0    pypi
            tzdata                    2021e                hda174b7_0
            uncertainties             3.1.6                    pypi_0    pypi
            urllib3                   1.26.7             pyhd3eb1b0_0
            wcwidth                   0.2.5              pyhd3eb1b0_0
            webencodings              0.5.1            py39h06a4308_1
            websocket-client          1.2.3                    pypi_0    pypi
            werkzeug                  2.0.2                    pypi_0    pypi
            wheel                     0.37.0             pyhd3eb1b0_1
            wrapt                     1.13.3                   pypi_0    pypi
            xz                        5.2.5                h7b6447c_0
            zeromq                    4.3.4                h2531618_0
            zipp                      3.6.0              pyhd3eb1b0_0
            zlib                      1.2.11               h7f8727e_4
    
            Note: you may need to restart the kernel to use updated packages.
            {'SHELL': '/bin/bash',
             'SESSION_MANAGER': 'local/Topialex:@/tmp/.ICE-unix/938,unix/Topialex:/tmp/.ICE-unix/938',
             'XDG_CONFIG_DIRS': '/home/lex/.config/kdedefaults:/etc/xdg',
             'XDG_SESSION_PATH': '/org/freedesktop/DisplayManager/Session1',
             'CONDA_EXE': '/home/lex/Programme/miniconda3/bin/conda',
             '_CE_M': '',
             'LANGUAGE': 'en_GB',
             'TERMCAP': '',
             'LC_ADDRESS': 'de_DE.UTF-8',
             'LC_NAME': 'de_DE.UTF-8',
             'INSIDE_EMACS': '27.2,comint',
             'DESKTOP_SESSION': 'plasma',
             'LC_MONETARY': 'de_DE.UTF-8',
             'GTK_RC_FILES': '/etc/gtk/gtkrc:/home/lex/.gtkrc:/home/lex/.config/gtkrc',
             'XCURSOR_SIZE': '24',
             'GTK_MODULES': 'canberra-gtk-module',
             'XDG_SEAT': 'seat0',
             'PWD': '/home/lex/Programme/drmed-git',
             'LOGNAME': 'lex',
             'XDG_SESSION_DESKTOP': 'KDE',
             'XDG_SESSION_TYPE': 'x11',
             'CONDA_PREFIX': '/home/lex/Programme/miniconda3/envs/tf',
             'DSSI_PATH': '/home/lex/.dssi:/usr/lib/dssi:/usr/local/lib/dssi',
             'SYSTEMD_EXEC_PID': '819',
             'XAUTHORITY': '/home/lex/.Xauthority',
             'MOTD_SHOWN': 'pam',
             'GTK2_RC_FILES': '/etc/gtk-2.0/gtkrc:/home/lex/.gtkrc-2.0:/home/lex/.config/gtkrc-2.0',
             'HOME': '/home/lex',
             'LANG': 'de_DE.UTF-8',
             'LC_PAPER': 'de_DE.UTF-8',
             'VST_PATH': '/home/lex/.vst:/usr/lib/vst:/usr/local/lib/vst',
             'XDG_CURRENT_DESKTOP': 'KDE',
             'COLUMNS': '80',
             'CONDA_PROMPT_MODIFIER': '',
             'XDG_SEAT_PATH': '/org/freedesktop/DisplayManager/Seat0',
             'KDE_SESSION_UID': '1000',
             'XDG_SESSION_CLASS': 'user',
             'LC_IDENTIFICATION': 'de_DE.UTF-8',
             'TERM': 'xterm-color',
             '_CE_CONDA': '',
             'USER': 'lex',
             'CONDA_SHLVL': '1',
             'KDE_SESSION_VERSION': '5',
             'PAM_KWALLET5_LOGIN': '/run/user/1000/kwallet5.socket',
             'DISPLAY': ':0',
             'SHLVL': '2',
             'LC_TELEPHONE': 'de_DE.UTF-8',
             'LC_MEASUREMENT': 'de_DE.UTF-8',
             'XDG_VTNR': '1',
             'XDG_SESSION_ID': '2',
             'QT_LINUX_ACCESSIBILITY_ALWAYS_ON': '1',
             'CONDA_PYTHON_EXE': '/home/lex/Programme/miniconda3/bin/python',
             'MOZ_PLUGIN_PATH': '/usr/lib/mozilla/plugins',
             'XDG_RUNTIME_DIR': '/run/user/1000',
             'CONDA_DEFAULT_ENV': 'tf',
             'LC_TIME': 'de_DE.UTF-8',
             'QT_AUTO_SCREEN_SCALE_FACTOR': '0',
             'XCURSOR_THEME': 'breeze_cursors',
             'XDG_DATA_DIRS': '/home/lex/.local/share/flatpak/exports/share:/var/lib/flatpak/exports/share:/usr/local/share:/usr/share:/var/lib/snapd/desktop',
             'KDE_FULL_SESSION': 'true',
             'BROWSER': 'vivaldi-stable',
             'PATH': '/home/lex/Programme/miniconda3/envs/tf/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin',
             'DBUS_SESSION_BUS_ADDRESS': 'unix:path=/run/user/1000/bus',
             'LV2_PATH': '/home/lex/.lv2:/usr/lib/lv2:/usr/local/lib/lv2',
             'KDE_APPLICATIONS_AS_SCOPE': '1',
             'MAIL': '/var/spool/mail/lex',
             'LC_NUMERIC': 'de_DE.UTF-8',
             'LADSPA_PATH': '/home/lex/.ladspa:/usr/lib/ladspa:/usr/local/lib/ladspa',
             'CADENCE_AUTO_STARTED': 'true',
             '_': '/home/lex/Programme/miniconda3/envs/tf/bin/jupyter',
             'PYDEVD_USE_FRAME_EVAL': 'NO',
             'JPY_PARENT_PID': '320867',
             'CLICOLOR': '1',
             'PAGER': 'cat',
             'GIT_PAGER': 'cat',
             'MPLBACKEND': 'module://matplotlib_inline.backend_inline'}
    

2.5.4 Experiment 1a: Correlate all_clean_ptu on Jupyter 1

  1. Make sure we are in the correct directory, also do a git log -3 to document latest git commits
            %cd /beegfs/ye53nis/drmed-git
    
            !git log -3
    
            /beegfs/ye53nis/drmed-git
            commit e2037847eadb43f0eaaeeb48cda3cc48141e24f2
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Wed Jan 19 20:10:28 2022 +0100
    
                Fix tt_key again
    
            commit 7c750e0c8ed328033d1e55b7331f5d8d8dedb4b5
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Wed Jan 19 20:07:41 2022 +0100
    
                Fix tt_key
    
            commit 6a23a927a62b1c05e3e6e438c9af4d6dc7791b48
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Wed Jan 19 20:01:15 2022 +0100
    
                Fix tttr2xfcs keyError when using standard name
    
  2. Create directory where we want to save our correlations in
            %mkdir /beegfs/ye53nis/saves/2022-01-20_correlate-all-clean-ptu/
    
  3. Load all needed modules
            import mlflow
            import logging
            import os
            import sys
            import matplotlib.pyplot as plt
            import numpy as np
            import tensorflow as tf
            from pathlib import Path
            from pprint import pprint
    
            FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/'
            sys.path.append(FLUOTRACIFY_PATH)
            from fluotracify.applications import corr_fit_object as cfo
            from fluotracify.training import build_model as bm
    
            logging.basicConfig(filename='data/exp-220120-correlate-ptu/2022-01-20_correlate-all-clean-ptu.log',
                                filemode='w', format='%(asctime)s - %(message)s',
                                force=True,
                                level=logging.DEBUG)
    
    
  4. Define variables and prepare model
            class ParameterClass():
                """Stores parameters for correlation """
                def __init__(self):
                    # Where the data is stored.
                    self.data = []
                    self.objectRef = []
                    self.subObjectRef = []
                    self.colors = ['blue', 'green', 'red', 'cyan', 'magenta',
                                   'yellow', 'black']
                    self.numOfLoaded = 0
                    # very fast from Ncasc ~ 14 onwards
                    self.NcascStart = 0
                    self.NcascEnd = 30  # 25
                    self.Nsub = 6  # 6
                    self.photonLifetimeBin = 10  # used for photon decay
                    self.photonCountBin = 1  # used for time series
    
            path = "../data/Pablo_structured_experiment/all_clean_ptu"
            logged_model = 'file:///beegfs/ye53nis/drmed-git/data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model'
            weight = 0
            output_path = '/beegfs/ye53nis/saves/2022-01-20_correlate-all-clean-ptu/'
    
            par_obj = ParameterClass()
    
            loaded_model = mlflow.keras.load_model(logged_model, compile=False)
            loaded_model.compile(loss=bm.binary_ce_dice_loss(),
                                 optimizer=tf.keras.optimizers.Adam(),
                                 metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9]))
            bm.prepare_model(loaded_model)
    
    
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    
  5. Run experiment: Correlate all_clean_ptu on Jupyter 1
              path = Path(path)
              files = [path / f for f in os.listdir(path) if f.endswith('.ptu')]
    
              if len(files) == 0:
                  raise FileNotFoundError('The path provided does not include any'
                                          ' .ptu files.')
              for myfile in files:
                  ptufile = cfo.PicoObject(myfile, par_obj)
                  ptufile.predictTimeSeries(model=loaded_model,
                                            scaler='minmax')
                  ptufile.correctTCSPC(method='weights',
                                       weight=weight)
                  shift_name = f'shift_{ptufile.name}'
                  ptufile.getTimeSeries(timeseries_name=shift_name)
                  ptufile.getPhotonCountingStats(name=shift_name)
                  ptufile.predictTimeSeries(model=loaded_model,
                                            scaler='minmax',
                                            name=shift_name)
                  ptufile.correctTCSPC(method='delete_and_shift',
                                       timeseries_name=shift_name)
                  for key in list(ptufile.trueTimeArr.keys()):
                      if "_FORWEIGHTS" in key:
                          ptufile.get_autocorrelation(method='tttr2xfcs_with_weights',
                                                      name=key)
                      else:
                          ptufile.get_autocorrelation(method='tttr2xfcs', name=key)
    
                  for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                      if m in list(ptufile.autoNorm.keys()):
                          for key in list(ptufile.autoNorm[m].keys()):
                              ptufile.save_autocorrelation(name=key, method=m,
                                                           output_path=output_path)
    
    
    c4358abc-9c3b-458a-b64c-9d5e34fa28b0
    
  6. According to log, the first run ended with an Error
            [I 2022-01-22 21:32:42.402 ServerApp] AsyncIOLoopKernelRestarter: restarting kernel (1/5), keep random ports
    

    Only 229 traces were analyzed.

  7. Analyze using a different weight
            %cd /beegfs/ye53nis/drmed-git
    
            !git log -3
    
            /beegfs/ye53nis/drmed-git
            commit 9e735ecd10d0e5e5eae591f8cc40201ae6144b6a
            Author: Alex Seltmann <seltmann@posteo.de>
            Date:   Mon Jan 24 20:34:54 2022 +0100
    
                add correlations 2
    
            commit c0b4bc8494409a6b83a623977f07d91a373dc085
            Author: Alex Seltmann <seltmann@posteo.de>
            Date:   Fri Jan 21 15:33:06 2022 +0100
    
                add correlations 100/400 clean
    
            commit e2037847eadb43f0eaaeeb48cda3cc48141e24f2
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Wed Jan 19 20:10:28 2022 +0100
    
                Fix tt_key again
    
  8. Change some parameters and execute as 2022-01-25_correlate-all-clean-ptu:
            logging.basicConfig(filename='data/exp-220120-correlate-ptu/2022-01-25_correlate-all-clean-ptu.log',
                                filemode='w', format='%(asctime)s - %(message)s',
                                force=True,
                                level=logging.DEBUG)
            weight_list = [0.2, 0.4, 0.6, 0.8]
            output_path = '/beegfs/ye53nis/saves/2022-01-25_correlate-all-clean-ptu/'
            path = Path(path)
            files = [path / f for f in os.listdir(path) if f.endswith('.ptu')]
    
            if len(files) == 0:
                raise FileNotFoundError('The path provided does not include any'
                                        ' .ptu files.')
            for myfile in files:
                ptufile = cfo.PicoObject(myfile, par_obj)
                for w in weight_list:
                    weight_name = f'weight{w}_{ptufile.name}'
                    ptufile.getTimeSeries(timeseries_name=weight_name)
                    ptufile.getPhotonCountingStats(name=weight_name)
                    ptufile.predictTimeSeries(model=loaded_model,
                                              scaler='minmax',
                                              name=weight_name)
                    ptufile.correctTCSPC(method='weights',
                                         weight=w,
                                         timeseries_name=weight_name)
                for key in list(ptufile.trueTimeArr.keys()):
                    if "_FORWEIGHTS" in key:
                        ptufile.get_autocorrelation(method='tttr2xfcs_with_weights',
                                                    name=key)
    
                for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                    if m in list(ptufile.autoNorm.keys()):
                        for key in list(ptufile.autoNorm[m].keys()):
                            ptufile.save_autocorrelation(name=key, method=m,
                                                         output_path=output_path)
    
    
    8e913e9c-fdcf-4a67-988c-dad76773f19c
    

2.5.5 Experiment 1b: Correlate all_dirty_ptu on Jupyter 2

  1. Make sure we are in the correct directory, also do a git log -3 to document latest git commits
            %cd /beegfs/ye53nis/drmed-git
    
            !git log -3
    
            /beegfs/ye53nis/drmed-git
            commit e2037847eadb43f0eaaeeb48cda3cc48141e24f2
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Wed Jan 19 20:10:28 2022 +0100
    
                Fix tt_key again
    
            commit 7c750e0c8ed328033d1e55b7331f5d8d8dedb4b5
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Wed Jan 19 20:07:41 2022 +0100
    
                Fix tt_key
    
            commit 6a23a927a62b1c05e3e6e438c9af4d6dc7791b48
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Wed Jan 19 20:01:15 2022 +0100
    
                Fix tttr2xfcs keyError when using standard name
    
  2. Create directory where we want to save our correlations in
            %mkdir /beegfs/ye53nis/saves/2022-01-20_correlate-all-dirty-ptu/
    
  3. Load all needed modules
            import mlflow
            import logging
            import os
            import sys
            import matplotlib.pyplot as plt
            import numpy as np
            import tensorflow as tf
            from pathlib import Path
            from pprint import pprint
    
            FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/'
            sys.path.append(FLUOTRACIFY_PATH)
            from fluotracify.applications import corr_fit_object as cfo
            from fluotracify.training import build_model as bm
    
            logging.basicConfig(filename='data/exp-220120-correlate-ptu/2022-01-20_correlate-all-dirty-ptu.log',
                                filemode='w', format='%(asctime)s - %(message)s',
                                force=True,
                                level=logging.DEBUG)
    
    
  4. Define variables and prepare model
            class ParameterClass():
                """Stores parameters for correlation """
                def __init__(self):
                    # Where the data is stored.
                    self.data = []
                    self.objectRef = []
                    self.subObjectRef = []
                    self.colors = ['blue', 'green', 'red', 'cyan', 'magenta',
                                   'yellow', 'black']
                    self.numOfLoaded = 0
                    # very fast from Ncasc ~ 14 onwards
                    self.NcascStart = 0
                    self.NcascEnd = 30  # 25
                    self.Nsub = 6  # 6
                    self.photonLifetimeBin = 10  # used for photon decay
                    self.photonCountBin = 1  # used for time series
    
            path = "../data/Pablo_structured_experiment/all_dirty_ptu"
            logged_model = 'file:///beegfs/ye53nis/drmed-git/data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model'
            weight = 0
            output_path = '/beegfs/ye53nis/saves/2022-01-20_correlate-all-dirty-ptu/'
    
            par_obj = ParameterClass()
    
            loaded_model = mlflow.keras.load_model(logged_model, compile=False)
            loaded_model.compile(loss=bm.binary_ce_dice_loss(),
                                 optimizer=tf.keras.optimizers.Adam(),
                                 metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9]))
            bm.prepare_model(loaded_model)
    
    
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    
  5. Run experiment: Correlate all_dirty_ptu on Jupyter 2
              path = Path(path)
              files = [path / f for f in os.listdir(path) if f.endswith('.ptu')]
              if len(files) == 0:
                  raise FileNotFoundError('The path provided does not include any'
                                          ' .ptu files.')
              for myfile in files:
                  ptufile = cfo.PicoObject(myfile, par_obj)
                  ptufile.predictTimeSeries(model=loaded_model,
                                            scaler='minmax')
                  ptufile.correctTCSPC(method='weights',
                                       weight=weight)
                  shift_name = f'shift_{ptufile.name}'
                  ptufile.getTimeSeries(timeseries_name=shift_name)
                  ptufile.getPhotonCountingStats(name=shift_name)
                  ptufile.predictTimeSeries(model=loaded_model,
                                            scaler='minmax',
                                            name=shift_name)
                  ptufile.correctTCSPC(method='delete_and_shift',
                                       timeseries_name=shift_name)
                  for key in list(ptufile.trueTimeArr.keys()):
                      if "_FORWEIGHTS" in key:
                          ptufile.get_autocorrelation(method='tttr2xfcs_with_weights',
                                                      name=key)
                      else:
                          ptufile.get_autocorrelation(method='tttr2xfcs', name=key)
    
                  for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                      if m in list(ptufile.autoNorm.keys()):
                          for key in list(ptufile.autoNorm[m].keys()):
                              ptufile.save_autocorrelation(name=key, method=m,
                                                           output_path=output_path)
    
    
    WARNING:tensorflow:6 out of the last 9 calls to <function Model.make_predict_function.<locals>.predict_function at 0x2b217faeb9d0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for  more details.
    
  6. According to log, the first run ended with an Error
            [I 2022-01-23 00:26:40.512 ServerApp] AsyncIOLoopKernelRestarter: restarting kernel (1/5), keep random ports
    

    Only 229 traces were analyzed.

  7. Analyze using a different weight
            %cd /beegfs/ye53nis/drmed-git
    
            !git log -3
    
            /beegfs/ye53nis/drmed-git
            commit 9e735ecd10d0e5e5eae591f8cc40201ae6144b6a
            Author: Alex Seltmann <seltmann@posteo.de>
            Date:   Mon Jan 24 20:34:54 2022 +0100
    
                add correlations 2
    
            commit c0b4bc8494409a6b83a623977f07d91a373dc085
            Author: Alex Seltmann <seltmann@posteo.de>
            Date:   Fri Jan 21 15:33:06 2022 +0100
    
                add correlations 100/400 clean
    
            commit e2037847eadb43f0eaaeeb48cda3cc48141e24f2
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Wed Jan 19 20:10:28 2022 +0100
    
                Fix tt_key again
    
  8. Change some parameters and execute as 2022-01-25_correlate-all-dirty-ptu
            logging.basicConfig(filename='data/exp-220120-correlate-ptu/2022-01-25_correlate-all-dirty-ptu.log',
                                filemode='w', format='%(asctime)s - %(message)s',
                                force=True,
                                level=logging.DEBUG)
            weight_list = [0.2, 0.4, 0.6, 0.8]
            output_path = '/beegfs/ye53nis/saves/2022-01-25_correlate-all-dirty-ptu/'
            path = Path(path)
            files = [path / f for f in os.listdir(path) if f.endswith('.ptu')]
    
            if len(files) == 0:
                raise FileNotFoundError('The path provided does not include any'
                                        ' .ptu files.')
            for myfile in files:
                ptufile = cfo.PicoObject(myfile, par_obj)
                for w in weight_list:
                    weight_name = f'weight{w}_{ptufile.name}'
                    ptufile.getTimeSeries(timeseries_name=weight_name)
                    ptufile.getPhotonCountingStats(name=weight_name)
                    ptufile.predictTimeSeries(model=loaded_model,
                                              scaler='minmax',
                                              name=weight_name)
                    ptufile.correctTCSPC(method='weights',
                                         weight=w,
                                         timeseries_name=weight_name)
                for key in list(ptufile.trueTimeArr.keys()):
                    if "_FORWEIGHTS" in key:
                        ptufile.get_autocorrelation(method='tttr2xfcs_with_weights',
                                                    name=key)
    
                for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                    if m in list(ptufile.autoNorm.keys()):
                        for key in list(ptufile.autoNorm[m].keys()):
                            ptufile.save_autocorrelation(name=key, method=m,
                                                         output_path=output_path)
    
    
    fa1b6a82-0827-4730-a145-2ab9f4c967ef
    

2.5.6 Analysis 1 of no-correction vs weight=0 vs shift

  • log files can be found here:
           tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-20_correlate-all-clean-ptu.log
           tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-20_correlate-all-dirty-ptu.log
    
           (tf) [ye53nis@login01 applications]$ tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-20_correla
           te-all-clean-ptu.log
           2022-01-22 21:32:10,206 - Finished predictTimeSeries() with name=shift_20 nM AF488110_T1310s_1
           2022-01-22 21:32:10,249 - correctTCSPC: some samples: subChan 3486766, truetime 3486766,photonMask 3486766, channelM
           ask 3486993
           2022-01-22 21:32:10,261 - correctTCSPC: deleted 633925 photons of 3486993 photons.
           2022-01-22 21:32:10,280 - correctTCSPC: shifted non-deleted photon arrival times by photonCountBin=1
           2022-01-22 21:32:10,281 - Finished correctTCSPC() with name 20 nM AF488110_T1310s_1, timeseries_name shift_20 nM AF4
           88110_T1310s_1
           2022-01-22 21:32:10,281 - get_autocorrelation: Starting tttr2xfcs correlation.with name 20 nM AF488110_T1310s_1
           2022-01-22 21:32:10,281 - Given key 20 nM AF488110_T1310s_1 of trueTimeArr does not include a hint on which channel
           was used. Assume all channels shall be used and continue
           2022-01-22 21:32:16,525 - crossAndAuto: sum(indeces)=3486993
           2022-01-22 21:32:16,611 - crossAndAuto: finished preparation
           2022-01-22 21:32:38,406 - tttr2xfcs: finished Ncasc 0
           (tf) [ye53nis@login01 applications]$ tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-20_correla
           te-all-dirty-ptu.log
           2022-01-25 00:52:57,129 - Unable to restore custom metric. Please ensure that the layer implements `get_config` and
           `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
           2022-01-25 00:53:05,683 - prepare_model: test shape (1, 16384, 1), e.g. [1.4064237e-01 1.3650321e-08 7.4799689e-10 1
           .7243300e-10 1.3498201e-10]
           2022-01-25 00:53:05,736 - prepare_model: test shape (1, 8192, 1). prediction failed as expected. Retry...
           2022-01-25 00:53:06,390 - prepare_model: test shape (1, 4096, 1), e.g. [1.4064237e-01 1.3650321e-08 7.4799689e-10 1.
           7243300e-10 1.3498201e-10]
           2022-01-25 00:53:06,455 - prepare_model: test shape (1, 8192, 1), e.g. [1.4064237e-01 1.3650321e-08 7.4799689e-10 1.
           7243300e-10 1.3498201e-10]
           2022-01-25 00:53:06,455 - prepare_model: UNET ready for different trace lengths
           (tf) [ye53nis@login01 applications]$
    
  • I committed the correlations to the git repository, since the file size is rather small (~5kB / correlation, makes ~15kB per file)
  • I sorted the correlations according to the 3 things I did with the .ptu data and the correlation method
    1. No correction: I just read in the .ptu data and correlated the photon arrival times using the tttr2xfcs algorithm
    2. Corrected with weights: I read in the .ptu data, constructed a timetrace from it, fed the time trace to my trained unet which predicts bright burst artifacts, then mapped the time trace prediction on the photon arrival times and gave all photons inside a bin labelled as artifactual a weight of 0 in the tttr2xfcs algorithm
    3. Corrected by photon deletion with shift: I read in the .ptu data, constructed a timetrace from it, fed the timetrace to my trained unet which predicts bright burst artifacts, then mapped the time trace prediction on the photon arrival times and deleted all photons inside a bin labelled as artifactual and the arrival times of all photons which come after a deleted bin by the bin size, then I correlated the resulting new photon arrival times using the tttr2xfcs algorithm
  • Then I fitted the traces in each of the 3 folders using Dominic Waithe’s https://dwaithe.github.io/FCSfitJS/
  • now let’s look at the results:
           %cd /home/lex/Programme/drmed-git
    
    /home/lex/Programme/drmed-git
    
           import numpy as np
           import matplotlib.pyplot as plt
           import pandas as pd
           import seaborn as sns
           from pathlib import Path
           from pprint import pprint
           # use seaborn style as default even if I just use matplotlib
           sns.set()
    
           folder_clean = Path('data/exp-220120-correlate-ptu/2022-01-20_correlate-all-clean-ptu')
           folder_dirty = Path('data/exp-220120-correlate-ptu/2022-01-20_correlate-all-dirty-ptu')
           clean_v1_param_path = folder_clean / '2022-01-20_clean_no-correction_param_229of400.csv'
           clean_v2_param_path = folder_clean / '2022-01-20_clean_corrected-with-weights_param_229of400.csv'
           clean_v3_param_path = folder_clean / '2022-01-20_clean_corrected-by-photon-deletion-with-shift_param_229of400.csv'
           clean_v1_plot_path = folder_clean / '2022-01-20_clean_no-correction_plot_229of400.csv'
           clean_v2_plot_path = folder_clean / '2022-01-20_clean_corrected-with-weights_plot_229of400.csv'
           clean_v3_plot_path = folder_clean / '2022-01-20_clean_corrected-by-photon-deletion-with-shift_plot_229of400.csv'
           dirty_v1_param_path = folder_dirty / '2022-01-20_dirty_no-correction_param_173of400.csv'
           dirty_v2_param_path = folder_dirty / '2022-01-20_dirty_corrected-with-weights_param_173of400.csv'
           dirty_v3_param_path = folder_dirty / '2022-01-20_dirty_corrected-by-photon-deletion-with-shift_param_173of400.csv'
           dirty_v1_plot_path = folder_dirty / '2022-01-20_dirty_no-correction_plot_173of400.csv'
           dirty_v2_plot_path = folder_dirty / '2022-01-20_dirty_corrected-with-weights_plot_173of400.csv'
           dirty_v3_plot_path = folder_dirty / '2022-01-20_dirty_corrected-by-photon-deletion-with-shift_plot_173of400.csv'
    
    
           clean_v1_param = pd.read_csv(clean_v1_param_path, sep=',')
           clean_v2_param = pd.read_csv(clean_v2_param_path, sep=',')
           clean_v3_param = pd.read_csv(clean_v3_param_path, sep=',')
           clean_v1_taudiff = clean_v1_param['txy1']
           clean_v2_taudiff = clean_v2_param['txy1']
           clean_v3_taudiff = clean_v3_param['txy1']
           dirty_v1_param = pd.read_csv(dirty_v1_param_path, sep=',')
           dirty_v2_param = pd.read_csv(dirty_v2_param_path, sep=',')
           dirty_v3_param = pd.read_csv(dirty_v3_param_path, sep=',')
           dirty_v1_taudiff = dirty_v1_param['txy1']
           dirty_v2_taudiff = dirty_v2_param['txy1']
           dirty_v3_taudiff = dirty_v3_param['txy1']
    
           display(clean_v1_param.head(2).T)
           display(clean_v2_param.head(2).T)
           display(clean_v3_param.head(2).T)
           display(dirty_v1_param.head(2).T)
           display(dirty_v2_param.head(2).T)
           display(dirty_v3_param.head(2).T)
    
      0 1
    nameofplot 2022-01-20tttr2xfcsCH2BIN120 nM AF48816T1 2022-01-20tttr2xfcsCH2BIN120 nM AF48822T2
    masterfile Not known Not known
    parentname 20 nM AF48816T182s1 20 nM AF48822T254s1
    parentuqid NaN NaN
    time of fit 24 January 2022 22:35:35 24 January 2022 22:35:35
    Diffeq Equation 1A Equation 1A
    Diffspecies 1 1
    Tripleteq Triplet Eq 2A Triplet Eq 2A
    Tripletspecies 1 1
    Dimen 3D 3D
    xmin 0.001018 0.001018
    xmax 117.440506 117.440506
    offset -0.000577 -0.000577
    stdev(offset) NaN NaN
    GN0 0.074965 0.074965
    stdev(GN0) NaN NaN
    N (FCS) 13.339549 13.339549
    cpm (kHz) 25.896822 25.862088
    A1 1 1
    stdev(A1) NaN NaN
    txy1 0.033317 0.033317
    stdev(txy1) NaN NaN
    alpha1 0.8512 0.8512
    stdev(alpha1) NaN NaN
    N (mom) 72.053415 73.936945
    bri (kHz) 4.794626 4.666217
      0 1
    nameofplot 2022-01-20tttr2xfcswithweightsCH2BIN120 2022-01-20tttr2xfcswithweightsCH2BIN120
    masterfile Not known Not known
    parentname 20 nM AF48816T182s1 20 nM AF48822T254s1
    parentuqid NaN NaN
    time of fit 24 January 2022 22:34:07 24 January 2022 22:34:07
    Diffeq Equation 1A Equation 1A
    Diffspecies 1 1
    Tripleteq Triplet Eq 2A Triplet Eq 2A
    Tripletspecies 1 1
    Dimen 3D 3D
    xmin 0.001018 0.001018
    xmax 100.66329 100.66329
    offset 0.314375 0.148697
    stdev(offset) NaN NaN
    GN0 0.161316 0.096106
    stdev(GN0) NaN NaN
    N (FCS) 6.198997 10.405181
    cpm (kHz) 55.727064 33.155463
    A1 1 1
    stdev(A1) NaN NaN
    txy1 0.066262 0.038902
    stdev(txy1) NaN NaN
    alpha1 0.5 0.737984
    stdev(alpha1) NaN NaN
    N (mom) 72.053415 73.936945
    bri (kHz) 4.794626 4.666217
      0 1
    nameofplot 2022-01-20tttr2xfcsCH2BIN1shift20 nM AF48… 2022-01-20tttr2xfcsCH2BIN1shift20 nM AF48…
    masterfile Not known Not known
    parentname shift20 nM AF48816T182s1 shift20 nM AF48822T254s1
    parentuqid NaN NaN
    time of fit 24 January 2022 22:32:21 24 January 2022 22:32:21
    Diffeq Equation 1A Equation 1A
    Diffspecies 1 1
    Tripleteq Triplet Eq 2A Triplet Eq 2A
    Tripletspecies 1 1
    Dimen 3D 3D
    xmin 0.001018 0.001018
    xmax 117.440506 117.440506
    offset 0.276905 0.139014
    stdev(offset) NaN NaN
    GN0 0.156775 0.095677
    stdev(GN0) NaN NaN
    N (FCS) 6.378581 10.451884
    cpm (kHz) 54.158119 33.007311
    A1 1 1
    stdev(A1) NaN NaN
    txy1 0.067249 0.038801
    stdev(txy1) NaN NaN
    alpha1 0.5 0.733455
    stdev(alpha1) NaN NaN
    N (mom) 72.053415 73.936945
    bri (kHz) 4.794626 4.666217
      0 1
    nameofplot 2022-01-20tttr2xfcsCH2BIN1DiO LUV 10uM in … 2022-01-20tttr2xfcsCH2BIN1DiO LUV 10uM in …
    masterfile Not known Not known
    parentname DiO LUV 10uM in 20 nM AF48823T268s1 DiO LUV 10uM in 20 nM AF48823T287s1
    parentuqid NaN NaN
    time of fit 24 January 2022 22:58:57 24 January 2022 22:59:16
    Diffeq Equation 1A Equation 1A
    Diffspecies 1 1
    Tripleteq Triplet Eq 2A Triplet Eq 2A
    Tripletspecies 1 1
    Dimen 3D 3D
    xmin 0.00089 0.00089
    xmax 2147.483642 2147.483642
    offset -0.002524 -0.014455
    stdev(offset) NaN NaN
    GN0 0.206576 0.396267
    stdev(GN0) NaN NaN
    N (FCS) 4.840844 2.523549
    cpm (kHz) 107.60087 221.540583
    A1 1 1
    stdev(A1) NaN NaN
    txy1 6.459892 4.992202
    stdev(txy1) NaN NaN
    alpha1 0.697556 0.973971
    stdev(alpha1) NaN NaN
    N (mom) 5.62743 2.845675
    bri (kHz) 92.565361 196.472342
      0 1
    nameofplot 2022-01-20tttr2xfcswithweightsCH2BIN1DiO 2022-01-20tttr2xfcswithweightsCH2BIN1DiO
    masterfile Not known Not known
    parentname DiO LUV 10uM in 20 nM AF48823T268s1 DiO LUV 10uM in 20 nM AF48823T287s1
    parentuqid NaN NaN
    time of fit 24 January 2022 22:51:01 24 January 2022 22:51:01
    Diffeq Equation 1A Equation 1A
    Diffspecies 1 1
    Tripleteq Triplet Eq 2A Triplet Eq 2A
    Tripletspecies 1 1
    Dimen 3D 3D
    xmin 0.00089 0.00089
    xmax 2415.919098 2415.919098
    offset -0.084572 -0.044295
    stdev(offset) NaN NaN
    GN0 0.338889 0.247596
    stdev(GN0) NaN NaN
    N (FCS) 2.950821 4.038831
    cpm (kHz) 176.520064 138.423335
    A1 1 1
    stdev(A1) NaN NaN
    txy1 20.767381 20.776597
    stdev(txy1) NaN NaN
    alpha1 0.5 0.5
    stdev(alpha1) NaN NaN
    N (mom) 5.62743 2.845675
    bri (kHz) 92.565361 196.472342
      0 1
    nameofplot 2022-01-20tttr2xfcsCH2BIN1shiftDiO LUV 10… 2022-01-20tttr2xfcsCH2BIN1shiftDiO LUV 10…
    masterfile Not known Not known
    parentname shiftDiO LUV 10uM in 20 nM AF48823T268s1 shiftDiO LUV 10uM in 20 nM AF48823T287s1
    parentuqid NaN NaN
    time of fit 24 January 2022 23:05:52 24 January 2022 23:06:00
    Diffeq Equation 1A Equation 1A
    Diffspecies 1 1
    Tripleteq Triplet Eq 2A Triplet Eq 2A
    Tripletspecies 1 1
    Dimen 3D 3D
    xmin 0.00089 0.00089
    xmax 2415.919098 2415.919098
    offset -0.023485 0.011508
    stdev(offset) NaN NaN
    GN0 0.304118 0.211213
    stdev(GN0) NaN NaN
    N (FCS) 3.288199 4.734564
    cpm (kHz) 158.408619 118.082341
    A1 1 1
    stdev(A1) NaN NaN
    txy1 2.884429 1.956253
    stdev(txy1) NaN NaN
    alpha1 0.5 0.600835
    stdev(alpha1) NaN NaN
    N (mom) 5.62743 2.845675
    bri (kHz) 92.565361 196.472342
           clean_v1_plot = pd.read_csv(clean_v1_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 459', axis=1)
           clean_v2_plot = pd.read_csv(clean_v2_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 459', axis=1)
           clean_v3_plot = pd.read_csv(clean_v3_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 459', axis=1)
           clean_v1_tau = clean_v1_plot['Time (ms)']
           clean_v2_tau = clean_v2_plot['Time (ms)']
           clean_v3_tau = clean_v3_plot['Time (ms)']
           clean_v1_corr = clean_v1_plot.iloc[:, 1::2]
           clean_v2_corr = clean_v2_plot.iloc[:, 1::2]
           clean_v3_corr = clean_v3_plot.iloc[:, 1::2]
           clean_v1_fit = clean_v1_plot.iloc[:, 2::2]
           clean_v2_fit = clean_v2_plot.iloc[:, 2::2]
           clean_v3_fit = clean_v3_plot.iloc[:, 2::2]
           dirty_v1_plot = pd.read_csv(dirty_v1_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 347', axis=1)
           dirty_v2_plot = pd.read_csv(dirty_v2_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 347', axis=1)
           dirty_v3_plot = pd.read_csv(dirty_v3_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 347', axis=1)
           dirty_v1_tau = dirty_v1_plot['Time (ms)']
           dirty_v2_tau = dirty_v2_plot['Time (ms)']
           dirty_v3_tau = dirty_v3_plot['Time (ms)']
           dirty_v1_corr = dirty_v1_plot.iloc[:, 1::2]
           dirty_v2_corr = dirty_v2_plot.iloc[:, 1::2]
           dirty_v3_corr = dirty_v3_plot.iloc[:, 1::2]
           dirty_v1_fit = dirty_v1_plot.iloc[:, 2::2]
           dirty_v2_fit = dirty_v2_plot.iloc[:, 2::2]
           dirty_v3_fit = dirty_v3_plot.iloc[:, 2::2]
    
           taudiff = pd.DataFrame(data=[clean_v1_taudiff, clean_v2_taudiff, clean_v3_taudiff,
                                        dirty_v1_taudiff, dirty_v2_taudiff, dirty_v3_taudiff],
                                  index=['clean-no c.', 'clean-weights', 'clean-shift',
                                         'dirty-no c.', 'dirty-weights', 'dirty-shift']).T
           fig = plt.figure(figsize=(16,9))
           fig = sns.boxplot(data=taudiff, showfliers=False)
           ylims = fig.get_ylim()
           fig.set(ylim=ylims)
           fig = sns.stripplot(data=taudiff, jitter=True, color='.3')
           plt.show()
    

    analysis1-nocorr+w0+shift.png

  • So from the first run we see:
    1. we confirm the distortion of transit times in the dirty data
    2. we see that the correction methods weight=0 and delete_and_shift as they are implemented now don’t work

2.5.7 Analysis 2 of weight=0.2…0.8

  • log files can be found here:
           tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-25_correlate-all-clean-ptu.log
           tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-25_correlate-all-dirty-ptu.log
    
           (tf) [ye53nis@login01 applications]$ tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-25_correla te-all-clean-ptu.log
           2022-01-26 15:58:00,327 - Finished predictTimeSeries() with name=weight0.6_20 nM AF48866_T782s_1
           2022-01-26 15:58:00,367 - correctTCSPC: some samples: subChan 3437400, truetime 3437400,photonMask 3437400, channelM ask 3437580
           2022-01-26 15:58:00,409 - Finished correctTCSPC() with name 20 nM AF48866_T782s_1, timeseries_name weight0.6_20 nM A F48866_T782s_1
           2022-01-26 15:58:00,513 - Finished time2bin. last_time=9995.0, num_bins=9995.0
           2022-01-26 15:58:00,514 - Finished getTimeSeries() with truetime_name 20 nM AF48866_T782s_1, timeseries_name weight0 .8_20 nM AF48866_T782s_1
           2022-01-26 15:58:00,516 - Finished getPhotonCountingStats() with name: weight0.8_20 nM AF48866_T782s_1
           2022-01-26 15:58:00,568 - Finished predictTimeSeries() with name=weight0.8_20 nM AF48866_T782s_1
           2022-01-26 15:58:00,607 - correctTCSPC: some samples: subChan 3437400, truetime 3437400,photonMask 3437400, channelM ask 3437580
           2022-01-26 15:58:00,668 - Finished correctTCSPC() with name 20 nM AF48866_T782s_1, timeseries_name weight0.8_20 nM A F48866_T782s_1
           2022-01-26 15:58:00,668 - get_autocorrelation: Starting tttr2xfcs correlation.with name CH2_weight0.2_20 nM AF48866_ T782s_1_FORWEIGHTS
           (tf) [ye53nis@login01 applications]$ tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-25_correla te-all-dirty-ptu.log
           2022-01-26 15:43:14,278 - Finished predictTimeSeries() with name=weight0.6_DiO LUV 10uM in 20 nM AF48876_T910s_1
           2022-01-26 15:43:14,406 - correctTCSPC: some samples: subChan 4672383, truetime 4672383,photonMask 4672383, channelM ask 4672675
           2022-01-26 15:43:14,520 - Finished correctTCSPC() with name DiO LUV 10uM in 20 nM AF48876_T910s_1, timeseries_name w eight0.6_DiO LUV 10uM in 20 nM AF48876_T910s_1
           2022-01-26 15:43:14,696 - Finished time2bin. last_time=9996.0, num_bins=9996.0
           2022-01-26 15:43:14,705 - Finished getTimeSeries() with truetime_name DiO LUV 10uM in 20 nM AF48876_T910s_1, timeser ies_name weight0.8_DiO LUV 10uM in 20 nM AF48876_T910s_1
           2022-01-26 15:43:14,707 - Finished getPhotonCountingStats() with name: weight0.8_DiO LUV 10uM in 20 nM AF48876_T910s _1
           2022-01-26 15:43:14,762 - Finished predictTimeSeries() with name=weight0.8_DiO LUV 10uM in 20 nM AF48876_T910s_1
           2022-01-26 15:43:14,889 - correctTCSPC: some samples: subChan 4672383, truetime 4672383,photonMask 4672383, channelM ask 4672675
           2022-01-26 15:43:14,960 - Finished correctTCSPC() with name DiO LUV 10uM in 20 nM AF48876_T910s_1, timeseries_name w eight0.8_DiO LUV 10uM in 20 nM AF48876_T910s_1
           2022-01-26 15:43:14,963 - get_autocorrelation: Starting tttr2xfcs correlation.with name CH2_weight0.2_DiO LUV 10uM i n 20 nM AF48876_T910s_1_FORWEIGHTS
           (tf) [ye53nis@login01 applications]$
    
  • So the first analysis of “no correction” vs “weight=0” vs “delete and shift” did show that the two correction methods did not work properly. Another approach is photon weighting, so let’s look at the following correlations:
    1. no correction: I just read in the .ptu data and correlated the photon arrival times using the tttr2xfcs algorithm → taken from first experiment
    2. weight=0: I read in the .ptu data, constructed a timetrace from it, fed the time trace to my trained unet which predicts bright burst artifacts, then mapped the time trace prediction on the photon arrival times and gave all photons inside a bin labelled as artifactual a weight of 0.2 in the tttr2xfcs algorithm
    3. weight=0.2: changed weight to 0.2, else see above
    4. weight=0.4: changed weight to 0.4, else see above
    5. weight=0.6: changed weight to 0.6, else see above
    6. weight=0.8: changed weight to 0.8, else see above
  • Then I fitted the traces in each of the 3 folders using Dominic Waithe’s https://dwaithe.github.io/FCSfitJS/
  • now let’s look at the results:
           %cd /home/lex/Programme/drmed-git
    
    /home/lex/Programme/drmed-git
    
           import numpy as np
           import matplotlib.pyplot as plt
           import pandas as pd
           import seaborn as sns
           from pathlib import Path
           from pprint import pprint
           # use seaborn style as default even if I just use matplotlib
           sns.set()
    
           folder_clean = Path('data/exp-220120-correlate-ptu/2022-01-20_correlate-all-clean-ptu')
           folder_clean_weights = Path('data/exp-220120-correlate-ptu/2022-01-25_correlate-all-clean-ptu')
           folder_dirty = Path('data/exp-220120-correlate-ptu/2022-01-20_correlate-all-dirty-ptu')
           folder_dirty_weights = Path('data/exp-220120-correlate-ptu/2022-01-25_correlate-all-dirty-ptu')
           clean_v1_param_path = folder_clean / '2022-01-20_clean_no-correction_param_229of400.csv'
           clean_00_param_path = folder_clean / '2022-01-20_clean_corrected-with-weights_param_229of400.csv'
           clean_02_param_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.2_param_34of400.csv'
           clean_04_param_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.4_param_34of400.csv'
           clean_06_param_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.6_param_34of400.csv'
           clean_08_param_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.8_param_34of400.csv'
    
           clean_v1_plot_path = folder_clean / '2022-01-20_clean_no-correction_plot_229of400.csv'
           clean_00_plot_path = folder_clean / '2022-01-20_clean_corrected-with-weights_plot_229of400.csv'
           clean_02_plot_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.2_plot_34of400.csv'
           clean_04_plot_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.4_plot_34of400.csv'
           clean_06_plot_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.6_plot_34of400.csv'
           clean_08_plot_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.8_plot_34of400.csv'
    
           dirty_v1_param_path = folder_dirty / '2022-01-20_dirty_no-correction_param_173of400.csv'
           dirty_00_param_path = folder_dirty / '2022-01-20_dirty_corrected-with-weights_param_173of400.csv'
           dirty_02_param_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.2_param_23of400.csv'
           dirty_04_param_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.4_param_23of400.csv'
           dirty_06_param_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.6_param_23of400.csv'
           dirty_08_param_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.8_param_23of400.csv'
    
           dirty_v1_plot_path = folder_dirty / '2022-01-20_dirty_no-correction_plot_173of400.csv'
           dirty_00_plot_path = folder_dirty / '2022-01-20_dirty_corrected-with-weights_plot_173of400.csv'
           dirty_02_plot_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.2_plot_23of400.csv'
           dirty_04_plot_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.4_plot_23of400.csv'
           dirty_06_plot_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.6_plot_23of400.csv'
           dirty_08_plot_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.8_plot_23of400.csv'
    
    
           clean_v1_param = pd.read_csv(clean_v1_param_path, sep=',')
           clean_00_param = pd.read_csv(clean_02_param_path, sep=',')
           clean_02_param = pd.read_csv(clean_02_param_path, sep=',')
           clean_04_param = pd.read_csv(clean_04_param_path, sep=',')
           clean_06_param = pd.read_csv(clean_06_param_path, sep=',')
           clean_08_param = pd.read_csv(clean_08_param_path, sep=',')
    
           clean_v1_taudiff = clean_v1_param['txy1']
           clean_00_taudiff = clean_02_param['txy1']
           clean_02_taudiff = clean_02_param['txy1']
           clean_04_taudiff = clean_04_param['txy1']
           clean_06_taudiff = clean_06_param['txy1']
           clean_08_taudiff = clean_08_param['txy1']
    
           dirty_v1_param = pd.read_csv(dirty_v1_param_path, sep=',')
           dirty_00_param = pd.read_csv(dirty_02_param_path, sep=',')
           dirty_02_param = pd.read_csv(dirty_02_param_path, sep=',')
           dirty_04_param = pd.read_csv(dirty_04_param_path, sep=',')
           dirty_06_param = pd.read_csv(dirty_06_param_path, sep=',')
           dirty_08_param = pd.read_csv(dirty_08_param_path, sep=',')
    
           dirty_v1_taudiff = dirty_v1_param['txy1']
           dirty_00_taudiff = dirty_02_param['txy1']
           dirty_02_taudiff = dirty_02_param['txy1']
           dirty_04_taudiff = dirty_04_param['txy1']
           dirty_06_taudiff = dirty_06_param['txy1']
           dirty_08_taudiff = dirty_08_param['txy1']
    
           display(pd.concat([clean_v1_param.head(1).T, clean_00_param.head(1).T, clean_02_param.head(1).T,
                      clean_04_param.head(1).T, clean_06_param.head(1).T, clean_08_param.head(1).T], axis=1))
           display(pd.concat([dirty_v1_param.head(1).T, dirty_00_param.head(1).T, dirty_02_param.head(1).T,
                      dirty_04_param.head(1).T, dirty_06_param.head(1).T, dirty_08_param.head(1).T], axis=1))
    
    
      0 0 0 0 0 0
    nameofplot 2022-01-20tttr2xfcsCH2BIN120 nM AF48816T1 2022-01-25tttr2xfcswithweightsCH2BIN1wei 2022-01-25tttr2xfcswithweightsCH2BIN1wei 2022-01-25tttr2xfcswithweightsCH2BIN1wei 2022-01-25tttr2xfcswithweightsCH2BIN1wei 2022-01-25tttr2xfcswithweightsCH2BIN1wei
    masterfile Not known Not known Not known Not known Not known Not known
    parentname 20 nM AF48816T182s1 weight0.220 nM AF48816T182s1 weight0.220 nM AF48816T182s1 weight0.420 nM AF48816T182s1 weight0.620 nM AF48816T182s1 weight0.820 nM AF48816T182s1
    parentuqid NaN NaN NaN NaN NaN NaN
    time of fit 24 January 2022 22:35:35 25 January 2022 14:14:37 25 January 2022 14:14:37 25 January 2022 14:17:36 25 January 2022 14:18:57 25 January 2022 14:20:30
    Diffeq Equation 1A Equation 1A Equation 1A Equation 1A Equation 1A Equation 1A
    Diffspecies 1 1 1 1 1 1
    Tripleteq Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A
    Tripletspecies 1 1 1 1 1 1
    Dimen 3D 3D 3D 3D 3D 3D
    xmin 0.001018 0.001018 0.001018 0.001018 0.001146 0.001146
    xmax 117.440506 1073.741818 1073.741818 469.762042 369.098746 603.97977
    offset -0.000577 0.171278 0.171278 0.087402 0.035123 0.007769
    stdev(offset) NaN NaN NaN NaN NaN NaN
    GN0 0.074965 0.132934 0.132934 0.095521 0.078695 0.073745
    stdev(GN0) NaN NaN NaN NaN NaN NaN
    N (FCS) 13.339549 7.522504 7.522504 10.468952 12.70734 13.560257
    cpm (kHz) 25.896822 45.922465 45.922465 32.997757 27.185228 25.475323
    A1 1 1 1 1 1 1
    stdev(A1) NaN NaN NaN NaN NaN NaN
    txy1 0.033317 0.042671 0.042671 0.03675 0.034622 0.033477
    stdev(txy1) NaN NaN NaN NaN NaN NaN
    alpha1 0.8512 0.5 0.5 0.691478 0.843979 0.887953
    stdev(alpha1) NaN NaN NaN NaN NaN NaN
    N (mom) 72.053415 72.053415 72.053415 72.053415 72.053415 72.053415
    bri (kHz) 4.794626 4.794626 4.794626 4.794626 4.794626 4.794626
      0 0 0 0 0 0
    nameofplot 2022-01-20tttr2xfcsCH2BIN1DiO LUV 10uM in … 2022-01-25tttr2xfcswithweightsCH2BIN1wei 2022-01-25tttr2xfcswithweightsCH2BIN1wei 2022-01-25tttr2xfcswithweightsCH2BIN1wei 2022-01-25tttr2xfcswithweightsCH2BIN1wei 2022-01-25tttr2xfcswithweightsCH2BIN1wei
    masterfile Not known Not known Not known Not known Not known Not known
    parentname DiO LUV 10uM in 20 nM AF48823T268s1 weight0.2DiO LUV 10uM in 20 nM AF48823T268s1 weight0.2DiO LUV 10uM in 20 nM AF48823T268s1 weight0.4DiO LUV 10uM in 20 nM AF48823T268s1 weight0.6DiO LUV 10uM in 20 nM AF48823T268s1 weight0.8DiO LUV 10uM in 20 nM AF48823T268s1
    parentuqid NaN NaN NaN NaN NaN NaN
    time of fit 24 January 2022 22:58:57 25 January 2022 13:58:13 25 January 2022 13:58:13 25 January 2022 14:03:08 25 January 2022 14:04:21 25 January 2022 14:07:40
    Diffeq Equation 1A Equation 1A Equation 1A Equation 1A Equation 1A Equation 1A
    Diffspecies 1 1 1 1 1 1
    Tripleteq Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A
    Tripletspecies 1 1 1 1 1 1
    Dimen 3D 3D 3D 3D 3D 3D
    xmin 0.00089 0.00089 0.00089 0.001018 0.001018 0.001018
    xmax 2147.483642 1073.741818 1073.741818 1610.61273 1610.61273 1879.048186
    offset -0.002524 -0.004259 -0.004259 0.001018 0.000758 -0.002585
    stdev(offset) NaN NaN NaN NaN NaN NaN
    GN0 0.206576 0.149601 0.149601 0.092027 0.095303 0.138446
    stdev(GN0) NaN NaN NaN NaN NaN NaN
    N (FCS) 4.840844 6.684437 6.684437 10.866429 10.492811 7.223025
    cpm (kHz) 107.60087 77.924146 77.924146 47.934705 49.641517 72.113704
    A1 1 1 1 1 1 1
    stdev(A1) NaN NaN NaN NaN NaN NaN
    txy1 6.459892 0.811509 0.811509 0.309739 0.802572 3.675292
    stdev(txy1) NaN NaN NaN NaN NaN NaN
    alpha1 0.697556 0.5 0.5 0.5277 0.5 0.567203
    stdev(alpha1) NaN NaN NaN NaN NaN NaN
    N (mom) 5.62743 5.62743 5.62743 5.62743 5.62743 5.62743
    bri (kHz) 92.565361 92.565361 92.565361 92.565361 92.565361 92.565361
           clean_v1_plot = pd.read_csv(clean_v1_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 459', axis=1)
           clean_00_plot = pd.read_csv(clean_00_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 459', axis=1)
           clean_02_plot = pd.read_csv(clean_02_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 69', axis=1)
           clean_04_plot = pd.read_csv(clean_04_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 69', axis=1)
           clean_06_plot = pd.read_csv(clean_06_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 69', axis=1)
           clean_08_plot = pd.read_csv(clean_08_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 69', axis=1)
    
           clean_v1_tau = clean_v1_plot['Time (ms)']
           clean_00_tau = clean_00_plot['Time (ms)']
           clean_02_tau = clean_02_plot['Time (ms)']
           clean_04_tau = clean_04_plot['Time (ms)']
           clean_06_tau = clean_06_plot['Time (ms)']
           clean_08_tau = clean_08_plot['Time (ms)']
           clean_v1_corr = clean_v1_plot.iloc[:, 1::2]
           clean_00_corr = clean_00_plot.iloc[:, 1::2]
           clean_02_corr = clean_02_plot.iloc[:, 1::2]
           clean_04_corr = clean_04_plot.iloc[:, 1::2]
           clean_06_corr = clean_06_plot.iloc[:, 1::2]
           clean_08_corr = clean_08_plot.iloc[:, 1::2]
           clean_v1_fit = clean_v1_plot.iloc[:, 2::2]
           clean_00_fit = clean_00_plot.iloc[:, 2::2]
           clean_02_fit = clean_02_plot.iloc[:, 2::2]
           clean_04_fit = clean_04_plot.iloc[:, 2::2]
           clean_06_fit = clean_06_plot.iloc[:, 2::2]
           clean_08_fit = clean_08_plot.iloc[:, 2::2]
           dirty_v1_plot = pd.read_csv(dirty_v1_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 347', axis=1)
           dirty_00_plot = pd.read_csv(dirty_00_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 347', axis=1)
           dirty_02_plot = pd.read_csv(dirty_02_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 47', axis=1)
           dirty_04_plot = pd.read_csv(dirty_04_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 47', axis=1)
           dirty_06_plot = pd.read_csv(dirty_06_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 47', axis=1)
           dirty_08_plot = pd.read_csv(dirty_08_plot_path, sep=',', na_values=' ').drop(
               'Unnamed: 47', axis=1)
           dirty_v1_tau = dirty_v1_plot['Time (ms)']
           dirty_00_tau = dirty_00_plot['Time (ms)']
           dirty_02_tau = dirty_02_plot['Time (ms)']
           dirty_04_tau = dirty_04_plot['Time (ms)']
           dirty_06_tau = dirty_06_plot['Time (ms)']
           dirty_08_tau = dirty_08_plot['Time (ms)']
           dirty_v1_corr = dirty_v1_plot.iloc[:, 1::2]
           dirty_00_corr = dirty_00_plot.iloc[:, 1::2]
           dirty_02_corr = dirty_02_plot.iloc[:, 1::2]
           dirty_04_corr = dirty_04_plot.iloc[:, 1::2]
           dirty_06_corr = dirty_06_plot.iloc[:, 1::2]
           dirty_08_corr = dirty_08_plot.iloc[:, 1::2]
           dirty_v1_fit = dirty_v1_plot.iloc[:, 2::2]
           dirty_00_fit = dirty_00_plot.iloc[:, 2::2]
           dirty_02_fit = dirty_02_plot.iloc[:, 2::2]
           dirty_04_fit = dirty_04_plot.iloc[:, 2::2]
           dirty_06_fit = dirty_06_plot.iloc[:, 2::2]
           dirty_08_fit = dirty_08_plot.iloc[:, 2::2]
    
    
           taudiff = pd.DataFrame(data=[clean_v1_taudiff, clean_00_taudiff, clean_02_taudiff,
                                        clean_04_taudiff, clean_06_taudiff, clean_08_taudiff,
                                        dirty_v1_taudiff, dirty_00_taudiff, dirty_02_taudiff,
                                        dirty_04_taudiff, dirty_06_taudiff, dirty_08_taudiff],
                                  index=['clean|no c.', 'clean|weight=0', 'clean|weight=0.2',
                                         'clean|weight=0.4', 'clean|weight=0.6', 'clean|weight=0.8',
                                         'dirty|no c.', 'dirty|weight=0', 'dirty|weight=0.2',
                                         'dirty|weight=0.4', 'dirty|weight=0.6', 'dirty|weight=0.8']).T
           fig, ax = plt.subplots(figsize=(12,5))
           #ax.set_yscale('log')
           fig = sns.boxplot(data=taudiff, showfliers=False)
           ylims = fig.get_ylim()
           fig.set(ylim=ylims)
           fig = sns.stripplot(data=taudiff, jitter=True, color='.3')
           plt.xticks(rotation=45)
           plt.tight_layout()
           plt.show()
    
  • Now on the first glance with a linear y-scale the correction by weights seemed to work with w=0.4, but we have to look at the log plot and see that this correction is not yet sufficient:
    • analysis2-allclean-alldirty.png
    • analysis2-allclean-alldirty-log.png
           taudiff = pd.DataFrame(data=[clean_v1_taudiff, clean_00_taudiff, clean_02_taudiff,
                                        clean_04_taudiff, clean_06_taudiff, clean_08_taudiff,
                                        dirty_04_taudiff, dirty_v1_taudiff],
                                  index=['clean|no c.', 'clean|weight=0', 'clean|weight=0.2',
                                         'clean|weight=0.4', 'clean|weight=0.6', 'clean|weight=0.8',
                                         'dirty|weight=0.4', 'dirty|no c.']).T
           fig, ax = plt.subplots(figsize=(9,6))
           ax.set_yscale('log')
           fig = sns.boxplot(data=taudiff, showfliers=False)
           ylims = fig.get_ylim()
           fig.set(ylim=ylims)
           fig = sns.stripplot(data=taudiff, jitter=True, color='.3')
           plt.xticks(rotation=45)
           plt.tight_layout()
           plt.show()
    
  • While we are at it let’s look at some subsamples of the data:
  • Here are only the clean plots:
    • analysis2-clean-log.png
  • Here are the clean controls and the dirty data with the best correction so far (w=0.4) and the dirty data without correction
    • analysis2-clean+dirty04+dirtync-log.png
  • What are learnings so far?
    • I need to optimize the correlation speed, e.g. by implementing the Cython version of the tttr2xfcs correlation
    • we have to investigate why the correction by weights doesn’t work
  • Dominic actually had a look at the data and also looked at 2 component fitting:
      Fast fraction   Slow fraction  
    Weights txy1 (ms) A1 txy2 (ms) A2
    0.0 0.2611 0.6973 25.4920 0.8459
    0.2000 0.2222 0.8455 19.3756 0.5863
    0.4000 0.0446 0.6774 3.5694 0.8409
    0.6000 0.0492 0.5210 5.7868 0.9703
    0.8000 0.0504 0.3787 9.1164 0.9561
             
    DIRTY 0.0717 0.2569 12.0547 0.9740
    CLEAN 0.0368 0.9924 283.0306 0.0368
  • he used a 2 component model, varied A1 and A2, but kept alpha1-2 fixed at 1.0.
  • the data suggest that reducing the weight, it gets better till 0.4, whereafter some funny things happen with the data.
    • we should analyze with random weights to see if there is an artefact with setting the weight specifically to 0 or 0.2.
  • also it is surprising to see that 2 component fitting works so well.
  • it is interesting to see that A1 gets larger for txy1 for smaller weights, showing this component is becoming enriched which is good (until 0.0 which is strange) and conversely for A2
  • FROM HINDSIGHT: Dominic used a 2D fit here - but we have a 3D situation here and this table is so far not reproducible in 3D with equation 1B

2.5.8 Experiment 2a: Update packages and Correlate all_clean_ptu on Jupyter 1

  1. Make sure we are in the correct directory, also do a git log -3 to document latest git commits
            %cd /beegfs/ye53nis/drmed-git
    
            !git log -3
    
            /beegfs/ye53nis/drmed-git
            commit dffd95906e760976dfdfd635b50cf056c8813ca3
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Wed Feb 9 23:24:34 2022 +0100
    
                Fix memory leak by deleting variables 2
    
            commit 298240ae97e683133071500ff83e0dbd2434883e
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Wed Feb 9 23:20:32 2022 +0100
    
                Fix memory leak by deleting variables
            commit b2987fdc6615e71118ce28f47bc5174109c72ff1
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Tue Feb 8 17:24:12 2022 +0100
    
                Fix get_autocorrelation tttr2xfcs_with_weights
    
  2. Create directory where we want to save our correlations in
            %mkdir /beegfs/ye53nis/saves/2022-02-08_correlate-all-clean-ptu/
    
  3. Install dividAndConquer as a Cython implementation to make tttr2xfcs a lot faster. First, update all packages, because of a deprecated NumPy API
            cd /beegfs/ye53nis/drmed-git/
            # executed interactively:
            # conda env remove -n tf
            # conda activate tf
            # pip install numpy mlflow lmfit scikit-learn tensorflow matplotlib pandas
            #     seaborn f csfiles multipletau cython
            # pip install cython --no-binary cython
    
            (base) [ye53nis@login01 drmed-git]$ conda env remove -n tf
    
            Remove all packages in environment /home/ye53nis/.conda/envs/tf:
    
            (base) [ye53nis@login01 drmed-git]$ conda create -n tf jupyterlab pip
            Collecting package metadata (current_repodata.json): done
            Solving environment: done
    
    
            ==> WARNING: A newer version of conda exists. <==
              current version: 4.10.0
              latest version: 4.11.0
    
            Please update conda by running
    
                $ conda update -n base -c defaults conda
    
    
    
            ## Package Plan ##
    
              environment location: /home/ye53nis/.conda/envs/tf
    
              added / updated specs:
                - jupyterlab
                - pip
    
    
            The following packages will be downloaded:
    
                package                    |            build
                ---------------------------|-----------------
                attrs-21.4.0               |     pyhd3eb1b0_0          51 KB
                bleach-4.1.0               |     pyhd3eb1b0_0         123 KB
                ca-certificates-2021.10.26 |       h06a4308_2         115 KB
                certifi-2021.10.8          |   py39h06a4308_2         151 KB
                cffi-1.15.0                |   py39hd667e15_1         225 KB
                charset-normalizer-2.0.4   |     pyhd3eb1b0_0          35 KB
                cryptography-36.0.0        |   py39h9ce1e76_0         1.3 MB
                debugpy-1.5.1              |   py39h295c915_0         1.7 MB
                decorator-5.1.1            |     pyhd3eb1b0_0          12 KB
                idna-3.3                   |     pyhd3eb1b0_0          49 KB
                importlib-metadata-4.8.2   |   py39h06a4308_0          39 KB
                importlib_metadata-4.8.2   |       hd3eb1b0_0          12 KB
                ipykernel-6.4.1            |   py39h06a4308_1         194 KB
                ipython-7.31.1             |   py39h06a4308_0        1006 KB
                jedi-0.18.1                |   py39h06a4308_1         982 KB
                jinja2-3.0.2               |     pyhd3eb1b0_0         110 KB
                jsonschema-3.2.0           |     pyhd3eb1b0_2          47 KB
                jupyter_client-7.1.2       |     pyhd3eb1b0_0          93 KB
                jupyter_core-4.9.1         |   py39h06a4308_0          75 KB
                jupyterlab-3.2.1           |     pyhd3eb1b0_1         3.6 MB
                jupyterlab_server-2.10.2   |     pyhd3eb1b0_1          48 KB
                matplotlib-inline-0.1.2    |     pyhd3eb1b0_2          12 KB
                nbconvert-6.3.0            |   py39h06a4308_0         488 KB
                ncurses-6.3                |       h7f8727e_2         782 KB
                notebook-6.4.6             |   py39h06a4308_0         4.2 MB
                openssl-1.1.1m             |       h7f8727e_0         2.5 MB
                packaging-21.3             |     pyhd3eb1b0_0          36 KB
                pandocfilters-1.5.0        |     pyhd3eb1b0_0          11 KB
                parso-0.8.3                |     pyhd3eb1b0_0          70 KB
                pip-21.2.4                 |   py39h06a4308_0         1.8 MB
                prometheus_client-0.13.1   |     pyhd3eb1b0_0          47 KB
                prompt-toolkit-3.0.20      |     pyhd3eb1b0_0         259 KB
                pycparser-2.21             |     pyhd3eb1b0_0          94 KB
                pygments-2.11.2            |     pyhd3eb1b0_0         759 KB
                pyopenssl-22.0.0           |     pyhd3eb1b0_0          50 KB
                pyparsing-3.0.4            |     pyhd3eb1b0_0          81 KB
                pyrsistent-0.18.0          |   py39heee7806_0          94 KB
                python-3.9.7               |       h12debd9_1        18.6 MB
                pytz-2021.3                |     pyhd3eb1b0_0         171 KB
                pyzmq-22.3.0               |   py39h295c915_2         470 KB
                readline-8.1.2             |       h7f8727e_1         354 KB
                requests-2.27.1            |     pyhd3eb1b0_0          54 KB
                send2trash-1.8.0           |     pyhd3eb1b0_1          19 KB
                setuptools-58.0.4          |   py39h06a4308_0         790 KB
                sqlite-3.37.2              |       hc218d9a_0        1008 KB
                tk-8.6.11                  |       h1ccaba5_0         3.0 MB
                traitlets-5.1.1            |     pyhd3eb1b0_0          84 KB
                tzdata-2021e               |       hda174b7_0         112 KB
                urllib3-1.26.8             |     pyhd3eb1b0_0         106 KB
                wcwidth-0.2.5              |     pyhd3eb1b0_0          26 KB
                wheel-0.37.1               |     pyhd3eb1b0_0          33 KB
                zipp-3.7.0                 |     pyhd3eb1b0_0          12 KB
                zlib-1.2.11                |       h7f8727e_4         108 KB
                ------------------------------------------------------------
                                                       Total:        46.0 MB
    
            The following NEW packages will be INSTALLED:
    
              _libgcc_mutex      pkgs/main/linux-64::_libgcc_mutex-0.1-main
              _openmp_mutex      pkgs/main/linux-64::_openmp_mutex-4.5-1_gnu
              anyio              pkgs/main/linux-64::anyio-2.2.0-py39h06a4308_1
              argon2-cffi        pkgs/main/linux-64::argon2-cffi-20.1.0-py39h27cfd23_1
              async_generator    pkgs/main/noarch::async_generator-1.10-pyhd3eb1b0_0
              attrs              pkgs/main/noarch::attrs-21.4.0-pyhd3eb1b0_0
              babel              pkgs/main/noarch::babel-2.9.1-pyhd3eb1b0_0
              backcall           pkgs/main/noarch::backcall-0.2.0-pyhd3eb1b0_0
              bleach             pkgs/main/noarch::bleach-4.1.0-pyhd3eb1b0_0
              brotlipy           pkgs/main/linux-64::brotlipy-0.7.0-py39h27cfd23_1003
              ca-certificates    pkgs/main/linux-64::ca-certificates-2021.10.26-h06a4308_2
              certifi            pkgs/main/linux-64::certifi-2021.10.8-py39h06a4308_2
              cffi               pkgs/main/linux-64::cffi-1.15.0-py39hd667e15_1
              charset-normalizer pkgs/main/noarch::charset-normalizer-2.0.4-pyhd3eb1b0_0
              cryptography       pkgs/main/linux-64::cryptography-36.0.0-py39h9ce1e76_0
              debugpy            pkgs/main/linux-64::debugpy-1.5.1-py39h295c915_0
              decorator          pkgs/main/noarch::decorator-5.1.1-pyhd3eb1b0_0
              defusedxml         pkgs/main/noarch::defusedxml-0.7.1-pyhd3eb1b0_0
              entrypoints        pkgs/main/linux-64::entrypoints-0.3-py39h06a4308_0
              idna               pkgs/main/noarch::idna-3.3-pyhd3eb1b0_0
              importlib-metadata pkgs/main/linux-64::importlib-metadata-4.8.2-py39h06a4308_0
              importlib_metadata pkgs/main/noarch::importlib_metadata-4.8.2-hd3eb1b0_0
              ipykernel          pkgs/main/linux-64::ipykernel-6.4.1-py39h06a4308_1
              ipython            pkgs/main/linux-64::ipython-7.31.1-py39h06a4308_0
              ipython_genutils   pkgs/main/noarch::ipython_genutils-0.2.0-pyhd3eb1b0_1
              jedi               pkgs/main/linux-64::jedi-0.18.1-py39h06a4308_1
              jinja2             pkgs/main/noarch::jinja2-3.0.2-pyhd3eb1b0_0
              json5              pkgs/main/noarch::json5-0.9.6-pyhd3eb1b0_0
              jsonschema         pkgs/main/noarch::jsonschema-3.2.0-pyhd3eb1b0_2
              jupyter_client     pkgs/main/noarch::jupyter_client-7.1.2-pyhd3eb1b0_0
              jupyter_core       pkgs/main/linux-64::jupyter_core-4.9.1-py39h06a4308_0
              jupyter_server     pkgs/main/linux-64::jupyter_server-1.4.1-py39h06a4308_0
              jupyterlab         pkgs/main/noarch::jupyterlab-3.2.1-pyhd3eb1b0_1
              jupyterlab_pygmen~ pkgs/main/noarch::jupyterlab_pygments-0.1.2-py_0
              jupyterlab_server  pkgs/main/noarch::jupyterlab_server-2.10.2-pyhd3eb1b0_1
              ld_impl_linux-64   pkgs/main/linux-64::ld_impl_linux-64-2.35.1-h7274673_9
              libffi             pkgs/main/linux-64::libffi-3.3-he6710b0_2
              libgcc-ng          pkgs/main/linux-64::libgcc-ng-9.3.0-h5101ec6_17
              libgomp            pkgs/main/linux-64::libgomp-9.3.0-h5101ec6_17
              libsodium          pkgs/main/linux-64::libsodium-1.0.18-h7b6447c_0
              libstdcxx-ng       pkgs/main/linux-64::libstdcxx-ng-9.3.0-hd4cf53a_17
              markupsafe         pkgs/main/linux-64::markupsafe-2.0.1-py39h27cfd23_0
              matplotlib-inline  pkgs/main/noarch::matplotlib-inline-0.1.2-pyhd3eb1b0_2
              mistune            pkgs/main/linux-64::mistune-0.8.4-py39h27cfd23_1000
              nbclassic          pkgs/main/noarch::nbclassic-0.2.6-pyhd3eb1b0_0
              nbclient           pkgs/main/noarch::nbclient-0.5.3-pyhd3eb1b0_0
              nbconvert          pkgs/main/linux-64::nbconvert-6.3.0-py39h06a4308_0
              nbformat           pkgs/main/noarch::nbformat-5.1.3-pyhd3eb1b0_0
              ncurses            pkgs/main/linux-64::ncurses-6.3-h7f8727e_2
              nest-asyncio       pkgs/main/noarch::nest-asyncio-1.5.1-pyhd3eb1b0_0
              notebook           pkgs/main/linux-64::notebook-6.4.6-py39h06a4308_0
              openssl            pkgs/main/linux-64::openssl-1.1.1m-h7f8727e_0
              packaging          pkgs/main/noarch::packaging-21.3-pyhd3eb1b0_0
              pandocfilters      pkgs/main/noarch::pandocfilters-1.5.0-pyhd3eb1b0_0
              parso              pkgs/main/noarch::parso-0.8.3-pyhd3eb1b0_0
              pexpect            pkgs/main/noarch::pexpect-4.8.0-pyhd3eb1b0_3
              pickleshare        pkgs/main/noarch::pickleshare-0.7.5-pyhd3eb1b0_1003
              pip                pkgs/main/linux-64::pip-21.2.4-py39h06a4308_0
              prometheus_client  pkgs/main/noarch::prometheus_client-0.13.1-pyhd3eb1b0_0
              prompt-toolkit     pkgs/main/noarch::prompt-toolkit-3.0.20-pyhd3eb1b0_0
              ptyprocess         pkgs/main/noarch::ptyprocess-0.7.0-pyhd3eb1b0_2
              pycparser          pkgs/main/noarch::pycparser-2.21-pyhd3eb1b0_0
              pygments           pkgs/main/noarch::pygments-2.11.2-pyhd3eb1b0_0
              pyopenssl          pkgs/main/noarch::pyopenssl-22.0.0-pyhd3eb1b0_0
              pyparsing          pkgs/main/noarch::pyparsing-3.0.4-pyhd3eb1b0_0
              pyrsistent         pkgs/main/linux-64::pyrsistent-0.18.0-py39heee7806_0
              pysocks            pkgs/main/linux-64::pysocks-1.7.1-py39h06a4308_0
              python             pkgs/main/linux-64::python-3.9.7-h12debd9_1
              python-dateutil    pkgs/main/noarch::python-dateutil-2.8.2-pyhd3eb1b0_0
              pytz               pkgs/main/noarch::pytz-2021.3-pyhd3eb1b0_0
              pyzmq              pkgs/main/linux-64::pyzmq-22.3.0-py39h295c915_2
              readline           pkgs/main/linux-64::readline-8.1.2-h7f8727e_1
              requests           pkgs/main/noarch::requests-2.27.1-pyhd3eb1b0_0
              send2trash         pkgs/main/noarch::send2trash-1.8.0-pyhd3eb1b0_1
              setuptools         pkgs/main/linux-64::setuptools-58.0.4-py39h06a4308_0
              six                pkgs/main/noarch::six-1.16.0-pyhd3eb1b0_0
              sniffio            pkgs/main/linux-64::sniffio-1.2.0-py39h06a4308_1
              sqlite             pkgs/main/linux-64::sqlite-3.37.2-hc218d9a_0
              terminado          pkgs/main/linux-64::terminado-0.9.4-py39h06a4308_0
              testpath           pkgs/main/noarch::testpath-0.5.0-pyhd3eb1b0_0
              tk                 pkgs/main/linux-64::tk-8.6.11-h1ccaba5_0
              tornado            pkgs/main/linux-64::tornado-6.1-py39h27cfd23_0
              traitlets          pkgs/main/noarch::traitlets-5.1.1-pyhd3eb1b0_0
              tzdata             pkgs/main/noarch::tzdata-2021e-hda174b7_0
              urllib3            pkgs/main/noarch::urllib3-1.26.8-pyhd3eb1b0_0
              wcwidth            pkgs/main/noarch::wcwidth-0.2.5-pyhd3eb1b0_0
              webencodings       pkgs/main/linux-64::webencodings-0.5.1-py39h06a4308_1
              wheel              pkgs/main/noarch::wheel-0.37.1-pyhd3eb1b0_0
              xz                 pkgs/main/linux-64::xz-5.2.5-h7b6447c_0
              zeromq             pkgs/main/linux-64::zeromq-4.3.4-h2531618_0
              zipp               pkgs/main/noarch::zipp-3.7.0-pyhd3eb1b0_0
              zlib               pkgs/main/linux-64::zlib-1.2.11-h7f8727e_4
    
    
            Proceed ([y]/n)? y
    
    
            Downloading and Extracting Packages
            send2trash-1.8.0     | 19 KB     | ######################################################################### | 100%
            tk-8.6.11            | 3.0 MB    | ######################################################################### | 100%
            pytz-2021.3          | 171 KB    | ######################################################################### | 100%
            prompt-toolkit-3.0.2 | 259 KB    | ######################################################################### | 100%
            python-3.9.7         | 18.6 MB   | ####################################################7                     |  72%
            python-3.9.7         | 18.6 MB   | ######################################################################### | 100%
            importlib-metadata-4 | 39 KB     | ######################################################################### | 100%
            ipykernel-6.4.1      | 194 KB    | ######################################################################### | 100%
            wcwidth-0.2.5        | 26 KB     | ######################################################################### | 100%
            prometheus_client-0. | 47 KB     | ######################################################################### | 100%
            jupyterlab-3.2.1     | 3.6 MB    | ######################################################################### | 100%
            decorator-5.1.1      | 12 KB     | ######################################################################### | 100%
            packaging-21.3       | 36 KB     | ######################################################################### | 100%
            ca-certificates-2021 | 115 KB    | ######################################################################### | 100%
            zlib-1.2.11          | 108 KB    | ######################################################################### | 100%
            readline-8.1.2       | 354 KB    | ######################################################################### | 100%
            wheel-0.37.1         | 33 KB     | ######################################################################### | 100%
            openssl-1.1.1m       | 2.5 MB    | ######################################################################### | 100%
            ipython-7.31.1       | 1006 KB   | ######################################################################### | 100%
            idna-3.3             | 49 KB     | ######################################################################### | 100%
            tzdata-2021e         | 112 KB    | ######################################################################### | 100%
            urllib3-1.26.8       | 106 KB    | ######################################################################### | 100%
            attrs-21.4.0         | 51 KB     | ######################################################################### | 100%
            jupyter_client-7.1.2 | 93 KB     | ######################################################################### | 100%
            jupyterlab_server-2. | 48 KB     | ######################################################################### | 100%
            zipp-3.7.0           | 12 KB     | ######################################################################### | 100%
            importlib_metadata-4 | 12 KB     | ######################################################################### | 100%
            cffi-1.15.0          | 225 KB    | ######################################################################### | 100%
            traitlets-5.1.1      | 84 KB     | ######################################################################### | 100%
            pyzmq-22.3.0         | 470 KB    | ######################################################################### | 100%
            parso-0.8.3          | 70 KB     | ######################################################################### | 100%
            ncurses-6.3          | 782 KB    | ######################################################################### | 100%
            notebook-6.4.6       | 4.2 MB    | ######################################################################### | 100%
            jinja2-3.0.2         | 110 KB    | ######################################################################### | 100%
            jsonschema-3.2.0     | 47 KB     | ######################################################################### | 100%
            pandocfilters-1.5.0  | 11 KB     | ######################################################################### | 100%
            sqlite-3.37.2        | 1008 KB   | ######################################################################### | 100%
            charset-normalizer-2 | 35 KB     | ######################################################################### | 100%
            pyparsing-3.0.4      | 81 KB     | ######################################################################### | 100%
            pycparser-2.21       | 94 KB     | ######################################################################### | 100%
            pyopenssl-22.0.0     | 50 KB     | ######################################################################### | 100%
            jedi-0.18.1          | 982 KB    | ######################################################################### | 100%
            pyrsistent-0.18.0    | 94 KB     | ######################################################################### | 100%
            matplotlib-inline-0. | 12 KB     | ######################################################################### | 100%
            pip-21.2.4           | 1.8 MB    | ######################################################################### | 100%
            _libgcc_mutex-0.1    | 3 KB      | ######################################################################### | 100%
            debugpy-1.5.1        | 1.7 MB    | ######################################################################### | 100%
            setuptools-58.0.4    | 790 KB    | ######################################################################### | 100%
            certifi-2021.10.8    | 151 KB    | ######################################################################### | 100%
            requests-2.27.1      | 54 KB     | ######################################################################### | 100%
            bleach-4.1.0         | 123 KB    | ######################################################################### | 100%
            nbconvert-6.3.0      | 488 KB    | ######################################################################### | 100%
            jupyter_core-4.9.1   | 75 KB     | ######################################################################### | 100%
            pygments-2.11.2      | 759 KB    | ######################################################################### | 100%
            cryptography-36.0.0  | 1.3 MB    | ######################################################################### | 100%
            Preparing transaction: done
            Verifying transaction: done
            Executing transaction: done
            #
            # To activate this environment, use
            #
            #     $ conda activate tf
            #
            # To deactivate an active environment, use
            #
            #     $ conda deactivate
    
            (base) [ye53nis@login01 drmed-git]$ conda activate tf
            (tf) [ye53nis@login01 drmed-git]$ pip install numpy mlflow lmfit scikit-learn tensorflow matplotlib pandas seaborn f
            csfiles multipletau
            Collecting numpy
              Downloading numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB)
                 |████████████████████████████████| 16.8 MB 6.6 MB/s
            Collecting mlflow
              Downloading mlflow-1.23.1-py3-none-any.whl (15.6 MB)
                 |████████████████████████████████| 15.6 MB 36.5 MB/s
            Collecting lmfit
              Downloading lmfit-1.0.3.tar.gz (292 kB)
                 |████████████████████████████████| 292 kB 15.8 MB/s
            Collecting scikit-learn
              Downloading scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.4 MB)
                 |████████████████████████████████| 26.4 MB 35.6 MB/s
            Collecting tensorflow
              Downloading tensorflow-2.8.0-cp39-cp39-manylinux2010_x86_64.whl (497.6 MB)
                 |████████████████████████████████| 497.6 MB 15 kB/s
            Collecting matplotlib
              Downloading matplotlib-3.5.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (11.2 MB)
                 |████████████████████████████████| 11.2 MB 34.3 MB/s
            Collecting pandas
              Downloading pandas-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.7 MB)
                 |████████████████████████████████| 11.7 MB 35.3 MB/s
            Collecting seaborn
              Downloading seaborn-0.11.2-py3-none-any.whl (292 kB)
                 |████████████████████████████████| 292 kB 36.2 MB/s
            Collecting fcsfiles
              Downloading fcsfiles-2022.2.2-py3-none-any.whl (9.6 kB)
            Collecting multipletau
              Using cached multipletau-0.3.3-py2.py3-none-any.whl (12 kB)
            Collecting sqlparse>=0.3.1
              Downloading sqlparse-0.4.2-py3-none-any.whl (42 kB)
                 |████████████████████████████████| 42 kB 1.3 MB/s
            Collecting querystring-parser
              Using cached querystring_parser-1.2.4-py2.py3-none-any.whl (7.9 kB)
            Collecting alembic
              Downloading alembic-1.7.6-py3-none-any.whl (210 kB)
                 |████████████████████████████████| 210 kB 41.2 MB/s
            Collecting databricks-cli>=0.8.7
              Downloading databricks-cli-0.16.4.tar.gz (58 kB)
                 |████████████████████████████████| 58 kB 7.0 MB/s
            Requirement already satisfied: importlib-metadata!=4.7.0,>=3.7.0 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-
            packages (from mlflow) (4.8.2)
            Requirement already satisfied: pytz in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from mlflow) (2021.
            3)
            Collecting sqlalchemy
              Downloading SQLAlchemy-1.4.31-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014
            _x86_64.whl (1.6 MB)
                 |████████████████████████████████| 1.6 MB 33.9 MB/s
            Requirement already satisfied: entrypoints in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from mlflow)
             (0.3)
            Requirement already satisfied: requests>=2.17.3 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from ml
            flow) (2.27.1)
            Collecting Flask
              Downloading Flask-2.0.2-py3-none-any.whl (95 kB)
                 |████████████████████████████████| 95 kB 4.8 MB/s
            Collecting gitpython>=2.1.0
              Downloading GitPython-3.1.26-py3-none-any.whl (180 kB)
                 |████████████████████████████████| 180 kB 43.3 MB/s
            Collecting click>=7.0
              Downloading click-8.0.3-py3-none-any.whl (97 kB)
                 |████████████████████████████████| 97 kB 7.1 MB/s
            Collecting protobuf>=3.7.0
              Downloading protobuf-3.19.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB)
                 |████████████████████████████████| 1.1 MB 35.5 MB/s
            Collecting docker>=4.0.0
              Downloading docker-5.0.3-py2.py3-none-any.whl (146 kB)
                 |████████████████████████████████| 146 kB 43.2 MB/s
            Collecting pyyaml>=5.1
              Downloading PyYAML-6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64
            .whl (661 kB)
                 |████████████████████████████████| 661 kB 36.9 MB/s
            Collecting scipy
              Downloading scipy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (42.1 MB)
                 |████████████████████████████████| 42.1 MB 33.3 MB/s
            Collecting cloudpickle
              Downloading cloudpickle-2.0.0-py3-none-any.whl (25 kB)
            Requirement already satisfied: packaging in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from mlflow) (
            21.3)
            Collecting gunicorn
              Using cached gunicorn-20.1.0-py3-none-any.whl (79 kB)
            Collecting prometheus-flask-exporter
              Downloading prometheus_flask_exporter-0.18.7-py3-none-any.whl (17 kB)
            Collecting asteval>=0.9.22
              Downloading asteval-0.9.26.tar.gz (40 kB)
                 |████████████████████████████████| 40 kB 4.2 MB/s
            Collecting uncertainties>=3.0.1
              Using cached uncertainties-3.1.6-py2.py3-none-any.whl (98 kB)
            Collecting joblib>=0.11
              Downloading joblib-1.1.0-py2.py3-none-any.whl (306 kB)
                 |████████████████████████████████| 306 kB 37.4 MB/s
            Collecting threadpoolctl>=2.0.0
              Downloading threadpoolctl-3.1.0-py3-none-any.whl (14 kB)
            Requirement already satisfied: setuptools in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from tensorfl
            ow) (58.0.4)
            Collecting keras-preprocessing>=1.1.1
              Using cached Keras_Preprocessing-1.1.2-py2.py3-none-any.whl (42 kB)
            Collecting google-pasta>=0.1.1
              Using cached google_pasta-0.2.0-py3-none-any.whl (57 kB)
            Collecting termcolor>=1.1.0
              Using cached termcolor-1.1.0-py3-none-any.whl
            Collecting tensorflow-io-gcs-filesystem>=0.23.1
              Downloading tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB)
                 |████████████████████████████████| 2.1 MB 35.6 MB/s
            Collecting gast>=0.2.1
              Downloading gast-0.5.3-py3-none-any.whl (19 kB)
            Collecting wrapt>=1.11.0
              Downloading wrapt-1.13.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_
            64.whl (81 kB)
                 |████████████████████████████████| 81 kB 11.3 MB/s
            Collecting h5py>=2.9.0
              Downloading h5py-3.6.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (4.5 MB)
                 |████████████████████████████████| 4.5 MB 41.8 MB/s
            Requirement already satisfied: six>=1.12.0 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from tensorf
            low) (1.16.0)
            Collecting opt-einsum>=2.3.2
              Using cached opt_einsum-3.3.0-py3-none-any.whl (65 kB)
            Collecting tf-estimator-nightly==2.8.0.dev2021122109
              Downloading tf_estimator_nightly-2.8.0.dev2021122109-py2.py3-none-any.whl (462 kB)
                 |████████████████████████████████| 462 kB 37.0 MB/s
            Collecting typing-extensions>=3.6.6
              Downloading typing_extensions-4.0.1-py3-none-any.whl (22 kB)
            Collecting tensorboard<2.9,>=2.8
              Downloading tensorboard-2.8.0-py3-none-any.whl (5.8 MB)
                 |████████████████████████████████| 5.8 MB 35.0 MB/s
            Collecting grpcio<2.0,>=1.24.3
              Downloading grpcio-1.43.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB)
                 |████████████████████████████████| 4.1 MB 34.1 MB/s
            Collecting astunparse>=1.6.0
              Using cached astunparse-1.6.3-py2.py3-none-any.whl (12 kB)
            Collecting flatbuffers>=1.12
              Downloading flatbuffers-2.0-py2.py3-none-any.whl (26 kB)
            Collecting libclang>=9.0.1
              Downloading libclang-13.0.0-py2.py3-none-manylinux1_x86_64.whl (14.5 MB)
                 |████████████████████████████████| 14.5 MB 31.0 MB/s
            Collecting absl-py>=0.4.0
              Downloading absl_py-1.0.0-py3-none-any.whl (126 kB)
                 |████████████████████████████████| 126 kB 38.1 MB/s
            Collecting keras<2.9,>=2.8.0rc0
              Downloading keras-2.8.0-py2.py3-none-any.whl (1.4 MB)
                 |████████████████████████████████| 1.4 MB 37.0 MB/s
            Collecting pillow>=6.2.0
              Downloading Pillow-9.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB)
                 |████████████████████████████████| 4.3 MB 38.4 MB/s
            Requirement already satisfied: python-dateutil>=2.7 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (fro
            m matplotlib) (2.8.2)
            Collecting fonttools>=4.22.0
              Downloading fonttools-4.29.1-py3-none-any.whl (895 kB)
                 |████████████████████████████████| 895 kB 45.3 MB/s
            Requirement already satisfied: pyparsing>=2.2.1 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from ma
            tplotlib) (3.0.4)
            Collecting kiwisolver>=1.0.1
              Downloading kiwisolver-1.3.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB)
                 |████████████████████████████████| 1.6 MB 33.7 MB/s
            Collecting cycler>=0.10
              Downloading cycler-0.11.0-py3-none-any.whl (6.4 kB)
            Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from
            astunparse>=1.6.0->tensorflow) (0.37.1)
            Collecting tabulate>=0.7.7
              Using cached tabulate-0.8.9-py3-none-any.whl (25 kB)
            Collecting websocket-client>=0.32.0
              Downloading websocket_client-1.2.3-py3-none-any.whl (53 kB)
                 |████████████████████████████████| 53 kB 1.5 MB/s
            Collecting gitdb<5,>=4.0.1
              Downloading gitdb-4.0.9-py3-none-any.whl (63 kB)
                 |████████████████████████████████| 63 kB 1.4 MB/s
            Collecting smmap<6,>=3.0.1
              Downloading smmap-5.0.0-py3-none-any.whl (24 kB)
            Requirement already satisfied: zipp>=0.5 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from importlib
            -metadata!=4.7.0,>=3.7.0->mlflow) (3.7.0)
            Requirement already satisfied: idna<4,>=2.5 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from reques
            ts>=2.17.3->mlflow) (3.3)
            Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (fr
            om requests>=2.17.3->mlflow) (1.26.8)
            Requirement already satisfied: certifi>=2017.4.17 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from
            requests>=2.17.3->mlflow) (2021.10.8)
            Requirement already satisfied: charset-normalizer~=2.0.0 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages
             (from requests>=2.17.3->mlflow) (2.0.4)
            Collecting tensorboard-data-server<0.7.0,>=0.6.0
              Using cached tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl (4.9 MB)
            Collecting werkzeug>=0.11.15
              Downloading Werkzeug-2.0.3-py3-none-any.whl (289 kB)
                 |████████████████████████████████| 289 kB 42.0 MB/s
            Collecting google-auth<3,>=1.6.3
              Downloading google_auth-2.6.0-py2.py3-none-any.whl (156 kB)
                 |████████████████████████████████| 156 kB 46.0 MB/s
            Collecting tensorboard-plugin-wit>=1.6.0
              Downloading tensorboard_plugin_wit-1.8.1-py3-none-any.whl (781 kB)
                 |████████████████████████████████| 781 kB 34.7 MB/s
            Collecting markdown>=2.6.8
              Downloading Markdown-3.3.6-py3-none-any.whl (97 kB)
                 |████████████████████████████████| 97 kB 6.1 MB/s
            Collecting google-auth-oauthlib<0.5,>=0.4.1
              Downloading google_auth_oauthlib-0.4.6-py2.py3-none-any.whl (18 kB)
            Collecting cachetools<6.0,>=2.0.0
              Downloading cachetools-5.0.0-py3-none-any.whl (9.1 kB)
            Collecting rsa<5,>=3.1.4
              Downloading rsa-4.8-py3-none-any.whl (39 kB)
            Collecting pyasn1-modules>=0.2.1
              Using cached pyasn1_modules-0.2.8-py2.py3-none-any.whl (155 kB)
            Collecting requests-oauthlib>=0.7.0
              Downloading requests_oauthlib-1.3.1-py2.py3-none-any.whl (23 kB)
            Collecting pyasn1<0.5.0,>=0.4.6
              Using cached pyasn1-0.4.8-py2.py3-none-any.whl (77 kB)
            Collecting oauthlib>=3.0.0
              Downloading oauthlib-3.2.0-py3-none-any.whl (151 kB)
                 |████████████████████████████████| 151 kB 41.0 MB/s
            Collecting future
              Using cached future-0.18.2-py3-none-any.whl
            Collecting Mako
              Downloading Mako-1.1.6-py2.py3-none-any.whl (75 kB)
                 |████████████████████████████████| 75 kB 3.8 MB/s
            Collecting greenlet!=0.4.17
              Downloading greenlet-1.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (153 kB)
                 |████████████████████████████████| 153 kB 44.8 MB/s
            Requirement already satisfied: Jinja2>=3.0 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from Flask->
            mlflow) (3.0.2)
            Collecting itsdangerous>=2.0
              Using cached itsdangerous-2.0.1-py3-none-any.whl (18 kB)
            Requirement already satisfied: MarkupSafe>=2.0 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from Jin
            ja2>=3.0->Flask->mlflow) (2.0.1)
            Requirement already satisfied: prometheus-client in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from p
            rometheus-flask-exporter->mlflow) (0.13.1)
            Building wheels for collected packages: lmfit, asteval, databricks-cli
              Building wheel for lmfit (setup.py) ... done
              Created wheel for lmfit: filename=lmfit-1.0.3-py3-none-any.whl size=84402 sha256=eeec89959143b4c2a2cb11c2a3e94314e
            fe83e19494f90b784e75ec988670aad
              Stored in directory: /home/ye53nis/.cache/pip/wheels/76/f4/32/c336957bfd694c7746f4df19b74e08d918ada688fe1349cca2
              Building wheel for asteval (setup.py) ... done
              Created wheel for asteval: filename=asteval-0.9.26-py3-none-any.whl size=17648 sha256=cf0f0e455c27d314babbe54d3e60
            886323c9dc39f51f6e6f9024972a201ff9d1
              Stored in directory: /home/ye53nis/.cache/pip/wheels/2f/e1/8d/9c9d29d91b8e6e79c0de5d06a09b5e69b0e4e390fa9765a449
              Building wheel for databricks-cli (setup.py) ... done
              Created wheel for databricks-cli: filename=databricks_cli-0.16.4-py3-none-any.whl size=106877 sha256=71c0798975bca
            4589dde21e027bf35118ae80567838d55515827123c6b3bb93a
              Stored in directory: /home/ye53nis/.cache/pip/wheels/e2/12/4a/3df4a44571c7f53c075a50e850162af541ea24b2a689d517ac
            Successfully built lmfit asteval databricks-cli
            Installing collected packages: pyasn1, rsa, pyasn1-modules, oauthlib, cachetools, werkzeug, smmap, requests-oauthlib
            , itsdangerous, greenlet, google-auth, click, websocket-client, tensorboard-plugin-wit, tensorboard-data-server, tab
            ulate, sqlalchemy, protobuf, pillow, numpy, markdown, Mako, kiwisolver, grpcio, google-auth-oauthlib, gitdb, future,
             fonttools, Flask, cycler, absl-py, wrapt, uncertainties, typing-extensions, threadpoolctl, tf-estimator-nightly, te
            rmcolor, tensorflow-io-gcs-filesystem, tensorboard, sqlparse, scipy, querystring-parser, pyyaml, prometheus-flask-ex
            porter, pandas, opt-einsum, matplotlib, libclang, keras-preprocessing, keras, joblib, h5py, gunicorn, google-pasta,
            gitpython, gast, flatbuffers, docker, databricks-cli, cloudpickle, astunparse, asteval, alembic, tensorflow, seaborn
            , scikit-learn, multipletau, mlflow, lmfit, fcsfiles
            Successfully installed Flask-2.0.2 Mako-1.1.6 absl-py-1.0.0 alembic-1.7.6 asteval-0.9.26 astunparse-1.6.3 cachetools
            -5.0.0 click-8.0.3 cloudpickle-2.0.0 cycler-0.11.0 databricks-cli-0.16.4 docker-5.0.3 fcsfiles-2022.2.2 flatbuffers-
            2.0 fonttools-4.29.1 future-0.18.2 gast-0.5.3 gitdb-4.0.9 gitpython-3.1.26 google-auth-2.6.0 google-auth-oauthlib-0.
            4.6 google-pasta-0.2.0 greenlet-1.1.2 grpcio-1.43.0 gunicorn-20.1.0 h5py-3.6.0 itsdangerous-2.0.1 joblib-1.1.0 keras
            -2.8.0 keras-preprocessing-1.1.2 kiwisolver-1.3.2 libclang-13.0.0 lmfit-1.0.3 markdown-3.3.6 matplotlib-3.5.1 mlflow
            -1.23.1 multipletau-0.3.3 numpy-1.22.2 oauthlib-3.2.0 opt-einsum-3.3.0 pandas-1.4.0 pillow-9.0.1 prometheus-flask-ex
            porter-0.18.7 protobuf-3.19.4 pyasn1-0.4.8 pyasn1-modules-0.2.8 pyyaml-6.0 querystring-parser-1.2.4 requests-oauthli
            b-1.3.1 rsa-4.8 scikit-learn-1.0.2 scipy-1.8.0 seaborn-0.11.2 smmap-5.0.0 sqlalchemy-1.4.31 sqlparse-0.4.2 tabulate-
            0.8.9 tensorboard-2.8.0 tensorboard-data-server-0.6.1 tensorboard-plugin-wit-1.8.1 tensorflow-2.8.0 tensorflow-io-gc
            s-filesystem-0.24.0 termcolor-1.1.0 tf-estimator-nightly-2.8.0.dev2021122109 threadpoolctl-3.1.0 typing-extensions-4
            .0.1 uncertainties-3.1.6 websocket-client-1.2.3 werkzeug-2.0.3 wrapt-1.13.3
            (tf) [ye53nis@login01 applications]$ pip install cython --no-binary cython
            Collecting cython
              Downloading Cython-0.29.27.tar.gz (2.1 MB)
                 |████████████████████████████████| 2.1 MB 6.7 MB/s
            Skipping wheel build for cython, due to binaries being disabled for it.
            Installing collected packages: cython
                Running setup.py install for cython ... done
            Successfully installed cython-0.29.27
    
  4. Now Install dividAndConquer as a Cython implementation
            cd /beegfs/ye53nis/drmed-git/src/fluotracify/applications
            cat _correlate_cython_setup.py
            python _correlate_cython_setup.py build_ext --inplace
    
            (tf) [ye53nis@login01 applications]$ cd /beegfs/ye53nis/drmed-git/src/fluotracify/applications
            (tf) [ye53nis@login01 applications]$ cat _correlate_cython_setup.py
            import setuptools
            from Cython.Build import cythonize
            import numpy as np
    
    
            setuptools.setup(
                ext_modules=cythonize("correlate_cython.pyx",
                                      compiler_directives={'language_level': '3'}),
                include_dirs=[np.get_include()]
            )
            (tf) [ye53nis@login01 applications]$ python _correlate_cython_setup.py build_ext --inplace
            running build_ext
            copying build/lib.linux-x86_64-3.9/correlate_cython.cpython-39-x86_64-linux-gnu.so ->
            (tf) [ye53nis@login01 applications]$
    
  5. Load all needed modules
            import logging
            import os
            import sys
            import tracemalloc
    
            from pathlib import Path
            from pprint import pprint
            from tensorflow.keras.optimizers import Adam
            from mlflow.keras import load_model
    
            FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/'
            sys.path.append(FLUOTRACIFY_PATH)
            from fluotracify.applications import corr_fit_object as cfo
            from fluotracify.training import build_model as bm
    
            logging.basicConfig(filename='data/exp-220120-correlate-ptu/2022-02-08_correlate-all-clean-ptu.log',
                                filemode='w', format='%(asctime)s - %(message)s',
                                force=True,
                                level=logging.DEBUG)
    
    
    2022-02-10 01:15:43.026025: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2022-02-10 01:15:43.026059: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
  6. Define variables and prepare model. Since the first run I changed the folder names assigned to path, because I noticed that I mixed up the experiments I wanted to analyse: the “
            class ParameterClass():
                """Stores parameters for correlation """
                def __init__(self):
                    # Where the data is stored.
                    self.data = []
                    self.objectRef = []
                    self.subObjectRef = []
                    self.colors = ['blue', 'green', 'red', 'cyan', 'magenta',
                                   'yellow', 'black']
                    self.numOfLoaded = 0
                    # very fast from Ncasc ~ 14 onwards
                    self.NcascStart = 0
                    self.NcascEnd = 30  # 25
                    self.Nsub = 6  # 6
                    self.photonLifetimeBin = 10  # used for photon decay
                    self.photonCountBin = 1  # used for time series
    
            path = Path("../data/1911DD_atto+LUVs/all_clean_ptu")
            logged_model = 'file:///beegfs/ye53nis/drmed-git/data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model'
            mt_bin = 0.001
            output_path = '/beegfs/ye53nis/saves/2022-02-08_correlate-all-clean-ptu/'
    
            par_obj = ParameterClass()
    
            loaded_model = load_model(logged_model, compile=False)
            loaded_model.compile(loss=bm.binary_ce_dice_loss(),
                                 optimizer=Adam(),
                                 metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9]))
            bm.prepare_model(loaded_model, [2**14, 2**13, 2**12, 2**15, 2**13])
    
    
    2022-02-10 01:15:50.033533: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2022-02-10 01:15:50.033566: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
    2022-02-10 01:15:50.033596: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node154): /proc/driver/nvidia/version does not exist
    2022-02-10 01:15:50.033828: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    
  7. Run experiment: Correlate all_clean_ptu of the AlexaFluor488 experiment on Jupyter 1. We want the following correlations:
    • clean trace → correlation via tttr2xfcs, and multipletau (bin=0.001)
    • correction=delete → correlation via tttr2xfcs, and multipletau (bin=0.001)
    • correction=delete_and_shift → correlation via tttr2xfcs, and multipletau (bin=0.001)
    • correction=weights-random → correlation via tttr2xfcs
    • correction=weights-1-pred → correlation via tttr2xfcs
                mt_bin = 0.001
                def run_correlations(myfile):
                    ptufile = cfo.PicoObject(myfile, par_obj)
                    ptufile.getTimeSeries(photonCountBin=mt_bin,
                                          timeseries_name=f'us_{ptufile.name}_NOCORR')
                    ptufile.getPhotonCountingStats(name=f'us_{ptufile.name}_NOCORR')
                    for method in ['delete', 'delete_and_shift']:
                        mt_name = f'us_{ptufile.name}_{method}'
                        ptufile.getTimeSeries(timeseries_name=mt_name)
                        ptufile.getPhotonCountingStats(name=mt_name)
                        ptufile.predictTimeSeries(model=loaded_model,
                                                  scaler='minmax',
                                                  name=mt_name)
                        ptufile.correctTCSPC(method=method,
                                             bin_after_correction=mt_bin,
                                             timeseries_name=mt_name)
                    for weight in ['random', '1-pred']:
                        weight_name = f'{ptufile.name}_weights_{weight}'
                        ptufile.getTimeSeries(photonCountBin=1.0,
                                              timeseries_name=weight_name)
                        ptufile.getPhotonCountingStats(name=weight_name)
                        ptufile.predictTimeSeries(model=loaded_model,
                                                  scaler='minmax',
                                                  name=weight_name)
                        ptufile.correctTCSPC(method='weights',
                                             weight=weight,
                                             timeseries_name=weight_name)
                    for key in list(ptufile.trueTimeArr.keys()):
                        if "_FORWEIGHTS" in key:
                            ptufile.get_autocorrelation(method='tttr2xfcs_with_weights',
                                                        name=key)
                        else:
                            ptufile.get_autocorrelation(method='tttr2xfcs', name=key)
                    for key in list(ptufile.timeSeries.keys()):
                        for k, i in ptufile.timeSeries[key].items():
                            if key.endswith(('_DELBIN', '_DELSHIFTBIN', '_NOCORR')):
                                ptufile.get_autocorrelation(method='multipletau', name=(key, k))
      
                    for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                        if m in list(ptufile.autoNorm.keys()):
                            for key in list(ptufile.autoNorm[m].keys()):
                                ptufile.save_autocorrelation(name=key, method=m,
                                                             output_path=output_path)
                    del ptufile
      
                def sizeof_fmt(num, suffix='B'):
                    ''' by Fred Cirera,  https://stackoverflow.com/a/1094933/1870254, modified'''
                    for unit in ['','Ki','Mi','Gi','Ti','Pi','Ei','Zi']:
                        if abs(num) < 1024.0:
                            return "%3.1f %s%s" % (num, unit, suffix)
                        num /= 1024.0
                    return "%.1f %s%s" % (num, 'Yi', suffix)
      
                files = [path / f for f in os.listdir(path) if f.endswith('.ptu')]
      
                if len(files) == 0:
                    raise FileNotFoundError('The path provided does not include any'
                                            ' .ptu files.')
                tracemalloc.start()
                tracemalloc_dict = {}
                tracemalloc_dict['baseline'] = tracemalloc.take_snapshot()
                for i, myfile in enumerate(files):
                    if i < 2:
                        print(i)
                        run_correlations(myfile)
                        tracemalloc_dict[f'{i}'] = tracemalloc.take_snapshot()
      
      0
      /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
        warnings.warn("Input dtype is not float; casting to np.float_!",
      1
      /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
        warnings.warn("Input dtype is not float; casting to np.float_!",
      
  8. According to log, the first run ended with an Error
            [I 2022-01-22 21:32:42.402 ServerApp] AsyncIOLoopKernelRestarter: restarting kernel (1/5), keep random ports
    

    Only 229 traces were analyzed.

            tracemalloc_dict.keys()
    
    dict_keys(['baseline', '0', '1'])
    
            top_stats_base = tracemalloc_dict['baseline'].statistics("lineno")
            top_stats_0 = tracemalloc_dict['0'].statistics("lineno")
            top_stats_1 = tracemalloc_dict['1'].statistics("lineno")
            top_stats_comp = tracemalloc_dict['1'].compare_to(tracemalloc_dict['0'], "lineno")
            print("---------------------------------------------------------")
    
    ---------------------------------------------------------
    
            [print(stat) for stat in top_stats_base[:10]]
            print("---------------------------------------------------------")
            [print(stat) for stat in top_stats_0[:10]]
            print("---------------------------------------------------------")
            [print(stat) for stat in top_stats_comp[:10]]
    
            /home/ye53nis/.conda/envs/tf/lib/python3.9/codeop.py:143: size=225 B, count=2, average=112 B
            /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/IPython/core/interactiveshell.py:3377: size=120 B, count=1, average=120 B
            /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/IPython/core/interactiveshell.py:3371: size=96 B, count=3, average=32 B
            /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/IPython/core/interactiveshell.py:3441: size=64 B, count=1, average=64 B
            /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/IPython/core/compilerop.py:178: size=28 B, count=1, average=28 B
            ---------------------------------------------------------
            /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:424: size=431 MiB, count=34, average=12.7 MiB
            /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:732: size=107 MiB, count=4, average=26.6 MiB
            /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/numpy/lib/function_base.py:5131: size=87.5 MiB, count=10, average=8962 KiB
            /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:662: size=53.3 MiB, count=8, average=6817 KiB
            /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:134: size=26.6 MiB, count=2, average=13.3 MiB
            /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:132: size=26.6 MiB, count=2, average=13.3 MiB
            /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py:500: size=353 KiB, count=2037, average=177 B
            /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:550: size=257 KiB, count=9, average=28.6 KiB
            /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:556: size=257 KiB, count=12, average=21.4 KiB
            /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py:2110: size=235 KiB, count=2072, average=116 B
            ---------------------------------------------------------
            /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:424: size=855 MiB (+424 MiB), count=68 (+34), average=12.6 MiB
            /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:732: size=213 MiB (+107 MiB), count=8 (+4), average=26.7 MiB
            /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/numpy/lib/function_base.py:5131: size=171 MiB (+83.1 MiB), count=20 (+10), average=8737 KiB
            /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:662: size=107 MiB (+53.4 MiB), count=16 (+8), average=6828 KiB
            /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:134: size=53.3 MiB (+26.7 MiB), count=4 (+2), average=13.3 MiB
            /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:132: size=53.3 MiB (+26.7 MiB), count=4 (+2), average=13.3 MiB
            /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:556: size=513 KiB (+257 KiB), count=24 (+12), average=21.4 KiB
            /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:550: size=514 KiB (+256 KiB), count=17 (+8), average=30.2 KiB
            /home/ye53nis/.conda/envs/tf/lib/python3.9/tracemalloc.py:558: size=83.3 KiB (+83.2 KiB), count=1533 (+1532), average=56 B
            /beegfs/ye53nis/drmed-git/src/fluotracify/imports/ptu_utils.py:324: size=105 KiB (+28.2 KiB), count=1923 (+516), average=56 B
    
            import linecache
    
            def display_top(snapshot, key_type='lineno', limit=10):
                snapshot = snapshot.filter_traces((
                    tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
                    tracemalloc.Filter(False, "<unknown>"),
                ))
                top_stats = snapshot.statistics(key_type)
    
                print("Top %s lines" % limit)
                for index, stat in enumerate(top_stats[:limit], 1):
                    frame = stat.traceback[0]
                    print("#%s: %s:%s: %.1f KiB"
                          % (index, frame.filename, frame.lineno, stat.size / 1024))
                    line = linecache.getline(frame.filename, frame.lineno).strip()
                    if line:
                        print('    %s' % line)
    
                other = top_stats[limit:]
                if other:
                    size = sum(stat.size for stat in other)
                    print("%s other: %.1f KiB" % (len(other), size / 1024))
                total = sum(stat.size for stat in top_stats)
                print("Total allocated size: %.1f KiB" % (total / 1024))
    
            display_top(tracemalloc_dict['1'])
    
            Top 10 lines
            #1: /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:732: 218468.5 KiB
                photon_weights = np.zeros((subChanCorrected.shape[0], 2))
            #2: /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/numpy/lib/function_base.py:5131: 174748.2 KiB
                new = arr[tuple(slobj)]
            #3: /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:662: 109240.8 KiB
                trueTimeCorrected = trueTimeCorrected[channelMask]
            #4: /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:134: 54620.3 KiB
                trueTimeArr = np.array([i for i in trueTimeArrFull
            #5: /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:132: 54620.3 KiB
                subChanArr = np.array([i for i in subChanArrFull
            #6: /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:424: 2441.8 KiB
                return np.array(photons_in_bin), np.array(bins_scale)
            #7: /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:550: 513.7 KiB
                predictions = model.predict(trace, verbose=0).flatten()
            #8: /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:556: 513.3 KiB
                self.timeSeries[name][f'{key}_PREPRO'] = trace.flatten().astype(
            #9: /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py:500: 352.8 KiB
                self._consumers = []
            #10: /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py:2110: 234.7 KiB
                self._graph = g
            606 other: 1929.5 KiB
            Total allocated size: 617683.8 KiB
    
            mt_bin = 0.001
            def run_correlations(myfile):
                ptufile = cfo.PicoObject(myfile, par_obj)
                ptufile.getTimeSeries(photonCountBin=mt_bin,
                                      timeseries_name=f'us_{ptufile.name}_NOCORR')
                ptufile.getPhotonCountingStats(name=f'us_{ptufile.name}_NOCORR')
                for method in ['delete', 'delete_and_shift']:
                    mt_name = f'us_{ptufile.name}_{method}'
                    ptufile.getTimeSeries(timeseries_name=mt_name)
                    ptufile.getPhotonCountingStats(name=mt_name)
                    ptufile.predictTimeSeries(model=loaded_model,
                                              scaler='minmax',
                                              name=mt_name)
                    ptufile.correctTCSPC(method=method,
                                         bin_after_correction=mt_bin,
                                         timeseries_name=mt_name)
                for weight in ['random', '1-pred']:
                    weight_name = f'{ptufile.name}_weights_{weight}'
                    ptufile.getTimeSeries(photonCountBin=1.0,
                                          timeseries_name=weight_name)
                    ptufile.getPhotonCountingStats(name=weight_name)
                    ptufile.predictTimeSeries(model=loaded_model,
                                              scaler='minmax',
                                              name=weight_name)
                    ptufile.correctTCSPC(method='weights',
                                         weight=weight,
                                         timeseries_name=weight_name)
                for key in list(ptufile.trueTimeArr.keys()):
                    if "_FORWEIGHTS" in key:
                        ptufile.get_autocorrelation(method='tttr2xfcs_with_weights',
                                                    name=key)
                    else:
                        ptufile.get_autocorrelation(method='tttr2xfcs', name=key)
                for key in list(ptufile.timeSeries.keys()):
                    for k, i in ptufile.timeSeries[key].items():
                        if key.endswith(('_DELBIN', '_DELSHIFTBIN', '_NOCORR')):
                            ptufile.get_autocorrelation(method='multipletau', name=(key, k))
    
                for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                    if m in list(ptufile.autoNorm.keys()):
                        for key in list(ptufile.autoNorm[m].keys()):
                            ptufile.save_autocorrelation(name=key, method=m,
                                                         output_path=output_path)
                del ptufile
    
            files = [path / f for f in os.listdir(path) if f.endswith('.ptu')]
    
            if len(files) == 0:
                raise FileNotFoundError('The path provided does not include any'
                                        ' .ptu files.')
    
            for i, myfile in enumerate(files):
                run_correlations(myfile)
    
    /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
      warnings.warn("Input dtype is not float; casting to np.float_!",
    

2.5.9 Experiment 2b: Correlate all_dirty_ptu on Jupyter 2

  1. Make sure we are in the correct directory, also do a git log -3 to document latest git commits
            %cd /beegfs/ye53nis/drmed-git
    
            !git log -3
    
            /beegfs/ye53nis/drmed-git
            commit dffd95906e760976dfdfd635b50cf056c8813ca3
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Wed Feb 9 23:24:34 2022 +0100
    
                Fix memory leak by deleting variables 2
    
            commit 298240ae97e683133071500ff83e0dbd2434883e
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Wed Feb 9 23:20:32 2022 +0100
    
                Fix memory leak by deleting variables
    
            commit b2987fdc6615e71118ce28f47bc5174109c72ff1
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Tue Feb 8 17:24:12 2022 +0100
    
                Fix get_autocorrelation tttr2xfcs_with_weights
    
  2. Create directory where we want to save our correlations in
            %mkdir /beegfs/ye53nis/saves/2022-02-08_correlate-all-dirty-ptu/
    
  3. Installing dividAndConquer as a Cython implementation was already done in Experiment 2a
  4. Load all needed modules
            import logging
            import os
            import sys
    
            from pathlib import Path
            from pprint import pprint
            from tensorflow.keras.optimizers import Adam
            from mlflow.keras import load_model
    
            FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/'
            sys.path.append(FLUOTRACIFY_PATH)
            from fluotracify.applications import corr_fit_object as cfo
            from fluotracify.training import build_model as bm
    
            logging.basicConfig(filename='data/exp-220120-correlate-ptu/2022-02-08_correlate-all-dirty-ptu.log',
                                filemode='w', format='%(asctime)s - %(message)s',
                                force=True,
                                level=logging.DEBUG)
    
    
    2022-02-10 01:16:31.273603: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2022-02-10 01:16:31.273668: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
  5. Define variables and prepare model
            class ParameterClass():
                """Stores parameters for correlation """
                def __init__(self):
                    # Where the data is stored.
                    self.data = []
                    self.objectRef = []
                    self.subObjectRef = []
                    self.colors = ['blue', 'green', 'red', 'cyan', 'magenta',
                                   'yellow', 'black']
                    self.numOfLoaded = 0
                    # very fast from Ncasc ~ 14 onwards
                    self.NcascStart = 0
                    self.NcascEnd = 30  # 25
                    self.Nsub = 6  # 6
                    self.photonLifetimeBin = 10  # used for photon decay
                    self.photonCountBin = 1  # used for time series
    
            path = Path("../data/1911DD_atto+LUVs/all_dirty_ptu")
            logged_model = 'file:///beegfs/ye53nis/drmed-git/data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model'
            mt_bin = 0.001
            output_path = '/beegfs/ye53nis/saves/2022-02-08_correlate-all-dirty-ptu/'
    
            par_obj = ParameterClass()
    
            loaded_model = load_model(logged_model, compile=False)
            loaded_model.compile(loss=bm.binary_ce_dice_loss(),
                                 optimizer=Adam(),
                                 metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9]))
            bm.prepare_model(loaded_model, [2**14, 2**13, 2**12, 2**15, 2**13])
    
    
    2022-02-10 01:16:39.134361: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2022-02-10 01:16:39.134392: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
    2022-02-10 01:16:39.134429: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node169): /proc/driver/nvidia/version does not exist
    2022-02-10 01:16:39.134678: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    
  6. Run experiment: Correlate all_dirty_ptu of the AlexaFluor488 + DiO LUVs experiment on Jupyter 2. We want the following correlations:
    • dirty trace → correlation via tttr2xfcs, and multipletau (bin=0.001)
    • correction=delete → correlation via tttr2xfcs, and multipletau (bin=0.001)
    • correction=delete_and_shift → correlation via tttr2xfcs, and multipletau (bin=0.001)
    • correction=weights-random → correlation via tttr2xfcs
    • correction=weights-1-pred → correlation via tttr2xfcs
                files = [path / f for f in os.listdir(path) if f.endswith('.ptu')]
                mt_bin = 0.001
      
                if len(files) == 0:
                    raise FileNotFoundError('The path provided does not include any'
                                            ' .ptu files.')
                for myfile in files:
                    ptufile = cfo.PicoObject(myfile, par_obj)
                    ptufile.getTimeSeries(photonCountBin=mt_bin,
                                          timeseries_name=f'us_{ptufile.name}_NOCORR')
                    ptufile.getPhotonCountingStats(name=f'us_{ptufile.name}_NOCORR')
                    for method in ['delete', 'delete_and_shift']:
                        mt_name = f'us_{ptufile.name}_{method}'
                        ptufile.getTimeSeries(timeseries_name=mt_name)
                        ptufile.getPhotonCountingStats(name=mt_name)
                        ptufile.predictTimeSeries(model=loaded_model,
                                                  scaler='minmax',
                                                  name=mt_name)
                        ptufile.correctTCSPC(method=method,
                                             bin_after_correction=mt_bin,
                                             timeseries_name=mt_name)
                    for weight in ['random', '1-pred']:
                        weight_name = f'{ptufile.name}_weights_{weight}'
                        ptufile.getTimeSeries(photonCountBin=1.0,
                                              timeseries_name=weight_name)
                        ptufile.getPhotonCountingStats(name=weight_name)
                        ptufile.predictTimeSeries(model=loaded_model,
                                                  scaler='minmax',
                                                  name=weight_name)
                        ptufile.correctTCSPC(method='weights',
                                             weight=weight,
                                             timeseries_name=weight_name)
                    for key in list(ptufile.trueTimeArr.keys()):
                        if "_FORWEIGHTS" in key:
                            ptufile.get_autocorrelation(method='tttr2xfcs_with_weights',
                                                        name=key)
                        else:
                            ptufile.get_autocorrelation(method='tttr2xfcs', name=key)
                    for key in list(ptufile.timeSeries.keys()):
                        for k, i in ptufile.timeSeries[key].items():
                            if key.endswith(('_DELBIN', '_DELSHIFTBIN', '_NOCORR')):
                                ptufile.get_autocorrelation(method='multipletau', name=(key, k))
      
                    for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                        if m in list(ptufile.autoNorm.keys()):
                            for key in list(ptufile.autoNorm[m].keys()):
                                ptufile.save_autocorrelation(name=key, method=m,
                                                             output_path=output_path)
                    del ptufile
      
      
      5d0b929a-2855-446b-8b76-55075cd537e3
      
  7. According to log, this run ended with an Error again
            [I 2022-01-23 00:26:40.512 ServerApp] AsyncIOLoopKernelRestarter: restarting kernel (1/5), keep random ports
    

    Only 229 traces were analyzed.

2.5.10 Analysis 3 of multipletau vs tttr2xfcs, fixed delete_and_shift, weight-random and weight-1-pred

  • log files can be found here:
           tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-02-08_correlate-all-clean-ptu.log
           tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-02-08_correlate-all-dirty-ptu.log
    
    
    
  • This time multiple changes were done in the code. There was an error in correctTCSPC(method='delete_and_shift') which I corrected. I also implemented multipletau fitting with smaller bins than the correction, enabling that we actually get information about these very fast dynamics of the molecules here. Thirdly, to investigate why correction with weights behaved strangely for weights <0.4, I implemented random weighting. Fourthly, to have a correction method which is not dependent on setting a weight manually, I implemented weighting automatically with: weight = 1 - prediction where prediction is the output of the UNET segmentation, a float between 0 and 1.
    1. no correction: I just read in the .ptu data and correlated the photon arrival times
      • 1a using the tttr2xfcs algorithm
      • 1b using the multipletau algorithm
    2. Corrected by photon deletion: I read in the .ptu data, constructed a timetrace from it, fed the time trace to my trained unet which predicts bright burst artifacts, then mapped the time trace prediction on the photon arrival times and deleted all photons inside a bin labelled as artifactual
      • 2a then correlated using the tttr2xfcs algorithm
      • 2b or using the multipletau algorithm
    3. Corrected by photon deletion with shift: I read in the .ptu data, constructed a timetrace from it, fed the timetrace to my trained unet which predicts bright burst artifacts, then mapped the time trace prediction on the photon arrival times and deleted all photons inside a bin labelled as artifactual and shifted the arrival times of all photons which come after a deleted bin by the bin size, then I correlated the resulting new photon arrival times using
      • 3a the tttr2xfcs algorithm
      • 3b the multipletaus algorithm
    4. weight=’1-pred’: I read in the .ptu data, constructed a timetrace from it, fed the time trace to my trained unet which predicts bright burst artifacts, then mapped the time trace prediction on the photon arrival times and gave all photons inside a bin labelled as artifactual a weight of 1 - prediction in the tttr2xfcs algorithm
    5. weight=’random’: I read in the .ptu data, constructed a timetrace from it, fed the time trace to my trained unet which predicts bright burst artifacts, then mapped the time trace prediction on the photon arrival times and gave all photons inside a bin labelled as artifactual a random weight between 0 and 1 in the tttr2xfcs algorithm
    6. weight=0 (from 1st exp): I read in the .ptu data, constructed a timetrace from it, fed the time trace to my trained unet which predicts bright burst artifacts, then mapped the time trace prediction on the photon arrival times and gave all photons inside a bin labelled as artifactual a weight of 0.2 in the tttr2xfcs algorithm
    7. weight=0.2 (from 2nd exp): changed weight to 0.2, else see above
    8. weight=0.4 (from 2nd exp): changed weight to 0.4, else see above
    9. weight=0.6 (from 2nd exp): changed weight to 0.6, else see above
    10. weight=0.8 (from 2nd exp): changed weight to 0.8, else see above
  • Then I fitted the traces in each of the 3 folders using Dominic Waithe’s https://dwaithe.github.io/FCSfitJS/
    • each correlation was fitted twice with the following options:
      • x: alpha = 1 (fixed) → if we assume no anomalous diffusion
      • y: alpha = 0.5…2 (floating) → values between 0.5…1 fitted the dirty data better
    • the xmin and xmax were:
      • 0.001…100 for clean data (because of shoulder between 100 and 1000 in multipletaudelete)
      • 0.001…1000 for dirty data
    • other parameters:
      • 3D, equation 1B → that means we don’t consider txy and tz separately, but have a aspect ratio AR as a conversion between them
      • no of diffusing species: 1
      • triplet states: 1
      • offset: floating
      • GN0: floating
      • A: fixed to 1 (is the relative number of diffusing particles - has to floating with more than 1 species)
      • txy1: floating
      • AR: 5 (values between 4.5 and 6 are okay)
  • now let’s look at the results:
           %cd /home/lex/Programme/drmed-git
    
    /home/lex/Programme/drmed-git
    
           import numpy as np
           import matplotlib.pyplot as plt
           import pandas as pd
           import seaborn as sns
           from pathlib import Path
           from pprint import pprint
           # use seaborn style as default even if I just use matplotlib
           sns.set()
           sns.set_palette('colorblind')
    
  • load in all the data (see Details block)
           folder_clean = Path('data/exp-220120-correlate-ptu/2022-02-08_correlate-all-clean-ptu')
           folder_clean_w0 = Path('data/exp-220120-correlate-ptu/2022-01-20_correlate-all-clean-ptu')
           folder_clean_weights = Path('data/exp-220120-correlate-ptu/2022-01-25_correlate-all-clean-ptu')
           folder_dirty = Path('data/exp-220120-correlate-ptu/2022-02-08_correlate-all-dirty-ptu')
           folder_dirty_w0 = Path('data/exp-220120-correlate-ptu/2022-01-20_correlate-all-dirty-ptu')
           folder_dirty_weights = Path('data/exp-220120-correlate-ptu/2022-01-25_correlate-all-dirty-ptu')
    
           # clean params, alphafix
           clean_1ax_param_path = folder_clean / 'clean_tttr2xfcs_no-correction_1comp-alphafix_to100_54of400_param.csv'
           clean_1bx_param_path = folder_clean / 'clean_multipletau_no-correction_1comp-alphafix_to100_54of400_param.csv'
           clean_2ax_param_path = folder_clean / 'clean_tttr2xfcs_delete_1comp-alphafix_to100_54of400_param.csv'
           clean_2bx_param_path = folder_clean / 'clean_multipletau_delete_1comp-alphafix_to100_54of400_param.csv'
           clean_3ax_param_path = folder_clean / 'clean_tttr2xfcs_delete-and-shift_1comp-alphafix_to100_54of400_param.csv'
           clean_3bx_param_path = folder_clean / 'clean_multipletau_delete-and-shift_1comp-alphafix_to100_54of400_param.csv'
           clean_4x_param_path = folder_clean / 'clean_tttr2xfcs_weight-1-pred_1comp-alphafix_to100_54of400_param.csv'
           clean_5x_param_path = folder_clean / 'clean_tttr2xfcs_weight-random_1comp-alphafix_to100_54of400_param.csv'
    
           # clean params, alphafloat
           clean_1ay_param_path = folder_clean / 'clean_tttr2xfcs_no-correction_1comp-alphafloat_to100_54of400_param.csv'
           clean_1by_param_path = folder_clean / 'clean_multipletau_no-correction_1comp-alphafloat_to100_54of400_param.csv'
           clean_2ay_param_path = folder_clean / 'clean_tttr2xfcs_delete_1comp-alphafloat_to100_54of400_param.csv'
           clean_2by_param_path = folder_clean / 'clean_multipletau_delete_1comp-alphafloat_to100_54of400_param.csv'
           clean_3ay_param_path = folder_clean / 'clean_tttr2xfcs_delete-and-shift_1comp-alphafloat_to100_54of400_param.csv'
           clean_3by_param_path = folder_clean / 'clean_multipletau_delete-and-shift_1comp-alphafloat_to100_54of400_param.csv'
           clean_4y_param_path = folder_clean / 'clean_tttr2xfcs_weight-1-pred_1comp-alphafloat_to100_54of400_param.csv'
           clean_5y_param_path = folder_clean / 'clean_tttr2xfcs_weight-random_1comp-alphafloat_to100_54of400_param.csv'
    
           # clean params, from other experiments, alphafix
           clean_6x_param_path = folder_clean_w0 / 'clean_tttr2xfcs_weight-0_1comp-alphafix_to100_229of400_param.csv'
           clean_7x_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.2_1comp-alphafix_to100_119of400_param.csv'
           clean_8x_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.4_1comp-alphafix_to100_119of400_param.csv'
           clean_9x_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.6_1comp-alphafix_to100_119of400_param.csv'
           clean_10x_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.8_1comp-alphafix_to100_119of400_param.csv'
    
           # clean params, from other experiments, alphafloat
           clean_6y_param_path = folder_clean_w0 / 'clean_tttr2xfcs_weight-0_1comp-alphafloat_to100_229of400_param.csv'
           clean_7y_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.2_1comp-alphafloat_to100_119of400_param.csv'
           clean_8y_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.4_1comp-alphafloat_to100_119of400_param.csv'
           clean_9y_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.6_1comp-alphafloat_to100_119of400_param.csv'
           clean_10y_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.8_1comp-alphafloat_to100_119of400_param.csv'
    
           # clean plots, alphafix
           clean_1ax_plot_path = folder_clean / 'clean_tttr2xfcs_no-correction_1comp-alphafix_to100_54of400_plot.csv'
           clean_1bx_plot_path = folder_clean / 'clean_multipletau_no-correction_1comp-alphafix_to100_54of400_plot.csv'
           clean_2ax_plot_path = folder_clean / 'clean_tttr2xfcs_delete_1comp-alphafix_to100_54of400_plot.csv'
           clean_2bx_plot_path = folder_clean / 'clean_multipletau_delete_1comp-alphafix_to100_54of400_plot.csv'
           clean_3ax_plot_path = folder_clean / 'clean_tttr2xfcs_delete-and-shift_1comp-alphafix_to100_54of400_plot.csv'
           clean_3bx_plot_path = folder_clean / 'clean_multipletau_delete-and-shift_1comp-alphafix_to100_54of400_plot.csv'
           clean_4x_plot_path = folder_clean / 'clean_tttr2xfcs_weight-1-pred_1comp-alphafix_to100_54of400_plot.csv'
           clean_5x_plot_path = folder_clean / 'clean_tttr2xfcs_weight-random_1comp-alphafix_to100_54of400_plot.csv'
    
           # clean plots, alphafloat
           clean_1ay_plot_path = folder_clean / 'clean_tttr2xfcs_no-correction_1comp-alphafloat_to100_54of400_plot.csv'
           clean_1by_plot_path = folder_clean / 'clean_multipletau_no-correction_1comp-alphafloat_to100_54of400_plot.csv'
           clean_2ay_plot_path = folder_clean / 'clean_tttr2xfcs_delete_1comp-alphafloat_to100_54of400_plot.csv'
           clean_2by_plot_path = folder_clean / 'clean_multipletau_delete_1comp-alphafloat_to100_54of400_plot.csv'
           clean_3ay_plot_path = folder_clean / 'clean_tttr2xfcs_delete-and-shift_1comp-alphafloat_to100_54of400_plot.csv'
           clean_3by_plot_path = folder_clean / 'clean_multipletau_delete-and-shift_1comp-alphafloat_to100_54of400_plot.csv'
           clean_4y_plot_path = folder_clean / 'clean_tttr2xfcs_weight-1-pred_1comp-alphafloat_to100_54of400_plot.csv'
           clean_5y_plot_path = folder_clean / 'clean_tttr2xfcs_weight-random_1comp-alphafloat_to100_54of400_plot.csv'
    
           # clean plots, from other experiments, alphafix
           clean_6x_plot_path = folder_clean_w0 / 'clean_tttr2xfcs_weight-0_1comp-alphafix_to100_229of400_plot.csv'
           clean_7x_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.2_1comp-alphafix_to100_119of400_plot.csv'
           clean_8x_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.4_1comp-alphafix_to100_119of400_plot.csv'
           clean_9x_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.6_1comp-alphafix_to100_119of400_plot.csv'
           clean_10x_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.8_1comp-alphafix_to100_119of400_plot.csv'
    
           # clean plots, from other experiments, alphafix
           clean_6y_plot_path = folder_clean_w0 / 'clean_tttr2xfcs_weight-0_1comp-alphafloat_to100_229of400_plot.csv'
           clean_7y_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.2_1comp-alphafloat_to100_119of400_plot.csv'
           clean_8y_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.4_1comp-alphafloat_to100_119of400_plot.csv'
           clean_9y_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.6_1comp-alphafloat_to100_119of400_plot.csv'
           clean_10y_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.8_1comp-alphafloat_to100_119of400_plot.csv'
    
           # dirty params, alphafix
           dirty_1ax_param_path = folder_dirty / 'dirty_tttr2xfcs_no-correction_1comp-alphafix_to1000_53of400_param.csv'
           dirty_1bx_param_path = folder_dirty / 'dirty_multipletau_no-correction_1comp-alphafix_to1000_53of400_param.csv'
           dirty_2ax_param_path = folder_dirty / 'dirty_tttr2xfcs_delete_1comp-alphafix_to1000_53of400_param.csv'
           dirty_2bx_param_path = folder_dirty / 'dirty_multipletau_delete_1comp-alphafix_to1000_53of400_param.csv'
           dirty_3ax_param_path = folder_dirty / 'dirty_tttr2xfcs_delete-and-shift_1comp-alphafix_to1000_53of400_param.csv'
           dirty_3bx_param_path = folder_dirty / 'dirty_multipletau_delete-and-shift_1comp-alphafix_to1000_53of400_param.csv'
           dirty_4x_param_path = folder_dirty / 'dirty_tttr2xfcs_weight-1-pred_1comp-alphafix_to1000_53of400_param.csv'
           dirty_5x_param_path = folder_dirty / 'dirty_tttr2xfcs_weight-random_1comp-alphafix_to1000_53of400_param.csv'
    
           # dirty params, alphafloat
           dirty_1ay_param_path = folder_dirty / 'dirty_tttr2xfcs_no-correction_1comp-alphafloat_to1000_53of400_param.csv'
           dirty_1by_param_path = folder_dirty / 'dirty_multipletau_no-correction_1comp-alphafloat_to1000_53of400_param.csv'
           dirty_2ay_param_path = folder_dirty / 'dirty_tttr2xfcs_delete_1comp-alphafloat_to1000_53of400_param.csv'
           dirty_2by_param_path = folder_dirty / 'dirty_multipletau_delete_1comp-alphafloat_to1000_53of400_param.csv'
           dirty_3ay_param_path = folder_dirty / 'dirty_tttr2xfcs_delete-and-shift_1comp-alphafloat_to1000_53of400_param.csv'
           dirty_3by_param_path = folder_dirty / 'dirty_multipletau_delete-and-shift_1comp-alphafloat_to1000_53of400_param.csv'
           dirty_4y_param_path = folder_dirty / 'dirty_tttr2xfcs_weight-1-pred_1comp-alphafloat_to1000_53of400_param.csv'
           dirty_5y_param_path = folder_dirty / 'dirty_tttr2xfcs_weight-random_1comp-alphafloat_to1000_53of400_param.csv'
    
           # dirty params, from other experiments, alphafix
           dirty_6x_param_path = folder_dirty_w0 / 'dirty_tttr2xfcs_weight-0_1comp-alphafix_to1000_173of400_param.csv'
           dirty_7x_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.2_1comp-alphafix_to1000_79of400_param.csv'
           dirty_8x_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.4_1comp-alphafix_to1000_79of400_param.csv'
           dirty_9x_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.6_1comp-alphafix_to1000_79of400_param.csv'
           dirty_10x_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.8_1comp-alphafix_to1000_79of400_param.csv'
    
           # dirty params, from other experiments, alphafloat
           dirty_6y_param_path = folder_dirty_w0 / 'dirty_tttr2xfcs_weight-0_1comp-alphafloat_to1000_173of400_param.csv'
           dirty_7y_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.2_1comp-alphafloat_to1000_79of400_param.csv'
           dirty_8y_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.4_1comp-alphafloat_to1000_79of400_param.csv'
           dirty_9y_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.6_1comp-alphafloat_to1000_79of400_param.csv'
           dirty_10y_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.8_1comp-alphafloat_to1000_79of400_param.csv'
    
           # dirty plots, alphafix
           dirty_1ax_plot_path = folder_dirty / 'dirty_tttr2xfcs_no-correction_1comp-alphafix_to1000_53of400_plot.csv'
           dirty_1bx_plot_path = folder_dirty / 'dirty_multipletau_no-correction_1comp-alphafix_to1000_53of400_plot.csv'
           dirty_2ax_plot_path = folder_dirty / 'dirty_tttr2xfcs_delete_1comp-alphafix_to1000_53of400_plot.csv'
           dirty_2bx_plot_path = folder_dirty / 'dirty_multipletau_delete_1comp-alphafix_to1000_53of400_plot.csv'
           dirty_3ax_plot_path = folder_dirty / 'dirty_tttr2xfcs_delete-and-shift_1comp-alphafix_to1000_53of400_plot.csv'
           dirty_3bx_plot_path = folder_dirty / 'dirty_multipletau_delete-and-shift_1comp-alphafix_to1000_53of400_plot.csv'
           dirty_4x_plot_path = folder_dirty / 'dirty_tttr2xfcs_weight-1-pred_1comp-alphafix_to1000_53of400_plot.csv'
           dirty_5x_plot_path = folder_dirty / 'dirty_tttr2xfcs_weight-random_1comp-alphafix_to1000_53of400_plot.csv'
    
           # dirty plots, alphafloat
           dirty_1ay_plot_path = folder_dirty / 'dirty_tttr2xfcs_no-correction_1comp-alphafloat_to1000_53of400_plot.csv'
           dirty_1by_plot_path = folder_dirty / 'dirty_multipletau_no-correction_1comp-alphafloat_to1000_53of400_plot.csv'
           dirty_2ay_plot_path = folder_dirty / 'dirty_tttr2xfcs_delete_1comp-alphafloat_to1000_53of400_plot.csv'
           dirty_2by_plot_path = folder_dirty / 'dirty_multipletau_delete_1comp-alphafloat_to1000_53of400_plot.csv'
           dirty_3ay_plot_path = folder_dirty / 'dirty_tttr2xfcs_delete-and-shift_1comp-alphafloat_to1000_53of400_plot.csv'
           dirty_3by_plot_path = folder_dirty / 'dirty_multipletau_delete-and-shift_1comp-alphafloat_to1000_53of400_plot.csv'
           dirty_4y_plot_path = folder_dirty / 'dirty_tttr2xfcs_weight-1-pred_1comp-alphafloat_to1000_53of400_plot.csv'
           dirty_5y_plot_path = folder_dirty / 'dirty_tttr2xfcs_weight-random_1comp-alphafloat_to1000_53of400_plot.csv'
    
           # dirty plot, from other experiments, alphafix
           dirty_6x_plot_path = folder_dirty_w0 / 'dirty_tttr2xfcs_weight-0_1comp-alphafix_to1000_173of400_plot.csv'
           dirty_7x_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.2_1comp-alphafix_to1000_79of400_plot.csv'
           dirty_8x_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.4_1comp-alphafix_to1000_79of400_plot.csv'
           dirty_9x_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.6_1comp-alphafix_to1000_79of400_plot.csv'
           dirty_10x_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.8_1comp-alphafix_to1000_79of400_plot.csv'
    
           # dirty plot, from other experiments, alphafloat
           dirty_6y_plot_path = folder_dirty_w0 / 'dirty_tttr2xfcs_weight-0_1comp-alphafloat_to1000_173of400_plot.csv'
           dirty_7y_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.2_1comp-alphafloat_to1000_79of400_plot.csv'
           dirty_8y_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.4_1comp-alphafloat_to1000_79of400_plot.csv'
           dirty_9y_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.6_1comp-alphafloat_to1000_79of400_plot.csv'
           dirty_10y_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.8_1comp-alphafloat_to1000_79of400_plot.csv'
    
    
           # clean params, alphafix
           clean_1ax_param = pd.read_csv(clean_1ax_param_path, sep=',').assign(
               fit_with=54*['alpha=1',], correlator=54*['tttr2xfcs',],
               artifact=54*['clean',], correction=54*['no correction',])
           clean_1bx_param = pd.read_csv(clean_1bx_param_path, sep=',').assign(
               fit_with=54*['alpha=1',], correlator=54*['multipletau',],
               artifact=54*['clean',], correction=54*['no correction',])
           clean_2ax_param = pd.read_csv(clean_2ax_param_path, sep=',').assign(
               fit_with=54*['alpha=1',], correlator=54*['tttr2xfcs',],
               artifact=54*['clean',], correction=54*['delete',])
           clean_2bx_param = pd.read_csv(clean_2bx_param_path, sep=',').assign(
               fit_with=54*['alpha=1',], correlator=54*['multipletau',],
               artifact=54*['clean',], correction=54*['delete',])
           clean_3ax_param = pd.read_csv(clean_3ax_param_path, sep=',').assign(
               fit_with=54*['alpha=1',], correlator=54*['tttr2xfcs',],
               artifact=54*['clean',], correction=54*['delete and shift',])
           clean_3bx_param = pd.read_csv(clean_3bx_param_path, sep=',').assign(
               fit_with=54*['alpha=1',], correlator=54*['multipletau',],
               artifact=54*['clean',], correction=54*['delete and shift',])
           clean_4x_param =  pd.read_csv(clean_4x_param_path, sep=',').assign(
               fit_with=54*['alpha=1',], correlator=54*['tttr2xfcs',],
               artifact=54*['clean',], correction=54*['weight=1-pred',])
           clean_5x_param =  pd.read_csv(clean_5x_param_path, sep=',').assign(
               fit_with=54*['alpha=1',], correlator=54*['tttr2xfcs',],
               artifact=54*['clean',], correction=54*['weight=random',])
    
           # clean params, alphafloat
           clean_1ay_param = pd.read_csv(clean_1ay_param_path, sep=',').assign(
               fit_with=54*['alpha=float',], correlator=54*['tttr2xfcs',],
               artifact=54*['clean',], correction=54*['no correction',])
           clean_1by_param = pd.read_csv(clean_1by_param_path, sep=',').assign(
               fit_with=54*['alpha=float',], correlator=54*['multipletau',],
               artifact=54*['clean',], correction=54*['no correction',])
           clean_2ay_param = pd.read_csv(clean_2ay_param_path, sep=',').assign(
               fit_with=54*['alpha=float',], correlator=54*['tttr2xfcs',],
               artifact=54*['clean',], correction=54*['delete',])
           clean_2by_param = pd.read_csv(clean_2by_param_path, sep=',').assign(
               fit_with=54*['alpha=float',], correlator=54*['multipletau',],
               artifact=54*['clean',], correction=54*['delete',])
           clean_3ay_param = pd.read_csv(clean_3ay_param_path, sep=',').assign(
               fit_with=54*['alpha=float',], correlator=54*['tttr2xfcs',],
               artifact=54*['clean',], correction=54*['delete and shift',])
           clean_3by_param = pd.read_csv(clean_3by_param_path, sep=',').assign(
               fit_with=54*['alpha=float',], correlator=54*['multipletau',],
               artifact=54*['clean',], correction=54*['delete and shift',])
           clean_4y_param =  pd.read_csv(clean_4y_param_path, sep=',').assign(
               fit_with=54*['alpha=float',], correlator=54*['tttr2xfcs',],
               artifact=54*['clean',], correction=54*['weight=1-pred',])
           clean_5y_param =  pd.read_csv(clean_5y_param_path, sep=',').assign(
               fit_with=54*['alpha=float',], correlator=54*['tttr2xfcs',],
               artifact=54*['clean',], correction=54*['weight=random',])
    
           # clean params, from other experiments, alphafix
           clean_6x_param =  pd.read_csv(clean_6x_param_path, sep=',').assign(
               fit_with=229*['alpha=1',], correlator=229*['tttr2xfcs',],
               artifact=229*['clean',], correction=229*['weight=0',])
           clean_7x_param =  pd.read_csv(clean_7x_param_path, sep=',').assign(
               fit_with=119*['alpha=1',], correlator=119*['tttr2xfcs',],
               artifact=119*['clean',], correction=119*['weight=0.2',])
           clean_8x_param =  pd.read_csv(clean_8x_param_path, sep=',').assign(
               fit_with=119*['alpha=1',], correlator=119*['tttr2xfcs',],
               artifact=119*['clean',], correction=119*['weight=0.4',])
           clean_9x_param =  pd.read_csv(clean_9x_param_path, sep=',').assign(
               fit_with=119*['alpha=1',], correlator=119*['tttr2xfcs',],
               artifact=119*['clean',], correction=119*['weight=0.6',])
           clean_10x_param = pd.read_csv(clean_10x_param_path, sep=',').assign(
               fit_with=119*['alpha=1',], correlator=119*['tttr2xfcs',],
               artifact=119*['clean',], correction=119*['weight=0.8',])
    
           # clean params, from other experiments, alphafloat
           clean_6y_param =  pd.read_csv(clean_6y_param_path, sep=',').assign(
               fit_with=229*['alpha=float',], correlator=229*['tttr2xfcs',],
               artifact=229*['clean',], correction=229*['weight=0',])
           clean_7y_param =  pd.read_csv(clean_7y_param_path, sep=',').assign(
               fit_with=119*['alpha=float',], correlator=119*['tttr2xfcs',],
               artifact=119*['clean',], correction=119*['weight=0.2',])
           clean_8y_param =  pd.read_csv(clean_8y_param_path, sep=',').assign(
               fit_with=119*['alpha=float',], correlator=119*['tttr2xfcs',],
               artifact=119*['clean',], correction=119*['weight=0.4',])
           clean_9y_param =  pd.read_csv(clean_9y_param_path, sep=',').assign(
               fit_with=119*['alpha=float',], correlator=119*['tttr2xfcs',],
               artifact=119*['clean',], correction=119*['weight=0.6',])
           clean_10y_param = pd.read_csv(clean_10y_param_path, sep=',').assign(
               fit_with=119*['alpha=float',], correlator=119*['tttr2xfcs',],
               artifact=119*['clean',], correction=119*['weight=0.8',])
    
           # dirty params, alphafix
           dirty_1ax_param = pd.read_csv(dirty_1ax_param_path, sep=',').assign(
               fit_with=53*['alpha=1',], correlator=53*['tttr2xfcs',],
               artifact=53*['dirty',], correction=53*['no correction',])
           dirty_1bx_param = pd.read_csv(dirty_1bx_param_path, sep=',').assign(
               fit_with=53*['alpha=1',], correlator=53*['multipletau',],
               artifact=53*['dirty',], correction=53*['no correction',])
           dirty_2ax_param = pd.read_csv(dirty_2ax_param_path, sep=',').assign(
               fit_with=53*['alpha=1',], correlator=53*['tttr2xfcs',],
               artifact=53*['dirty',], correction=53*['delete',])
           dirty_2bx_param = pd.read_csv(dirty_2bx_param_path, sep=',').assign(
               fit_with=53*['alpha=1',], correlator=53*['multipletau',],
               artifact=53*['dirty',], correction=53*['delete',])
           dirty_3ax_param = pd.read_csv(dirty_3ax_param_path, sep=',').assign(
               fit_with=53*['alpha=1',], correlator=53*['tttr2xfcs',],
               artifact=53*['dirty',], correction=53*['delete and shift',])
           dirty_3bx_param = pd.read_csv(dirty_3bx_param_path, sep=',').assign(
               fit_with=53*['alpha=1',], correlator=53*['multipletau',],
               artifact=53*['dirty',], correction=53*['delete and shift',])
           dirty_4x_param =  pd.read_csv(dirty_4x_param_path, sep=',').assign(
               fit_with=53*['alpha=1',], correlator=53*['tttr2xfcs',],
               artifact=53*['dirty',], correction=53*['weight=1-pred',])
           dirty_5x_param =  pd.read_csv(dirty_5x_param_path, sep=',').assign(
               fit_with=53*['alpha=1',], correlator=53*['tttr2xfcs',],
               artifact=53*['dirty',], correction=53*['weight=random',])
    
           # dirty params, alphafloat
           dirty_1ay_param = pd.read_csv(dirty_1ay_param_path, sep=',').assign(
               fit_with=53*['alpha=float',], correlator=53*['tttr2xfcs',],
               artifact=53*['dirty',], correction=53*['no correction',])
           dirty_1by_param = pd.read_csv(dirty_1by_param_path, sep=',').assign(
               fit_with=53*['alpha=float',], correlator=53*['multipletau',],
               artifact=53*['dirty',], correction=53*['no correction',])
           dirty_2ay_param = pd.read_csv(dirty_2ay_param_path, sep=',').assign(
               fit_with=53*['alpha=float',], correlator=53*['tttr2xfcs',],
               artifact=53*['dirty',], correction=53*['delete',])
           dirty_2by_param = pd.read_csv(dirty_2by_param_path, sep=',').assign(
               fit_with=53*['alpha=float',], correlator=53*['multipletau',],
               artifact=53*['dirty',], correction=53*['delete',])
           dirty_3ay_param = pd.read_csv(dirty_3ay_param_path, sep=',').assign(
               fit_with=53*['alpha=float',], correlator=53*['tttr2xfcs',],
               artifact=53*['dirty',], correction=53*['delete and shift',])
           dirty_3by_param = pd.read_csv(dirty_3by_param_path, sep=',').assign(
               fit_with=53*['alpha=float',], correlator=53*['multipletau',],
               artifact=53*['dirty',], correction=53*['delete and shift',])
           dirty_4y_param =  pd.read_csv(dirty_4y_param_path, sep=',').assign(
               fit_with=53*['alpha=float',], correlator=53*['tttr2xfcs',],
               artifact=53*['dirty',], correction=53*['weight=1-pred',])
           dirty_5y_param =  pd.read_csv(dirty_5y_param_path, sep=',').assign(
               fit_with=53*['alpha=float',], correlator=53*['tttr2xfcs',],
               artifact=53*['dirty',], correction=53*['weight=random',])
    
           # dirty params, from other experiments, alphafix
           dirty_6x_param =  pd.read_csv(dirty_6x_param_path, sep=',').assign(
               fit_with=173*['alpha=1',], correlator=173*['tttr2xfcs',],
               artifact=173*['dirty',], correction=173*['weight=0',])
           dirty_7x_param =  pd.read_csv(dirty_7x_param_path, sep=',').assign(
               fit_with=79*['alpha=1',], correlator=79*['tttr2xfcs',],
               artifact=79*['dirty',], correction=79*['weight=0.2',])
           dirty_8x_param =  pd.read_csv(dirty_8x_param_path, sep=',').assign(
               fit_with=79*['alpha=1',], correlator=79*['tttr2xfcs',],
               artifact=79*['dirty',], correction=79*['weight=0.4',])
           dirty_9x_param =  pd.read_csv(dirty_9x_param_path, sep=',').assign(
               fit_with=79*['alpha=1',], correlator=79*['tttr2xfcs',],
               artifact=79*['dirty',], correction=79*['weight=0.6',])
           dirty_10x_param = pd.read_csv(dirty_10x_param_path, sep=',').assign(
               fit_with=79*['alpha=1',], correlator=79*['tttr2xfcs',],
               artifact=79*['dirty',], correction=79*['weight=0.8',])
    
           # dirty params, from other experiments, alphafloat
           dirty_6y_param =  pd.read_csv(dirty_6y_param_path, sep=',').assign(
               fit_with=173*['alpha=float',], correlator=173*['tttr2xfcs',],
               artifact=173*['dirty',], correction=173*['weight=0',])
           dirty_7y_param =  pd.read_csv(dirty_7y_param_path, sep=',').assign(
               fit_with=79*['alpha=float',], correlator=79*['tttr2xfcs',],
               artifact=79*['dirty',], correction=79*['weight=0.2',])
           dirty_8y_param =  pd.read_csv(dirty_8y_param_path, sep=',').assign(
               fit_with=79*['alpha=float',], correlator=79*['tttr2xfcs',],
               artifact=79*['dirty',], correction=79*['weight=0.4',])
           dirty_9y_param =  pd.read_csv(dirty_9y_param_path, sep=',').assign(
               fit_with=79*['alpha=float',], correlator=79*['tttr2xfcs',],
               artifact=79*['dirty',], correction=79*['weight=0.6',])
           dirty_10y_param = pd.read_csv(dirty_10y_param_path, sep=',').assign(
               fit_with=79*['alpha=float',], correlator=79*['tttr2xfcs',],
               artifact=79*['dirty',], correction=79*['weight=0.8',])
    
           all_param = pd.concat([clean_1ax_param, clean_1bx_param, clean_2ax_param,
                                  clean_2bx_param, clean_3ax_param, clean_3bx_param,
                                  clean_4x_param, clean_5x_param, clean_6x_param,
                                  clean_7x_param, clean_8x_param, clean_9x_param,
                                  clean_10x_param, clean_1ay_param, clean_1by_param,
                                  clean_2ay_param, clean_2by_param, clean_3ay_param,
                                  clean_3by_param, clean_4y_param, clean_5y_param,
                                  clean_6y_param, clean_7y_param, clean_8y_param,
                                  clean_9y_param, clean_10y_param, dirty_1ax_param,
                                  dirty_1bx_param, dirty_2ax_param, dirty_2bx_param,
                                  dirty_3ax_param, dirty_3bx_param, dirty_4x_param,
                                  dirty_5x_param, dirty_6x_param, dirty_7x_param,
                                  dirty_8x_param, dirty_9x_param, dirty_10x_param,
                                  dirty_1ay_param, dirty_1by_param, dirty_2ay_param,
                                  dirty_2by_param, dirty_3ay_param, dirty_3by_param,
                                  dirty_4y_param, dirty_5y_param, dirty_6y_param,
                                  dirty_7y_param, dirty_8y_param, dirty_9y_param,
                                  dirty_10y_param], ignore_index=True)
    
           all_param["correlator-fit_with"] = all_param[["correlator", "fit_with"]].agg(' - '.join, axis=1)
           all_param
    
      nameofplot masterfile parentname parentuqid time of fit Diffeq Diffspecies Tripleteq Tripletspecies Dimen stdev(AR1) alpha1 stdev(alpha1) N (mom) bri (kHz) fitwith correlator artifact correction correlator-fitwith
    0 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4881… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 1.000000 NaN 72.053415 4.794626 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1
    1 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 1.000000 NaN 73.936945 4.666217 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1
    2 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 1.000000 NaN 70.721472 4.901863 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1
    3 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 1.000000 NaN 72.151740 4.797506 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1
    4 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4883… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 1.000000 NaN 72.730578 4.762291 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1
    4095 2022-01-26tttr2xfcswithweightsCH2BIN1wei Not known weight0.8DiO LUV 10uM in 20 nM AF488247T2974s1 NaN 13 February 2022 18:58:28 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 0.500000 NaN 8.066484 61.800612 alpha=float tttr2xfcs dirty weight=0.8 tttr2xfcs - alpha=float
    4096 2022-01-26tttr2xfcswithweightsCH2BIN1wei Not known weight0.8DiO LUV 10uM in 20 nM AF488248T2986s1 NaN 13 February 2022 18:58:28 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 0.594970 NaN 4.674732 113.075760 alpha=float tttr2xfcs dirty weight=0.8 tttr2xfcs - alpha=float
    4097 2022-01-26tttr2xfcswithweightsCH2BIN1wei Not known weight0.8DiO LUV 10uM in 20 nM AF488291T3505s1 NaN 13 February 2022 18:58:28 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 0.791023 NaN 3.326365 172.746385 alpha=float tttr2xfcs dirty weight=0.8 tttr2xfcs - alpha=float
    4098 2022-01-26tttr2xfcswithweightsCH2BIN1wei Not known weight0.8DiO LUV 10uM in 20 nM AF488293T3529s1 NaN 13 February 2022 18:58:28 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 0.500000 NaN 9.386688 53.060101 alpha=float tttr2xfcs dirty weight=0.8 tttr2xfcs - alpha=float
    4099 2022-01-26tttr2xfcswithweightsCH2BIN1wei Not known weight0.8DiO LUV 10uM in 20 nM AF488294T3541s1 NaN 13 February 2022 18:58:28 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 0.500000 NaN 6.441874 83.167622 alpha=float tttr2xfcs dirty weight=0.8 tttr2xfcs - alpha=float

    4100 rows × 33 columns

  • let’s plot all transit times for each correction method and parameters
           g = sns.FacetGrid(data=all_param,
                             row='artifact',
                             sharey=True,
                             sharex=True,
                             height=5,
                             aspect=2,
                             legend_out=True)
           g.map_dataframe(sns.boxplot,
                 y='txy1',
                 x='correction',
                 hue="correlator-fit_with",
                 palette='colorblind',
                 showfliers=False)
           g.add_legend(title='Correlator and\nfit parameter')
           g.map_dataframe(sns.stripplot,
                 y='txy1',
                 x='correction',
                 hue="correlator-fit_with",
                 dodge=True,
                 palette=sns.color_palette(['0.3']),
                 size=4,
                 jitter=0.2)
           g.tight_layout()
           g.fig.suptitle('AlexaFluor488 (top) vs AlexaFluor488 + Dio LUVs (bottom)',
                           y=1.03, size=20)
           for axes in g.axes.flat:
                _ = axes.set_xticklabels(axes.get_xticklabels(), rotation=45)
           plt.setp(g.axes, yscale='log', xlabel='correction method',
                    ylabel=r'transit time $\tau_{D}$ (log)')
           plt.show()
    
  • we’ll use the more concise seaborn.catplot for plotting:
                 g = sns.catplot(data=all_param,
                                 y='txy1',
                                 x='correction',
                                 hue='correlator-fit_with',
                                 row='artifact',
                                 sharey=True,
                                 height=5,
                                 aspect=2,
                                 legend_out=True,
                                 kind='boxen',
                                 showfliers=False)
                 g.map_dataframe(sns.stripplot,
                       y='txy1',
                       x='correction',
                       hue="correlator-fit_with",
                       dodge=True,
                       palette=sns.color_palette(['0.3']),
                       size=4,
                       jitter=0.2)
                 g.tight_layout()
                 g.fig.suptitle('AlexaFluor488 (top) vs AlexaFluor488 + Dio LUVs (bottom)',
                                y=1.03, size=20)
                 for axes in g.axes.flat:
                      _ = axes.set_xticklabels(axes.get_xticklabels(), rotation=45)
                 plt.setp(g.axes, yscale='log', xlabel='correction method',
                          ylabel=r'transit time $\tau_{D}$ (log)')
                 plt.setp(g.legend, title='Correlator and\nfit parameter')
                 plt.show()
    

    analysis3-all-param.png

  • for sake of simplicity, add a plot of only no correction vs delete and shift:
           data = all_param.loc[all_param['correction'].isin(['no correction', 'delete and shift'])]
           display(data)
           g = sns.catplot(data=data,
                           y='txy1',
                           x='correction',
                           hue='correlator-fit_with',
                           col='artifact',
                           sharey=True,
                           height=5,
                           aspect=1,
                           legend_out=True,
                           kind='boxen',
                           showfliers=False)
           g.map_dataframe(sns.stripplot,
                 y='txy1',
                 x='correction',
                 hue="correlator-fit_with",
                 dodge=True,
                 palette=sns.color_palette(['0.3']),
                 size=4,
                 jitter=0.2)
           g.tight_layout()
           g.fig.suptitle('AlexaFluor488 (left) vs AlexaFluor488 + Dio LUVs (right)', y=1.03, size=20)
           for axes in g.axes.flat:
                _ = axes.set_xticklabels(axes.get_xticklabels(), rotation=45)
           plt.setp(g.axes, yscale='log', xlabel='correction method',
                    ylabel=r'transit time $\tau_{D}$ (log)')
           plt.setp(g.legend, title='Correlator and\nfit parameter')
           plt.show()
    
    
      nameofplot masterfile parentname parentuqid time of fit Diffeq Diffspecies Tripleteq Tripletspecies Dimen stdev(AR1) alpha1 stdev(alpha1) N (mom) bri (kHz) fitwith correlator artifact correction correlator-fitwith
    0 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4881… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 1.000000 NaN 72.053415 4.794626 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1
    1 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 1.000000 NaN 73.936945 4.666217 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1
    2 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 1.000000 NaN 70.721472 4.901863 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1
    3 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 1.000000 NaN 72.151740 4.797506 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1
    4 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4883… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 1.000000 NaN 72.730578 4.762291 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1
    3500 2022-02-10multipletauCH2BIN0dot001usDiO L… Not known multipletau NaN 12 February 2022 21:01:19 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 0.500000 NaN -9.807292 -45.831485 alpha=float multipletau dirty delete and shift multipletau - alpha=float
    3501 2022-02-10multipletauCH2BIN0dot001usDiO L… Not known multipletau NaN 12 February 2022 21:01:19 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 0.500000 NaN -9.508777 -50.024738 alpha=float multipletau dirty delete and shift multipletau - alpha=float
    3502 2022-02-10multipletauCH2BIN0dot001usDiO L… Not known multipletau NaN 12 February 2022 21:01:19 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 0.647205 NaN -9.413903 -47.210210 alpha=float multipletau dirty delete and shift multipletau - alpha=float
    3503 2022-02-10multipletauCH2BIN0dot001usDiO L… Not known multipletau NaN 12 February 2022 21:01:19 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 0.500000 NaN -9.666384 -50.652535 alpha=float multipletau dirty delete and shift multipletau - alpha=float
    3504 2022-02-10multipletauCH2BIN0dot001usDiO L… Not known multipletau NaN 12 February 2022 21:01:19 Equation 1B 1 Triplet Eq 2A 1 NaN NaN 0.500000 NaN -9.805858 -48.478584 alpha=float multipletau dirty delete and shift multipletau - alpha=float

    856 rows × 33 columns

    analysis3-nocorr-vs-delete-and-shift.png

  • let’s save the DataFrame used for plotting so that re-using it is simpler:
           all_param.to_csv('data/exp-220120-correlate-ptu/2022-02-13_all-params.csv')
    
  • We saw above that the correction methods lead to quite different results regarding the transit time outcomes. The computation of the transit times depends on:
    1. the artifact prediction on the time trace (and subsequent correction of photons)
    2. the correlation of the photon arrival times (or the binned timetrace)
    3. the fitting of the correlation
  • let’s have a deeper look in the correlations and fits, first load all the correlation and fit plots which were done in https://dwaithe.github.io/FCSfitJS/
           # clean plots, alphafix
           clean_1ax_plot = pd.read_csv(clean_1ax_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
           clean_1bx_plot = pd.read_csv(clean_1bx_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
           clean_2ax_plot = pd.read_csv(clean_2ax_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
           clean_2bx_plot = pd.read_csv(clean_2bx_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
           clean_3ax_plot = pd.read_csv(clean_3ax_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
           clean_3bx_plot = pd.read_csv(clean_3bx_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
           clean_4x_plot =  pd.read_csv(clean_4x_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
           clean_5x_plot =  pd.read_csv(clean_5x_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
    
           # clean plots, alphafloat
           clean_1ay_plot = pd.read_csv(clean_1ay_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
           clean_1by_plot = pd.read_csv(clean_1by_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
           clean_2ay_plot = pd.read_csv(clean_2ay_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
           clean_2by_plot = pd.read_csv(clean_2by_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
           clean_3ay_plot = pd.read_csv(clean_3ay_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
           clean_3by_plot = pd.read_csv(clean_3by_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
           clean_4y_plot =  pd.read_csv(clean_4y_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
           clean_5y_plot =  pd.read_csv(clean_5y_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1)
    
           # clean plots, from other experiments, alphafix
           clean_6x_plot =  pd.read_csv(clean_6x_plot_path, sep=',', na_values=' ').drop('Unnamed: 459', axis=1)
           clean_7x_plot =  pd.read_csv(clean_7x_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1)
           clean_8x_plot =  pd.read_csv(clean_8x_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1)
           clean_9x_plot =  pd.read_csv(clean_9x_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1)
           clean_10x_plot = pd.read_csv(clean_10x_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1)
    
           # clean plots, from other experiments, alphafloat
           clean_6y_plot =  pd.read_csv(clean_6y_plot_path, sep=',', na_values=' ').drop('Unnamed: 459', axis=1)
           clean_7y_plot =  pd.read_csv(clean_7y_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1)
           clean_8y_plot =  pd.read_csv(clean_8y_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1)
           clean_9y_plot =  pd.read_csv(clean_9y_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1)
           clean_10y_plot = pd.read_csv(clean_10y_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1)
    
           # clean transit times, alphafix
           clean_1ax_tau = clean_1ax_plot['Time (ms)']
           clean_1bx_tau = clean_1bx_plot['Time (ms)']
           clean_2ax_tau = clean_2ax_plot['Time (ms)']
           clean_2bx_tau = clean_2bx_plot['Time (ms)']
           clean_3ax_tau = clean_3ax_plot['Time (ms)']
           clean_3bx_tau = clean_3bx_plot['Time (ms)']
           clean_4x_tau =  clean_4x_plot['Time (ms)']
           clean_5x_tau =  clean_5x_plot['Time (ms)']
    
           # clean transit times, alphafloat
           clean_1ay_tau = clean_1ay_plot['Time (ms)']
           clean_1by_tau = clean_1by_plot['Time (ms)']
           clean_2ay_tau = clean_2ay_plot['Time (ms)']
           clean_2by_tau = clean_2by_plot['Time (ms)']
           clean_3ay_tau = clean_3ay_plot['Time (ms)']
           clean_3by_tau = clean_3by_plot['Time (ms)']
           clean_4y_tau =  clean_4y_plot['Time (ms)']
           clean_5y_tau =  clean_5y_plot['Time (ms)']
    
           # clean transit times, from other experiments, alphafix
           clean_6x_tau =  clean_6x_plot['Time (ms)']
           clean_7x_tau =  clean_7x_plot['Time (ms)']
           clean_8x_tau =  clean_8x_plot['Time (ms)']
           clean_9x_tau =  clean_9x_plot['Time (ms)']
           clean_10x_tau = clean_10x_plot['Time (ms)']
    
           # clean transit times, from other experiments, alphafloat
           clean_6y_tau =  clean_6y_plot['Time (ms)']
           clean_7y_tau =  clean_7y_plot['Time (ms)']
           clean_8y_tau =  clean_8y_plot['Time (ms)']
           clean_9y_tau =  clean_9y_plot['Time (ms)']
           clean_10y_tau = clean_10y_plot['Time (ms)']
    
           # clean correlations, alphafix
           clean_1ax_corr = clean_1ax_plot.iloc[:, 1:7:2]
           clean_1bx_corr = clean_1bx_plot.iloc[:, 1:7:2]
           clean_2ax_corr = clean_2ax_plot.iloc[:, 1:7:2]
           clean_2bx_corr = clean_2bx_plot.iloc[:, 1:7:2]
           clean_3ax_corr = clean_3ax_plot.iloc[:, 1:7:2]
           clean_3bx_corr = clean_3bx_plot.iloc[:, 1:7:2]
           clean_4x_corr =  clean_4x_plot.iloc[:, 1:7:2]
           clean_5x_corr =  clean_5x_plot.iloc[:, 1:7:2]
    
           # clean correlations, alphafloat
           clean_1ay_corr = clean_1ay_plot.iloc[:, 1:7:2]
           clean_1by_corr = clean_1by_plot.iloc[:, 1:7:2]
           clean_2ay_corr = clean_2ay_plot.iloc[:, 1:7:2]
           clean_2by_corr = clean_2by_plot.iloc[:, 1:7:2]
           clean_3ay_corr = clean_3ay_plot.iloc[:, 1:7:2]
           clean_3by_corr = clean_3by_plot.iloc[:, 1:7:2]
           clean_4y_corr =  clean_4y_plot.iloc[:, 1:7:2]
           clean_5y_corr =  clean_5y_plot.iloc[:, 1:7:2]
    
           # clean correlations, from other experiments, alphafix
           clean_6x_corr =  clean_6x_plot.iloc[:, 1:7:2]
           clean_7x_corr =  clean_7x_plot.iloc[:, 1:7:2]
           clean_8x_corr =  clean_8x_plot.iloc[:, 1:7:2]
           clean_9x_corr =  clean_9x_plot.iloc[:, 1:7:2]
           clean_10x_corr = clean_10x_plot.iloc[:, 1:7:2]
    
           # clean correlations, from other experiments, alphafloat
           clean_6y_corr =  clean_6y_plot.iloc[:, 1:7:2]
           clean_7y_corr =  clean_7y_plot.iloc[:, 1:7:2]
           clean_8y_corr =  clean_8y_plot.iloc[:, 1:7:2]
           clean_9y_corr =  clean_9y_plot.iloc[:, 1:7:2]
           clean_10y_corr = clean_10y_plot.iloc[:, 1:7:2]
    
           # clean fits, alphafix
           clean_1ax_fit = clean_1ax_plot.iloc[:, 2:7:2]
           clean_1bx_fit = clean_1bx_plot.iloc[:, 2:7:2]
           clean_2ax_fit = clean_2ax_plot.iloc[:, 2:7:2]
           clean_2bx_fit = clean_2bx_plot.iloc[:, 2:7:2]
           clean_3ax_fit = clean_3ax_plot.iloc[:, 2:7:2]
           clean_3bx_fit = clean_3bx_plot.iloc[:, 2:7:2]
           clean_4x_fit =  clean_4x_plot.iloc[:, 2:7:2]
           clean_5x_fit =  clean_5x_plot.iloc[:, 2:7:2]
    
           # clean fits, alphafloat
           clean_1ay_fit = clean_1ay_plot.iloc[:, 2:7:2]
           clean_1by_fit = clean_1by_plot.iloc[:, 2:7:2]
           clean_2ay_fit = clean_2ay_plot.iloc[:, 2:7:2]
           clean_2by_fit = clean_2by_plot.iloc[:, 2:7:2]
           clean_3ay_fit = clean_3ay_plot.iloc[:, 2:7:2]
           clean_3by_fit = clean_3by_plot.iloc[:, 2:7:2]
           clean_4y_fit =  clean_4y_plot.iloc[:, 2:7:2]
           clean_5y_fit =  clean_5y_plot.iloc[:, 2:7:2]
    
           # clean fits, from other experiments, alphafix
           clean_6x_fit =  clean_6x_plot.iloc[:, 2:7:2]
           clean_7x_fit =  clean_7x_plot.iloc[:, 2:7:2]
           clean_8x_fit =  clean_8x_plot.iloc[:, 2:7:2]
           clean_9x_fit =  clean_9x_plot.iloc[:, 2:7:2]
           clean_10x_fit = clean_10x_plot.iloc[:, 2:7:2]
    
           # clean fits, from other experiments, alphafloat
           clean_6y_fit =  clean_6y_plot.iloc[:, 2:7:2]
           clean_7y_fit =  clean_7y_plot.iloc[:, 2:7:2]
           clean_8y_fit =  clean_8y_plot.iloc[:, 2:7:2]
           clean_9y_fit =  clean_9y_plot.iloc[:, 2:7:2]
           clean_10y_fit = clean_10y_plot.iloc[:, 2:7:2]
    
           # dirty plots, alphafix
           dirty_1ax_plot = pd.read_csv(dirty_1ax_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
           dirty_1bx_plot = pd.read_csv(dirty_1bx_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
           dirty_2ax_plot = pd.read_csv(dirty_2ax_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
           dirty_2bx_plot = pd.read_csv(dirty_2bx_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
           dirty_3ax_plot = pd.read_csv(dirty_3ax_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
           dirty_3bx_plot = pd.read_csv(dirty_3bx_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
           dirty_4x_plot =  pd.read_csv(dirty_4x_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
           dirty_5x_plot =  pd.read_csv(dirty_5x_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
    
           # dirty plots, alphafloat
           dirty_1ay_plot = pd.read_csv(dirty_1ay_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
           dirty_1by_plot = pd.read_csv(dirty_1by_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
           dirty_2ay_plot = pd.read_csv(dirty_2ay_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
           dirty_2by_plot = pd.read_csv(dirty_2by_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
           dirty_3ay_plot = pd.read_csv(dirty_3ay_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
           dirty_3by_plot = pd.read_csv(dirty_3by_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
           dirty_4y_plot =  pd.read_csv(dirty_4y_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
           dirty_5y_plot =  pd.read_csv(dirty_5y_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1)
    
           # dirty plots, from other experiments, alphafix
           dirty_6x_plot =  pd.read_csv(dirty_6x_plot_path, sep=',', na_values=' ').drop('Unnamed: 347', axis=1)
           dirty_7x_plot =  pd.read_csv(dirty_7x_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1)
           dirty_8x_plot =  pd.read_csv(dirty_8x_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1)
           dirty_9x_plot =  pd.read_csv(dirty_9x_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1)
           dirty_10x_plot = pd.read_csv(dirty_10x_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1)
    
           # dirty plots, from other experiments, alphafloat
           dirty_6y_plot =  pd.read_csv(dirty_6y_plot_path, sep=',', na_values=' ').drop('Unnamed: 347', axis=1)
           dirty_7y_plot =  pd.read_csv(dirty_7y_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1)
           dirty_8y_plot =  pd.read_csv(dirty_8y_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1)
           dirty_9y_plot =  pd.read_csv(dirty_9y_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1)
           dirty_10y_plot = pd.read_csv(dirty_10y_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1)
    
           # dirty transit times, alphafix
           dirty_1ax_tau = dirty_1ax_plot['Time (ms)']
           dirty_1bx_tau = dirty_1bx_plot['Time (ms)']
           dirty_2ax_tau = dirty_2ax_plot['Time (ms)']
           dirty_2bx_tau = dirty_2bx_plot['Time (ms)']
           dirty_3ax_tau = dirty_3ax_plot['Time (ms)']
           dirty_3bx_tau = dirty_3bx_plot['Time (ms)']
           dirty_4x_tau =  dirty_4x_plot['Time (ms)']
           dirty_5x_tau =  dirty_5x_plot['Time (ms)']
    
           # dirty transit times, alphafloat
           dirty_1ay_tau = dirty_1ay_plot['Time (ms)']
           dirty_1by_tau = dirty_1by_plot['Time (ms)']
           dirty_2ay_tau = dirty_2ay_plot['Time (ms)']
           dirty_2by_tau = dirty_2by_plot['Time (ms)']
           dirty_3ay_tau = dirty_3ay_plot['Time (ms)']
           dirty_3by_tau = dirty_3by_plot['Time (ms)']
           dirty_4y_tau =  dirty_4y_plot['Time (ms)']
           dirty_5y_tau =  dirty_5y_plot['Time (ms)']
    
           # dirty transit times, from other experiments, alphafix
           dirty_6x_tau =  dirty_6x_plot['Time (ms)']
           dirty_7x_tau =  dirty_7x_plot['Time (ms)']
           dirty_8x_tau =  dirty_8x_plot['Time (ms)']
           dirty_9x_tau =  dirty_9x_plot['Time (ms)']
           dirty_10x_tau = dirty_10x_plot['Time (ms)']
    
           # dirty transit times, from other experiments, alphafloat
           dirty_6y_tau =  dirty_6y_plot['Time (ms)']
           dirty_7y_tau =  dirty_7y_plot['Time (ms)']
           dirty_8y_tau =  dirty_8y_plot['Time (ms)']
           dirty_9y_tau =  dirty_9y_plot['Time (ms)']
           dirty_10y_tau = dirty_10y_plot['Time (ms)']
    
           # dirty correlations, alphafix
           dirty_1ax_corr = dirty_1ax_plot.iloc[:, 1:7:2]
           dirty_1bx_corr = dirty_1bx_plot.iloc[:, 1:7:2]
           dirty_2ax_corr = dirty_2ax_plot.iloc[:, 1:7:2]
           dirty_2bx_corr = dirty_2bx_plot.iloc[:, 1:7:2]
           dirty_3ax_corr = dirty_3ax_plot.iloc[:, 1:7:2]
           dirty_3bx_corr = dirty_3bx_plot.iloc[:, 1:7:2]
           dirty_4x_corr =  dirty_4x_plot.iloc[:, 1:7:2]
           dirty_5x_corr =  dirty_5x_plot.iloc[:, 1:7:2]
    
           # dirty correlations, alphafloat
           dirty_1ay_corr = dirty_1ay_plot.iloc[:, 1:7:2]
           dirty_1by_corr = dirty_1by_plot.iloc[:, 1:7:2]
           dirty_2ay_corr = dirty_2ay_plot.iloc[:, 1:7:2]
           dirty_2by_corr = dirty_2by_plot.iloc[:, 1:7:2]
           dirty_3ay_corr = dirty_3ay_plot.iloc[:, 1:7:2]
           dirty_3by_corr = dirty_3by_plot.iloc[:, 1:7:2]
           dirty_4y_corr =  dirty_4y_plot.iloc[:, 1:7:2]
           dirty_5y_corr =  dirty_5y_plot.iloc[:, 1:7:2]
    
           # dirty correlations, from other experiments, alphafix
           dirty_6x_corr =  dirty_6x_plot.iloc[:, 1:7:2]
           dirty_7x_corr =  dirty_7x_plot.iloc[:, 1:7:2]
           dirty_8x_corr =  dirty_8x_plot.iloc[:, 1:7:2]
           dirty_9x_corr =  dirty_9x_plot.iloc[:, 1:7:2]
           dirty_10x_corr = dirty_10x_plot.iloc[:, 1:7:2]
    
           # dirty correlations, from other experiments, alphafloat
           dirty_6y_corr =  dirty_6y_plot.iloc[:, 1:7:2]
           dirty_7y_corr =  dirty_7y_plot.iloc[:, 1:7:2]
           dirty_8y_corr =  dirty_8y_plot.iloc[:, 1:7:2]
           dirty_9y_corr =  dirty_9y_plot.iloc[:, 1:7:2]
           dirty_10y_corr = dirty_10y_plot.iloc[:, 1:7:2]
    
           # dirty fits, alphafix
           dirty_1ax_fit = dirty_1ax_plot.iloc[:, 2:7:2]
           dirty_1bx_fit = dirty_1bx_plot.iloc[:, 2:7:2]
           dirty_2ax_fit = dirty_2ax_plot.iloc[:, 2:7:2]
           dirty_2bx_fit = dirty_2bx_plot.iloc[:, 2:7:2]
           dirty_3ax_fit = dirty_3ax_plot.iloc[:, 2:7:2]
           dirty_3bx_fit = dirty_3bx_plot.iloc[:, 2:7:2]
           dirty_4x_fit =  dirty_4x_plot.iloc[:, 2:7:2]
           dirty_5x_fit =  dirty_5x_plot.iloc[:, 2:7:2]
    
           # dirty fits, alphafloat
           dirty_1ay_fit = dirty_1ay_plot.iloc[:, 2:7:2]
           dirty_1by_fit = dirty_1by_plot.iloc[:, 2:7:2]
           dirty_2ay_fit = dirty_2ay_plot.iloc[:, 2:7:2]
           dirty_2by_fit = dirty_2by_plot.iloc[:, 2:7:2]
           dirty_3ay_fit = dirty_3ay_plot.iloc[:, 2:7:2]
           dirty_3by_fit = dirty_3by_plot.iloc[:, 2:7:2]
           dirty_4y_fit =  dirty_4y_plot.iloc[:, 2:7:2]
           dirty_5y_fit =  dirty_5y_plot.iloc[:, 2:7:2]
    
           # dirty fits, from other experiments, alphafix
           dirty_6x_fit =  dirty_6x_plot.iloc[:, 2:7:2]
           dirty_7x_fit =  dirty_7x_plot.iloc[:, 2:7:2]
           dirty_8x_fit =  dirty_8x_plot.iloc[:, 2:7:2]
           dirty_9x_fit =  dirty_9x_plot.iloc[:, 2:7:2]
           dirty_10x_fit = dirty_10x_plot.iloc[:, 2:7:2]
    
           # dirty fits, from other experiments, alphafloat
           dirty_6y_fit =  dirty_6y_plot.iloc[:, 2:7:2]
           dirty_7y_fit =  dirty_7y_plot.iloc[:, 2:7:2]
           dirty_8y_fit =  dirty_8y_plot.iloc[:, 2:7:2]
           dirty_9y_fit =  dirty_9y_plot.iloc[:, 2:7:2]
           dirty_10y_fit = dirty_10y_plot.iloc[:, 2:7:2]
    
           all_plot_clean = [{'tttr2xfcs' : {'alpha=1' : {'tau': clean_1ax_tau, 'corr': clean_1ax_corr, 'fit': clean_1ax_fit},
                                       'alpha=float' : {'tau': clean_1ay_tau, 'corr': clean_1ay_corr, 'fit': clean_1ay_fit}},
                        'multipletau': {'alpha=1' : {'tau': clean_1bx_tau, 'corr': clean_1bx_corr, 'fit': clean_1bx_fit},
                                        'alpha=float': {'tau': clean_1by_tau, 'corr': clean_1by_corr, 'fit': clean_1by_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': clean_2ax_tau, 'corr': clean_2ax_corr, 'fit': clean_2ax_fit},
                                       'alpha=float' : {'tau': clean_2ay_tau, 'corr': clean_2ay_corr, 'fit': clean_2ay_fit}},
                        'multipletau': {'alpha=1' : {'tau': clean_2bx_tau, 'corr': clean_2bx_corr, 'fit': clean_2bx_fit},
                                        'alpha=float': {'tau': clean_2by_tau, 'corr': clean_2by_corr, 'fit': clean_2by_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': clean_3ax_tau, 'corr': clean_3ax_corr, 'fit': clean_3ax_fit},
                                       'alpha=float' : {'tau': clean_3ay_tau, 'corr': clean_3ay_corr, 'fit': clean_3ay_fit}},
                        'multipletau': {'alpha=1' : {'tau': clean_3bx_tau, 'corr': clean_3bx_corr, 'fit': clean_3bx_fit},
                                        'alpha=float': {'tau': clean_3by_tau, 'corr': clean_3by_corr, 'fit': clean_3by_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': clean_4x_tau, 'corr': clean_4x_corr, 'fit': clean_4x_fit},
                                       'alpha=float' : {'tau': clean_4y_tau, 'corr': clean_4y_corr, 'fit': clean_4y_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': clean_5x_tau, 'corr': clean_5x_corr, 'fit': clean_5x_fit},
                                       'alpha=float' : {'tau': clean_5y_tau, 'corr': clean_5y_corr, 'fit': clean_5y_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': clean_6x_tau, 'corr': clean_6x_corr, 'fit': clean_6x_fit},
                                       'alpha=float' : {'tau': clean_6y_tau, 'corr': clean_6y_corr, 'fit': clean_6y_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': clean_7x_tau, 'corr': clean_7x_corr, 'fit': clean_7x_fit},
                                       'alpha=float' : {'tau': clean_7y_tau, 'corr': clean_7y_corr, 'fit': clean_7y_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': clean_8x_tau, 'corr': clean_8x_corr, 'fit': clean_8x_fit},
                                       'alpha=float' : {'tau': clean_8y_tau, 'corr': clean_8y_corr, 'fit': clean_8y_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': clean_9x_tau, 'corr': clean_9x_corr, 'fit': clean_9x_fit},
                                       'alpha=float' : {'tau': clean_9y_tau, 'corr': clean_9y_corr, 'fit': clean_9y_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': clean_10x_tau, 'corr': clean_10x_corr, 'fit': clean_10x_fit},
                                       'alpha=float' : {'tau': clean_10y_tau, 'corr': clean_10y_corr, 'fit': clean_10y_fit}}}]
           all_plot_dirty = [{'tttr2xfcs' : {'alpha=1' : {'tau': dirty_1ax_tau, 'corr': dirty_1ax_corr, 'fit': dirty_1ax_fit},
                                       'alpha=float' : {'tau': dirty_1ay_tau, 'corr': dirty_1ay_corr, 'fit': dirty_1ay_fit}},
                        'multipletau': {'alpha=1' : {'tau': dirty_1bx_tau, 'corr': dirty_1bx_corr, 'fit': dirty_1bx_fit},
                                        'alpha=float': {'tau': dirty_1by_tau, 'corr': dirty_1by_corr, 'fit': dirty_1by_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_2ax_tau, 'corr': dirty_2ax_corr, 'fit': dirty_2ax_fit},
                                       'alpha=float' : {'tau': dirty_2ay_tau, 'corr': dirty_2ay_corr, 'fit': dirty_2ay_fit}},
                        'multipletau': {'alpha=1' : {'tau': dirty_2bx_tau, 'corr': dirty_2bx_corr, 'fit': dirty_2bx_fit},
                                        'alpha=float': {'tau': dirty_2by_tau, 'corr': dirty_2by_corr, 'fit': dirty_2by_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_3ax_tau, 'corr': dirty_3ax_corr, 'fit': dirty_3ax_fit},
                                       'alpha=float' : {'tau': dirty_3ay_tau, 'corr': dirty_3ay_corr, 'fit': dirty_3ay_fit}},
                        'multipletau': {'alpha=1' : {'tau': dirty_3bx_tau, 'corr': dirty_3bx_corr, 'fit': dirty_3bx_fit},
                                        'alpha=float': {'tau': dirty_3by_tau, 'corr': dirty_3by_corr, 'fit': dirty_3by_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_4x_tau, 'corr': dirty_4x_corr, 'fit': dirty_4x_fit},
                                       'alpha=float' : {'tau': dirty_4y_tau, 'corr': dirty_4y_corr, 'fit': dirty_4y_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_5x_tau, 'corr': dirty_5x_corr, 'fit': dirty_5x_fit},
                                       'alpha=float' : {'tau': dirty_5y_tau, 'corr': dirty_5y_corr, 'fit': dirty_5y_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_6x_tau, 'corr': dirty_6x_corr, 'fit': dirty_6x_fit},
                                       'alpha=float' : {'tau': dirty_6y_tau, 'corr': dirty_6y_corr, 'fit': dirty_6y_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_7x_tau, 'corr': dirty_7x_corr, 'fit': dirty_7x_fit},
                                       'alpha=float' : {'tau': dirty_7y_tau, 'corr': dirty_7y_corr, 'fit': dirty_7y_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_8x_tau, 'corr': dirty_8x_corr, 'fit': dirty_8x_fit},
                                       'alpha=float' : {'tau': dirty_8y_tau, 'corr': dirty_8y_corr, 'fit': dirty_8y_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_9x_tau, 'corr': dirty_9x_corr, 'fit': dirty_9x_fit},
                                       'alpha=float' : {'tau': dirty_9y_tau, 'corr': dirty_9y_corr, 'fit': dirty_9y_fit}}},
                       {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_10x_tau, 'corr': dirty_10x_corr, 'fit': dirty_10x_fit},
                                       'alpha=float' : {'tau': dirty_10y_tau, 'corr': dirty_10y_corr, 'fit': dirty_10y_fit}}}]
           index = ['no correction', 'delete', 'delete and shift', 'w=1-pred', 'w=random', 'w=0', 'w=0.2', 'w=0.4', 'w=0.6', 'w=0.8']
    
    
  • now, let’s plot correlations and fits for all correction methods:
           fig = plt.figure(figsize=(12, 40))
           rows = len(index) + 3
           counter = 1
           palette_clean = [sns.color_palette()[0], sns.color_palette()[1], sns.color_palette()[2]]
           palette_dirty = [sns.color_palette()[3], sns.color_palette()[4], sns.color_palette()[5]]
           for i, correction_clean, correction_dirty in zip(index, all_plot_clean, all_plot_dirty):
               for (method_clean, fitplot_clean), (method_dirty, fitplot_dirty) in zip(correction_clean.items(), correction_dirty.items()):
                   for (fit_clean, plots_clean), (fit_dirty, plots_dirty) in zip(fitplot_clean.items(), fitplot_dirty.items()):
                       # clean
                       if fit_clean == 'alpha=1':
                           fit_color = 'r'
                       else:
                           fit_color= 'b'
                       ax = plt.subplot(rows, 4, counter)
                       ax.set_prop_cycle(color=palette_clean)
                       lines1 = plt.semilogx(plots_clean['tau'], plots_clean['corr'], '.')
                       plt.semilogx(plots_clean['tau'], plots_clean['fit'], f'{fit_color}-')
                       xmin = plots_clean['fit'].dropna().index[0]
                       xmax = plots_clean['fit'].dropna().index[-1]
                       xlims = [plots_clean['tau'][xmin] - 0.5*plots_clean['tau'][xmin], plots_clean['tau'][xmax]+0.5*plots_clean['tau'][xmax]]
                       ylims = [np.min(np.min(plots_clean['fit']))-0.01, np.max(np.max(plots_clean['fit']))+0.01]
                       plt.setp(ax, xlim=xlims, ylim=ylims, title=f'clean | {i}\n{method_clean} | {fit_clean}',
                                xlabel=r'$\tau$ (ms)', ylabel=r'Correlation G($\tau$)')
                       counter += 1
                       # dirty
                       ax = plt.subplot(rows, 4, counter)
                       ax.set_prop_cycle(color=palette_dirty)
                       lines2 = plt.semilogx(plots_dirty['tau'], plots_dirty['corr'], '.')
                       plt.semilogx(plots_dirty['tau'], plots_dirty['fit'], f'{fit_color}-')
                       xmin = plots_dirty['fit'].dropna().index[0]
                       xmax = plots_dirty['fit'].dropna().index[-1]
                       xlims = [plots_dirty['tau'][xmin] - 0.5*plots_dirty['tau'][xmin], plots_dirty['tau'][xmax]+0.5*plots_dirty['tau'][xmax]]
                       ylims = [np.min(np.min(plots_dirty['fit']))-0.01, np.max(np.max(plots_dirty['fit']))+0.01]
                       plt.setp(ax, xlim=xlims, ylim=ylims, title=f'dirty | {i}\n{method_dirty} | {fit_dirty}',
                                xlabel=r'$\tau$ (ms)', ylabel=r'Correlation G($\tau$)')
                       if counter < 3:
                           handles = lines1 + lines2
                           fig.legend(handles, ['20 nM AF48816_T182s_1', '20 nM AF48822_T254s_1', '20 nM AF48826_T302s_1',
                                                'DiO LUV 10uM in 20 nM AF4884_T39s_1', 'DiO LUV 10uM in 20 nM AF4887_T75s_1',
                                                'DiO LUV 10uM in 20 nM AF4889_T106s_1'],
                                      loc=9, ncol=2, bbox_to_anchor=(0.5, 0.98))
                       counter += 1
    
           fig.suptitle('AlexaFluor488 (clean) vs AlexaFluor488 + Dio LUVs (dirty)\n- all correlations and fits -',
                        size=20, y=1)
           plt.tight_layout(rect=(0, 0, 1, 0.98))
    

analysis3-all-plot.png

2.5.11 Analysis 4: show examples of all experimental traces

:header-args:jupyter-python: :session /jpy:localhost#8889:a37e524a-8134-4d8f-b24a-367acaf1bdd3

  • to interprete the correlations correctly, let’s plot the underlying experimental data.
           %cd ~/Programme/drmed-collections/data-from-Eggeling-group/brightbursts
    
    /home/lex/Programme/drmed-collections/data-from-Eggeling-group/brightbursts
    
           %cd /beegfs/ye53nis/drmed-git
    
    /beegfs/ye53nis/drmed-git
    
  • load modules
           import logging
           import os
           import sys
    
           import matplotlib.pyplot as plt
           import numpy as np
           import pandas as pd
           import seaborn as sns
    
           from pathlib import Path
           from pprint import pprint
           from tensorflow.keras.optimizers import Adam
           from mlflow.keras import load_model
    
           FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/'
           sys.path.append(FLUOTRACIFY_PATH)
           from fluotracify.applications import corr_fit_object as cfo
           from fluotracify.training import build_model as bm
    
           logging.basicConfig(filename="/beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-02-15_experiment-overview/exps.log",
                               filemode='w', format='%(asctime)s - %(message)s',
                               force=True,
                               level=logging.DEBUG)
           # sns.set_theme(style="whitegrid")
           sns.set()
    
    2022-02-17 19:45:03.282584: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2022-02-17 19:45:03.282645: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
  • first, we prepare our correction functions as we did before
           class ParameterClass():
               """Stores parameters for correlation """
               def __init__(self):
                   # Where the data is stored.
                   self.data = []
                   self.objectRef = []
                   self.subObjectRef = []
                   self.colors = ['blue', 'green', 'red', 'cyan', 'magenta',
                                  'yellow', 'black']
                   self.numOfLoaded = 0
                   # very fast from Ncasc ~ 14 onwards
                   self.NcascStart = 0
                   self.NcascEnd = 30  # 25
                   self.Nsub = 6  # 6
                   self.photonLifetimeBin = 10  # used for photon decay
                   self.photonCountBin = 1  # used for time series
    
           data_path = Path("/beegfs/ye53nis/data")
           output_path = "/beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-02-15_experiment-overview"
           logged_model = 'file:///beegfs/ye53nis/drmed-git/data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model'
           par_obj = ParameterClass()
    
           loaded_model = load_model(logged_model, compile=False)
           loaded_model.compile(loss=bm.binary_ce_dice_loss(),
                                optimizer=Adam(),
                                metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9]))
           bm.prepare_model(loaded_model, [2**14, 2**13, 2**12, 2**15, 2**13])
    
    2022-02-17 19:45:12.370211: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2022-02-17 19:45:12.370284: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
    2022-02-17 19:45:12.370324: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node305): /proc/driver/nvidia/version does not exist
    2022-02-17 19:45:12.370974: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    
  • look at first bright cluster artifacts folder: 1911DD_alexafluor+LUVs
    • clean = 20nM Alexa Fluor 488, a green-fluorescent dye, pH-insensitive, relatively bright and photostable. We expect a diffusion constant of 350-450 um2/s = 25-32us transit times
    • dirty = 20nM Alexa Fluor 488 + 10uM DiO LUV → 10uM of lipids, labelled with the dye DiO (also green) in the membrane. we expect there to be the fast fraction with 25-32us transit times as above and a slow fraction with a diffusion constant of 5 um2/s = 2250us transit time
      • LUV preparation method: extrusion (LUVET), detergent dialysis (DOV), reverse evaporation (REV) or ethanol injection? → extrusion through 100nm filter
      • large unilamellar vesicles prepared from large multilamellar vesicles (LMVs). Here they are 100nm in diameter or larger. Are stable on storage.
      • where is the dye?? In the membrane or inside the vesicle or both?? → in the membrane. We don’t expect to see the diffusion of DiO in the membrane, but rather the diffusion of the LUV itself, because the one in the membrane can not go in and out of the excitation volume
      • which fitting methods should we choose? → we should do 3D fitting with equation 1B, fix the AR1 (propert of microscope setup which converts between txy and tz) between 4.5 and 6, and alpha at 1 (no anomalous diffusion). We can also try 2 component fitting!
    • let’s plot traces, predictions, and correlations:
               path_clean = data_path / '1911DD_alexafluor488+LUVs/clean_subsample/'
               path_dirty = data_path / '1911DD_alexafluor488+LUVs/dirty_subsample/'
               files_clean = [path_clean / f for f in os.listdir(path_clean) if f.endswith('.ptu')]
               files_dirty = [path_dirty / f for f in os.listdir(path_dirty) if f.endswith('.ptu')]
               traces = pd.DataFrame()
               predtraces = pd.DataFrame()
               preds = pd.DataFrame()
               corrs = pd.DataFrame()
               mt_bin = 1e-3
      
      
               for myfile in (files_dirty):
                   ptufile = cfo.PicoObject(myfile, par_obj)
                   ptufile.predictTimeSeries(model=loaded_model,
                                             scaler='minmax')
                   mt_name = f'us_{ptufile.name}'
                   ptufile.getTimeSeries(timeseries_name=mt_name,
                                         photonCountBin=mt_bin)
                   ptufile.getPhotonCountingStats(name=mt_name)
                   ptufile.predictTimeSeries(model=loaded_model,
                                             scaler='minmax',
                                             name=mt_name)
                   for key in list(ptufile.trueTimeArr.keys()):
                       ptufile.get_autocorrelation(method='tttr2xfcs', name=key)
                   for key in list(ptufile.timeSeries.keys()):
                       for k, i in ptufile.timeSeries[key].items():
                           if "PREPRO" in k:
                               if "1.0" in k:
                                   predtraces = pd.concat([predtraces, pd.DataFrame(i, columns=[f'{key}_{k}'])],
                                                          axis=1)
                           elif "1.0" in k:
                               traces = pd.concat([traces, pd.DataFrame(i, columns=[f'{key}_{k}'])],
                                                  axis=1)
                               preds = pd.concat([preds, pd.DataFrame(data=ptufile.predictions[key][k],
                                                                      columns=[f'{key}_{k}'])], axis=1)
                           elif "0.001" in k:
                               ptufile.get_autocorrelation(method='multipletau', name=(key, k))
      
                   for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                       if m in list(ptufile.autoNorm.keys()):
                           for key, item in list(ptufile.autoNorm[m].items()):
                               ptufile.save_autocorrelation(name=key, method=m,
                                                            output_path=output_path)
               predtraces.to_csv(Path(output_path) / 'alexadirty_predtraces.csv')
               traces.to_csv(Path(output_path) / 'alexadirty_traces.csv')
               preds.to_csv(Path(output_path) / 'alexadirty_preds.csv')
      
      /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
        warnings.warn("Input dtype is not float; casting to np.float_!",
      /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
        warnings.warn("Input dtype is not float; casting to np.float_!",
      /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
        warnings.warn("Input dtype is not float; casting to np.float_!",
      
    • now I fitted the example traces using https://dwaithe.github.io/FCSfitJS/. Because of disk space issues, the .ptu files above are not available in this git repository. Rather, I saved out the traces, prediction traces and predictions and loaded them in, together with the correlations and fits:
               fit_dirty_mt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/dirty/alexadirty_multipletau_plot.csv',
                                              index_col=0, usecols=[0, 2, 4, 6], na_values=' ')
               fit_dirty_tt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/dirty/alexadirty_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 2, 4, 6], na_values=' ')
               fit_clean_mt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/clean/alexaclean_multipletau_plot.csv'
                                              , index_col=0, usecols=[0, 2, 4, 6], na_values=' ')
               fit_clean_tt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/clean/alexaclean_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 2, 4, 6], na_values=' ')
               corr_dirty_mt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/dirty/alexadirty_multipletau_plot.csv',
                                              index_col=0, usecols=[0, 1, 3, 5], na_values=' ')
               corr_dirty_tt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/dirty/alexadirty_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 1, 3, 5], na_values=' ')
               corr_clean_mt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/clean/alexaclean_multipletau_plot.csv'
                                              , index_col=0, usecols=[0, 1, 3, 5], na_values=' ')
               corr_clean_tt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/clean/alexaclean_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 1, 3, 5], na_values=' ')
      
               preds_dirty = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/dirty/alexadirty_preds.csv', index_col=0)
               predtraces_dirty = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/dirty/alexadirty_predtraces.csv', index_col=0)
               traces_dirty = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/dirty/alexadirty_traces.csv', index_col=0)
               preds_clean = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/clean/alexaclean_preds.csv', index_col=0)
               predtraces_clean = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/clean/alexaclean_predtraces.csv', index_col=0)
               traces_clean = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/clean/alexaclean_traces.csv', index_col=0)
               fit_clean_mt.columns
      
      Index(['2022-02-02_multipletau_CH2_BIN0dot001_us_20 nM AF4887_T74s_1_correlation-CH2_2 fitted model: ',
             '2022-02-02_multipletau_CH2_BIN0dot001_us_20 nM AF48896_T1142s_1_correlation-CH2_2 fitted model: ',
             '2022-02-02_multipletau_CH2_BIN0dot001_us_20 nM AF48897_T1160s_1_correlation-CH2_2 fitted model: '],
            dtype='object')
      
               plotdata = zip(traces_dirty.items(), traces_clean.items(), predtraces_dirty.items(),
                              predtraces_clean.items(), preds_dirty.items(), preds_clean.items(),
                              corr_dirty_mt.items(), corr_clean_mt.items(), corr_dirty_tt.items(),
                              corr_clean_tt.items(), fit_dirty_mt.items(), fit_clean_mt.items(),
                              fit_dirty_tt.items(), fit_clean_tt.items())
               fig = plt.figure(figsize=(16, 20))
               gs = fig.add_gridspec(12, 4)
               for i, ((td_n, td_v), (tc_n, tc_v), (_, ptd_v), (_, ptc_v), (_, pd_v),
                       (_, pc_v), (_, cdm_v), (_, ccm_v), (_, cdt_v), (_, cct_v),
                       (_, fdm_v), (_, fcm_v), (_, fdt_v), (_, fct_v)) in enumerate(plotdata):
                   print(i)
                   ax0 = fig.add_subplot(gs[i*4, 0:2])
                   sns.lineplot(ax=ax0, data=(tc_n, tc_v))
                   ax1 = fig.add_subplot(gs[i*4, 2:4])
                   sns.lineplot(ax=ax1, data=(td_n, td_v))
                   ax0.set(xlabel='time steps in ms', ylabel='photons')
                   ax1.set(xlabel='time steps in ms', ylabel='photons')
                   ax2 = fig.add_subplot(gs[i*4+1, 0:2], sharex=ax0)
                   sns.lineplot(ax=ax2, data=ptc_v, color=sns.color_palette()[0], legend=False)
                   sns.lineplot(ax=ax2, data=pc_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax3 = fig.add_subplot(gs[i*4+1, 2:4], sharex=ax1)
                   sns.lineplot(ax=ax3, data=ptd_v, legend=False)
                   sns.lineplot(ax=ax3, data=pd_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax2.set(xlabel='time steps in ms', ylabel='probability of artifact')
                   ax3.set(xlabel='time steps in ms', ylabel='probability of artifact')
                   ax4 = fig.add_subplot(gs[i*4+2:i*4+4, 0], title='multipletau w/ us bin')
                   sns.lineplot(ax=ax4, data=ccm_v, marker='.', legend=False)
                   sns.lineplot(ax=ax4, data=fcm_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax5 = fig.add_subplot(gs[i*4+2:i*4+4, 1], title='tttr2xfcs on arrival times')
                   sns.lineplot(ax=ax5, data=cct_v, marker='.', legend=False)
                   sns.lineplot(ax=ax5, data=fct_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax4.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)')
                   ax5.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)')
                   ax6 = fig.add_subplot(gs[i*4+2:i*4+4, 2], title='multipletau w/ us bin', sharey=ax4)
                   sns.lineplot(ax=ax6, data=cdm_v, marker='.', legend=False)
                   sns.lineplot(ax=ax6, data=fdm_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax7 = fig.add_subplot(gs[i*4+2:i*4+4, 3], title='tttr2xfcs on arrival times', sharey=ax5)
                   sns.lineplot(ax=ax7, data=cdt_v, marker='.', legend=False)
                   sns.lineplot(ax=ax7, data=fdt_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax6.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)')
                   ax7.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)')
               fig.suptitle('AlexaFluor488 (left) vs AF488 + DiO-LUVs (right)', size=20)
               gs.tight_layout(fig, rect=[0, 0, 1, 0.99])
      
      
    • the results: analysis4-1911DD-alexa-luvs.png
  • look at second bright cluster artifacts folder: 191111_Pex5_1
    • clean = Homo sapiens PEX5, labelled with eGFP
    • dirty = Trypanosoma brucei PEX5, labelled with eGFP
    • both measurements have 2 channels! → Pablo said that is because he didn’t know the microscope well → I can just use the channel with the higher count rates.
    • let’s plot traces, predictions, and correlations (see Details blocks):
               path_clean = data_path / '191111_Pex5_1/clean_3of10'
               path_dirty = data_path / '191111_Pex5_1/Tb-PEX5-eGFP_5uW_0.5ugml3_3of177'
               files_clean = [path_clean / f for f in os.listdir(path_clean) if f.endswith('.ptu')]
               files_dirty = [path_dirty / f for f in os.listdir(path_dirty) if f.endswith('.ptu')]
               traces = pd.DataFrame()
               predtraces = pd.DataFrame()
               preds = pd.DataFrame()
               corrs = pd.DataFrame()
               mt_bin = 1e-3
      
      
               for myfile in (files_dirty):
                   ptufile = cfo.PicoObject(myfile, par_obj)
                   # ptufile.predictTimeSeries(model=loaded_model,
                   #                           scaler='minmax')
                   mt_name = f'us_{ptufile.name}'
                   ptufile.getTimeSeries(timeseries_name=mt_name,
                                         photonCountBin=mt_bin)
                   ptufile.getPhotonCountingStats(name=mt_name)
                   # ptufile.predictTimeSeries(model=loaded_model,
                   #                           scaler='minmax',
                   #                           name=mt_name)
                   for key in list(ptufile.trueTimeArr.keys()):
                       ptufile.get_autocorrelation(method='tttr2xfcs', name=key)
                   for key in list(ptufile.timeSeries.keys()):
                       for k, i in ptufile.timeSeries[key].items():
                           if "PREPRO" in k:
                               if "1.0" in k:
                                   # predtraces = pd.concat([predtraces, pd.DataFrame(i, columns=[f'{key}_{k}'])],
                                   #                        axis=1)
                                   pass
                           elif "1.0" in k:
                               traces = pd.concat([traces, pd.DataFrame(i, columns=[f'{key}_{k}'])],
                                                  axis=1)
                               # preds = pd.concat([preds, pd.DataFrame(data=ptufile.predictions[key][k],
                               #                                        columns=[f'{key}_{k}'])], axis=1)
                           elif "0.001" in k:
                               ptufile.get_autocorrelation(method='multipletau', name=(key, k))
      
                   for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                       if m in list(ptufile.autoNorm.keys()):
                           for key, item in list(ptufile.autoNorm[m].items()):
                               ptufile.save_autocorrelation(name=key, method=m,
                                                            output_path=output_path)
               # predtraces.to_csv(Path(output_path) / 'pex2dirty_predtraces.csv')
               traces.to_csv(Path(output_path) / 'pex1dirty_traces.csv')
               # preds.to_csv(Path(output_path) / 'pex2dirty_preds.csv')
      
      /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
        warnings.warn("Input dtype is not float; casting to np.float_!",
      
               fit_dirty_mt = pd.read_csv(Path(output_path) / '191111_Pex5_1/dirty/pex1dirty_CH2_multipletau_plot.csv',
                                              index_col=0, usecols=[0, 2, 4, 6], na_values=' ')
               fit_dirty_tt = pd.read_csv(Path(output_path) / '191111_Pex5_1/dirty/pex1dirty_CH2_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 2, 4, 6], na_values=' ')
               fit_clean_mt = pd.read_csv(Path(output_path) / '191111_Pex5_1/clean/pex1clean_CH2_multipletau_plot.csv'
                                              , index_col=0, usecols=[0, 2, 4, 6], na_values=' ')
               fit_clean_tt = pd.read_csv(Path(output_path) / '191111_Pex5_1/clean/pex1clean_CH2_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 2, 4, 6], na_values=' ')
               corr_dirty_mt = pd.read_csv(Path(output_path) / '191111_Pex5_1/dirty/pex1dirty_CH2_multipletau_plot.csv',
                                              index_col=0, usecols=[0, 1, 3, 5], na_values=' ')
               corr_dirty_tt = pd.read_csv(Path(output_path) / '191111_Pex5_1/dirty/pex1dirty_CH2_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 1, 3, 5], na_values=' ')
               corr_clean_mt = pd.read_csv(Path(output_path) / '191111_Pex5_1/clean/pex1clean_CH2_multipletau_plot.csv'
                                              , index_col=0, usecols=[0, 1, 3, 5], na_values=' ')
               corr_clean_tt = pd.read_csv(Path(output_path) / '191111_Pex5_1/clean/pex1clean_CH2_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 1, 3, 5], na_values=' ')
      
               # preds_dirty = pd.read_csv(Path(output_path) / '191111_Pex5_1/dirty/pex1dirty_preds.csv', index_col=0)
               # predtraces_dirty = pd.read_csv(Path(output_path) / '191111_Pex5_1/dirty/pex1dirty_predtraces.csv', index_col=0)
               traces_dirty = pd.read_csv(Path(output_path) / '191111_Pex5_1/dirty/pex1dirty_traces.csv',
                                          index_col=0, usecols=[0, 2, 4, 6])
               # preds_clean = pd.read_csv(Path(output_path) / '191111_Pex5_1/clean/pex1clean_preds.csv', index_col=0)
               # predtraces_clean = pd.read_csv(Path(output_path) / '191111_Pex5_1/clean/pex1clean_predtraces.csv', index_col=0)
               traces_clean = pd.read_csv(Path(output_path) / '191111_Pex5_1/clean/pex1clean_traces.csv',
                                          index_col=0, usecols=[0, 2, 4, 6])
               print(fit_clean_mt.columns)
               print(traces_clean.columns)
      
      Index(['2022-02-03_multipletau_CH2_BIN0dot001_us_2Hs-PEX5-eGFP5_T91s_1_correlation-CH2_2 fitted model: ',
             '2022-02-03_multipletau_CH2_BIN0dot001_us_Hs-PEX5-eGFP1_T0s_1_correlation-CH2_2 fitted model: ',
             '2022-02-03_multipletau_CH2_BIN0dot001_us_Hs-PEX5-eGFP2_T26s_1_correlation-CH2_2 fitted model: '],
            dtype='object')
      Index(['Hs-PEX5-eGFP1_T0s_1_CH2_BIN1.0', '2Hs-PEX5-eGFP5_T91s_1_CH2_BIN1.0',
             'Hs-PEX5-eGFP2_T26s_1_CH2_BIN1.0'],
            dtype='object')
      
               plotdata = zip(traces_dirty.items(), traces_clean.items(),
                              corr_dirty_mt.items(), corr_clean_mt.items(), corr_dirty_tt.items(),
                              corr_clean_tt.items(), fit_dirty_mt.items(), fit_clean_mt.items(),
                              fit_dirty_tt.items(), fit_clean_tt.items())
               fig = plt.figure(figsize=(16, 20))
               gs = fig.add_gridspec(12, 4)
               for i, ((td_n, td_v), (td_n, tc_v), (_, cdm_v), (_, ccm_v), (_, cdt_v), (_, cct_v),
                       (_, fdm_v), (_, fcm_v), (_, fdt_v), (_, fct_v)) in enumerate(plotdata):
                   print(i)
                   ax0 = fig.add_subplot(gs[i*4, 0:2])
                   sns.lineplot(ax=ax0, data=(td_n, tc_v), legend='auto')
                   ax1 = fig.add_subplot(gs[i*4, 2:4])
                   sns.lineplot(ax=ax1, data=(td_n, td_v), legend='auto')
                   ax0.set(xlabel='time steps in ms', ylabel='photons')
                   ax1.set(xlabel='time steps in ms', ylabel='photons')
                   # ax2 = fig.add_subplot(gs[i*4+1, 0:2], sharex=ax0)
                   # sns.lineplot(ax=ax2, data=ptc_v, color=sns.color_palette()[0], legend=False)
                   # sns.lineplot(ax=ax2, data=pc_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   # ax3 = fig.add_subplot(gs[i*4+1, 2:4], sharex=ax1)
                   # sns.lineplot(ax=ax3, data=ptd_v, legend=False)
                   # sns.lineplot(ax=ax3, data=pd_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   # ax2.set(xlabel='time steps in ms', ylabel='probability of artifact')
                   # ax3.set(xlabel='time steps in ms', ylabel='probability of artifact')
                   ax4 = fig.add_subplot(gs[i*4+2:i*4+4, 0], title='multipletau w/ us bin')
                   sns.lineplot(ax=ax4, data=ccm_v, marker='.', legend=False)
                   sns.lineplot(ax=ax4, data=fcm_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax5 = fig.add_subplot(gs[i*4+2:i*4+4, 1], title='tttr2xfcs on arrival times')
                   sns.lineplot(ax=ax5, data=cct_v, marker='.', legend=False)
                   sns.lineplot(ax=ax5, data=fct_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax4.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)')
                   ax5.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)')
                   ax6 = fig.add_subplot(gs[i*4+2:i*4+4, 2], title='multipletau w/ us bin', sharey=ax4)
                   sns.lineplot(ax=ax6, data=cdm_v, marker='.', legend=False)
                   sns.lineplot(ax=ax6, data=fdm_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax7 = fig.add_subplot(gs[i*4+2:i*4+4, 3], title='tttr2xfcs on arrival times', sharey=ax5)
                   sns.lineplot(ax=ax7, data=cdt_v, marker='.', legend=False)
                   sns.lineplot(ax=ax7, data=fdt_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax6.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)')
                   ax7.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)')
               fig.suptitle('HsPEX5-eGFP (left) vs TbPEX5-eGFP (right) - 11.11.2019', size=20)
               gs.tight_layout(fig, rect=[0, 0, 1, 0.99])
      
      
    • the results: analysis4-191111-pex1.png
    • cave 1: 2 channels - check for the right Channel when plotting (CH2)
    • cave 2: in the plot, the traces and the correlations don’t fit right now inside their respecitve group (different order of names in e.g. traces_clean vs fit_clean_mt) → at the moment I don’t invest the time to fix this, because the fits are quite similar looking, but for publication I have to do this.
  • look at third bright cluster artifacts folder: 191113_Pex5_2_structured
    • clean = Homo sapiens PEX5, labelled with eGFP
    • dirty = Trypanosoma brucei PEX5, labelled with eGFP
    • let’s plot traces, predictions, and correlations (see Details block):
               path_clean = data_path / '191113_Pex5_2_structured/HsPEX5EGFP_1-100001_3of250'
               path_dirty = data_path / '191113_Pex5_2_structured/TbPEX5EGFP_1-10002_3of250'
               files_clean = [path_clean / f for f in os.listdir(path_clean) if f.endswith('.ptu')]
               files_dirty = [path_dirty / f for f in os.listdir(path_dirty) if f.endswith('.ptu')]
               traces = pd.DataFrame()
               predtraces = pd.DataFrame()
               preds = pd.DataFrame()
               corrs = pd.DataFrame()
               mt_bin = 1e-3
      
      
               for myfile in (files_clean):
                   ptufile = cfo.PicoObject(myfile, par_obj)
                   # ptufile.predictTimeSeries(model=loaded_model,
                   #                           scaler='minmax')
                   mt_name = f'us_{ptufile.name}'
                   ptufile.getTimeSeries(timeseries_name=mt_name,
                                         photonCountBin=mt_bin)
                   ptufile.getPhotonCountingStats(name=mt_name)
                   # ptufile.predictTimeSeries(model=loaded_model,
                   #                           scaler='minmax',
                   #                           name=mt_name)
                   for key in list(ptufile.trueTimeArr.keys()):
                       ptufile.get_autocorrelation(method='tttr2xfcs', name=key)
                   for key in list(ptufile.timeSeries.keys()):
                       for k, i in ptufile.timeSeries[key].items():
                           if "PREPRO" in k:
                               if "1.0" in k:
                                   # predtraces = pd.concat([predtraces, pd.DataFrame(i, columns=[f'{key}_{k}'])],
                                   #                        axis=1)
                                   pass
                           elif "1.0" in k:
                               traces = pd.concat([traces, pd.DataFrame(i, columns=[f'{key}_{k}'])],
                                                  axis=1)
                               # preds = pd.concat([preds, pd.DataFrame(data=ptufile.predictions[key][k],
                               #                                        columns=[f'{key}_{k}'])], axis=1)
                           elif "0.001" in k:
                               ptufile.get_autocorrelation(method='multipletau', name=(key, k))
      
                   for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                       if m in list(ptufile.autoNorm.keys()):
                           for key, item in list(ptufile.autoNorm[m].items()):
                               ptufile.save_autocorrelation(name=key, method=m,
                                                            output_path=output_path)
               # predtraces.to_csv(Path(output_path) / 'pex2dirty_predtraces.csv')
               traces.to_csv(Path(output_path) / 'pex2clean_traces.csv')
               # preds.to_csv(Path(output_path) / 'pex2dirty_preds.csv')
      
      /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
        warnings.warn("Input dtype is not float; casting to np.float_!",
      
               fit_dirty_mt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_multipletau_plot.csv',
                                              index_col=0, usecols=[0, 2, 4, 6], na_values=' ')
               fit_dirty_tt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 2, 4, 6], na_values=' ')
               fit_clean_mt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_multipletau_plot.csv'
                                              , index_col=0, usecols=[0, 2, 4, 6], na_values=' ')
               fit_clean_tt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 2, 4, 6], na_values=' ')
               corr_dirty_mt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_multipletau_plot.csv',
                                              index_col=0, usecols=[0, 1, 3, 5], na_values=' ')
               corr_dirty_tt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 1, 3, 5], na_values=' ')
               corr_clean_mt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_multipletau_plot.csv'
                                              , index_col=0, usecols=[0, 1, 3, 5], na_values=' ')
               corr_clean_tt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 1, 3, 5], na_values=' ')
      
               # preds_dirty = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_preds.csv', index_col=0)
               # predtraces_dirty = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_predtraces.csv', index_col=0)
               traces_dirty = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_traces.csv', index_col=0)
               # preds_clean = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_preds.csv', index_col=0)
               # predtraces_clean = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_predtraces.csv', index_col=0)
               traces_clean = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_traces.csv', index_col=0)
               fit_clean_mt.columns
      
      Index(['2022-02-02_multipletau_CH2_BIN0dot001_us_HsPEX5EGFP 1-1000015_T309s_1_correlation-CH2_2 fitted model: ',
             '2022-02-02_multipletau_CH2_BIN0dot001_us_HsPEX5EGFP 1-1000016_T331s_1_correlation-CH2_2 fitted model: ',
             '2022-02-02_multipletau_CH2_BIN0dot001_us_HsPEX5EGFP 1-1000017_T353s_1_correlation-CH2_2 fitted model: '],
            dtype='object')
      
               plotdata = zip(traces_dirty.items(), traces_clean.items(),
                              corr_dirty_mt.items(), corr_clean_mt.items(), corr_dirty_tt.items(),
                              corr_clean_tt.items(), fit_dirty_mt.items(), fit_clean_mt.items(),
                              fit_dirty_tt.items(), fit_clean_tt.items())
               fig = plt.figure(figsize=(16, 20))
               gs = fig.add_gridspec(12, 4)
               for i, ((_, td_v), (_, tc_v), (_, cdm_v), (_, ccm_v), (_, cdt_v), (_, cct_v),
                       (_, fdm_v), (_, fcm_v), (_, fdt_v), (_, fct_v)) in enumerate(plotdata):
                   print(i)
                   ax0 = fig.add_subplot(gs[i*4, 0:2])
                   sns.lineplot(ax=ax0, data=tc_v)
                   ax1 = fig.add_subplot(gs[i*4, 2:4])
                   sns.lineplot(ax=ax1, data=td_v)
                   ax0.set(xlabel='time steps in ms', ylabel='photons')
                   ax1.set(xlabel='time steps in ms', ylabel='photons')
                   # ax2 = fig.add_subplot(gs[i*4+1, 0:2], sharex=ax0)
                   # sns.lineplot(ax=ax2, data=ptc_v, color=sns.color_palette()[0], legend=False)
                   # sns.lineplot(ax=ax2, data=pc_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   # ax3 = fig.add_subplot(gs[i*4+1, 2:4], sharex=ax1)
                   # sns.lineplot(ax=ax3, data=ptd_v, legend=False)
                   # sns.lineplot(ax=ax3, data=pd_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   # ax2.set(xlabel='time steps in ms', ylabel='probability of artifact')
                   # ax3.set(xlabel='time steps in ms', ylabel='probability of artifact')
                   ax4 = fig.add_subplot(gs[i*4+2:i*4+4, 0], title='multipletau w/ us bin')
                   sns.lineplot(ax=ax4, data=ccm_v, marker='.', legend=False)
                   sns.lineplot(ax=ax4, data=fcm_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax5 = fig.add_subplot(gs[i*4+2:i*4+4, 1], title='tttr2xfcs on arrival times')
                   sns.lineplot(ax=ax5, data=cct_v, marker='.', legend=False)
                   sns.lineplot(ax=ax5, data=fct_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax4.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)')
                   ax5.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)')
                   ax6 = fig.add_subplot(gs[i*4+2:i*4+4, 2], title='multipletau w/ us bin', sharey=ax4)
                   sns.lineplot(ax=ax6, data=cdm_v, marker='.', legend=False)
                   sns.lineplot(ax=ax6, data=fdm_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax7 = fig.add_subplot(gs[i*4+2:i*4+4, 3], title='tttr2xfcs on arrival times', sharey=ax5)
                   sns.lineplot(ax=ax7, data=cdt_v, marker='.', legend=False)
                   sns.lineplot(ax=ax7, data=fdt_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax6.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)')
                   ax7.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)')
               fig.suptitle('HsPEX5-eGFP (left) vs TbPEX5-eGFP (right) - 13.11.2019', size=20)
               gs.tight_layout(fig, rect=[0, 0, 1, 0.99])
      
      
    • the results: analysis4-191113_pex2.png
  • look at detector dropout files
    • from the file Name we have e24 ? HeLa cells with GFP-SNAP
    • let’s see if we can load them (see Details block)
               path_dirty = data_path / "190327_detectordropout/"
               files_dirty = [path_dirty / f for f in os.listdir(path_dirty) if f.endswith('.ptu')]
               traces = pd.DataFrame()
               predtraces = pd.DataFrame()
               preds = pd.DataFrame()
               corrs = pd.DataFrame()
               mt_bin = 1e-3
      
               for myfile in (files_dirty):
                   ptufile = cfo.PicoObject(myfile, par_obj)
                   # ptufile.predictTimeSeries(model=loaded_model,
                   #                           scaler='minmax')
                  #  mt_name = f'us_{ptufile.name}'
                  #  ptufile.getTimeSeries(timeseries_name=mt_name,
                  #                        photonCountBin=mt_bin)
                  #  ptufile.getPhotonCountingStats(name=mt_name)
                   # ptufile.predictTimeSeries(model=loaded_model,
                   #                           scaler='minmax',
                   #                           name=mt_name)
                   for key in list(ptufile.trueTimeArr.keys()):
                       ptufile.get_autocorrelation(method='tttr2xfcs', name=key)
                   for key in list(ptufile.timeSeries.keys()):
                       for k, i in ptufile.timeSeries[key].items():
                           if "PREPRO" in k:
                               if "1.0" in k:
                                   # predtraces = pd.concat([predtraces, pd.DataFrame(i, columns=[f'{key}_{k}'])],
                                   #                        axis=1)
                                   pass
                           elif "1.0" in k:
                               traces = pd.concat([traces, pd.DataFrame(i, columns=[f'{key}_{k}'])],
                                                  axis=1)
                               ptufile.get_autocorrelation(method='multipletau', name=(key, k))
                               # preds = pd.concat([preds, pd.DataFrame(data=ptufile.predictions[key][k],
                               #                                        columns=[f'{key}_{k}'])], axis=1)
                           elif "0.001" in k:
                               ptufile.get_autocorrelation(method='multipletau', name=(key, k))
      
                   for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                       if m in list(ptufile.autoNorm.keys()):
                           for key, item in list(ptufile.autoNorm[m].items()):
                               ptufile.save_autocorrelation(name=key, method=m,
                                                            output_path=output_path)
               # predtraces.to_csv(Path(output_path) / 'detectordropout_predtraces.csv')
               traces.to_csv(Path(output_path) / 'detectordropout_traces.csv')
               # preds.to_csv(Path(output_path) / 'detectordropout_preds.csv')
      
               /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
                 warnings.warn("Input dtype is not float; casting to np.float_!",
               /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
                 warnings.warn("Input dtype is not float; casting to np.float_!",
               /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
                 warnings.warn("Input dtype is not float; casting to np.float_!",
               /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
                 warnings.warn("Input dtype is not float; casting to np.float_!",
               /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
                 warnings.warn("Input dtype is not float; casting to np.float_!",
      
               fit_dirty = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/detectordropout_tttr2xfcs_plot.csv',
                                       index_col=0, usecols=[0, 2, 4, 6, 8, 10], na_values=' ')
               corr_dirty = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/detectordropout_tttr2xfcs_plot.csv',
                                        index_col=0, usecols=[0, 1, 3, 5, 7, 9], na_values=' ')
      
               # preds_dirty = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_preds.csv', index_col=0)
               # predtraces_dirty = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_predtraces.csv', index_col=0)
               traces_dirty = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/detectordropout_traces.csv', index_col=0)
               # preds_clean = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_preds.csv', index_col=0)
               # predtraces_clean = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_predtraces.csv', index_col=0)
      
      
               plotdata = zip(traces_dirty.items(), corr_dirty.items(), fit_dirty.items())
               fig = plt.figure(figsize=(16, 20))
               gs = fig.add_gridspec(9, 4)
               for i, ((td_n, td_v), (_, cdt), (_, fdt)) in enumerate(plotdata):
                   print(i)
                   if i in [0, 2, 4]:
                       i = int(i*1.5)
                       ax0 = fig.add_subplot(gs[i, 0:2], title=td_n)
                       ax1 = fig.add_subplot(gs[i+1:i+3, 0], title='tttr2xfcs on arrival times')
                   elif i in [1, 3]:
                       i -= 1
                       i = int(i*1.5)
                       ax0 = fig.add_subplot(gs[i, 2:4], title=td_n)
                       ax1 = fig.add_subplot(gs[i+1:i+3, 2], title='tttr2xfcs on arrival times')
                   sns.lineplot(ax=ax0, data=td_v)
                   ax0.set(xlabel='time steps in ms', ylabel='photons')
                   sns.lineplot(ax=ax1, x=cdt.index, y=cdt, marker='.', legend=False)
                   sns.lineplot(ax=ax1, x=fdt.index, y=fdt, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   xmin = fdt.dropna().index[0]
                   xmax = fdt.dropna().index[-1]
                   ymin = np.min(fdt.dropna())
                   ymax = np.max(fdt.dropna())
                   plt.setp(ax1, xlim=[xmin - 0.5*xmin, xmax + 0.5*xmax], ylim=[ymin - 0.5*ymin, ymax + 0.5 * ymax],
                            xscale='log', xlabel=r'$\tau$ (ms)', ylabel=r'Correlation G($\tau$)')
               fig.suptitle('E24-HeLa-GFP-SNAP - detectordropout - 13.11.2019', size=20)
               gs.tight_layout(fig, rect=[0, 0, 1, 0.99])
      
      
    • results: analysis4-190327-detectordropout.png
    • since each measurement is around 1 GB in size (and loading and processing this file as seen above needs around 100GB of RAM), the experimentors took more traces and saved out only the correlations.
    • in total we have 11 experiments with 3 repetitions each
      • so in chopIn01 we have 33 traces with a length of about 16 seconds
      • and in chopIn03 each trace is cut in 3 parts so we have 99 traces with a length of around 5 seconds
    • Let’s load and plot them (see Details block):
               chop01_cf = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/E24 HeLa GFP_chopIn01_FCS_CurvesAndFits.csv',
                                               header=[0, 1])
               chop01_ts = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/E24 HeLa GFP_chopIn01_timetraces.csv',
                                               header=[0, 1])
      
               corr_tau_ind = [i for i in chop01_cf.columns if 'Correlation' in i[0]]
               corr_ind = [i for i in chop01_cf.columns if 'Correlation' in i[1]]
               corr_sd_ind = [i for i in chop01_cf.columns if 'Deviation' in i[0]]
               fit_ind = [i for i in chop01_cf.columns if 'Fit' in i[1]]
               fit_tau_ind = [i for i in chop01_cf.columns if 'Fit' in i[0]]
               res_tau_ind = [i for i in chop01_cf.columns if 'Residuals' in i[0]]
               res_ind = [i for i in chop01_cf.columns if 'Residuals' in i[1]]
               trace_tau_ind = [i for i in chop01_ts.columns if 'Count Rate' in i[0]]
               trace_ind = [i for i in chop01_ts.columns if 'Count Rate' in i[1]]
      
               fig = plt.figure(figsize=(16, 66))
               gs = fig.add_gridspec(33, 4)
               for i, _ in enumerate(corr_tau_ind):
                   ct = chop01_cf[corr_tau_ind].iloc[:, i]
                   corr = chop01_cf[corr_ind].iloc[:, i]
                   csd = chop01_cf[corr_sd_ind].iloc[:, i]
                   fit = chop01_cf[fit_ind].iloc[:, i]
                   ft = chop01_cf[fit_tau_ind].iloc[:, i]
                   res = chop01_cf[res_ind].iloc[:, i]
                   rt = chop01_cf[res_tau_ind].iloc[:, i]
                   trace = chop01_ts[trace_ind].iloc[:, i]
                   tt = chop01_ts[trace_tau_ind].iloc[:, i]
      
                   ax0 = fig.add_subplot(gs[i, 0:2], title=ct.name)
                   ax1 = fig.add_subplot(gs[i, 2])
                   ax2 = fig.add_subplot(gs[i, 3])
      
                   sns.lineplot(ax=ax0, x=tt, y=trace)
                   sns.lineplot(ax=ax1, x=ct, y=corr, marker='.', label='Correlation')
                   sns.lineplot(ax=ax1, x=ft, y=fit, color=sns.color_palette()[1], alpha=0.8, label='Fit')
                   sns.lineplot(ax=ax2, x=rt, y=res)
      
                   plt.setp(ax0, ylabel='[kCounts/s]', xlabel='Time [s]')
                   plt.setp(ax1, ylabel=r'Correlation G($\tau$)', xlabel=r'$\tau$ [ms]', xscale='log')
                   plt.setp(ax2, ylabel='Residuals', xlabel=r'$\tau$ [ms]', xscale='log')
               fig.suptitle('E24-HeLa-GFP-SNAP - detector dropout - 11 traces, 3 repetitions, 1 part - 13.11.2019',
                            size=20, y=1.005)
               plt.tight_layout()
      
      
      • these are examples of traces cut in 3 parts: analysis4-190327-chopin01.png
               chop03_cf = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/E24 HeLa GFP_chopIn03_FCS_CurvesAndFits.csv',
                                               header=[0, 1])
               chop03_ts = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/E24 HeLa GFP_chopIn03_timetraces.csv',
                                               header=[0, 1])
      
               corr_tau_ind = [i for i in chop03_cf.columns if 'Correlation' in i[0]]
               corr_ind = [i for i in chop03_cf.columns if 'Correlation' in i[1]]
               corr_sd_ind = [i for i in chop03_cf.columns if 'Deviation' in i[0]]
               fit_ind = [i for i in chop03_cf.columns if 'Fit' in i[1]]
               fit_tau_ind = [i for i in chop03_cf.columns if 'Fit' in i[0]]
               res_tau_ind = [i for i in chop03_cf.columns if 'Residuals' in i[0]]
               res_ind = [i for i in chop03_cf.columns if 'Residuals' in i[1]]
               trace_tau_ind = [i for i in chop03_ts.columns if 'Count Rate' in i[0]]
               trace_ind = [i for i in chop03_ts.columns if 'Count Rate' in i[1]]
      
               fig = plt.figure(figsize=(16, 24))
               gs = fig.add_gridspec(8, 4)
               i = 0
               for j, _ in enumerate(corr_tau_ind):
                   if j in [9, 10, 18, 19, 20, 46, 47, 48]:
                       ct = chop03_cf[corr_tau_ind].iloc[:, j]
                       corr = chop03_cf[corr_ind].iloc[:, j]
                       csd = chop03_cf[corr_sd_ind].iloc[:, j]
                       fit = chop03_cf[fit_ind].iloc[:, j]
                       ft = chop03_cf[fit_tau_ind].iloc[:, j]
                       res = chop03_cf[res_ind].iloc[:, j]
                       rt = chop03_cf[res_tau_ind].iloc[:, j]
                       trace = chop03_ts[trace_ind].iloc[:, j]
                       tt = chop03_ts[trace_tau_ind].iloc[:, j]
      
                       ax0 = fig.add_subplot(gs[i, 0:2], title=ct.name)
                       ax1 = fig.add_subplot(gs[i, 2])
                       ax2 = fig.add_subplot(gs[i, 3])
      
                       sns.lineplot(ax=ax0, x=tt, y=trace)
                       sns.lineplot(ax=ax1, x=ct, y=corr, marker='.', label='Correlation')
                       sns.lineplot(ax=ax1, x=ft, y=fit, color=sns.color_palette()[1], alpha=0.8, label='Fit')
                       sns.lineplot(ax=ax2, x=rt, y=res)
      
                       plt.setp(ax0, ylabel='[kCounts/s]', xlabel='Time [s]')
                       plt.setp(ax1, ylabel=r'Correlation G($\tau$)', xlabel=r'$\tau$ [ms]', xscale='log')
                       plt.setp(ax2, ylabel='Residuals', xlabel=r'$\tau$ [ms]', xscale='log')
                       i += 1
               fig.suptitle('E24-HeLa-GFP-SNAP - detector dropout - 11 traces, 3 repetitions, 3 parts (example) - 13.11.2019',
                            size=20, y=1.005)
               plt.tight_layout()
      
      
      • these are examples of traces cut in 9 parts: analysis4-190327-chopin03.png
    • now let’s load and plot the transit times (see Details block):
               chop01 = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/E24 HeLa GFP_chopIn01_FitParameters.csv',
                                         header=[0], index_col=1)
               chop03 = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/E24 HeLa GFP_chopIn03_FitParameters.csv',
                                         header=[0], index_col=1)
               chop10 = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/E24 HeLa GFP_chopIn10_FitParameters.csv',
                                         header=[0], index_col=1)
               taudiff01 = chop01.loc[:, 'Diffusion Time 1 µs']
               taudiff03 = chop03.loc[:, 'Diffusion Time 1 µs']
               taudiff10 = chop10.loc[:, 'Diffusion Time 1 µs']
               taudiff_dirty01 = taudiff01.loc[[4, 7, 16, 17]].rename('dirty\n(16s, n=4)')
               taudiff_clean01 = taudiff01.drop([4, 7, 16, 17]).rename('clean\n(16s, n=29)')
               taudiff_dirty03 = taudiff03.loc[[11, 19, 21, 47, 49]].rename('dirty\n(5s, n=5)')
               taudiff_clean03 = taudiff03.drop([11, 19, 21, 47, 49]).rename('clean\n(5s, n=94)')
               taudiff_dirty10 = taudiff10.loc[[34, 62, 67, 157]].rename('dirty\n(1.6s, n=4)')
               taudiff_clean10 = taudiff10.drop([34, 62, 67, 157]).rename('clean\n(1.6s, n=326)')
               taudiff_plot = pd.concat([taudiff_clean01, taudiff_clean03, taudiff_clean10,
                                         taudiff_dirty01, taudiff_dirty03, taudiff_dirty10],
                                        axis=1)
      
               ax = sns.boxplot(data=taudiff_plot)
               sns.stripplot(data=taudiff_plot, dodge=True, palette=sns.color_palette(['0.3']))
               plt.setp(ax, ylabel=r'transit time [$\mu s$]', yscale='log',
                        title='E24-HeLa-GFP-SNAP - with (dirty) vs without (clean) detector dropout\n11 traces, 3 repetitions - 13.11.2019')
               ax.set_xticklabels(ax.get_xticklabels(), rotation=45)
      
      • the results: analysis4-190327-all-param.png
    • it would be possible to train an UNET on simulated data with such detector dropout artifacts and test it on the above 4 traces with artifacts I have as .ptu files. Unfortunately, I only have 1 “clean” .ptu file as a negative control.
  • look at photobleaching files
    • we have eGFP 0.5 ug/ml in solution
      • clean = laser power 5 uW, 5 traces
      • dirty = laser power 10 uW,
    • let’s see if we can load them
      • look at detector dropout files
    • from the file Name we have e24 ? HeLa cells with GFP-SNAP
    • let’s see if we can load them (see Details block)
               path_clean = data_path / "191107_EGFP_photobleaching/eGFP 5 uW 0.5ugml1"
               path_dirty = data_path / "191107_EGFP_photobleaching/eGFP 10 uW 0.5ugml2"
               files_clean = [path_clean / f for f in os.listdir(path_clean) if f.endswith('.ptu')]
               files_dirty = [path_dirty / f for f in os.listdir(path_dirty) if f.endswith('.ptu')]
               traces = pd.DataFrame()
               predtraces = pd.DataFrame()
               preds = pd.DataFrame()
               corrs = pd.DataFrame()
               mt_bin = 1e-3
      
               for myfile in (files_dirty):
                   ptufile = cfo.PicoObject(myfile, par_obj)
                   # ptufile.predictTimeSeries(model=loaded_model,
                   #                           scaler='minmax')
                   mt_name = f'us_{ptufile.name}'
                   ptufile.getTimeSeries(timeseries_name=mt_name,
                                         photonCountBin=mt_bin)
                   ptufile.getPhotonCountingStats(name=mt_name)
                   # ptufile.predictTimeSeries(model=loaded_model,
                   #                           scaler='minmax',
                   #                           name=mt_name)
                   for key in list(ptufile.trueTimeArr.keys()):
                       ptufile.get_autocorrelation(method='tttr2xfcs', name=key)
                   for key in list(ptufile.timeSeries.keys()):
                       for k, i in ptufile.timeSeries[key].items():
                           if "PREPRO" in k:
                               if "1.0" in k:
                                   # predtraces = pd.concat([predtraces, pd.DataFrame(i, columns=[f'{key}_{k}'])],
                                   #                        axis=1)
                                   pass
                           elif "1.0" in k:
                               traces = pd.concat([traces, pd.DataFrame(i, columns=[f'{key}_{k}'])],
                                                  axis=1)
                               # preds = pd.concat([preds, pd.DataFrame(data=ptufile.predictions[key][k],
                               #                                        columns=[f'{key}_{k}'])], axis=1)
                           elif "0.001" in k:
                               ptufile.get_autocorrelation(method='multipletau', name=(key, k))
      
                   for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                       if m in list(ptufile.autoNorm.keys()):
                           for key, item in list(ptufile.autoNorm[m].items()):
                               ptufile.save_autocorrelation(name=key, method=m,
                                                            output_path=output_path)
               # predtraces.to_csv(Path(output_path) / 'detectordropout_predtraces.csv')
               traces.to_csv(Path(output_path) / 'photobleaching_traces_dirty.csv')
               # preds.to_csv(Path(output_path) / 'detectordropout_preds.csv')
      
               /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
                 warnings.warn("Input dtype is not float; casting to np.float_!",
               /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
                 warnings.warn("Input dtype is not float; casting to np.float_!",
               /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
                 warnings.warn("Input dtype is not float; casting to np.float_!",
               /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
                 warnings.warn("Input dtype is not float; casting to np.float_!",
               /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_!
                 warnings.warn("Input dtype is not float; casting to np.float_!",
      
               fit_dirty_mt = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/10uW_CH2_multipletau_plot.csv',
                                              index_col=0, usecols=[0, 2, 4, 6, 8, 10], na_values=' ')
               fit_dirty_tt = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/10uW_CH2_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 2, 4, 6, 8, 10], na_values=' ')
               fit_clean_mt = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/5uW_CH2_multipletau_plot.csv'
                                              , index_col=0, usecols=[0, 2, 4, 6, 8, 10], na_values=' ')
               fit_clean_tt = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/5uW_CH2_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 2, 4, 6, 8, 10], na_values=' ')
               corr_dirty_mt = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/10uW_CH2_multipletau_plot.csv',
                                              index_col=0, usecols=[0, 1, 3, 5, 7, 9], na_values=' ')
               corr_dirty_tt = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/10uW_CH2_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 1, 3, 5, 7, 9], na_values=' ')
               corr_clean_mt = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/5uW_CH2_multipletau_plot.csv'
                                              , index_col=0, usecols=[0, 1, 3, 5, 7, 9], na_values=' ')
               corr_clean_tt = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/5uW_CH2_tttr2xfcs_plot.csv'
                                              , index_col=0, usecols=[0, 1, 3, 5, 7, 9], na_values=' ')
      
               # preds_dirty = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/pex1dirty_preds.csv', index_col=0)
               # predtraces_dirty = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/pex1dirty_predtraces.csv', index_col=0)
               traces_dirty = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/photobleaching_traces_dirty.csv',
                                          index_col=0, usecols=[0, 2, 4, 6, 8, 10])
               # preds_clean = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/pex1clean_preds.csv', index_col=0)
               # predtraces_clean = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/pex1clean_predtraces.csv', index_col=0)
               traces_clean = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/photobleaching_traces_clean.csv',
                                          index_col=0, usecols=[0, 2, 4, 6, 8, 10])
               print(fit_clean_mt.columns)
               print(traces_clean.columns)
      
      Index(['2022-02-19_multipletau_CH2_BIN0dot001_us_eGFP1-5uW_T0s_1_correlation-CH2_2 fitted model: ',
             '2022-02-19_multipletau_CH2_BIN0dot001_us_eGFP2-5uW_T25s_1_correlation-CH2_2 fitted model: ',
             '2022-02-19_multipletau_CH2_BIN0dot001_us_eGFP3-5uW_T48s_1_correlation-CH2_2 fitted model: ',
             '2022-02-19_multipletau_CH2_BIN0dot001_us_eGFP4-5uW_T69s_1_correlation-CH2_2 fitted model: ',
             '2022-02-19_multipletau_CH2_BIN0dot001_us_eGFP5-5uW_T91s_1_correlation-CH2_2 fitted model: '],
            dtype='object')
      Index(['eGFP1-5uW_T0s_1_CH2_BIN1.0', 'eGFP4-5uW_T69s_1_CH2_BIN1.0',
             'eGFP2-5uW_T25s_1_CH2_BIN1.0', 'eGFP3-5uW_T48s_1_CH2_BIN1.0',
             'eGFP5-5uW_T91s_1_CH2_BIN1.0'],
            dtype='object')
      
               plotdata = zip(traces_dirty.items(), traces_clean.items(),
                              corr_dirty_mt.items(), corr_clean_mt.items(), corr_dirty_tt.items(),
                              corr_clean_tt.items(), fit_dirty_mt.items(), fit_clean_mt.items(),
                              fit_dirty_tt.items(), fit_clean_tt.items())
               fig = plt.figure(figsize=(16, 30))
               gs = fig.add_gridspec(15, 4)
               for i, ((td_n, td_v), (tc_n, tc_v), (_, cdm_v), (_, ccm_v), (_, cdt_v), (_, cct_v),
                       (_, fdm_v), (_, fcm_v), (_, fdt_v), (_, fct_v)) in enumerate(plotdata):
                   print(i)
                   ax0 = fig.add_subplot(gs[i*3, 0:2], title=tc_n)
                   sns.lineplot(ax=ax0, data=tc_v, legend='auto')
                   ax1 = fig.add_subplot(gs[i*3, 2:4], title=td_n)
                   sns.lineplot(ax=ax1, data=td_v, legend='auto')
                   ax0.set(xlabel='time steps in ms', ylabel='photons')
                   ax1.set(xlabel='time steps in ms', ylabel='photons')
                   # ax2 = fig.add_subplot(gs[i*4+1, 0:2], sharex=ax0)
                   # sns.lineplot(ax=ax2, data=ptc_v, color=sns.color_palette()[0], legend=False)
                   # sns.lineplot(ax=ax2, data=pc_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   # ax3 = fig.add_subplot(gs[i*4+1, 2:4], sharex=ax1)
                   # sns.lineplot(ax=ax3, data=ptd_v, legend=False)
                   # sns.lineplot(ax=ax3, data=pd_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   # ax2.set(xlabel='time steps in ms', ylabel='probability of artifact')
                   # ax3.set(xlabel='time steps in ms', ylabel='probability of artifact')
                   ax4 = fig.add_subplot(gs[i*3+1:i*3+3, 0], title=r'multipletau w/ $\mu s$ bin')
                   sns.lineplot(ax=ax4, data=ccm_v, marker='.', legend=False)
                   sns.lineplot(ax=ax4, data=fcm_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax5 = fig.add_subplot(gs[i*3+1:i*3+3, 1], title='tttr2xfcs on arrival times')
                   sns.lineplot(ax=ax5, data=cct_v, marker='.', legend=False)
                   sns.lineplot(ax=ax5, data=fct_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax4.set(xscale='log', xlabel=r'$\tau$ [ms]', ylabel=r'Correlation G($\tau$)')
                   ax5.set(xscale='log', xlabel=r'$\tau$ [ms]', ylabel=r'Correlation G($\tau$)')
                   ax6 = fig.add_subplot(gs[i*3+1:i*3+3, 2], title=r'multipletau w/ $\mu s$ bin', sharey=ax4)
                   sns.lineplot(ax=ax6, data=cdm_v, marker='.', legend=False)
                   sns.lineplot(ax=ax6, data=fdm_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax7 = fig.add_subplot(gs[i*3+1:i*3+3, 3], title='tttr2xfcs on arrival times', sharey=ax5)
                   sns.lineplot(ax=ax7, data=cdt_v, marker='.', legend=False)
                   sns.lineplot(ax=ax7, data=fdt_v, color=sns.color_palette()[1], alpha=0.8, legend=False)
                   ax6.set(xscale='log', xlabel=r'$\tau$ [ms]', ylabel=r'Correlation G($\tau$)')
                   ax7.set(xscale='log', xlabel=r'$\tau$ [ms]', ylabel=r'Correlation G($\tau$)')
               fig.suptitle('eGFP and 5uW (left, clean) vs eGFP and 10uW (right, dirty) - 07.11.2019', size=20)
               gs.tight_layout(fig, rect=[0, 0, 1, 0.99])
      
      
    • results:

    analysis4-191107-photobleaching.png

    • seems like this this data does not contain so much of an artifact. Have to ask Pablo if there was other data he took.
    • let’s see if the transit times are different (see Details block):
               taudiff_dirty_mt = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/10uW_CH2_multipletau_param.csv',
                                              na_values=' ').loc[:, 'txy1'].rename('dirty (n=5\nmultipletau)')
               taudiff_dirty_tt = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/10uW_CH2_tttr2xfcs_param.csv',
                                              na_values=' ').loc[:, 'txy1'].rename('dirty (n=5\ntttr2xfcs)')
               taudiff_clean_mt = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/5uW_CH2_multipletau_param.csv',
                                              na_values=' ').loc[:, 'txy1'].rename('clean (n=5\nmultipletau)')
               taudiff_clean_tt = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/5uW_CH2_tttr2xfcs_param.csv',
                                              na_values=' ').loc[:, 'txy1'].rename('clean (n=5\ntttr2xfcs)')
      
               taudiff_plot = pd.concat([taudiff_clean_mt, taudiff_clean_tt,
                                         taudiff_dirty_mt, taudiff_dirty_tt], axis=1)
      
               ax = sns.boxplot(data=taudiff_plot)
               sns.stripplot(data=taudiff_plot, dodge=True, palette=sns.color_palette(['0.3']))
               plt.setp(ax, ylabel=r'transit time [$\mu s$]', yscale='log',
                        title='eGFP - 10uW (dirty) vs 5uW (clean) photobleaching - 07.11.2019')
               ax.set_xticklabels(ax.get_xticklabels(), rotation=45)
      
      
    • results: analysis4-191107-all-param.png
    • here too we don’t see big differences in transit times.

2.5.12 learnings from exp-220120-correlate-ptu

  • in terms of biological experiments:
    • always double-check your data - in the process I mixed up the Alexa-LUV-experiment and the pex5 experiment - which made finding explanations harder when the correction didn’t work out
    • it seems like I don’t have photobleaching data yet → have to ask Pablo if there are other experimental data he took
  • in terms of machine learning and neural networks:
    • while plotting the alexa-luv data, I noticed that my network still has a bug - it learned on data with a fixed size of 2**14. When I use longer traces, I have to pad the data - here with the median value of the trace. BUT: the network wasn’t trained on data like this. In this case, this leads to more false positives (predicted artifactual, even though clean). Re-training the model with such data helps.
    • while plotting the pex5 data, I noticed that prediction doesn’t work with trace lengths of 2**15 → this can also be handled by re-training the network and adjusting the parameters so that it works with different input sizes (this works because it is a fully convolutional model)
    • from exp-210807-hparams I know that there are still more different network architectures that worked → I should train them as well, just to show that a wide range of architectures can solve this problem.
  • in terms of FCS autocorrelation and fitting:
    • there is still an open question if 2 component fitting is a way to improve the outcome of the correction. Dominic did a test which yielded some promising data - BUT he used a 2D fitting algorithm, and if I tried to play around with 3D fitting as described above, 1 component fitted nicely, but the second component always stayed at txy=0.01, alpha=1, A=1
    • also regarding fitting, even though delete_and_shift seems to be a promising method to correct bright cluster-artifacts in FCS, there is a shoulder in the correlation curve which is not fitted - this is probably expected since the LUVs have an expected speed at that area (~2-3ms), but still it should be further investigated
    • regarding the weights correction → it is not clear yet, why it doesn’t work. The random correlation results show, that the bad results are probably not the result of an artifactual correlation of the weighted photons.
      • a possible explanation is, that with weight=0 or other low weights the gaps themselves get correlated → this happens also in the “detector dropout” artifact.
      • a possible follow-up experiment would be to distribute the photons in an artifactual bin randomly to remove any correlation in them.
    • regarding the weights=1-pred correction → it is also not clear, why it performs so badly.
    • regarding the delete and weights=0 corrections it is not clear, why they are not equal → have to re-do them in the same experiment.

2.5.13 Analysis 5: fitting with Focuspoint instead of focus-fit-js

  • Attention: this section was added after the branch exp-220120-correlate-ptu was merged into data.
  • it turns out, that there is a software error in focus-fit-js which makes 3D plots unreliable. Together with Pablo, we double-checked the data acquired with the standalone software FoCuS-point-correlator, written by Dominic as well, and tested for years.
  • With a 3D fit now working, we tried to do a 2 component fit on the data and see if we can regain the underlying transit times of the fast and slow components
  • now let’s look at the results:
           %cd /home/lex/Programme/drmed-git
    
    /home/lex/Programme/drmed-git
    
           import numpy as np
           import matplotlib.pyplot as plt
           import pandas as pd
           import seaborn as sns
           from pathlib import Path
           from pprint import pprint
           # use seaborn style as default even if I just use matplotlib
           sns.set()
           sns.set_palette('colorblind')
    
  • load in all the data (see Details block)
           path = Path('data/exp-220120-correlate-ptu/2022-03-25_FoCuS-point-analysis')
    
           # clean params
           clean_nocorr_notrip_1spec_param_path = path / 'clean-nocorrection-notriplet-1species-5AR_outputParam.csv'
           # clean_nocorr_tripfixed_1spec_param_path = path / 'clean-nocorrection-triplet2a-0dot25-B1-0dot01-tauT1_outputParam.csv'
    
           # dirty params
           dirty_nocorr_notrip_2spec_param_path = path / 'dirty-nocorrection-notriplet-2species-5AR_outputParam.csv'
           # dirty_nocorr_tripsemifixed_2spec_param_path = path / 'dirty-nocorrection-triplet2a-float-B1-0dot01-tauT1-2species-5AR_outputParam.csv'
           # dirty_nocorr_tripfixed_2spec_param_path = path / 'dirty-nocorrection-triplet2a-0dot25-B1-0dot01-tauT1-2species-5AR_outputParam.csv'
    
           # dirty params
           dirty_cutshift_notrip_2spec_param_path = path / 'dirty-cutandshift-notriplet-2species-5AR_outputParam.csv'
           # dirty_cutshift_tripsemifixed_2spec_param_path = path / 'dirty-cutandshift-triplet2a-float-B1-0dot01-tauT1-2species-5AR_outputParam.csv'
           # dirty_cutshift_tripfixed_2spec_param_path = path / 'dirty-cutandshift-triplet2a-0dot25-B1-0dot01-tauT1-2species-5AR_outputParam.csv'
           dirty_delete_notrip_2spec_param_path = path / 'dirty-delete-notriplet-2species-5AR_outputParam.csv'
           dirty_weight0_notrip_2spec_param_path = path / 'dirty-weight0-notriplet-2species-5AR_outputParam.csv'
           dirty_1pred_notrip_2spec_param_path = path / 'dirty-1-pred-notriplet-2species-5AR_outputParam.csv'
    
           # clean params
           clean_param =  pd.read_csv(clean_nocorr_notrip_1spec_param_path, sep=',').assign(
               triplet=229*['None',], species=229*['1',], dimension=229*['3D eq 1B, AR=5',], fraction=229*['small',],
               correlator=229*['tttr2xfcs',], artifact=229*['clean',], correction=229*['No correction',])
           # clean_param =  pd.read_csv(clean_nocorr_tripfixed_1spec_param_path, sep=',').assign(
           #     triplet=229*['B1=0.25, tauT1=0.01',], species=229*['1',], dimension=229*['3D eq 1B, AR=5',],
           #     correlator=229*['tttr2xfcs',], artifact=229*['clean',], correction=229*['No correction',])
           # clean_param['txy2'] = clean_param['txy1']  # for plotting purposes
           # clean_param['A2'] = clean_param['A1']  # for plotting purposes
    
           # dirty params
           dirty_nocorr =  pd.read_csv(dirty_nocorr_notrip_2spec_param_path, sep=',').assign(
               triplet=173*['None',], species=173*['2',], dimension=173*['3D eq 1B, AR=5',], fraction=173*['small',],
               correlator=173*['tttr2xfcs',], artifact=173*['dirty',], correction=173*['No correction',])
           # dirty_nocorr_tripsemi =  pd.read_csv(dirty_nocorr_tripsemifixed_2spec_param_path, sep=',').assign(
           #     triplet=173*['B1=float, tauT1=0.01',], species=173*['2, AR=5',],
           #     correlator=173*['tttr2xfcs',], artifact=173*['dirty',], correction=173*['None',])
           # dirty_nocorr_tripfix =  pd.read_csv(dirty_nocorr_tripfixed_2spec_param_path, sep=',').assign(
           #     triplet=173*['B1=0.25, tauT1=0.01',], species=173*['2, AR=5',],
           #     correlator=173*['tttr2xfcs',], artifact=173*['dirty',], correction=173*['None',])
           dirty_weight0 =  pd.read_csv(dirty_weight0_notrip_2spec_param_path, sep=',').assign(
               triplet=173*['None',], species=173*['2',], dimension=173*['3D eq 1B, AR=5',], fraction=173*['small',],
               correlator=173*['tttr2xfcs',], artifact=173*['dirty',], correction=173*['weight=0',])
    
    
           dirty_cutshift =  pd.read_csv(dirty_cutshift_notrip_2spec_param_path, sep=',').assign(
               triplet=53*['None',], species=53*['2',], dimension=53*['3D eq 1B, AR=5',], fraction=53*['small',],
               correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['cut and shift',])
           # dirty_cutshift_tripsemi =  pd.read_csv(dirty_cutshift_tripsemifixed_2spec_param_path, sep=',').assign(
           #     triplet=53*['B1=float, tauT1=0.01',], species=53*['2, AR=5',],
           #     correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['cut and shift',])
           # dirty_cutshift_tripfix =  pd.read_csv(dirty_cutshift_tripfixed_2spec_param_path, sep=',').assign(
           #     triplet=53*['B1=0.25, tauT1=0.01',], species=53*['2, AR=5',],
           #     correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['cut and shift',])
           dirty_delete =  pd.read_csv(dirty_delete_notrip_2spec_param_path, sep=',').assign(
               triplet=53*['None',], species=53*['2',], dimension=53*['3D eq 1B, AR=5',], fraction=53*['small',],
               correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['delete',])
           dirty_1pred =  pd.read_csv(dirty_1pred_notrip_2spec_param_path, sep=',').assign(
               triplet=53*['None',], species=53*['2',], dimension=53*['3D eq 1B, AR=5',], fraction=53*['small',],
               correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['weight=1-prediction',])
    
           all_param = pd.concat([clean_param, dirty_nocorr, dirty_weight0,
                                  dirty_cutshift, dirty_delete, dirty_1pred],
                                 ignore_index=True)
    
           all_param["artifact-correction"] = all_param[["artifact", "correction"]].agg(' - '.join, axis=1)
           all_param = pd.wide_to_long(all_param, stubnames='txy', i=['name_of_plot'], j='fitted species (txy)')
    
           all_param = all_param.reset_index()
           all_param = pd.wide_to_long(all_param, stubnames='A', i=['name_of_plot', 'fitted species (txy)'], j='fitted species (A)')
           all_param = all_param.reset_index()
    
    
           g = sns.catplot(data=all_param,
                           y='txy',
                           x='artifact-correction',
                           hue='fitted species (txy)',
                           sharey=True,
                           height=5,
                           aspect=2,
                           legend_out=True,
                           kind='boxen',
                           showfliers=False)
           g.map_dataframe(sns.stripplot,
                 y='txy',
                 x='artifact-correction',
                 hue='fitted species (txy)',
                 dodge=True,
                 palette=sns.color_palette(['0.3']),
                 size=4,
                 jitter=0.2)
           g.tight_layout()
           g.fig.suptitle('Transit times of AlexaFluor488 (clean) vs \nAlexaFluor488 + Dio LUVs (dirty) with different correction methods',
                          y=1.08, size=20)
           for axes in g.axes.flat:
                _ = axes.set_xticklabels(axes.get_xticklabels(), rotation=45)
           plt.setp(g.axes, yscale='log', xlabel='biological sample - correction method',
                    ylabel=r'transit time $\tau_{D}$ (log)')
           plt.show()
    
           g = sns.catplot(data=all_param,
                           y='A',
                           x='artifact-correction',
                           hue='fitted species (A)',
                           sharey=True,
                           height=5,
                           aspect=2,
                           legend_out=True,
                           kind='boxen',
                           showfliers=False)
           g.map_dataframe(sns.stripplot,
                 y='A',
                 x='artifact-correction',
                 hue='fitted species (A)',
                 dodge=True,
                 palette=sns.color_palette(['0.3']),
                 size=4,
                 jitter=0.2)
           g.tight_layout()
           g.fig.suptitle('Fraction sizes of AlexaFluor488 (clean) vs\nAlexaFluor488 + Dio LUVs (dirty) with different correction methods',
                          y=1.08, size=20)
           for axes in g.axes.flat:
                _ = axes.set_xticklabels(axes.get_xticklabels(), rotation=45)
           plt.setp(g.axes, xlabel='biological sample - correction method',
                    ylabel='relative fraction size')
           plt.show()
    
  • let’s have a look at transit times and fraction sizes of AF488 vs AF488 + DioLUVs + different correction methods analysis5-all-param-transit-times.png analysis5-all-param-fraction-sizes.png
  • I also had a look at different triplet parameters, we decided in the end against using them for the sake of simplicity: analysis5-2spec-triplet-3D-transit-times.png analysis5-2spec-triplet-3D-fraction-size.png
  • let’s save the DataFrame used for plotting so that re-using it is simpler:
           all_param.to_csv('data/exp-220120-correlate-ptu/2022-04-05_all-params.csv')
    

2.6 exp-220227-unet

2.6.1 Setup: GPU node on HPC

  1. Setup tmux
    rm: cannot remove home/lex.tmux-local-socket-remote-machine’: No such file or directory
    ye53nis@ara-login01.rz.uni-jena.de’s password:              
    home/lex.tmux-local-socket-remote-machine                
    > ye53nis@ara-login01.rz.uni-jena.de’s password:            
  2. first, connect with the GPU node in the high performance cluster
             cd /
             srun -p gpu_p100 --time=7-10:00:00 --ntasks-per-node=12 --mem-per-cpu=4000 --gres=gpu:1 --pty bash
    
             (base) [ye53nis@node128 /]$
    
  3. Load CUDA and cuDNN in the version compatible to your tensorflow library (see https://www.tensorflow.org/install/source#gpu)
             module load nvidia/cuda/11.2
             module load nvidia/cudnn/8.1
             module list
    
             Currently Loaded Modulefiles:
               1) nvidia/cuda/11.2   2) nvidia/cudnn/8.1
             (base) [ye53nis@node128 /]$
    
  4. Branch out git branch exp-210807-hparams from main (done via magit) and make sure you are on the correct branch
             cd /beegfs/ye53nis/drmed-git
             git checkout exp-220227-unet
    
             Checking out files: 100% (147/147), done.
             M       src/nanosimpy
             Branch exp-220227-unet set up to track remote branch exp-220227-unet from origin.
             Switched to a new branch 'exp-220227-unet'
             (base) [ye53nis@node128 drmed-git]$
    
  5. load conda environment, define MLflow environment variables and create log directory
             conda activate tf
             cd /beegfs/ye53nis/drmed-git
             export MLFLOW_EXPERIMENT_NAME=exp-220227-unet
             export MLFLOW_TRACKING_URI=file:./data/mlruns
             mkdir -p data/exp-220227-unet/jupyter
             mkdir ../tmp
    
             (tf) [ye53nis@node128 drmed-git]$
    
  6. set output directory for matplotlib plots in jupyter. Give this block the name jupyter-set-output-directory to be able to easily call it later.
             (setq org-babel-jupyter-resource-directory "./data/exp-220227-unet/jupyter")
    
    ./data/exp-220227-unet/jupyter
    

2.6.2 Setup: Jupyter node on HPC

  1. Set up tmux (if we haven’t done that before) (#+CALL: setup-tmux[:session local])
         
    sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:
    > ye53nis@ara-login01.rz.uni-jena.de’s password:
  2. Request compute node
             cd /
             srun -p b_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
    
  1. Start Jupyter Lab (#+CALL: jpt-tmux[:session jpmux])
             (tf) [ye53nis@node005 /]$ jupyter lab --no-browser --port=$PORT
             [I 2023-01-18 11:33:10.992 ServerApp] jupyterlab | extension was successfully linked.
             [I 2023-01-18 11:33:20.469 ServerApp] nbclassic | extension was successfully linked.
             [I 2023-01-18 11:33:20.932 ServerApp] nbclassic | extension was successfully loaded.
             [I 2023-01-18 11:33:20.935 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab
             [I 2023-01-18 11:33:20.935 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab
             [I 2023-01-18 11:33:20.943 ServerApp] jupyterlab | extension was successfully loaded.
             [I 2023-01-18 11:33:20.945 ServerApp] Serving notebooks from local directory: /
             [I 2023-01-18 11:33:20.945 ServerApp] Jupyter Server 1.13.5 is running at:
             [I 2023-01-18 11:33:20.945 ServerApp] http://localhost:8889/lab?token=f8a5db2d00721ed0a736f6a6fc2a21020172913cc2337ec0
             [I 2023-01-18 11:33:20.945 ServerApp]  or http://127.0.0.1:8889/lab?token=f8a5db2d00721ed0a736f6a6fc2a21020172913cc2337ec0
             [I 2023-01-18 11:33:20.945 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
             [C 2023-01-18 11:33:21.003 ServerApp]
    
                 To access the server, open this file in a browser:
                     file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-183673-open.html
                 Or copy and paste one of these URLs:
                     http://localhost:8889/lab?token=f8a5db2d00721ed0a736f6a6fc2a21020172913cc2337ec0
                  or http://127.0.0.1:8889/lab?token=f8a5db2d00721ed0a736f6a6fc2a21020172913cc2337ec0
    
    
  2. Create SSH Tunnel for jupyter lab to the local computer (e.g. #+CALL: ssh-tunnel(port="8889", node="node160"))
                         
    sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:              
    Warning: Permanently added ’node005,192.168.193.5’ (ECDSA) to the list of known hosts.
    ye53nis@node005’s password:                  
  3. I started a Python3 kernel using jupyter-server-list-kernels. Then I added the kernel ID to the :PROPERTIES: drawer of this (and following) subtrees.
           python3           c4f3acce-60c4-489d-922c-407da110fd6a   a few seconds ago    idle       1
    
  4. Test (#+CALL: jp-metadata(_long='True)) and record metadata:

             No of CPUs in system: 48
             No of CPUs the current process can use: 24
             load average: (24.2, 19.65, 11.23)
             os.uname():  posix.uname_result(sysname='Linux', nodename='node034', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64')
             PID of process: 102013
             RAM total: 137G, RAM used: 34G, RAM free: 64G
             the current directory: /
             My disk usage:
             Filesystem           Size  Used Avail Use% Mounted on
             /dev/sda1             50G  4.9G   46G  10% /
             devtmpfs              63G     0   63G   0% /dev
             tmpfs                 63G  707M   63G   2% /dev/shm
             tmpfs                 63G  107M   63G   1% /run
             tmpfs                 63G     0   63G   0% /sys/fs/cgroup
             nfs01-ib:/home        80T   71T  9.2T  89% /home
             nfs03-ib:/pool/work  100T   72T   29T  72% /nfsdata
             nfs01-ib:/cluster    2.0T  486G  1.6T  24% /cluster
             /dev/sda5            2.0G   34M  2.0G   2% /tmp
             /dev/sda6            169G  4.0G  165G   3% /local
             /dev/sda3            6.0G  438M  5.6G   8% /var
             beegfs_nodev         524T  441T   84T  85% /beegfs
             tmpfs                 13G     0   13G   0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf:
             #
             # Name                    Version                   Build  Channel
             _libgcc_mutex             0.1                        main
             _openmp_mutex             5.1                       1_gnu
             absl-py                   1.0.0                    pypi_0    pypi
             alembic                   1.7.7                    pypi_0    pypi
             anyio                     3.5.0            py39h06a4308_0
             argon2-cffi               21.3.0             pyhd3eb1b0_0
             argon2-cffi-bindings      21.2.0           py39h7f8727e_0
             asteval                   0.9.26                   pypi_0    pypi
             asttokens                 2.0.5              pyhd3eb1b0_0
             astunparse                1.6.3                    pypi_0    pypi
             attrs                     21.4.0             pyhd3eb1b0_0
             babel                     2.9.1              pyhd3eb1b0_0
             backcall                  0.2.0              pyhd3eb1b0_0
             beautifulsoup4            4.11.1           py39h06a4308_0
             bleach                    4.1.0              pyhd3eb1b0_0
             brotlipy                  0.7.0           py39h27cfd23_1003
             ca-certificates           2022.4.26            h06a4308_0
             cachetools                5.1.0                    pypi_0    pypi
             certifi                   2021.10.8        py39h06a4308_2
             cffi                      1.15.0           py39hd667e15_1
             charset-normalizer        2.0.4              pyhd3eb1b0_0
             click                     8.1.3                    pypi_0    pypi
             cloudpickle               2.0.0                    pypi_0    pypi
             cryptography              37.0.1           py39h9ce1e76_0
             cycler                    0.11.0                   pypi_0    pypi
             cython                    0.29.30                  pypi_0    pypi
             databricks-cli            0.16.6                   pypi_0    pypi
             debugpy                   1.5.1            py39h295c915_0
             decorator                 5.1.1              pyhd3eb1b0_0
             defusedxml                0.7.1              pyhd3eb1b0_0
             docker                    5.0.3                    pypi_0    pypi
             entrypoints               0.4              py39h06a4308_0
             executing                 0.8.3              pyhd3eb1b0_0
             fcsfiles                  2022.2.2                 pypi_0    pypi
             flask                     2.1.2                    pypi_0    pypi
             flatbuffers               1.12                     pypi_0    pypi
             fonttools                 4.33.3                   pypi_0    pypi
             future                    0.18.2                   pypi_0    pypi
             gast                      0.4.0                    pypi_0    pypi
             gitdb                     4.0.9                    pypi_0    pypi
             gitpython                 3.1.27                   pypi_0    pypi
             google-auth               2.6.6                    pypi_0    pypi
             google-auth-oauthlib      0.4.6                    pypi_0    pypi
             google-pasta              0.2.0                    pypi_0    pypi
             greenlet                  1.1.2                    pypi_0    pypi
             grpcio                    1.46.1                   pypi_0    pypi
             gunicorn                  20.1.0                   pypi_0    pypi
             h5py                      3.6.0                    pypi_0    pypi
             idna                      3.3                pyhd3eb1b0_0
             importlib-metadata        4.11.3                   pypi_0    pypi
             ipykernel                 6.9.1            py39h06a4308_0
             ipython                   8.3.0            py39h06a4308_0
             ipython_genutils          0.2.0              pyhd3eb1b0_1
             itsdangerous              2.1.2                    pypi_0    pypi
             jedi                      0.18.1           py39h06a4308_1
             jinja2                    3.0.3              pyhd3eb1b0_0
             joblib                    1.1.0                    pypi_0    pypi
             json5                     0.9.6              pyhd3eb1b0_0
             jsonschema                4.4.0            py39h06a4308_0
             jupyter_client            7.2.2            py39h06a4308_0
             jupyter_core              4.10.0           py39h06a4308_0
             jupyter_server            1.13.5             pyhd3eb1b0_0
             jupyterlab                3.3.2              pyhd3eb1b0_0
             jupyterlab_pygments       0.1.2                      py_0
             jupyterlab_server         2.12.0           py39h06a4308_0
             keras                     2.9.0                    pypi_0    pypi
             keras-preprocessing       1.1.2                    pypi_0    pypi
             kiwisolver                1.4.2                    pypi_0    pypi
             ld_impl_linux-64          2.38                 h1181459_0
             libclang                  14.0.1                   pypi_0    pypi
             libffi                    3.3                  he6710b0_2
             libgcc-ng                 11.2.0               h1234567_0
             libgomp                   11.2.0               h1234567_0
             libsodium                 1.0.18               h7b6447c_0
             libstdcxx-ng              11.2.0               h1234567_0
             lmfit                     1.0.3                    pypi_0    pypi
             mako                      1.2.0                    pypi_0    pypi
             markdown                  3.3.7                    pypi_0    pypi
             markupsafe                2.0.1            py39h27cfd23_0
             matplotlib                3.5.2                    pypi_0    pypi
             matplotlib-inline         0.1.2              pyhd3eb1b0_2
             mistune                   0.8.4           py39h27cfd23_1000
             mlflow                    1.26.0                   pypi_0    pypi
             multipletau               0.3.3                    pypi_0    pypi
             nbclassic                 0.3.5              pyhd3eb1b0_0
             nbclient                  0.5.13           py39h06a4308_0
             nbconvert                 6.4.4            py39h06a4308_0
             nbformat                  5.3.0            py39h06a4308_0
             ncurses                   6.3                  h7f8727e_2
             nest-asyncio              1.5.5            py39h06a4308_0
             notebook                  6.4.11           py39h06a4308_0
             numpy                     1.22.3                   pypi_0    pypi
             oauthlib                  3.2.0                    pypi_0    pypi
             openssl                   1.1.1o               h7f8727e_0
             opt-einsum                3.3.0                    pypi_0    pypi
             packaging                 21.3               pyhd3eb1b0_0
             pandas                    1.4.2                    pypi_0    pypi
             pandocfilters             1.5.0              pyhd3eb1b0_0
             parso                     0.8.3              pyhd3eb1b0_0
             pexpect                   4.8.0              pyhd3eb1b0_3
             pickleshare               0.7.5           pyhd3eb1b0_1003
             pillow                    9.1.1                    pypi_0    pypi
             pip                       21.2.4           py39h06a4308_0
             prometheus-flask-exporter 0.20.1                   pypi_0    pypi
             prometheus_client         0.13.1             pyhd3eb1b0_0
             prompt-toolkit            3.0.20             pyhd3eb1b0_0
             protobuf                  3.20.1                   pypi_0    pypi
             ptyprocess                0.7.0              pyhd3eb1b0_2
             pure_eval                 0.2.2              pyhd3eb1b0_0
             pyasn1                    0.4.8                    pypi_0    pypi
             pyasn1-modules            0.2.8                    pypi_0    pypi
             pycparser                 2.21               pyhd3eb1b0_0
             pygments                  2.11.2             pyhd3eb1b0_0
             pyjwt                     2.4.0                    pypi_0    pypi
             pyopenssl                 22.0.0             pyhd3eb1b0_0
             pyparsing                 3.0.4              pyhd3eb1b0_0
             pyrsistent                0.18.0           py39heee7806_0
             pysocks                   1.7.1            py39h06a4308_0
             python                    3.9.12               h12debd9_0
             python-dateutil           2.8.2              pyhd3eb1b0_0
             python-fastjsonschema     2.15.1             pyhd3eb1b0_0
             pytz                      2021.3             pyhd3eb1b0_0
             pyyaml                    6.0                      pypi_0    pypi
             pyzmq                     22.3.0           py39h295c915_2
             querystring-parser        1.2.4                    pypi_0    pypi
             readline                  8.1.2                h7f8727e_1
             requests                  2.27.1             pyhd3eb1b0_0
             requests-oauthlib         1.3.1                    pypi_0    pypi
             rsa                       4.8                      pypi_0    pypi
             scikit-learn              1.1.0                    pypi_0    pypi
             scipy                     1.8.1                    pypi_0    pypi
             seaborn                   0.11.2                   pypi_0    pypi
             send2trash                1.8.0              pyhd3eb1b0_1
             setuptools                61.2.0           py39h06a4308_0
             six                       1.16.0             pyhd3eb1b0_1
             smmap                     5.0.0                    pypi_0    pypi
             sniffio                   1.2.0            py39h06a4308_1
             soupsieve                 2.3.1              pyhd3eb1b0_0
             sqlalchemy                1.4.36                   pypi_0    pypi
             sqlite                    3.38.3               hc218d9a_0
             sqlparse                  0.4.2                    pypi_0    pypi
             stack_data                0.2.0              pyhd3eb1b0_0
             tabulate                  0.8.9                    pypi_0    pypi
             tensorboard               2.9.0                    pypi_0    pypi
             tensorboard-data-server   0.6.1                    pypi_0    pypi
             tensorboard-plugin-wit    1.8.1                    pypi_0    pypi
             tensorflow                2.9.0                    pypi_0    pypi
             tensorflow-estimator      2.9.0                    pypi_0    pypi
             tensorflow-io-gcs-filesystem 0.26.0                   pypi_0    pypi
             termcolor                 1.1.0                    pypi_0    pypi
             terminado                 0.13.1           py39h06a4308_0
             testpath                  0.5.0              pyhd3eb1b0_0
             threadpoolctl             3.1.0                    pypi_0    pypi
             tk                        8.6.11               h1ccaba5_1
             tornado                   6.1              py39h27cfd23_0
             traitlets                 5.1.1              pyhd3eb1b0_0
             typing-extensions         4.1.1                hd3eb1b0_0
             typing_extensions         4.1.1              pyh06a4308_0
             tzdata                    2022a                hda174b7_0
             uncertainties             3.1.6                    pypi_0    pypi
             urllib3                   1.26.9           py39h06a4308_0
             wcwidth                   0.2.5              pyhd3eb1b0_0
             webencodings              0.5.1            py39h06a4308_1
             websocket-client          0.58.0           py39h06a4308_4
             werkzeug                  2.1.2                    pypi_0    pypi
             wheel                     0.37.1             pyhd3eb1b0_0
             wrapt                     1.14.1                   pypi_0    pypi
             xz                        5.2.5                h7f8727e_1
             zeromq                    4.3.4                h2531618_0
             zipp                      3.8.0                    pypi_0    pypi
             zlib                      1.2.12               h7f8727e_2
    
             Note: you may need to restart the kernel to use updated packages.
             {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint',
              'SLURM_NODELIST': 'node034',
              'SLURM_JOB_NAME': 'bash',
              'XDG_SESSION_ID': '135386',
              'SLURMD_NODENAME': 'node034',
              'SLURM_TOPOLOGY_ADDR': 'node034',
              'SLURM_NTASKS_PER_NODE': '24',
              'HOSTNAME': 'login01',
              'SLURM_PRIO_PROCESS': '0',
              'SLURM_SRUN_COMM_PORT': '40968',
              'SHELL': '/bin/bash',
              'TERM': 'xterm-color',
              'SLURM_JOB_QOS': 'qstand',
              'SLURM_PTY_WIN_ROW': '48',
              'HISTSIZE': '1000',
              'TMPDIR': '/tmp',
              'SLURM_TOPOLOGY_ADDR_PATTERN': 'node',
              'SSH_CLIENT': '10.231.185.64 42170 22',
              'CONDA_SHLVL': '2',
              'CONDA_PROMPT_MODIFIER': '(tf) ',
              'WINDOWID': '0',
              'QTDIR': '/usr/lib64/qt-3.3',
              'QTINC': '/usr/lib64/qt-3.3/include',
              'SSH_TTY': '/dev/pts/19',
              'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
              'QT_GRAPHICSSYSTEM_CHECKED': '1',
              'SLURM_NNODES': '1',
              'USER': 'ye53nis',
              'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:',
              'CONDA_EXE': '/cluster/miniconda3/bin/conda',
              'SLURM_STEP_NUM_NODES': '1',
              'SLURM_JOBID': '1657237',
              'SRUN_DEBUG': '3',
              'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
              'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'SLURM_NTASKS': '24',
              'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5',
              'SLURM_STEP_ID': '0',
              'TMUX': '/tmp/tmux-67339/default,14861,2',
              '_CE_CONDA': '',
              'CONDA_PREFIX_1': '/cluster/miniconda3',
              'SLURM_STEP_LAUNCHER_PORT': '40968',
              'SLURM_TASKS_PER_NODE': '24',
              'MAIL': '/var/spool/mail/ye53nis',
              'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/home/lex/Programme/miniconda3/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin',
              'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448',
              'SLURM_JOB_ID': '1657237',
              'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf',
              'SLURM_JOB_USER': 'ye53nis',
              'SLURM_STEPID': '0',
              'PWD': '/',
              'SLURM_SRUN_COMM_HOST': '192.168.192.5',
              'LANG': 'en_US.UTF-8',
              'SLURM_PTY_WIN_COL': '236',
              'SLURM_UMASK': '0022',
              'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles',
              'SLURM_JOB_UID': '67339',
              'LOADEDMODULES': '',
              'SLURM_NODEID': '0',
              'TMUX_PANE': '%2',
              'SLURM_SUBMIT_DIR': '/',
              'SLURM_TASK_PID': '100551',
              'SLURM_NPROCS': '24',
              'SLURM_CPUS_ON_NODE': '24',
              'SLURM_DISTRIBUTION': 'block',
              'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
              'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'SLURM_PROCID': '0',
              'HISTCONTROL': 'ignoredups',
              '_CE_M': '',
              'SLURM_JOB_NODELIST': 'node034',
              'SLURM_PTY_PORT': '43329',
              'HOME': '/home/ye53nis',
              'SHLVL': '3',
              'SLURM_LOCALID': '0',
              'SLURM_JOB_GID': '13280',
              'SLURM_JOB_CPUS_PER_NODE': '24',
              'SLURM_CLUSTER_NAME': 'hpc',
              'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
              'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23',
              'SLURM_SUBMIT_HOST': 'login01',
              'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
              'SLURM_JOB_PARTITION': 'b_standard',
              'MATHEMATICA_HOME': '/cluster/apps/mathematica/12.3',
              'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python',
              'LOGNAME': 'ye53nis',
              'SLURM_STEP_NUM_TASKS': '24',
              'QTLIB': '/usr/lib64/qt-3.3/lib',
              'SLURM_JOB_ACCOUNT': 'iaob',
              'SLURM_JOB_NUM_NODES': '1',
              'MODULESHOME': '/usr/share/Modules',
              'CONDA_DEFAULT_ENV': 'tf',
              'LESSOPEN': '||/usr/bin/lesspipe.sh %s',
              'SLURM_STEP_TASKS_PER_NODE': '24',
              'PORT': '8889',
              'SLURM_STEP_NODELIST': 'node034',
              'DISPLAY': ':0',
              'XDG_RUNTIME_DIR': '',
              'XAUTHORITY': '/home/lex/.Xauthority',
              'BASH_FUNC_module()': '() {  eval `/usr/bin/modulecmd bash $*`\n}',
              '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter',
              'PYDEVD_USE_FRAME_EVAL': 'NO',
              'JPY_PARENT_PID': '100629',
              'CLICOLOR': '1',
              'PAGER': 'cat',
              'GIT_PAGER': 'cat',
              'MPLBACKEND': 'module://matplotlib_inline.backend_inline'}
    

2.6.3 Setup: Jupyter on local computer

  1. on our local machine we don’t need tmux. A simple sh command is enough. So let’s start the conda environment in the sh session local and start jupterlab there.
            conda activate tf
            jupyter lab --no-browser --port=8888
    
          [I 2022-05-22 14:24:33.496 ServerApp] jupyterlab | extension was successfully linked.
          [I 2022-05-22 14:24:33.745 ServerApp] nbclassic | extension was successfully linked.
          [I 2022-05-22 14:24:33.786 LabApp] JupyterLab extension loaded from /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/jupyterlab
          [I 2022-05-22 14:24:33.786 LabApp] JupyterLab application directory is /home/lex/Programme/miniconda3/envs/tf/share/jupyter/lab
          [I 2022-05-22 14:24:33.790 ServerApp] jupyterlab | extension was successfully loaded.
          [I 2022-05-22 14:24:33.799 ServerApp] nbclassic | extension was successfully loaded.
          [I 2022-05-22 14:24:33.800 ServerApp] Serving notebooks from local directory: /home/lex/Programme/drmed-git
          [I 2022-05-22 14:24:33.800 ServerApp] Jupyter Server 1.4.1 is running at:
          [I 2022-05-22 14:24:33.800 ServerApp] http://localhost:8888/lab?token=1d0362f7e2280b0060620c901abee258910e16c879bc0870
          [I 2022-05-22 14:24:33.800 ServerApp]  or http://127.0.0.1:8888/lab?token=1d0362f7e2280b0060620c901abee258910e16c879bc0870
          [I 2022-05-22 14:24:33.800 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
          [C 2022-05-22 14:24:33.804 ServerApp]
    
              To access the server, open this file in a browser:
                  file:///home/lex/.local/share/jupyter/runtime/jpserver-1749996-open.html
              Or copy and paste one of these URLs:
                  http://localhost:8888/lab?token=1d0362f7e2280b0060620c901abee258910e16c879bc0870
               or http://127.0.0.1:8888/lab?token=1d0362f7e2280b0060620c901abee258910e16c879bc0870
    
    
  2. I started a Python3 kernel using jupyter-server-list-kernels. Then I added the kernel ID to the :PROPERTIES: drawer of this (and following) subtrees.
          python3           03038b73-b2b5-49ce-a1dc-21afb6247d0f   a few seconds ago    starting   0
    
  3. Test: (#+CALL: jp-metadata(_long='True))
            No of CPUs in system: 4
            No of CPUs the current process can use: 4
            load average: (0.93115234375, 0.97216796875, 0.5595703125)
            os.uname():  posix.uname_result(sysname='Linux', nodename='Topialex', release='5.15.28-1-MANJARO', version='#1 SMP PREEMPT Fri Mar 11 14:12:57 UTC 2022', machine='x86_64')
            PID of process: 8991
            RAM total: 16Gi, RAM used: 1,8Gi, RAM free: 12Gi
            the current directory: /home/lex/Programme/drmed-git
            My disk usage:
            Filesystem      Size  Used Avail Use% Mounted on
            dev             3,9G     0  3,9G   0% /dev
            run             3,9G  1,5M  3,9G   1% /run
            /dev/sda2       167G  131G   28G  83% /
            tmpfs           3,9G   63M  3,8G   2% /dev/shm
            tmpfs           3,9G  4,2M  3,9G   1% /tmp
            /dev/sda1       300M  264K  300M   1% /boot/efi
            tmpfs           784M   80K  784M   1% /run/user/1000# packages in environment at /home/lex/Programme/miniconda3/envs/tf:
            #
            # Name                    Version                   Build  Channel
            _libgcc_mutex             0.1                        main
            _openmp_mutex             4.5                       1_gnu
            absl-py                   1.0.0                    pypi_0    pypi
            alembic                   1.4.1                    pypi_0    pypi
            anyio                     2.2.0            py39h06a4308_1
            argon2-cffi               20.1.0           py39h27cfd23_1
            asteval                   0.9.25                   pypi_0    pypi
            astroid                   2.9.2                    pypi_0    pypi
            astunparse                1.6.3                    pypi_0    pypi
            async_generator           1.10               pyhd3eb1b0_0
            attrs                     21.2.0             pyhd3eb1b0_0
            babel                     2.9.1              pyhd3eb1b0_0
            backcall                  0.2.0              pyhd3eb1b0_0
            bleach                    4.0.0              pyhd3eb1b0_0
            brotlipy                  0.7.0           py39h27cfd23_1003
            ca-certificates           2021.10.26           h06a4308_2
            cachetools                4.2.4                    pypi_0    pypi
            certifi                   2021.10.8        py39h06a4308_0
            cffi                      1.14.6           py39h400218f_0
            charset-normalizer        2.0.4              pyhd3eb1b0_0
            click                     8.0.3                    pypi_0    pypi
            cloudpickle               2.0.0                    pypi_0    pypi
            cryptography              36.0.0           py39h9ce1e76_0
            cycler                    0.11.0                   pypi_0    pypi
            cython                    0.29.26                  pypi_0    pypi
            databricks-cli            0.16.2                   pypi_0    pypi
            debugpy                   1.5.1            py39h295c915_0
            decorator                 5.1.0              pyhd3eb1b0_0
            defusedxml                0.7.1              pyhd3eb1b0_0
            docker                    5.0.3                    pypi_0    pypi
            entrypoints               0.3              py39h06a4308_0
            fcsfiles                  2021.6.6                 pypi_0    pypi
            flake8                    4.0.1                    pypi_0    pypi
            flask                     2.0.2                    pypi_0    pypi
            flatbuffers               2.0                      pypi_0    pypi
            focuspoint                0.1                      pypi_0    pypi
            fonttools                 4.28.5                   pypi_0    pypi
            future                    0.18.2                   pypi_0    pypi
            gast                      0.4.0                    pypi_0    pypi
            gitdb                     4.0.9                    pypi_0    pypi
            gitpython                 3.1.24                   pypi_0    pypi
            google-auth               2.3.3                    pypi_0    pypi
            google-auth-oauthlib      0.4.6                    pypi_0    pypi
            google-pasta              0.2.0                    pypi_0    pypi
            greenlet                  1.1.2                    pypi_0    pypi
            grpcio                    1.43.0                   pypi_0    pypi
            gunicorn                  20.1.0                   pypi_0    pypi
            h5py                      3.6.0                    pypi_0    pypi
            idna                      3.3                pyhd3eb1b0_0
            importlib-metadata        4.8.2            py39h06a4308_0
            importlib_metadata        4.8.2                hd3eb1b0_0
            ipykernel                 6.4.1            py39h06a4308_1
            ipython                   7.29.0           py39hb070fc8_0
            ipython_genutils          0.2.0              pyhd3eb1b0_1
            isort                     5.10.1                   pypi_0    pypi
            itsdangerous              2.0.1                    pypi_0    pypi
            jedi                      0.18.0           py39h06a4308_1
            jinja2                    3.0.2              pyhd3eb1b0_0
            joblib                    1.1.0                    pypi_0    pypi
            json5                     0.9.6              pyhd3eb1b0_0
            jsonschema                3.2.0              pyhd3eb1b0_2
            jupyter_client            7.1.0              pyhd3eb1b0_0
            jupyter_core              4.9.1            py39h06a4308_0
            jupyter_server            1.4.1            py39h06a4308_0
            jupyterlab                3.2.1              pyhd3eb1b0_1
            jupyterlab_pygments       0.1.2                      py_0
            jupyterlab_server         2.8.2              pyhd3eb1b0_0
            keras                     2.7.0                    pypi_0    pypi
            keras-preprocessing       1.1.2                    pypi_0    pypi
            kiwisolver                1.3.2                    pypi_0    pypi
            lazy-object-proxy         1.7.1                    pypi_0    pypi
            ld_impl_linux-64          2.35.1               h7274673_9
            libclang                  12.0.0                   pypi_0    pypi
            libffi                    3.3                  he6710b0_2
            libgcc-ng                 9.3.0               h5101ec6_17
            libgomp                   9.3.0               h5101ec6_17
            libsodium                 1.0.18               h7b6447c_0
            libstdcxx-ng              9.3.0               hd4cf53a_17
            lmfit                     1.0.3                    pypi_0    pypi
            mako                      1.1.6                    pypi_0    pypi
            markdown                  3.3.6                    pypi_0    pypi
            markupsafe                2.0.1            py39h27cfd23_0
            matplotlib                3.5.1                    pypi_0    pypi
            matplotlib-inline         0.1.2              pyhd3eb1b0_2
            mccabe                    0.6.1                    pypi_0    pypi
            mistune                   0.8.4           py39h27cfd23_1000
            mlflow                    1.22.0                   pypi_0    pypi
            multipletau               0.3.3                    pypi_0    pypi
            mypy                      0.930                    pypi_0    pypi
            mypy-extensions           0.4.3                    pypi_0    pypi
            nbclassic                 0.2.6              pyhd3eb1b0_0
            nbclient                  0.5.3              pyhd3eb1b0_0
            nbconvert                 6.1.0            py39h06a4308_0
            nbformat                  5.1.3              pyhd3eb1b0_0
            ncurses                   6.3                  h7f8727e_2
            nest-asyncio              1.5.1              pyhd3eb1b0_0
            nodeenv                   1.6.0                    pypi_0    pypi
            notebook                  6.4.6            py39h06a4308_0
            numpy                     1.21.5                   pypi_0    pypi
            oauthlib                  3.1.1                    pypi_0    pypi
            openssl                   1.1.1l               h7f8727e_0
            opt-einsum                3.3.0                    pypi_0    pypi
            packaging                 21.3               pyhd3eb1b0_0
            pandas                    1.3.5                    pypi_0    pypi
            pandocfilters             1.4.3            py39h06a4308_1
            parso                     0.8.2              pyhd3eb1b0_0
            pexpect                   4.8.0              pyhd3eb1b0_3
            pickleshare               0.7.5           pyhd3eb1b0_1003
            pillow                    8.4.0                    pypi_0    pypi
            pip                       21.2.4           py39h06a4308_0
            platformdirs              2.4.1                    pypi_0    pypi
            prometheus-flask-exporter 0.18.7                   pypi_0    pypi
            prometheus_client         0.12.0             pyhd3eb1b0_0
            prompt-toolkit            3.0.20             pyhd3eb1b0_0
            protobuf                  3.19.1                   pypi_0    pypi
            ptyprocess                0.7.0              pyhd3eb1b0_2
            pyasn1                    0.4.8                    pypi_0    pypi
            pyasn1-modules            0.2.8                    pypi_0    pypi
            pycodestyle               2.8.0                    pypi_0    pypi
            pycparser                 2.21               pyhd3eb1b0_0
            pydot                     1.4.2                    pypi_0    pypi
            pyflakes                  2.4.0                    pypi_0    pypi
            pygments                  2.10.0             pyhd3eb1b0_0
            pylint                    2.12.2                   pypi_0    pypi
            pyopenssl                 21.0.0             pyhd3eb1b0_1
            pyparsing                 3.0.4              pyhd3eb1b0_0
            pyright                   0.0.13                   pypi_0    pypi
            pyrsistent                0.18.0           py39heee7806_0
            pysocks                   1.7.1            py39h06a4308_0
            python                    3.9.7                h12debd9_1
            python-dateutil           2.8.2              pyhd3eb1b0_0
            python-editor             1.0.4                    pypi_0    pypi
            pytz                      2021.3             pyhd3eb1b0_0
            pyyaml                    6.0                      pypi_0    pypi
            pyzmq                     22.3.0           py39h295c915_2
            querystring-parser        1.2.4                    pypi_0    pypi
            readline                  8.1                  h27cfd23_0
            requests                  2.26.0             pyhd3eb1b0_0
            requests-oauthlib         1.3.0                    pypi_0    pypi
            rsa                       4.8                      pypi_0    pypi
            scikit-learn              1.0.2                    pypi_0    pypi
            scipy                     1.7.3                    pypi_0    pypi
            seaborn                   0.11.2                   pypi_0    pypi
            send2trash                1.8.0              pyhd3eb1b0_1
            setuptools                58.0.4           py39h06a4308_0
            six                       1.16.0             pyhd3eb1b0_0
            smmap                     5.0.0                    pypi_0    pypi
            sniffio                   1.2.0            py39h06a4308_1
            sqlalchemy                1.4.29                   pypi_0    pypi
            sqlite                    3.37.0               hc218d9a_0
            sqlparse                  0.4.2                    pypi_0    pypi
            tabulate                  0.8.9                    pypi_0    pypi
            tensorboard               2.7.0                    pypi_0    pypi
            tensorboard-data-server   0.6.1                    pypi_0    pypi
            tensorboard-plugin-wit    1.8.0                    pypi_0    pypi
            tensorflow                2.7.0                    pypi_0    pypi
            tensorflow-estimator      2.7.0                    pypi_0    pypi
            tensorflow-io-gcs-filesystem 0.23.1                   pypi_0    pypi
            termcolor                 1.1.0                    pypi_0    pypi
            terminado                 0.9.4            py39h06a4308_0
            testpath                  0.5.0              pyhd3eb1b0_0
            threadpoolctl             3.0.0                    pypi_0    pypi
            tk                        8.6.11               h1ccaba5_0
            toml                      0.10.2                   pypi_0    pypi
            tomli                     2.0.0                    pypi_0    pypi
            tornado                   6.1              py39h27cfd23_0
            traitlets                 5.1.1              pyhd3eb1b0_0
            typing-extensions         4.0.1                    pypi_0    pypi
            tzdata                    2021e                hda174b7_0
            uncertainties             3.1.6                    pypi_0    pypi
            urllib3                   1.26.7             pyhd3eb1b0_0
            wcwidth                   0.2.5              pyhd3eb1b0_0
            webencodings              0.5.1            py39h06a4308_1
            websocket-client          1.2.3                    pypi_0    pypi
            werkzeug                  2.0.2                    pypi_0    pypi
            wheel                     0.37.0             pyhd3eb1b0_1
            wrapt                     1.13.3                   pypi_0    pypi
            xz                        5.2.5                h7b6447c_0
            zeromq                    4.3.4                h2531618_0
            zipp                      3.6.0              pyhd3eb1b0_0
            zlib                      1.2.11               h7f8727e_4
    
            Note: you may need to restart the kernel to use updated packages.
            {'SHELL': '/bin/bash',
             'SESSION_MANAGER': 'local/Topialex:@/tmp/.ICE-unix/878,unix/Topialex:/tmp/.ICE-unix/878',
             'XDG_CONFIG_DIRS': '/home/lex/.config/kdedefaults:/etc/xdg',
             'XDG_SESSION_PATH': '/org/freedesktop/DisplayManager/Session1',
             'CONDA_EXE': '/home/lex/Programme/miniconda3/bin/conda',
             '_CE_M': '',
             'LANGUAGE': 'en_GB',
             'TERMCAP': '',
             'LC_ADDRESS': 'de_DE.UTF-8',
             'LC_NAME': 'de_DE.UTF-8',
             'INSIDE_EMACS': '27.2,comint',
             'DESKTOP_SESSION': 'plasma',
             'LC_MONETARY': 'de_DE.UTF-8',
             'GTK_RC_FILES': '/etc/gtk/gtkrc:/home/lex/.gtkrc:/home/lex/.config/gtkrc',
             'XCURSOR_SIZE': '24',
             'GTK_MODULES': 'canberra-gtk-module',
             'XDG_SEAT': 'seat0',
             'PWD': '/home/lex/Programme/drmed-git',
             'LOGNAME': 'lex',
             'XDG_SESSION_DESKTOP': 'KDE',
             'XDG_SESSION_TYPE': 'x11',
             'CONDA_PREFIX': '/home/lex/Programme/miniconda3/envs/tf',
             'DSSI_PATH': '/home/lex/.dssi:/usr/lib/dssi:/usr/local/lib/dssi',
             'SYSTEMD_EXEC_PID': '768',
             'XAUTHORITY': '/home/lex/.Xauthority',
             'MOTD_SHOWN': 'pam',
             'GTK2_RC_FILES': '/etc/gtk-2.0/gtkrc:/home/lex/.gtkrc-2.0:/home/lex/.config/gtkrc-2.0',
             'HOME': '/home/lex',
             'LANG': 'de_DE.UTF-8',
             'LC_PAPER': 'de_DE.UTF-8',
             'VST_PATH': '/home/lex/.vst:/usr/lib/vst:/usr/local/lib/vst',
             'XDG_CURRENT_DESKTOP': 'KDE',
             'COLUMNS': '80',
             'CONDA_PROMPT_MODIFIER': '',
             'XDG_SEAT_PATH': '/org/freedesktop/DisplayManager/Seat0',
             'KDE_SESSION_UID': '1000',
             'XDG_SESSION_CLASS': 'user',
             'LC_IDENTIFICATION': 'de_DE.UTF-8',
             'TERM': 'xterm-color',
             '_CE_CONDA': '',
             'USER': 'lex',
             'CONDA_SHLVL': '1',
             'KDE_SESSION_VERSION': '5',
             'PAM_KWALLET5_LOGIN': '/run/user/1000/kwallet5.socket',
             'DISPLAY': ':0',
             'SHLVL': '2',
             'LC_TELEPHONE': 'de_DE.UTF-8',
             'LC_MEASUREMENT': 'de_DE.UTF-8',
             'XDG_VTNR': '1',
             'XDG_SESSION_ID': '2',
             'QT_LINUX_ACCESSIBILITY_ALWAYS_ON': '1',
             'CONDA_PYTHON_EXE': '/home/lex/Programme/miniconda3/bin/python',
             'MOZ_PLUGIN_PATH': '/usr/lib/mozilla/plugins',
             'XDG_RUNTIME_DIR': '/run/user/1000',
             'CONDA_DEFAULT_ENV': 'tf',
             'LC_TIME': 'de_DE.UTF-8',
             'QT_AUTO_SCREEN_SCALE_FACTOR': '0',
             'XCURSOR_THEME': 'breeze_cursors',
             'XDG_DATA_DIRS': '/home/lex/.local/share/flatpak/exports/share:/var/lib/flatpak/exports/share:/usr/local/share:/usr/share:/var/lib/snapd/desktop',
             'KDE_FULL_SESSION': 'true',
             'BROWSER': 'vivaldi-stable',
             'PATH': '/home/lex/Programme/miniconda3/envs/tf/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin',
             'DBUS_SESSION_BUS_ADDRESS': 'unix:path=/run/user/1000/bus',
             'LV2_PATH': '/home/lex/.lv2:/usr/lib/lv2:/usr/local/lib/lv2',
            'KDE_APPLICATIONS_AS_SCOPE': '1',
            'MAIL': '/var/spool/mail/lex',
            'LC_NUMERIC': 'de_DE.UTF-8',
            'LADSPA_PATH': '/home/lex/.ladspa:/usr/lib/ladspa:/usr/local/lib/ladspa',
            'CADENCE_AUTO_STARTED': 'true',
            '_': '/home/lex/Programme/miniconda3/envs/tf/bin/jupyter',
            'PYDEVD_USE_FRAME_EVAL': 'NO',
            'JPY_PARENT_PID': '8414',
            'CLICOLOR': '1',
            'PAGER': 'cat',
            'GIT_PAGER': 'cat',
            'MPLBACKEND': 'module://matplotlib_inline.backend_inline'}
    
    5f083adb-6166-4a49-9fa5-08e37046cbfd
    

2.6.4 Setup: Node for running Mlflow UI

  1. Create mlflow tmux session and start mlflow ui
              conda activate tf
              mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns -p 5001
    
              (tf) [ye53nis@login01 ~]$ mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns -p 5001
              [2021-08-08 14:47:33 +0200] [5106] [INFO] Starting gunicorn 20.1.0
              [2021-08-08 14:47:33 +0200] [5106] [INFO] Listening at: http://127.0.0.1:5001 (5106)
              [2021-08-08 14:47:33 +0200] [5106] [INFO] Using worker: sync
              [2021-08-08 14:47:33 +0200] [5115] [INFO] Booting worker with pid: 5115
    
  2. SHH tunnel the mflow session to the local computer (#+CALL: ssh-tunnel[:session local3](port="5001", node="login01"))
                     
    sh-5.1$ sh-5.1$
    ye53nis@ara-login01.rz.uni-jena.de’s password:          
    ye53nis@login01’s password:              
    bind: Address already in use
           
    Last login: Tue Aug 17 18:03:52 2021 from 10.231.188.20

2.6.5 Setup: Record GPU metadata & git

  1. Current directory, last 10 git commits

            pwd
            git log -10
    
            (tf) [ye53nis@node128 drmed-git]$ pwd
            /beegfs/ye53nis/drmed-git
            (tf) [ye53nis@node128 drmed-git]$ git log -10
            commit 4c2dc79f0483090d3af2591891c2349b0a48115f
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Thu Mar 3 14:10:45 2022 +0100
    
                Fix normalize() for l1 and l2 in preprocessing
    
            commit 39baf02076ba8fbcf444bfa11108d302bcb4c45f
            Author: Alex Seltmann <seltmann@posteo.de>
            Date:   Sun Feb 27 22:20:22 2022 +0100
    
                Add comparison file from exp-210807-hparams
    
            commit d51b11eda090b9301e783ec35bdfd26c7bf0709c
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Sun Feb 27 18:40:00 2022 +0100
    
                fix model input_size to None; else to crop_size
    
            commit c637444d8b798603629f6f0bd72ee55af7f81a5f
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Sun Feb 27 18:39:29 2022 +0100
    
                Fix function call correlate_and_fit
    
            commit 291c6619c12bc39d526137a43d976b3cb4881e50
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Sat Feb 26 20:04:07 2022 +0100
    
                Fix scale_trace; simplify tf_pad_trace call
    
            commit dcca8b9e17909a95b824c8a7b1fec52eeed198c3
            Author: Apoplex <oligolex@vivaldi.net>
            Date:   Thu Feb 24 16:11:39 2022 +0100
    
                test tf_pad_trace
    
            commit 6cf2da85748ef13f2e752bea8989a6d31549ced3
            (tf) [ye53nis@node128 drmed-git]$
    
  2. GPU, CPU, RAM, file system, env variables, top info
            nvcc -V
            echo --------------------
            lscpu
            echo --------------------
            nproc
            echo --------------------
            free -h
            echo --------------------
            df -h
            echo --------------------
            printenv
            echo --------------------
            top -bcn1 -w512 | head -n 15
    
            (tf) [ye53nis@node128 drmed-git]$ nvcc -V
            nvcc: NVIDIA (R) Cuda compiler driver
            Copyright (c) 2005-2020 NVIDIA Corporation
            Built on Mon_Nov_30_19:08:53_PST_2020
            Cuda compilation tools, release 11.2, V11.2.67
            Build cuda_11.2.r11.2/compiler.29373293_0
            --------------------
            (tf) [ye53nis@node128 drmed-git]$ lscpu
            Architecture:          x86_64
            CPU op-mode(s):        32-bit, 64-bit
            Byte Order:            Little Endian
            CPU(s):                48
            On-line CPU(s) list:   0-47
            Thread(s) per core:    2
            Core(s) per socket:    12
            Socket(s):             2
            NUMA node(s):          4
            Vendor ID:             GenuineIntel
            CPU family:            6
            Model:                 79
            Model name:            Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
            Stepping:              1
            CPU MHz:               1203.527
            CPU max MHz:           2900.0000
            CPU min MHz:           1200.0000
            BogoMIPS:              4399.79
            Virtualization:        VT-x
            L1d cache:             32K
            L1i cache:             32K
            L2 cache:              256K
            L3 cache:              15360K
            NUMA node0 CPU(s):     0-5,24-29
            NUMA node1 CPU(s):     6-11,30-35
            NUMA node2 CPU(s):     12-17,36-41
            NUMA node3 CPU(s):     18-23,42-47
            Flags:                 fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonst
            op_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 cd
            p_l3 intel_ppin intel_pt ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a rdseed adx smap xsaveopt cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida
            arat pln pts spec_ctrl intel_stibp
            --------------------
            (tf) [ye53nis@node128 drmed-git]$ nproc
            12
            --------------------
            (tf) [ye53nis@node128 drmed-git]$ free -h
                          total        used        free      shared  buff/cache   available
            Mem:           125G        1.1G        116G        230M        8.6G        123G
            Swap:           11G          0B         11G
            --------------------
            (tf) [ye53nis@node128 drmed-git]$ df -h
            Filesystem           Size  Used Avail Use% Mounted on
            /dev/sda1             50G  7.0G   44G  14% /
            devtmpfs              63G     0   63G   0% /dev
            tmpfs                 63G  188M   63G   1% /dev/shm
            tmpfs                 63G   43M   63G   1% /run
            tmpfs                 63G     0   63G   0% /sys/fs/cgroup
            nfs01-ib:/cluster    2.0T  469G  1.6T  23% /cluster
            nfs01-ib:/home        80T   68T   13T  85% /home
            nfs03-ib:/pool/work  100T   71T   29T  71% /nfsdata
            /dev/sda3            6.0G  635M  5.4G  11% /var
            /dev/sda6            169G  354M  169G   1% /local
            /dev/sda5            2.0G   35M  2.0G   2% /tmp
            beegfs_nodev         524T  508T   17T  97% /beegfs
            --------------------
            (tf) [ye53nis@node128 drmed-git]$ printenv
            SLURM_CHECKPOINT_IMAGE_DIR=/var/slurm/checkpoint
            SLURM_NODELIST=node128
            CUDA_PATH=/cluster/nvidia/cuda/11.2
            SLURM_JOB_NAME=bash
            CUDA_INC_PATH=/cluster/nvidia/cuda/11.2/include
            XDG_SESSION_ID=44301
            SLURMD_NODENAME=node128
            SLURM_TOPOLOGY_ADDR=node128
            SLURM_NTASKS_PER_NODE=12
            HOSTNAME=login01
            SLURM_PRIO_PROCESS=0
            SLURM_SRUN_COMM_PORT=38740
            SHELL=/bin/bash
            TERM=screen
            MLFLOW_EXPERIMENT_NAME=exp-220227-unet
            SLURM_JOB_QOS=qstand
            SLURM_PTY_WIN_ROW=53
            HISTSIZE=1000
            TMPDIR=/tmp
            SLURM_TOPOLOGY_ADDR_PATTERN=node
            SSH_CLIENT=10.231.181.128 49370 22
            INCLUDEDIR=/cluster/nvidia/cuda/11.2/include
            CONDA_SHLVL=2
            CONDA_PROMPT_MODIFIER=(tf)
            OLDPWD=/beegfs/ye53nis/drmed-git
            QTDIR=/usr/lib64/qt-3.3
            QTINC=/usr/lib64/qt-3.3/include
            SSH_TTY=/dev/pts/79
            NO_PROXY=localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001
            QT_GRAPHICSSYSTEM_CHECKED=1
            SLURM_NNODES=1
            USER=ye53nis
            http_proxy=http://internet4nzm.rz.uni-jena.de:3128
            LD_LIBRARY_PATH=/cluster/nvidia/cuda/11.2/lib64:/cluster/nvidia/cuda/11.2/nvvm/lib64:/cluster/nvidia/cudnn/8.1//lib64
            LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01
            ;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:
            *.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01
            ;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:
            *.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;3
            5:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=
            01;36:*.xspf=01;36:
            CONDA_EXE=/cluster/miniconda3/bin/conda
            SLURM_STEP_NUM_NODES=1
            SLURM_JOBID=1615665
            SRUN_DEBUG=3
            FTP_PROXY=http://internet4nzm.rz.uni-jena.de:3128
            ftp_proxy=http://internet4nzm.rz.uni-jena.de:3128
            SLURM_NTASKS=12
            SLURM_LAUNCH_NODE_IPADDR=192.168.192.5
            SLURM_STEP_ID=0
            TMUX=/tmp/tmux-67339/default,20557,7
            _CE_CONDA=
            CONDA_PREFIX_1=/cluster/miniconda3
            MODCUDA=YES
            SLURM_STEP_LAUNCHER_PORT=38740
            SLURM_TASKS_PER_NODE=12
            MAIL=/var/spool/mail/ye53nis
            PATH=/cluster/nvidia/cuda/11.2/bin:/cluster/nvidia/cuda/11.2/nvvm:/cluster/nvidia/cuda/11.2/open64/bin:/cluster/nvidia/cuda/11.2/libnvvp:/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/P
            rogramme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bi
            n:/home/ye53nis/bin
            SLURM_WORKING_CLUSTER=hpc:192.168.192.1:6817:8448
            SLURM_JOB_ID=1615665
            LD_RUN_PATH=/cluster/nvidia/cuda/11.2/lib64
            SLURM_STEP_GPUS=0
            CONDA_PREFIX=/home/ye53nis/.conda/envs/tf
            CUDA_LIB_PATH=/cluster/nvidia/cuda/11.2/lib64
            SLURM_JOB_USER=ye53nis
            SLURM_STEPID=0
            PWD=/beegfs/ye53nis/drmed-git
            _LMFILES_=/cluster/modulefiles/nvidia/cuda/11.2:/cluster/modulefiles/nvidia/cudnn/8.1
            CUDA_VISIBLE_DEVICES=0
            SLURM_SRUN_COMM_HOST=192.168.192.5
            LANG=en_US.UTF-8
            SLURM_PTY_WIN_COL=236
            SLURM_UMASK=0022
            MODULEPATH=/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles
            SLURM_JOB_UID=67339
            LOADEDMODULES=nvidia/cuda/11.2:nvidia/cudnn/8.1
            SLURM_NODEID=0
            TMUX_PANE=%7
            SLURM_SUBMIT_DIR=/
            SLURM_TASK_PID=4042
            SLURM_NPROCS=12
            SLURM_CPUS_ON_NODE=12
            SLURM_DISTRIBUTION=block
            HTTPS_PROXY=http://internet4nzm.rz.uni-jena.de:3128
            https_proxy=http://internet4nzm.rz.uni-jena.de:3128
            SLURM_PROCID=0
            HISTCONTROL=ignoredups
            _CE_M=
            SLURM_JOB_NODELIST=node128
            SLURM_PTY_PORT=37529
            HOME=/home/ye53nis
            SHLVL=3
            SLURM_LOCALID=0
            SLURM_JOB_GID=13280
            SLURM_JOB_CPUS_PER_NODE=12
            SLURM_CLUSTER_NAME=hpc
            no_proxy=localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001
            SLURM_GTIDS=0,1,2,3,4,5,6,7,8,9,10,11
            SLURM_SUBMIT_HOST=login01
            HTTP_PROXY=http://internet4nzm.rz.uni-jena.de:3128
            SLURM_JOB_PARTITION=gpu_p100
            MATHEMATICA_HOME=/cluster/apps/mathematica/11.3
            CONDA_PYTHON_EXE=/cluster/miniconda3/bin/python
            LOGNAME=ye53nis
            SLURM_STEP_NUM_TASKS=12
            QTLIB=/usr/lib64/qt-3.3/lib
            GPU_DEVICE_ORDINAL=0
            SLURM_JOB_ACCOUNT=iaob
            MLFLOW_TRACKING_URI=file:./data/mlruns
            SLURM_JOB_NUM_NODES=1
            MODULESHOME=/usr/share/Modules
            CONDA_DEFAULT_ENV=tf
            LESSOPEN=||/usr/bin/lesspipe.sh %s
            SLURM_STEP_TASKS_PER_NODE=12
            SLURM_STEP_NODELIST=node128
            DISPLAY=:0
            XDG_RUNTIME_DIR=/run/user/67339
            INCLUDE=/cluster/nvidia/cudnn/8.1//include
            XAUTHORITY=/home/lex/.Xauthority
            BASH_FUNC_module()=() {  eval `/usr/bin/modulecmd bash $*`
            }
            _=/bin/printenv
            --------------------
            (tf) [ye53nis@node128 drmed-git]$ top -bcn1 -w512 | head -n 15
            top - 21:21:42 up 72 days,  9:36,  0 users,  load average: 0.00, 0.03, 0.05
            Tasks: 521 total,   1 running, 520 sleeping,   0 stopped,   0 zombie
            %Cpu(s):  0.2 us,  0.2 sy,  0.0 ni, 99.6 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
            KiB Mem : 13191630+total, 12171446+free,  1196368 used,  9005476 buff/cache
            KiB Swap: 12582908 total, 12582908 free,        0 used. 12953688+avail Mem
    
              PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
            13258 ye53nis   20   0  172732   2620   1664 R  11.1  0.0   0:00.03 top -bcn1 -w512
                1 root      20   0   71788   7548   2584 S   0.0  0.0  35:51.03 /usr/lib/systemd/systemd --switched-root --system --deserialize 22
                2 root      20   0       0      0      0 S   0.0  0.0   0:01.65 [kthreadd]
                3 root      20   0       0      0      0 S   0.0  0.0   0:06.95 [ksoftirqd/0]
                5 root       0 -20       0      0      0 S   0.0  0.0   0:00.00 [kworker/0:0H]
                8 root      rt   0       0      0      0 S   0.0  0.0   0:06.58 [migration/0]
                9 root      20   0       0      0      0 S   0.0  0.0   0:00.00 [rcu_bh]
               10 root      20   0       0      0      0 S   0.0  0.0  43:01.62 [rcu_sched]
            (tf) [ye53nis@node128 drmed-git]$
    
  3. print conda list
            conda list
    
            # packages in environment at /home/ye53nis/.conda/envs/tf:
            #
            # Name                    Version                   Build  Channel
            _libgcc_mutex             0.1                        main
            _openmp_mutex             4.5                       1_gnu
            absl-py                   1.0.0                    pypi_0    pypi
            alembic                   1.7.6                    pypi_0    pypi
            anyio                     2.2.0            py39h06a4308_1
            argon2-cffi               20.1.0           py39h27cfd23_1
            asteval                   0.9.26                   pypi_0    pypi
            astunparse                1.6.3                    pypi_0    pypi
            async_generator           1.10               pyhd3eb1b0_0
            attrs                     21.4.0             pyhd3eb1b0_0
            babel                     2.9.1              pyhd3eb1b0_0
            backcall                  0.2.0              pyhd3eb1b0_0
            bleach                    4.1.0              pyhd3eb1b0_0
            brotlipy                  0.7.0           py39h27cfd23_1003
            ca-certificates           2021.10.26           h06a4308_2
            cachetools                5.0.0                    pypi_0    pypi
            certifi                   2021.10.8        py39h06a4308_2
            cffi                      1.15.0           py39hd667e15_1
            charset-normalizer        2.0.4              pyhd3eb1b0_0
            click                     8.0.3                    pypi_0    pypi
            cloudpickle               2.0.0                    pypi_0    pypi
            cryptography              36.0.0           py39h9ce1e76_0
            cycler                    0.11.0                   pypi_0    pypi
            cython                    0.29.27                  pypi_0    pypi
            databricks-cli            0.16.4                   pypi_0    pypi
            debugpy                   1.5.1            py39h295c915_0
            decorator                 5.1.1              pyhd3eb1b0_0
            defusedxml                0.7.1              pyhd3eb1b0_0
            docker                    5.0.3                    pypi_0    pypi
            entrypoints               0.3              py39h06a4308_0
            fcsfiles                  2022.2.2                 pypi_0    pypi
            flask                     2.0.2                    pypi_0    pypi
            flatbuffers               2.0                      pypi_0    pypi
            fonttools                 4.29.1                   pypi_0    pypi
            future                    0.18.2                   pypi_0    pypi
            gast                      0.5.3                    pypi_0    pypi
            gitdb                     4.0.9                    pypi_0    pypi
            gitpython                 3.1.26                   pypi_0    pypi
            google-auth               2.6.0                    pypi_0    pypi
            google-auth-oauthlib      0.4.6                    pypi_0    pypi
            google-pasta              0.2.0                    pypi_0    pypi
            greenlet                  1.1.2                    pypi_0    pypi
            grpcio                    1.43.0                   pypi_0    pypi
            gunicorn                  20.1.0                   pypi_0    pypi
            h5py                      3.6.0                    pypi_0    pypi
            idna                      3.3                pyhd3eb1b0_0
            importlib-metadata        4.8.2            py39h06a4308_0
            importlib_metadata        4.8.2                hd3eb1b0_0
            ipykernel                 6.4.1            py39h06a4308_1
            ipython                   7.31.1           py39h06a4308_0
            ipython_genutils          0.2.0              pyhd3eb1b0_1
            itsdangerous              2.0.1                    pypi_0    pypi
            jedi                      0.18.1           py39h06a4308_1
            jinja2                    3.0.2              pyhd3eb1b0_0
            joblib                    1.1.0                    pypi_0    pypi
            json5                     0.9.6              pyhd3eb1b0_0
            jsonschema                3.2.0              pyhd3eb1b0_2
            jupyter_client            7.1.2              pyhd3eb1b0_0
            jupyter_core              4.9.1            py39h06a4308_0
            jupyter_server            1.4.1            py39h06a4308_0
            jupyterlab                3.2.1              pyhd3eb1b0_1
            jupyterlab_pygments       0.1.2                      py_0
            jupyterlab_server         2.10.2             pyhd3eb1b0_1
            keras                     2.8.0                    pypi_0    pypi
            keras-preprocessing       1.1.2                    pypi_0    pypi
            kiwisolver                1.3.2                    pypi_0    pypi
            ld_impl_linux-64          2.35.1               h7274673_9
            libclang                  13.0.0                   pypi_0    pypi
            libffi                    3.3                  he6710b0_2
            libgcc-ng                 9.3.0               h5101ec6_17
            libgomp                   9.3.0               h5101ec6_17
            libsodium                 1.0.18               h7b6447c_0
            libstdcxx-ng              9.3.0               hd4cf53a_17
            lmfit                     1.0.3                    pypi_0    pypi
            mako                      1.1.6                    pypi_0    pypi
            markdown                  3.3.6                    pypi_0    pypi
            markupsafe                2.0.1            py39h27cfd23_0
            matplotlib                3.5.1                    pypi_0    pypi
            matplotlib-inline         0.1.2              pyhd3eb1b0_2
            mistune                   0.8.4           py39h27cfd23_1000
            mlflow                    1.23.1                   pypi_0    pypi
            multipletau               0.3.3                    pypi_0    pypi
            nbclassic                 0.2.6              pyhd3eb1b0_0
            nbclient                  0.5.3              pyhd3eb1b0_0
            nbconvert                 6.3.0            py39h06a4308_0
            nbformat                  5.1.3              pyhd3eb1b0_0
            ncurses                   6.3                  h7f8727e_2
            nest-asyncio              1.5.1              pyhd3eb1b0_0
            notebook                  6.4.6            py39h06a4308_0
            numpy                     1.22.2                   pypi_0    pypi
            oauthlib                  3.2.0                    pypi_0    pypi
            openssl                   1.1.1m               h7f8727e_0
            opt-einsum                3.3.0                    pypi_0    pypi
            packaging                 21.3               pyhd3eb1b0_0
            pandas                    1.4.0                    pypi_0    pypi
            pandocfilters             1.5.0              pyhd3eb1b0_0
            parso                     0.8.3              pyhd3eb1b0_0
            pexpect                   4.8.0              pyhd3eb1b0_3
            pickleshare               0.7.5           pyhd3eb1b0_1003
            pillow                    9.0.1                    pypi_0    pypi
            pip                       21.2.4           py39h06a4308_0
            prometheus-flask-exporter 0.18.7                   pypi_0    pypi
            prometheus_client         0.13.1             pyhd3eb1b0_0
            prompt-toolkit            3.0.20             pyhd3eb1b0_0
            protobuf                  3.19.4                   pypi_0    pypi
            ptyprocess                0.7.0              pyhd3eb1b0_2
            pyasn1                    0.4.8                    pypi_0    pypi
            pyasn1-modules            0.2.8                    pypi_0    pypi
            pycparser                 2.21               pyhd3eb1b0_0
            pygments                  2.11.2             pyhd3eb1b0_0
            pyopenssl                 22.0.0             pyhd3eb1b0_0
            pyparsing                 3.0.4              pyhd3eb1b0_0
            pyrsistent                0.18.0           py39heee7806_0
            pysocks                   1.7.1            py39h06a4308_0
            python                    3.9.7                h12debd9_1
            python-dateutil           2.8.2              pyhd3eb1b0_0
            pytz                      2021.3             pyhd3eb1b0_0
            pyyaml                    6.0                      pypi_0    pypi
            pyzmq                     22.3.0           py39h295c915_2
            querystring-parser        1.2.4                    pypi_0    pypi
            readline                  8.1.2                h7f8727e_1
            requests                  2.27.1             pyhd3eb1b0_0
            requests-oauthlib         1.3.1                    pypi_0    pypi
            rsa                       4.8                      pypi_0    pypi
            scikit-learn              1.0.2                    pypi_0    pypi
            scipy                     1.8.0                    pypi_0    pypi
            seaborn                   0.11.2                   pypi_0    pypi
            send2trash                1.8.0              pyhd3eb1b0_1
            setuptools                58.0.4           py39h06a4308_0
            six                       1.16.0             pyhd3eb1b0_0
            smmap                     5.0.0                    pypi_0    pypi
            sniffio                   1.2.0            py39h06a4308_1
            sqlalchemy                1.4.31                   pypi_0    pypi
            sqlite                    3.37.2               hc218d9a_0
            sqlparse                  0.4.2                    pypi_0    pypi
            tabulate                  0.8.9                    pypi_0    pypi
            tensorboard               2.8.0                    pypi_0    pypi
            tensorboard-data-server   0.6.1                    pypi_0    pypi
            tensorboard-plugin-wit    1.8.1                    pypi_0    pypi
            tensorflow                2.8.0                    pypi_0    pypi
            tensorflow-io-gcs-filesystem 0.24.0                   pypi_0    pypi
            termcolor                 1.1.0                    pypi_0    pypi
            terminado                 0.9.4            py39h06a4308_0
            testpath                  0.5.0              pyhd3eb1b0_0
            tf-estimator-nightly      2.8.0.dev2021122109          pypi_0    pypi
            threadpoolctl             3.1.0                    pypi_0    pypi
            tk                        8.6.11               h1ccaba5_0
            tornado                   6.1              py39h27cfd23_0
            traitlets                 5.1.1              pyhd3eb1b0_0
            typing-extensions         4.0.1                    pypi_0    pypi
            tzdata                    2021e                hda174b7_0
            uncertainties             3.1.6                    pypi_0    pypi
            urllib3                   1.26.8             pyhd3eb1b0_0
            wcwidth                   0.2.5              pyhd3eb1b0_0
            webencodings              0.5.1            py39h06a4308_1
            websocket-client          1.2.3                    pypi_0    pypi
            werkzeug                  2.0.3                    pypi_0    pypi
            wheel                     0.37.1             pyhd3eb1b0_0
            wrapt                     1.13.3                   pypi_0    pypi
            xz                        5.2.5                h7b6447c_0
            zeromq                    4.3.4                h2531618_0
            zipp                      3.7.0              pyhd3eb1b0_0
            zlib                      1.2.11               h7f8727e_4
            (tf) [ye53nis@node128 drmed-git]$
    
  4. Show tree of input files used.
            tree ../saves/firstartifact_Nov2020_train_max2sets
            echo --------------------
            tree ../saves/firstartifact_Nov2020_val_max2sets_SORTEDIN
            echo --------------------
            tree ../saves/firstartifact_Nov2020_test
    
    
            (tf) [ye53nis@node128 drmed-git]$ tree ../saves/firstartifact_Nov2020_train_max2sets
            ../saves/firstartifact_Nov2020_train_max2sets
            ├── 0.069
            │   ├── 0.01
            │   ├── 0.1
            │   │   ├── traces_brightclust_Nov2020_D0.069_set002.csv
            │   │   └── traces_brightclust_Nov2020_D0.069_set003.csv
            │   └── 1.0
            │       └── traces_brightclust_Nov2020_D0.069_set009.csv
            ├── 0.08
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D0.08_set007.csv
            │   ├── 0.1
            │   │   ├── traces_brightclust_Nov2020_D0.08_set002.csv
            │   │   └── traces_brightclust_Nov2020_D0.08_set006.csv
            │   └── 1.0
            │       ├── traces_brightclust_Nov2020_D0.08_set004.csv
            │       └── traces_brightclust_Nov2020_D0.08_set009.csv
            ├── 0.1
            │   ├── 0.01
            │   │   ├── traces_brightclust_Nov2020_D0.1_set004.csv
            │   │   └── traces_brightclust_Nov2020_D0.1_set006.csv
            │   ├── 0.1
            │   └── 1.0
            │       ├── traces_brightclust_Nov2020_D0.1_set003.csv
            │       └── traces_brightclust_Nov2020_D0.1_set007.csv
            ├── 0.2
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D0.2_set003.csv
            │   ├── 0.1
            │   │   ├── traces_brightclust_Nov2020_D0.2_set001.csv
            │   │   └── traces_brightclust_Nov2020_D0.2_set004.csv
            │   └── 1.0
            │       ├── traces_brightclust_Nov2020_D0.2_set009.csv
            │       └── traces_brightclust_Nov2020_D0.2_set010.csv
            ├── 0.4
            │   ├── 0.01
            │   │   ├── traces_brightclust_Nov2020_D0.4_set004.csv
            │   │   └── traces_brightclust_Nov2020_D0.4_set010.csv
            │   ├── 0.1
            │   │   ├── traces_brightclust_Nov2020_D0.4_set002.csv
            │   │   └── traces_brightclust_Nov2020_D0.4_set003.csv
            │   └── 1.0
            │       ├── traces_brightclust_Nov2020_D0.4_set006.csv
            │       └── traces_brightclust_Nov2020_D0.4_set007.csv
            ├── 0.6
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D0.6_set010.csv
            │   ├── 0.1
            │   │   ├── traces_brightclust_Nov2020_D0.6_set004.csv
            │   │   └── traces_brightclust_Nov2020_D0.6_set005.csv
            │   └── 1.0
            │       ├── traces_brightclust_Nov2020_D0.6_set001.csv
            │       └── traces_brightclust_Nov2020_D0.6_set002.csv
            ├── 10
            │   ├── 0.01
            │   │   ├── traces_brightclust_Nov2020_D10_set003.csv
            │   │   └── traces_brightclust_Nov2020_D10_set004.csv
            │   ├── 0.1
            │   │   ├── traces_brightclust_Nov2020_D10_set006.csv
            │   │   └── traces_brightclust_Nov2020_D10_set007.csv
            │   └── 1.0
            │       └── traces_brightclust_Nov2020_D10_set010.csv
            ├── 1.0
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D1.0_set010.csv
            │   ├── 0.1
            │   │   ├── traces_brightclust_Nov2020_D1.0_set004.csv
            │   │   └── traces_brightclust_Nov2020_D1.0_set007.csv
            │   └── 1.0
            │       ├── traces_brightclust_Nov2020_D1.0_set001.csv
            │       └── traces_brightclust_Nov2020_D1.0_set002.csv
            ├── 3.0
            │   ├── 0.01
            │   │   ├── traces_brightclust_Nov2020_D3.0_set005.csv
            │   │   └── traces_brightclust_Nov2020_D3.0_set006.csv
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D3.0_set010.csv
            │   └── 1.0
            │       ├── traces_brightclust_Nov2020_D3.0_set001.csv
            │       └── traces_brightclust_Nov2020_D3.0_set003.csv
            └── 50
                ├── 0.01
                │   └── traces_brightclust_Nov2020_D50_set006.csv
                ├── 0.1
                │   ├── traces_brightclust_Nov2020_D50_set009.csv
                │   └── traces_brightclust_Nov2020_D50_set010.csv
                └── 1.0
                    ├── traces_brightclust_Nov2020_D50_set004.csv
                    └── traces_brightclust_Nov2020_D50_set005.csv
    
            40 directories, 48 files
            (tf) [ye53nis@node128 drmed-git]$ echo --------------------
            --------------------
            (tf) [ye53nis@node128 drmed-git]$ tree ../saves/firstartifact_Nov2020_val_max2sets_SORTEDIN
            ../saves/firstartifact_Nov2020_val_max2sets_SORTEDIN
            ├── 0.069
            │   ├── 0.01
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D0.069_set006.csv
            │   └── 1.0
            ├── 0.08
            │   ├── 0.01
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D0.08_set008.csv
            │   └── 1.0
            ├── 0.1
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D0.1_set008.csv
            │   ├── 0.1
            │   └── 1.0
            ├── 0.2
            │   ├── 0.01
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D0.2_set006.csv
            │   └── 1.0
            ├── 0.4
            │   ├── 0.01
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D0.4_set009.csv
            │   └── 1.0
            ├── 0.6
            │   ├── 0.01
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D0.6_set006.csv
            │   └── 1.0
            ├── 10
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D10_set008.csv
            │   ├── 0.1
            │   └── 1.0
            ├── 1.0
            │   ├── 0.01
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D1.0_set009.csv
            │   └── 1.0
            │       └── traces_brightclust_Nov2020_D1.0_set008.csv
            ├── 3.0
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D3.0_set008.csv
            │   ├── 0.1
            │   └── 1.0
            │       └── traces_brightclust_Nov2020_D3.0_set009.csv
            └── 50
                ├── 0.01
                ├── 0.1
                └── 1.0
                    └── traces_brightclust_Nov2020_D50_set007.csv
    
            40 directories, 12 files
            (tf) [ye53nis@node128 drmed-git]$ echo --------------------
            --------------------
    
            (tf) [ye53nis@node128 drmed-git]$ tree ../saves/firstartifact_Nov2020_test
            ../saves/firstartifact_Nov2020_test
            ├── 0.069
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D0.069_set005.csv
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D0.069_set001.csv
            │   └── 1.0
            │       └── traces_brightclust_Nov2020_D0.069_set010.csv
            ├── 0.08
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D0.08_set005.csv
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D0.08_set003.csv
            │   └── 1.0
            │       └── traces_brightclust_Nov2020_D0.08_set001.csv
            ├── 0.1
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D0.1_set002.csv
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D0.1_set005.csv
            │   └── 1.0
            │       └── traces_brightclust_Nov2020_D0.1_set001.csv
            ├── 0.2
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D0.2_set002.csv
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D0.2_set007.csv
            │   └── 1.0
            │       └── traces_brightclust_Nov2020_D0.2_set005.csv
            ├── 0.4
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D0.4_set008.csv
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D0.4_set001.csv
            │   └── 1.0
            │       └── traces_brightclust_Nov2020_D0.4_set005.csv
            ├── 0.6
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D0.6_set008.csv
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D0.6_set003.csv
            │   └── 1.0
            │       └── traces_brightclust_Nov2020_D0.6_set009.csv
            ├── 10
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D10_set002.csv
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D10_set001.csv
            │   └── 1.0
            │       └── traces_brightclust_Nov2020_D10_set005.csv
            ├── 1.0
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D1.0_set006.csv
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D1.0_set003.csv
            │   └── 1.0
            │       └── traces_brightclust_Nov2020_D1.0_set005.csv
            ├── 3.0
            │   ├── 0.01
            │   │   └── traces_brightclust_Nov2020_D3.0_set004.csv
            │   ├── 0.1
            │   │   └── traces_brightclust_Nov2020_D3.0_set007.csv
            │   └── 1.0
            │       └── traces_brightclust_Nov2020_D3.0_set002.csv
            └── 50
                ├── 0.01
                │   └── traces_brightclust_Nov2020_D50_set002.csv
                ├── 0.1
                │   └── traces_brightclust_Nov2020_D50_set003.csv
                └── 1.0
                    └── traces_brightclust_Nov2020_D50_set001.csv
    
            40 directories, 30 files
            (tf) [ye53nis@node128 drmed-git]$
    

2.6.6 Setup: Show all hyperparameters that worked in exp-210807-hparams

  1. get the comparison data of all runs from exp-210807-hparams via git restore
            git show 04e9dc3:./data/exp-210807-hparams/mlflow/run1-2_comparison.csv > ./data/exp-220227-unet/mlflow/exp-210807-hparams_comparison.csv
    
  2. open the file in jupyter, do some processing to only find the best runs, and display the relevant hparams (see exp-210807-hparams section 4. Analyze run 1 and 2 for explanations on the processing)
            %cd /beegfs/ye53nis/drmed-git
            import numpy as np
            import pandas as pd
    
    /beegfs/ye53nis/drmed-git
    
            run1_2 = pd.read_csv('data/exp-220227-unet/mlflow/exp-210807-hparams_comparison.csv', index_col=0)
            run1_2_valauc = run1_2.loc['val_auc'].astype(float)
            singles_ls = ['5441e71efe0f4dae868648e7cc795c65']
    
            run1_2_singles = run1_2.loc[:, singles_ls]
            run1_2_singles.iloc[35:, :] = run1_2_singles.iloc[35:, :].astype(np.float64)
            run1_2 = run1_2.drop(columns=singles_ls)
    
            assert len(run1_2.iloc[35:, :].columns) % 2 == 0
    
            run1_2_doubleparams = pd.DataFrame()
            run1_2_doublemetrics = pd.DataFrame()
            double_cols = []
            for left, right in zip(run1_2.iloc[:, ::2].items(), run1_2.iloc[:, 1::2].items()):
                double_cols.append((left[0], right[0]))
                current_metrics = left[1].iloc[35:].combine(other=right[1].iloc[35:],
                                                            func=(lambda x1, x2: (float(x1) + float(x2)) / 2))
                current_params = left[1].iloc[:35].combine(other=right[1].iloc[:35],
                                                           func=(lambda x1, x2: set((x1, x2)) if x1 != x2 else x1))
                run1_2_doubleparams = pd.concat([run1_2_doubleparams, current_params], axis=1)
                run1_2_doublemetrics = pd.concat([run1_2_doublemetrics, current_metrics], axis=1)
    
            run1_2_doublemetrics = pd.DataFrame(data=run1_2_doublemetrics.to_numpy(),
                                                index=run1_2.iloc[35:, :].index,
                                                columns=double_cols)
    
            run1_2_doubleparams = pd.DataFrame(data=run1_2_doubleparams.to_numpy(),
                                               index=run1_2.iloc[:35, :].index,
                                               columns=double_cols)
    
            run1_2_combimetrics = pd.concat([run1_2_doublemetrics, run1_2_singles.iloc[35:, :]], axis=1)
            run1_2_combiparams = pd.concat([run1_2_doubleparams, run1_2_singles.iloc[:35, :]], axis=1)
            run1_2_mymetrics = run1_2_combimetrics.loc[['val_auc', 'val_recall0.5', 'val_precision0.5']]
            run1_2_myparams = run1_2_combiparams.loc[['hp_batch_size', 'hp_first_filters', 'hp_input_size', 'hp_lr_power', 'hp_lr_start', 'hp_n_levels', 'hp_pool_size', 'hp_scaler']]
            run1_2_my = pd.concat([run1_2_mymetrics, run1_2_myparams], axis=0).T
            # cond1 = run1_2_combimetrics.loc[:, 'val_auc'] > 0.95
            cond2 = run1_2_my.loc[:, 'val_recall0.5'] > 0.85
            cond3 = run1_2_my.loc[:, 'val_precision0.5'] > 0.85
    
            with pd.option_context('display.max_rows', None, 'display.max_columns', None):
                display(run1_2_my.loc[cond2 & cond3])
    
    Run ID: valauc valrecall0.5 valprecision0.5 hpbatchsize hpfirstfilters hpinputsize hplrpower hplrstart hpnlevels hppoolsize hpscaler
    (9051e32b87d84f3485b980067addec30, 61ff87bdb89b4e2ba64f8dacc774992d) 0.981 0.8975 0.918 26 44 16384 1 0.0136170138242663 7 2 standard
    (93b168c0ff7942c8a908a94129daf973, f243b3b742de4dbcb7ccfbd4244706f8) 0.976 0.893 0.852 15 23 16384 7 0.0305060808685107 6 4 quantg
    (a5b8551144ff46e697a39cd1551e1475, 98cf8cdef9c54b5286e277e75e2ab8c1) 0.984 0.916 0.909 20 78 16384 4 0.0584071108418767 4 4 standard
    (00f2635d9fa2463c9a066722163405be, d0a8e1748b194f3290d471b6b44f19f8) 0.987 0.929 0.9065 28 6 16384 1 0.0553313915596308 5 4 minmax
    (5604d43c1ece461b8e6eaa0dfb65d6dc, 3612536a77f34f22bc83d1d809140aa6) 0.9745 0.885 0.8985 20 128 16384 1 0.043549707353273 3 4 standard
    (7cafab027cdd4fc9bf20a43e989df510, 16dff15d935f45e2a836b1f41b07b4e3) 0.978 0.8905 0.891 10 16 8192 1 0.0627676336651573 5 4 robust
    (0e328920e86049928202db95e8cfb7be, bf9d2725eb16462d9a101f0a077ce2b5) 0.976 0.875 0.888 14 16 16384 5 0.0192390310290551 9 2 robust
    (1c954fbc02b747bc813c587ac703c74a, ba49a80c2616407a8f1fe1fd12096fe0) 0.962 0.856 0.8585 17 16 16384 5 0.0101590069352232 3 4 l2
    (3cbd945b62ec4634839372e403f6f377, 458b36a70db843719d202a8eda448f17) 0.972 0.872 0.9135 9 64 4096 1 0.0100697459464075 5 4 maxabs
  3. notes on hparams:
    • I used three different input sizes in hparams training (4096, 8192, 16384). As experimental test data I have got traces which are around 8000 and traces which are around 32000 time steps. To balance between both, I will only use 16384 as an input size.
    • The UNET only excepts input sizes which are exactly the power of 2 and > 1024. To deal with that for experimental traces which have a different size, I append the median of the trace until it reaches the next biggest power of 2. That means in the script below my input_size will be 14000, so each trace will be padded with 2384 median values (~15% of the input), and the corresponding labels will be 0.
    • the epoch size used for training will be 100 epochs for each hparam configuration

2.6.7 Setup: Fitting

  • all fitting was done in Dominic Waithe’s focuspoint. (see https://pubmed.ncbi.nlm.nih.gov/26589275/ and https://github.com/dwaithe/FCS_point_correlator)
  • I installed the program by cloning the github and following the setup instructions there. Some packages were missing to run the program, the following is the conda environment with focuspoint and all needed packages
            conda list -n focus
    
    # packages in environment at /home/lex/Programme/miniconda3/envs/focus:
    #          
    # Name Version Build Channel  
    _libgccmutex 0.1 main      
    _openmpmutex 4.5 1gnu      
    asteval 0.9.26 pypi0 pypi    
    blas 1.0 mkl      
    ca-certificates 2022.3.18 h06a43080      
    certifi 2021.10.8 py39h06a43082      
    cycler 0.11.0 pypi0 pypi    
    cython 0.29.28 pypi0 pypi    
    dbus 1.13.18 hb2f20db0      
    expat 2.4.4 h295c9150      
    focuspoint 0.1 pypi0 pypi    
    fontconfig 2.13.1 h6c099310      
    fonttools 4.31.2 pypi0 pypi    
    freetype 2.11.0 h70c03450      
    future 0.18.2 pypi0 pypi    
    glib 2.69.1 h4ff587b1      
    gst-plugins-base 1.14.0 h8213a912      
    gstreamer 1.14.0 h28cd5cc2      
    icu 58.2 he6710b03      
    intel-openmp 2021.4.0 h06a43083561      
    jpeg 9d h7f8727e0      
    kiwisolver 1.4.0 pypi0 pypi    
    ldimpllinux-64 2.35.1 h72746739      
    libffi 3.3 he6710b02      
    libgcc-ng 9.3.0 h5101ec617      
    libgomp 9.3.0 h5101ec617      
    libpng 1.6.37 hbc830470      
    libstdcxx-ng 9.3.0 hd4cf53a17      
    libuuid 1.0.3 h7f8727e2      
    libxcb 1.14 h7b6447c0      
    libxml2 2.9.12 h03d6c580      
    lmfit 1.0.3 pypi0 pypi    
    matplotlib 3.5.1 pypi0 pypi    
    mkl 2021.4.0 h06a4308640      
    mkl-service 2.4.0 py39h7f8727e0      
    mklfft 1.3.1 py39hd3c417c0      
    mklrandom 1.2.2 py39h51133e40      
    ncurses 6.3 h7f8727e2      
    numexpr 2.8.1 pypi0 pypi    
    numpy 1.21.2 py39h20f2e390      
    numpy-base 1.21.2 py39h79a11010      
    openssl 1.1.1n h7f8727e0      
    packaging 21.3 pypi0 pypi    
    pcre 8.45 h295c9150      
    pillow 9.0.1 pypi0 pypi    
    pip 21.2.4 py39h06a43080      
    pyparsing 3.0.7 pypi0 pypi    
    pyperclip 1.8.2 pypi0 pypi    
    pyqt 5.9.2 py39h25316186      
    python 3.9.7 h12debd91      
    python-dateutil 2.8.2 pypi0 pypi    
    qt 5.9.7 h5867ecd1      
    readline 8.1.2 h7f8727e1      
    scipy 1.8.0 pypi0 pypi    
    setuptools 58.0.4 py39h06a43080      
    sip 4.19.13 py39h295c9150      
    six 1.16.0 pyhd3eb1b01      
    sqlite 3.38.0 hc218d9a0      
    tables 3.7.0 pypi0 pypi    
    tifffile 2022.3.16 pypi0 pypi    
    tk 8.6.11 h1ccaba50      
    tzdata 2021e hda174b70      
    uncertainties 3.1.6 pypi0 pypi    
    wheel 0.37.1 pyhd3eb1b00      
    xz 5.2.5 h7b6447c0      
    zlib 1.2.11 h7f8727e4      
  • this is how the program is started
            conda activate focus
            python -m focuspoint.FCS_point_correlator
    
  • then:
    1. go to the ’Fit Function’ tab
    2. load correlated files, e.g. from ./data/exp-220227-unet/2022-05-22_experimental-af488/clean
    3. inside the base directory of the experiment (e.g. ./data/exp-220227-unet/2022-05-22_experimental-af488) I saved the focuspoint profile file, which you can load to reproduce all my fit settings.
      1. for 1-component fit: ./data/exp-220227-unet/2022-05-22_experimental-af488/af488+luvs_1comp.profile
      2. for 2-component fit: ./data/exp-220227-unet/2022-05-22_experimental-af488/af488+luvs_2comp.profile
    4. the setting which is not saved in the .profile file is the fit range (xmin, xmax). This is saved in all the ...outParam.csv files. Generally, this was
      • for af488 data:
        • xmin=0.001
        • for averaging correction: xmax=0.5
        • for data without peak artifacts (only af488) and all other correction methods: xmax=100
        • for data with peak artifacts (only af488+luvs) and all other correction methods: xmax=500
      • for pex5 data:
        • xmin=0.001
        • for averaging correction: xmax=0.5
        • for all other correction methods: xmax=1000
      • simulated data:
        • xmin=1
        • xmax=8000 - note: sometimes the correction methods did shorten the traces below 8000ms. Then, the maximum correlation length was automatically shortened by the program. In exp-220227-unet, I did not plot the comparison of fit outcomes of simulated data, so for details on these xmax values see the assert statements when loading simulated data in exp-220316-publication1

2.6.8 Experiment 1: run training of 9 promising hparam combinations

  1. run training of (9051e32b87d84f3485b980067addec30, 61ff87bdb89b4e2ba64f8dacc774992d) with hparams from above.
            mlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \
                   -P batch_size=26 \
                   -P first_filters=44 \
                   -P input_size=14000 \
                   -P lr_start=0.0136170138242663 \
                   -P lr_power=1 \
                   -P epochs=100 \
                   -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \
                   -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \
                   -P scaler=standard \
                   -P n_levels=7 \
                   -P pool_size=2
    
            INFO: 'exp-220227-unet' does not exist. Creating a new experiment
            2022/02/27 23:06:17 INFO mlflow.projects.utils: === Created directory /tmp/tmp5u38tprq for downloading remote URIs passed to arguments of type 'path' ===
            2022/02/27 23:06:17 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train
            ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 26 --input_size 14000 --lr_start 0.0136170138242663 --lr_power 1 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_p
            ath_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler standard --n_levels 7 --first_filters 44 --pool_size 2' in run with ID '484af471c61943fa90e5f78e78a229f0' ===
            2022-02-27 23:06:19.459522: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-02-27 23:06:27,328 - train -  Python version: 3.9.6 (default, Jul 30 2021, 16:35:19)
            [GCC 7.5.0]
            2022-02-27 23:06:27,329 - train -  Tensorflow version: 2.5.0
            2022-02-27 23:06:27,329 - train -  tf.keras version: 2.5.0
            2022-02-27 23:06:27,329 - train -  Cudnn version: 8
            2022-02-27 23:06:27,329 - train -  Cuda version: 11.2
            2022-02-27 23:06:27.332616: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1
            2022-02-27 23:06:27.373032: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-02-27 23:06:27.373166: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-02-27 23:06:27.382894: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-02-27 23:06:27.382990: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            2022-02-27 23:06:27.386881: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10
            2022-02-27 23:06:27.389946: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10
            2022-02-27 23:06:27.399178: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11
            2022-02-27 23:06:27.413770: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11
            2022-02-27 23:06:27.415902: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-02-27 23:06:27.419520: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-02-27 23:06:27,419 - train -  GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"...
            2022-02-27 23:06:27,420 - train -  Setting memory growth successful.
            2022-02-27 23:06:33,649 - train -  1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv
            2022-02-27 23:06:47,474 - train -  2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv
            2022-02-27 23:06:52,553 - train -  3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv
            2022-02-27 23:06:56,374 - train -  4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv
            2022-02-27 23:06:59,968 - train -  5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv
            2022-02-27 23:07:03,508 - train -  6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv
            2022-02-27 23:07:07,092 - train -  7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv
            2022-02-27 23:07:10,718 - train -  8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv
            2022-02-27 23:07:14,433 - train -  9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv
            2022-02-27 23:07:18,054 - train -  10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv
            2022-02-27 23:07:21,398 - train -  11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv
            2022-02-27 23:07:33,241 - train -  12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv
            2022-02-27 23:07:37,082 - train -  13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv
            2022-02-27 23:07:40,911 - train -  14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv
            2022-02-27 23:07:44,813 - train -  15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv
            2022-02-27 23:07:48,436 - train -  16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv
            2022-02-27 23:07:52,998 - train -  17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv
            2022-02-27 23:07:56,536 - train -  18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv
            2022-02-27 23:08:00,088 - train -  19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv
            2022-02-27 23:08:03,661 - train -  20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv
            2022-02-27 23:08:07,253 - train -  21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv
            2022-02-27 23:08:22,306 - train -  22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv
            2022-02-27 23:08:25,939 - train -  23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv
            2022-02-27 23:08:29,797 - train -  24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv
            2022-02-27 23:08:33,419 - train -  25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv
            2022-02-27 23:08:38,026 - train -  26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv
            2022-02-27 23:08:41,552 - train -  27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv
            2022-02-27 23:08:46,334 - train -  28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv
            2022-02-27 23:08:52,449 - train -  29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv
            2022-02-27 23:09:00,390 - train -  30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv
            2022-02-27 23:09:13,802 - train -  31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv
            2022-02-27 23:09:17,690 - train -  32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv
            2022-02-27 23:09:21,264 - train -  33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv
            2022-02-27 23:09:25,460 - train -  34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv
            2022-02-27 23:09:29,041 - train -  35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv
            2022-02-27 23:09:33,185 - train -  36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv
            2022-02-27 23:09:36,927 - train -  37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv
            2022-02-27 23:09:43,792 - train -  38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv
            2022-02-27 23:09:55,806 - train -  39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv
            2022-02-27 23:09:59,340 - train -  40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv
            2022-02-27 23:10:04,195 - train -  41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv
            2022-02-27 23:10:07,769 - train -  42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv
            2022-02-27 23:10:11,494 - train -  43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv
            2022-02-27 23:10:15,480 - train -  44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv
            2022-02-27 23:10:19,534 - train -  45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv
            2022-02-27 23:10:23,308 - train -  46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv
            2022-02-27 23:10:27,088 - train -  47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv
            2022-02-27 23:10:30,870 - train -  48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv
            2022-02-27 23:10:34,365 - train -  1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv
            2022-02-27 23:10:43,346 - train -  2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv
            2022-02-27 23:10:59,488 - train -  3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv
            2022-02-27 23:11:07,159 - train -  4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv
            2022-02-27 23:11:11,824 - train -  5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv
            2022-02-27 23:11:15,330 - train -  6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv
            2022-02-27 23:11:19,613 - train -  7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv
            2022-02-27 23:11:22,985 - train -  8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv
            2022-02-27 23:11:26,571 - train -  9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv
            2022-02-27 23:11:30,142 - train -  10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv
            2022-02-27 23:11:33,712 - train -  11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv
            2022-02-27 23:11:40,154 - train -  12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv
            2022-02-27 23:11:40,374 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)]
            2022-02-27 23:11:40,463 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)]
            2022-02-27 23:11:40.616724: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio
            ns:  AVX2 FMA
            To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
            2022-02-27 23:11:40.620393: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-02-27 23:11:40.624428: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-02-27 23:11:40.624579: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-02-27 23:11:41.105011: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix:
            2022-02-27 23:11:41.105083: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264]      0
            2022-02-27 23:11:41.105097: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0:   N
            2022-02-27 23:11:41.107958: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p
            ci bus id: 0000:82:00.0, compute capability: 6.0)
            2022-02-27 23:11:43,160 - train -  number of examples: 4800
            2022-02-27 23:11:43,526 - train -  number of examples: 1200
            2022-02-27 23:11:46,063 - train -  unet: input shape: (None, None, 1), output shape: (None, None, 1)
            2022/02/27 23:11:46 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='26' for run ID='484
            af471c61943fa90e5f78e78a229f0'. Attempted logging new value 'None'.
            Epoch 1/100
            2022-02-27 23:11:56.021789: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
            2022-02-27 23:11:56.201257: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz
            2022-02-27 23:12:06.010819: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-02-27 23:12:06.325533: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101
            2022-02-27 23:12:06.806608: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-02-27 23:12:07.089703: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            184/184 [==============================] - 212s 1s/step - loss: 1.1422 - tp0.1: 8390499.0000 - fp0.1: 12828878.0000 - tn0.1: 55341968.0000 - fn0.1: 1819714.0000 - precision0.1: 0.3954 - recall0.1: 0.8218 - tp0.3: 7189476.0000 - fp0.3: 4
            881676.0000 - tn0.3: 63289180.0000 - fn0.3: 3020737.0000 - precision0.3: 0.5956 - recall0.3: 0.7041 - tp0.5: 6041120.0000 - fp0.5: 2184567.0000 - tn0.5: 65986268.0000 - fn0.5: 4169093.0000 - precision0.5: 0.7344 - recall0.5: 0.5917 - tp
            0.7: 4490541.0000 - fp0.7: 712795.0000 - tn0.7: 67458040.0000 - fn0.7: 5719672.0000 - precision0.7: 0.8630 - recall0.7: 0.4398 - tp0.9: 2966847.0000 - fp0.9: 153266.0000 - tn0.9: 68017552.0000 - fn0.9: 7243366.0000 - precision0.9: 0.950
            9 - recall0.9: 0.2906 - accuracy: 0.9189 - auc: 0.8890 - f1: 0.6554 - val_loss: 45.6530 - val_tp0.1: 2695397.0000 - val_fp0.1: 16186602.0000 - val_tn0.1: 695010.0000 - val_fn0.1: 18255.0000 - val_precision0.1: 0.1427 - val_recall0.1: 0.
            9933 - val_tp0.3: 2693432.0000 - val_fp0.3: 16009674.0000 - val_tn0.3: 871938.0000 - val_fn0.3: 20220.0000 - val_precision0.3: 0.1440 - val_recall0.3: 0.9925 - val_tp0.5: 2691511.0000 - val_fp0.5: 15860014.0000 - val_tn0.5: 1021598.0000
             - val_fn0.5: 22141.0000 - val_precision0.5: 0.1451 - val_recall0.5: 0.9918 - val_tp0.7: 2688428.0000 - val_fp0.7: 15650703.0000 - val_tn0.7: 1230909.0000 - val_fn0.7: 25224.0000 - val_precision0.7: 0.1466 - val_recall0.7: 0.9907 - val_
            tp0.9: 2681968.0000 - val_fp0.9: 15334839.0000 - val_tn0.9: 1546773.0000 - val_fn0.9: 31684.0000 - val_precision0.9: 0.1489 - val_recall0.9: 0.9883 - val_accuracy: 0.1895 - val_auc: 0.5616 - val_f1: 0.2531
    
            ...
    
            Epoch 100/100
            184/184 [==============================] - 184s 1s/step - loss: 0.0877 - tp0.1: 10015121.0000 - fp0.1: 1833216.0000 - tn0.1: 66390352.0000 - fn0.1: 142350.0000 - precision0.1: 0.8453 - recall0.1: 0.9860 - tp0.3: 9874038.0000 - fp0.3: 10
            86322.0000 - tn0.3: 67137280.0000 - fn0.3: 283433.0000 - precision0.3: 0.9009 - recall0.3: 0.9721 - tp0.5: 9674727.0000 - fp0.5: 664419.0000 - tn0.5: 67559176.0000 - fn0.5: 482744.0000 - precision0.5: 0.9357 - recall0.5: 0.9525 - tp0.7:
             9343030.0000 - fp0.7: 341635.0000 - tn0.7: 67881952.0000 - fn0.7: 814441.0000 - precision0.7: 0.9647 - recall0.7: 0.9198 - tp0.9: 8626370.0000 - fp0.9: 88068.0000 - tn0.9: 68135504.0000 - fn0.9: 1531101.0000 - precision0.9: 0.9899 - re
            call0.9: 0.8493 - accuracy: 0.9854 - auc: 0.9920 - f1: 0.9440 - val_loss: 0.1556 - val_tp0.1: 2623480.0000 - val_fp0.1: 609139.0000 - val_tn0.1: 16273852.0000 - val_fn0.1: 88793.0000 - val_precision0.1: 0.8116 - val_recall0.1: 0.9673 -
            val_tp0.3: 2573475.0000 - val_fp0.3: 375340.0000 - val_tn0.3: 16507651.0000 - val_fn0.3: 138798.0000 - val_precision0.3: 0.8727 - val_recall0.3: 0.9488 - val_tp0.5: 2518254.0000 - val_fp0.5: 251870.0000 - val_tn0.5: 16631121.0000 - val_
            fn0.5: 194019.0000 - val_precision0.5: 0.9091 - val_recall0.5: 0.9285 - val_tp0.7: 2439448.0000 - val_fp0.7: 153092.0000 - val_tn0.7: 16729899.0000 - val_fn0.7: 272825.0000 - val_precision0.7: 0.9409 - val_recall0.7: 0.8994 - val_tp0.9:
             2279822.0000 - val_fp0.9: 61468.0000 - val_tn0.9: 16821524.0000 - val_fn0.9: 432451.0000 - val_precision0.9: 0.9737 - val_recall0.9: 0.8406 - val_accuracy: 0.9772 - val_auc: 0.9814 - val_f1: 0.9187
            2022-02-28 04:24:39.818514: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
            2022/02/28 04:24:58 INFO mlflow.projects: === Run (ID '484af471c61943fa90e5f78e78a229f0') succeeded ===
            (tf) [ye53nis@node128 drmed-git]$
    
    • name of run: 484af471c61943fa90e5f78e78a229f0
    • metrics after 100th epoch:
      • precisionval,0.5: 0.9091 - recallval,0.5: 0.9285 - f1val,0.5: 0.9187
      • aucval: 0.9814
    • a note on the metrics notation:
      • val means: metrics computed on validation dataset, which was used in training to e.g. ensure no overfitting occurs.
      • 0.5 means: a threshold of 0.5 was applied to the predicted output (floating point values between 0 and 1). That means we get a binary classification - and this classification was compared to the ground truth, which was binary as well. Then, precision, recall, f1, etc were computed
      • the auc function uses 100 different thresholds for computation, so there no own threshold has to be set.
  2. run training of (93b168c0ff7942c8a908a94129daf973, f243b3b742de4dbcb7ccfbd4244706f8) with hparams from above
            mlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \
                   -P batch_size=15 \
                   -P first_filters=23 \
                   -P input_size=14000 \
                   -P lr_start=0.0305060808685107 \
                   -P lr_power=7 \
                   -P epochs=100 \
                   -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \
                   -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \
                   -P scaler=quant_g \
                   -P n_levels=6 \
                   -P pool_size=4
    
            2022/02/28 14:14:59 INFO mlflow.projects.utils: === Created directory /tmp/tmpjco1jnk_ for downloading remote URIs passed to arguments of type 'path' ===
            2022/02/28 14:15:00 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train
            ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 15 --input_size 14000 --lr_start 0.0305060808685107 --lr_power 7 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_p
            ath_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler quant_g --n_levels 6 --first_filters 23 --pool_size 4' in run with ID '0cd2023eeaf745aca0d3e8ad5e1fc653' ===
            2022-02-28 14:15:13.580296: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-02-28 14:15:25,693 - train -  Python version: 3.9.6 (default, Jul 30 2021, 16:35:19)
            [GCC 7.5.0]
            2022-02-28 14:15:25,693 - train -  Tensorflow version: 2.5.0
            2022-02-28 14:15:25,693 - train -  tf.keras version: 2.5.0
            2022-02-28 14:15:25,693 - train -  Cudnn version: 8
            2022-02-28 14:15:25,693 - train -  Cuda version: 11.2
            2022-02-28 14:15:25.695839: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1
            2022-02-28 14:15:25.776740: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-02-28 14:15:25.776884: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-02-28 14:15:25.786987: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-02-28 14:15:25.787115: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            2022-02-28 14:15:25.790205: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10
            2022-02-28 14:15:25.791541: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10
            2022-02-28 14:15:25.799938: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11
            2022-02-28 14:15:25.821517: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11
            2022-02-28 14:15:25.822676: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-02-28 14:15:25.826275: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-02-28 14:15:25,826 - train -  GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"...
            2022-02-28 14:15:25,827 - train -  Setting memory growth successful.
            2022-02-28 14:15:33,830 - train -  1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv
            2022-02-28 14:15:46,000 - train -  2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv
            2022-02-28 14:15:50,090 - train -  3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv
            2022-02-28 14:16:02,981 - train -  4/48: /beegfs/ye53nis/saves/first
            artifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv
            2022-02-28 14:16:11,106 - train -  5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv
            2022-02-28 14:16:16,436 - train -  6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv
            2022-02-28 14:16:21,251 - train -  7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv
            2022-02-28 14:16:24,785 - train -  8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv
            2022-02-28 14:16:41,395 - train -  9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv
            2022-02-28 14:16:45,170 - train -  10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv
            2022-02-28 14:16:48,894 - train -  11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv
            2022-02-28 14:17:01,362 - train -  12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv
            2022-02-28 14:17:05,972 - train -  13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv
            2022-02-28 14:17:11,392 - train -  14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv
            2022-02-28 14:17:15,150 - train -  15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv
            2022-02-28 14:17:18,880 - train -  16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv
            2022-02-28 14:17:22,858 - train -  17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv
            2022-02-28 14:17:26,879 - train -  18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv
            2022-02-28 14:17:31,181 - train -  19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv
            2022-02-28 14:17:34,897 - train -  20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv
            2022-02-28 14:17:38,846 - train -  21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv
            2022-02-28 14:18:01,434 - train -  22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv
            2022-02-28 14:18:05,125 - train -  23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv
            2022-02-28 14:18:10,548 - train -  24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv
            2022-02-28 14:18:15,933 - train -  25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv
            2022-02-28 14:18:20,727 - train -  26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv
            2022-02-28 14:18:24,064 - train -  27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv
            2022-02-28 14:18:35,979 - train -  28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv
            2022-02-28 14:18:39,881 - train -  29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv
            2022-02-28 14:18:43,394 - train -  30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv
            2022-02-28 14:18:53,160 - train -  31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv
            2022-02-28 14:18:57,332 - train -  32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv
            2022-02-28 14:19:03,503 - train -  33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv
            2022-02-28 14:19:08,665 - train -  34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv
            2022-02-28 14:19:13,327 - train -  35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv
            2022-02-28 14:19:17,293 - train -  36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv
            2022-02-28 14:19:21,119 - train -  37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv
            2022-02-28 14:19:24,804 - train -  38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv
            2022-02-28 14:19:31,451 - train -  39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv
            2022-02-28 14:19:41,863 - train -  40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv
            2022-02-28 14:19:47,487 - train -  41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv
            2022-02-28 14:19:53,197 - train -  42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv
            2022-02-28 14:20:00,405 - train -  43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv
            2022-02-28 14:20:04,607 - train -  44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv
            2022-02-28 14:20:08,353 - train -  45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv
            2022-02-28 14:20:12,307 - train -  46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv
            2022-02-28 14:20:16,444 - train -  47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv
            2022-02-28 14:20:20,213 - train -  48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv
            2022-02-28 14:20:23,834 - train -  1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv
            2022-02-28 14:20:30,953 - train -  2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv
            2022-02-28 14:20:36,797 - train -  3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv
            2022-02-28 14:20:48,524 - train -  4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv
            2022-02-28 14:20:57,745 - train -  5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv
            2022-02-28 14:21:01,411 - train -  6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv
            2022-02-28 14:21:13,337 - train -  7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv
            2022-02-28 14:21:17,317 - train -  8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv
            2022-02-28 14:21:21,005 - train -  9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv
            2022-02-28 14:21:24,834 - train -  10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv
            2022-02-28 14:21:28,718 - train -  11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv
            2022-02-28 14:21:32,087 - train -  12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv
            2022-02-28 14:21:32,293 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)]
            2022-02-28 14:21:32,383 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)]
            2022-02-28 14:21:32.540303: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio
            ns:  AVX2 FMA
            To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
            2022-02-28 14:21:32.542865: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-02-28 14:21:32.544861: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-02-28 14:21:32.544960: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-02-28 14:21:32.969057: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix:
            2022-02-28 14:21:32.969130: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264]      0
            2022-02-28 14:21:32.969144: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0:   N
            2022-02-28 14:21:32.972037: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p
            ci bus id: 0000:82:00.0, compute capability: 6.0)
            2022-02-28 14:21:35,138 - train -  number of examples: 4800
            2022-02-28 14:21:35,561 - train -  number of examples: 1200
            2022-02-28 14:21:37,968 - train -  unet: input shape: (None, None, 1), output shape: (None, None, 1)
            2022/02/28 14:21:38 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='15' for run ID='0cd
            2023eeaf745aca0d3e8ad5e1fc653'. Attempted logging new value 'None'.
            Epoch 1/100
            2022-02-28 14:21:47.612006: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
            2022-02-28 14:21:47.786795: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz
            2022-02-28 14:22:00.556303: I tensorflow/core/kernels/data/shuffle_dataset_op.cc:177] Filling up shuffle buffer (this may take a while): 3118 of 4800
            2022-02-28 14:22:05.887971: I tensorflow/core/kernels/data/shuffle_dataset_op.cc:230] Shuffle buffer filled.
            2022-02-28 14:22:05.992991: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-02-28 14:22:06.329980: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101
            2022-02-28 14:22:06.837590: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-02-28 14:22:07.115604: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            320/320 [==============================] - 80s 158ms/step - loss: 0.6557 - tp0.1: 8858269.0000 - fp0.1: 11367531.0000 - tn0.1: 57039588.0000 - fn0.1: 1377794.0000 - precision0.1: 0.4380 - recall0.1: 0.8654 - tp0.3: 8020446.0000 - fp0.3:
             6844078.0000 - tn0.3: 61563052.0000 - fn0.3: 2215617.0000 - precision0.3: 0.5396 - recall0.3: 0.7835 - tp0.5: 6484149.0000 - fp0.5: 3021931.0000 - tn0.5: 65385196.0000 - fn0.5: 3751914.0000 - precision0.5: 0.6821 - recall0.5: 0.6335 -
            tp0.7: 4743137.0000 - fp0.7: 1127848.0000 - tn0.7: 67279296.0000 - fn0.7: 5492926.0000 - precision0.7: 0.8079 - recall0.7: 0.4634 - tp0.9: 2178331.0000 - fp0.9: 182418.0000 - tn0.9: 68224688.0000 - fn0.9: 8057732.0000 - precision0.9: 0.
            9227 - recall0.9: 0.2128 - accuracy: 0.9139 - auc: 0.9007 - f1: 0.6569 - val_loss: 154.4101 - val_tp0.1: 2567299.0000 - val_fp0.1: 15932078.0000 - val_tn0.1: 1006227.0000 - val_fn0.1: 155196.0000 - val_precision0.1: 0.1388 - val_recall0
            .1: 0.9430 - val_tp0.3: 2564050.0000 - val_fp0.3: 15892674.0000 - val_tn0.3: 1045631.0000 - val_fn0.3: 158445.0000 - val_precision0.3: 0.1389 - val_recall0.3: 0.9418 - val_tp0.5: 2561216.0000 - val_fp0.5: 15863898.0000 - val_tn0.5: 1074
            407.0000 - val_fn0.5: 161279.0000 - val_precision0.5: 0.1390 - val_recall0.5: 0.9408 - val_tp0.7: 2556675.0000 - val_fp0.7: 15829841.0000 - val_tn0.7: 1108464.0000 - val_fn0.7: 165820.0000 - val_precision0.7: 0.1391 - val_recall0.7: 0.9
            391 - val_tp0.9: 2546087.0000 - val_fp0.9: 15767476.0000 - val_tn0.9: 1170829.0000 - val_fn0.9: 176408.0000 - val_precision0.9: 0.1390 - val_recall0.9: 0.9352 - val_accuracy: 0.1849 - val_auc: 0.4998 - val_f1: 0.2422
    
            ...
    
            Epoch 100/100
            320/320 [==============================] - 46s 145ms/step - loss: 0.1275 - tp0.1: 10018370.0000 - fp0.1: 2700999.0000 - tn0.1: 65706144.0000 - fn0.1: 217693.0000 - precision0.1: 0.7876 - recall0.1: 0.9787 - tp0.3: 9775954.0000 - fp0.3:
            1429847.0000 - tn0.3: 66977260.0000 - fn0.3: 460109.0000 - precision0.3: 0.8724 - recall0.3: 0.9551 - tp0.5: 9497895.0000 - fp0.5: 850165.0000 - tn0.5: 67556944.0000 - fn0.5: 738168.0000 - precision0.5: 0.9178 - recall0.5: 0.9279 - tp0.
            7: 9083449.0000 - fp0.7: 444475.0000 - tn0.7: 67962624.0000 - fn0.7: 1152614.0000 - precision0.7: 0.9534 - recall0.7: 0.8874 - tp0.9: 8160305.0000 - fp0.9: 123032.0000 - tn0.9: 68284080.0000 - fn0.9: 2075758.0000 - precision0.9: 0.9851
            - recall0.9: 0.7972 - accuracy: 0.9798 - auc: 0.9876 - f1: 0.9228 - val_loss: 0.1678 - val_tp0.1: 2639044.0000 - val_fp0.1: 807650.0000 - val_tn0.1: 16130655.0000 - val_fn0.1: 83451.0000 - val_precision0.1: 0.7657 - val_recall0.1: 0.969
            3 - val_tp0.3: 2571140.0000 - val_fp0.3: 452176.0000 - val_tn0.3: 16486129.0000 - val_fn0.3: 151355.0000 - val_precision0.3: 0.8504 - val_recall0.3: 0.9444 - val_tp0.5: 2500729.0000 - val_fp0.5: 291947.0000 - val_tn0.5: 16646358.0000 -
            val_fn0.5: 221766.0000 - val_precision0.5: 0.8955 - val_recall0.5: 0.9185 - val_tp0.7: 2397916.0000 - val_fp0.7: 172157.0000 - val_tn0.7: 16766148.0000 - val_fn0.7: 324579.0000 - val_precision0.7: 0.9330 - val_recall0.7: 0.8808 - val_tp
            0.9: 2174652.0000 - val_fp0.9: 58658.0000 - val_tn0.9: 16879648.0000 - val_fn0.9: 547843.0000 - val_precision0.9: 0.9737 - val_recall0.9: 0.7988 - val_accuracy: 0.9739 - val_auc: 0.9818 - val_f1: 0.9069
            2022-02-28 15:49:04.737117: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
            2022/02/28 15:49:22 INFO mlflow.projects: === Run (ID '0cd2023eeaf745aca0d3e8ad5e1fc653') succeeded ===
    
    • name of run: 0cd2023eeaf745aca0d3e8ad5e1fc653
    • metrics after 100th epoch:
      • loss: 0.1275 - lossval: 0.1678
      • precisionval,0.5: 0.8955 - recallval,0.5: 0.9185 - f1val,0.5: 0.9069
      • aucval: 0.9818
  3. run training of (a5b8551144ff46e697a39cd1551e1475, 98cf8cdef9c54b5286e277e75e2ab8c1) with hparams from above
            mlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \
                   -P batch_size=20 \
                   -P first_filters=78 \
                   -P input_size=14000 \
                   -P lr_start=0.0584071108418767 \
                   -P lr_power=4 \
                   -P epochs=100 \
                   -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \
                   -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \
                   -P scaler=standard \
                   -P n_levels=4 \
                   -P pool_size=4
    
            2022/02/28 17:34:45 INFO mlflow.projects.utils: === Created directory /tmp/tmpwue2ujb5 for downloading remote URIs passed to arguments of type 'path' ===
            2022/02/28 17:34:45 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train
            ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 20 --input_size 14000 --lr_start 0.0584071108418767 --lr_power 4 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_p
            ath_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler standard --n_levels 4 --first_filters 78 --pool_size 4' in run with ID 'fe81d71c52404ed790b3a32051258da9' ===
            2022-02-28 17:34:58.034002: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-02-28 17:35:10,330 - train -  Python version: 3.9.6 (default, Jul 30 2021, 16:35:19)
            [GCC 7.5.0]
            2022-02-28 17:35:10,331 - train -  Tensorflow version: 2.5.0
            2022-02-28 17:35:10,331 - train -  tf.keras version: 2.5.0
            2022-02-28 17:35:10,331 - train -  Cudnn version: 8
            2022-02-28 17:35:10,331 - train -  Cuda version: 11.2
            2022-02-28 17:35:10.333548: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1
            2022-02-28 17:35:10.391240: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-02-28 17:35:10.391388: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-02-28 17:35:10.401553: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-02-28 17:35:10.401669: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            2022-02-28 17:35:10.405228: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10
            2022-02-28 17:35:10.407042: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10
            2022-02-28 17:35:10.415485: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11
            2022-02-28 17:35:10.417900: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11
            2022-02-28 17:35:10.419606: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-02-28 17:35:10.422879: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-02-28 17:35:10,423 - train -  GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"...
            2022-02-28 17:35:10,423 - train -  Setting memory growth successful.
            2022-02-28 17:35:16,324 - train -  1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv
            2022-02-28 17:35:30,676 - train -  2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv
            2022-02-28 17:35:34,283 - train -  3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv
            2022-02-28 17:35:38,780 - train -  4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv
            2022-02-28 17:35:43,054 - train -  5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv
            2022-02-28 17:35:46,234 - train -  6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv
            2022-02-28 17:35:50,337 - train -  7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv
            2022-02-28 17:35:53,421 - train -  8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv
            2022-02-28 17:35:59,004 - train -  9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv
            2022-02-28 17:36:02,669 - train -  10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv
            2022-02-28 17:36:06,267 - train -  11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv
            2022-02-28 17:36:14,414 - train -  12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv
            2022-02-28 17:36:18,640 - train -  13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv
            2022-02-28 17:36:21,742 - train -  14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv
            2022-02-28 17:36:25,004 - train -  15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv
            2022-02-28 17:36:28,518 - train -  16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv
            2022-02-28 17:36:31,957 - train -  17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv
            2022-02-28 17:36:35,265 - train -  18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv
            2022-02-28 17:36:38,670 - train -  19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv
            2022-02-28 17:36:42,309 - train -  20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv
            2022-02-28 17:36:45,973 - train -  21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv
            2022-02-28 17:36:53,886 - train -  22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv
            2022-02-28 17:36:57,387 - train -  23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv
            2022-02-28 17:37:00,889 - train -  24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv
            2022-02-28 17:37:03,901 - train -  25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv
            2022-02-28 17:37:08,741 - train -  26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv
            2022-02-28 17:37:11,797 - train -  27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv
            2022-02-28 17:37:15,549 - train -  28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv
            2022-02-28 17:37:19,909 - train -  29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv
            2022-02-28 17:37:32,956 - train -  30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv
            2022-02-28 17:37:47,613 - train -  31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv
            2022-02-28 17:37:51,591 - train -  32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv
            2022-02-28 17:37:59,140 - train -  33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv
            2022-02-28 17:38:03,933 - train -  34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv
            2022-02-28 17:38:07,415 - train -  35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv
            2022-02-28 17:38:15,509 - train -  36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv
            2022-02-28 17:38:20,075 - train -  37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv
            2022-02-28 17:38:24,146 - train -  38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv
            2022-02-28 17:38:38,735 - train -  39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv
            2022-02-28 17:38:41,894 - train -  40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv
            2022-02-28 17:38:45,710 - train -  41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv
            2022-02-28 17:38:49,786 - train -  42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv
            2022-02-28 17:38:53,505 - train -  43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv
            2022-02-28 17:38:58,205 - train -  44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv
            2022-02-28 17:39:02,031 - train -  45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv
            2022-02-28 17:39:06,190 - train -  46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv
            2022-02-28 17:39:09,521 - train -  47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv
            2022-02-28 17:39:14,557 - train -  48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv
            2022-02-28 17:39:18,060 - train -  1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv
            2022-02-28 17:39:31,842 - train -  2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv
            2022-02-28 17:39:51,088 - train -  3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv
            2022-02-28 17:40:02,789 - train -  4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv
            2022-02-28 17:40:06,696 - train -  5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv
            2022-02-28 17:40:10,118 - train -  6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv
            2022-02-28 17:40:24,593 - train -  7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv
            2022-02-28 17:40:28,308 - train -  8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv
            2022-02-28 17:40:37,143 - train -  9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv
            2022-02-28 17:40:41,060 - train -  10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv
            2022-02-28 17:40:59,911 - train -  11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv
            2022-02-28 17:41:19,363 - train -  12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv
            2022-02-28 17:41:19,570 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)]
            2022-02-28 17:41:19,659 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)]
            2022-02-28 17:41:19.824149: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio
            ns:  AVX2 FMA
            To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
            2022-02-28 17:41:19.827704: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-02-28 17:41:19.831605: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-02-28 17:41:19.831748: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-02-28 17:41:20.290008: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix:
            2022-02-28 17:41:20.290081: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264]      0
            2022-02-28 17:41:20.290096: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0:   N
            2022-02-28 17:41:20.292984: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p
            ci bus id: 0000:82:00.0, compute capability: 6.0)
            2022-02-28 17:41:22,312 - train -  number of examples: 4800
            2022-02-28 17:41:22,698 - train -  number of examples: 1200
            2022-02-28 17:41:26,203 - train -  unet: input shape: (None, None, 1), output shape: (None, None, 1)
            2022/02/28 17:41:26 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='20' for run ID='fe8
            1d71c52404ed790b3a32051258da9'. Attempted logging new value 'None'.
            Epoch 1/100
            2022-02-28 17:41:34.119597: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
            2022-02-28 17:41:34.266024: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz
            2022-02-28 17:41:42.993902: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-02-28 17:41:43.305956: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101
            2022-02-28 17:41:43.787015: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-02-28 17:41:44.068827: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            240/240 [==============================] - 146s 532ms/step - loss: 0.8392 - tp0.1: 8747285.0000 - fp0.1: 10445142.0000 - tn0.1: 57962008.0000 - fn0.1: 1488778.0000 - precision0.1: 0.4558 - recall0.1: 0.8546 - tp0.3: 7896000.0000 - fp0.3
            : 5233157.0000 - tn0.3: 63173976.0000 - fn0.3: 2340063.0000 - precision0.3: 0.6014 - recall0.3: 0.7714 - tp0.5: 6575708.0000 - fp0.5: 2263621.0000 - tn0.5: 66143520.0000 - fn0.5: 3660355.0000 - precision0.5: 0.7439 - recall0.5: 0.6424 -
             tp0.7: 5154156.0000 - fp0.7: 920133.0000 - tn0.7: 67487000.0000 - fn0.7: 5081907.0000 - precision0.7: 0.8485 - recall0.7: 0.5035 - tp0.9: 3283109.0000 - fp0.9: 213358.0000 - tn0.9: 68193792.0000 - fn0.9: 6952954.0000 - precision0.9: 0.
            9390 - recall0.9: 0.3207 - accuracy: 0.9247 - auc: 0.9073 - f1: 0.6894 - val_loss: 1.7768 - val_tp0.1: 2543119.0000 - val_fp0.1: 9378664.0000 - val_tn0.1: 7559641.0000 - val_fn0.1: 179376.0000 - val_precision0.1: 0.2133 - val_recall0.1:
             0.9341 - val_tp0.3: 2504900.0000 - val_fp0.3: 7161614.0000 - val_tn0.3: 9776691.0000 - val_fn0.3: 217595.0000 - val_precision0.3: 0.2591 - val_recall0.3: 0.9201 - val_tp0.5: 2470794.0000 - val_fp0.5: 5614724.0000 - val_tn0.5: 11323581.
            0000 - val_fn0.5: 251701.0000 - val_precision0.5: 0.3056 - val_recall0.5: 0.9075 - val_tp0.7: 2416278.0000 - val_fp0.7: 4187348.0000 - val_tn0.7: 12750957.0000 - val_fn0.7: 306217.0000 - val_precision0.7: 0.3659 - val_recall0.7: 0.8875
            - val_tp0.9: 2331726.0000 - val_fp0.9: 2968486.0000 - val_tn0.9: 13969819.0000 - val_fn0.9: 390769.0000 - val_precision0.9: 0.4399 - val_recall0.9: 0.8565 - val_accuracy: 0.7016 - val_auc: 0.8807 - val_f1: 0.4572
    
            ...
    
            Epoch 100/100
            240/240 [==============================] - 124s 515ms/step - loss: 0.0941 - tp0.1: 10073753.0000 - fp0.1: 1908290.0000 - tn0.1: 66498824.0000 - fn0.1: 162310.0000 - precision0.1: 0.8407 - recall0.1: 0.9841 - tp0.3: 9929412.0000 - fp0.3:
             1163791.0000 - tn0.3: 67243336.0000 - fn0.3: 306651.0000 - precision0.3: 0.8951 - recall0.3: 0.9700 - tp0.5: 9693885.0000 - fp0.5: 672284.0000 - tn0.5: 67734840.0000 - fn0.5: 542178.0000 - precision0.5: 0.9351 - recall0.5: 0.9470 - tp0
            .7: 9345709.0000 - fp0.7: 339542.0000 - tn0.7: 68067608.0000 - fn0.7: 890354.0000 - precision0.7: 0.9649 - recall0.7: 0.9130 - tp0.9: 8608433.0000 - fp0.9: 86583.0000 - tn0.9: 68320560.0000 - fn0.9: 1627630.0000 - precision0.9: 0.9900 -
             recall0.9: 0.8410 - accuracy: 0.9846 - auc: 0.9912 - f1: 0.9411 - val_loss: 0.1372 - val_tp0.1: 2648989.0000 - val_fp0.1: 600014.0000 - val_tn0.1: 16338291.0000 - val_fn0.1: 73506.0000 - val_precision0.1: 0.8153 - val_recall0.1: 0.9730
             - val_tp0.3: 2604739.0000 - val_fp0.3: 372047.0000 - val_tn0.3: 16566258.0000 - val_fn0.3: 117756.0000 - val_precision0.3: 0.8750 - val_recall0.3: 0.9567 - val_tp0.5: 2542400.0000 - val_fp0.5: 225996.0000 - val_tn0.5: 16712309.0000 - v
            al_fn0.5: 180095.0000 - val_precision0.5: 0.9184 - val_recall0.5: 0.9338 - val_tp0.7: 2459692.0000 - val_fp0.7: 126768.0000 - val_tn0.7: 16811536.0000 - val_fn0.7: 262803.0000 - val_precision0.7: 0.9510 - val_recall0.7: 0.9035 - val_tp0
            .9: 2288921.0000 - val_fp0.9: 43449.0000 - val_tn0.9: 16894856.0000 - val_fn0.9: 433574.0000 - val_precision0.9: 0.9814 - val_recall0.9: 0.8407 - val_accuracy: 0.9793 - val_auc: 0.9849 - val_f1: 0.9260
            2022-02-28 21:13:24.522272: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
            2022/02/28 21:13:37 INFO mlflow.projects: === Run (ID 'fe81d71c52404ed790b3a32051258da9') succeeded ===
            (tf) [ye53nis@node128 drmed-git]$
    
    • name of run: fe81d71c52404ed790b3a32051258da9
    • metrics after 100th epoch:
      • precisionval,0.5: 0.9184 - recallval,0.5: 0.9338 - f1val,0.5: 0.9260
      • aucval: 0.9849
  4. run training of (00f2635d9fa2463c9a066722163405be, d0a8e1748b194f3290d471b6b44f19f8) with hparams from above
            mlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \
                   -P batch_size=28 \
                   -P first_filters=6 \
                   -P input_size=14000 \
                   -P lr_start=0.0553313915596308 \
                   -P lr_power=1 \
                   -P epochs=100 \
                   -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \
                   -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \
                   -P scaler=minmax \
                   -P n_levels=5 \
                   -P pool_size=4
    
            2022/03/01 01:02:32 INFO mlflow.projects.utils: === Created directory /tmp/tmpscsw8dai for downloading remote URIs passed to arguments of type 'path' ===
            2022/03/01 01:02:32 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train
            ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 28 --input_size 14000 --lr_start 0.0553313915596308 --lr_power 1 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_p
            ath_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler minmax --n_levels 5 --first_filters 6 --pool_size 4' in run with ID 'ff67be0b68e540a9a29a36a2d0c7a5be' ===
            2022-03-01 01:02:49.062309: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-01 01:03:02,012 - train -  Python version: 3.9.6 (default, Jul 30 2021, 16:35:19)
            [GCC 7.5.0]
            2022-03-01 01:03:02,013 - train -  Tensorflow version: 2.5.0
            2022-03-01 01:03:02,013 - train -  tf.keras version: 2.5.0
            2022-03-01 01:03:02,013 - train -  Cudnn version: 8
            2022-03-01 01:03:02,013 - train -  Cuda version: 11.2
            2022-03-01 01:03:02.017849: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1
            2022-03-01 01:03:02.070568: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-03-01 01:03:02.070675: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-01 01:03:02.081043: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-03-01 01:03:02.081139: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            2022-03-01 01:03:02.085346: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10
            2022-03-01 01:03:02.088350: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10
            2022-03-01 01:03:02.097715: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11
            2022-03-01 01:03:02.100867: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11
            2022-03-01 01:03:02.103117: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-03-01 01:03:02.106443: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-03-01 01:03:02,106 - train -  GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"...
            2022-03-01 01:03:02,107 - train -  Setting memory growth successful.
            2022-03-01 01:03:08,710 - train -  1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv
            2022-03-01 01:03:17,500 - train -  2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv
            2022-03-01 01:03:21,523 - train -  3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv
            2022-03-01 01:03:25,810 - train -  4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv
            2022-03-01 01:03:29,726 - train -  5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv
            2022-03-01 01:03:35,702 - train -  6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv
            2022-03-01 01:03:39,927 - train -  7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv
            2022-03-01 01:03:44,978 - train -  8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv
            2022-03-01 01:03:49,851 - train -  9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv
            2022-03-01 01:03:54,065 - train -  10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv
            2022-03-01 01:03:57,914 - train -  11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv
            2022-03-01 01:04:09,148 - train -  12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv
            2022-03-01 01:04:14,246 - train -  13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv
            2022-03-01 01:04:17,776 - train -  14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv
            2022-03-01 01:04:24,334 - train -  15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv
            2022-03-01 01:04:28,494 - train -  16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv
            2022-03-01 01:04:31,978 - train -  17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv
            2022-03-01 01:04:35,535 - train -  18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv
            2022-03-01 01:04:39,104 - train -  19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv
            2022-03-01 01:04:42,753 - train -  20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv
            2022-03-01 01:04:46,786 - train -  21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv
            2022-03-01 01:04:50,549 - train -  22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv
            2022-03-01 01:05:10,273 - train -  23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv
            2022-03-01 01:05:14,332 - train -  24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv
            2022-03-01 01:05:17,829 - train -  25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv
            2022-03-01 01:05:29,382 - train -  26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv
            2022-03-01 01:05:32,892 - train -  27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv
            2022-03-01 01:05:37,614 - train -  28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv
            2022-03-01 01:05:41,478 - train -  29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv
            2022-03-01 01:05:55,816 - train -  30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv
            2022-03-01 01:06:06,797 - train -  31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv
            2022-03-01 01:06:10,595 - train -  32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv
            2022-03-01 01:06:15,368 - train -  33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv
            2022-03-01 01:06:20,784 - train -  34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv
            2022-03-01 01:06:26,970 - train -  35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv
            2022-03-01 01:06:31,521 - train -  36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv
            2022-03-01 01:06:35,363 - train -  37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv
            2022-03-01 01:06:39,107 - train -  38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv
            2022-03-01 01:07:01,475 - train -  39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv
            2022-03-01 01:07:05,191 - train -  40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv
            2022-03-01 01:07:08,941 - train -  41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv
            2022-03-01 01:07:13,043 - train -  42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv
            2022-03-01 01:07:16,874 - train -  43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv
            2022-03-01 01:07:20,478 - train -  44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv
            2022-03-01 01:07:24,571 - train -  45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv
            2022-03-01 01:07:28,090 - train -  46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv
            2022-03-01 01:07:31,811 - train -  47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv
            2022-03-01 01:07:35,574 - train -  48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv
            2022-03-01 01:07:39,526 - train -  1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv
            2022-03-01 01:07:49,139 - train -  2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv
            2022-03-01 01:08:06,079 - train -  3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv
            2022-03-01 01:08:17,384 - train -  4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv
            2022-03-01 01:08:21,021 - train -  5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv
            2022-03-01 01:08:24,646 - train -  6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv
            2022-03-01 01:08:33,131 - train -  7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv
            2022-03-01 01:08:37,919 - train -  8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv
            2022-03-01 01:08:41,923 - train -  9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv
            2022-03-01 01:08:45,386 - train -  10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv
            2022-03-01 01:08:50,064 - train -  11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv
            2022-03-01 01:08:54,537 - train -  12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv
            2022-03-01 01:08:54,754 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)]
            2022-03-01 01:08:54,844 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)]
            2022-03-01 01:08:54.997694: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio
            ns:  AVX2 FMA
            To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
            2022-03-01 01:08:55.000062: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-03-01 01:08:55.002040: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-03-01 01:08:55.002135: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-01 01:08:55.428415: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix:
            2022-03-01 01:08:55.428487: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264]      0
            2022-03-01 01:08:55.428501: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0:   N
            2022-03-01 01:08:55.431349: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p
            ci bus id: 0000:82:00.0, compute capability: 6.0)
            2022-03-01 01:08:57,489 - train -  number of examples: 4800
            2022-03-01 01:08:57,859 - train -  number of examples: 1200
            2022-03-01 01:09:00,816 - train -  unet: input shape: (None, None, 1), output shape: (None, None, 1)
            2022/03/01 01:09:00 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='28' for run ID='ff6
            7be0b68e540a9a29a36a2d0c7a5be'. Attempted logging new value 'None'.
            Epoch 1/100
            2022-03-01 01:09:09.470355: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
            2022-03-01 01:09:09.627221: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz
            2022-03-01 01:09:19.253073: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-03-01 01:09:19.568134: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101
            2022-03-01 01:09:20.032500: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-03-01 01:09:20.318967: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            171/171 [==============================] - 38s 111ms/step - loss: 0.6328 - tp0.1: 9097064.0000 - fp0.1: 12967912.0000 - tn0.1: 55269208.0000 - fn0.1: 1112405.0000 - precision0.1: 0.4123 - recall0.1: 0.8910 - tp0.3: 8278749.0000 - fp0.3:
             7308225.0000 - tn0.3: 60928896.0000 - fn0.3: 1930720.0000 - precision0.3: 0.5311 - recall0.3: 0.8109 - tp0.5: 6546144.0000 - fp0.5: 2745102.0000 - tn0.5: 65492008.0000 - fn0.5: 3663325.0000 - precision0.5: 0.7045 - recall0.5: 0.6412 -
            tp0.7: 5069917.0000 - fp0.7: 1036309.0000 - tn0.7: 67200816.0000 - fn0.7: 5139552.0000 - precision0.7: 0.8303 - recall0.7: 0.4966 - tp0.9: 2806365.0000 - fp0.9: 200542.0000 - tn0.9: 68036592.0000 - fn0.9: 7403104.0000 - precision0.9: 0.
            9333 - recall0.9: 0.2749 - accuracy: 0.9183 - auc: 0.9138 - f1: 0.6714 - val_loss: 100.5511 - val_tp0.1: 2677947.0000 - val_fp0.1: 16589637.0000 - val_tn0.1: 0.0000e+00 - val_fn0.1: 0.0000e+00 - val_precision0.1: 0.1390 - val_recall0.1:
             1.0000 - val_tp0.3: 2677947.0000 - val_fp0.3: 16589563.0000 - val_tn0.3: 74.0000 - val_fn0.3: 0.0000e+00 - val_precision0.3: 0.1390 - val_recall0.3: 1.0000 - val_tp0.5: 2677947.0000 - val_fp0.5: 16589315.0000 - val_tn0.5: 322.0000 - va
            l_fn0.5: 0.0000e+00 - val_precision0.5: 0.1390 - val_recall0.5: 1.0000 - val_tp0.7: 2677947.0000 - val_fp0.7: 16589042.0000 - val_tn0.7: 595.0000 - val_fn0.7: 0.0000e+00 - val_precision0.7: 0.1390 - val_recall0.7: 1.0000 - val_tp0.9: 26
            77947.0000 - val_fp0.9: 16588561.0000 - val_tn0.9: 1076.0000 - val_fn0.9: 0.0000e+00 - val_precision0.9: 0.1390 - val_recall0.9: 1.0000 - val_accuracy: 0.1390 - val_auc: 0.5001 - val_f1: 0.2441
    
            ...
    
            Epoch 100/100
            171/171 [==============================] - 15s 89ms/step - loss: 0.0890 - tp0.1: 10079569.0000 - fp0.1: 1892418.0000 - tn0.1: 66332504.0000 - fn0.1: 142100.0000 - precision0.1: 0.8419 - recall0.1: 0.9861 - tp0.3: 9939857.0000 - fp0.3: 1
            140232.0000 - tn0.3: 67084692.0000 - fn0.3: 281812.0000 - precision0.3: 0.8971 - recall0.3: 0.9724 - tp0.5: 9703286.0000 - fp0.5: 647685.0000 - tn0.5: 67577248.0000 - fn0.5: 518383.0000 - precision0.5: 0.9374 - recall0.5: 0.9493 - tp0.7
            : 9385401.0000 - fp0.7: 340758.0000 - tn0.7: 67884160.0000 - fn0.7: 836268.0000 - precision0.7: 0.9650 - recall0.7: 0.9182 - tp0.9: 8688940.0000 - fp0.9: 89880.0000 - tn0.9: 68135024.0000 - fn0.9: 1532729.0000 - precision0.9: 0.9898 - r
            ecall0.9: 0.8501 - accuracy: 0.9851 - auc: 0.9922 - f1: 0.9433 - val_loss: 0.1286 - val_tp0.1: 2593533.0000 - val_fp0.1: 546329.0000 - val_tn0.1: 16060347.0000 - val_fn0.1: 67375.0000 - val_precision0.1: 0.8260 - val_recall0.1: 0.9747 -
             val_tp0.3: 2548361.0000 - val_fp0.3: 333669.0000 - val_tn0.3: 16273007.0000 - val_fn0.3: 112547.0000 - val_precision0.3: 0.8842 - val_recall0.3: 0.9577 - val_tp0.5: 2492439.0000 - val_fp0.5: 208035.0000 - val_tn0.5: 16398641.0000 - val
            _fn0.5: 168469.0000 - val_precision0.5: 0.9230 - val_recall0.5: 0.9367 - val_tp0.7: 2414912.0000 - val_fp0.7: 119511.0000 - val_tn0.7: 16487165.0000 - val_fn0.7: 245996.0000 - val_precision0.7: 0.9528 - val_recall0.7: 0.9076 - val_tp0.9
            : 2250009.0000 - val_fp0.9: 39723.0000 - val_tn0.9: 16566953.0000 - val_fn0.9: 410899.0000 - val_precision0.9: 0.9827 - val_recall0.9: 0.8456 - val_accuracy: 0.9805 - val_auc: 0.9859 - val_f1: 0.9298
            2022-03-01 01:40:07.449069: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
            2022/03/01 01:40:21 INFO mlflow.projects: === Run (ID 'ff67be0b68e540a9a29a36a2d0c7a5be') succeeded ===
    
    
    • name of run: ff67be0b68e540a9a29a36a2d0c7a5be
    • metrics after 100th epoch:
      • loss: 0.0890 vs lossval: 0.1286
      • precisionval,0.5: 0.9230 - recallval,0.5: 0.9367 - f1val,0.5: 0.9298
      • aucval: 0.9859
  5. run training of (5604d43c1ece461b8e6eaa0dfb65d6dc, 3612536a77f34f22bc83d1d809140aa6) with hparams from above
            mlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \
                   -P batch_size=20 \
                   -P first_filters=128 \
                   -P input_size=14000 \
                   -P lr_start=0.043549707353273 \
                   -P lr_power=1 \
                   -P epochs=100 \
                   -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \
                   -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \
                   -P scaler=standard \
                   -P n_levels=3 \
                   -P pool_size=4
    
            2022/03/01 12:32:44 INFO mlflow.projects.utils: === Created directory /tmp/tmpuaqmbl4a for downloading remote URIs passed to arguments of type 'path' ===
            2022/03/01 12:32:44 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train
            ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 20 --input_size 14000 --lr_start 0.043549707353273 --lr_power 1 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_pa
            th_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler standard --n_levels 3 --first_filters 128 --pool_size 4' in run with ID '19e3e786e1bc4e2b93856f5dc9de8216' ===
            2022-03-01 12:32:58.514798: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-01 12:33:09,490 - train -  Python version: 3.9.6 (default, Jul 30 2021, 16:35:19)
            [GCC 7.5.0]
            2022-03-01 12:33:09,490 - train -  Tensorflow version: 2.5.0
            2022-03-01 12:33:09,490 - train -  tf.keras version: 2.5.0
            2022-03-01 12:33:09,490 - train -  Cudnn version: 8
            2022-03-01 12:33:09,490 - train -  Cuda version: 11.2
            2022-03-01 12:33:09.493303: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1
            2022-03-01 12:33:09.550241: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-03-01 12:33:09.550350: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-01 12:33:09.561190: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-03-01 12:33:09.561299: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            2022-03-01 12:33:09.565126: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10
            2022-03-01 12:33:09.567931: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10
            2022-03-01 12:33:09.576981: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11
            2022-03-01 12:33:09.597335: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11
            2022-03-01 12:33:09.599375: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-03-01 12:33:09.602568: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-03-01 12:33:09,602 - train -  GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"...
            2022-03-01 12:33:09,603 - train -  Setting memory growth successful.
            2022-03-01 12:33:15,918 - train -  1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv
            2022-03-01 12:33:19,510 - train -  2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv
            2022-03-01 12:33:23,436 - train -  3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv
            2022-03-01 12:33:27,059 - train -  4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv
            2022-03-01 12:33:31,773 - train -  5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv
            2022-03-01 12:33:35,876 - train -  6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv
            2022-03-01 12:33:39,462 - train -  7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv
            2022-03-01 12:33:42,942 - train -  8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv
            2022-03-01 12:33:46,757 - train -  9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv
            2022-03-01 12:33:51,064 - train -  10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv
            2022-03-01 12:33:56,528 - train -  11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv
            2022-03-01 12:34:00,572 - train -  12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv
            2022-03-01 12:34:04,069 - train -  13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv
            2022-03-01 12:34:07,965 - train -  14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv
            2022-03-01 12:34:18,633 - train -  15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv
            2022-03-01 12:34:21,910 - train -  16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv
            2022-03-01 12:34:25,641 - train -  17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv
            2022-03-01 12:34:30,386 - train -  18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv
            2022-03-01 12:34:34,226 - train -  19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv
            2022-03-01 12:34:37,740 - train -  20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv
            2022-03-01 12:34:43,348 - train -  21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv
            2022-03-01 12:34:46,797 - train -  22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv
            2022-03-01 12:34:50,435 - train -  23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv
            2022-03-01 12:34:54,778 - train -  24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv
            2022-03-01 12:34:58,764 - train -  25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv
            2022-03-01 12:35:02,693 - train -  26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv
            2022-03-01 12:35:15,387 - train -  27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv
            2022-03-01 12:35:19,459 - train -  28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv
            2022-03-01 12:35:23,164 - train -  29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv
            2022-03-01 12:35:27,345 - train -  30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv
            2022-03-01 12:35:30,844 - train -  31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv
            2022-03-01 12:35:34,995 - train -  32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv
            2022-03-01 12:35:38,565 - train -  33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv
            2022-03-01 12:35:43,358 - train -  34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv
            2022-03-01 12:35:48,209 - train -  35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv
            2022-03-01 12:35:52,885 - train -  36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv
            2022-03-01 12:35:57,900 - train -  37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv
            2022-03-01 12:36:01,708 - train -  38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv
            2022-03-01 12:36:05,386 - train -  39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv
            2022-03-01 12:36:09,008 - train -  40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv
            2022-03-01 12:36:13,039 - train -  41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv
            2022-03-01 12:36:16,946 - train -  42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv
            2022-03-01 12:36:20,517 - train -  43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv
            2022-03-01 12:36:24,115 - train -  44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv
            2022-03-01 12:36:27,768 - train -  45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv
            2022-03-01 12:36:32,136 - train -  46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv
            2022-03-01 12:36:36,005 - train -  47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv
            2022-03-01 12:36:39,799 - train -  48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv
            2022-03-01 12:36:43,465 - train -  1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv
            2022-03-01 12:36:47,166 - train -  2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv
            2022-03-01 12:36:50,897 - train -  3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv
            2022-03-01 12:36:56,421 - train -  4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv
            2022-03-01 12:36:59,926 - train -  5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv
            2022-03-01 12:37:03,654 - train -  6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv
            2022-03-01 12:37:07,675 - train -  7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv
            2022-03-01 12:37:11,784 - train -  8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv
            2022-03-01 12:37:18,953 - train -  9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv
            2022-03-01 12:37:22,467 - train -  10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv
            2022-03-01 12:37:26,203 - train -  11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv
            2022-03-01 12:37:31,518 - train -  12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv
            2022-03-01 12:37:31,732 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)]
            2022-03-01 12:37:31,822 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)]
            2022-03-01 12:37:32.029003: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio
            ns:  AVX2 FMA
            To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
            2022-03-01 12:37:32.031379: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-03-01 12:37:32.033418: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-03-01 12:37:32.033500: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-01 12:37:32.469006: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix:
            2022-03-01 12:37:32.469079: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264]      0
            2022-03-01 12:37:32.469093: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0:   N
            2022-03-01 12:37:32.471972: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p
            ci bus id: 0000:82:00.0, compute capability: 6.0)
            2022-03-01 12:37:34,440 - train -  number of examples: 4800
            2022-03-01 12:37:34,767 - train -  number of examples: 1200
            2022-03-01 12:37:36,587 - train -  unet: input shape: (None, None, 1), output shape: (None, None, 1)
            2022/03/01 12:37:36 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='20' for run ID='19e
            3e786e1bc4e2b93856f5dc9de8216'. Attempted logging new value 'None'.
            Epoch 1/100
            2022-03-01 12:37:44.731191: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
            2022-03-01 12:37:44.863807: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz
            2022-03-01 12:37:53.275302: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-03-01 12:37:53.580058: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101
            2022-03-01 12:37:54.077952: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-03-01 12:37:54.363640: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            240/240 [==============================] - 220s 838ms/step - loss: 1.1221 - tp0.1: 8540565.0000 - fp0.1: 11192430.0000 - tn0.1: 57214708.0000 - fn0.1: 1695498.0000 - precision0.1: 0.4328 - recall0.1: 0.8344 - tp0.3: 7522117.0000 - fp0.3
            : 4392113.0000 - tn0.3: 64015032.0000 - fn0.3: 2713946.0000 - precision0.3: 0.6314 - recall0.3: 0.7349 - tp0.5: 6672931.0000 - fp0.5: 2324779.0000 - tn0.5: 66082352.0000 - fn0.5: 3563132.0000 - precision0.5: 0.7416 - recall0.5: 0.6519 -
             tp0.7: 5275458.0000 - fp0.7: 916716.0000 - tn0.7: 67490392.0000 - fn0.7: 4960605.0000 - precision0.7: 0.8520 - recall0.7: 0.5154 - tp0.9: 3246371.0000 - fp0.9: 199829.0000 - tn0.9: 68207312.0000 - fn0.9: 6989692.0000 - precision0.9: 0.
            9420 - recall0.9: 0.3172 - accuracy: 0.9251 - auc: 0.9067 - f1: 0.6939 - val_loss: 1.4857 - val_tp0.1: 978503.0000 - val_fp0.1: 435953.0000 - val_tn0.1: 16502352.0000 - val_fn0.1: 1743992.0000 - val_precision0.1: 0.6918 - val_recall0.1:
             0.3594 - val_tp0.3: 873592.0000 - val_fp0.3: 222905.0000 - val_tn0.3: 16715400.0000 - val_fn0.3: 1848903.0000 - val_precision0.3: 0.7967 - val_recall0.3: 0.3209 - val_tp0.5: 816820.0000 - val_fp0.5: 140072.0000 - val_tn0.5: 16798232.00
            00 - val_fn0.5: 1905675.0000 - val_precision0.5: 0.8536 - val_recall0.5: 0.3000 - val_tp0.7: 747818.0000 - val_fp0.7: 84156.0000 - val_tn0.7: 16854148.0000 - val_fn0.7: 1974677.0000 - val_precision0.7: 0.8988 - val_recall0.7: 0.2747 - v
            al_tp0.9: 619063.0000 - val_fp0.9: 32598.0000 - val_tn0.9: 16905708.0000 - val_fn0.9: 2103432.0000 - val_precision0.9: 0.9500 - val_recall0.9: 0.2274 - val_accuracy: 0.8959 - val_auc: 0.7267 - val_f1: 0.4440
    
            ...
    
            Epoch 100/100
            240/240 [==============================] - 197s 821ms/step - loss: 0.0929 - tp0.1: 10067403.0000 - fp0.1: 1713493.0000 - tn0.1: 66693648.0000 - fn0.1: 168660.0000 - precision0.1: 0.8546 - recall0.1: 0.9835 - tp0.3: 9949382.0000 - fp0.3:
             1087364.0000 - tn0.3: 67319792.0000 - fn0.3: 286681.0000 - precision0.3: 0.9015 - recall0.3: 0.9720 - tp0.5: 9760046.0000 - fp0.5: 690436.0000 - tn0.5: 67716696.0000 - fn0.5: 476017.0000 - precision0.5: 0.9339 - recall0.5: 0.9535 - tp0
            .7: 9431582.0000 - fp0.7: 374056.0000 - tn0.7: 68033088.0000 - fn0.7: 804481.0000 - precision0.7: 0.9619 - recall0.7: 0.9214 - tp0.9: 8660415.0000 - fp0.9: 112381.0000 - tn0.9: 68294768.0000 - fn0.9: 1575648.0000 - precision0.9: 0.9872
            - recall0.9: 0.8461 - accuracy: 0.9852 - auc: 0.9906 - f1: 0.9436 - val_loss: 0.2611 - val_tp0.1: 2521251.0000 - val_fp0.1: 602159.0000 - val_tn0.1: 16336146.0000 - val_fn0.1: 201244.0000 - val_precision0.1: 0.8072 - val_recall0.1: 0.92
            61 - val_tp0.3: 2463263.0000 - val_fp0.3: 387212.0000 - val_tn0.3: 16551093.0000 - val_fn0.3: 259232.0000 - val_precision0.3: 0.8642 - val_recall0.3: 0.9048 - val_tp0.5: 2406415.0000 - val_fp0.5: 272305.0000 - val_tn0.5: 16666000.0000 -
             val_fn0.5: 316080.0000 - val_precision0.5: 0.8983 - val_recall0.5: 0.8839 - val_tp0.7: 2314277.0000 - val_fp0.7: 168490.0000 - val_tn0.7: 16769815.0000 - val_fn0.7: 408218.0000 - val_precision0.7: 0.9321 - val_recall0.7: 0.8501 - val_t
            p0.9: 2130323.0000 - val_fp0.9: 72929.0000 - val_tn0.9: 16865376.0000 - val_fn0.9: 592172.0000 - val_precision0.9: 0.9669 - val_recall0.9: 0.7825 - val_accuracy: 0.9701 - val_auc: 0.9595 - val_f1: 0.8911
            2022-03-01 18:11:37.935237: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
            2022/03/01 18:11:48 INFO mlflow.projects: === Run (ID '19e3e786e1bc4e2b93856f5dc9de8216') succeeded ===
    
    
    • name of run: 19e3e786e1bc4e2b93856f5dc9de8216
    • metrics after 100th epoch:
      • precisionval,0.5: 0.8983 - recallval,0.5: 0.8839 - f1val,0.5: 0.8911
      • aucval: 0.9595
  6. run training of (7cafab027cdd4fc9bf20a43e989df510, 16dff15d935f45e2a836b1f41b07b4e3) with hparams from above
            mlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \
                   -P batch_size=10 \
                   -P first_filters=16 \
                   -P input_size=14000 \
                   -P lr_start=0.0627676336651573 \
                   -P lr_power=1 \
                   -P epochs=100 \
                   -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \
                   -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \
                   -P scaler=robust \
                   -P n_levels=5 \
                   -P pool_size=4
    
            2022/03/01 19:36:22 INFO mlflow.projects.utils: === Created directory /tmp/tmpzbcp4g1j for downloading remote URIs passed to arguments of type 'path' ===
            2022/03/01 19:36:22 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train
            ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 10 --input_size 14000 --lr_start 0.0627676336651573 --lr_power 1 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_p
            ath_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler robust --n_levels 5 --first_filters 16 --pool_size 4' in run with ID '347669d050f344ad9fb9e480c814f727' ===
            2022-03-01 19:36:34.348943: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-01 19:36:46,433 - train -  Python version: 3.9.6 (default, Jul 30 2021, 16:35:19)
            [GCC 7.5.0]
            2022-03-01 19:36:46,434 - train -  Tensorflow version: 2.5.0
            2022-03-01 19:36:46,434 - train -  tf.keras version: 2.5.0
            2022-03-01 19:36:46,434 - train -  Cudnn version: 8
            2022-03-01 19:36:46,434 - train -  Cuda version: 11.2
            2022-03-01 19:36:46.437417: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1
            2022-03-01 19:36:46.506267: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-03-01 19:36:46.506409: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-01 19:36:46.516098: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-03-01 19:36:46.516211: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            2022-03-01 19:36:46.519627: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10
            2022-03-01 19:36:46.522117: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10
            2022-03-01 19:36:46.531350: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11
            2022-03-01 19:36:46.534380: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11
            2022-03-01 19:36:46.536313: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-03-01 19:36:46.539533: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-03-01 19:36:46,539 - train -  GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"...
            2022-03-01 19:36:46,540 - train -  Setting memory growth successful.
            2022-03-01 19:36:53,495 - train -  1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv
            2022-03-01 19:36:59,518 - train -  2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv
            2022-03-01 19:37:03,152 - train -  3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv
            2022-03-01 19:37:06,774 - train -  4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv
            2022-03-01 19:37:10,319 - train -  5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv
            2022-03-01 19:37:16,051 - train -  6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv
            2022-03-01 19:37:20,347 - train -  7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv
            2022-03-01 19:37:28,839 - train -  8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv
            2022-03-01 19:37:32,240 - train -  9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv
            2022-03-01 19:37:36,494 - train -  10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv
            2022-03-01 19:37:40,435 - train -  11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv
            2022-03-01 19:37:45,646 - train -  12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv
            2022-03-01 19:37:49,090 - train -  13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv
            2022-03-01 19:37:53,145 - train -  14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv
            2022-03-01 19:37:56,818 - train -  15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv
            2022-03-01 19:38:00,166 - train -  16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv
            2022-03-01 19:38:03,643 - train -  17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv
            2022-03-01 19:38:07,281 - train -  18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv
            2022-03-01 19:38:10,928 - train -  19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv
            2022-03-01 19:38:14,614 - train -  20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv
            2022-03-01 19:38:18,136 - train -  21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv
            2022-03-01 19:38:21,832 - train -  22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv
            2022-03-01 19:38:27,731 - train -  23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv
            2022-03-01 19:38:31,406 - train -  24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv
            2022-03-01 19:38:34,819 - train -  25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv
            2022-03-01 19:38:38,249 - train -  26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv
            2022-03-01 19:38:41,695 - train -  27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv
            2022-03-01 19:38:45,025 - train -  28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv
            2022-03-01 19:38:48,758 - train -  29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv
            2022-03-01 19:38:52,913 - train -  30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv
            2022-03-01 19:38:56,358 - train -  31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv
            2022-03-01 19:39:00,987 - train -  32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv
            2022-03-01 19:39:04,634 - train -  33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv
            2022-03-01 19:39:08,400 - train -  34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv
            2022-03-01 19:39:11,867 - train -  35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv
            2022-03-01 19:39:15,951 - train -  36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv
            2022-03-01 19:39:19,638 - train -  37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv
            2022-03-01 19:39:23,207 - train -  38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv
            2022-03-01 19:39:30,739 - train -  39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv
            2022-03-01 19:39:34,471 - train -  40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv
            2022-03-01 19:39:38,619 - train -  41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv
            2022-03-01 19:39:42,300 - train -  42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv
            2022-03-01 19:39:45,973 - train -  43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv
            2022-03-01 19:39:49,635 - train -  44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv
            2022-03-01 19:39:53,835 - train -  45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv
            2022-03-01 19:39:57,292 - train -  46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv
            2022-03-01 19:40:01,084 - train -  47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv
            2022-03-01 19:40:04,949 - train -  48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv
            2022-03-01 19:40:08,522 - train -  1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv
            2022-03-01 19:40:11,907 - train -  2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv
            2022-03-01 19:40:15,721 - train -  3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv
            2022-03-01 19:40:19,221 - train -  4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv
            2022-03-01 19:40:22,982 - train -  5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv
            2022-03-01 19:40:26,520 - train -  6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv
            2022-03-01 19:40:30,083 - train -  7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv
            2022-03-01 19:40:33,515 - train -  8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv
            2022-03-01 19:40:36,862 - train -  9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv
            2022-03-01 19:40:40,692 - train -  10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv
            2022-03-01 19:40:44,478 - train -  11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv
            2022-03-01 19:40:47,736 - train -  12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv
            2022-03-01 19:40:47,939 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)]
            2022-03-01 19:40:48,032 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)]
            2022-03-01 19:40:48.195482: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio
            ns:  AVX2 FMA
            To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
            2022-03-01 19:40:48.198562: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-03-01 19:40:48.200594: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-03-01 19:40:48.200695: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-01 19:40:48.635293: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix:
            2022-03-01 19:40:48.635366: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264]      0
            2022-03-01 19:40:48.635382: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0:   N
            2022-03-01 19:40:48.638373: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p
            ci bus id: 0000:82:00.0, compute capability: 6.0)
            2022-03-01 19:40:51,863 - train -  number of examples: 4800
            2022-03-01 19:40:52,254 - train -  number of examples: 1200
            2022-03-01 19:40:54,716 - train -  unet: input shape: (None, None, 1), output shape: (None, None, 1)
            2022/03/01 19:40:54 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='10' for run ID='347
            669d050f344ad9fb9e480c814f727'. Attempted logging new value 'None'.
            Epoch 1/100
            2022-03-01 19:41:04.464586: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
            2022-03-01 19:41:04.627492: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz
            2022-03-01 19:41:14.720330: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-03-01 19:41:15.055044: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101
            2022-03-01 19:41:15.546433: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-03-01 19:41:15.832893: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            480/480 [==============================] - 60s 82ms/step - loss: 0.5773 - tp0.1: 8880905.0000 - fp0.1: 10094803.0000 - tn0.1: 58312352.0000 - fn0.1: 1355158.0000 - precision0.1: 0.4680 - recall0.1: 0.8676 - tp0.3: 7871045.0000 - fp0.3:
            4514511.0000 - tn0.3: 63892572.0000 - fn0.3: 2365018.0000 - precision0.3: 0.6355 - recall0.3: 0.7690 - tp0.5: 6608273.0000 - fp0.5: 1693677.0000 - tn0.5: 66713460.0000 - fn0.5: 3627790.0000 - precision0.5: 0.7960 - recall0.5: 0.6456 - t
            p0.7: 5575527.0000 - fp0.7: 626556.0000 - tn0.7: 67780600.0000 - fn0.7: 4660536.0000 - precision0.7: 0.8990 - recall0.7: 0.5447 - tp0.9: 4341516.0000 - fp0.9: 163073.0000 - tn0.9: 68244088.0000 - fn0.9: 5894547.0000 - precision0.9: 0.96
            38 - recall0.9: 0.4241 - accuracy: 0.9323 - auc: 0.9124 - f1: 0.7129 - val_loss: 0.6884 - val_tp0.1: 2348236.0000 - val_fp0.1: 3299237.0000 - val_tn0.1: 13639068.0000 - val_fn0.1: 374259.0000 - val_precision0.1: 0.4158 - val_recall0.1:
            0.8625 - val_tp0.3: 2180062.0000 - val_fp0.3: 2146157.0000 - val_tn0.3: 14792148.0000 - val_fn0.3: 542433.0000 - val_precision0.3: 0.5039 - val_recall0.3: 0.8008 - val_tp0.5: 1966718.0000 - val_fp0.5: 1074503.0000 - val_tn0.5: 15863802.
            0000 - val_fn0.5: 755777.0000 - val_precision0.5: 0.6467 - val_recall0.5: 0.7224 - val_tp0.7: 1647155.0000 - val_fp0.7: 270297.0000 - val_tn0.7: 16668008.0000 - val_fn0.7: 1075340.0000 - val_precision0.7: 0.8590 - val_recall0.7: 0.6050
            - val_tp0.9: 1346781.0000 - val_fp0.9: 48532.0000 - val_tn0.9: 16889772.0000 - val_fn0.9: 1375714.0000 - val_precision0.9: 0.9652 - val_recall0.9: 0.4947 - val_accuracy: 0.9069 - val_auc: 0.8983 - val_f1: 0.6824
    
            ...
    
            Epoch 100/100
            480/480 [==============================] - 36s 75ms/step - loss: 0.0973 - tp0.1: 10083866.0000 - fp0.1: 2150370.0000 - tn0.1: 66256776.0000 - fn0.1: 152197.0000 - precision0.1: 0.8242 - recall0.1: 0.9851 - tp0.3: 9911194.0000 - fp0.3: 1
            217280.0000 - tn0.3: 67189872.0000 - fn0.3: 324869.0000 - precision0.3: 0.8906 - recall0.3: 0.9683 - tp0.5: 9675199.0000 - fp0.5: 716243.0000 - tn0.5: 67690904.0000 - fn0.5: 560864.0000 - precision0.5: 0.9311 - recall0.5: 0.9452 - tp0.7
            : 9261235.0000 - fp0.7: 330050.0000 - tn0.7: 68077096.0000 - fn0.7: 974828.0000 - precision0.7: 0.9656 - recall0.7: 0.9048 - tp0.9: 8585163.0000 - fp0.9: 94613.0000 - tn0.9: 68312512.0000 - fn0.9: 1650900.0000 - precision0.9: 0.9891 - r
            ecall0.9: 0.8387 - accuracy: 0.9838 - auc: 0.9915 - f1: 0.9381 - val_loss: 0.1400 - val_tp0.1: 2648521.0000 - val_fp0.1: 631749.0000 - val_tn0.1: 16306556.0000 - val_fn0.1: 73974.0000 - val_precision0.1: 0.8074 - val_recall0.1: 0.9728 -
             val_tp0.3: 2586061.0000 - val_fp0.3: 344848.0000 - val_tn0.3: 16593457.0000 - val_fn0.3: 136434.0000 - val_precision0.3: 0.8823 - val_recall0.3: 0.9499 - val_tp0.5: 2514973.0000 - val_fp0.5: 202882.0000 - val_tn0.5: 16735423.0000 - val
            _fn0.5: 207522.0000 - val_precision0.5: 0.9254 - val_recall0.5: 0.9238 - val_tp0.7: 2409626.0000 - val_fp0.7: 97831.0000 - val_tn0.7: 16840474.0000 - val_fn0.7: 312869.0000 - val_precision0.7: 0.9610 - val_recall0.7: 0.8851 - val_tp0.9:
             2228029.0000 - val_fp0.9: 30092.0000 - val_tn0.9: 16908212.0000 - val_fn0.9: 494466.0000 - val_precision0.9: 0.9867 - val_recall0.9: 0.8184 - val_accuracy: 0.9791 - val_auc: 0.9848 - val_f1: 0.9246
            2022-03-01 20:46:33.038541: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
            2022/03/01 20:46:47 INFO mlflow.projects: === Run (ID '347669d050f344ad9fb9e480c814f727') succeeded ===
    
    
    • name of run: 347669d050f344ad9fb9e480c814f727
    • metrics after 100th epoch:
      • precisionval,0.5: 0.9254 - recallval,0.5: 0.9238 - f1val,0.5: 0.9246
      • aucval: 0.9848
  7. run training of (0e328920e86049928202db95e8cfb7be, bf9d2725eb16462d9a101f0a077ce2b5) with hparams from above
            mlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \
                   -P batch_size=14 \
                   -P first_filters=16 \
                   -P input_size=14000 \
                   -P lr_start=0.0192390310290551 \
                   -P lr_power=5 \
                   -P epochs=100 \
                   -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \
                   -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \
                   -P scaler=robust \
                   -P n_levels=9 \
                   -P pool_size=2
    
            2022/03/01 22:12:06 INFO mlflow.projects.utils: === Created directory /tmp/tmpgcmidltj for downloading remote URIs passed to arguments of type 'path' ===
            2022/03/01 22:12:06 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train
            ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 14 --input_size 14000 --lr_start 0.0192390310290551 --lr_power 5 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_p
            ath_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler robust --n_levels 9 --first_filters 16 --pool_size 2' in run with ID 'c1204e3a8a1e4c40a35b5b7b1922d1ce' ===
            2022-03-01 22:12:20.335142: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-01 22:12:33,450 - train -  Python version: 3.9.6 (default, Jul 30 2021, 16:35:19)
            [GCC 7.5.0]
            2022-03-01 22:12:33,451 - train -  Tensorflow version: 2.5.0
            2022-03-01 22:12:33,451 - train -  tf.keras version: 2.5.0
            2022-03-01 22:12:33,451 - train -  Cudnn version: 8
            2022-03-01 22:12:33,451 - train -  Cuda version: 11.2
            2022-03-01 22:12:33.453876: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1
            2022-03-01 22:12:33.508402: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-03-01 22:12:33.508543: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-01 22:12:33.518297: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-03-01 22:12:33.518392: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            2022-03-01 22:12:33.521775: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10
            2022-03-01 22:12:33.523563: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10
            2022-03-01 22:12:33.532074: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11
            2022-03-01 22:12:33.534870: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11
            2022-03-01 22:12:33.536502: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-03-01 22:12:33.539631: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-03-01 22:12:33,539 - train -  GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"...
            2022-03-01 22:12:33,540 - train -  Setting memory growth successful.
            2022-03-01 22:12:39,562 - train -  1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv
            2022-03-01 22:12:42,849 - train -  2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv
            2022-03-01 22:12:46,207 - train -  3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv
            2022-03-01 22:12:50,855 - train -  4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv
            2022-03-01 22:12:55,527 - train -  5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv
            2022-03-01 22:12:58,713 - train -  6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv
            2022-03-01 22:13:02,325 - train -  7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv
            2022-03-01 22:13:05,461 - train -  8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv
            2022-03-01 22:13:08,927 - train -  9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv
            2022-03-01 22:13:14,609 - train -  10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv
            2022-03-01 22:13:17,983 - train -  11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv
            2022-03-01 22:13:21,031 - train -  12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv
            2022-03-01 22:13:24,219 - train -  13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv
            2022-03-01 22:13:27,321 - train -  14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv
            2022-03-01 22:13:30,784 - train -  15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv
            2022-03-01 22:13:34,829 - train -  16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv
            2022-03-01 22:13:38,078 - train -  17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv
            2022-03-01 22:13:41,302 - train -  18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv
            2022-03-01 22:13:45,845 - train -  19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv
            2022-03-01 22:13:49,546 - train -  20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv
            2022-03-01 22:13:53,591 - train -  21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv
            2022-03-01 22:13:56,776 - train -  22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv
            2022-03-01 22:14:00,326 - train -  23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv
            2022-03-01 22:14:03,666 - train -  24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv
            2022-03-01 22:14:06,840 - train -  25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv
            2022-03-01 22:14:12,440 - train -  26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv
            2022-03-01 22:14:15,561 - train -  27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv
            2022-03-01 22:14:18,839 - train -  28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv
            2022-03-01 22:14:22,240 - train -  29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv
            2022-03-01 22:14:25,355 - train -  30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv
            2022-03-01 22:14:28,483 - train -  31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv
            2022-03-01 22:14:31,960 - train -  32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv
            2022-03-01 22:14:35,186 - train -  33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv
            2022-03-01 22:14:38,725 - train -  34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv
            2022-03-01 22:14:42,022 - train -  35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv
            2022-03-01 22:14:45,344 - train -  36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv
            2022-03-01 22:14:48,717 - train -  37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv
            2022-03-01 22:14:52,459 - train -  38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv
            2022-03-01 22:14:57,077 - train -  39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv
            2022-03-01 22:15:00,330 - train -  40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv
            2022-03-01 22:15:03,675 - train -  41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv
            2022-03-01 22:15:07,194 - train -  42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv
            2022-03-01 22:15:10,373 - train -  43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv
            2022-03-01 22:15:13,913 - train -  44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv
            2022-03-01 22:15:17,100 - train -  45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv
            2022-03-01 22:15:20,452 - train -  46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv
            2022-03-01 22:15:23,646 - train -  47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv
            2022-03-01 22:15:27,210 - train -  48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv
            2022-03-01 22:15:31,036 - train -  1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv
            2022-03-01 22:15:35,097 - train -  2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv
            2022-03-01 22:15:38,379 - train -  3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv
            2022-03-01 22:15:41,484 - train -  4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv
            2022-03-01 22:15:44,853 - train -  5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv
            2022-03-01 22:15:50,250 - train -  6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv
            2022-03-01 22:15:54,918 - train -  7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv
            2022-03-01 22:15:58,298 - train -  8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv
            2022-03-01 22:16:02,901 - train -  9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv
            2022-03-01 22:16:06,154 - train -  10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv
            2022-03-01 22:16:09,817 - train -  11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv
            2022-03-01 22:16:12,969 - train -  12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv
            2022-03-01 22:16:13,193 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)]
            2022-03-01 22:16:13,282 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)]
            2022-03-01 22:16:13.549849: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio
            ns:  AVX2 FMA
            To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
            2022-03-01 22:16:13.552236: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-03-01 22:16:13.554196: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-03-01 22:16:13.554316: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-01 22:16:13.976589: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix:
            2022-03-01 22:16:13.976661: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264]      0
            2022-03-01 22:16:13.976674: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0:   N
            2022-03-01 22:16:13.979482: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p
            ci bus id: 0000:82:00.0, compute capability: 6.0)
            2022-03-01 22:16:15,961 - train -  number of examples: 4800
            2022-03-01 22:16:16,380 - train -  number of examples: 1200
            2022-03-01 22:16:19,293 - train -  unet: input shape: (None, None, 1), output shape: (None, None, 1)
            2022/03/01 22:16:19 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='14' for run ID='c12
            04e3a8a1e4c40a35b5b7b1922d1ce'. Attempted logging new value 'None'.
            Epoch 1/100
            2022-03-01 22:16:30.776559: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
            2022-03-01 22:16:30.983303: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz
            2022-03-01 22:16:42.127026: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-03-01 22:16:42.439526: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101
            2022-03-01 22:16:42.928881: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-03-01 22:16:43.210835: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            342/342 [==============================] - 124s 292ms/step - loss: 0.7070 - tp0.1: 8568535.0000 - fp0.1: 13083853.0000 - tn0.1: 55158168.0000 - fn0.1: 1636041.0000 - precision0.1: 0.3957 - recall0.1: 0.8397 - tp0.3: 6954119.0000 - fp0.3
            : 4121236.0000 - tn0.3: 64120780.0000 - fn0.3: 3250457.0000 - precision0.3: 0.6279 - recall0.3: 0.6815 - tp0.5: 5914618.0000 - fp0.5: 1373295.0000 - tn0.5: 66868700.0000 - fn0.5: 4289958.0000 - precision0.5: 0.8116 - recall0.5: 0.5796 -
             tp0.7: 5157583.0000 - fp0.7: 495656.0000 - tn0.7: 67746344.0000 - fn0.7: 5046993.0000 - precision0.7: 0.9123 - recall0.7: 0.5054 - tp0.9: 4126657.0000 - fp0.9: 91030.0000 - tn0.9: 68151000.0000 - fn0.9: 6077919.0000 - precision0.9: 0.9
            784 - recall0.9: 0.4044 - accuracy: 0.9278 - auc: 0.8844 - f1: 0.6762 - val_loss: 0.6968 - val_tp0.1: 2338956.0000 - val_fp0.1: 2679424.0000 - val_tn0.1: 14116949.0000 - val_fn0.1: 361631.0000 - val_precision0.1: 0.4661 - val_recall0.1:
             0.8661 - val_tp0.3: 2156286.0000 - val_fp0.3: 1498035.0000 - val_tn0.3: 15298338.0000 - val_fn0.3: 544301.0000 - val_precision0.3: 0.5901 - val_recall0.3: 0.7985 - val_tp0.5: 1886303.0000 - val_fp0.5: 688918.0000 - val_tn0.5: 16107455.
            0000 - val_fn0.5: 814284.0000 - val_precision0.5: 0.7325 - val_recall0.5: 0.6985 - val_tp0.7: 1720047.0000 - val_fp0.7: 358918.0000 - val_tn0.7: 16437455.0000 - val_fn0.7: 980540.0000 - val_precision0.7: 0.8274 - val_recall0.7: 0.6369 -
             val_tp0.9: 1536712.0000 - val_fp0.9: 146022.0000 - val_tn0.9: 16650351.0000 - val_fn0.9: 1163875.0000 - val_precision0.9: 0.9132 - val_recall0.9: 0.5690 - val_accuracy: 0.9229 - val_auc: 0.9057 - val_f1: 0.7151
    
            ...
    
            Epoch 100/100
            342/342 [==============================] - 96s 282ms/step - loss: 0.1201 - tp0.1: 9816720.0000 - fp0.1: 2613299.0000 - tn0.1: 65809824.0000 - fn0.1: 206742.0000 - precision0.1: 0.7898 - recall0.1: 0.9794 - tp0.3: 9593189.0000 - fp0.3: 1
            365697.0000 - tn0.3: 67057408.0000 - fn0.3: 430273.0000 - precision0.3: 0.8754 - recall0.3: 0.9571 - tp0.5: 9310282.0000 - fp0.5: 760248.0000 - tn0.5: 67662912.0000 - fn0.5: 713180.0000 - precision0.5: 0.9245 - recall0.5: 0.9288 - tp0.7
            : 8896402.0000 - fp0.7: 359466.0000 - tn0.7: 68063680.0000 - fn0.7: 1127060.0000 - precision0.7: 0.9612 - recall0.7: 0.8876 - tp0.9: 8125429.0000 - fp0.9: 93565.0000 - tn0.9: 68329576.0000 - fn0.9: 1898033.0000 - precision0.9: 0.9886 -
            recall0.9: 0.8106 - accuracy: 0.9812 - auc: 0.9882 - f1: 0.9267 - val_loss: 0.1429 - val_tp0.1: 2631773.0000 - val_fp0.1: 731922.0000 - val_tn0.1: 16067311.0000 - val_fn0.1: 65954.0000 - val_precision0.1: 0.7824 - val_recall0.1: 0.9756
            - val_tp0.3: 2571221.0000 - val_fp0.3: 390541.0000 - val_tn0.3: 16408692.0000 - val_fn0.3: 126506.0000 - val_precision0.3: 0.8681 - val_recall0.3: 0.9531 - val_tp0.5: 2491171.0000 - val_fp0.5: 222824.0000 - val_tn0.5: 16576409.0000 - va
            l_fn0.5: 206556.0000 - val_precision0.5: 0.9179 - val_recall0.5: 0.9234 - val_tp0.7: 2379767.0000 - val_fp0.7: 112408.0000 - val_tn0.7: 16686825.0000 - val_fn0.7: 317960.0000 - val_precision0.7: 0.9549 - val_recall0.7: 0.8821 - val_tp0.
            9: 2166171.0000 - val_fp0.9: 33767.0000 - val_tn0.9: 16765466.0000 - val_fn0.9: 531556.0000 - val_precision0.9: 0.9847 - val_recall0.9: 0.8030 - val_accuracy: 0.9780 -
            2022-03-02 01:02:37.643121: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
            2022/03/02 01:03:00 INFO mlflow.projects: === Run (ID 'c1204e3a8a1e4c40a35b5b7b1922d1ce') succeeded ===
            (tf) [ye53nis@node128 drmed-git]$
    
    • name of run: c1204e3a8a1e4c40a35b5b7b1922d1ce
    • metrics after 100th epoch:
      • precisionval,0.5: 0.9179 - recallval,0.5: 0.9234 - f1val,0.5: 0.9207
      • aucval: 0.9858
  8. run training of (3cbd945b62ec4634839372e403f6f377, 458b36a70db843719d202a8eda448f17) with hparams from above
            mlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \
                   -P batch_size=9 \
                   -P first_filters=64 \
                   -P input_size=14000 \
                   -P lr_start=0.0100697459464075 \
                   -P lr_power=1 \
                   -P epochs=100 \
                   -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \
                   -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \
                   -P scaler=maxabs \
                   -P n_levels=5 \
                   -P pool_size=4
    
            2022/03/02 01:11:44 INFO mlflow.projects.utils: === Created directory /tmp/tmpx4epxfnm for downloading remote URIs passed to arguments of type 'path' ===
            2022/03/02 01:11:44 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train
            ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 9 --input_size 14000 --lr_start 0.0100697459464075 --lr_power 1 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_pa
            th_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler maxabs --n_levels 5 --first_filters 64 --pool_size 4' in run with ID '714af8cd12c1441eac4ca980e8c20070' ===
            2022-03-02 01:11:56.803319: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-02 01:12:07,546 - train -  Python version: 3.9.6 (default, Jul 30 2021, 16:35:19)
            [GCC 7.5.0]
            2022-03-02 01:12:07,546 - train -  Tensorflow version: 2.5.0
            2022-03-02 01:12:07,546 - train -  tf.keras version: 2.5.0
            2022-03-02 01:12:07,547 - train -  Cudnn version: 8
            2022-03-02 01:12:07,547 - train -  Cuda version: 11.2
            2022-03-02 01:12:07.550455: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1
            2022-03-02 01:12:07.628356: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-03-02 01:12:07.628511: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-02 01:12:07.638859: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-03-02 01:12:07.638985: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            2022-03-02 01:12:07.643056: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10
            2022-03-02 01:12:07.646183: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10
            2022-03-02 01:12:07.656023: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11
            2022-03-02 01:12:07.659075: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11
            2022-03-02 01:12:07.661143: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-03-02 01:12:07.664383: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-03-02 01:12:07,664 - train -  GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"...
            2022-03-02 01:12:07,665 - train -  Setting memory growth successful.
            2022-03-02 01:12:13,856 - train -  1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv
            2022-03-02 01:12:17,659 - train -  2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv
            2022-03-02 01:12:21,236 - train -  3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv
            2022-03-02 01:12:24,720 - train -  4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv
            2022-03-02 01:12:27,968 - train -  5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv
            2022-03-02 01:12:31,066 - train -  6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv
            2022-03-02 01:12:34,437 - train -  7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv
            2022-03-02 01:12:37,504 - train -  8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv
            2022-03-02 01:12:42,706 - train -  9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv
            2022-03-02 01:12:46,132 - train -  10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv
            2022-03-02 01:12:49,635 - train -  11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv
            2022-03-02 01:12:53,763 - train -  12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv
            2022-03-02 01:12:57,006 - train -  13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv
            2022-03-02 01:13:00,289 - train -  14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv
            2022-03-02 01:13:03,628 - train -  15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv
            2022-03-02 01:13:07,750 - train -  16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv
            2022-03-02 01:13:11,178 - train -  17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv
            2022-03-02 01:13:14,491 - train -  18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv
            2022-03-02 01:13:17,835 - train -  19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv
            2022-03-02 01:13:21,243 - train -  20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv
            2022-03-02 01:13:24,830 - train -  21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv
            2022-03-02 01:13:28,194 - train -  22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv
            2022-03-02 01:13:31,658 - train -  23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv
            2022-03-02 01:13:35,112 - train -  24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv
            2022-03-02 01:13:38,261 - train -  25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv
            2022-03-02 01:13:41,634 - train -  26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv
            2022-03-02 01:13:44,894 - train -  27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv
            2022-03-02 01:13:48,172 - train -  28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv
            2022-03-02 01:13:51,792 - train -  29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv
            2022-03-02 01:13:55,890 - train -  30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv
            2022-03-02 01:13:59,226 - train -  31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv
            2022-03-02 01:14:03,473 - train -  32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv
            2022-03-02 01:14:06,889 - train -  33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv
            2022-03-02 01:14:11,194 - train -  34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv
            2022-03-02 01:14:14,602 - train -  35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv
            2022-03-02 01:14:18,195 - train -  36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv
            2022-03-02 01:14:23,874 - train -  37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv
            2022-03-02 01:14:27,349 - train -  38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv
            2022-03-02 01:14:30,931 - train -  39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv
            2022-03-02 01:14:39,147 - train -  40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv
            2022-03-02 01:14:42,631 - train -  41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv
            2022-03-02 01:14:46,112 - train -  42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv
            2022-03-02 01:14:49,382 - train -  43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv
            2022-03-02 01:14:54,801 - train -  44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv
            2022-03-02 01:14:58,059 - train -  45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv
            2022-03-02 01:15:01,699 - train -  46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv
            2022-03-02 01:15:04,960 - train -  47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv
            2022-03-02 01:15:08,548 - train -  48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv
            2022-03-02 01:15:11,862 - train -  1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv
            2022-03-02 01:15:15,127 - train -  2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv
            2022-03-02 01:15:18,793 - train -  3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv
            2022-03-02 01:15:24,397 - train -  4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv
            2022-03-02 01:15:27,879 - train -  5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv
            2022-03-02 01:15:31,270 - train -  6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv
            2022-03-02 01:15:34,589 - train -  7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv
            2022-03-02 01:15:38,546 - train -  8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv
            2022-03-02 01:15:42,044 - train -  9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv
            2022-03-02 01:15:45,426 - train -  10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv
            2022-03-02 01:15:49,033 - train -  11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv
            2022-03-02 01:15:52,325 - train -  12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv
            2022-03-02 01:15:52,527 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)]
            2022-03-02 01:15:52,616 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)]
            2022-03-02 01:15:52.773335: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio
            ns:  AVX2 FMA
            To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
            2022-03-02 01:15:52.775655: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-03-02 01:15:52.777670: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-03-02 01:15:52.777752: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-02 01:15:53.202763: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix:
            2022-03-02 01:15:53.202835: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264]      0
            2022-03-02 01:15:53.202850: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0:   N
            2022-03-02 01:15:53.205744: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p
            ci bus id: 0000:82:00.0, compute capability: 6.0)
            2022-03-02 01:15:55,214 - train -  number of examples: 4800
            2022-03-02 01:15:55,624 - train -  number of examples: 1200
            2022-03-02 01:15:57,731 - train -  unet: input shape: (None, None, 1), output shape: (None, None, 1)
            2022/03/02 01:15:57 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='9' for run ID='714a
            f8cd12c1441eac4ca980e8c20070'. Attempted logging new value 'None'.
            Epoch 1/100
            2022-03-02 01:16:06.204044: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
            2022-03-02 01:16:06.363399: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz
            2022-03-02 01:16:14.227408: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-03-02 01:16:14.534785: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101
            2022-03-02 01:16:15.007638: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-03-02 01:16:15.294778: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            533/533 [==============================] - 129s 209ms/step - loss: 0.9630 - tp0.1: 8826943.0000 - fp0.1: 17028400.0000 - tn0.1: 51333204.0000 - fn0.1: 1405497.0000 - precision0.1: 0.3414 - recall0.1: 0.8626 - tp0.3: 7038448.0000 - fp0.3
            : 7003701.0000 - tn0.3: 61357888.0000 - fn0.3: 3193992.0000 - precision0.3: 0.5012 - recall0.3: 0.6879 - tp0.5: 4980151.0000 - fp0.5: 2201947.0000 - tn0.5: 66159680.0000 - fn0.5: 5252289.0000 - precision0.5: 0.6934 - recall0.5: 0.4867 -
             tp0.7: 3822069.0000 - fp0.7: 917042.0000 - tn0.7: 67444552.0000 - fn0.7: 6410371.0000 - precision0.7: 0.8065 - recall0.7: 0.3735 - tp0.9: 2341770.0000 - fp0.9: 282920.0000 - tn0.9: 68078696.0000 - fn0.9: 7890670.0000 - precision0.9: 0.
            8922 - recall0.9: 0.2289 - accuracy: 0.9052 - auc: 0.8844 - f1: 0.5720 - val_loss: 17.7890 - val_tp0.1: 2710616.0000 - val_fp0.1: 15396795.0000 - val_tn0.1: 1498695.0000 - val_fn0.1: 5542.0000 - val_precision0.1: 0.1497 - val_recall0.1:
             0.9980 - val_tp0.3: 2709922.0000 - val_fp0.3: 15341678.0000 - val_tn0.3: 1553812.0000 - val_fn0.3: 6236.0000 - val_precision0.3: 0.1501 - val_recall0.3: 0.9977 - val_tp0.5: 2709375.0000 - val_fp0.5: 15293665.0000 - val_tn0.5: 1601825.0
            000 - val_fn0.5: 6783.0000 - val_precision0.5: 0.1505 - val_recall0.5: 0.9975 - val_tp0.7: 2708822.0000 - val_fp0.7: 15242876.0000 - val_tn0.7: 1652614.0000 - val_fn0.7: 7336.0000 - val_precision0.7: 0.1509 - val_recall0.7: 0.9973 - val
            _tp0.9: 2707532.0000 - val_fp0.9: 15151973.0000 - val_tn0.9: 1743517.0000 - val_fn0.9: 8626.0000 - val_precision0.9: 0.1516 - val_recall0.9: 0.9968 - val_accuracy: 0.2198 - val_auc: 0.5561 - val_f1: 0.2615
    
            ...
    
            Epoch 100/100
            533/533 [==============================] - 108s 202ms/step - loss: 0.0724 - tp0.1: 10196374.0000 - fp0.1: 1589491.0000 - tn0.1: 66701600.0000 - fn0.1: 106580.0000 - precision0.1: 0.8651 - recall0.1: 0.9897 - tp0.3: 10080835.0000 - fp0.3
            : 986714.0000 - tn0.3: 67304368.0000 - fn0.3: 222119.0000 - precision0.3: 0.9108 - recall0.3: 0.9784 - tp0.5: 9895952.0000 - fp0.5: 600682.0000 - tn0.5: 67690432.0000 - fn0.5: 407002.0000 - precision0.5: 0.9428 - recall0.5: 0.9605 - tp0
            .7: 9574784.0000 - fp0.7: 291406.0000 - tn0.7: 67999680.0000 - fn0.7: 728170.0000 - precision0.7: 0.9705 - recall0.7: 0.9293 - tp0.9: 8942531.0000 - fp0.9: 72576.0000 - tn0.9: 68218544.0000 - fn0.9: 1360423.0000 - precision0.9: 0.9919 -
             recall0.9: 0.8680 - accuracy: 0.9872 - auc: 0.9942 - f1: 0.9516 - val_loss: 0.1303 - val_tp0.1: 2631957.0000 - val_fp0.1: 478568.0000 - val_tn0.1: 16426044.0000 - val_fn0.1: 75079.0000 - val_precision0.1: 0.8461 - val_recall0.1: 0.9723
             - val_tp0.3: 2587183.0000 - val_fp0.3: 308683.0000 - val_tn0.3: 16595929.0000 - val_fn0.3: 119853.0000 - val_precision0.3: 0.8934 - val_recall0.3: 0.9557 - val_tp0.5: 2531594.0000 - val_fp0.5: 203214.0000 - val_tn0.5: 16701398.0000 - v
            al_fn0.5: 175442.0000 - val_precision0.5: 0.9257 - val_recall0.5: 0.9352 - val_tp0.7: 2448316.0000 - val_fp0.7: 118418.0000 - val_tn0.7: 16786194.0000 - val_fn0.7: 258720.0000 - val_precision0.7: 0.9539 - val_recall0.7: 0.9044 - val_tp0
            .9: 2283631.0000 - val_fp0.9: 49167.0000 - val_tn0.9: 16855444.0000 - val_fn0.9: 423405.0000 - val_precision0.9: 0.9789 - val_recall0.9: 0.8436 - val_accuracy: 0.9807 - val_auc: 0.9843 - val_f1: 0.9304
            2022-03-02 04:20:37.604740: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
            2022/03/02 04:20:52 INFO mlflow.projects: === Run (ID '714af8cd12c1441eac4ca980e8c20070') succeeded ===
    
    
    • name of run: 714af8cd12c1441eac4ca980e8c20070
    • metrics after 100th epoch:
      • loss: 0.0724 - lossval: 0.1303
      • precisionval,0.5: 0.9257 - recallval,0.5: 0.9352 - f1val,0.5: 0.9304
      • aucval: 0.9843
  9. run training of (3cbd945b62ec4634839372e403f6f377, 458b36a70db843719d202a8eda448f17) with hparams from above
            mlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \
                   -P batch_size=17 \
                   -P first_filters=16 \
                   -P input_size=14000 \
                   -P lr_start=0.0101590069352232 \
                   -P lr_power=5 \
                   -P epochs=100 \
                   -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \
                   -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \
                   -P scaler=l2 \
                   -P n_levels=3 \
                   -P pool_size=4
    
            2022/03/03 14:24:46 INFO mlflow.projects.utils: === Created directory /tmp/tmp7c_e9yu1 for downloading remote URIs passed to arguments of type 'path' ===
            2022/03/03 14:24:46 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train
            ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 17 --input_size 14000 --lr_start 0.0101590069352232 --lr_power 5 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_p
            ath_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler l2 --n_levels 3 --first_filters 16 --pool_size 4' in run with ID '34a6d207ac594035b1009c330fb67a65' ===
            2022-03-03 14:24:50.057413: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-03 14:24:54,004 - train -  Python version: 3.9.6 (default, Jul 30 2021, 16:35:19)
            [GCC 7.5.0]
            2022-03-03 14:24:54,004 - train -  Tensorflow version: 2.5.0
            2022-03-03 14:24:54,004 - train -  tf.keras version: 2.5.0
            2022-03-03 14:24:54,004 - train -  Cudnn version: 8
            2022-03-03 14:24:54,004 - train -  Cuda version: 11.2
            2022-03-03 14:24:54.006301: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1
            2022-03-03 14:24:54.030317: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-03-03 14:24:54.030405: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-03 14:24:54.038110: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-03-03 14:24:54.038189: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            2022-03-03 14:24:54.041129: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10
            2022-03-03 14:24:54.042988: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10
            2022-03-03 14:24:54.050220: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11
            2022-03-03 14:24:54.052310: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11
            2022-03-03 14:24:54.053334: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-03-03 14:24:54.056200: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-03-03 14:24:54,056 - train -  GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"...
            2022-03-03 14:24:54,056 - train -  Setting memory growth successful.
            2022-03-03 14:25:01,220 - train -  1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv
            2022-03-03 14:25:05,184 - train -  2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv
            2022-03-03 14:25:08,951 - train -  3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv
            2022-03-03 14:25:15,413 - train -  4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv
            2022-03-03 14:25:33,960 - train -  5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv
            2022-03-03 14:25:37,427 - train -  6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv
            2022-03-03 14:25:41,118 - train -  7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv
            2022-03-03 14:25:49,655 - train -  8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv
            2022-03-03 14:25:54,052 - train -  9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv
            2022-03-03 14:25:57,575 - train -  10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv
            2022-03-03 14:26:01,255 - train -  11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv
            2022-03-03 14:26:04,485 - train -  12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv
            2022-03-03 14:26:08,073 - train -  13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv
            2022-03-03 14:26:11,768 - train -  14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv
            2022-03-03 14:26:19,400 - train -  15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv
            2022-03-03 14:26:23,640 - train -  16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv
            2022-03-03 14:26:27,567 - train -  17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv
            2022-03-03 14:26:31,999 - train -  18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv
            2022-03-03 14:26:36,569 - train -  19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv
            2022-03-03 14:26:40,326 - train -  20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv
            2022-03-03 14:26:43,920 - train -  21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv
            2022-03-03 14:26:48,619 - train -  22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv
            2022-03-03 14:26:53,742 - train -  23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv
            2022-03-03 14:26:57,605 - train -  24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv
            2022-03-03 14:27:01,008 - train -  25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv
            2022-03-03 14:27:04,458 - train -  26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv
            2022-03-03 14:27:07,860 - train -  27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv
            2022-03-03 14:27:11,489 - train -  28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv
            2022-03-03 14:27:15,309 - train -  29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv
            2022-03-03 14:27:18,677 - train -  30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv
            2022-03-03 14:27:22,854 - train -  31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv
            2022-03-03 14:27:26,667 - train -  32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv
            2022-03-03 14:27:30,369 - train -  33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv
            2022-03-03 14:27:34,196 - train -  34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv
            2022-03-03 14:27:37,882 - train -  35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv
            2022-03-03 14:27:41,437 - train -  36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv
            2022-03-03 14:27:45,344 - train -  37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv
            2022-03-03 14:27:48,979 - train -  38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv
            2022-03-03 14:27:52,611 - train -  39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv
            2022-03-03 14:27:56,754 - train -  40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv
            2022-03-03 14:28:00,273 - train -  41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv
            2022-03-03 14:28:03,971 - train -  42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv
            2022-03-03 14:28:07,564 - train -  43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv
            2022-03-03 14:28:11,272 - train -  44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv
            2022-03-03 14:28:15,163 - train -  45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv
            2022-03-03 14:28:18,794 - train -  46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv
            2022-03-03 14:28:22,428 - train -  47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv
            2022-03-03 14:28:26,334 - train -  48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv
            2022-03-03 14:28:30,056 - train -  1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv
            2022-03-03 14:28:33,687 - train -  2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv
            2022-03-03 14:28:37,128 - train -  3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv
            2022-03-03 14:28:40,617 - train -  4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv
            2022-03-03 14:28:44,105 - train -  5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv
            2022-03-03 14:28:47,594 - train -  6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv
            2022-03-03 14:28:51,273 - train -  7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv
            2022-03-03 14:28:56,181 - train -  8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv
            2022-03-03 14:28:59,593 - train -  9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv
            2022-03-03 14:29:03,237 - train -  10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv
            2022-03-03 14:29:07,571 - train -  11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv
            2022-03-03 14:29:11,901 - train -  12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv
            2022-03-03 14:29:12,117 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)]
            2022-03-03 14:29:12,206 - train -  The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)]
            2022-03-03 14:29:12.413198: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio
            ns:  AVX2 FMA
            To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
            2022-03-03 14:29:12.417391: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties:
            pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
            coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
            2022-03-03 14:29:12.419377: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
            2022-03-03 14:29:12.419477: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
            2022-03-03 14:29:12.833057: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix:
            2022-03-03 14:29:12.833127: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264]      0
            2022-03-03 14:29:12.833141: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0:   N
            2022-03-03 14:29:12.835995: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p
            ci bus id: 0000:82:00.0, compute capability: 6.0)
            2022-03-03 14:29:14,768 - train -  number of examples: 4800
            2022-03-03 14:29:15,107 - train -  number of examples: 1200
            2022-03-03 14:29:16,570 - train -  unet: input shape: (None, None, 1), output shape: (None, None, 1)
            2022/03/03 14:29:16 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='17' for run ID='34a
            6d207ac594035b1009c330fb67a65'. Attempted logging new value 'None'.
            Epoch 1/100
            2022-03-03 14:29:23.930177: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
            2022-03-03 14:29:24.066046: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz
            2022-03-03 14:29:33.256586: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
            2022-03-03 14:29:33.572296: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101
            2022-03-03 14:29:34.075599: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
            2022-03-03 14:29:34.363317: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
            282/282 [==============================] - 45s 98ms/step - loss: 1.0922 - tp0.1: 8529810.0000 - fp0.1: 10393289.0000 - tn0.1: 57940184.0000 - fn0.1: 1681616.0000 - precision0.1: 0.4508 - recall0.1: 0.8353 - tp0.3: 7724105.0000 - fp0.3:
            3960382.0000 - tn0.3: 64373080.0000 - fn0.3: 2487321.0000 - precision0.3: 0.6611 - recall0.3: 0.7564 - tp0.5: 7024685.0000 - fp0.5: 1630985.0000 - tn0.5: 66702492.0000 - fn0.5: 3186741.0000 - precision0.5: 0.8116 - recall0.5: 0.6879 - t
            p0.7: 6159487.0000 - fp0.7: 585291.0000 - tn0.7: 67748208.0000 - fn0.7: 4051939.0000 - precision0.7: 0.9132 - recall0.7: 0.6032 - tp0.9: 4931800.0000 - fp0.9: 143363.0000 - tn0.9: 68190096.0000 - fn0.9: 5279626.0000 - precision0.9: 0.97
            18 - recall0.9: 0.4830 - accuracy: 0.9387 - auc: 0.9142 - f1: 0.7446 - val_loss: 3.2432 - val_tp0.1: 2699606.0000 - val_fp0.1: 16783988.0000 - val_tn0.1: 12739.0000 - val_fn0.1: 627.0000 - val_precision0.1: 0.1386 - val_recall0.1: 0.999
            8 - val_tp0.3: 2697002.0000 - val_fp0.3: 16748206.0000 - val_tn0.3: 48521.0000 - val_fn0.3: 3231.0000 - val_precision0.3: 0.1387 - val_recall0.3: 0.9988 - val_tp0.5: 2695536.0000 - val_fp0.5: 16737605.0000 - val_tn0.5: 59122.0000 - val_
            fn0.5: 4697.0000 - val_precision0.5: 0.1387 - val_recall0.5: 0.9983 - val_tp0.7: 2689329.0000 - val_fp0.7: 16678401.0000 - val_tn0.7: 118326.0000 - val_fn0.7: 10904.0000 - val_precision0.7: 0.1389 - val_recall0.7: 0.9960 - val_tp0.9: 22
            37862.0000 - val_fp0.9: 12480955.0000 - val_tn0.9: 4315772.0000 - val_fn0.9: 462371.0000 - val_precision0.9: 0.1520 - val_recall0.9: 0.8288 - val_accuracy: 0.1413 - val_auc: 0.5907 - val_f1: 0.2436
    
            ...
    
            Epoch 100/100
            282/282 [==============================] - 25s 88ms/step - loss: 0.2009 - tp0.1: 9736541.0000 - fp0.1: 3605117.0000 - tn0.1: 64740432.0000 - fn0.1: 462821.0000 - precision0.1: 0.7298 - recall0.1: 0.9546 - tp0.3: 9402084.0000 - fp0.3: 17
            39716.0000 - tn0.3: 66605812.0000 - fn0.3: 797278.0000 - precision0.3: 0.8439 - recall0.3: 0.9218 - tp0.5: 9016887.0000 - fp0.5: 920615.0000 - tn0.5: 67424920.0000 - fn0.5: 1182475.0000 - precision0.5: 0.9074 - recall0.5: 0.8841 - tp0.7
            : 8513773.0000 - fp0.7: 435436.0000 - tn0.7: 67910080.0000 - fn0.7: 1685589.0000 - precision0.7: 0.9513 - recall0.7: 0.8347 - tp0.9: 7585158.0000 - fp0.9: 106557.0000 - tn0.9: 68238992.0000 - fn0.9: 2614204.0000 - precision0.9: 0.9861 -
             recall0.9: 0.7437 - accuracy: 0.9732 - auc: 0.9746 - f1: 0.8956 - val_loss: 0.2670 - val_tp0.1: 2538570.0000 - val_fp0.1: 1039161.0000 - val_tn0.1: 15761772.0000 - val_fn0.1: 157457.0000 - val_precision0.1: 0.7095 - val_recall0.1: 0.94
            16 - val_tp0.3: 2435718.0000 - val_fp0.3: 590706.0000 - val_tn0.3: 16210227.0000 - val_fn0.3: 260309.0000 - val_precision0.3: 0.8048 - val_recall0.3: 0.9034 - val_tp0.5: 2326279.0000 - val_fp0.5: 379342.0000 - val_tn0.5: 16421591.0000 -
             val_fn0.5: 369748.0000 - val_precision0.5: 0.8598 - val_recall0.5: 0.8629 - val_tp0.7: 2189825.0000 - val_fp0.7: 228353.0000 - val_tn0.7: 16572580.0000 - val_fn0.7: 506202.0000 - val_precision0.7: 0.9056 - val_recall0.7: 0.8122 - val_t
            p0.9: 1947380.0000 - val_fp0.9: 92879.0000 - val_tn0.9: 16708054.0000 - val_fn0.9: 748647.0000 - val_precision0.9: 0.9545 - val_recall0.9: 0.7223 - val_accuracy: 0.9616 - val_auc: 0.9652 - val_f1: 0.8613
            2022-03-03 15:16:02.951715: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
            2022/03/03 15:16:13 INFO mlflow.projects: === Run (ID '34a6d207ac594035b1009c330fb67a65') succeeded ===
    
    
    • name of run: 34a6d207ac594035b1009c330fb67a65
    • metrics after 100th epoch:
      • precisionval,0.5: 0.8598 - recallval,0.5: 0.8629 - f1val,0.5: 0.8613
      • aucval: 0.9652
  10. all metrics after 100th epoch with hparams
    run aucval f1val,0.5 precval,0.5 recallval,0.5 model size hpbatchsize hpfirstfilters hpinputsize hplrpower hplrstart hpnlevels hppoolsize hpscaler
    484af471c61943fa90e5f78e78a229f0 0.9814 0.9187 0.9091 0.9285 275 MB 26 44 16384 (here: 14000) 1 0.0136170138242663 7 2 standard
    0cd2023eeaf745aca0d3e8ad5e1fc653 0.9818 0.9069 0.8955 0.9185 200 MB 15 23 16384 (here: 14000) 7 0.0305060808685107 6 4 quantg
    fe81d71c52404ed790b3a32051258da9 0.9849 0.9260 0.9184 0.9338 186 MB 20 78 16384 (here: 14000) 4 0.0584071108418767 4 4 standard
    ff67be0b68e540a9a29a36a2d0c7a5be 0.9859 0.9298 0.9230 0.9367 14 MB 28 6 16384 (here: 14000) 1 0.0553313915596308 5 4 minmax
    19e3e786e1bc4e2b93856f5dc9de8216 0.9595 0.8911 0.8983 0.8839 172 MB 20 128 16384 (here: 14000) 1 0.043549707353273 3 4 standard
    347669d050f344ad9fb9e480c814f727 0.9848 0.9246 0.9254 0.9238 73 MB 10 16 8192 (here: 14000) 1 0.0627676336651573 5 4 robust
    c1204e3a8a1e4c40a35b5b7b1922d1ce 0.9858 0.9207 0.9179 0.9234 312 MB 14 16 16384 (here: 14000) 5 0.0192390310290551 9 2 robust
    714af8cd12c1441eac4ca980e8c20070 0.9843 0.9304 0.9257 0.9352 234 MB 9 64 4096 (here: 14000) 1 0.0100697459464075 5 4 maxabs
    34a6d207ac594035b1009c330fb67a65 0.9652 0.8613 0.8598 0.8629 7 MB 17 16 16384 (here: 14000) 5 0.0101590069352232 3 4 l2

    :END:

2.6.9 Analysis 1: show model architecture and loss plots

  • first load modules and define model lists and dictionaries to connect hparam runs and final runs.
            %cd ~/Programme/drmed-git
    
    /home/lex/Programme/drmed-git
    
            import datetime
            import logging
            import multipletau
            import os
            import sys
    
            import matplotlib.pyplot as plt
            import numpy as np
            import pandas as pd
            import seaborn as sns
            import tensorflow as tf
    
            from pathlib import Path
            from pprint import pprint
            from tensorflow.keras.optimizers import Adam
            from mlflow.keras import load_model
    
            FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/'
            sys.path.append(FLUOTRACIFY_PATH)
            from fluotracify.training import (build_model as bm)
    
            model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727',
                        '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65',
                        '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653',
                        'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216',
                        'c1204e3a8a1e4c40a35b5b7b1922d1ce']
            model_dict = {
                ('9051e32b87d84f3485b980067addec30', '61ff87bdb89b4e2ba64f8dacc774992d') :  '484af471c61943fa90e5f78e78a229f0',
                ('93b168c0ff7942c8a908a94129daf973', 'f243b3b742de4dbcb7ccfbd4244706f8') :  '0cd2023eeaf745aca0d3e8ad5e1fc653',
                ('a5b8551144ff46e697a39cd1551e1475', '98cf8cdef9c54b5286e277e75e2ab8c1') :  'fe81d71c52404ed790b3a32051258da9',
                ('00f2635d9fa2463c9a066722163405be', 'd0a8e1748b194f3290d471b6b44f19f8') :  'ff67be0b68e540a9a29a36a2d0c7a5be',
                ('5604d43c1ece461b8e6eaa0dfb65d6dc', '3612536a77f34f22bc83d1d809140aa6') :  '19e3e786e1bc4e2b93856f5dc9de8216',
                ('7cafab027cdd4fc9bf20a43e989df510', '16dff15d935f45e2a836b1f41b07b4e3') :  '347669d050f344ad9fb9e480c814f727',
                ('0e328920e86049928202db95e8cfb7be', 'bf9d2725eb16462d9a101f0a077ce2b5') :  'c1204e3a8a1e4c40a35b5b7b1922d1ce',
                ('1c954fbc02b747bc813c587ac703c74a', 'ba49a80c2616407a8f1fe1fd12096fe0') :  '714af8cd12c1441eac4ca980e8c20070',
                ('3cbd945b62ec4634839372e403f6f377', '458b36a70db843719d202a8eda448f17') :  '34a6d207ac594035b1009c330fb67a65'}
    
            model_name_ls = [f'{s:.5}' for s in model_ls]
    
            pred_thresh = 0.5
    
    
  • now print model details for each model where it was saved
            for i in model_ls:
                print(f'model: {i}')
                try:
                    logged_scaler = Path(f'/home/lex/Programme/drmed-git/data/mlruns/10/{i}/params/scaler')
                    logged_scaler = !cat $logged_scaler
                    logged_scaler = logged_scaler[0]
    
                    logged_model = Path(f'/home/lex/Programme/drmed-git/data/mlruns/10/{i}/artifacts/model')
                    logged_model = load_model(logged_model, compile=False)
                    logged_model.compile(loss=bm.binary_ce_dice_loss(),
                                         optimizer=Adam(),
                                         metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9]))
                    print(logged_model.summary())
    
                except AttributeError:
                    pass
                print('----------------------------------------')
    
            model: ff67be0b68e540a9a29a36a2d0c7a5be
            WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
            2022-08-23 14:27:17,992 - build model -  Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
            Model: "unet_depth5"
            __________________________________________________________________________________________________
             Layer (type)                   Output Shape         Param #     Connected to
            ==================================================================================================
             input_1 (InputLayer)           [(None, None, 1)]    0           []
    
             encode0 (Sequential)           (None, None, 6)      186         ['input_1[0][0]']
    
             mp_encode0 (MaxPooling1D)      (None, None, 6)      0           ['encode0[0][0]']
    
             encode1 (Sequential)           (None, None, 12)     768         ['mp_encode0[0][0]']
    
             mp_encode1 (MaxPooling1D)      (None, None, 12)     0           ['encode1[0][0]']
    
             encode2 (Sequential)           (None, None, 24)     2832        ['mp_encode1[0][0]']
    
             mp_encode2 (MaxPooling1D)      (None, None, 24)     0           ['encode2[0][0]']
    
             encode3 (Sequential)           (None, None, 48)     10848       ['mp_encode2[0][0]']
    
             mp_encode3 (MaxPooling1D)      (None, None, 48)     0           ['encode3[0][0]']
    
             encode4 (Sequential)           (None, None, 96)     42432       ['mp_encode3[0][0]']
    
             mp_encode4 (MaxPooling1D)      (None, None, 96)     0           ['encode4[0][0]']
    
             two_conv_center (Sequential)   (None, None, 192)    167808      ['mp_encode4[0][0]']
    
             conv_transpose_decoder4 (Seque  (None, None, 192)   148416      ['two_conv_center[0][0]']
             ntial)
    
             decoder4 (Concatenate)         (None, None, 288)    0           ['encode4[0][0]',
                                                                              'conv_transpose_decoder4[0][0]']
    
             two_conv_decoder4 (Sequential)  (None, None, 192)   278400      ['decoder4[0][0]']
    
             conv_transpose_decoder3 (Seque  (None, None, 96)    74208       ['two_conv_decoder4[0][0]']
             ntial)
    
             decoder3 (Concatenate)         (None, None, 144)    0           ['encode3[0][0]',
                                                                              'conv_transpose_decoder3[0][0]']
    
             two_conv_decoder3 (Sequential)  (None, None, 96)    70080       ['decoder3[0][0]']
    
             conv_transpose_decoder2 (Seque  (None, None, 48)    18672       ['two_conv_decoder3[0][0]']
             ntial)
    
             decoder2 (Concatenate)         (None, None, 72)     0           ['encode2[0][0]',
                                                                              'conv_transpose_decoder2[0][0]']
    
             two_conv_decoder2 (Sequential)  (None, None, 48)    17760       ['decoder2[0][0]']
    
             conv_transpose_decoder1 (Seque  (None, None, 24)    4728        ['two_conv_decoder2[0][0]']
             ntial)
    
             decoder1 (Concatenate)         (None, None, 36)     0           ['encode1[0][0]',
                                                                              'conv_transpose_decoder1[0][0]']
    
             two_conv_decoder1 (Sequential)  (None, None, 24)    4560        ['decoder1[0][0]']
    
             conv_transpose_decoder0 (Seque  (None, None, 12)    1212        ['two_conv_decoder1[0][0]']
             ntial)
    
             decoder0 (Concatenate)         (None, None, 18)     0           ['encode0[0][0]',
                                                                              'conv_transpose_decoder0[0][0]']
    
             two_conv_decoder0 (Sequential)  (None, None, 12)    1200        ['decoder0[0][0]']
    
             conv1d_22 (Conv1D)             (None, None, 1)      13          ['two_conv_decoder0[0][0]']
    
            ==================================================================================================
            Total params: 844,123
            Trainable params: 840,379
            Non-trainable params: 3,744
            __________________________________________________________________________________________________
            None
            ----------------------------------------
            model: 347669d050f344ad9fb9e480c814f727WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
            2022-08-23 14:27:26,761 - build model -  Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
            Model: "unet_depth5"
            __________________________________________________________________________________________________
             Layer (type)                   Output Shape         Param #     Connected to
            ==================================================================================================
             input_1 (InputLayer)           [(None, None, 1)]    0           []
    
             encode0 (Sequential)           (None, None, 16)     976         ['input_1[0][0]']
    
             mp_encode0 (MaxPooling1D)      (None, None, 16)     0           ['encode0[0][0]']
    
             encode1 (Sequential)           (None, None, 32)     4928        ['mp_encode0[0][0]']
    
             mp_encode1 (MaxPooling1D)      (None, None, 32)     0           ['encode1[0][0]']
    
             encode2 (Sequential)           (None, None, 64)     19072       ['mp_encode1[0][0]']
    
             mp_encode2 (MaxPooling1D)      (None, None, 64)     0           ['encode2[0][0]']
    
             encode3 (Sequential)           (None, None, 128)    75008       ['mp_encode2[0][0]']
    
             mp_encode3 (MaxPooling1D)      (None, None, 128)    0           ['encode3[0][0]']
    
             encode4 (Sequential)           (None, None, 256)    297472      ['mp_encode3[0][0]']
    
             mp_encode4 (MaxPooling1D)      (None, None, 256)    0           ['encode4[0][0]']
    
             two_conv_center (Sequential)   (None, None, 512)    1184768     ['mp_encode4[0][0]']
    
             conv_transpose_decoder4 (Seque  (None, None, 512)   1051136     ['two_conv_center[0][0]']
             ntial)
    
             decoder4 (Concatenate)         (None, None, 768)    0           ['encode4[0][0]',
                                                                              'conv_transpose_decoder4[0][0]']
    
             two_conv_decoder4 (Sequential)  (None, None, 512)   1971200     ['decoder4[0][0]']
    
             conv_transpose_decoder3 (Seque  (None, None, 256)   525568      ['two_conv_decoder4[0][0]']
             ntial)
    
             decoder3 (Concatenate)         (None, None, 384)    0           ['encode3[0][0]',
                                                                              'conv_transpose_decoder3[0][0]']
    
             two_conv_decoder3 (Sequential)  (None, None, 256)   494080      ['decoder3[0][0]']
    
             conv_transpose_decoder2 (Seque  (None, None, 128)   131712      ['two_conv_decoder3[0][0]']
             ntial)
    
             decoder2 (Concatenate)         (None, None, 192)    0           ['encode2[0][0]',
                                                                              'conv_transpose_decoder2[0][0]']
    
             two_conv_decoder2 (Sequential)  (None, None, 128)   124160      ['decoder2[0][0]']
    
             conv_transpose_decoder1 (Seque  (None, None, 64)    33088       ['two_conv_decoder2[0][0]']
             ntial)
    
             decoder1 (Concatenate)         (None, None, 96)     0           ['encode1[0][0]',
                                                                              'conv_transpose_decoder1[0][0]']
    
             two_conv_decoder1 (Sequential)  (None, None, 64)    31360       ['decoder1[0][0]']
    
             conv_transpose_decoder0 (Seque  (None, None, 32)    8352        ['two_conv_decoder1[0][0]']
             ntial)
    
             decoder0 (Concatenate)         (None, None, 48)     0           ['encode0[0][0]',
                                                                              'conv_transpose_decoder0[0][0]']
    
             two_conv_decoder0 (Sequential)  (None, None, 32)    8000        ['decoder0[0][0]']
    
             conv1d_22 (Conv1D)             (None, None, 1)      33          ['two_conv_decoder0[0][0]']
    
            ==================================================================================================
            Total params: 5,960,913
            Trainable params: 5,950,929
            Non-trainable params: 9,984
            __________________________________________________________________________________________________
            None
            ----------------------------------------
            model: 714af8cd12c1441eac4ca980e8c20070
            WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
            2022-08-23 14:27:35,085 - build model -  Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
            Model: "unet_depth5"
            __________________________________________________________________________________________________
             Layer (type)                   Output Shape         Param #     Connected to
            ==================================================================================================
             input_1 (InputLayer)           [(None, None, 1)]    0           []
    
             encode0 (Sequential)           (None, None, 64)     13120       ['input_1[0][0]']
    
             mp_encode0 (MaxPooling1D)      (None, None, 64)     0           ['encode0[0][0]']
    
             encode1 (Sequential)           (None, None, 128)    75008       ['mp_encode0[0][0]']
    
             mp_encode1 (MaxPooling1D)      (None, None, 128)    0           ['encode1[0][0]']
    
             encode2 (Sequential)           (None, None, 256)    297472      ['mp_encode1[0][0]']
    
             mp_encode2 (MaxPooling1D)      (None, None, 256)    0           ['encode2[0][0]']
    
             encode3 (Sequential)           (None, None, 512)    1184768     ['mp_encode2[0][0]']
    
             mp_encode3 (MaxPooling1D)      (None, None, 512)    0           ['encode3[0][0]']
    
             encode4 (Sequential)           (None, None, 512)    1577984     ['mp_encode3[0][0]']
    
             mp_encode4 (MaxPooling1D)      (None, None, 512)    0           ['encode4[0][0]']
    
             two_conv_center (Sequential)   (None, None, 1024)   4728832     ['mp_encode4[0][0]']
    
             conv_transpose_decoder4 (Seque  (None, None, 512)   2099712     ['two_conv_center[0][0]']
             ntial)
    
             decoder4 (Concatenate)         (None, None, 1024)   0           ['encode4[0][0]',
                                                                              'conv_transpose_decoder4[0][0]']
    
             two_conv_decoder4 (Sequential)  (None, None, 512)   2364416     ['decoder4[0][0]']
    
             conv_transpose_decoder3 (Seque  (None, None, 512)   1051136     ['two_conv_decoder4[0][0]']
             ntial)
    
             decoder3 (Concatenate)         (None, None, 1024)   0           ['encode3[0][0]',
                                                                              'conv_transpose_decoder3[0][0]']
    
             two_conv_decoder3 (Sequential)  (None, None, 512)   2364416     ['decoder3[0][0]']
    
             conv_transpose_decoder2 (Seque  (None, None, 512)   1051136     ['two_conv_decoder3[0][0]']
             ntial)
    
             decoder2 (Concatenate)         (None, None, 768)    0           ['encode2[0][0]',
                                                                              'conv_transpose_decoder2[0][0]']
    
             two_conv_decoder2 (Sequential)  (None, None, 512)   1971200     ['decoder2[0][0]']
    
             conv_transpose_decoder1 (Seque  (None, None, 256)   525568      ['two_conv_decoder2[0][0]']
             ntial)
    
             decoder1 (Concatenate)         (None, None, 384)    0           ['encode1[0][0]',
                                                                              'conv_transpose_decoder1[0][0]']
    
             two_conv_decoder1 (Sequential)  (None, None, 256)   494080      ['decoder1[0][0]']
    
             conv_transpose_decoder0 (Seque  (None, None, 128)   131712      ['two_conv_decoder1[0][0]']
             ntial)
    
             decoder0 (Concatenate)         (None, None, 192)    0           ['encode0[0][0]',
                                                                              'conv_transpose_decoder0[0][0]']
    
             two_conv_decoder0 (Sequential)  (None, None, 128)   124160      ['decoder0[0][0]']
    
             conv1d_22 (Conv1D)             (None, None, 1)      129         ['two_conv_decoder0[0][0]']
    
            ==================================================================================================
            Total params: 20,054,849
            Trainable params: 20,033,345
            Non-trainable params: 21,504
            __________________________________________________________________________________________________
            None
            ----------------------------------------
            model: 34a6d207ac594035b1009c330fb67a65
            WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
            2022-08-23 14:27:43,275 - build model -  Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
            Model: "unet_depth3"
            __________________________________________________________________________________________________
             Layer (type)                   Output Shape         Param #     Connected to
            ==================================================================================================
             input_1 (InputLayer)           [(None, None, 1)]    0           []
    
             encode0 (Sequential)           (None, None, 16)     976         ['input_1[0][0]']
    
             mp_encode0 (MaxPooling1D)      (None, None, 16)     0           ['encode0[0][0]']
    
             encode1 (Sequential)           (None, None, 32)     4928        ['mp_encode0[0][0]']
    
             mp_encode1 (MaxPooling1D)      (None, None, 32)     0           ['encode1[0][0]']
    
             encode2 (Sequential)           (None, None, 64)     19072       ['mp_encode1[0][0]']
    
             mp_encode2 (MaxPooling1D)      (None, None, 64)     0           ['encode2[0][0]']
    
             two_conv_center (Sequential)   (None, None, 128)    75008       ['mp_encode2[0][0]']
    
             conv_transpose_decoder2 (Seque  (None, None, 128)   66176       ['two_conv_center[0][0]']
             ntial)
    
             decoder2 (Concatenate)         (None, None, 192)    0           ['encode2[0][0]',
                                                                              'conv_transpose_decoder2[0][0]']
    
             two_conv_decoder2 (Sequential)  (None, None, 128)   124160      ['decoder2[0][0]']
    
             conv_transpose_decoder1 (Seque  (None, None, 64)    33088       ['two_conv_decoder2[0][0]']
             ntial)
    
             decoder1 (Concatenate)         (None, None, 96)     0           ['encode1[0][0]',
                                                                              'conv_transpose_decoder1[0][0]']
    
             two_conv_decoder1 (Sequential)  (None, None, 64)    31360       ['decoder1[0][0]']
    
             conv_transpose_decoder0 (Seque  (None, None, 32)    8352        ['two_conv_decoder1[0][0]']
             ntial)
    
             decoder0 (Concatenate)         (None, None, 48)     0           ['encode0[0][0]',
                                                                              'conv_transpose_decoder0[0][0]']
    
             two_conv_decoder0 (Sequential)  (None, None, 32)    8000        ['decoder0[0][0]']
    
             conv1d_14 (Conv1D)             (None, None, 1)      33          ['two_conv_decoder0[0][0]']
    
            ==================================================================================================
            Total params: 371,153
            Trainable params: 368,849
            Non-trainable params: 2,304
            __________________________________________________________________________________________________
            None
            ----------------------------------------
            model: 484af471c61943fa90e5f78e78a229f0
            ----------------------------------------
            model: 0cd2023eeaf745aca0d3e8ad5e1fc653
            WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
            2022-08-23 14:27:49,590 - build model -  Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
            Model: "unet_depth6"
            __________________________________________________________________________________________________
             Layer (type)                   Output Shape         Param #     Connected to
            ==================================================================================================
             input_1 (InputLayer)           [(None, None, 1)]    0           []
    
             encode0 (Sequential)           (None, None, 23)     1886        ['input_1[0][0]']
    
             mp_encode0 (MaxPooling1D)      (None, None, 23)     0           ['encode0[0][0]']
    
             encode1 (Sequential)           (None, None, 46)     9982        ['mp_encode0[0][0]']
    
             mp_encode1 (MaxPooling1D)      (None, None, 46)     0           ['encode1[0][0]']
    
             encode2 (Sequential)           (None, None, 92)     39008       ['mp_encode1[0][0]']
    
             mp_encode2 (MaxPooling1D)      (None, None, 92)     0           ['encode2[0][0]']
    
             encode3 (Sequential)           (None, None, 184)    154192      ['mp_encode2[0][0]']
    
             mp_encode3 (MaxPooling1D)      (None, None, 184)    0           ['encode3[0][0]']
    
             encode4 (Sequential)           (None, None, 368)    613088      ['mp_encode3[0][0]']
    
             mp_encode4 (MaxPooling1D)      (None, None, 368)    0           ['encode4[0][0]']
    
             encode5 (Sequential)           (None, None, 512)    1356800     ['mp_encode4[0][0]']
    
             mp_encode5 (MaxPooling1D)      (None, None, 512)    0           ['encode5[0][0]']
    
             two_conv_center (Sequential)   (None, None, 1024)   4728832     ['mp_encode5[0][0]']
    
             conv_transpose_decoder5 (Seque  (None, None, 512)   2099712     ['two_conv_center[0][0]']
             ntial)
    
             decoder5 (Concatenate)         (None, None, 1024)   0           ['encode5[0][0]',
                                                                              'conv_transpose_decoder5[0][0]']
    
             two_conv_decoder5 (Sequential)  (None, None, 512)   2364416     ['decoder5[0][0]']
    
             conv_transpose_decoder4 (Seque  (None, None, 512)   1051136     ['two_conv_decoder5[0][0]']
             ntial)
    
             decoder4 (Concatenate)         (None, None, 880)    0           ['encode4[0][0]',
                                                                              'conv_transpose_decoder4[0][0]']
    
             two_conv_decoder4 (Sequential)  (None, None, 512)   2143232     ['decoder4[0][0]']
    
             conv_transpose_decoder3 (Seque  (None, None, 368)   755504      ['two_conv_decoder4[0][0]']
             ntial)
    
             decoder3 (Concatenate)         (None, None, 552)    0           ['encode3[0][0]',
                                                                              'conv_transpose_decoder3[0][0]']
    
             two_conv_decoder3 (Sequential)  (None, None, 368)   1019360     ['decoder3[0][0]']
    
             conv_transpose_decoder2 (Seque  (None, None, 184)   271768      ['two_conv_decoder3[0][0]']
             ntial)
    
             decoder2 (Concatenate)         (None, None, 276)    0           ['encode2[0][0]',
                                                                              'conv_transpose_decoder2[0][0]']
    
             two_conv_decoder2 (Sequential)  (None, None, 184)   255760      ['decoder2[0][0]']
    
             conv_transpose_decoder1 (Seque  (None, None, 92)    68172       ['two_conv_decoder2[0][0]']
             ntial)
    
             decoder1 (Concatenate)         (None, None, 138)    0           ['encode1[0][0]',
                                                                              'conv_transpose_decoder1[0][0]']
    
             two_conv_decoder1 (Sequential)  (None, None, 92)    64400       ['decoder1[0][0]']
    
             conv_transpose_decoder0 (Seque  (None, None, 46)    17158       ['two_conv_decoder1[0][0]']
             ntial)
    
             decoder0 (Concatenate)         (None, None, 69)     0           ['encode0[0][0]',
                                                                              'conv_transpose_decoder0[0][0]']
    
             two_conv_decoder0 (Sequential)  (None, None, 46)    16330       ['decoder0[0][0]']
    
             conv1d_26 (Conv1D)             (None, None, 1)      47          ['two_conv_decoder0[0][0]']
    
            ==================================================================================================
            Total params: 17,030,783
            Trainable params: 17,011,503
            Non-trainable params: 19,280
            __________________________________________________________________________________________________
            None
            ----------------------------------------
            model: fe81d71c52404ed790b3a32051258da9
            ----------------------------------------
            model: 19e3e786e1bc4e2b93856f5dc9de8216
            ----------------------------------------
            model: c1204e3a8a1e4c40a35b5b7b1922d1ce
            ----------------------------------------
    
  • plot loss vs validation loss for models in hyperparameter training. Unfortunately, this info was not saved out for the final runs due to a misconfiguration in mlflow. So for the final runs print the final train loss and validation loss
            hparam = run1_2_my.loc[cond2 & cond3]
            hparam.rename(index=model_dict)
    
            fig, axs = plt.subplots(len(hparam), 2, facecolor='white', figsize=(9, len(hparam)*3),
                                    sharex=True, tight_layout=True)
            for i, idx in enumerate(hparam.index):
                for j in range(2):
                    print(i, idx[j], model_dict[idx])
                    try:
                        logged_val_loss = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/8/{idx[j]}/metrics/val_loss')
                        logged_val_loss = !cat $logged_val_loss
                        logged_val_loss = [i.split(' ') for i in logged_val_loss]
                        logged_val_loss = pd.DataFrame(logged_val_loss, columns=['time', 'val_loss', 'epoch']).astype(float)
    
                        logged_train_loss = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/8/{idx[j]}/metrics/loss')
                        logged_train_loss = !cat $logged_train_loss
                        logged_train_loss = [i.split(' ') for i in logged_train_loss]
                        logged_train_loss = pd.DataFrame(logged_train_loss, columns=['time', 'train_loss', 'epoch']).astype(float)
    
                        losses = pd.DataFrame([logged_train_loss.iloc[-1, 1], logged_val_loss.iloc[-1, 1]], index=['train loss', 'val loss'],
                                              columns=[f'{model_dict[idx]}_{j}'])
                        display(losses)
                        last_losses = pd.concat([last_losses, ])
                        sns.lineplot('epoch', 'train_loss', data=logged_train_loss, ax=axs[i, j], label='train loss')
                        sns.lineplot('epoch', 'val_loss', data=logged_val_loss, ax=axs[i, j], label='val loss')
                        if j == 0:
                            axs[i, j].set_title(model_dict[idx])
                    except ValueError:
                        pass
            plt.setp(axs, yscale='log', ylabel='')
            fig.align_ylabels(axs)
    
    0 9051e32b87d84f3485b980067addec30 484af471c61943fa90e5f78e78a229f0
    
      484af471c61943fa90e5f78e78a229f00
    train loss 0.196100
    val loss 0.199457
    0 61ff87bdb89b4e2ba64f8dacc774992d 484af471c61943fa90e5f78e78a229f0
    
      484af471c61943fa90e5f78e78a229f01
    train loss 0.194301
    val loss 0.197833
    1 93b168c0ff7942c8a908a94129daf973 0cd2023eeaf745aca0d3e8ad5e1fc653
    
      0cd2023eeaf745aca0d3e8ad5e1fc6530
    train loss 0.245977
    val loss 0.250499
    1 f243b3b742de4dbcb7ccfbd4244706f8 0cd2023eeaf745aca0d3e8ad5e1fc653
    
      0cd2023eeaf745aca0d3e8ad5e1fc6531
    train loss 0.278278
    val loss 0.283107
    2 a5b8551144ff46e697a39cd1551e1475 fe81d71c52404ed790b3a32051258da9
    
      fe81d71c52404ed790b3a32051258da90
    train loss 0.185773
    val loss 0.186789
    2 98cf8cdef9c54b5286e277e75e2ab8c1 fe81d71c52404ed790b3a32051258da9
    
      fe81d71c52404ed790b3a32051258da91
    train loss 0.183874
    val loss 0.184316
    3 00f2635d9fa2463c9a066722163405be ff67be0b68e540a9a29a36a2d0c7a5be
    
      ff67be0b68e540a9a29a36a2d0c7a5be0
    train loss 0.172448
    val loss 0.178439
    3 d0a8e1748b194f3290d471b6b44f19f8 ff67be0b68e540a9a29a36a2d0c7a5be
    4 5604d43c1ece461b8e6eaa0dfb65d6dc 19e3e786e1bc4e2b93856f5dc9de8216
    
      19e3e786e1bc4e2b93856f5dc9de82160
    train loss 0.250983
    val loss 0.260167
    4 3612536a77f34f22bc83d1d809140aa6 19e3e786e1bc4e2b93856f5dc9de8216
    
      19e3e786e1bc4e2b93856f5dc9de82161
    train loss 0.246347
    val loss 0.242849
    5 7cafab027cdd4fc9bf20a43e989df510 347669d050f344ad9fb9e480c814f727
    
      347669d050f344ad9fb9e480c814f7270
    train loss 0.194196
    val loss 0.221606
    5 16dff15d935f45e2a836b1f41b07b4e3 347669d050f344ad9fb9e480c814f727
    
      347669d050f344ad9fb9e480c814f7271
    train loss 0.196745
    val loss 0.250257
    6 0e328920e86049928202db95e8cfb7be c1204e3a8a1e4c40a35b5b7b1922d1ce
    
      c1204e3a8a1e4c40a35b5b7b1922d1ce0
    train loss 0.266620
    val loss 0.279587
    6 bf9d2725eb16462d9a101f0a077ce2b5 c1204e3a8a1e4c40a35b5b7b1922d1ce
    
      c1204e3a8a1e4c40a35b5b7b1922d1ce1
    train loss 0.262320
    val loss 0.265113
    7 1c954fbc02b747bc813c587ac703c74a 714af8cd12c1441eac4ca980e8c20070
    
      714af8cd12c1441eac4ca980e8c200700
    train loss 0.310728
    val loss 0.317540
    7 ba49a80c2616407a8f1fe1fd12096fe0 714af8cd12c1441eac4ca980e8c20070
    
      714af8cd12c1441eac4ca980e8c200701
    train loss 0.303487
    val loss 0.340323
    8 3cbd945b62ec4634839372e403f6f377 34a6d207ac594035b1009c330fb67a65
    
      34a6d207ac594035b1009c330fb67a650
    train loss 0.189994
    val loss 0.249494
    8 458b36a70db843719d202a8eda448f17 34a6d207ac594035b1009c330fb67a65
    
      34a6d207ac594035b1009c330fb67a651
    train loss 0.211194
    val loss 0.239334

    analysis1_train-loss-vs-val-loss.png

2.6.10 Experiment 2: Evaluate models on simulated test data

  • go to correct folder, load modules
           %cd /beegfs/ye53nis/drmed-git
    
    /beegfs/ye53nis/drmed-git
    
           import datetime
           import logging
           import multipletau
           import os
           import sys
    
           import matplotlib.pyplot as plt
           import numpy as np
           import pandas as pd
           import seaborn as sns
           import tensorflow as tf
    
           from pathlib import Path
           from pprint import pprint
           from tensorflow.keras.optimizers import Adam
           from mlflow.keras import load_model
    
           FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/'
           sys.path.append(FLUOTRACIFY_PATH)
           from fluotracify.applications import (corr_fit_object as cfo,
                                                 correction,
                                                 correlate)
           from fluotracify.imports import ptu_utils as ptu
           from fluotracify.training import (build_model as bm,
                                             preprocess_data as ppd)
           from fluotracify.simulations import (
              import_simulation_from_csv as isfc,
              analyze_simulations as ans,
           )
    
           logging.basicConfig(filename="/beegfs/ye53nis/drmed-git/data/exp-220227-unet/jupyter.log",
                               format='%(asctime)s - %(message)s',
                               filemode='w',
                               force=True)
           log = logging.getLogger(__name__)
           log.setLevel(logging.DEBUG)
    
           sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind',
                         context='paper')
    
           model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727',
                       '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65',
                       '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653',
                       'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216',
                       'c1204e3a8a1e4c40a35b5b7b1922d1ce']
    
           model_name_ls = [f'{s:.5}' for s in model_ls]
    
           pred_thresh = 0.5
    
    2022-08-24 10:31:45.084478: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2022-08-24 10:31:45.084513: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
           import importlib
           importlib.reload(ppd)
           importlib.reload(cfo)
    
    <module 'fluotracify.applications.corr_fit_object' from '/beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py'>
    
  • Load test data from simulation experiments
           col_per_example = 3
           lab_thresh = 0.04
           artifact = 0
           model_type = 1
           fwhm = 250
    
           output_path = "/beegfs/ye53nis/drmed-git/data/exp-220227-unet/2022-04-22_simulations/"
           sim_path = Path('/beegfs/ye53nis/saves/firstartifact_Nov2020_test')
    
           sim, _, nsamples, sim_params = isfc.import_from_csv(
               folder=sim_path,
               header=12,
               frac_train=1,
               col_per_example=col_per_example,
               dropindex=None,
               dropcolumns=None)
    
           diffrates = sim_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32)
           nmols = sim_params.loc['number of fast molecules'].astype(np.float32)
           clusters = sim_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32)
           sim_columns = [f'{d:.4}-{c:.4}' for d, c in zip(
               np.repeat(diffrates, nsamples[0]),
               np.repeat(clusters, nsamples[0]))]
    
           sim_sep = isfc.separate_data_and_labels(array=sim,
                                                   nsamples=nsamples,
                                                   col_per_example=col_per_example)
           sim_dirty = sim_sep['0']
           sim_dirty.columns = sim_columns
    
           sim_labels = sim_sep['1']
           sim_labels.columns = sim_columns
           sim_labbool = sim_labels > lab_thresh
           sim_labbool.columns = sim_columns
           sim_clean = sim_sep['2']
           sim_clean.columns = sim_columns
    
           sim_dirty
    
      0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01
    0 395.062347 542.019287 259.171783 378.006470 672.683350 422.525299 435.934174 535.840027 341.197662 546.919556 1194.309570 1331.900391 1614.625854 1096.244019 5350.819336 1109.356201 1231.328979 2721.381592 1671.956787 1572.913452
    1 395.732605 676.451477 263.082733 365.738861 672.841858 436.986450 408.519165 578.790833 357.324097 518.666321 1226.035278 1348.827026 1727.460327 1040.826294 5548.753418 1241.292969 1197.370972 2785.768066 1749.072510 1544.390259
    2 385.598785 565.850403 258.483124 350.939362 680.929993 416.969391 408.744873 572.143921 350.399933 546.654846 1236.471436 1323.095703 1817.804810 949.081665 5418.844727 1285.566650 1229.268799 2961.105225 1643.184204 1486.991211
    3 375.055664 569.737793 252.117035 364.043427 651.953247 449.630371 390.186218 521.915283 366.314545 534.204285 1192.580566 1219.429932 1844.903687 888.757324 5756.974121 1303.747803 1190.227539 3127.305664 1713.993042 1427.290771
    4 400.554443 590.014893 241.840240 376.104645 681.107056 466.177185 380.395752 531.094727 370.980286 537.930359 1168.627441 1194.065186 1756.768799 887.986389 5481.615234 1324.906250 1268.030762 2997.608887 1744.911865 1426.806763
    16379 433.562714 624.462646 643.004944 518.733643 563.566589 578.520813 348.858429 330.541473 9484.205078 376.017700 1352.349854 1400.204102 2025.719604 934.456665 2333.292725 1499.182251 1344.230347 1172.255371 1347.495239 756.805908
    16380 462.284454 616.137512 597.266296 487.652924 572.072327 612.569275 328.044495 331.003693 8237.546875 373.477081 1305.663696 1453.817993 1847.917114 1012.087402 2349.776611 1498.571411 1446.490479 1191.984253 1482.415894 712.499878
    16381 472.551483 612.926758 615.009460 516.941528 579.562378 624.847717 308.531097 308.009369 2722.457275 352.414612 1384.178711 1428.226440 1641.537109 975.000366 2291.302734 1541.471436 1334.644897 1173.113770 1520.151367 587.645203
    16382 486.679413 637.962769 616.344116 502.372345 593.559937 673.262634 307.834229 322.522400 2823.112305 336.442596 1258.534058 1423.324341 1560.817139 1023.877014 2185.760742 1455.700928 1387.281250 1124.065552 1572.194336 618.202820
    16383 489.893646 614.733704 614.638000 511.408234 595.268982 673.656921 318.466736 305.981110 1768.038330 361.107300 1114.534912 1386.146484 1548.830078 1009.011658 2117.508789 1569.905518 1396.511353 1070.131104 1602.530029 654.377380

    16384 rows × 3000 columns

           dataset_test, num_test_examples = ppd.tfds_from_pddf(
               features_df=sim_dirty, labels_df=sim_labbool, frac_val=False)
           dataset_test
    
    2022-08-23 13:50:29.331909: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2022-08-23 13:50:29.331967: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
    2022-08-23 13:50:29.331995: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node100): /proc/driver/nvidia/version does not exist
    2022-08-23 13:50:29.332353: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    <MapDataset element_spec=(TensorSpec(shape=(16384, 1), dtype=tf.float32, name=None), TensorSpec(shape=(16384, 1), dtype=tf.float32, name=None))>
    
  • now apply each model to the held-out test dataset and evaluate prediction performance. We also get info on the inference time in total and for each step.
           eva = pd.DataFrame()
           for i in model_ls:
               logged_scaler = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{i}/params/scaler')
               logged_scaler = !cat $logged_scaler
               logged_scaler = logged_scaler[0]
    
               logged_model = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{i}/artifacts/model')
               logged_model = load_model(logged_model, compile=False)
               logged_model.compile(loss=bm.binary_ce_dice_loss(),
                                    optimizer=Adam(),
                                    metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9]))
    
               dataset = dataset_test.map(
                   lambda trace, label: ppd.tfds_scale_trace_and_label(trace, label, logged_scaler),
                   num_parallel_calls=tf.data.AUTOTUNE)
               dataset = dataset.map(
                   ppd.tfds_pad_trace_and_label,
                   num_parallel_calls=tf.data.AUTOTUNE)
               dataset = dataset.batch(1)
               print(f'model: {i}')
               eva_new = logged_model.evaluate(dataset, verbose=2, return_dict=True)
               eva_new = pd.DataFrame(eva_new.values(), index=eva_new.keys(), columns=[f'{i}'])
               eva = pd.concat([eva, eva_new], axis='columns')
               print('----------------------------------------')
    
    
    
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    model: ff67be0b68e540a9a29a36a2d0c7a5be
    3000/3000 - 47s - loss: 0.1929 - tp0.1: 7216054.0000 - fp0.1: 1445349.0000 - tn0.1: 40150456.0000 - fn0.1: 340179.0000 - precision0.1: 0.8331 - recall0.1: 0.9550 - tp0.3: 7068737.0000 - fp0.3: 874006.0000 - tn0.3: 40721760.0000 - fn0.3: 487496.0000 - precision0.3: 0.8900 - recall0.3: 0.9355 - tp0.5: 6879515.0000 - fp0.5: 517256.0000 - tn0.5: 41078488.0000 - fn0.5: 676718.0000 - precision0.5: 0.9301 - recall0.5: 0.9104 - tp0.7: 6640601.0000 - fp0.7: 285835.0000 - tn0.7: 41309920.0000 - fn0.7: 915632.0000 - precision0.7: 0.9587 - recall0.7: 0.8788 - tp0.9: 6140071.0000 - fp0.9: 88637.0000 - tn0.9: 41507120.0000 - fn0.9: 1416162.0000 - precision0.9: 0.9858 - recall0.9: 0.8126 - accuracy: 0.9757 - auc: 0.9756 - f1: 0.9202 - 47s/epoch - 16ms/step
    ----------------------------------------
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    model: 347669d050f344ad9fb9e480c814f727
    
  • we get run1_2_my with a summary of the best hyperparameter training runs from the code block #+CALL: get-hparam-comparison(). This assigns among others the variables run1_2_my, cond2, cond3
    Run ID: valauc valrecall0.5 valprecision0.5 hpbatchsize hpfirstfilters hpinputsize hplrpower hplrstart hpnlevels hppoolsize hpscaler
    (9051e32b87d84f3485b980067addec30, 61ff87bdb89b4e2ba64f8dacc774992d) 0.981 0.8975 0.918 26 44 16384 1 0.0136170138242663 7 2 standard
    (93b168c0ff7942c8a908a94129daf973, f243b3b742de4dbcb7ccfbd4244706f8) 0.976 0.893 0.852 15 23 16384 7 0.0305060808685107 6 4 quantg
    (a5b8551144ff46e697a39cd1551e1475, 98cf8cdef9c54b5286e277e75e2ab8c1) 0.984 0.916 0.909 20 78 16384 4 0.0584071108418767 4 4 standard
    (00f2635d9fa2463c9a066722163405be, d0a8e1748b194f3290d471b6b44f19f8) 0.987 0.929 0.9065 28 6 16384 1 0.0553313915596308 5 4 minmax
    (5604d43c1ece461b8e6eaa0dfb65d6dc, 3612536a77f34f22bc83d1d809140aa6) 0.9745 0.885 0.8985 20 128 16384 1 0.043549707353273 3 4 standard
    (7cafab027cdd4fc9bf20a43e989df510, 16dff15d935f45e2a836b1f41b07b4e3) 0.978 0.8905 0.891 10 16 8192 1 0.0627676336651573 5 4 robust
    (0e328920e86049928202db95e8cfb7be, bf9d2725eb16462d9a101f0a077ce2b5) 0.976 0.875 0.888 14 16 16384 5 0.0192390310290551 9 2 robust
    (1c954fbc02b747bc813c587ac703c74a, ba49a80c2616407a8f1fe1fd12096fe0) 0.962 0.856 0.8585 17 16 16384 5 0.0101590069352232 3 4 l2
    (3cbd945b62ec4634839372e403f6f377, 458b36a70db843719d202a8eda448f17) 0.972 0.872 0.9135 9 64 4096 1 0.0100697459464075 5 4 maxabs
  • now get hparams and metrics from final trained models. Inference times and model sizes are transferred by hand from the evaluation results.
           model_dict = {
               ('9051e32b87d84f3485b980067addec30', '61ff87bdb89b4e2ba64f8dacc774992d') :  '484af471c61943fa90e5f78e78a229f0',
               ('93b168c0ff7942c8a908a94129daf973', 'f243b3b742de4dbcb7ccfbd4244706f8') :  '0cd2023eeaf745aca0d3e8ad5e1fc653',
               ('a5b8551144ff46e697a39cd1551e1475', '98cf8cdef9c54b5286e277e75e2ab8c1') :  'fe81d71c52404ed790b3a32051258da9',
               ('00f2635d9fa2463c9a066722163405be', 'd0a8e1748b194f3290d471b6b44f19f8') :  'ff67be0b68e540a9a29a36a2d0c7a5be',
               ('5604d43c1ece461b8e6eaa0dfb65d6dc', '3612536a77f34f22bc83d1d809140aa6') :  '19e3e786e1bc4e2b93856f5dc9de8216',
               ('7cafab027cdd4fc9bf20a43e989df510', '16dff15d935f45e2a836b1f41b07b4e3') :  '347669d050f344ad9fb9e480c814f727',
               ('0e328920e86049928202db95e8cfb7be', 'bf9d2725eb16462d9a101f0a077ce2b5') :  'c1204e3a8a1e4c40a35b5b7b1922d1ce',
               ('1c954fbc02b747bc813c587ac703c74a', 'ba49a80c2616407a8f1fe1fd12096fe0') :  '714af8cd12c1441eac4ca980e8c20070',
               ('3cbd945b62ec4634839372e403f6f377', '458b36a70db843719d202a8eda448f17') :  '34a6d207ac594035b1009c330fb67a65'}
    
    
           inference = pd.DataFrame([['42s', '14ms', '275 MB'],
                                     ['65s', '22ms', '200 MB'],
                                     ['201s', '67ms', '186 MB'],
                                     ['45s', '15ms', '14 MB'],
                                     ['370s', '123ms', '172 MB'],
                                     ['95s', '32ms', '73 MB'],
                                     ['230s', '77ms', '312 MB'],
                                     ['361s', '120ms', '234 MB'],
                                     ['230s', '77ms', '7 MB']],
                                     columns=['HPC inference time (whole test dataset)', 'HPC inference time (one trace)', 'Model size'],
                                    index=['484af471c61943fa90e5f78e78a229f0',
                                           '0cd2023eeaf745aca0d3e8ad5e1fc653',
                                           'fe81d71c52404ed790b3a32051258da9',
                                           'ff67be0b68e540a9a29a36a2d0c7a5be',
                                           '19e3e786e1bc4e2b93856f5dc9de8216',
                                           '347669d050f344ad9fb9e480c814f727',
                                           'c1204e3a8a1e4c40a35b5b7b1922d1ce',
                                           '714af8cd12c1441eac4ca980e8c20070',
                                           '34a6d207ac594035b1009c330fb67a65']).T
    
           evaluation = pd.concat([eva, inference], axis='index')
    
           index = [f'test {e}' for e in evaluation.index]
           evaluation.index = index
           training = run1_2_my.loc[cond2 & cond3]
    
           training = training.rename(index=model_dict).T
           final = pd.concat([training, evaluation])
           final.to_csv('data/exp-220227-unet/mlflow/2022-08-23_all-models.csv')
    
      484af471c61943fa90e5f78e78a229f0 0cd2023eeaf745aca0d3e8ad5e1fc653 fe81d71c52404ed790b3a32051258da9 ff67be0b68e540a9a29a36a2d0c7a5be 19e3e786e1bc4e2b93856f5dc9de8216 347669d050f344ad9fb9e480c814f727 c1204e3a8a1e4c40a35b5b7b1922d1ce 714af8cd12c1441eac4ca980e8c20070 34a6d207ac594035b1009c330fb67a65
    valauc 0.981 0.976 0.984 0.987 0.9745 0.978 0.976 0.962 0.972
    valrecall0.5 0.8975 0.893 0.916 0.929 0.885 0.8905 0.875 0.856 0.872
    valprecision0.5 0.918 0.852 0.909 0.9065 0.8985 0.891 0.888 0.8585 0.9135
    hpbatchsize 26 15 20 28 20 10 14 17 9
    hpfirstfilters 44 23 78 6 128 16 16 16 64
    hpinputsize 16384 16384 16384 16384 16384 8192 16384 16384 4096
    hplrpower 1 7 4 1 1 1 5 5 1
    hplrstart 0.0136170138242663 0.0305060808685107 0.0584071108418767 0.0553313915596308 0.043549707353273 0.0627676336651573 0.0192390310290551 0.0101590069352232 0.0100697459464075
    hpnlevels 7 6 4 5 3 5 9 3 5
    hppoolsize 2 4 4 4 4 4 2 4 4
    hpscaler standard quantg standard minmax standard robust robust l2 maxabs
    test loss 0.228701 0.291168 0.207543 0.192903 0.39377 0.289283 0.264141 0.18674 0.318487
    test tp0.1 7120162.0 7030956.0 7195616.0 7216054.0 6702946.0 6968717.0 7094671.0 7191122.0 6898118.0
    test fp0.1 1418863.0 1944947.0 1635920.0 1445349.0 1573303.0 1346502.0 1783490.0 1089514.0 1865476.0
    test tn0.1 40176900.0 39650840.0 39959820.0 40150456.0 40022456.0 40249248.0 39812172.0 40506272.0 39730280.0
    test fn0.1 436071.0 525277.0 360617.0 340179.0 853287.0 587516.0 461562.0 365111.0 658115.0
    test precision0.1 0.833838 0.783315 0.814764 0.833128 0.809901 0.838068 0.799115 0.868426 0.787133
    test recall0.1 0.94229 0.930484 0.952276 0.95498 0.887075 0.922248 0.938916 0.951681 0.912904
    test tp0.3 6967838.0 6780626.0 7057588.0 7068737.0 6536047.0 6749402.0 6893942.0 7062843.0 6565790.0
    test fp0.3 864351.0 1063352.0 1032334.0 874006.0 1023316.0 704964.0 923800.0 687977.0 850301.0
    test tn0.3 40731400.0 40532408.0 40563420.0 40721760.0 40572400.0 40890776.0 40671944.0 40907784.0 40745504.0
    test fn0.3 588395.0 775607.0 498645.0 487496.0 1020186.0 806831.0 662291.0 493390.0 990443.0
    test precision0.3 0.889641 0.864437 0.872393 0.889962 0.864629 0.905429 0.881833 0.911238 0.885344
    test recall0.3 0.922131 0.897355 0.934009 0.935484 0.864987 0.893223 0.912352 0.934704 0.868924
    test tp0.5 6806719.0 6547596.0 6873409.0 6879515.0 6381884.0 6514890.0 6657803.0 6907934.0 6236955.0
    test fp0.5 561522.0 671113.0 627857.0 517256.0 718562.0 394738.0 506659.0 432424.0 431128.0
    test tn0.5 41034252.0 40924664.0 40967908.0 41078488.0 40877184.0 41201060.0 41089052.0 41163320.0 41164680.0
    test fn0.5 749514.0 1008637.0 682824.0 676718.0 1174349.0 1041343.0 898430.0 648299.0 1319278.0
    test precision0.5 0.923792 0.907031 0.9163 0.93007 0.8988 0.942871 0.929282 0.94109 0.935345
    test recall0.5 0.900809 0.866516 0.909634 0.910442 0.844585 0.862188 0.881101 0.914203 0.825405
    test tp0.7 6576475.0 6228335.0 6630207.0 6640601.0 6136998.0 6185431.0 6321268.0 6663553.0 5823676.0
    test fp0.7 327204.0 381447.0 350175.0 285835.0 446064.0 178898.0 240152.0 227729.0 194655.0
    test tn0.7 41268520.0 41214264.0 41245624.0 41309920.0 41149748.0 41416908.0 41355624.0 41368048.0 41401160.0
    test fn0.7 979758.0 1327898.0 926026.0 915632.0 1419235.0 1370802.0 1234965.0 892680.0 1732557.0
    test precision0.7 0.952604 0.942291 0.949834 0.958733 0.932241 0.971891 0.963399 0.966954 0.967656
    test recall0.7 0.870338 0.824265 0.877449 0.878824 0.812177 0.818587 0.836563 0.881862 0.770712
    test tp0.9 6102547.0 5564160.0 6120144.0 6140071.0 5641558.0 5650455.0 5713166.0 6190425.0 5096155.0
    test fp0.9 119229.0 132517.0 115037.0 88637.0 190273.0 48800.0 64046.0 69867.0 44052.0
    test tn0.9 41476596.0 41463236.0 41480668.0 41507120.0 41405512.0 41546992.0 41531720.0 41525924.0 41551772.0
    test fn0.9 1453686.0 1992073.0 1436089.0 1416162.0 1914675.0 1905778.0 1843067.0 1365808.0 2460078.0
    test precision0.9 0.980837 0.976738 0.98155 0.98577 0.967373 0.991437 0.988914 0.98884 0.99143
    test recall0.9 0.807618 0.736367 0.809946 0.812584 0.74661 0.747787 0.756087 0.819247 0.674431
    test accuracy 0.973328 0.965825 0.973334 0.975708 0.961488 0.970784 0.971414 0.978012 0.964389
    test auc 0.968705 0.961385 0.973758 0.975623 0.939052 0.95903 0.966802 0.974297 0.953582
    test f1 0.912155 0.886311 0.912955 0.920152 0.87085 0.900726 0.90455 0.927452 0.876943
    test HPC inference time (whole test dataset) 42s 65s 201s 45s 370s 95s 230s 361s 230s
    test HPC inference time (one trace) 14ms 22ms 67ms 15ms 123ms 32ms 77ms 120ms 77ms
    test Model size 275 MB 200 MB 186 MB 14 MB 172 MB 73 MB 312 MB 234 MB 7 MB
  • for the final data we only take recall, precision, and f1 at a 0.5 prediction threshold.
           final.loc[['val_auc', 'test auc', 'val_recall0.5', 'test recall0.5', 'val_precision0.5',
                      'test precision0.5', 'test f1', 'hp_batch_size', 'hp_input_size', 'hp_lr_power',
                      'hp_lr_start', 'hp_n_levels', 'hp_pool_size', 'hp_scaler',
                      'test HPC inference time (whole test dataset)', 'test HPC inference time (one trace)',
                      'test Model size']]
    
      0cd2023eeaf745aca0d3e8ad5e1fc653 ff67be0b68e540a9a29a36a2d0c7a5be 484af471c61943fa90e5f78e78a229f0 fe81d71c52404ed790b3a32051258da9 19e3e786e1bc4e2b93856f5dc9de8216 347669d050f344ad9fb9e480c814f727 c1204e3a8a1e4c40a35b5b7b1922d1ce 714af8cd12c1441eac4ca980e8c20070 34a6d207ac594035b1009c330fb67a65
    valauc 0.976 0.987 0.981 0.984 0.9745 0.978 0.976 0.962 0.972
    test auc 0.961385 0.975623 0.968705 0.973758 0.939052 0.95903 0.966802 0.974297 0.953582
    valrecall0.5 0.893 0.929 0.8975 0.916 0.885 0.8905 0.875 0.856 0.872
    test recall0.5 0.866516 0.910442 0.900809 0.909634 0.844585 0.862188 0.881101 0.914203 0.825405
    valprecision0.5 0.852 0.9065 0.918 0.909 0.8985 0.891 0.888 0.8585 0.9135
    test precision0.5 0.907031 0.93007 0.923792 0.9163 0.8988 0.942871 0.929282 0.94109 0.935345
    test f1 0.886311 0.920152 0.912155 0.912955 0.87085 0.900726 0.90455 0.927452 0.876943
    hpbatchsize 15 28 26 20 20 10 14 17 9
    hpinputsize 16384 16384 16384 16384 16384 8192 16384 16384 4096
    hplrpower 7 1 1 4 1 1 5 5 1
    hplrstart 0.0305060808685107 0.0553313915596308 0.0136170138242663 0.0584071108418767 0.043549707353273 0.0627676336651573 0.0192390310290551 0.0101590069352232 0.0100697459464075
    hpnlevels 6 5 7 4 3 5 9 3 5
    hppoolsize 4 4 2 4 4 4 2 4 4
    hpscaler quantg minmax standard standard standard robust robust l2 maxabs
    test HPC inference time (whole test dataset) 65s 45s 42s 201s 370s 95s 230s 361s 230s
    test HPC inference time (one trace) 22ms 15ms 14ms 67ms 123ms 32ms 77ms 120ms 77ms
    test Model size 200 MB 14 MB 275 MB 186 MB 172 MB 73 MB 312 MB 234 MB 7 MB
  • load held-out test data from simulation.
           col_per_example = 3
           lab_thresh = 0.04
           artifact = 0
           model_type = 1
           fwhm = 250
    
           output_path = "/beegfs/ye53nis/drmed-git/data/exp-220227-unet/2022-04-25_simulations/"
           sim_path = Path('/beegfs/ye53nis/saves/firstartifact_Nov2020_test')
    
           sim, _, nsamples, sim_params = isfc.import_from_csv(
               folder=sim_path,
               header=12,
               frac_train=1,
               col_per_example=col_per_example,
               dropindex=None,
               dropcolumns=None)
    
           diffrates = sim_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32)
           nmols = sim_params.loc['number of fast molecules'].astype(np.float32)
           clusters = sim_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32)
           sim_columns = [f'{d:.4}-{c:.4}' for d, c in zip(
               np.repeat(diffrates, nsamples[0]),
               np.repeat(clusters, nsamples[0]))]
           sim_columns_idx = ['50.0-0.01', '50.0-0.1', '50.0-1.0',
                              '0.2-0.01', '0.2-0.1', '0.2-1.0',
                              '0.069-0.01', '0.069-0.1', '0.069-1.0']
           sim_columns_txt = ['fast molecules and slow clusters:\nsimulations',
                              'fast molecules and medium clusters:\nsimulations',
                              'fast molecules and fast clusters:\nsimulations',
                              'medium molecules and slow clusters:\nsimulations',
                              'medium molecules and medium clusters:\nsimulations',
                              'medium molecules and fast clusters:\nsimulations',
                              'slow molecules and slow clusters:\nsimulations',
                              'slow molecules and medium clusters:\nsimulations',
                              'slow molecules and fast clusters:\nsimulations']
    
           sim_sep = isfc.separate_data_and_labels(array=sim,
                                                   nsamples=nsamples,
                                                   col_per_example=col_per_example)
           sim_dirty = sim_sep['0']
           sim_dirty.columns = sim_columns
    
           sim_labels = sim_sep['1']
           sim_labels.columns = sim_columns
           sim_labbool = sim_labels > lab_thresh
           sim_labbool.columns = sim_columns
           sim_clean = sim_sep['2']
           sim_clean.columns = sim_columns
    
           sim_dirty
    
           2022-04-25 11:32:12,435 - 1/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/1.0/traces_brightclust_Nov2020_D0.069_set010.csv
           2022-04-25 11:32:15,346 - 2/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/0.1/traces_brightclust_Nov2020_D50_set003.csv
           2022-04-25 11:32:18,091 - 3/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/0.1/traces_brightclust_Nov2020_D0.4_set001.csv
           2022-04-25 11:32:21,085 - 4/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/0.1/traces_brightclust_Nov2020_D0.2_set007.csv
           2022-04-25 11:32:23,781 - 5/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/1.0/traces_brightclust_Nov2020_D3.0_set002.csv
           2022-04-25 11:32:26,490 - 6/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/0.01/traces_brightclust_Nov2020_D3.0_set004.csv
           2022-04-25 11:32:29,216 - 7/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/0.01/traces_brightclust_Nov2020_D50_set002.csv
           2022-04-25 11:32:32,164 - 8/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/1.0/traces_brightclust_Nov2020_D0.2_set005.csv
           2022-04-25 11:32:35,219 - 9/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/1.0/traces_brightclust_Nov2020_D0.6_set009.csv
           2022-04-25 11:32:38,070 - 10/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/0.1/traces_brightclust_Nov2020_D10_set001.csv2022-04-25 11:32:40,862 - 11/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/1.0/traces_brightclust_Nov2020_D0.08_set001.csv
           2022-04-25 11:32:44,030 - 12/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/0.1/traces_brightclust_Nov2020_D0.6_set003.csv
           2022-04-25 11:32:46,779 - 13/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/1.0/traces_brightclust_Nov2020_D0.1_set001.csv
           2022-04-25 11:32:49,564 - 14/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/1.0/traces_brightclust_Nov2020_D0.4_set005.csv
           2022-04-25 11:32:52,553 - 15/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/1.0/traces_brightclust_Nov2020_D10_set005.csv
           2022-04-25 11:32:55,473 - 16/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/1.0/traces_brightclust_Nov2020_D1.0_set005.csv
           2022-04-25 11:32:58,258 - 17/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/0.1/traces_brightclust_Nov2020_D0.069_set001.csv
           2022-04-25 11:33:01,043 - 18/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/1.0/traces_brightclust_Nov2020_D50_set001.csv
           2022-04-25 11:33:03,986 - 19/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/0.01/traces_brightclust_Nov2020_D0.1_set002.csv
           2022-04-25 11:33:06,905 - 20/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/0.1/traces_brightclust_Nov2020_D0.08_set003.csv
           2022-04-25 11:33:10,236 - 21/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/0.01/traces_brightclust_Nov2020_D1.0_set006.csv
           2022-04-25 11:33:12,972 - 22/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/0.1/traces_brightclust_Nov2020_D1.0_set003.csv
           2022-04-25 11:33:15,879 - 23/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/0.01/traces_brightclust_Nov2020_D0.2_set002.csv
           2022-04-25 11:33:18,677 - 24/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/0.1/traces_brightclust_Nov2020_D0.1_set005.csv
           2022-04-25 11:33:21,515 - 25/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/0.1/traces_brightclust_Nov2020_D3.0_set007.csv
           2022-04-25 11:33:24,287 - 26/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/0.01/traces_brightclust_Nov2020_D0.08_set005.csv
           2022-04-25 11:33:27,293 - 27/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/0.01/traces_brightclust_Nov2020_D0.069_set005.csv
           2022-04-25 11:33:30,137 - 28/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/0.01/traces_brightclust_Nov2020_D10_set002.csv
           2022-04-25 11:33:32,952 - 29/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/0.01/traces_brightclust_Nov2020_D0.6_set008.csv
           2022-04-25 11:33:35,872 - 30/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/0.01/traces_brightclust_Nov2020_D0.4_set008.csv
           2022-04-25 11:33:36,060 - The given DataFrame was split into 3 parts with shapes: [(16384, 3000), (16384, 3000), (16384, 3000)]
    
      0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01
    0 395.062347 542.019287 259.171783 378.006470 672.683350 422.525299 435.934174 535.840027 341.197662 546.919556 1194.309570 1331.900391 1614.625854 1096.244019 5350.819336 1109.356201 1231.328979 2721.381592 1671.956787 1572.913452
    1 395.732605 676.451477 263.082733 365.738861 672.841858 436.986450 408.519165 578.790833 357.324097 518.666321 1226.035278 1348.827026 1727.460327 1040.826294 5548.753418 1241.292969 1197.370972 2785.768066 1749.072510 1544.390259
    2 385.598785 565.850403 258.483124 350.939362 680.929993 416.969391 408.744873 572.143921 350.399933 546.654846 1236.471436 1323.095703 1817.804810 949.081665 5418.844727 1285.566650 1229.268799 2961.105225 1643.184204 1486.991211
    3 375.055664 569.737793 252.117035 364.043427 651.953247 449.630371 390.186218 521.915283 366.314545 534.204285 1192.580566 1219.429932 1844.903687 888.757324 5756.974121 1303.747803 1190.227539 3127.305664 1713.993042 1427.290771
    4 400.554443 590.014893 241.840240 376.104645 681.107056 466.177185 380.395752 531.094727 370.980286 537.930359 1168.627441 1194.065186 1756.768799 887.986389 5481.615234 1324.906250 1268.030762 2997.608887 1744.911865 1426.806763
    16379 433.562714 624.462646 643.004944 518.733643 563.566589 578.520813 348.858429 330.541473 9484.205078 376.017700 1352.349854 1400.204102 2025.719604 934.456665 2333.292725 1499.182251 1344.230347 1172.255371 1347.495239 756.805908
    16380 462.284454 616.137512 597.266296 487.652924 572.072327 612.569275 328.044495 331.003693 8237.546875 373.477081 1305.663696 1453.817993 1847.917114 1012.087402 2349.776611 1498.571411 1446.490479 1191.984253 1482.415894 712.499878
    16381 472.551483 612.926758 615.009460 516.941528 579.562378 624.847717 308.531097 308.009369 2722.457275 352.414612 1384.178711 1428.226440 1641.537109 975.000366 2291.302734 1541.471436 1334.644897 1173.113770 1520.151367 587.645203
    16382 486.679413 637.962769 616.344116 502.372345 593.559937 673.262634 307.834229 322.522400 2823.112305 336.442596 1258.534058 1423.324341 1560.817139 1023.877014 2185.760742 1455.700928 1387.281250 1124.065552 1572.194336 618.202820
    16383 489.893646 614.733704 614.638000 511.408234 595.268982 673.656921 318.466736 305.981110 1768.038330 361.107300 1114.534912 1386.146484 1548.830078 1009.011658 2117.508789 1569.905518 1396.511353 1070.131104 1602.530029 654.377380

    16384 rows × 3000 columns

  • save correlations before correction, then load each model, predict artifacts, and correct it with the delete and shift method, which we later renamed cut and stitch, then fit the correlations with Dominic Waithe’s focuspoint
           # before correction
           correlate.correlate_timetrace_and_save(
               df=sim_dirty,
               out_path="/beegfs/ye53nis/drmed-git/data/exp-220227-unet/2022-04-25_simulations/",
               txt='dirty')
    
           for mid, mname in enumerate(model_name_ls):
               logged_scaler = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{model_ls[model_id]}/params/scaler')
               logged_scaler = !cat $logged_scaler
               logged_scaler = logged_scaler[0]
    
               logged_model = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{model_ls[model_id]}/artifacts/model')
               logged_model = load_model(logged_model, compile=False)
               logged_model.compile(loss=bm.binary_ce_dice_loss(),
                                    optimizer=Adam(),
                                    metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9]))
    
               ans.predict_correct_correlate_simulations(
                   sim_df=sim_dirty,
                   model=logged_model,
                   scaler=logged_scaler,
                   out_path="/beegfs/ye53nis/drmed-git/data/exp-220227-unet/2022-04-25_simulations/",
                   txt=mname)
    
    
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    
  • we then fitted the data with Dominic Waithe’s focuspoint.
  • One thing I realized later, is that fit results from all curves with simulated diffusion coefficients of \(10\) and \(50 \mu m^2/s\) were not comparable, because the time step size of \(1ms\) of these traces was not fine enough (\(10\mu m^2/s \propto 1.1ms\)). It was still useful to simulate them for training the model.
  • for the final paper, we only compared three different times: \(\{0.069, 0.2, 3.0\}\mu m^2 s^{-1}\)

2.6.11 Analysis 2: correct simulated test data

2.6.11.1 illustrative plots
  • call #+CALL: jupyter-set-output-directory()
    ./data/exp-220227-unet/jupyter
    
  • load modules
            %cd ~/Programme/drmed-git
    
            import logging
            import os
            import sys
    
            import matplotlib.pyplot as plt
            import numpy as np
            import pandas as pd
            import seaborn as sns
    
            from mlflow.keras import load_model
            from pathlib import Path
            from pprint import pprint
            from sklearn.preprocessing import MaxAbsScaler
            from tensorflow.keras.optimizers import Adam
    
    
    
            FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/'
            sys.path.append(FLUOTRACIFY_PATH)
            from fluotracify.applications import corr_fit_object as cfo
            from fluotracify.imports import ptu_utils as ptu
            from fluotracify.training import (build_model as bm,
                                              preprocess_data as ppd)
            from fluotracify.simulations import (
               import_simulation_from_csv as isfc,
               analyze_simulations as ans,
            )
    
            logging.basicConfig(filename="/home/lex/Programme/drmed-git/data/exp-220227-unet/jupyter.log",
                                filemode='w', format='%(asctime)s - %(message)s',
                                force=True,
                                level=logging.DEBUG)
    
            sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind',
                          context='paper')
    
            model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727',
                        '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65',
                        '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653',
                        'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216',
                        'c1204e3a8a1e4c40a35b5b7b1922d1ce']
    
            model_name_ls = [f'{s:.5}' for s in model_ls]
    
            pred_thresh = 0.5
    
    
    /home/lex/Programme/drmed-git
    
  • load simulated data
            col_per_example = 3
            lab_thresh = 0.04
            artifact = 0
            model_type = 1
            fwhm = 250
            sim_path = Path('/home/lex/Programme/drmed-collections/drmed-simexps/firstartifact_Nov2020_test')
    
            sim, _, nsamples, sim_params = isfc.import_from_csv(
                folder=sim_path,
                header=12,
                frac_train=1,
                col_per_example=col_per_example,
                dropindex=None,
                dropcolumns=None)
    
            diffrates = sim_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32)
            nmols = sim_params.loc['number of fast molecules'].astype(np.float32)
            clusters = sim_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32)
            sim_columns = [f'{d:.4}-{c:.4}' for d, c in zip(
                np.repeat(diffrates, nsamples[0]),
                np.repeat(clusters, nsamples[0]))]
    
            sim_sep = isfc.separate_data_and_labels(array=sim,
                                                    nsamples=nsamples,
                                                    col_per_example=col_per_example)
            sim_dirty = sim_sep['0']
            sim_dirty.columns = sim_columns
    
            sim_labels = sim_sep['1']
            sim_labels.columns = sim_columns
            sim_labbool = sim_labels > lab_thresh
            sim_labbool.columns = sim_columns
            sim_clean = sim_sep['2']
            sim_clean.columns = sim_columns
    
            sim_dirty
    
      0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01
    0 1187.467896 907.677734 480.048798 454.669403 466.063232 384.734467 543.981323 640.921509 795.946167 410.471893 1897.398193 2279.646484 3088.531006 2034.432495 2187.548584 2105.736084 1789.366577 2023.093994 2331.185791 2185.028076
    1 1184.055176 945.760315 471.065216 458.392487 473.306152 395.165527 558.603088 622.421204 776.199402 409.149170 1499.969849 2199.652100 3207.333008 1650.523926 2122.935791 2791.281006 1661.286377 1111.879761 1853.699585 1926.844971
    2 1191.848877 980.117798 459.479706 426.087982 482.370209 425.123413 551.536072 624.498535 778.671265 400.971954 1822.985229 2456.422607 2969.562500 1934.118286 1457.731812 2251.077393 1903.003662 2063.915527 2198.018066 2038.683105
    3 1199.065918 974.313110 462.205566 444.041809 463.703125 434.186615 573.044128 626.252502 747.284058 393.178162 1741.839355 2467.149414 2588.980957 2136.627686 1930.263672 2323.700684 2133.313721 1638.169312 1926.058716 1815.259521
    4 1221.957397 968.779175 464.918030 455.205292 474.615540 437.029419 586.489136 619.319092 781.954102 406.468018 2431.400879 2246.336670 3000.961182 1915.518066 2052.773682 2359.145508 1699.926147 1862.709595 2291.338379 1332.422241
    16379 506.409668 1012.403931 855.006226 674.470703 769.859192 2110.732178 799.565247 1981.221436 528.844604 483.055878 1512.586548 3212.712891 1491.119995 1843.866943 1748.956665 2048.602051 1662.244385 2593.879639 1921.427856 1664.831909
    16380 536.809692 1022.029724 840.287720 671.095215 738.908997 2118.984863 807.995789 2624.343262 552.687012 479.768372 1661.331055 3190.809570 1770.193970 2081.854248 2164.372803 2295.646729 1846.683594 2038.272339 2222.708252 2122.753662
    16381 570.668884 989.891235 839.180298 689.863586 695.739136 2033.681885 786.547852 3528.163574 572.166077 484.491211 1643.470337 2564.206787 2025.219971 2104.706787 1792.828613 2106.199463 2087.914062 1457.817871 1874.736938 1683.072021
    16382 562.505310 977.029785 1005.927673 683.250183 661.608337 2566.123047 805.594116 3731.086426 566.710571 489.289673 1556.492188 2783.619385 1312.174561 2378.643311 2466.965576 2160.641357 1691.332520 2013.095093 1632.475708 1352.443237
    16383 567.307373 1006.794067 982.376526 677.099854 657.040588 2545.080322 784.917969 3850.334717 570.241699 512.688232 2127.414551 2448.062012 1398.359253 1665.321167 2241.687256 1823.699829 1340.686035 1972.661743 1550.770142 1727.808228

    16384 rows × 1500 columns

  • define plotting functions
            plot1_index = ['3.0-0.01', '3.0-0.1', '3.0-1.0',
                           '0.2-0.01', '0.2-0.1', '0.2-1.0',
                           '0.069-0.01', '0.069-0.1', '0.069-1.0']
    
            plot1_traceno = [1, 1, 0,
                             5, 0, 0,
                             1, 1, 0]
    
            def get_tt(dr):
                dr = dr.removesuffix('-0.01').removesuffix('-0.1').removesuffix('-1.0')
                dr = float(dr)
                tt, _ = ans.convert_diffcoeff_to_transittimes(dr, 250)
                return f'\nsimulated trace\n$\\tau_{{sim}}={tt:.2f}ms$'
    
            def save_plot(filename, txt):
                plot_file = f'{filename}_{txt}'.replace(' ', '_').replace(
                    '\n', '_').replace('"', '').replace('{', '').replace(
                    '}', '').replace('$', '').replace('=', '-').replace('\\', '')
                plt.savefig(f'{plot_file}.pdf', bbox_inches='tight', dpi=300)
                os.system(f'pdf2svg {plot_file}.pdf {plot_file}.svg')
                os.system(f'rm {plot_file}.pdf')
    
            def plot_predictions(model_id, filename):
                def plot_cluster_prediction(filename):
                    for i, (idx, t) in enumerate(zip(plot1_index, plot1_traceno)):
                        fig = plt.figure()
                        ax = plt.subplot(111)
                        txt = get_tt(idx)
                        ax.set_prop_cycle(color=[sns.color_palette()[3]])
                        sns.lineplot(data=sim_pred.loc[:, idx].iloc[:, t],
                                     label='prediction')
                        plt.axhline(y=pred_thresh, xmin=0, xmax=1,
                                    label='\nprediction\nthreshold',
                                    color=sns.color_palette()[7], linestyle='--')
                        plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
                        plt.setp(ax, xlabel=r'Time [$ms$]', ylabel='artifact probability',
                                 title=txt, ylim=[0, 1])
                        save_plot(filename, f'prediction_{txt}_{i}')
    
                def plot_prediction_based_segmentation(filename):
                    for i, (idx, t) in enumerate(zip(plot1_index, plot1_traceno)):
                        fig = plt.figure()
                        ax = plt.subplot(111)
                        txt = get_tt(idx)
                        ax.set_prop_cycle(color=[sns.color_palette()[3]])
                        sim_predbool_scaled = sim_dirty.loc[:, idx].iloc[:, t].max() * sim_predbool.loc[:, idx].iloc[:, t]
                        sns.lineplot(data=sim_predbool_scaled, alpha=0.5)
                        plt.fill_between(x=sim_predbool.loc[:, idx].iloc[:, t].index,
                                         y1=sim_predbool_scaled,
                                         y2=0, alpha=0.5, label='prediction:\npeak artifacts')
    
                        ax.set_prop_cycle(color=[sns.color_palette()[2]])
                        sim_invpred_scaled = sim_dirty.loc[:, idx].iloc[:, t].max() * ~sim_predbool.loc[:, idx].iloc[:, t]
                        plt.fill_between(x=sim_predbool.loc[:, idx].iloc[:, t].index,
                                         y1=sim_invpred_scaled,
                                         y2=0, alpha=0.5, label='\nprediction:\nno artifacts')
    
                        ax.set_prop_cycle(color=[sns.color_palette()[0]])
                        sns.lineplot(data=sim_dirty.loc[:, idx].iloc[:, t], label=txt)
                        plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
                        plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'Intensity [a.u.]', title='')
                        save_plot(filename, f'predseg_{txt}_{i}')
    
                def plot_prediction_based_cut_and_shift_correction(filename):
                    for i, (idx, t) in enumerate(zip(plot1_index, plot1_traceno)):
                        fig = plt.figure()
                        ax = plt.subplot(111)
                        txt = get_tt(idx)
                        ax.set_prop_cycle(color=[sns.color_palette()[0]])
                        sns.lineplot(data=sim_corr.loc[:, idx].iloc[:, t], label=txt)
                        plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
                        plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'Intensity [a.u.]', title='')
                        save_plot(filename, f'predcas_{txt}_{i}')
    
                logged_scaler = Path(f'/home/lex/Programme/drmed-git/data/mlruns/10/{model_ls[model_id]}/params/scaler')
                logged_scaler = !cat $logged_scaler
                logged_scaler = logged_scaler[0]
    
                logged_model = Path(f'/home/lex/Programme/drmed-git/data/mlruns/10/{model_ls[model_id]}/artifacts/model')
                logged_model = load_model(logged_model, compile=False)
                logged_model.compile(loss=bm.binary_ce_dice_loss(),
                                     optimizer=Adam(),
                                     metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9]))
    
                sim_dirty_prepro = ppd.convert_to_tfds_for_unet(sim_dirty)
                sim_dirty_prepro = ppd.scale_pad_and_batch_tfds_for_unet(
                    sim_dirty_prepro, scaler=logged_scaler)
                sim_pred = logged_model.predict(sim_dirty_prepro, verbose=0)
                sim_pred = pd.DataFrame(sim_pred.squeeze(axis=2)).T
                sim_pred.columns = sim_columns
                sim_predbool = sim_pred > pred_thresh
    
                sim_corr = pd.DataFrame()
                for i in range(len(sim_dirty.columns)):
                    sim_corr_trace = np.delete(sim_dirty.iloc[:, i].values,
                                               sim_predbool.iloc[:, i].values)
                    sim_corr_trace = pd.DataFrame(sim_corr_trace)
                    sim_corr = pd.concat([sim_corr, sim_corr_trace], axis='columns')
    
                sim_corr.columns = sim_columns
    
                plot_cluster_prediction(filename)
                plot_prediction_based_segmentation(filename)
                plot_prediction_based_cut_and_shift_correction(filename)
                plt.close('all')
    
    
  • first model: ff67be0b68e540a9a29a36a2d0c7a5be
           plot_predictions(model_id=0,
                            filename='data/exp-220227-unet/jupyter/analysis2_ff67b')
    
    • model predictions

      analysis2_ff67b_slow_molecules:_slow_cluster_prediction.svg analysis2_ff67b_slow_molecules:_medium_cluster_prediction.svg analysis2_ff67b_slow_molecules:_fast_cluster_prediction.svg analysis2_ff67b_medium_molecules:_slow_cluster_prediction.svg analysis2_ff67b_medium_molecules:_medium_cluster_prediction.svg analysis2_ff67b_medium_molecules:_fast_cluster_prediction.svg analysis2_ff67b_fast_molecules:_slow_cluster_prediction.svg analysis2_ff67b_fast_molecules:_medium_cluster_prediction.svg analysis2_ff67b_fast_molecules:_fast_cluster_prediction.svg

    • prediction-based segmentation (threshold=0.5)

      analysis2_ff67b_slow_molecules_and_slow_clusters:_prediction-based_segmentation.svg analysis2_ff67b_slow_molecules_and_medium_clusters:_prediction-based_segmentation.svg analysis2_ff67b_slow_molecules_and_fast_clusters:_prediction-based_segmentation.svg analysis2_ff67b_medium_molecules_and_slow_clusters:_prediction-based_segmentation.svg analysis2_ff67b_medium_molecules_and_medium_clusters:_prediction-based_segmentation.svg analysis2_ff67b_medium_molecules_and_fast_clusters:_prediction-based_segmentation.svg analysis2_ff67b_fast_molecules_and_slow_clusters:_prediction-based_segmentation.svg analysis2_ff67b_fast_molecules_and_medium_clusters:_prediction-based_segmentation.svg analysis2_ff67b_fast_molecules_and_fast_clusters:_prediction-based_segmentation.svg

    • prediction-based cut-and-stitch correction

      analysis2_ff67b_slow_molecules_and_slow_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_ff67b_slow_molecules_and_medium_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_ff67b_slow_molecules_and_fast_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_ff67b_medium_molecules_and_slow_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_ff67b_medium_molecules_and_medium_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_ff67b_medium_molecules_and_fast_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_ff67b_fast_molecules_and_slow_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_ff67b_fast_molecules_and_medium_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_ff67b_fast_molecules_and_fast_clusters:_prediction-based_cut_and_shift_correction.svg

  • second model: 347669d050f344ad9fb9e480c814f727
           plot_predictions(model_id=1,
                            filename='data/exp-220227-unet/jupyter/analysis2_34766')
    
    
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    /tmp/ipykernel_5495/3600776436.py:87: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
      fig = plt.figure()
    
    • model predictions

      analysis2_34766_slow_molecules:_slow_cluster_prediction.svg analysis2_34766_slow_molecules:_medium_cluster_prediction.svg analysis2_34766_slow_molecules:_fast_cluster_prediction.svg analysis2_34766_medium_molecules:_slow_cluster_prediction.svg analysis2_34766_medium_molecules:_medium_cluster_prediction.svg analysis2_34766_medium_molecules:_fast_cluster_prediction.svg analysis2_34766_fast_molecules:_slow_cluster_prediction.svg analysis2_34766_fast_molecules:_medium_cluster_prediction.svg analysis2_34766_fast_molecules:_fast_cluster_prediction.svg

    • prediction-based segmentation (threshold=0.5)

      analysis2_34766_slow_molecules_and_slow_clusters:_prediction-based_segmentation.svg analysis2_34766_slow_molecules_and_medium_clusters:_prediction-based_segmentation.svg analysis2_34766_slow_molecules_and_fast_clusters:_prediction-based_segmentation.svg analysis2_34766_medium_molecules_and_slow_clusters:_prediction-based_segmentation.svg analysis2_34766_medium_molecules_and_medium_clusters:_prediction-based_segmentation.svg analysis2_34766_medium_molecules_and_fast_clusters:_prediction-based_segmentation.svg analysis2_34766_fast_molecules_and_slow_clusters:_prediction-based_segmentation.svg analysis2_34766_fast_molecules_and_medium_clusters:_prediction-based_segmentation.svg analysis2_34766_fast_molecules_and_fast_clusters:_prediction-based_segmentation.svg

    • prediction-based cut-and-stitch correction

      analysis2_34766_slow_molecules_and_slow_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34766_slow_molecules_and_medium_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34766_slow_molecules_and_fast_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34766_medium_molecules_and_slow_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34766_medium_molecules_and_medium_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34766_medium_molecules_and_fast_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34766_fast_molecules_and_slow_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34766_fast_molecules_and_medium_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34766_fast_molecules_and_fast_clusters:_prediction-based_cut_and_shift_correction.svg

  • third model: 714af8cd12c1441eac4ca980e8c20070
           plot_predictions(model_id=2,
                            filename='data/exp-220227-unet/jupyter/analysis2_714af')
    
    fig = plt.figure()
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    /tmp/ipykernel_5495/3600776436.py:87: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
      fig = plt.figure()
    
    • model predictions

      analysis2_714af_slow_molecules:_slow_cluster_prediction.svg analysis2_714af_slow_molecules:_medium_cluster_prediction.svg analysis2_714af_slow_molecules:_fast_cluster_prediction.svg analysis2_714af_medium_molecules:_slow_cluster_prediction.svg analysis2_714af_medium_molecules:_medium_cluster_prediction.svg analysis2_714af_medium_molecules:_fast_cluster_prediction.svg analysis2_714af_fast_molecules:_slow_cluster_prediction.svg analysis2_714af_fast_molecules:_medium_cluster_prediction.svg analysis2_714af_fast_molecules:_fast_cluster_prediction.svg

    • prediction-based segmentation (threshold=0.5)

      analysis2_714af_slow_molecules_and_slow_clusters:_prediction-based_segmentation.svg analysis2_714af_slow_molecules_and_medium_clusters:_prediction-based_segmentation.svg analysis2_714af_slow_molecules_and_fast_clusters:_prediction-based_segmentation.svg analysis2_714af_medium_molecules_and_slow_clusters:_prediction-based_segmentation.svg analysis2_714af_medium_molecules_and_medium_clusters:_prediction-based_segmentation.svg analysis2_714af_medium_molecules_and_fast_clusters:_prediction-based_segmentation.svg analysis2_714af_fast_molecules_and_slow_clusters:_prediction-based_segmentation.svg analysis2_714af_fast_molecules_and_medium_clusters:_prediction-based_segmentation.svg analysis2_714af_fast_molecules_and_fast_clusters:_prediction-based_segmentation.svg

    • prediction-based cut-and-stitch correction

      analysis2_714af_slow_molecules_and_slow_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_714af_slow_molecules_and_medium_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_714af_slow_molecules_and_fast_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_714af_medium_molecules_and_slow_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_714af_medium_molecules_and_medium_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_714af_medium_molecules_and_fast_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_714af_fast_molecules_and_slow_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_714af_fast_molecules_and_medium_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_714af_fast_molecules_and_fast_clusters:_prediction-based_cut_and_shift_correction.svg

  • fourth model: 34a6d207ac594035b1009c330fb67a65
           plot_predictions(model_id=3,
                            filename='data/exp-220227-unet/jupyter/analysis2_34a6d')
    
    
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    /tmp/ipykernel_5495/3600776436.py:87: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
      fig = plt.figure()
    
    • model predictions

      analysis2_34a6d_slow_molecules:_slow_cluster_prediction.svg analysis2_34a6d_slow_molecules:_medium_cluster_prediction.svg analysis2_34a6d_slow_molecules:_fast_cluster_prediction.svg analysis2_34a6d_medium_molecules:_slow_cluster_prediction.svg analysis2_34a6d_medium_molecules:_medium_cluster_prediction.svg analysis2_34a6d_medium_molecules:_fast_cluster_prediction.svg analysis2_34a6d_fast_molecules:_slow_cluster_prediction.svg analysis2_34a6d_fast_molecules:_medium_cluster_prediction.svg analysis2_34a6d_fast_molecules:_fast_cluster_prediction.svg

    • prediction-based segmentation (threshold=0.5)

      analysis2_34a6d_slow_molecules_and_slow_clusters:_prediction-based_segmentation.svg analysis2_34a6d_slow_molecules_and_medium_clusters:_prediction-based_segmentation.svg analysis2_34a6d_slow_molecules_and_fast_clusters:_prediction-based_segmentation.svg analysis2_34a6d_medium_molecules_and_slow_clusters:_prediction-based_segmentation.svg analysis2_34a6d_medium_molecules_and_medium_clusters:_prediction-based_segmentation.svg analysis2_34a6d_medium_molecules_and_fast_clusters:_prediction-based_segmentation.svg analysis2_34a6d_fast_molecules_and_slow_clusters:_prediction-based_segmentation.svg analysis2_34a6d_fast_molecules_and_medium_clusters:_prediction-based_segmentation.svg analysis2_34a6d_fast_molecules_and_fast_clusters:_prediction-based_segmentation.svg

    • prediction-based cut-and-stitch correction

      analysis2_34a6d_slow_molecules_and_slow_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34a6d_slow_molecules_and_medium_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34a6d_slow_molecules_and_fast_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34a6d_medium_molecules_and_slow_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34a6d_medium_molecules_and_medium_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34a6d_medium_molecules_and_fast_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34a6d_fast_molecules_and_slow_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34a6d_fast_molecules_and_medium_clusters:_prediction-based_cut_and_shift_correction.svg analysis2_34a6d_fast_molecules_and_fast_clusters:_prediction-based_cut_and_shift_correction.svg

  • fifth model: 0cd2023eeaf745aca0d3e8ad5e1fc653. I re-wrote the plotting script a bit.
           plot_predictions(model_id=5,
                            filename='data/exp-220227-unet/jupyter/analysis2_0cd20')
    
    
           2022-08-13 17:00:55.175177: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
           2022-08-13 17:00:55.175214: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
           2022-08-13 17:00:55.175247: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (Topialex): /proc/driver/nvidia/version does not exist
           2022-08-13 17:00:55.177043: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
           To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
           WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
           2022-08-13 17:01:06.559383: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory.
           2022-08-13 17:01:06.640827: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory.
           2022-08-13 17:01:07.439633: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory.
           2022-08-13 17:01:07.700351: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory.2022-08-13 17:03:32.777028: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory.
           /tmp/ipykernel_6898/3697032523.py:92: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
             fig = plt.figure()
    
    • model predictions

      analysis2_0cd20_prediction__simulated_trace_tau_sim-3.76ms_0.svg analysis2_0cd20_prediction__simulated_trace_tau_sim-3.76ms_1.svg analysis2_0cd20_prediction__simulated_trace_tau_sim-3.76ms_2.svg analysis2_0cd20_prediction__simulated_trace_tau_sim-56.36ms_3.svg analysis2_0cd20_prediction__simulated_trace_tau_sim-56.36ms_4.svg analysis2_0cd20_prediction__simulated_trace_tau_sim-56.36ms_5.svg analysis2_0cd20_prediction__simulated_trace_tau_sim-163.35ms_6.svg analysis2_0cd20_prediction__simulated_trace_tau_sim-163.35ms_7.svg analysis2_0cd20_prediction__simulated_trace_tau_sim-163.35ms_8.svg

    • prediction-based segmentation (threshold=0.5)

      analysis2_0cd20_predseg__simulated_trace_tau_sim-3.76ms_0.svg analysis2_0cd20_predseg__simulated_trace_tau_sim-3.76ms_1.svg analysis2_0cd20_predseg__simulated_trace_tau_sim-3.76ms_2.svg analysis2_0cd20_predseg__simulated_trace_tau_sim-56.36ms_3.svg analysis2_0cd20_predseg__simulated_trace_tau_sim-56.36ms_4.svg analysis2_0cd20_predseg__simulated_trace_tau_sim-56.36ms_5.svg analysis2_0cd20_predseg__simulated_trace_tau_sim-163.35ms_6.svg analysis2_0cd20_predseg__simulated_trace_tau_sim-163.35ms_7.svg analysis2_0cd20_predseg__simulated_trace_tau_sim-163.35ms_8.svg

    • prediction-based cut-and-stitch correction

      analysis2_0cd20_predcas__simulated_trace_tau_sim-3.76ms_0.svg analysis2_0cd20_predcas__simulated_trace_tau_sim-3.76ms_1.svg analysis2_0cd20_predcas__simulated_trace_tau_sim-3.76ms_2.svg analysis2_0cd20_predcas__simulated_trace_tau_sim-56.36ms_3.svg analysis2_0cd20_predcas__simulated_trace_tau_sim-56.36ms_4.svg analysis2_0cd20_predcas__simulated_trace_tau_sim-56.36ms_5.svg analysis2_0cd20_predcas__simulated_trace_tau_sim-163.35ms_6.svg analysis2_0cd20_predcas__simulated_trace_tau_sim-163.35ms_7.svg analysis2_0cd20_predcas__simulated_trace_tau_sim-163.35ms_8.svg

  • fifth model: fe81d71c52404ed790b3a32051258da9
           plot_predictions(model_id=6,
                            filename='data/exp-220227-unet/jupyter/analysis2_fe81d')
    
    
           2023-02-16 13:42:36.880181: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
           2023-02-16 13:42:36.882860: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
           2023-02-16 13:42:36.885399: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (Topialex): /proc/driver/nvidia/version does not exist
           2023-02-16 13:42:36.911523: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
           To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
           WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
           2023-02-16 13:42:48.544143: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory.
           2023-02-16 13:42:48.656459: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory.
           2023-02-16 13:42:49.489339: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory.
           2023-02-16 13:42:50.028156: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory.2023-02-16 13:52:50.335793: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory.
           /tmp/ipykernel_14923/851958287.py:66: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
             fig = plt.figure()
    
    • model predictions

      analysis2_fe81d_prediction__simulated_trace_tau_sim-3.76ms_0.svg analysis2_fe81d_prediction__simulated_trace_tau_sim-3.76ms_1.svg analysis2_fe81d_prediction__simulated_trace_tau_sim-3.76ms_2.svg analysis2_fe81d_prediction__simulated_trace_tau_sim-56.36ms_3.svg analysis2_fe81d_prediction__simulated_trace_tau_sim-56.36ms_4.svg analysis2_fe81d_prediction__simulated_trace_tau_sim-56.36ms_5.svg analysis2_fe81d_prediction__simulated_trace_tau_sim-163.35ms_6.svg analysis2_fe81d_prediction__simulated_trace_tau_sim-163.35ms_7.svg analysis2_fe81d_prediction__simulated_trace_tau_sim-163.35ms_8.svg

    • prediction-based segmentation (threshold=0.5)

      analysis2_fe81d_predseg__simulated_trace_tau_sim-3.76ms_0.svg analysis2_fe81d_predseg__simulated_trace_tau_sim-3.76ms_1.svg analysis2_fe81d_predseg__simulated_trace_tau_sim-3.76ms_2.svg analysis2_fe81d_predseg__simulated_trace_tau_sim-56.36ms_3.svg analysis2_fe81d_predseg__simulated_trace_tau_sim-56.36ms_4.svg analysis2_fe81d_predseg__simulated_trace_tau_sim-56.36ms_5.svg analysis2_fe81d_predseg__simulated_trace_tau_sim-163.35ms_6.svg analysis2_fe81d_predseg__simulated_trace_tau_sim-163.35ms_7.svg analysis2_fe81d_predseg__simulated_trace_tau_sim-163.35ms_8.svg

    • prediction-based cut-and-stitch correction

      analysis2_fe81d_predcas__simulated_trace_tau_sim-3.76ms_0.svg analysis2_fe81d_predcas__simulated_trace_tau_sim-3.76ms_1.svg analysis2_fe81d_predcas__simulated_trace_tau_sim-3.76ms_2.svg analysis2_fe81d_predcas__simulated_trace_tau_sim-56.36ms_3.svg analysis2_fe81d_predcas__simulated_trace_tau_sim-56.36ms_4.svg analysis2_fe81d_predcas__simulated_trace_tau_sim-56.36ms_5.svg analysis2_fe81d_predcas__simulated_trace_tau_sim-163.35ms_6.svg analysis2_fe81d_predcas__simulated_trace_tau_sim-163.35ms_7.svg analysis2_fe81d_predcas__simulated_trace_tau_sim-163.35ms_8.svg

  • I did not do these plots for models 19e3e or c1204, because the did not work well in latex table (See below)
2.6.11.2 latex table from sim results
  • All correlation curve fitting from Analysis 1b and 1c was done in a structured manner via focuspoint.FCS_point_correlator from Dominic Waithe.
  • Now we load the modules and tell the code where to find the fit results
  • these fit results are the average of 300 curves per simulated group of fast molecule diffusion coefficients \(\{0.069, 0.08, 0.1, 0.2, 0.4, 0.6, 1.0, 3.0, 10, 50\}\mu m^2/s\)
  • this is only an illustration, because the actual distribution of each of the 300 fitted curves is the interesting result. This is shown in exp-220316-publication1
  • here, the latex export is the cool thing - and the comparison of all models!
           %cd ~/Programme/drmed-git
    
    /home/lex/Programme/drmed-git
    
           import os
           import sys
           import numpy as np
           import matplotlib.pyplot as plt
           import pandas as pd
           import seaborn as sns
           from pathlib import Path
           from pprint import pprint
    
           FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/'
           sys.path.append(FLUOTRACIFY_PATH)
           from fluotracify.simulations import (
              analyze_simulations as ans,
           )
    
           # use seaborn style as default even if I just use matplotlib
    
           sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind',
                         context='paper')
           # logging.basicConfig(filename="/home/lex/Programme/drmed-git/data/exp-220227-unet/jupyter.log",
           #               filemode='w', format='%(asctime)s - %(message)s',
           #               force=True,
           #               level=logging.DEBUG)
    
           model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727',
                       '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65',
                       '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653',
                       'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216',
                       'c1204e3a8a1e4c40a35b5b7b1922d1ce']
    
           model_name_ls = [f'{s:.5}' for s in model_ls]
    
    2023-02-15 22:29:36.789486: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2023-02-15 22:29:36.789635: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
          path1 = Path('data/exp-220227-unet/2022-04-25_simulations')
          path2 = Path('data/exp-220316-publication1/220517_simulations')
    
          odot069_models1_path = path1 / '0.069-all-results/0dot069_all_1comp_outputParam.csv'
          odot069_models2_path = path1 / '0.069-all-results/0dot069_all_2comp_outputParam.csv'
          odot069_corr1_path = path2 / '0.069-all-results/0dot069_lab-all_1comp_outputParam.csv'
          odot069_corr2_path = path2 / '0.069-all-results/0dot069_lab-all_2comp_outputParam.csv'
    
          odot08_models1_path = path1 / '0.08-all-results/0dot08_all_1comp_outputParam.csv'
          odot08_models2_path = path1 / '0.08-all-results/0dot08_all_2comp_outputParam.csv'
          odot08_corr1_path = path2 / '0.08-all-results/0dot08_lab-all_1comp_outputParam.csv'
          odot08_corr2_path = path2 / '0.08-all-results/0dot08_lab-all_2comp_outputParam.csv'
    
          odot1_models1_path = path1 / '0.1-all-results/0dot1_all_1comp_outputParam.csv'
          odot1_models2_path = path1 / '0.1-all-results/0dot1_all_2comp_outputParam.csv'
          odot1_corr1_path = path2 / '0.1-all-results/0dot1_lab-all_1comp_outputParam.csv'
          odot1_corr2_path = path2 / '0.1-all-results/0dot1_lab-all_2comp_outputParam.csv'
    
          odot2_models1_path = path1 / '0.2-all-results/0dot2_all_1comp_outputParam.csv'
          odot2_models2_path = path1 / '0.2-all-results/0dot2_all_2comp_outputParam.csv'
          odot2_corr1_path = path2 / '0.2-all-results/0dot2_lab-all_1comp_outputParam.csv'
          odot2_corr2_path = path2 / '0.2-all-results/0dot2_lab-all_2comp_outputParam.csv'
    
          odot4_models1_path = path1 / '0.4-all-results/0dot4_all_1comp_outputParam.csv'
          odot4_models2_path = path1 / '0.4-all-results/0dot4_all_2comp_outputParam.csv'
          odot4_corr1_path = path2 / '0.4-all-results/0dot4_lab-all_1comp_outputParam.csv'
          odot4_corr2_path = path2 / '0.4-all-results/0dot4_lab-all_2comp_outputParam.csv'
    
          odot6_models1_path = path1 / '0.6-all-results/0dot6_all_1comp_outputParam.csv'
          odot6_models2_path = path1 / '0.6-all-results/0dot6_all_2comp_outputParam.csv'
          odot6_corr1_path = path2 / '0.6-all-results/0dot6_lab-all_1comp_outputParam.csv'
          odot6_corr2_path = path2 / '0.6-all-results/0dot6_lab-all_2comp_outputParam.csv'
    
          one_models1_path = path1 / '1.0-all-results/1dot0_all_1comp_outputParam.csv'
          one_models2_path = path1 / '1.0-all-results/1dot0_all_2comp_outputParam.csv'
          one_corr1_path = path2 / '1.0-all-results/1dot0_lab-all_1comp_outputParam.csv'
          one_corr2_path = path2 / '1.0-all-results/1dot0_lab-all_2comp_outputParam.csv'
    
          three_models1_path = path1 / '3.0-all-results/3dot0_all_1comp_outputParam.csv'
          three_models2_path = path1 / '3.0-all-results/3dot0_all_2comp_outputParam.csv'
          three_corr1_path = path2 / '3.0-all-results/3dot0_lab-all_1comp_outputParam.csv'
          three_corr2_path = path2 / '3.0-all-results/3dot0_lab-all_2comp_outputParam.csv'
    
          ten_models1_path = path1 / '10.0-all-results/10dot0_all_1comp_outputParam.csv'
          ten_models2_path = path1 / '10.0-all-results/10dot0_all_2comp_outputParam.csv'
          ten_corr1_path = path2 / '10.0-all-results/10dot0_lab-all_1comp_outputParam.csv'
          ten_corr2_path = path2 / '10.0-all-results/10dot0_lab-all_2comp_outputParam.csv'
    
          fifty_models1_path = path1 / '50.0-all-results/50dot0_all_1comp_outputParam.csv'
          fifty_models2_path = path1 / '50.0-all-results/50dot0_all_2comp_outputParam.csv'
          fifty_corr1_path = path2 / '50.0-all-results/50dot0_lab-all_1comp_outputParam.csv'
          fifty_corr2_path = path2 / '50.0-all-results/50dot0_lab-all_2comp_outputParam.csv'
    
    
  • we load the data and combine it. We convert the simulated D [um2/s] in t[ms]. Based on an exploratory plot of A1 and A2 we swap A1-A2 and txy1-txy2, so that A1 and txy1 always represent the bigger fitted fraction size.
  • I wrote a latex table export. The table should display cells with a green background, when the correction method is inside an accepted range of +-log 10%, else it should have an orange background.
  • I prepared tables for two occasions:
    1. a short table for a beamer presentation
    2. a long table for a report
          tt_txt = 0.069
          odot069_models1 = pd.read_csv(odot069_models1_path, sep=',').assign(
              components=10*[1,], sim=10*[tt_txt])
          odot069_models2 = pd.read_csv(odot069_models2_path, sep=',').assign(
              components=10*[2,], sim=10*[tt_txt])
          odot069_corr1 = pd.read_csv(odot069_corr1_path, sep=',').assign(
              components=2*[1,], sim=2*[tt_txt])
          odot069_corr2 = pd.read_csv(odot069_corr2_path, sep=',').assign(
              components=2*[2,], sim=2*[tt_txt])
    
          tt_txt = 0.08
          odot08_models1 = pd.read_csv(odot08_models1_path, sep=',').assign(
              components=10*[1,], sim=10*[tt_txt])
          odot08_models2 = pd.read_csv(odot08_models2_path, sep=',').assign(
              components=10*[2,], sim=10*[tt_txt])
          odot08_corr1 = pd.read_csv(odot08_corr1_path, sep=',').assign(
              components=2*[1,], sim=2*[tt_txt])
          odot08_corr2 = pd.read_csv(odot08_corr2_path, sep=',').assign(
              components=2*[2,], sim=2*[tt_txt])
    
          tt_txt = 0.1
          odot1_models1 = pd.read_csv(odot1_models1_path, sep=',').assign(
              components=10*[1,], sim=10*[tt_txt])
          odot1_models2 = pd.read_csv(odot1_models2_path, sep=',').assign(
              components=10*[2,], sim=10*[tt_txt])
          odot1_corr1 = pd.read_csv(odot1_corr1_path, sep=',').assign(
              components=2*[1,], sim=2*[tt_txt])
          odot1_corr2 = pd.read_csv(odot1_corr2_path, sep=',').assign(
              components=2*[2,], sim=2*[tt_txt])
    
          tt_txt = 0.2
          odot2_models1 = pd.read_csv(odot2_models1_path, sep=',').assign(
              components=10*[1,], sim=10*[tt_txt])
          odot2_models2 = pd.read_csv(odot2_models2_path, sep=',').assign(
              components=10*[2,], sim=10*[tt_txt])
          odot2_corr1 = pd.read_csv(odot2_corr1_path, sep=',').assign(
              components=2*[1,], sim=2*[tt_txt])
          odot2_corr2 = pd.read_csv(odot2_corr2_path, sep=',').assign(
              components=2*[2,], sim=2*[tt_txt])
    
          tt_txt = 0.4
          odot4_models1 = pd.read_csv(odot4_models1_path, sep=',').assign(
              components=10*[1,], sim=10*[tt_txt])
          odot4_models2 = pd.read_csv(odot4_models2_path, sep=',').assign(
              components=10*[2,], sim=10*[tt_txt])
          odot4_corr1 = pd.read_csv(odot4_corr1_path, sep=',').assign(
              components=2*[1,], sim=2*[tt_txt])
          odot4_corr2 = pd.read_csv(odot4_corr2_path, sep=',').assign(
              components=2*[2,], sim=2*[tt_txt])
    
          tt_txt = 0.6
          odot6_models1 = pd.read_csv(odot6_models1_path, sep=',').assign(
              components=10*[1,], sim=10*[tt_txt])
          odot6_models2 = pd.read_csv(odot6_models2_path, sep=',').assign(
              components=10*[2,], sim=10*[tt_txt])
          odot6_corr1 = pd.read_csv(odot6_corr1_path, sep=',').assign(
              components=2*[1,], sim=2*[tt_txt])
          odot6_corr2 = pd.read_csv(odot6_corr2_path, sep=',').assign(
              components=2*[2,], sim=2*[tt_txt])
    
          tt_txt = 1
          one_models1 = pd.read_csv(one_models1_path, sep=',').assign(
              components=10*[1,], sim=10*[tt_txt])
          one_models2 = pd.read_csv(one_models2_path, sep=',').assign(
              components=10*[2,], sim=10*[tt_txt])
          one_corr1 = pd.read_csv(one_corr1_path, sep=',').assign(
              components=2*[1,], sim=2*[tt_txt])
          one_corr2 = pd.read_csv(one_corr2_path, sep=',').assign(
              components=2*[2,], sim=2*[tt_txt])
    
          tt_txt = 3
          three_models1 = pd.read_csv(three_models1_path, sep=',').assign(
              components=10*[1,], sim=10*[tt_txt])
          three_models2 = pd.read_csv(three_models2_path, sep=',').assign(
              components=10*[2,], sim=10*[tt_txt])
          three_corr1 = pd.read_csv(three_corr1_path, sep=',').assign(
              components=2*[1,], sim=2*[tt_txt])
          three_corr2 = pd.read_csv(three_corr2_path, sep=',').assign(
              components=2*[2,], sim=2*[tt_txt])
    
          tt_txt = 10
          ten_models1 = pd.read_csv(ten_models1_path, sep=',').assign(
              components=10*[1,], sim=10*[tt_txt])
          ten_models2 = pd.read_csv(ten_models2_path, sep=',').assign(
              components=10*[2,], sim=10*[tt_txt])
          ten_corr1 = pd.read_csv(ten_corr1_path, sep=',').assign(
              components=2*[1,], sim=2*[tt_txt])
          ten_corr2 = pd.read_csv(ten_corr2_path, sep=',').assign(
              components=2*[2,], sim=2*[tt_txt])
    
          tt_txt = 50
          # fifty_models1 = pd.read_csv(fifty_models1_path, sep=',',
          #     index_col='name_of_plot').assign(components=10*[1,])
          # fifty_models2 = pd.read_csv(fifty_models2_path, sep=',',
          #     index_col='name_of_plot').assign(components=10*[2,])
          fifty_corr1 = pd.read_csv(fifty_corr1_path, sep=',').assign(
              components=2*[1,], sim=2*[tt_txt])
          fifty_corr2 = pd.read_csv(fifty_corr2_path, sep=',').assign(
              components=2*[2,], sim=2*[tt_txt])
    
          all_param = pd.concat([odot069_models1, odot069_models2,
                                 odot069_corr1, odot069_corr2,
                                 odot08_models1, odot08_models2,
                                 odot08_corr1, odot08_corr2,
                                 odot1_models2, odot1_models1,
                                 odot1_corr2, odot1_corr1,
                                 odot2_models1, odot2_models2,
                                 odot2_corr1, odot2_corr2,
                                 odot4_models1, odot4_models2,
                                 odot4_corr1, odot4_corr2,
                                 odot6_models1, odot6_models2,
                                 odot6_corr1, odot6_corr2,
                                 one_models1, one_models2,
                                 one_corr1, one_corr2,
                                 three_models1, three_models2,
                                 three_corr1, three_corr2])
                                 # ten_models1, ten_models2,
                                 # ten_corr1, ten_corr2,
                                 # fifty_models1, fifty_models2,
                                 # fifty_corr1, fifty_corr2
    
    
          def diffcoeff_to_transittimes(diff, prec):
              tt, tt_low_high = ans.convert_diffcoeff_to_transittimes(diff, fwhm=250)
              # tt_txt = f'\\makecell{{${tt:.{prec}f}$\\\\$\\numrange{{{tt_low_high[0]:.{prec}f}}}{{{tt_low_high[1]:.{prec}f}}}$}}' # \\\\$(\\sim {diff})$
              tt_txt = f'\\makecell{{${tt:.{prec}f}$\\\\$\\textbf{{{tt_low_high[0]:.{prec}f}-{tt_low_high[1]:.{prec}f}}}$}}' # \\\\$(\\sim {diff})$
              return tt_txt
    
          def sort_fit(param_ls):
              sim = param_ls[-1]
              _, tt_low_high = ans.convert_diffcoeff_to_transittimes(sim, fwhm=250)
              array = np.array(list(param_ls)[:-1]).reshape((2, 2))
              # sort by transit times
              array = array[:, array[0, :].argsort()]
              A_fast = array[1, 0]
              A_slow = array[1, 1]
              t_fast = array[0, 0]
              t_slow = array[0, 1]
              if np.isnan(t_slow):
                  if tt_low_high[0] <= t_fast <= tt_low_high[1]:
                      # out = f'\\cellcolor[HTML]{{009e73}}${t_fast:.2f}$'
                      # for beamer:
                      out = f'\\colorbox[HTML]{{009e73}}{{\\makecell{{${t_fast:.2f}$}}}}'
                  else:
                      # out = f'\\cellcolor[HTML]{{d55e00}}${t_fast:.2f}$'
                      out = f'\\colorbox[HTML]{{d55e00}}{{\\makecell{{${t_fast:.2f}$}}}}'
    
              elif f'{A_fast:.0%}' == '100%':
                  if tt_low_high[0] <= t_fast <= tt_low_high[1]:
                      # out = f'\\cellcolor[HTML]{{009e73}}${t_fast:.2f}(100\\%)$'
                      out = f'\\colorbox[HTML]{{009e73}}{{\\makecell{{${t_fast:.2f}$}}}}'
                  else:
                      # out = f'\\cellcolor[HTML]{{d55e00}}${t_fast:.2f}(100\\%)$'
                      out = f'\\colorbox[HTML]{{d55e00}}{{\\makecell{{${t_fast:.2f}$}}}}'
              elif f'{A_slow:.0%}' == '100%':
                  if tt_low_high[0] <= t_slow <= tt_low_high[1]:
                      # out = f'\\cellcolor[HTML]{{009e73}}${t_slow:.2f}(100\\%)$'
                      out = f'\\colorbox[HTML]{{009e73}}{{\\makecell{{${t_slow:.2f}$}}}}'
                  else:
                      # out = f'\\cellcolor[HTML]{{d55e00}}${t_slow:.2f}(100\\%)$'
                      out = f'\\colorbox[HTML]{{d55e00}}{{\\makecell{{${t_slow:.2f}$}}}}'
              else:
                  if (tt_low_high[0] <= t_fast <= tt_low_high[1]) or (
                      tt_low_high[0] <= t_slow <= tt_low_high[1]):
                      # out = f'\\cellcolor[HTML]{{009e73}}\\colorbox[HTML]{{009e73}}{{\\makecell{{${t_fast:.2f}^f({A_fast:.0%})$\\\\'\
                      #       f'${t_slow:.2f}^s({A_slow:.0%})$}}}}'
                      out = f'\\colorbox[HTML]{{009e73}}{{\\makecell{{${t_fast:.2f}$\\\\'\
                            f'${t_slow:.2f}$}}}}'
    
                  else:
                      # out = f'\\cellcolor[HTML]{{d55e00}}\\colorbox[HTML]{{d55e00}}{{\\makecell{{${t_fast:.2f}^f({A_fast:.0%})$\\\\'\
                      #       f'${t_slow:.2f}^s({A_slow:.0%})$}}}}'
                      out = f'\\colorbox[HTML]{{d55e00}}{{\\makecell{{${t_fast:.2f}$\\\\'\
                            f'${t_slow:.2f}$}}}}'
    
                  out = out.replace('%', '\\%')
              return out
    
    
          all_param['fit results'] = all_param[['txy1', 'txy2', 'A1', 'A2', 'sim']].apply(lambda x: sort_fit(x), axis=1)
          all_param = all_param[['name_of_plot', 'sim', 'components', 'fit results']]
          all_param = all_param.pivot_table(values='fit results',
                                            columns='sim',
                                            index=['name_of_plot', 'components'],
                                            aggfunc=lambda x: '-'.join(x))
          # for beamer: only dirty, delete, and cutandshift
          first = ['dirty', 'cutandshift', 'delete']
          # dirty, delete, cutandshift, and all models
          # first = ['dirty', 'cutandshift', 'delete'] + model_name_ls.copy()
    
          second = [1, 2]
          index_order = pd.MultiIndex.from_product([first, second],
                                                   names=[r'\makecell{type of\\processing}', 'fit'])
          column_order = [0.069, 0.08, 0.1, 0.2, 0.4, 0.6, 1, 3] #, 10, 50]
          all_param = all_param.reindex(index=index_order, columns=column_order)
          all_param = all_param.rename_axis(columns={'sim' : r'\makecell{simulated \tau_D [\unit{\ms}]\\\log 10\% \text{ tol.}}'}) # \\(\sim D [\unit[per-mode = fraction]{\micro\metre\squared\per\second}])
                                            # index={'fit' : 'fit^*'})
          all_param = all_param.rename(index={'dirty' : r'\makecell{control:\\no correction}',
                                              'delete' : r'\makecell{old method:\\weight=0}',
                                              'cutandshift' : r'\makecell{new method:\\cut and shift}',
                                              'ff67b' : r'\makecell{prediction model:\\ff67b (\qty{14}{\mega\byte})}',
                                              '34766' : r'\makecell{prediction model:\\34766 (\qty{73}{\mega\byte})}',
                                              '714af' : r'\makecell{prediction model:\\714af (\qty{234}{\mega\byte})}',
                                              '34a6d' : r'\makecell{prediction model:\\34a6d (\qty{7}{\mega\byte})}',
                                              '484af' : r'\makecell{prediction model:\\484af (\qty{275}{\mega\byte})}',
                                              '0cd20' : r'\makecell{prediction model:\\0cd20 (\qty{200}{\mega\byte})}',
                                              'fe81d' : r'\makecell{prediction model:\\fe81d (\qty{186}{\mega\byte})}',
                                              '19e3e' : r'\makecell{prediction model:\\19e3e (\qty{172}{\mega\byte})}',
                                              'c1204' : r'\makecell{prediction model:\\c1204 (\qty{312}{\mega\byte})}',
                                              1 : r'\makecell{1 species}',
                                              2 : r'\makecell{2 - fast sp.\\2 - slow sp.}'},
                                        columns={0.069 : diffcoeff_to_transittimes(0.069, prec=0),
                                                 0.08 : diffcoeff_to_transittimes(0.08, prec=0),
                                                 0.1 : diffcoeff_to_transittimes(0.1, prec=0),
                                                 0.2 : diffcoeff_to_transittimes(0.2, prec=0),
                                                 0.4 : diffcoeff_to_transittimes(0.4, prec=0),
                                                 0.6 : diffcoeff_to_transittimes(0.6, prec=0),
                                                 1 : diffcoeff_to_transittimes(1, prec=1),
                                                 3 : diffcoeff_to_transittimes(3, prec=2)})
                                                 # 10 : diffcoeff_to_transittimes(10, prec=3),
                                                 # 50 : diffcoeff_to_transittimes(50, prec=4)
    
    
    
          # for creation of multiindex:
          # predictions_mi = len(predictions) * ['prediction',]
          # column_multiindex = ['no correction', 'control', 'control'] + predictions_mi
          # column_tuple = list(zip(column_multiindex, column_order))
          # all_param.columns = pd.MultiIndex.from_tuples(column_tuple)
    
          # for nanoletters
          # with pd.option_context("max_colwidth", 1000):
          #     print(all_param.to_latex(escape=False,
          #                              column_format='cccccccccccccccccccc',
          #                              multicolumn_format='c',
          #                              longtable=True,
          #                              caption=('Justification of "cut and shift" in simulated fluorescence traces, and comparison of different models for prediction followed by "cut and shift" correction', 'Simulated data - correction results')))
          # for beamer
          with pd.option_context("max_colwidth", 1000):
              print(all_param.to_latex(escape=False,
                                       column_format='ccrrrrrrrrrrrrrrrrrr',
                                       multicolumn_format='c',
                                       caption=('"cut and shift" vs old correction method in simulated fluorescence traces', 'Simulated data - correction results')))
    
    
          all_param
    
          \begin{table}
          \centering
          \caption[Simulated data - correction results]{"cut and shift" vs old correction method in simulated fluorescence traces}
          \begin{tabular}{ccrrrrrrrrrrrrrrrrrr}
          \toprule
                                           & \makecell{simulated \tau_D [\unit{\ms}]\\\log 10\% \text{ tol.}} &                     \makecell{$163$\\$\textbf{98-272}$} &                     \makecell{$141$\\$\textbf{86-231}$} &                     \makecell{$113$\\$\textbf{70-181}$} &                       \makecell{$56$\\$\textbf{38-84}$} &                      \makecell{$28$\\$\textbf{20-39}$} &                      \makecell{$19$\\$\textbf{14-25}$} &                  \makecell{$11.3$\\$\textbf{8.8-14.4}$} &                \makecell{$3.76$\\$\textbf{3.29-4.29}$} \\
          \makecell{type of\\processing} & fit &                                                         &                                                         &                                                         &                                                         &                                                        &                                                        &                                                         &                                                        \\
          \midrule
          \makecell{control:\\no correction} & \makecell{1 species} &             \colorbox[HTML]{d55e00}{\makecell{$58.92$}} &            \colorbox[HTML]{009e73}{\makecell{$142.83$}} &             \colorbox[HTML]{009e73}{\makecell{$80.93$}} &            \colorbox[HTML]{d55e00}{\makecell{$145.00$}} &            \colorbox[HTML]{009e73}{\makecell{$27.55$}} &            \colorbox[HTML]{d55e00}{\makecell{$54.11$}} &            \colorbox[HTML]{d55e00}{\makecell{$110.39$}} &           \colorbox[HTML]{d55e00}{\makecell{$287.87$}} \\
                                           & \makecell{2 - fast sp.\\2 - slow sp.} &   \colorbox[HTML]{009e73}{\makecell{$15.85$\\$229.90$}} &   \colorbox[HTML]{d55e00}{\makecell{$70.02$\\$445.84$}} &   \colorbox[HTML]{009e73}{\makecell{$12.82$\\$138.39$}} &   \colorbox[HTML]{009e73}{\makecell{$53.66$\\$446.38$}} &  \colorbox[HTML]{d55e00}{\makecell{$13.17$\\$383.01$}} &  \colorbox[HTML]{009e73}{\makecell{$16.68$\\$424.67$}} &   \colorbox[HTML]{d55e00}{\makecell{$47.23$\\$284.90$}} &  \colorbox[HTML]{d55e00}{\makecell{$16.59$\\$643.73$}} \\
          \makecell{new method:\\cut and shift} & \makecell{1 species} &            \colorbox[HTML]{009e73}{\makecell{$161.43$}} &            \colorbox[HTML]{009e73}{\makecell{$130.03$}} &            \colorbox[HTML]{009e73}{\makecell{$100.67$}} &             \colorbox[HTML]{009e73}{\makecell{$53.11$}} &            \colorbox[HTML]{009e73}{\makecell{$26.25$}} &            \colorbox[HTML]{009e73}{\makecell{$17.43$}} &             \colorbox[HTML]{009e73}{\makecell{$11.52$}} &             \colorbox[HTML]{009e73}{\makecell{$3.62$}} \\
          & \makecell{2 - fast sp.\\2 - slow sp.} &  \colorbox[HTML]{009e73}{\makecell{$120.86$\\$429.73$}} &    \colorbox[HTML]{009e73}{\makecell{$4.33$\\$131.89$}} &  \colorbox[HTML]{009e73}{\makecell{$100.67$\\$100.68$}} &     \colorbox[HTML]{009e73}{\makecell{$0.00$\\$53.11$}} &    \colorbox[HTML]{009e73}{\makecell{$0.01$\\$26.34$}} &            \colorbox[HTML]{009e73}{\makecell{$17.43$}} &             \colorbox[HTML]{009e73}{\makecell{$11.52$}} &     \colorbox[HTML]{009e73}{\makecell{$3.62$\\$3.62$}} \\
          \makecell{old method:\\weight=0} & \makecell{1 species} &            \colorbox[HTML]{d55e00}{\makecell{$383.41$}} &            \colorbox[HTML]{d55e00}{\makecell{$253.55$}} &            \colorbox[HTML]{d55e00}{\makecell{$293.12$}} &            \colorbox[HTML]{d55e00}{\makecell{$301.92$}} &           \colorbox[HTML]{d55e00}{\makecell{$287.00$}} &           \colorbox[HTML]{d55e00}{\makecell{$143.32$}} &            \colorbox[HTML]{d55e00}{\makecell{$142.88$}} &           \colorbox[HTML]{d55e00}{\makecell{$362.80$}} \\
                                           & \makecell{2 - fast sp.\\2 - slow sp.} &   \colorbox[HTML]{d55e00}{\makecell{$28.66$\\$819.05$}} &  \colorbox[HTML]{d55e00}{\makecell{$45.97$\\$1158.57$}} &   \colorbox[HTML]{d55e00}{\makecell{$36.14$\\$723.50$}} &  \colorbox[HTML]{009e73}{\makecell{$44.09$\\$1733.81$}} &  \colorbox[HTML]{d55e00}{\makecell{$19.30$\\$747.77$}} &  \colorbox[HTML]{d55e00}{\makecell{$10.94$\\$211.09$}} &  \colorbox[HTML]{d55e00}{\makecell{$34.31$\\$1041.96$}} &  \colorbox[HTML]{d55e00}{\makecell{$20.37$\\$775.82$}} \\
          \bottomrule
          \end{tabular}
          \end{table}
    
      \makecell{simulated τD [\unit{\ms}]\\log 10\% \text{ tol.}} \makecell{$163$\\\(\textbf{98-272}\)} \makecell{$141$\\\(\textbf{86-231}\)} \makecell{$113$\\\(\textbf{70-181}\)} \makecell{$56$\\\(\textbf{38-84}\)} \makecell{$28$\\\(\textbf{20-39}\)} \makecell{$19$\\\(\textbf{14-25}\)} \makecell{$11.3$\\\(\textbf{8.8-14.4}\)} \makecell{$3.76$\\\(\textbf{3.29-4.29}\)}
    \makecell{type of\\processing} fit                
    \makecell{control:\\no correction} \makecell{1 species} \colorbox[HTML]{d55e00}{\makecell{$58.92$}} \colorbox[HTML]{009e73}{\makecell{$142.83$}} \colorbox[HTML]{009e73}{\makecell{$80.93$}} \colorbox[HTML]{d55e00}{\makecell{$145.00$}} \colorbox[HTML]{009e73}{\makecell{$27.55$}} \colorbox[HTML]{d55e00}{\makecell{$54.11$}} \colorbox[HTML]{d55e00}{\makecell{$110.39$}} \colorbox[HTML]{d55e00}{\makecell{$287.87$}}
      \makecell{2 - fast sp.\\2 - slow sp.} \colorbox[HTML]{009e73}{\makecell{$15.85$\\$22… \colorbox[HTML]{d55e00}{\makecell{$70.02$\\$44… \colorbox[HTML]{009e73}{\makecell{$12.82$\\$13… \colorbox[HTML]{009e73}{\makecell{$53.66$\\$44… \colorbox[HTML]{d55e00}{\makecell{$13.17$\\$38… \colorbox[HTML]{009e73}{\makecell{$16.68$\\$42… \colorbox[HTML]{d55e00}{\makecell{$47.23$\\$28… \colorbox[HTML]{d55e00}{\makecell{$16.59$\\$64…
    \makecell{new method:\\cut and shift} \makecell{1 species} \colorbox[HTML]{009e73}{\makecell{$161.43$}} \colorbox[HTML]{009e73}{\makecell{$130.03$}} \colorbox[HTML]{009e73}{\makecell{$100.67$}} \colorbox[HTML]{009e73}{\makecell{$53.11$}} \colorbox[HTML]{009e73}{\makecell{$26.25$}} \colorbox[HTML]{009e73}{\makecell{$17.43$}} \colorbox[HTML]{009e73}{\makecell{$11.52$}} \colorbox[HTML]{009e73}{\makecell{$3.62$}}
      \makecell{2 - fast sp.\\2 - slow sp.} \colorbox[HTML]{009e73}{\makecell{$120.86$\\$4… \colorbox[HTML]{009e73}{\makecell{$4.33$\\$131… \colorbox[HTML]{009e73}{\makecell{$100.67$\\$1… \colorbox[HTML]{009e73}{\makecell{$0.00$\\$53…. \colorbox[HTML]{009e73}{\makecell{$0.01$\\$26…. \colorbox[HTML]{009e73}{\makecell{$17.43$}} \colorbox[HTML]{009e73}{\makecell{$11.52$}} \colorbox[HTML]{009e73}{\makecell{$3.62$\\$3.6…
    \makecell{old method:\\weight=0} \makecell{1 species} \colorbox[HTML]{d55e00}{\makecell{$383.41$}} \colorbox[HTML]{d55e00}{\makecell{$253.55$}} \colorbox[HTML]{d55e00}{\makecell{$293.12$}} \colorbox[HTML]{d55e00}{\makecell{$301.92$}} \colorbox[HTML]{d55e00}{\makecell{$287.00$}} \colorbox[HTML]{d55e00}{\makecell{$143.32$}} \colorbox[HTML]{d55e00}{\makecell{$142.88$}} \colorbox[HTML]{d55e00}{\makecell{$362.80$}}
      \makecell{2 - fast sp.\\2 - slow sp.} \colorbox[HTML]{d55e00}{\makecell{$28.66$\\$81… \colorbox[HTML]{d55e00}{\makecell{$45.97$\\$11… \colorbox[HTML]{d55e00}{\makecell{$36.14$\\$72… \colorbox[HTML]{009e73}{\makecell{$44.09$\\$17… \colorbox[HTML]{d55e00}{\makecell{$19.30$\\$74… \colorbox[HTML]{d55e00}{\makecell{$10.94$\\$21… \colorbox[HTML]{d55e00}{\makecell{$34.31$\\$10… \colorbox[HTML]{d55e00}{\makecell{$20.37$\\$77…
  • I copied the latex code in the latex online editor Overleaf and compiled it there. The rendered PDF looks like this for the beamer slide:
  • and here the rendered PDF of a long table

2.6.12 Experiment 3: Run models on experimental data

2.6.12.1 node 1 (overview)
  • this is the prepare-jupyter function
            %cd /beegfs/ye53nis/drmed-git
            import logging
            import os
            import sys
    
            import matplotlib.pyplot as plt
            import numpy as np
            import pandas as pd
            import seaborn as sns
    
            from pathlib import Path
            from pprint import pprint
            from tensorflow.keras.optimizers import Adam
            from mlflow.keras import load_model
    
            FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/'
            sys.path.append(FLUOTRACIFY_PATH)
            from fluotracify.applications import corr_fit_object as cfo
            from fluotracify.training import build_model as bm
    
            data_path = Path(data_path)
            output_path = Path(output_path)
            log_path = output_path.parent / f'{output_path.name}.log'
    
            logging.basicConfig(filename=log_path,
                                filemode='w', format='%(asctime)s - %(message)s',
                                force=True)
    
            log = logging.getLogger(__name__)
            log.setLevel(logging.DEBUG)
    
            sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind',
                          context='paper')
            class ParameterClass():
                """Stores parameters for correlation """
                def __init__(self):
                    # Where the data is stored.
                    self.data = []
                    self.objectRef = []
                    self.subObjectRef = []
                    self.colors = ['blue', 'green', 'red', 'cyan', 'magenta',
                                   'yellow', 'black']
                    self.numOfLoaded = 0
                    # very fast from Ncasc ~ 14 onwards
                    self.NcascStart = 0
                    self.NcascEnd = 30  # 25
                    self.Nsub = 6  # 6
                    self.photonLifetimeBin = 10  # used for photon decay
                    self.photonCountBin = 1  # used for time series
    
            par_obj = ParameterClass()
    
            model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727',
                        '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65',
                        '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653',
                        'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216',
                        'c1204e3a8a1e4c40a35b5b7b1922d1ce']
    
            model_name_ls = [f'{s:.5}' for s in model_ls]
    
            # scaler_ls = ['minmax', 'robust', 'maxabs', 'l2', 'standard', 'quant_g', 'standard',
            #              'standard', 'robust']
    
            pred_thresh = 0.5
    
            if data_path.name == "1911DD_atto+LUVs":
                path_clean1 = data_path / 'clean_ptu_part1/'
                path_clean2 = data_path / 'clean_ptu_part2/'
                path_dirty1 = data_path / 'dirty_ptu_part1/'
                path_dirty2 = data_path / 'dirty_ptu_part2/'
                files_clean1 = [path_clean1 / f for f in os.listdir(path_clean1) if f.endswith('.ptu')]
                files_clean2 = [path_clean2 / f for f in os.listdir(path_clean2) if f.endswith('.ptu')]
                files_dirty1 = [path_dirty1 / f for f in os.listdir(path_dirty1) if f.endswith('.ptu')]
                files_dirty2 = [path_dirty2 / f for f in os.listdir(path_dirty2) if f.endswith('.ptu')]
    
            if data_path.name == "191113_Pex5_2_structured":
                path_clean = data_path / 'HsPEX5EGFP 1-100001'
                path_dirty = data_path / 'TbPEX5EGFP 1-10002'
                files_clean = [path_clean / f for f in os.listdir(path_clean) if f.endswith('.ptu')]
                files_dirty = [path_dirty / f for f in os.listdir(path_dirty) if f.endswith('.ptu')]
    
            def predict_correct_correlate_ptu(files, model_id, method, out_path):
    
                logged_scaler = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{model_ls[model_id]}/params/scaler')
                logged_scaler = !cat $logged_scaler
                logged_scaler = logged_scaler[0]
    
                logged_model = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{model_ls[model_id]}/artifacts/model')
                logged_model = load_model(logged_model, compile=False)
                logged_model.compile(loss=bm.binary_ce_dice_loss(),
                                     optimizer=Adam(),
                                     metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9]))
                if method == 'delete_and_shift':
                    method_str = 'DELSHIFT'
                elif method == 'delete':
                    method_str = 'DEL'
                for idx, myfile in enumerate(files):
                    ptufile = cfo.PicoObject(myfile, par_obj)
                    ptufile.predictTimeSeries(model=logged_model,
                                              scaler=logged_scaler)
                    ptufile.correctTCSPC(method=method)
                    for key in list(ptufile.trueTimeArr.keys()):
                        if method_str in key:
                            ptufile.get_autocorrelation(method='tttr2xfcs', name=key)
    
    
                    for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                        if m in list(ptufile.autoNorm.keys()):
                            for key, item in list(ptufile.autoNorm[m].items()):
                                if method_str in key:
                                    ptufile.save_autocorrelation(name=key, method=m,
                                                                 output_path=out_path)
    
    
            def correlate_ptu(files, out_path):
                for idx, myfile in enumerate(files):
                    ptufile = cfo.PicoObject(myfile, par_obj)
                    for key in list(ptufile.trueTimeArr.keys()):
                        ptufile.get_autocorrelation(method='tttr2xfcs', name=key)
    
    
                    for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                        if m in list(ptufile.autoNorm.keys()):
                            for key, item in list(ptufile.autoNorm[m].items()):
                                ptufile.save_autocorrelation(name=key, method=m,
                                                             output_path=out_path)
    
    
    
    /beegfs/ye53nis/drmed-git
    2023-01-10 17:38:18.004165: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2023-01-10 17:38:18.004236: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
  • this is the kill-jupyter function
            os._exit(00)
    
    7a752b61-60c1-4322-8105-e8dbd705caa0
    
  • now call the model and apply it to af488+luv data (with peak artifacts), first with delete_and_shift, which we later called cut and stitch
            model_id = 0
    
            out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
    
            os.makedirs(out_dir, exist_ok=True)
    
            predict_correct_correlate_ptu(
                files=files_dirty1,
                model_id=model_id, method='delete_and_shift',
                out_path=out_dir)
    
    2022-05-23 14:47:32.428742: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2022-05-23 14:47:32.428785: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
    2022-05-23 14:47:32.428823: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist
    2022-05-23 14:47:32.429138: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    
    2df4455b-0130-4b59-af50-3a85f1419fd2
    
    /beegfs/ye53nis/drmed-git
    2022-05-23 19:52:48.412017: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2022-05-23 19:52:48.412054: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
            model_id = 0
    
            out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
    
            os.makedirs(out_dir, exist_ok=True)
    
            predict_correct_correlate_ptu(
                files=files_dirty2,
                model_id=model_id, method='delete_and_shift',
                out_path=out_dir)
    
    2022-05-23 19:53:11.911961: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2022-05-23 19:53:11.912000: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
    2022-05-23 19:53:11.912024: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist
    2022-05-23 19:53:11.912392: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    
    • on node 2:
              model_id = 1
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty1 and files_dirty2,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
    • on node 3:
              model_id = 2
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty1 and files_dirty2,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
    • on node 2:
              model_id = 3  # 34a6d
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty,
                  model_id=0,
                  out_path=out_dir)
      
    • on node 3:
              model_id = 4  # 484af
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty,
                  model_id=0,
                  out_path=out_dir)
      
      ea569473-6848-41cb-bae6-4f5ac1590e71
      
      /beegfs/ye53nis/drmed-git
      2022-05-23 21:51:34.834624: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-05-23 21:51:34.834663: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
    • on node 1:
              model_id = 5 # 0cd20
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
              files=files_dirty1,
              model_id=model_id, method='delete_and_shift',
              out_path=out_dir)
      
      2022-05-23 21:52:02.797179: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-05-23 21:52:02.797239: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-05-23 21:52:02.797260: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist
      2022-05-23 21:52:02.797625: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      /beegfs/ye53nis/drmed-git
      2022-05-24 10:12:54.289832: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-05-24 10:12:54.289868: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 5 # 0cd20
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
              files=files_dirty2,
              model_id=model_id, method='delete_and_shift',
              out_path=out_dir)
      
      2022-05-24 10:13:01.303436: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-05-24 10:13:01.303503: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-05-24 10:13:01.303541: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist
      2022-05-24 10:13:01.303975: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
    • on node 2:
              model_id = 6 # fe81d
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
              files=files_dirty1,
              model_id=model_id, method='delete_and_shift',
              out_path=out_dir)
      
      bf3b2ade-cc27-404c-b7bc-9db7a0583d4e
      
      /beegfs/ye53nis/drmed-git
      2022-05-24 13:29:48.438857: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-05-24 13:29:48.438908: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
    • on node 1:
              model_id = 7 # 19e3e
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
              files=files_dirty1,
              model_id=model_id, method='delete_and_shift',
              out_path=out_dir)
      
      2022-05-24 13:30:26.419948: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-05-24 13:30:26.420019: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-05-24 13:30:26.420055: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist
      2022-05-24 13:30:26.420612: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      c55ec613-2fe9-4dd8-bbb0-03251a8173c2
      
      /beegfs/ye53nis/drmed-git
      2022-05-24 17:07:04.399895: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-05-24 17:07:04.399949: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
    • on node 1:
              model_id = 7 # 19e3e
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
              files=files_dirty2,
              model_id=model_id, method='delete_and_shift',
              out_path=out_dir)
      
      2022-05-24 17:07:10.270368: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-05-24 17:07:10.270428: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-05-24 17:07:10.270454: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist
      2022-05-24 17:07:10.270792: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
    • on node 3:
              model_id = 8  # c1204
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
  • now do af488 and af488+luvs correlations without any correction
    • on node 3:
              out_dir = output_path / f'clean/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              correlate_ptu(
                  files=files_clean_1 and files_clean2,
                  out_path=out_dir)
      
    • on node 1:
      a26d0ea2-4340-4437-afb6-5e931c8efe68
      
      /beegfs/ye53nis/drmed-git
      2022-05-27 13:21:04.304353: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-05-27 13:21:04.304423: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              out_dir = output_path / f'dirty/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              correlate_ptu(
                  files=files_dirty2,
                  out_path=out_dir)
      
    • on node 3:
              out_dir = output_path / f'clean/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              correlate_ptu(
                  files=files_clean_1 and files_clean2,
                  out_path=out_dir)
      
              out_dir = output_path / f'dirty/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              correlate_ptu(
                  files=files_dirty2,
                  out_path=out_dir)
      
  • now call the model and apply it to af488 data (without peak artifacts - this is a control, the models should not detect peak artifacts here), first with delete_and_shift, which we later called cut and stitch
    • on node 1:
              model_id = 5 # 0cd20
      
              out_dir = output_path / f'clean_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
              files=files_clean1,
              model_id=model_id, method='delete_and_shift',
              out_path=out_dir)
      
      2022-05-25 14:48:29.187895: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-05-25 14:48:29.187952: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-05-25 14:48:29.187985: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist
      2022-05-25 14:48:29.188422: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      7e9aa800-f60f-4d9a-b565-722c72070338
      
      /beegfs/ye53nis/drmed-git
      2022-05-25 16:48:58.124680: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-05-25 16:48:58.124720: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 5 # 0cd20
      
              out_dir = output_path / f'clean_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
              files=files_clean2,
              model_id=model_id, method='delete_and_shift',
              out_path=out_dir)
      
      2022-05-25 16:49:18.365951: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-05-25 16:49:18.366011: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-05-25 16:49:18.366045: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist
      2022-05-25 16:49:18.366534: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
    • on node 3:
              model_id = 2 # 714af
      
              out_dir = output_path / f'clean_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_clean_1 and files_clean2,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
    • on node 2:
              model_id = 0 # ff67b
      
              out_dir = output_path / f'clean_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_clean1,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
    • on node 1:
              model_id = 1 # 34766
      
              out_dir = output_path / f'clean_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
              files=files_clean1,
              model_id=model_id, method='delete_and_shift',
              out_path=out_dir)
      
      2022-05-26 00:11:02.988574: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-05-26 00:11:02.988629: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-05-26 00:11:02.988653: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist
      2022-05-26 00:11:02.988969: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      /beegfs/ye53nis/drmed-git
      2022-05-26 11:49:10.130005: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-05-26 11:49:10.130041: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 1
      
              out_dir = output_path / f'clean_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
              files=files_clean2,
              model_id=model_id, method='delete_and_shift',
              out_path=out_dir)
      
      2022-05-26 11:49:16.690889: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-05-26 11:49:16.690951: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-05-26 11:49:16.690989: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist
      2022-05-26 11:49:16.691462: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
    • on node 2:
              model_id = 3 # 34a6d
      
              out_dir = output_path / f'clean_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_clean_1 and files_clean2,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
    • on node 1:
      a26d0ea2-4340-4437-afb6-5e931c8efe68
      
      /beegfs/ye53nis/drmed-git
      2022-05-27 13:21:04.304353: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-05-27 13:21:04.304423: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
    • on node 2:
              model_id = 7 # 19e3e
      
              out_dir = output_path / f'clean_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_clean_1 and files_clean2,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
    • on node 3:
              model_id = 4 # 484af
      
              out_dir = output_path / f'clean_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_clean_1 and files_clean2,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
    • on node 2:
              model_id = 8 # c1204
      
              out_dir = output_path / f'clean_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_clean_1 and files_clean2,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
    • on node 3:
              model_id = 6 # fe81d
      
              out_dir = output_path / f'clean_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_clean_1 and files_clean2,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
  • now call the model and apply it to pex5 data. First the correlations of Trypanosoma brucei-PEX5-eGFP (peak artifacts) and Homo sapiens-PEX5-eGFP (no artifacts) without corrections. Not that prepare-jupyter now looks like this: #+CALL: prepare-jupyter("/beegfs/ye53nis/data/191113_Pex5_2_structured", output_path="/beegfs/ye53nis/drmed-git/data/exp-220227-unet/2022-06-02_experimental-pex5/")
    • on node 1:
      /beegfs/ye53nis/drmed-git
      
              out_dir = output_path / f'clean/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              correlate_ptu(
                  files=files_clean,
                  out_path=out_dir)
      
      274c16ef-1bb8-47fd-9ac9-d83e193d2c7c
      
      /beegfs/ye53nis/drmed-git
      2022-06-03 00:20:04.405561: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-06-03 00:20:04.405614: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              out_dir = output_path / f'dirty/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              correlate_ptu(
                  files=files_dirty,
                  out_path=out_dir)
      
      2022-06-02 16:25:02.408577: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-06-02 16:25:02.408633: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-06-02 16:25:02.408668: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist
      2022-06-02 16:25:02.409190: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
  • now call the model and apply it to all pex5 data (with and without peak artifacts), first with delete_and_shift correction, which we later called cut and stitch
    • on node 2:
              model_id = 0 # ff67b
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty and files_clean,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
    • on node 3:
              model_id = 1  # 34766
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty and files_clean,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      e17bafa1-336e-4ae4-9eac-2e4e754b163b
      
      /beegfs/ye53nis/drmed-git
      2022-06-03 00:35:48.794905: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-06-03 00:35:48.794949: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
    • on node 1:
              model_id = 2  # 714af
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
      2022-06-03 00:36:59.208902: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-06-03 00:36:59.208990: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-06-03 00:36:59.209034: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist
      2022-06-03 00:36:59.209615: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      cb8ca215-2cec-4c8a-b57f-9e7a3fa0850a
      
      /beegfs/ye53nis/drmed-git
      2022-06-03 01:03:42.934510: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-06-03 01:03:42.934560: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 2  # 714af
      
              out_dir = output_path / f'clean_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_clean,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
      2022-06-03 01:03:53.314614: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-06-03 01:03:53.314706: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-06-03 01:03:53.314759: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist
      2022-06-03 01:03:53.315343: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
    • on node 2:
              model_id = 3 # 34a6d
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty and files_clean,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
    • on node 1:
              model_id = 4  # 484af
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
      2022-06-03 16:05:25.702609: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-06-03 16:05:25.702662: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-06-03 16:05:25.702697: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist
      2022-06-03 16:05:25.703121: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      /beegfs/ye53nis/drmed-git
      2022-06-03 17:13:28.754363: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-06-03 17:13:28.754407: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 4  # 484af
      
              out_dir = output_path / f'clean_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_clean,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
      2022-06-03 17:13:35.380945: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-06-03 17:13:35.380992: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-06-03 17:13:35.381021: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist
      2022-06-03 17:13:35.381294: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
    • on node 3:
              model_id = 5  # 0cd20
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty and files_clean,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
    • on node 2:
              model_id = 6 # fe81d
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty and files_clean,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
    • on node 1:
              model_id = 7  # 19e3e
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
      2022-06-03 17:59:22.958003: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-06-03 17:59:22.958066: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-06-03 17:59:22.958106: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist
      2022-06-03 17:59:22.958596: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      /beegfs/ye53nis/drmed-git
      2022-06-03 18:12:09.643502: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-06-03 18:12:09.643564: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 7  # 19e3e
      
              out_dir = output_path / f'clean_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_clean,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
      2022-06-03 18:12:16.305111: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-06-03 18:12:16.305153: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-06-03 18:12:16.305181: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist
      2022-06-03 18:12:16.305464: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      

      on node 3:

              model_id = 8  # c1204
      
              out_dir = output_path / f'dirty_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty and files_clean,
                  model_id=model_id, method='delete_and_shift',
                  out_path=out_dir)
      
  • now call the model and apply it to all pex5 data (with and without peak artifacts), now with delete correction, which we later called set to zero
    • on node 2
              model_id = 0 # ff67b
      
              out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty and files_clean,
                  model_id=model_id, method='delete',
                  out_path=out_dir)
      

      on node 1:

              model_id = 1  # 34766
      
              out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty and files_clean,
                  model_id=model_id,
                  method='delete',
                  out_path=out_dir)
      
      2022-06-03 18:34:51.572833: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-06-03 18:34:51.572883: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-06-03 18:34:51.572912: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist
      2022-06-03 18:34:51.573277: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      947e95f9-7f45-4e35-a5f6-857c1a00df32
      
      /beegfs/ye53nis/drmed-git
      2022-06-05 19:58:02.542852: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-06-05 19:58:02.542898: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 1  # 34766
      
              out_dir = output_path / f'clean_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_clean,
                  model_id=model_id,
                  method='delete',
                  out_path=out_dir)
      
      2022-06-05 19:58:25.596269: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-06-05 19:58:25.596330: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-06-05 19:58:25.596366: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist
      2022-06-05 19:58:25.596907: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
    • on node 3
              model_id = 2  # 714af
      
              out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty and files_clean,
                  model_id=model_id, method='delete',
                  out_path=out_dir)
      
    • on node 1:
              model_id = 3  # 34a6d
      
              out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty and files_clean,
                  model_id=model_id,
                  method='delete',
                  out_path=out_dir)
      
      2022-06-05 20:29:47.728848: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-06-05 20:29:47.728912: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-06-05 20:29:47.728949: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist
      2022-06-05 20:29:47.729437: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      2623f23f-2abb-44a9-8a8a-37fe279cda97
      
      /beegfs/ye53nis/drmed-git
      2022-06-06 11:30:37.942306: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-06-06 11:30:37.942353: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 3  # 34a6d
      
              out_dir = output_path / f'clean_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_clean,
                  model_id=model_id,
                  method='delete',
                  out_path=out_dir)
      
      2022-06-06 11:30:52.913876: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-06-06 11:30:52.913938: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-06-06 11:30:52.913990: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist
      2022-06-06 11:30:52.914431: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
    • on node 2
              model_id = 4  # 484af
      
              out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty and files_clean,
                  model_id=model_id, method='delete',
                  out_path=out_dir)
      
    • on node 3
              model_id = 5  # 0cd20
      
              out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty and files_clean,
                  model_id=model_id, method='delete',
                  out_path=out_dir)
      
    • on node 1:
              model_id = 6   # fe81d
      
              out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty and files_clean,
                  model_id=model_id,
                  method='delete',
                  out_path=out_dir)
      
      2022-06-06 16:01:59.893483: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-06-06 16:01:59.893526: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-06-06 16:01:59.893551: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist
      2022-06-06 16:01:59.893887: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      ---------------------------------------------------------------------------
      NameError                                 Traceback (most recent call last)
      Input In [1], in <cell line: 1>()
      ----> 1 os._exit(00)
      
      NameError: name 'os' is not defined
      
      /beegfs/ye53nis/drmed-git
      2022-06-06 16:01:50.356512: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-06-06 16:01:50.356556: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 6  # fe81d
      
              out_dir = output_path / f'clean_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_clean,
                  model_id=model_id,
                  method='delete',
                  out_path=out_dir)
      
    • on node 2
              model_id = 7  # 19e3e
      
              out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              predict_correct_correlate_ptu(
                  files=files_dirty and files_clean,
                  model_id=model_id, method='delete',
                  out_path=out_dir)
      
2.6.12.2 node 2
  1. Set up tmux (if we haven’t done that before) (#+CALL: setup-tmux[:session local])
         
    sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:
    > ye53nis@ara-login01.rz.uni-jena.de’s password:
  2. Request compute node
             cd /
             srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
    
  3. Start Jupyter Lab (#+CALL: jpt-tmux[:session jpmux])
           conda activate tf
           export PORT=8890
           export XDG_RUNTIME_DIR=''
           export XDG_RUNTIME_DIR=""
           jupyter lab --no-browser --port=$PORT
    
             (tf) [ye53nis@node152 /]$ jupyter lab --no-browser --port=$PORT
             [I 2022-06-03 00:24:43.720 ServerApp] jupyterlab | extension was successfully linked.
             [I 2022-06-03 00:24:44.304 ServerApp] nbclassic | extension was successfully linked.
             [I 2022-06-03 00:24:44.363 ServerApp] nbclassic | extension was successfully loaded.
             [I 2022-06-03 00:24:44.364 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab
             [I 2022-06-03 00:24:44.364 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab
             [I 2022-06-03 00:24:44.368 ServerApp] jupyterlab | extension was successfully loaded.
             [I 2022-06-03 00:24:44.369 ServerApp] Serving notebooks from local directory: /
             [I 2022-06-03 00:24:44.369 ServerApp] Jupyter Server 1.13.5 is running at:
             [I 2022-06-03 00:24:44.369 ServerApp] http://localhost:8890/lab?token=b2f94d18a55263d5a94b5c7e52c96c60bfdfc076bfb6f00a
             [I 2022-06-03 00:24:44.369 ServerApp]  or http://127.0.0.1:8890/lab?token=b2f94d18a55263d5a94b5c7e52c96c60bfdfc076bfb6f00a
             [I 2022-06-03 00:24:44.370 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
             [C 2022-06-03 00:24:44.376 ServerApp]
    
                 To access the server, open this file in a browser:
                     file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-207633-open.html
                 Or copy and paste one of these URLs:
                     http://localhost:8890/lab?token=b2f94d18a55263d5a94b5c7e52c96c60bfdfc076bfb6f00a
                  or http://127.0.0.1:8890/lab?token=b2f94d18a55263d5a94b5c7e52c96c60bfdfc076bfb6f00a
    
  4. Create SSH Tunnel for jupyter lab to the local computer (e.g. #+CALL: ssh-tunnel(port="8889", node="node160"))
                     
    sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:          
    ye53nis@node152’s password:              
    Last login: Mon Jun 6 11:31:14 2022 from login01.ara
  5. this subtree was connected to another compute node. I kept the going track record of all executed commands in the mother node. These following two code blocks are just examples. The process was the same as in the mother node.
    /beegfs/ye53nis/drmed-git
    2022-06-06 16:03:48.742170: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2022-06-06 16:03:48.742202: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
             model_id = 7  # 19e3e
    
             out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/'
    
             os.makedirs(out_dir, exist_ok=True)
    
             predict_correct_correlate_ptu(
                 files=files_dirty,
                 model_id=model_id,
                 method='delete',
                 out_path=out_dir)
    
    2022-06-06 16:03:54.537136: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2022-06-06 16:03:54.537186: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
    2022-06-06 16:03:54.537212: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node152): /proc/driver/nvidia/version does not exist
    2022-06-06 16:03:54.537595: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    
    744ddb63-44d8-4041-b531-2ce90bcb0e5c
    
    /beegfs/ye53nis/drmed-git
    2022-06-06 11:31:31.271711: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2022-06-06 11:31:31.271745: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
             model_id = 4  # 484af
    
             out_dir = output_path / f'clean_delete_{model_name_ls[model_id]}/'
    
             os.makedirs(out_dir, exist_ok=True)
    
             predict_correct_correlate_ptu(
                 files=files_clean,
                 model_id=model_id,
                 method='delete',
                 out_path=out_dir)
    
    2022-06-06 11:31:39.219733: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2022-06-06 11:31:39.219776: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
    2022-06-06 11:31:39.219797: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node152): /proc/driver/nvidia/version does not exist
    2022-06-06 11:31:39.220117: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `
    
2.6.12.3 node 3
  1. Set up tmux (if we haven’t done that before) (#+CALL: setup-tmux[:session local])
         
    sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:
    > ye53nis@ara-login01.rz.uni-jena.de’s password:
  2. Request compute node
             cd /
             srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
    
  3. Start Jupyter Lab (#+CALL: jpt-tmux[:session jpmux])
           conda activate tf
           export PORT=8891
           export XDG_RUNTIME_DIR=''
           export XDG_RUNTIME_DIR=""
           jupyter lab --no-browser --port=$PORT
    
             (tf) [ye53nis@node155 /]$ jupyter lab --no-browser --port=$PORT
             [I 2022-06-03 00:28:12.112 ServerApp] jupyterlab | extension was successfully linked.
             [I 2022-06-03 00:28:12.735 ServerApp] nbclassic | extension was successfully linked.
             [I 2022-06-03 00:28:12.778 ServerApp] nbclassic | extension was successfully loaded.
             [I 2022-06-03 00:28:12.780 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab
             [I 2022-06-03 00:28:12.780 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab
             [I 2022-06-03 00:28:12.783 ServerApp] jupyterlab | extension was successfully loaded.
             [I 2022-06-03 00:28:12.784 ServerApp] Serving notebooks from local directory: /
             [I 2022-06-03 00:28:12.784 ServerApp] Jupyter Server 1.13.5 is running at:
             [I 2022-06-03 00:28:12.784 ServerApp] http://localhost:8891/lab?token=fe7d23f6a124fa20ea2b5d7f0dfadc3b20f0db64f8feadfd
             [I 2022-06-03 00:28:12.784 ServerApp]  or http://127.0.0.1:8891/lab?token=fe7d23f6a124fa20ea2b5d7f0dfadc3b20f0db64f8feadfd
             [I 2022-06-03 00:28:12.784 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
             [C 2022-06-03 00:28:12.790 ServerApp]
    
                 To access the server, open this file in a browser:
                     file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-12523-open.html
                 Or copy and paste one of these URLs:
                     http://localhost:8891/lab?token=fe7d23f6a124fa20ea2b5d7f0dfadc3b20f0db64f8feadfd
                  or http://127.0.0.1:8891/lab?token=fe7d23f6a124fa20ea2b5d7f0dfadc3b20f0db64f8feadfd
    
  4. Create SSH Tunnel for jupyter lab to the local computer (e.g. #+CALL: ssh-tunnel(port="8889", node="node160"))
                     
    sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:          
    ye53nis@node155’s password:              
    Last login: Mon Jun 6 11:32:59 2022 from login01.ara
  5. this subtree was connected to another compute node. I kept the going track record of all executed commands in the mother node. These following two code blocks are just examples. The process was the same as in the mother node.
    /beegfs/ye53nis/drmed-git
    2022-06-06 16:04:50.862041: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2022-06-06 16:04:50.862080: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
             model_id = 5  # 0cd20
    
             out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/'
    
             os.makedirs(out_dir, exist_ok=True)
    
             predict_correct_correlate_ptu(
                 files=files_dirty,
                 model_id=model_id,
                 method='delete',
                 out_path=out_dir)
    
    2022-06-06 11:33:30.480931: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2022-06-06 11:33:30.480975: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
    2022-06-06 11:33:30.481005: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node155): /proc/driver/nvidia/version does not exist
    2022-06-06 11:33:30.481315: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    
    /beegfs/ye53nis/drmed-git
    
             model_id = 5  # 0cd20
    
             out_dir = output_path / f'clean_delete_{model_name_ls[model_id]}/'
    
             os.makedirs(out_dir, exist_ok=True)
    
             predict_correct_correlate_ptu(
                 files=files_clean,
                 model_id=model_id,
                 method='delete',
                 out_path=out_dir)
    
    2022-06-06 16:04:56.835044: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2022-06-06 16:04:56.835085: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
    2022-06-06 16:04:56.835105: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node155): /proc/driver/nvidia/version does not exist
    2022-06-06 16:04:56.835386: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    
2.6.12.4 <2023-01-10 Di> Apply averaging and settozero correction with 0cd20
  • let’s first prepare the function which loads modules, the files list, and provides a wrapper for the fluotracify correlation and correction functions:
  • prepare-jupyter-averaging(data_path="/beegfs/ye53nis/data/1911DD_atto+LUVs", output_path="/beegfs/ye53nis/drmed-git/data/exp-220227-unet/2023-01-10_experimental-averaging-delete/") prepare-jupyter-averaging(data_path="/beegfs/ye53nis/data/1911DD_atto+LUVs", output_path="/beegfs/ye53nis/drmed-git/data/exp-220227-unet/2023-01-10_experimental-averaging-delete/")
          %cd /beegfs/ye53nis/drmed-git
          import logging
          import os
          import sys
    
          import matplotlib.pyplot as plt
          import numpy as np
          import pandas as pd
          import seaborn as sns
    
          from pathlib import Path
          from pprint import pprint
          from tensorflow.keras.optimizers import Adam
          from mlflow.keras import load_model
    
          FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/'
          sys.path.append(FLUOTRACIFY_PATH)
          from fluotracify.applications import corr_fit_object as cfo
          from fluotracify.training import build_model as bm
    
          data_path = Path(data_path)
          output_path = Path(output_path)
          log_path = output_path.parent / f'{output_path.name}.log'
    
          logging.basicConfig(filename=log_path,
                              filemode='w', format='%(asctime)s - %(message)s',
                              force=True)
    
          log = logging.getLogger(__name__)
          log.setLevel(logging.DEBUG)
    
          sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind',
                        context='paper')
    
          class ParameterClass():
              """Stores parameters for correlation """
              def __init__(self):
                  # Where the data is stored.
                  self.data = []
                  self.objectRef = []
                  self.subObjectRef = []
                  self.colors = ['blue', 'green', 'red', 'cyan', 'magenta',
                                 'yellow', 'black']
                  self.numOfLoaded = 0
                  # very fast from Ncasc ~ 14 onwards
                  self.NcascStart = 0
                  self.NcascEnd = 30  # 25
                  self.Nsub = 6  # 6
                  self.photonLifetimeBin = 10  # used for photon decay
                  self.photonCountBin = 1  # used for time series
    
          par_obj = ParameterClass()
    
          model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727',
                      '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65',
                      '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653',
                      'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216',
                      'c1204e3a8a1e4c40a35b5b7b1922d1ce']
    
          model_name_ls = [f'{s:.5}' for s in model_ls]
    
          # scaler_ls = ['minmax', 'robust', 'maxabs', 'l2', 'standard', 'quant_g', 'standard',
          #              'standard', 'robust']
    
          pred_thresh = 0.5
    
          if data_path.name == "1911DD_atto+LUVs":
              path_clean1 = data_path / 'clean_ptu_part1/'
              path_clean2 = data_path / 'clean_ptu_part2/'
              path_dirty1 = data_path / 'dirty_ptu_part1/'
              path_dirty2 = data_path / 'dirty_ptu_part2/'
              files_clean1 = [path_clean1 / f for f in os.listdir(path_clean1) if f.endswith('.ptu')]
              files_clean2 = [path_clean2 / f for f in os.listdir(path_clean2) if f.endswith('.ptu')]
              files_dirty1 = [path_dirty1 / f for f in os.listdir(path_dirty1) if f.endswith('.ptu')]
              files_dirty2 = [path_dirty2 / f for f in os.listdir(path_dirty2) if f.endswith('.ptu')]
    
          if data_path.name == "191113_Pex5_2_structured":
              path_clean = data_path / 'HsPEX5EGFP 1-100001'
              path_dirty = data_path / 'TbPEX5EGFP 1-10002'
              files_clean = [path_clean / f for f in os.listdir(path_clean) if f.endswith('.ptu')]
              files_dirty = [path_dirty / f for f in os.listdir(path_dirty) if f.endswith('.ptu')]
    
          def predict_correct_correlate_ptu(files, model_id, method, out_path):
    
              logged_scaler = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{model_ls[model_id]}/params/scaler')
              logged_scaler = !cat $logged_scaler
              logged_scaler = logged_scaler[0]
    
              logged_model = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{model_ls[model_id]}/artifacts/model')
              logged_model = load_model(logged_model, compile=False)
              logged_model.compile(loss=bm.binary_ce_dice_loss(),
                                   optimizer=Adam(),
                                   metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9]))
              if method == 'delete_and_shift':
                  method_corr = 'tttr2xfcs'
                  method_str = 'DELSHIFT'
              elif method == 'delete':
                  method_corr = 'tttr2xfcs'
                  method_str = 'DEL'
              elif method == 'weights':
                  method_corr = 'tttr2xfcs_with_weights'
                  method_str = 'tttr2xfcs_with_weights'
              elif method == 'averaging':
                  method_corr = 'tttr2xfcs_with_averaging'
                  method_str = 'tttr2xfcs_with_averaging'
              for idx, myfile in enumerate(files):
                  ptufile = cfo.PicoObject(myfile, par_obj)
                  ptufile.predictTimeSeries(method='unet',
                                            model=logged_model,
                                            scaler=logged_scaler)
                  ptufile.correctTCSPC(method=method)
                  if method in ['delete', 'delete_and_shift', 'weights']:
                      for key in ptufile.trueTimeArr.keys():
                          ptufile.get_autocorrelation(method=method_corr, name=key)
                  elif method == 'averaging':
                      for key in ptufile.trueTimeParts.keys():
                          ptufile.get_autocorrelation(method=method_corr, name=key)
    
                  if method_corr in list(ptufile.autoNorm.keys()):
                      for key in list(ptufile.autoNorm[method_corr].keys()):
                          if ((method_str in key) or
                              (method_str in ['tttr2xfcs_with_weights',
                                              'tttr2xfcs_with_averaging'])):
                              ptufile.save_autocorrelation(name=key, method=method_corr,
                                                           output_path=out_path)
    
    /beegfs/ye53nis/drmed-git
    
          import importlib
          importlib.reload(cfo)
    
    <module 'fluotracify.applications.corr_fit_object' from '/beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py'>
    
  • let’s also define a function to kill the jupyter environment. This is due to the fluotracify correlation algorithm memory allocation problem I haven’t figured out yet. It will fill the memory after processing ~300 files of the af488 experiments (higher count rates). Because I haven’t figured out how to solve this problem, I split the folders in parts and restart the environment.
          os._exit(00)
    
    7a752b61-60c1-4322-8105-e8dbd705caa0
    
  • first: af488luvs and af488 with averaging and delete correction (later we called it set to zero). We only use mode 0cd20 for prediction, because this has proved to be the most robust.
    • #+CALL: prepare-jupyter-averaging()
      /beegfs/ye53nis/drmed-git
      2023-01-12 13:29:49.334418: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2023-01-12 13:29:49.334472: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 5
      
              out_dir = output_path / f'dirty_averaging_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              ptufile = predict_correct_correlate_ptu(
                  files=files_dirty1,
                  model_id=model_id,
                  method='averaging',
                  out_path=out_dir)
      
    • #+CALL: kill-jupyter()
      1603e9bd-2d3a-4295-ace3-d86b1cdf4f4f
      
    • #+CALL: prepare-jupyter-averaging() etc…
      /beegfs/ye53nis/drmed-git
      2023-01-12 17:28:27.364198: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2023-01-12 17:28:27.364273: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 5
      
              out_dir = output_path / f'dirty_averaging_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              ptufile = predict_correct_correlate_ptu(
                  files=files_dirty2,
                  model_id=model_id,
                  method='averaging',
                  out_path=out_dir)
      
      2023-01-12 17:28:58.975546: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2023-01-12 17:28:58.975606: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2023-01-12 17:28:58.975643: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist
      2023-01-12 17:28:58.976216: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      /beegfs/ye53nis/drmed-git
      2023-01-13 12:01:00.676480: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2023-01-13 12:01:00.676539: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 5
      
              out_dir = output_path / f'clean_averaging_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              ptufile = predict_correct_correlate_ptu(
                  files=files_clean1,
                  model_id=model_id,
                  method='averaging',
                  out_path=out_dir)
      
      2023-01-13 12:07:29.082697: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2023-01-13 12:07:29.082756: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2023-01-13 12:07:29.082791: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist
      2023-01-13 12:07:29.083227: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      5b633a1b-0c54-453f-a4bf-a9d30182fdd3
      
      /beegfs/ye53nis/drmed-git
      2023-01-13 14:38:58.893878: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2023-01-13 14:38:58.893919: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 5
      
              out_dir = output_path / f'clean_averaging_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              ptufile = predict_correct_correlate_ptu(
                  files=files_clean2,
                  model_id=model_id,
                  method='averaging',
                  out_path=out_dir)
      
      2023-01-13 14:39:25.593798: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2023-01-13 14:39:25.593871: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2023-01-13 14:39:25.593915: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist
      2023-01-13 14:39:25.594445: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      a965cd3e-f452-4c79-9428-b5152c3ba8aa
      
    • second: af488luvs and af488 delete correction.
    • #+CALL: prepare-jupyter-averaging() etc…
      /beegfs/ye53nis/drmed-git
      2023-01-16 16:37:55.758832: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2023-01-16 16:37:55.758867: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 5
      
              out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              ptufile = predict_correct_correlate_ptu(
                  files=files_dirty1,
                  model_id=model_id,
                  method='delete',
                  out_path=out_dir)
      
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      b91bd6bb-e7b8-44c1-b014-02275b3516b6
      
      /beegfs/ye53nis/drmed-git
      2023-01-16 23:53:43.486077: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2023-01-16 23:53:43.486120: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 5
      
              out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              ptufile = predict_correct_correlate_ptu(
                  files=files_dirty2,
                  model_id=model_id,
                  method='delete',
                  out_path=out_dir)
      
      2023-01-16 23:53:57.181417: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2023-01-16 23:53:57.181479: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2023-01-16 23:53:57.181516: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist
      2023-01-16 23:53:57.181940: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      /beegfs/ye53nis/drmed-git
      2023-01-17 13:11:45.290135: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2023-01-17 13:11:45.290197: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 5
      
              out_dir = output_path / f'clean_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              ptufile = predict_correct_correlate_ptu(
                  files=files_clean1,
                  model_id=model_id,
                  method='delete',
                  out_path=out_dir)
      
      2023-01-17 13:12:04.995182: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2023-01-17 13:12:04.995223: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2023-01-17 13:12:04.995253: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist
      2023-01-17 13:12:04.995535: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      63efbb75-e4b2-4b2c-ba46-ecf44a9d66fc
      
      /beegfs/ye53nis/drmed-git
      2023-01-17 17:20:22.162939: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2023-01-17 17:20:22.162993: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 5
      
              out_dir = output_path / f'clean_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              ptufile = predict_correct_correlate_ptu(
                  files=files_clean2,
                  model_id=model_id,
                  method='delete',
                  out_path=out_dir)
      
      2023-01-17 17:20:51.771891: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2023-01-17 17:20:51.771954: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2023-01-17 17:20:51.771992: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist
      2023-01-17 17:20:51.772457: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
      63efbb75-e4b2-4b2c-ba46-ecf44a9d66fc
      
  • third: tb-pex5 and hs-pex5 with averaging correction and set to zero correction. Because these files are small and memory allocation is less of a problem, we don’t need to kill our jupyter session in between
    • #+CALL: prepare-jupyter-averaging("/beegfs/ye53nis/data/191113_Pex5_2_structured")
      /beegfs/ye53nis/drmed-git
      2023-01-18 11:53:14.696643: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2023-01-18 11:53:14.696707: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
              model_id = 5
      
              out_dir = output_path / f'tbpex5_averaging_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              ptufile = predict_correct_correlate_ptu(
                  files=files_dirty,
                  model_id=model_id,
                  method='averaging',
                  out_path=out_dir)
      
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
              model_id = 5
      
              out_dir = output_path / f'tbpex5_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              ptufile = predict_correct_correlate_ptu(
                  files=files_dirty,
                  model_id=model_id,
                  method='delete',
                  out_path=out_dir)
      
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
              model_id = 5
      
              out_dir = output_path / f'hspex5_averaging_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              ptufile = predict_correct_correlate_ptu(
                  files=files_clean,
                  model_id=model_id,
                  method='averaging',
                  out_path=out_dir)
      
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      
              model_id = 5
      
              out_dir = output_path / f'hspex5_delete_{model_name_ls[model_id]}/'
      
              os.makedirs(out_dir, exist_ok=True)
      
              ptufile = predict_correct_correlate_ptu(
                  files=files_clean,
                  model_id=model_id,
                  method='delete',
                  out_path=out_dir)
      
      WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
      

2.6.13 Analysis 3: correlations and fits of experimental data

2.6.13.1 compare model performance on af488 data
  • call #+CALL: jupyter-set-output-directory()
    ./data/exp-220227-unet/jupyter
    
  • first, illlustrative correlations and fits from FoCuS-point fitting. We start with the data which was later used to plot avg_param data
    • Averaged curves of AF488 (no artifacts) with proceesings (no correction + all models, each curves is averaged from 424 correlations) clean_all_1comp.png clean_all_2comp.png
    • Averaged curves of AF488 + DiO-LUVs (peak artifacts) with proceesings (no correction + all models, each curves is averaged from 440 correlations) dirty_all_1comp.png dirty_all_2comp.png
  • Now we continue with AF488 - this is data without peak artifacts, which was later read in as all_param
    • no correction, 1 species and 2 species fits. The 1 species fit of no correction is the gold standard all correction methods are compared against. clean_no-correction_1comp.png clean_no-correction_2comp.png
    • 0cd20, 1 species and 2 species fits. clean_0cd20_1comp.png clean_0cd20_2comp.png
    • 19e3e, 1 species and 2 species fits. clean_19e3e_1comp.png clean_19e3e_2comp.png
    • 34a6d, 1 species and 2 species fits. clean_34a6d_1comp.png clean_34a6d_2comp.png
    • 484af, 1 species and 2 species fits. clean_484af_1comp.png clean_484af_2comp.png
    • 714af, 1 species and 2 species fits. clean_714af_1comp.png clean_714af_2comp.png
    • 34766, 1 species and 2 species fits. clean_34766_1comp.png clean_34766_2comp.png
    • c1204, 1 species and 2 species fits. clean_c1204_1comp.png clean_c1204_2comp.png
    • fe81d, 1 species and 2 species fits. clean_fe81d_1comp.png clean_fe81d_2comp.png
    • ff67b, 1 species and 2 species fits. clean_ff67b_1comp.png clean_ff67b_2comp.png
  • now illlustrative correlations and fits from AF488 + DiO-LUVs (data with peak artifacts). This is the data we want to correct.
    • no correction, 1 species and 2 species fits. dirty_no-correction_1comp.png dirty_no-correction_2comp.png
    • 0cd20, 1 species and 2 species fits. dirty_0cd20_1comp.png dirty_0cd20_2comp.png
    • 19e3e, 1 species and 2 species fits. dirty_19e3e_1comp.png dirty_19e3e_2comp.png
    • 34a6d, 1 species and 2 species fits. dirty_34a6d_1comp.png dirty_34a6d_2comp.png
    • 484af, 1 species and 2 species fits. dirty_484af_1comp.png dirty_484af_2comp.png
    • 714af, 1 species and 2 species fits. dirty_714af_1comp.png dirty_714af_2comp.png
    • 34766, 1 species and 2 species fits. dirty_34766_1comp.png dirty_34766_2comp.png
    • c1204, 1 species and 2 species fits. dirty_c1204_1comp.png dirty_c1204_2comp.png
    • fe81d, 1 species and 2 species fits. dirty_fe81d_1comp.png dirty_fe81d_2comp.png
    • ff67b, 1 species and 2 species fits. dirty_ff67b_1comp.png dirty_ff67b_2comp.png
  • second, load modules and data
           %cd ~/Programme/drmed-git
    
    /home/lex/Programme/drmed-git
    
           import os
           import numpy as np
           import matplotlib.pyplot as plt
           import pandas as pd
           import seaborn as sns
           from pathlib import Path
           from pprint import pprint
    
           sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind',
                         context='paper')
    
           model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727',
                       '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65',
                       '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653',
                       'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216',
                       'c1204e3a8a1e4c40a35b5b7b1922d1ce']
    
           model_name_ls = [f'{s:.5}' for s in model_ls]
    
           path = Path('data/exp-220227-unet/2022-05-22_experimental-af488/')
    
           # averaged values
           dirty_avg_1comp_path = path / 'dirty-all-results/dirty_all_1comp_outputParam.csv'
           dirty_avg_2comp_path = path / 'dirty-all-results/dirty_all_2comp_outputParam.csv'
           clean_avg_1comp_path = path / 'clean-all-results/clean_all_1comp_outputParam.csv'
           clean_avg_2comp_path = path / 'clean-all-results/clean_all_2comp_outputParam.csv'
    
           # dirty params
           dirty_noc_1comp_path = path / 'dirty-all-results/dirty_no-correction_1comp_outputParam.csv'
           dirty_noc_2comp_path = path / 'dirty-all-results/dirty_no-correction_2comp_outputParam.csv'
    
           dirty_0cd20_1comp_path = path / 'dirty-all-results/dirty_0cd20_1comp_outputParam.csv'
           dirty_0cd20_2comp_path = path / 'dirty-all-results/dirty_0cd20_2comp_outputParam.csv'
           dirty_19e3e_1comp_path = path / 'dirty-all-results/dirty_19e3e_1comp_outputParam.csv'
           dirty_19e3e_2comp_path = path / 'dirty-all-results/dirty_19e3e_2comp_outputParam.csv'
           dirty_34766_1comp_path = path / 'dirty-all-results/dirty_34766_1comp_outputParam.csv'
           dirty_34766_2comp_path = path / 'dirty-all-results/dirty_34766_2comp_outputParam.csv'
           dirty_34a6d_1comp_path = path / 'dirty-all-results/dirty_34a6d_1comp_outputParam.csv'
           dirty_34a6d_2comp_path = path / 'dirty-all-results/dirty_34a6d_2comp_outputParam.csv'
           dirty_484af_1comp_path = path / 'dirty-all-results/dirty_484af_1comp_outputParam.csv'
           dirty_484af_2comp_path = path / 'dirty-all-results/dirty_484af_2comp_outputParam.csv'
           dirty_714af_1comp_path = path / 'dirty-all-results/dirty_714af_1comp_outputParam.csv'
           dirty_714af_2comp_path = path / 'dirty-all-results/dirty_714af_2comp_outputParam.csv'
           dirty_c1204_1comp_path = path / 'dirty-all-results/dirty_c1204_1comp_outputParam.csv'
           dirty_c1204_2comp_path = path / 'dirty-all-results/dirty_c1204_2comp_outputParam.csv'
           dirty_fe81d_1comp_path = path / 'dirty-all-results/dirty_fe81d_1comp_outputParam.csv'
           dirty_fe81d_2comp_path = path / 'dirty-all-results/dirty_fe81d_2comp_outputParam.csv'
           dirty_ff67b_1comp_path = path / 'dirty-all-results/dirty_ff67b_1comp_outputParam.csv'
           dirty_ff67b_2comp_path = path / 'dirty-all-results/dirty_ff67b_2comp_outputParam.csv'
    
    
           # clean params
           clean_noc_1comp_path = path / 'clean-all-results/clean_no-correction_1comp_outputParam.csv'
           clean_noc_2comp_path = path / 'clean-all-results/clean_no-correction_2comp_outputParam.csv'
    
           clean_0cd20_1comp_path = path / 'clean-all-results/clean_0cd20_1comp_outputParam.csv'
           clean_0cd20_2comp_path = path / 'clean-all-results/clean_0cd20_2comp_outputParam.csv'
           clean_19e3e_1comp_path = path / 'clean-all-results/clean_19e3e_1comp_outputParam.csv'
           clean_19e3e_2comp_path = path / 'clean-all-results/clean_19e3e_2comp_outputParam.csv'
           clean_34766_1comp_path = path / 'clean-all-results/clean_34766_1comp_outputParam.csv'
           clean_34766_2comp_path = path / 'clean-all-results/clean_34766_2comp_outputParam.csv'
           clean_34a6d_1comp_path = path / 'clean-all-results/clean_34a6d_1comp_outputParam.csv'
           clean_34a6d_2comp_path = path / 'clean-all-results/clean_34a6d_2comp_outputParam.csv'
           clean_484af_1comp_path = path / 'clean-all-results/clean_484af_1comp_outputParam.csv'
           clean_484af_2comp_path = path / 'clean-all-results/clean_484af_2comp_outputParam.csv'
           clean_714af_1comp_path = path / 'clean-all-results/clean_714af_1comp_outputParam.csv'
           clean_714af_2comp_path = path / 'clean-all-results/clean_714af_2comp_outputParam.csv'
           clean_c1204_1comp_path = path / 'clean-all-results/clean_c1204_1comp_outputParam.csv'
           clean_c1204_2comp_path = path / 'clean-all-results/clean_c1204_2comp_outputParam.csv'
           clean_fe81d_1comp_path = path / 'clean-all-results/clean_fe81d_1comp_outputParam.csv'
           clean_fe81d_2comp_path = path / 'clean-all-results/clean_fe81d_2comp_outputParam.csv'
           clean_ff67b_1comp_path = path / 'clean-all-results/clean_ff67b_1comp_outputParam.csv'
           clean_ff67b_2comp_path = path / 'clean-all-results/clean_ff67b_2comp_outputParam.csv'
    
    
           # average parameters
           dirty_avg_1comp =  pd.read_csv(dirty_avg_1comp_path, sep=',').assign(
               artifact=10*['af488+luvs',])
           dirty_avg_2comp =  pd.read_csv(dirty_avg_2comp_path, sep=',').assign(
               artifact=10*['af488+luvs',])
           clean_avg_1comp =  pd.read_csv(clean_avg_1comp_path, sep=',').assign(
               artifact=10*['af488',])
           clean_avg_2comp =  pd.read_csv(clean_avg_2comp_path, sep=',').assign(
               artifact=10*['af488',])
    
           # dirty params
           dirty_noc_1comp = pd.read_csv(dirty_noc_1comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['No correction'])
           dirty_noc_2comp = pd.read_csv(dirty_noc_2comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['No correction'])
    
           dirty_0cd20_1comp =  pd.read_csv(dirty_0cd20_1comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['0cd20'])
           dirty_0cd20_2comp =  pd.read_csv(dirty_0cd20_2comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['0cd20'])
           dirty_19e3e_1comp =  pd.read_csv(dirty_19e3e_1comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['19e3e'])
           dirty_19e3e_2comp =  pd.read_csv(dirty_19e3e_2comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['19e3e'])
           dirty_34766_1comp =  pd.read_csv(dirty_34766_1comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['34766'])
           dirty_34766_2comp =  pd.read_csv(dirty_34766_2comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['34766'])
           dirty_34a6d_1comp =  pd.read_csv(dirty_34a6d_1comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['34a6d'])
           dirty_34a6d_2comp =  pd.read_csv(dirty_34a6d_2comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['34a6d'])
           dirty_484af_1comp =  pd.read_csv(dirty_484af_1comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['484af'])
           dirty_484af_2comp =  pd.read_csv(dirty_484af_2comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['484af'])
           dirty_714af_1comp =  pd.read_csv(dirty_714af_1comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['714af'])
           dirty_714af_2comp =  pd.read_csv(dirty_714af_2comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['714af'])
           dirty_c1204_1comp =  pd.read_csv(dirty_c1204_1comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['c1204'])
           dirty_c1204_2comp =  pd.read_csv(dirty_c1204_2comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['c1204'])
           dirty_fe81d_1comp =  pd.read_csv(dirty_fe81d_1comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['fe81d'])
           dirty_fe81d_2comp =  pd.read_csv(dirty_fe81d_2comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['fe81d'])
           dirty_ff67b_1comp =  pd.read_csv(dirty_ff67b_1comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['ff67b'])
           dirty_ff67b_2comp =  pd.read_csv(dirty_ff67b_2comp_path, sep=',').assign(
               artifact=440*['af488+luvs',], processing=440*['ff67b'])
    
           # clean params
           clean_noc_1comp = pd.read_csv(clean_noc_1comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['No correction'])
           clean_noc_2comp = pd.read_csv(clean_noc_2comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['No correction'])
    
           clean_0cd20_1comp =  pd.read_csv(clean_0cd20_1comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['0cd20'])
           clean_0cd20_2comp =  pd.read_csv(clean_0cd20_2comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['0cd20'])
           clean_19e3e_1comp =  pd.read_csv(clean_19e3e_1comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['19e3e'])
           clean_19e3e_2comp =  pd.read_csv(clean_19e3e_2comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['19e3e'])
           clean_34766_1comp =  pd.read_csv(clean_34766_1comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['34766'])
           clean_34766_2comp =  pd.read_csv(clean_34766_2comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['34766'])
           clean_34a6d_1comp =  pd.read_csv(clean_34a6d_1comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['34a6d'])
           clean_34a6d_2comp =  pd.read_csv(clean_34a6d_2comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['34a6d'])
           clean_484af_1comp =  pd.read_csv(clean_484af_1comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['484af'])
           clean_484af_2comp =  pd.read_csv(clean_484af_2comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['484af'])
           clean_714af_1comp =  pd.read_csv(clean_714af_1comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['714af'])
           clean_714af_2comp =  pd.read_csv(clean_714af_2comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['714af'])
           clean_c1204_1comp =  pd.read_csv(clean_c1204_1comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['c1204'])
           clean_c1204_2comp =  pd.read_csv(clean_c1204_2comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['c1204'])
           clean_fe81d_1comp =  pd.read_csv(clean_fe81d_1comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['fe81d'])
           clean_fe81d_2comp =  pd.read_csv(clean_fe81d_2comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['fe81d'])
           clean_ff67b_1comp =  pd.read_csv(clean_ff67b_1comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['ff67b'])
           clean_ff67b_2comp =  pd.read_csv(clean_ff67b_2comp_path, sep=',').assign(
               artifact=424*['af488',], processing=424*['ff67b'])
    
           avg_param = pd.concat([clean_avg_1comp, clean_avg_2comp,
                                  dirty_avg_1comp, dirty_avg_2comp])
    
           all_param = pd.concat([clean_noc_1comp, clean_noc_2comp,
                                  dirty_noc_1comp, dirty_noc_2comp,
                                  dirty_0cd20_1comp, dirty_0cd20_2comp,
                                  dirty_19e3e_1comp, dirty_19e3e_2comp,
                                  dirty_34766_1comp, dirty_34766_2comp,
                                  dirty_34a6d_1comp, dirty_34a6d_2comp,
                                  dirty_484af_1comp, dirty_484af_2comp,
                                  dirty_714af_1comp, dirty_714af_2comp,
                                  dirty_c1204_1comp, dirty_c1204_2comp,
                                  dirty_fe81d_1comp, dirty_fe81d_2comp,
                                  dirty_ff67b_1comp, dirty_ff67b_2comp,
                                  clean_0cd20_1comp, clean_0cd20_2comp,
                                  clean_19e3e_1comp, clean_19e3e_2comp,
                                  clean_34766_1comp, clean_34766_2comp,
                                  clean_34a6d_1comp, clean_34a6d_2comp,
                                  clean_484af_1comp, clean_484af_2comp,
                                  clean_714af_1comp, clean_714af_2comp,
                                  clean_c1204_1comp, clean_c1204_2comp,
                                  clean_fe81d_1comp, clean_fe81d_2comp,
                                  clean_ff67b_1comp, clean_ff67b_2comp])
           assert set(all_param['Dimen']) == {'3D'}
           assert set(all_param['AR1'] == {5.0})
           assert set(all_param['Diff_eq']) == {'Equation 1B'}
           assert set(all_param['Triplet_eq']) == {'no triplet'}
           assert set(all_param['alpha1']) == {1.0}
           assert set(all_param['xmin']) == {0.001018}
           assert set(all_param['xmax']) == {100.66329, 469.762042}
           assert set(all_param[all_param['xmax'] == 100.66329]['artifact']) == {'af488'}
           assert set(all_param[all_param['xmax'] == 469.762042]['artifact']) == {'af488+luvs'}
    
           avg_param = pd.concat([clean_avg_1comp, clean_avg_2comp,
                                  dirty_avg_1comp, dirty_avg_2comp])
    
           assert set(avg_param['Dimen']) == {'3D'}
           assert set(avg_param['AR1'] == {5.0})
           assert set(avg_param['Diff_eq']) == {'Equation 1B'}
           assert set(avg_param['Triplet_eq']) == {'no triplet'}
           assert set(avg_param['alpha1']) == {1.0}
           assert set(avg_param['xmin']) == {0.001018}
           assert set(avg_param['xmax']) == {100.66329, 469.762042}
           assert set(avg_param[avg_param['xmax'] == 100.66329]['artifact']) == {'af488'}
           assert set(avg_param[avg_param['xmax'] == 469.762042]['artifact']) == {'af488+luvs'}
           all_param
    
      nameofplot masterfile parentname parentuqid time of fit Diffeq Diffspecies Tripleteq Tripletspecies Dimen artifact processing A2 stdev(A2) txy2 stdev(txy2) alpha2 stdev(alpha2) AR2 stdev(AR2)
    0 2022-05-26tttr2xfcsCH2BIN1dot020 nM AF4881… Not known tttr2xfcs 0 Mon May 30 14:12:23 2022 Equation 1B 1 no triplet 1 3D af488 No correction NaN NaN NaN NaN NaN NaN NaN NaN
    1 2022-05-26tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs 0 Mon May 30 14:12:24 2022 Equation 1B 1 no triplet 1 3D af488 No correction NaN NaN NaN NaN NaN NaN NaN NaN
    2 2022-05-26tttr2xfcsCH2BIN1dot020 nM AF4883… Not known tttr2xfcs 0 Mon May 30 14:12:24 2022 Equation 1B 1 no triplet 1 3D af488 No correction NaN NaN NaN NaN NaN NaN NaN NaN
    3 2022-05-26tttr2xfcsCH2BIN1dot020 nM AF4884… Not known tttr2xfcs 0 Mon May 30 14:12:24 2022 Equation 1B 1 no triplet 1 3D af488 No correction NaN NaN NaN NaN NaN NaN NaN NaN
    4 2022-05-26tttr2xfcsCH2BIN1dot020 nM AF4885… Not known tttr2xfcs 0 Mon May 30 14:12:24 2022 Equation 1B 1 no triplet 1 3D af488 No correction NaN NaN NaN NaN NaN NaN NaN NaN
    419 2022-05-25tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs 0 Mon May 30 14:42:23 2022 Equation 1B 2 no triplet 1 3D af488 ff67b 0.488985 None 0.096094 None 1.0 None 5.0 None
    420 2022-05-25tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs 0 Mon May 30 14:42:23 2022 Equation 1B 2 no triplet 1 3D af488 ff67b 0.386551 None 0.112745 None 1.0 None 5.0 None
    421 2022-05-25tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs 0 Mon May 30 14:42:24 2022 Equation 1B 2 no triplet 1 3D af488 ff67b 0.658441 None 0.054065 None 1.0 None 5.0 None
    422 2022-05-25tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs 0 Mon May 30 14:42:24 2022 Equation 1B 2 no triplet 1 3D af488 ff67b 0.730166 None 0.060976 None 1.0 None 5.0 None
    423 2022-05-25tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs 0 Mon May 30 14:42:24 2022 Equation 1B 2 no triplet 1 3D af488 ff67b 0.461469 None 0.097456 None 1.0 None 5.0 None

    17280 rows × 39 columns

40 rows × 34 columns

  • first, let’s take a look only at avg_param. There, for each model all curves of af488 and af488+luvs were fitted, and then the correlations were averaged. This gives us a good overview with direct comparison of model fit outcome to the fit outcomes without correction. BUT this is not enough to determine that the model is good enough, because in practice, we rarely take 400 times the same measurement and average. So this more resembles the optimal fit outcomes and in the final paper, I analysed the success via fit distributions (so plotting all 400 extracted transit times and comparing the distributions)
           def sort_fit(param_ls):
               nfcs = list(param_ls)[-1]
               array = np.array(list(param_ls)[:-1]).reshape((2, 2))
               # sort by transit times
               array = array[:, array[0, :].argsort()]
               A_fast = float(array[1, 0])
               A_slow = float(array[1, 1])
               N_fast = A_fast * float(nfcs)
               N_slow = A_slow * float(nfcs)
               t_fast = float(array[0, 0]) * 1000
               t_slow = float(array[0, 1]) * 1000
               if np.isnan(t_slow):
                   # if tt_low_high[0] <= t_fast <= tt_low_high[1]:
                   #     out = f'\\cellcolor[HTML]{{009e73}}${t_fast:.2f}$'
                   # else:
                   #     out = f'\\cellcolor[HTML]{{d55e00}}${t_fast:.2f}$'
                   out = f'$\\tau_D={t_fast:.1f}\\hspace{{1em}}N={nfcs:.1f}$'
               elif f'{A_fast:.0%}' == '100%':
                   # if tt_low_high[0] <= t_fast <= tt_low_high[1]:
                   #     out = f'\\cellcolor[HTML]{{009e73}}${t_fast:.2f}(100\\%)$'
                   # else:
                   #     out = f'\\cellcolor[HTML]{{d55e00}}${t_fast:.2f}(100\\%)$'
                   out = f'$\\tau_D^{{fast}}={t_fast:.1f}\\hspace{{1em}}N^{{fast}}={N_fast:.1f}$'
               elif f'{A_slow:.0%}' == '100%':
                   # if tt_low_high[0] <= t_slow <= tt_low_high[1]:
                   #     out = f'\\cellcolor[HTML]{{009e73}}${t_slow:.2f}(100\\%)$'
                   # else:
                   #     out = f'\\cellcolor[HTML]{{d55e00}}${t_slow:.2f}(100\\%)$'
                   out = f'$\\tau_D^{{slow}}={t_slow:.1f}\\hspace{{1em}}N^{{slow}}={N_slow:.1f}$'
               else:
                   # if (tt_low_high[0] <= t_fast <= tt_low_high[1]) or (
                   #     tt_low_high[0] <= t_slow <= tt_low_high[1]):
                   #     out = f'\\cellcolor[HTML]{{009e73}}\\colorbox[HTML]{{009e73}}{{\\makecell{{${t_fast:.2f}^f({A_fast:.0%})$\\\\'\
                   #           f'${t_slow:.2f}^s({A_slow:.0%})$}}}}'
                   # else:
                   #     out = f'\\cellcolor[HTML]{{d55e00}}\\colorbox[HTML]{{d55e00}}{{\\makecell{{${t_fast:.2f}^f({A_fast:.0%})$\\\\'\
                   #           f'${t_slow:.2f}^s({A_slow:.0%})$}}}}'
                   out = f'\\makecell{{$\\tau_D^{{fast}}={t_fast:.1f}\\hspace{{1em}}N^{{fast}}={N_fast:.1f}$\\\\'\
                         f'$\\tau_D^{{slow}}={t_slow:.1f}\\hspace{{1em}}N^{{slow}}={N_slow:.1f}$}}'
                   out = out.replace('%', '\\%')
               return out
    
           avg_param['fit results'] = avg_param[['txy1', 'txy2', 'A1', 'A2', 'N (FCS)']].apply(lambda x: sort_fit(x), axis=1)
           avg_param = avg_param[['name_of_plot', 'Diff_species', 'artifact', 'fit results']]
           avg_param = avg_param.pivot_table(values='fit results',
                                             columns='artifact',
                                             index=['name_of_plot', 'Diff_species'],
                                             aggfunc=lambda x: '-'.join(x))
           avg_param.loc[('clean', 1), 'af488+luvs'] = avg_param.loc[('dirty', 1), 'af488+luvs']
           avg_param.loc[('clean', 2), 'af488+luvs'] = avg_param.loc[('dirty', 2), 'af488+luvs']
    
           avg_param = avg_param.rename(index={'clean' : 'no correction'})
           # to get all models
           first = ['no correction',] + model_name_ls.copy()
           # just two examples
           # first = ['no correction', '0cd20', '34a6d']
           second = [1, 2]
           index_order = pd.MultiIndex.from_product([first, second],
                                                    names=[r'\makecell{type of\\processing}', 'fit'])
           avg_param = avg_param.reindex(index=index_order)
    
           with pd.option_context("max_colwidth", 1000):
               print(avg_param.to_latex(escape=False,
                                        column_format='cccc',
                                        caption=(r'Experimental results AF488 data. $\tau_D$ in $\mu s$. For 1 species fit, $N = N(FCS) * T1$. For 2 species fit, $N^{sp} = A^{sp} * (N(FCS) * T1)$ and $\tau_D$ is sorted in fast and slow. If $A^{sp}=100\%$, only display the corresponding $\tau_D$ and $N$ values. 2 species fit results of AF488 in solution has no biophysical relevance and is only shown for completion','Experimental results AF488 data')))
    
           \begin{table}
           \centering
           \caption[Experimental results AF488 data]{Experimental results AF488 data. $\tau_D$ in $\mu s$. For 1 species fit, $N = N(FCS) * T1$. For 2 species fit, $N^{sp} = A^{sp} * (N(FCS) * T1)$ and $\tau_D$ is sorted in fast and slow. If $A^{sp}=100\%$, only display the corresponding $\tau_D$ and $N$ values. 2 species fit results of AF488 in solution has no biophysical relevance and is only shown for completion}
           \begin{tabular}{cccc}
           \toprule
                 & artifact &                                                                                                  af488 &                                                                                                 af488+luvs \\
           \makecell{type of\\processing} & fit &                                                                                                        &                                                                                                            \\
           \midrule
           no correction & 1 &                                                                        $\tau_D=39.7\hspace{1em}N=14.3$ &                                                                           $\tau_D=7355.0\hspace{1em}N=4.7$ \\
                 & 2 &   \makecell{$\tau_D^{fast}=9.5\hspace{1em}N^{fast}=4.9$\\$\tau_D^{slow}=69.8\hspace{1em}N^{slow}=8.6$} &   \makecell{$\tau_D^{fast}=78.3\hspace{1em}N^{fast}=0.7$\\$\tau_D^{slow}=11944.6\hspace{1em}N^{slow}=3.5$} \\
           ff67b & 1 &                                                                        $\tau_D=39.8\hspace{1em}N=14.3$ &                                                                            $\tau_D=94.0\hspace{1em}N=22.4$ \\
                 & 2 &   \makecell{$\tau_D^{fast}=9.9\hspace{1em}N^{fast}=5.0$\\$\tau_D^{slow}=71.7\hspace{1em}N^{slow}=8.4$} &  \makecell{$\tau_D^{fast}=41.8\hspace{1em}N^{fast}=13.1$\\$\tau_D^{slow}=20282.4\hspace{1em}N^{slow}=5.2$} \\
           34766 & 1 &                                                                        $\tau_D=35.1\hspace{1em}N=14.7$ &                                                                            $\tau_D=62.5\hspace{1em}N=23.2$ \\
                 & 2 &  \makecell{$\tau_D^{fast}=1.4\hspace{1em}N^{fast}=2.4$\\$\tau_D^{slow}=42.0\hspace{1em}N^{slow}=10.7$} &  \makecell{$\tau_D^{fast}=38.9\hspace{1em}N^{fast}=15.8$\\$\tau_D^{slow}=24434.3\hspace{1em}N^{slow}=4.1$} \\
           714af & 1 &                                                                        $\tau_D=39.8\hspace{1em}N=14.3$ &                                                                           $\tau_D=104.2\hspace{1em}N=22.3$ \\
                 & 2 &  \makecell{$\tau_D^{fast}=10.0\hspace{1em}N^{fast}=5.1$\\$\tau_D^{slow}=71.9\hspace{1em}N^{slow}=8.4$} &  \makecell{$\tau_D^{fast}=41.8\hspace{1em}N^{fast}=12.3$\\$\tau_D^{slow}=21435.4\hspace{1em}N^{slow}=5.5$} \\
           34a6d & 1 &                                                                        $\tau_D=39.7\hspace{1em}N=14.3$ &                                                                            $\tau_D=78.9\hspace{1em}N=22.5$ \\
                 & 2 &   \makecell{$\tau_D^{fast}=9.4\hspace{1em}N^{fast}=4.8$\\$\tau_D^{slow}=69.6\hspace{1em}N^{slow}=8.6$} &  \makecell{$\tau_D^{fast}=41.9\hspace{1em}N^{fast}=14.2$\\$\tau_D^{slow}=22526.1\hspace{1em}N^{slow}=4.6$} \\
           484af & 1 &                                                                        $\tau_D=39.8\hspace{1em}N=14.3$ &                                                                            $\tau_D=91.2\hspace{1em}N=22.5$ \\
                 & 2 &  \makecell{$\tau_D^{fast}=10.1\hspace{1em}N^{fast}=5.1$\\$\tau_D^{slow}=72.2\hspace{1em}N^{slow}=8.4$} &  \makecell{$\tau_D^{fast}=41.2\hspace{1em}N^{fast}=12.8$\\$\tau_D^{slow}=23742.5\hspace{1em}N^{slow}=5.2$} \\
           0cd20 & 1 &                                                                        $\tau_D=39.6\hspace{1em}N=14.3$ &                                                                            $\tau_D=71.3\hspace{1em}N=21.7$ \\
                 & 2 &   \makecell{$\tau_D^{fast}=8.9\hspace{1em}N^{fast}=4.6$\\$\tau_D^{slow}=67.5\hspace{1em}N^{slow}=8.8$} &   \makecell{$\tau_D^{fast}=38.8\hspace{1em}N^{fast}=15.5$\\$\tau_D^{slow}=5823.0\hspace{1em}N^{slow}=3.9$} \\
           fe81d & 1 &                                                                        $\tau_D=39.8\hspace{1em}N=14.3$ &                                                                            $\tau_D=90.4\hspace{1em}N=22.3$ \\
                 & 2 &  \makecell{$\tau_D^{fast}=10.0\hspace{1em}N^{fast}=5.0$\\$\tau_D^{slow}=71.8\hspace{1em}N^{slow}=8.4$} &  \makecell{$\tau_D^{fast}=42.0\hspace{1em}N^{fast}=13.3$\\$\tau_D^{slow}=19906.1\hspace{1em}N^{slow}=5.0$} \\
           19e3e & 1 &                                                                        $\tau_D=39.6\hspace{1em}N=14.3$ &                                                                            $\tau_D=79.8\hspace{1em}N=22.4$ \\
                 & 2 &   \makecell{$\tau_D^{fast}=9.2\hspace{1em}N^{fast}=4.8$\\$\tau_D^{slow}=68.9\hspace{1em}N^{slow}=8.7$} &  \makecell{$\tau_D^{fast}=41.7\hspace{1em}N^{fast}=13.6$\\$\tau_D^{slow}=27489.8\hspace{1em}N^{slow}=4.7$} \\
           c1204 & 1 &                                                                        $\tau_D=29.2\hspace{1em}N=15.2$ &                                                                            $\tau_D=51.4\hspace{1em}N=23.8$ \\
                 & 2 &   \makecell{$\tau_D^{fast}=0.1\hspace{1em}N^{fast}=3.9$\\$\tau_D^{slow}=31.4\hspace{1em}N^{slow}=5.0$} &  \makecell{$\tau_D^{fast}=35.5\hspace{1em}N^{fast}=16.4$\\$\tau_D^{slow}=39055.9\hspace{1em}N^{slow}=3.9$} \\
           \bottomrule
           \end{tabular}
           \end{table}
    
  • now I put latex in a simple template of the Overleaf online latex editor like this
           \documentclass{article}
           \usepackage{booktabs} % for \toprule and \midrule in table
           \usepackage{makecell} % for linebreaks in table cells
    
           \begin{document}
           %% here the code abvoe
           \end{document}
    
    
  • the final rendering looks like this:
  • now, we work with all_param. Here, all single correlation curves are loaded without averaging.
           def sort_fit_simple(param_ls):
               nfcs = list(param_ls)[-1]
               array = np.array(list(param_ls)[:-1]).reshape((2, 2))
               # sort by transit times
               array = array[:, array[0, :].argsort()]
               A_fast = float(array[1, 0])
               A_slow = float(array[1, 1])
               N_fast = A_fast * float(nfcs)
               N_slow = A_slow * float(nfcs)
               t_fast = float(array[0, 0])
               t_slow = float(array[0, 1])
               if np.isnan(t_slow):
                   # 1-component fit
                   out = t_fast, N_fast, pd.NA, pd.NA
               # 2-component fits
               elif f'{A_fast:.0%}' == '100%':
                   out = t_fast, N_fast, pd.NA, pd.NA
               elif f'{A_slow:.0%}' == '100%':
                   out = t_slow, N_slow, pd.NA, pd.NA
               else:
                   out = t_fast, N_fast, t_slow, N_slow
               return out
    
           all_param = all_param.reset_index()
           (all_param['t_fast'], all_param['N_fast'], all_param['t_slow'],
            all_param['N_slow']) = zip(*all_param[['txy1', 'txy2', 'A1', 'A2', 'N (FCS)']].apply(
                lambda x: sort_fit_simple(x), axis=1))
           all_param = all_param[['index', 'Diff_species', 'processing', 'artifact',
                                  't_fast', 'N_fast', 't_slow', 'N_slow']]
           all_param = all_param.loc[((all_param['Diff_species'] == 1) & (all_param['artifact'] == 'af488')) |
                                     ((all_param['Diff_species'] == 2) & (all_param['artifact'] == 'af488+luvs'))]
    
           N_param = all_param.pivot_table(values='N_fast',
                                           index='index',
                                           columns=['processing', 'artifact', 'Diff_species'])
    
           t_param = all_param.pivot_table(values='t_fast',
                                           index='index',
                                           columns=['processing', 'artifact', 'Diff_species'])
           t_param = t_param * 1000
           print('Statistics of fitted particle numbers')
           display(pd.concat([pd.Series(N_param.median(axis=0), name='median'), N_param.describe().T], axis=1))
           print('Statistics of fitted transit times')
           display(pd.concat([pd.Series(t_param.median(axis=0), name='median'), t_param.describe().T], axis=1))
    
    Statistics of fitted particle numbers
    
          median count mean std min 25% 50% 75% max
    processing artifact Diffspecies                  
    0cd20 af488 1 14.341568 424.0 14.335000 0.263291 13.412392 14.205747 14.341568 14.505898 14.988332
      af488+luvs 2 15.248202 440.0 15.106186 1.484036 6.267150 14.334271 15.248202 16.039287 18.110889
    19e3e af488 1 14.336272 424.0 14.329986 0.263853 13.367317 14.201544 14.336272 14.511038 14.931337
      af488+luvs 2 13.826313 440.0 13.270444 3.181698 0.562121 11.573624 13.826313 15.704750 18.581205
    34766 af488 1 14.702547 424.0 14.684973 0.276662 13.720920 14.551659 14.702547 14.869845 15.347210
      af488+luvs 2 15.732460 440.0 15.267823 2.476381 6.346636 13.704650 15.732460 17.068360 19.961155
    34a6d af488 1 14.335075 424.0 14.325905 0.264438 13.365160 14.194973 14.335075 14.510599 14.933380
      af488+luvs 2 14.302934 440.0 13.641062 2.740812 1.417894 12.297284 14.302934 15.593493 17.885668
    484af af488 1 14.325842 424.0 14.317763 0.263824 13.365161 14.188180 14.325842 14.499389 14.919546
      af488+luvs 2 13.373178 440.0 12.784654 3.023495 1.591405 10.908164 13.373178 15.029049 18.453017
    714af af488 1 14.325842 424.0 14.318594 0.263337 13.365161 14.189044 14.325842 14.497586 14.919546
      af488+luvs 2 12.420635 440.0 12.233933 2.490236 5.295190 10.570730 12.420635 14.066820 17.968677
    No correction af488 1 14.331944 424.0 14.324938 0.264089 13.369703 14.194097 14.331944 14.503913 14.925030
      af488+luvs 2 0.928103 440.0 1.115437 0.832436 0.111298 0.497226 0.928103 1.475898 5.530194
    c1204 af488 1 15.262632 424.0 15.254311 0.321478 13.987100 15.077046 15.262632 15.475146 16.260415
      af488+luvs 2 15.912205 440.0 15.532688 3.448340 1.815959 13.639535 15.912205 18.127480 21.748767
    fe81d af488 1 14.326219 424.0 14.319104 0.263526 13.365161 14.189106 14.326219 14.499389 14.919546
      af488+luvs 2 13.689452 440.0 13.077269 3.152211 0.536799 11.056025 13.689452 15.387298 19.102249
    ff67b af488 1 14.326219 424.0 14.319636 0.263558 13.365161 14.189298 14.326219 14.499389 14.919546
      af488+luvs 2 13.089802 440.0 12.894021 2.446790 4.838165 11.518550 13.089802 14.484227 18.392188
    Statistics of fitted transit times
    
          median count mean std min 25% 50% 75% max
    processing artifact Diffspecies                  
    0cd20 af488 1 39.575746 424.0 39.574374 1.040061 37.190978 38.879728 39.575746 40.279227 42.984704
      af488+luvs 2 38.762520 440.0 38.933931 5.459816 21.356080 35.228893 38.762520 42.262441 62.131261
    19e3e af488 1 39.568778 424.0 39.656947 1.047036 37.102746 38.934719 39.568778 40.416838 42.501109
      af488+luvs 2 41.177209 440.0 41.351740 4.525924 19.027233 38.362287 41.177209 43.854646 60.151240
    34766 af488 1 35.067658 424.0 35.077446 1.109175 32.086412 34.355154 35.067658 35.736697 38.864156
      af488+luvs 2 38.713203 440.0 38.910032 3.349258 27.709990 36.625985 38.713203 41.009242 49.822679
    34a6d af488 1 39.667568 424.0 39.707795 1.038806 36.985999 39.012984 39.667568 40.457557 42.803298
      af488+luvs 2 41.267814 440.0 41.654939 4.707523 30.986888 38.312301 41.267814 44.652582 57.155144
    484af af488 1 39.854056 424.0 39.854861 1.040952 37.153441 39.141726 39.854056 40.582409 42.744448
      af488+luvs 2 40.605601 440.0 41.036124 4.307502 31.922451 38.063892 40.605601 43.505466 63.739400
    714af af488 1 39.835832 424.0 39.838266 1.041757 37.153441 39.107415 39.835832 40.571805 42.696864
      af488+luvs 2 41.430208 440.0 41.791645 4.068318 31.775699 38.784115 41.430208 44.084046 55.334179
    No correction af488 1 39.678008 424.0 39.726486 1.037956 37.049340 39.010144 39.678008 40.444667 42.680513
      af488+luvs 2 59.671435 440.0 295.128650 823.953683 4.884506 42.516272 59.671435 117.828320 9785.473007
    c1204 af488 1 29.177928 424.0 29.247641 1.225078 25.901046 28.399698 29.177928 30.113028 32.740869
      af488+luvs 2 35.278166 440.0 35.503411 2.690742 29.246945 33.580404 35.278166 36.865166 44.796158
    fe81d af488 1 39.830813 424.0 39.828821 1.044278 37.153441 39.089567 39.830813 40.555985 42.744448
      af488+luvs 2 40.439757 440.0 40.766428 6.403163 12.890876 37.417914 40.439757 43.275102 84.641627
    ff67b af488 1 39.803435 424.0 39.830343 1.042279 37.153441 39.087859 39.803435 40.555985 42.744448
      af488+luvs 2 41.451285 440.0 41.757214 4.040506 32.434107 38.893139 41.451285 44.293295 57.788748
  • now we plot fit outcomes (transit times, particle numbers) after neural network prediction and cut and stitch correction. For this AF488 data, we compare the 1 species fit of AF488 in solution with the fast species of the 2 species fit of AF488 + DiO-LUVs. The results show that all models except 34766 and c1204 do quite well in this challenge. Transit times and particle numbers could be restored without introducing false values in clean “AF488 in solution” data.
           pub_param = all_param.replace(['0cd20'], '0cd20: large model\n(200 MB), 6 levels,\npool size=4, scaler\n=quantile transform\n(Gaussian pdf)')
           pub_param = pub_param.replace(['34a6d'], '34a6d: small model\n(7 MB), 3 levels,\npool size=4, scaler=l2')
           pub_param = pub_param.replace(['484af'], '484af: large model\n(275 MB), 7 levels,\npool_size=2, scaler\n=standard')
           pub_param = pub_param.replace(['fe81d'], 'fe81d: large model\n(186 MB), 4 levels,\npool_size=4, scaler\n=standard')
           pub_param = pub_param.replace(['ff67b'], 'ff67b: small model\n(14 MB), 5 levels,\npool_size=4, scaler\n=minmax')
           pub_param = pub_param.replace(['19e3e'], '19e3e: large model\n(172 MB), 3 levels,\npool_size=4, scaler\n=standard')
           pub_param = pub_param.replace(['34766'], '34766: middle-sized\nmodel (73 MB), 5 levels,\npool_size=4, scaler\n=robust')
           pub_param = pub_param.replace(['c1204'], 'c1204: large model\n(312 MB), 9 levels,\npool_size=2, scaler\n=robust')
           pub_param = pub_param.replace(['714af'], '714af: large model\n(234 MB), 5 levels,\npool_size=4, scaler\n=maxabs')
           g = sns.catplot(data=pub_param,
                           y='t_fast',
                           x='processing',
                           hue='artifact',
                           sharey=True,
                           height=10,
                           aspect=3.3,
                           legend_out=True,
                           kind='boxen',
                           showfliers=False)
           g._legend.set_title('')
    
           g._legend.remove()
           for i, ax in enumerate(g.axes):
               clean = pub_param[(pub_param['processing'] == 'No correction') &
                                 (pub_param['artifact'] == 'af488')]
               median = clean['t_fast'].median()
               line = ax[0].axhline(median, lw=4, label='', ls='--')
               line_legend = {f'\n$\\tau_{{exp}}={median:.2f}ms$' : line}
               g._legend_data.update(line_legend)
           g.add_legend(g._legend_data)
           new_labels = ['424 traces of\nAlexaFluor488\n(no artifacts)\n$\\tau_D$ from\n1 species fit',
                         '440 traces of\nAF488 + DiO LUVs\n(peak artifacts)\n$\\tau_D$ from\nfast sp. of 2 sp. fit']
           for t, l in zip(g._legend.texts, new_labels):
               t.set_text(l)
    
           g.map_dataframe(sns.stripplot,
                 y='t_fast',
                 x='processing',
                 hue='artifact',
                 dodge=True,
                 palette=sns.color_palette(['0.3']),
                 size=4,
                 jitter=0.2)
           g.fig.suptitle('Simulation → prediction → correction pipeline successfully restores transit times',
                          size=25)
          plt.setp(g.axes, yscale='log', xlabel='',
                    ylabel=r'log transit time $\tau_{D}$ $[ms]$')
    
           g.tight_layout()
    
           savefig = f'./data/exp-220227-unet/jupyter/analysis3_af488_compare-transit-times'
           plt.savefig(f'{savefig}.pdf', dpi=300)
           # os.system(f'pdf2svg {savefig}.pdf {savefig}.svg')
           plt.close('all')
    
           g = sns.catplot(data=pub_param,
                           y='N_fast',
                           x='processing',
                           hue='artifact',
                           sharey=True,
                           height=10.3,
                           aspect=3.3,
                           legend_out=True,
                           kind='boxen',
                           showfliers=False)
           g._legend.set_title('')
           g._legend.remove()
           for i, ax in enumerate(g.axes):
               clean = pub_param[(pub_param['processing'] == 'No correction') &
                                 (pub_param['artifact'] == 'af488')]
               median = clean['N_fast'].median()
               line = ax[0].axhline(median, lw=4, label='', ls=':')
               line_legend = {f'\n$N{{exp}}={median:.2f}$' : line}
               g._legend_data.update(line_legend)
           g.add_legend(g._legend_data)
           new_labels = ['424 traces of\nAlexaFluor488\n(no artifacts)\n$N (FCS)$ from\n1 species fit',
                         '440 traces of\nAF488 + DiO LUVs\n(peak artifacts)\n$N (FCS)\\cdot A$ from\nfast sp. of 2 sp. fit']
           for t, l in zip(g._legend.texts, new_labels):
               t.set_text(l)
    
           g.map_dataframe(sns.stripplot,
                 y='N_fast',
                 x='processing',
                 hue='artifact',
                 dodge=True,
                 palette=sns.color_palette(['0.3']),
                 size=4,
                 jitter=0.2)
           g.fig.suptitle('Simulation → prediction → correction pipeline successfully restores particle number',
                          size=25)
    
           plt.setp(g.axes, xlabel='',
                    ylabel=r'particle number $N$ $[fl^{-1}]$')
    
           g.tight_layout()
           savefig = f'./data/exp-220227-unet/jupyter/analysis3_af488_compare-particle-numbers'
           plt.savefig(f'{savefig}.pdf', dpi=300)
           # os.system(f'pdf2svg {savefig}.pdf {savefig}.svg')
           plt.close('all')
    
  • this is the two plots as PDFs, first the comparison of transit times, second the comparison of particle numbers
2.6.13.2 compare model performance on pex5 data
  • call #+CALL: jupyter-set-output-directory()
    ./data/exp-220227-unet/jupyter
    
  • first, illlustrative correlations and fits from FoCuS-point fitting. We start with the data which was later used to plot avg_param data
    • Averaged curves of Hs-PEX5-eGFP (no artifacts) with proceesings (no correction + all models, each curves is averaged from 250 correlations) Hs-PEX5-eGFP_avg_cas_1comp.png Hs-PEX5-eGFP_avg_cas_2comp.png
    • Averaged curves of Tb-PEX5-eGFP (peak artifacts) with proceesings (no correction + all models, each curves is averaged from 250 correlations) Tb-PEX5-eGFP_avg_cas_1comp.png Tb-PEX5-eGFP_avg_cas_2comp.png
  • Now we continue with Hs-PEX5-eGFP - this is data without peak artifacts, which was later read in as all_param
    • no correction, 1 species and 2 species fits. The 1 species fit of no correction is the gold standard all correction methods are compared against. Hs-PEX5-eGFP_no-correction_1comp.png Hs-PEX5-eGFP_no-correction_2comp.png
      • As can be noticed, the amplitudes vary widely. There probably was an instability in the measurement. Here the curves 1-25 Hs-PEX5-eGFP_no-correction-curves1-25_1comp.png
      • curves 26-50 Hs-PEX5-eGFP_no-correction-curves26-50_1comp.png
      • curves 51-75 Hs-PEX5-eGFP_no-correction-curves51-75_1comp.png
      • curves 76-100 Hs-PEX5-eGFP_no-correction-curves76-100_1comp.png
      • curves 101-125 Hs-PEX5-eGFP_no-correction-curves101-125_1comp.png
      • curves 126-150 Hs-PEX5-eGFP_no-correction-curves126-150_1comp.png
      • curves 151-175 Hs-PEX5-eGFP_no-correction-curves151-175_1comp.png
      • curves 176-200 Hs-PEX5-eGFP_no-correction-curves176-200_1comp.png
      • curves 201-225 Hs-PEX5-eGFP_no-correction-curves201-225_1comp.png
      • curves 226-250 Hs-PEX5-eGFP_no-correction-curves226-250_1comp.png
    • 0cd20, 1 species and 2 species fits. Hs-PEX5-eGFP_0cd20_1comp.png Hs-PEX5-eGFP_0cd20_2comp.png
    • 19e3e, 1 species and 2 species fits. Hs-PEX5-eGFP_19e3e_1comp.png Hs-PEX5-eGFP_19e3e_2comp.png
    • 34a6d, 1 species and 2 species fits. Hs-PEX5-eGFP_34a6d_1comp.png Hs-PEX5-eGFP_34a6d_2comp.png
    • 484af, 1 species and 2 species fits. Hs-PEX5-eGFP_484af_1comp.png Hs-PEX5-eGFP_484af_2comp.png
    • 714af, 1 species and 2 species fits. Hs-PEX5-eGFP_714af_1comp.png Hs-PEX5-eGFP_714af_2comp.png
    • 34766, 1 species and 2 species fits. Hs-PEX5-eGFP_34766_1comp.png Hs-PEX5-eGFP_34766_2comp.png
    • c1204, 1 species and 2 species fits. Hs-PEX5-eGFP_c1204_1comp.png Hs-PEX5-eGFP_c1204_2comp.png
    • fe81d, 1 species and 2 species fits. Hs-PEX5-eGFP_fe81d_1comp.png Hs-PEX5-eGFP_fe81d_2comp.png
    • ff67b, 1 species and 2 species fits. Hs-PEX5-eGFP_ff67b_1comp.png Hs-PEX5-eGFP_ff67b_2comp.png
  • now illlustrative correlations and fits from AF488 + DiO-LUVs (data with peak artifacts). This is the data we want to correct.
    • no correction, 1 species and 2 species fits. Tb-PEX5-eGFP_no-correction_1comp.png Tb-PEX5-eGFP_no-correction_2comp.png
    • 0cd20, 1 species and 2 species fits. Tb-PEX5-eGFP_0cd20_1comp.png Tb-PEX5-eGFP_0cd20_2comp.png
    • 19e3e, 1 species and 2 species fits. Tb-PEX5-eGFP_19e3e_1comp.png Tb-PEX5-eGFP_19e3e_2comp.png
    • 34a6d, 1 species and 2 species fits. Tb-PEX5-eGFP_34a6d_1comp.png Tb-PEX5-eGFP_34a6d_2comp.png
    • 484af, 1 species and 2 species fits. Tb-PEX5-eGFP_484af_1comp.png Tb-PEX5-eGFP_484af_2comp.png
    • 714af, 1 species and 2 species fits. Tb-PEX5-eGFP_714af_1comp.png Tb-PEX5-eGFP_714af_2comp.png
    • 34766, 1 species and 2 species fits. Tb-PEX5-eGFP_34766_1comp.png Tb-PEX5-eGFP_34766_2comp.png
    • c1204, 1 species and 2 species fits. Tb-PEX5-eGFP_c1204_1comp.png Tb-PEX5-eGFP_c1204_2comp.png
    • fe81d, 1 species and 2 species fits. Tb-PEX5-eGFP_fe81d_1comp.png Tb-PEX5-eGFP_fe81d_2comp.png
    • ff67b, 1 species and 2 species fits. Tb-PEX5-eGFP_ff67b_1comp.png Tb-PEX5-eGFP_ff67b_2comp.png
  • second, load modules and data
           %cd ~/Programme/drmed-git
    
           import os
           import numpy as np
           import matplotlib.pyplot as plt
           import pandas as pd
           import seaborn as sns
           from pathlib import Path
           from pprint import pprint
    
           sns.set_theme(style="whitegrid", font_scale=2.5, palette='colorblind',
                         context='paper')
    
           model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727',
                       '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65',
                       '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653',
                       'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216',
                       'c1204e3a8a1e4c40a35b5b7b1922d1ce']
    
           model_name_ls = [f'{s:.5}' for s in model_ls]
    
           path = Path('data/exp-220227-unet/2022-06-02_experimental-pex5/')
    
           # averaged values
           dirty_avg_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_avg_cas_1comp_outputParam.csv'
           dirty_avg_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_avg_cas_2comp_outputParam.csv'
           clean_avg_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_avg_cas_1comp_outputParam.csv'
           clean_avg_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_avg_cas_2comp_outputParam.csv'
    
           # dirty params
           dirty_noc_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_no-correction_1comp_outputParam.csv'
           dirty_noc_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_no-correction_2comp_outputParam.csv'
    
           dirty_0cd20_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_0cd20_1comp_outputParam.csv'
           dirty_0cd20_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_0cd20_2comp_outputParam.csv'
           dirty_19e3e_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_19e3e_1comp_outputParam.csv'
           dirty_19e3e_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_19e3e_2comp_outputParam.csv'
           dirty_34766_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_34766_1comp_outputParam.csv'
           dirty_34766_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_34766_2comp_outputParam.csv'
           dirty_34a6d_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_34a6d_1comp_outputParam.csv'
           dirty_34a6d_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_34a6d_2comp_outputParam.csv'
           dirty_484af_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_484af_1comp_outputParam.csv'
           dirty_484af_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_484af_2comp_outputParam.csv'
           dirty_714af_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_714af_1comp_outputParam.csv'
           dirty_714af_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_714af_2comp_outputParam.csv'
           dirty_c1204_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_c1204_1comp_outputParam.csv'
           dirty_c1204_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_c1204_2comp_outputParam.csv'
           dirty_fe81d_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_fe81d_1comp_outputParam.csv'
           dirty_fe81d_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_fe81d_2comp_outputParam.csv'
           dirty_ff67b_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_ff67b_1comp_outputParam.csv'
           dirty_ff67b_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_ff67b_2comp_outputParam.csv'
    
           # clean params
           clean_noc_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_no-correction_1comp_outputParam.csv'
           clean_noc_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_no-correction_2comp_outputParam.csv'
    
           clean_0cd20_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_0cd20_1comp_outputParam.csv'
           clean_0cd20_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_0cd20_2comp_outputParam.csv'
           clean_19e3e_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_19e3e_1comp_outputParam.csv'
           clean_19e3e_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_19e3e_2comp_outputParam.csv'
           clean_34766_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_34766_1comp_outputParam.csv'
           clean_34766_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_34766_2comp_outputParam.csv'
           clean_34a6d_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_34a6d_1comp_outputParam.csv'
           clean_34a6d_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_34a6d_2comp_outputParam.csv'
           clean_484af_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_484af_1comp_outputParam.csv'
           clean_484af_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_484af_2comp_outputParam.csv'
           clean_714af_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_714af_1comp_outputParam.csv'
           clean_714af_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_714af_2comp_outputParam.csv'
           clean_c1204_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_c1204_1comp_outputParam.csv'
           clean_c1204_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_c1204_2comp_outputParam.csv'
           clean_fe81d_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_fe81d_1comp_outputParam.csv'
           clean_fe81d_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_fe81d_2comp_outputParam.csv'
           clean_ff67b_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_ff67b_1comp_outputParam.csv'
           clean_ff67b_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_ff67b_2comp_outputParam.csv'
    
           # average parameters
           dirty_avg_1comp =  pd.read_csv(dirty_avg_1comp_path, sep=',').assign(
               artifact=10*['Tb-PEX5-eGFP',])
           dirty_avg_2comp =  pd.read_csv(dirty_avg_2comp_path, sep=',').assign(
               artifact=10*['Tb-PEX5-eGFP',])
           clean_avg_1comp =  pd.read_csv(clean_avg_1comp_path, sep=',').assign(
               artifact=10*['Hs-PEX5-eGFP',])
           clean_avg_2comp =  pd.read_csv(clean_avg_2comp_path, sep=',').assign(
               artifact=10*['Hs-PEX5-eGFP',])
    
           # dirty params
           dirty_noc_1comp = pd.read_csv(dirty_noc_1comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['No correction'])
           dirty_noc_2comp = pd.read_csv(dirty_noc_2comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['No correction'])
    
           dirty_0cd20_1comp =  pd.read_csv(dirty_0cd20_1comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['0cd20'])
           dirty_0cd20_2comp =  pd.read_csv(dirty_0cd20_2comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['0cd20'])
           dirty_19e3e_1comp =  pd.read_csv(dirty_19e3e_1comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['19e3e'])
           dirty_19e3e_2comp =  pd.read_csv(dirty_19e3e_2comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['19e3e'])
           dirty_34766_1comp =  pd.read_csv(dirty_34766_1comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['34766'])
           dirty_34766_2comp =  pd.read_csv(dirty_34766_2comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['34766'])
           dirty_34a6d_1comp =  pd.read_csv(dirty_34a6d_1comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['34a6d'])
           dirty_34a6d_2comp =  pd.read_csv(dirty_34a6d_2comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['34a6d'])
           dirty_484af_1comp =  pd.read_csv(dirty_484af_1comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['484af'])
           dirty_484af_2comp =  pd.read_csv(dirty_484af_2comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['484af'])
           dirty_714af_1comp =  pd.read_csv(dirty_714af_1comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['714af'])
           dirty_714af_2comp =  pd.read_csv(dirty_714af_2comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['714af'])
           dirty_c1204_1comp =  pd.read_csv(dirty_c1204_1comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['c1204'])
           dirty_c1204_2comp =  pd.read_csv(dirty_c1204_2comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['c1204'])
           dirty_fe81d_1comp =  pd.read_csv(dirty_fe81d_1comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['fe81d'])
           dirty_fe81d_2comp =  pd.read_csv(dirty_fe81d_2comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['fe81d'])
           dirty_ff67b_1comp =  pd.read_csv(dirty_ff67b_1comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['ff67b'])
           dirty_ff67b_2comp =  pd.read_csv(dirty_ff67b_2comp_path, sep=',').assign(
               artifact=250*['Tb-PEX5-eGFP',], processing=250*['ff67b'])
    
           # clean params
           clean_noc_1comp = pd.read_csv(clean_noc_1comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['No correction'])
           clean_noc_2comp = pd.read_csv(clean_noc_2comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['No correction'])
    
           clean_0cd20_1comp =  pd.read_csv(clean_0cd20_1comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['0cd20'])
           clean_0cd20_2comp =  pd.read_csv(clean_0cd20_2comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['0cd20'])
           clean_19e3e_1comp =  pd.read_csv(clean_19e3e_1comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['19e3e'])
           clean_19e3e_2comp =  pd.read_csv(clean_19e3e_2comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['19e3e'])
           clean_34766_1comp =  pd.read_csv(clean_34766_1comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['34766'])
           clean_34766_2comp =  pd.read_csv(clean_34766_2comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['34766'])
           clean_34a6d_1comp =  pd.read_csv(clean_34a6d_1comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['34a6d'])
           clean_34a6d_2comp =  pd.read_csv(clean_34a6d_2comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['34a6d'])
           clean_484af_1comp =  pd.read_csv(clean_484af_1comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['484af'])
           clean_484af_2comp =  pd.read_csv(clean_484af_2comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['484af'])
           clean_714af_1comp =  pd.read_csv(clean_714af_1comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['714af'])
           clean_714af_2comp =  pd.read_csv(clean_714af_2comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['714af'])
           clean_c1204_1comp =  pd.read_csv(clean_c1204_1comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['c1204'])
           clean_c1204_2comp =  pd.read_csv(clean_c1204_2comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['c1204'])
           clean_fe81d_1comp =  pd.read_csv(clean_fe81d_1comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['fe81d'])
           clean_fe81d_2comp =  pd.read_csv(clean_fe81d_2comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['fe81d'])
           clean_ff67b_1comp =  pd.read_csv(clean_ff67b_1comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['ff67b'])
           clean_ff67b_2comp =  pd.read_csv(clean_ff67b_2comp_path, sep=',').assign(
               artifact=250*['Hs-PEX5-eGFP',], processing=250*['ff67b'])
    
           avg_param = pd.concat([clean_avg_1comp, clean_avg_2comp,
                                  dirty_avg_1comp, dirty_avg_2comp])
           assert set(avg_param['Dimen']) == {'3D'}
           assert set(avg_param['AR1'] == {6.0})
           assert set(avg_param['Diff_eq']) == {'Equation 1B'}
           assert set(avg_param['Triplet_eq']) == {'Triplet Eq 2B'}
           assert set(avg_param['tauT1']) == {0.04}
           assert set(avg_param['alpha1']) == {1.0}
           assert set(avg_param['xmin']) == {0.001018}
           assert set(avg_param['xmax']) == {939.52409}
    
           all_param = pd.concat([clean_noc_1comp, clean_noc_2comp,
                                  dirty_noc_1comp, dirty_noc_2comp,
                                  dirty_0cd20_1comp, dirty_0cd20_2comp,
                                  dirty_19e3e_1comp, dirty_19e3e_2comp,
                                  dirty_34766_1comp, dirty_34766_2comp,
                                  dirty_34a6d_1comp, dirty_34a6d_2comp,
                                  dirty_484af_1comp, dirty_484af_2comp,
                                  dirty_714af_1comp, dirty_714af_2comp,
                                  dirty_c1204_1comp, dirty_c1204_2comp,
                                  dirty_fe81d_1comp, dirty_fe81d_2comp,
                                  dirty_ff67b_1comp, dirty_ff67b_2comp,
                                  clean_0cd20_1comp, clean_0cd20_2comp,
                                  clean_19e3e_1comp, clean_19e3e_2comp,
                                  clean_34766_1comp, clean_34766_2comp,
                                  clean_34a6d_1comp, clean_34a6d_2comp,
                                  clean_484af_1comp, clean_484af_2comp,
                                  clean_714af_1comp, clean_714af_2comp,
                                  clean_c1204_1comp, clean_c1204_2comp,
                                  clean_fe81d_1comp, clean_fe81d_2comp,
                                  clean_ff67b_1comp, clean_ff67b_2comp])
           assert set(all_param['Dimen']) == {'3D'}
           assert set(all_param['AR1'] == {6.0})
           assert set(all_param['Diff_eq']) == {'Equation 1B'}
           assert set(all_param['Triplet_eq']) == {'Triplet Eq 2B'}
           assert set(all_param['tauT1']) == {0.04}
           assert set(all_param['alpha1']) == {1.0}
           assert set(all_param['xmin']) == {0.001018}
           assert set(all_param['xmax']) == {939.52409}
    
           all_param
    
      nameofplot masterfile parentname parentuqid time of fit Diffeq Diffspecies Tripleteq Tripletspecies Dimen artifact processing A2 stdev(A2) txy2 stdev(txy2) alpha2 stdev(alpha2) AR2 stdev(AR2)
    0 2022-06-02tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:38:08 2022 Equation 1B 1 Triplet Eq 2B 1 3D Hs-PEX5-eGFP No correction NaN NaN NaN NaN NaN NaN NaN NaN
    1 2022-06-02tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:38:08 2022 Equation 1B 1 Triplet Eq 2B 1 3D Hs-PEX5-eGFP No correction NaN NaN NaN NaN NaN NaN NaN NaN
    2 2022-06-02tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:38:08 2022 Equation 1B 1 Triplet Eq 2B 1 3D Hs-PEX5-eGFP No correction NaN NaN NaN NaN NaN NaN NaN NaN
    3 2022-06-02tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:38:08 2022 Equation 1B 1 Triplet Eq 2B 1 3D Hs-PEX5-eGFP No correction NaN NaN NaN NaN NaN NaN NaN NaN
    4 2022-06-02tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:38:08 2022 Equation 1B 1 Triplet Eq 2B 1 3D Hs-PEX5-eGFP No correction NaN NaN NaN NaN NaN NaN NaN NaN
    245 2022-06-03tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:51:37 2022 Equation 1B 2 Triplet Eq 2B 1 3D Hs-PEX5-eGFP ff67b 0.294062 None 0.221001 None 1.0 None 6.0 None
    246 2022-06-03tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:51:37 2022 Equation 1B 2 Triplet Eq 2B 1 3D Hs-PEX5-eGFP ff67b 0.334689 None 0.203118 None 1.0 None 6.0 None
    247 2022-06-03tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:51:37 2022 Equation 1B 2 Triplet Eq 2B 1 3D Hs-PEX5-eGFP ff67b 0.285890 None 0.198634 None 1.0 None 6.0 None
    248 2022-06-03tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:51:37 2022 Equation 1B 2 Triplet Eq 2B 1 3D Hs-PEX5-eGFP ff67b 0.334689 None 0.203118 None 1.0 None 6.0 None
    249 2022-06-03tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:51:37 2022 Equation 1B 2 Triplet Eq 2B 1 3D Hs-PEX5-eGFP ff67b 0.334689 None 0.203118 None 1.0 None 6.0 None

    10000 rows × 43 columns

  • first, let’s again take a look only at avg_param. There, for each model all curves of hs-pex5-egfp and tb-pex5-egfp were fitted, and then the correlations were averaged. This gives us a good overview with direct comparison of model fit outcome to the fit outcomes without correction. BUT this is not enough to determine that the model is good enough, because in practice, we rarely take 250 times the same measurement and average. So this more resembles the optimal fit outcomes and in the final paper, I analysed the success via fit distributions (so plotting all 250 extracted transit times and comparing the distributions, see later)
           def sort_fit(param_ls):
               nfcs = list(param_ls)[-1]
               triplet = list(param_ls)[-2]
               array = np.array(list(param_ls)[:-2]).reshape((2, 2))
               # sort by transit times
               array = array[:, array[0, :].argsort()]
               A_fast = float(array[1, 0])
               A_slow = float(array[1, 1])
               N_fast = A_fast * (triplet * float(nfcs))
               N_slow = A_slow * (triplet * float(nfcs))
               t_fast = float(array[0, 0])
               t_slow = float(array[0, 1])
               if np.isnan(t_slow):
                   # if tt_low_high[0] <= t_fast <= tt_low_high[1]:
                   #     out = f'\\cellcolor[HTML]{{009e73}}${t_fast:.2f}$'
                   # else:
                   #     out = f'\\cellcolor[HTML]{{d55e00}}${t_fast:.2f}$'
                   out = f'$\\tau_D={t_fast:.2f}\\hspace{{3em}}N={nfcs:.1f}$'
               elif f'{A_fast:.0%}' == '100%':
                   # if tt_low_high[0] <= t_fast <= tt_low_high[1]:
                   #     out = f'\\cellcolor[HTML]{{009e73}}${t_fast:.2f}(100\\%)$'
                   # else:
                   #     out = f'\\cellcolor[HTML]{{d55e00}}${t_fast:.2f}(100\\%)$'
                   out = f'$\\tau_D^{{fast}}={t_fast:.2f}\\hspace{{1em}}N^{{fast}}={N_fast:.1f}$'
               elif f'{A_slow:.0%}' == '100%':
                   # if tt_low_high[0] <= t_slow <= tt_low_high[1]:
                   #     out = f'\\cellcolor[HTML]{{009e73}}${t_slow:.2f}(100\\%)$'
                   # else:
                   #     out = f'\\cellcolor[HTML]{{d55e00}}${t_slow:.2f}(100\\%)$'
                   out = f'$\\tau_D^{{slow}}={t_slow:.2f}\\hspace{{1em}}N^{{slow}}={N_slow:.1f}$'
               else:
                   # if (tt_low_high[0] <= t_fast <= tt_low_high[1]) or (
                   #     tt_low_high[0] <= t_slow <= tt_low_high[1]):
                   #     out = f'\\cellcolor[HTML]{{009e73}}\\colorbox[HTML]{{009e73}}{{\\makecell{{${t_fast:.2f}^f({A_fast:.0%})$\\\\'\
                   #           f'${t_slow:.2f}^s({A_slow:.0%})$}}}}'
                   # else:
                   #     out = f'\\cellcolor[HTML]{{d55e00}}\\colorbox[HTML]{{d55e00}}{{\\makecell{{${t_fast:.2f}^f({A_fast:.0%})$\\\\'\
                   #           f'${t_slow:.2f}^s({A_slow:.0%})$}}}}'
                   out = f'\\makecell{{$\\tau_D^{{fast}}={t_fast:.2f}\\hspace{{1em}}N^{{fast}}={N_fast:.1f}$\\\\'\
                         f'$\\tau_D^{{slow}}={t_slow:.2f}\\hspace{{1em}}N^{{slow}}={N_slow:.1f}$}}'
                   out = out.replace('%', '\\%')
               return out
    
           avg_param['fit results'] = avg_param[['txy1', 'txy2', 'A1', 'A2', 'T1', 'N (FCS)']].apply(lambda x: sort_fit(x), axis=1)
           avg_param = avg_param[['name_of_plot', 'Diff_species', 'artifact', 'fit results']]
           avg_param = avg_param.pivot_table(values='fit results',
                                             columns='artifact',
                                             index=['name_of_plot', 'Diff_species'],
                                             aggfunc=lambda x: '-'.join(x))
           avg_param.loc[('clean', 1), 'Tb-PEX5-eGFP'] = avg_param.loc[('dirty', 1), 'Tb-PEX5-eGFP']
           avg_param.loc[('clean', 2), 'Tb-PEX5-eGFP'] = avg_param.loc[('dirty', 2), 'Tb-PEX5-eGFP']
    
           avg_param = avg_param.rename(index={'clean' : 'no correction'})
           # to get all models
           first = ['no correction',] + model_name_ls.copy()
           # just two examples
           # first = ['no correction', '0cd20', '34a6d']
           second = [1, 2]
           index_order = pd.MultiIndex.from_product([first, second],
                                                    names=[r'\makecell{type of\\processing}', 'fit'])
           avg_param = avg_param.reindex(index=index_order)
    
           with pd.option_context("max_colwidth", 1000):
               print(avg_param.to_latex(escape=False,
                                        column_format='ccll',
                                        caption=(r'Experimental results PEX5 data. $\tau_D$ in $ms$. For 1 species fit, $N = N(FCS)$. For 2 species fit, $N^{sp} = A^{sp} * N(FCS)$ and $\tau_D$ is sorted in fast and slow. If $A^{sp}=100\%$, only display the corresponding $\tau_D$ and $N$ values','Experimental results PEX5 data.')))
    
           \begin{table}
           \centering
           \caption[Experimental results PEX5 data.]{Experimental results PEX5 data. $\tau_D$ in $ms$. For 1 species fit, $N = N(FCS)$. For 2 species fit, $N^{sp} = A^{sp} * N(FCS)$ and $\tau_D$ is sorted in fast and slow. If $A^{sp}=100\%$, only display the corresponding $\tau_D$ and $N$ values}
           \begin{tabular}{ccll}
           \toprule
                 & artifact &                                                                                              Hs-PEX5-eGFP &                                                                                             Tb-PEX5-eGFP \\
           \makecell{type of\\processing} & fit &                                                                                                           &                                                                                                          \\
           \midrule
           no correction & 1 &                                                                            $\tau_D=0.36\hspace{3em}N=1.1$ &                                                                           $\tau_D=0.52\hspace{3em}N=0.8$ \\
                 & 2 &     \makecell{$\tau_D^{fast}=0.36\hspace{1em}N^{fast}=0.1$\\$\tau_D^{slow}=0.36\hspace{1em}N^{slow}=0.1$} &   \makecell{$\tau_D^{fast}=0.45\hspace{1em}N^{fast}=0.2$\\$\tau_D^{slow}=13.44\hspace{1em}N^{slow}=0.0$} \\
           ff67b & 1 &                                                                            $\tau_D=0.23\hspace{3em}N=2.1$ &                                                                           $\tau_D=0.28\hspace{3em}N=1.5$ \\
                 & 2 &    \makecell{$\tau_D^{fast}=0.21\hspace{1em}N^{fast}=0.5$\\$\tau_D^{slow}=86.83\hspace{1em}N^{slow}=0.0$} &   \makecell{$\tau_D^{fast}=0.24\hspace{1em}N^{fast}=0.4$\\$\tau_D^{slow}=31.23\hspace{1em}N^{slow}=0.0$} \\
           34766 & 1 &                                                                            $\tau_D=0.39\hspace{3em}N=3.6$ &                                                                           $\tau_D=1.12\hspace{3em}N=4.1$ \\
                 & 2 &     \makecell{$\tau_D^{fast}=0.05\hspace{1em}N^{fast}=0.0$\\$\tau_D^{slow}=6.32\hspace{1em}N^{slow}=0.0$} &    \makecell{$\tau_D^{fast}=0.04\hspace{1em}N^{fast}=0.0$\\$\tau_D^{slow}=7.78\hspace{1em}N^{slow}=0.0$} \\
           714af & 1 &                                                                            $\tau_D=0.25\hspace{3em}N=2.8$ &                                                                           $\tau_D=0.37\hspace{3em}N=2.2$ \\
                 & 2 &    \makecell{$\tau_D^{fast}=0.15\hspace{1em}N^{fast}=0.6$\\$\tau_D^{slow}=11.84\hspace{1em}N^{slow}=0.1$} &    \makecell{$\tau_D^{fast}=0.13\hspace{1em}N^{fast}=0.4$\\$\tau_D^{slow}=3.61\hspace{1em}N^{slow}=0.1$} \\
           34a6d & 1 &                                                                            $\tau_D=0.39\hspace{3em}N=3.7$ &                                                                           $\tau_D=1.62\hspace{3em}N=4.2$ \\
                 & 2 &                                                            $\tau_D^{fast}=591.08\hspace{1em}N^{fast}=1.9$ &    \makecell{$\tau_D^{fast}=0.00\hspace{1em}N^{fast}=0.7$\\$\tau_D^{slow}=1.29\hspace{1em}N^{slow}=0.5$} \\
           484af & 1 &                                                                            $\tau_D=0.26\hspace{3em}N=1.9$ &                                                                           $\tau_D=0.24\hspace{3em}N=2.1$ \\
                 & 2 &    \makecell{$\tau_D^{fast}=0.23\hspace{1em}N^{fast}=0.4$\\$\tau_D^{slow}=73.45\hspace{1em}N^{slow}=0.0$} &   \makecell{$\tau_D^{fast}=0.20\hspace{1em}N^{fast}=0.5$\\$\tau_D^{slow}=63.57\hspace{1em}N^{slow}=0.0$} \\
           0cd20 & 1 &                                                                            $\tau_D=0.32\hspace{3em}N=1.1$ &                                                                           $\tau_D=0.33\hspace{3em}N=1.0$ \\
                 & 2 &                                                              $\tau_D^{fast}=0.32\hspace{1em}N^{fast}=0.2$ &                                                             $\tau_D^{fast}=0.33\hspace{1em}N^{fast}=0.2$ \\
           fe81d & 1 &                                                                            $\tau_D=0.27\hspace{3em}N=1.6$ &                                                                           $\tau_D=0.24\hspace{3em}N=1.7$ \\
                 & 2 &   \makecell{$\tau_D^{fast}=0.25\hspace{1em}N^{fast}=0.3$\\$\tau_D^{slow}=177.40\hspace{1em}N^{slow}=0.0$} &  \makecell{$\tau_D^{fast}=0.22\hspace{1em}N^{fast}=0.4$\\$\tau_D^{slow}=133.87\hspace{1em}N^{slow}=0.0$} \\
           19e3e & 1 &                                                                            $\tau_D=0.25\hspace{3em}N=2.0$ &                                                                           $\tau_D=0.24\hspace{3em}N=2.2$ \\
                 & 2 &   \makecell{$\tau_D^{fast}=0.23\hspace{1em}N^{fast}=0.4$\\$\tau_D^{slow}=146.64\hspace{1em}N^{slow}=0.0$} &   \makecell{$\tau_D^{fast}=0.20\hspace{1em}N^{fast}=0.5$\\$\tau_D^{slow}=78.29\hspace{1em}N^{slow}=0.0$} \\
           c1204 & 1 &                                                                            $\tau_D=2.69\hspace{3em}N=5.5$ &                                                                           $\tau_D=7.60\hspace{3em}N=6.1$ \\
                 & 2 &  \makecell{$\tau_D^{fast}=2.35\hspace{1em}N^{fast}=3.0$\\$\tau_D^{slow}=2000.00\hspace{1em}N^{slow}=0.8$} &    \makecell{$\tau_D^{fast}=0.00\hspace{1em}N^{fast}=1.1$\\$\tau_D^{slow}=6.86\hspace{1em}N^{slow}=0.6$} \\
           \bottomrule
           \end{tabular}
           \end{table}
    
  • now I put latex in a simple template of the Overleaf online latex editor like this
           \documentclass{article}
           \usepackage{booktabs} % for \toprule and \midrule in table
           \usepackage{makecell} % for linebreaks in table cells
    
           \begin{document}
           %% here the code abvoe
           \end{document}
    
    
  • the final rendering looks like this:
  • now, we work with all_param. Here, all single correlation curves are loaded without averaging.
           def sort_fit(param_ls):
               nfcs = list(param_ls)[-1]
               triplet = list(param_ls)[-2]
               array = np.array(list(param_ls)[:-2]).reshape((2, 2))
               # sort by transit times
               array = array[:, array[0, :].argsort()]
               A_fast = float(array[1, 0])
               A_slow = float(array[1, 1])
               N_fast = A_fast * (triplet * float(nfcs))
               N_slow = A_slow * (triplet * float(nfcs))
               t_fast = float(array[0, 0])
               t_slow = float(array[0, 1])
               # for pex5: want to plot t_slow
               if np.isnan(t_slow):
                   # 1-component fit
                   out = t_fast, N_fast, pd.NA, pd.NA
                   # out = pd.NA, pd.NA, t_fast, N_fast
               # 2-component fits
               elif f'{A_fast:.0%}' == '100%':
                   out = t_fast, N_fast, pd.NA, pd.NA
                   # out = pd.NA, pd.NA, t_fast, N_fast
               elif f'{A_slow:.0%}' == '100%':
                   # out = t_slow, N_slow, pd.NA, pd.NA
                   out = pd.NA, pd.NA, t_slow, N_slow
               else:
                   out = t_fast, N_fast, t_slow, N_slow
               return out
    
           def sort_fit_legend(param_ls):
               species = param_ls[0]
               component = param_ls[1]
    
               if species == 1:
                   legend = '$\\tau_D$ from\n1 species fit'
               elif (species == 2) and (component == 'fast'):
                   legend = '$\\tau_D$ from\nfast sp. of 2 sp. fit'
               elif (species == 2) and (component == 'slow'):
                   legend = '$\\tau_D$ from\nslow sp. of 2 sp. fit'
               return legend
    
           all_param[['t_fast', 'N_fast', 't_slow', 'N_slow']
                     ]= all_param[['txy1', 'txy2', 'A1', 'A2', 'T1', 'N (FCS)']
                                  ].apply(lambda x: sort_fit(x), axis=1, result_type='expand')
    
           all_param = pd.wide_to_long(all_param, stubnames=['t', 'N'],
                                       i=['name_of_plot', 'Diff_species', 'processing'],
                                       j='fit component',
                                       sep='_', suffix=r'\w+')
    
           all_param = all_param.reset_index()
           # if Diff_species is 1, there is only 1 component
           all_param = all_param[~((all_param['fit component'] == 'slow') & (all_param['Diff_species'] == 1))]
           all_param = all_param.reset_index()
    
           all_param['legend'] = all_param[['Diff_species', 'fit component']].apply(
               lambda x: sort_fit_legend(x), axis=1)
           print('before dropping NaNs')
           print('1 species fit: {}'.format(len(all_param[all_param["legend"] == "$\\tau_D$ from\n1 species fit"])))
           print('slow sp of 2 sp fit: {}'.format(len(all_param[all_param["legend"] == "$\\tau_D$ from\nslow sp. of 2 sp. fit"])))
           print('fast sp of 2 sp fit: {}'.format(len(all_param[all_param["legend"] == "$\\tau_D$ from\nfast sp. of 2 sp. fit"])))
    
           all_param = all_param[~pd.isna(all_param['t'])]
           print('after dropping NaNs')
           print('1 species fit: {}'.format(len(all_param[all_param["legend"] == "$\\tau_D$ from\n1 species fit"])))
           print('slow sp of 2 sp fit: {}'.format(len(all_param[all_param["legend"] == "$\\tau_D$ from\nslow sp. of 2 sp. fit"])))
           print('fast sp of 2 sp fit: {}'.format(len(all_param[all_param["legend"] == "$\\tau_D$ from\nfast sp. of 2 sp. fit"])))
    
           all_param = all_param[['legend', 't', 'N', 'artifact', 'processing']]
           all_param.loc[:, ['t', 'N']] = all_param.loc[:, ['t', 'N']].apply(pd.to_numeric)
           all_param
           N_param = all_param.pivot_table(values='N',
                                           index=all_param.index,
                                           columns=['processing', 'artifact', 'legend'],
                                           sort=False)
           t_param = all_param.pivot_table(values='t',
                                           index=all_param.index,
                                           columns=['processing', 'artifact', 'legend'])
           print('Statistics of fitted particle numbers')
           with pd.option_context('display.float_format', '{:.3f}'.format):
               display(pd.concat([pd.Series(N_param.median(axis=0), name='median'), N_param.describe().T], axis=1))
           print('Statistics of fitted transit times')
           display(pd.concat([pd.Series(t_param.median(axis=0), name='median'), t_param.describe().T], axis=1))
    
    before dropping NaNs
    1 species fit: 5000
    slow sp of 2 sp fit: 5000
    fast sp of 2 sp fit: 5000
    after dropping NaNs
    1 species fit: 5000
    slow sp of 2 sp fit: 4588
    fast sp of 2 sp fit: 4940
    Statistics of fitted particle numbers
    
          median count mean std min 25% 50% 75% max
    processing artifact legend                  
    0cd20 Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.266 250.000 0.253 0.068 0.094 0.193 0.266 0.303 0.489
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.043 249.000 0.056 0.047 0.000 0.043 0.043 0.043 0.264
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.029 226.000 0.036 0.024 0.000 0.029 0.029 0.029 0.177
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.208 250.000 0.210 0.033 0.132 0.186 0.208 0.229 0.298
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.193 244.000 0.175 0.074 0.000 0.176 0.193 0.212 0.319
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.014 79.000 0.049 0.068 0.000 0.003 0.014 0.060 0.239
    19e3e Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.422 250.000 0.534 0.313 0.000 0.367 0.422 0.532 1.748
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.047 250.000 0.063 0.115 0.000 0.047 0.047 0.047 0.888
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.031 250.000 0.033 0.027 0.000 0.031 0.031 0.031 0.324
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.659 250.000 0.653 0.239 0.000 0.497 0.659 0.796 1.372
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.032 249.000 0.086 0.132 0.000 0.000 0.032 0.108 0.744
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.010 250.000 0.039 0.080 0.000 0.000 0.010 0.036 0.770
    34766 Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 1.416 250.000 525.558 8274.061 0.000 1.015 1.416 2.362 130826.616
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.156 247.000 302.119 4744.397 0.000 0.156 0.156 0.156 74564.294
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.068 249.000 0.515 6.186 0.000 0.068 0.068 0.068 97.572
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 2.158 250.000 2.526 0.922 0.176 1.848 2.158 3.524 4.153
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000 248.000 0.160 0.365 0.000 0.000 0.000 0.056 1.599
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.000 250.000 0.225 0.691 0.000 0.000 0.000 0.007 4.143
    34a6d Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 1.377 250.000 1.954 1.534 0.000 1.117 1.377 2.135 7.288
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000 237.000 0.261 0.620 0.000 0.000 0.000 0.381 7.287
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.000 249.000 0.381 1.252 0.000 0.000 0.000 0.054 6.970
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 3.059 250.000 2.908 0.666 0.000 2.526 3.059 3.322 4.297
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000 250.000 0.019 0.157 0.000 0.000 0.000 0.000 1.549
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.000 250.000 0.007 0.062 0.000 0.000 0.000 0.000 0.819
    484af Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.413 250.000 0.508 0.251 0.000 0.371 0.413 0.521 1.576
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.343 250.000 0.390 0.202 0.000 0.293 0.343 0.406 1.301
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.014 247.000 0.021 0.020 0.000 0.010 0.014 0.024 0.140
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.588 250.000 0.601 0.213 0.000 0.472 0.588 0.726 1.269
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.074 250.000 0.079 0.060 0.000 0.074 0.074 0.074 0.656
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.053 250.000 0.052 0.016 0.000 0.053 0.053 0.053 0.225
    714af Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.767 250.000 1.131 0.801 0.000 0.618 0.767 1.472 3.447
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.434 250.000 0.397 0.315 0.000 0.225 0.434 0.551 2.821
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.023 247.000 0.059 0.169 0.000 0.010 0.023 0.039 1.567
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.997 250.000 1.003 0.419 0.229 0.633 0.997 1.262 2.225
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.056 250.000 0.169 0.208 0.000 0.000 0.056 0.307 0.812
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.011 250.000 0.034 0.056 0.000 0.000 0.011 0.050 0.382
    No correction Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.268 250.000 0.257 0.071 0.118 0.194 0.268 0.309 0.508
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.253 249.000 0.235 0.087 0.000 0.173 0.253 0.297 0.505
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.003 156.000 0.012 0.034 0.000 0.002 0.003 0.005 0.259
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.189 250.000 0.188 0.041 0.012 0.169 0.189 0.212 0.292
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.166 249.000 0.155 0.059 0.000 0.137 0.166 0.195 0.275
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.006 226.000 0.008 0.008 0.000 0.003 0.006 0.011 0.046
    c1204 Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 3.582 250.000 1800.956 16542.991 0.000 2.368 3.582 4.792 186293.638
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.252 248.000 0.366 0.804 0.000 0.252 0.252 0.252 8.390
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.062 248.000 0.190 0.663 0.000 0.062 0.062 0.062 6.570
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 4.392 250.000 5.219 2.156 0.000 3.632 4.392 7.214 11.235
        \(\tau_D\) from\nfast sp. of 2 sp. fit 2.757 242.000 3.311 2.830 0.000 1.054 2.757 4.820 11.086
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.629 177.000 1.297 1.914 0.000 0.000 0.629 1.264 8.789
    fe81d Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.326 250.000 0.393 0.197 0.000 0.298 0.326 0.377 1.327
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.030 250.000 0.044 0.100 0.000 0.030 0.030 0.030 1.038
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.018 250.000 0.022 0.022 0.000 0.018 0.018 0.018 0.235
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.427 250.000 0.440 0.157 0.000 0.336 0.427 0.543 0.900
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.062 228.000 0.154 0.181 0.000 0.009 0.062 0.248 0.790
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.022 235.000 0.082 0.133 0.000 0.005 0.022 0.074 0.545
    ff67b Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.502 250.000 0.557 0.202 0.185 0.428 0.502 0.603 1.429
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.029 250.000 0.051 0.121 0.000 0.029 0.029 0.029 0.978
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.014 250.000 0.020 0.026 0.000 0.014 0.014 0.014 0.227
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.412 250.000 0.438 0.120 0.236 0.358 0.412 0.489 0.837
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.337 250.000 0.345 0.127 0.000 0.279 0.337 0.399 0.781
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.015 249.000 0.019 0.030 0.000 0.011 0.015 0.020 0.422
    Statistics of fitted transit times
    
          median count mean std min 25% 50% 75% max
    processing artifact legend                  
    0cd20 Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.323617 250.0 0.320864 0.020821 0.249462 0.308254 0.323617 0.335541 0.359334
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000172 249.0 0.060898 0.119981 0.000100 0.000100 0.000172 0.004964 0.333456
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.299218 226.0 0.652991 5.386862 0.230471 0.299212 0.299218 0.299225 81.276695
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.324881 250.0 0.326603 0.027692 0.259626 0.309170 0.324881 0.343199 0.429618
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.330889 244.0 0.296751 0.115240 0.000100 0.304649 0.330889 0.336307 0.565352
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.344133 79.0 96.592373 358.830694 0.232596 0.291604 0.344133 3.224768 1999.956477
    19e3e Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.248882 250.0 0.246302 0.043006 0.034228 0.231552 0.248882 0.266995 0.492987
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000100 250.0 0.007082 0.035425 0.000100 0.000100 0.000100 0.000100 0.311329
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.231668 250.0 11.096372 128.807510 0.160041 0.231668 0.231668 0.231668 1999.965381
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.237834 250.0 0.241093 0.056889 0.123511 0.205615 0.237834 0.265857 0.711353
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.005744 249.0 0.046721 0.065354 0.000100 0.000100 0.005744 0.105139 0.312681
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.214517 250.0 13.995457 40.382504 0.130520 0.184269 0.214517 2.095036 392.234249
    34766 Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.282741 250.0 1.960813 10.421541 0.000109 0.211177 0.282741 0.804156 161.798448
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000100 247.0 0.140035 1.065767 0.000100 0.000100 0.000100 0.000100 12.772683
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.199918 249.0 40.935269 281.035522 0.036570 0.199918 0.199918 0.199918 2000.000000
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.691528 250.0 2.826474 3.458340 0.150428 0.417778 0.691528 5.433018 19.065626
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.051069 248.0 0.055039 0.052744 0.000100 0.020852 0.051069 0.065619 0.366803
        \(\tau_D\) from\nslow sp. of 2 sp. fit 7.512514 250.0 8.054456 4.969898 0.134926 5.006964 7.512514 10.973836 30.326475
    34a6d Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.284963 250.0 2.814169 7.351230 0.001338 0.236236 0.284963 0.512840 40.170929
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.063051 237.0 0.220596 2.374881 0.000100 0.045802 0.063051 0.087420 36.620450
        \(\tau_D\) from\nslow sp. of 2 sp. fit 9.022691 249.0 10.867661 7.960415 0.106761 6.005959 9.022691 13.070269 47.255466
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 1.834290 250.0 2.268876 1.877872 0.088689 0.856312 1.834290 3.069606 10.252194
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.052587 250.0 0.052591 0.005518 0.016660 0.052587 0.052587 0.052587 0.122504
        \(\tau_D\) from\nslow sp. of 2 sp. fit 7.066470 250.0 7.212279 1.224819 3.041586 7.066470 7.066470 7.066470 20.280015
    484af Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.265457 250.0 0.260147 0.040656 0.128895 0.240648 0.265457 0.283187 0.444097
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.233343 250.0 0.222758 0.050222 0.000100 0.200308 0.233343 0.257370 0.328613
        \(\tau_D\) from\nslow sp. of 2 sp. fit 69.916879 247.0 133.744606 200.200824 0.142299 38.940604 69.916879 147.092548 1924.273303
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.241658 250.0 0.243606 0.044011 0.113022 0.213493 0.241658 0.271191 0.435722
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000100 250.0 0.004805 0.031999 0.000100 0.000100 0.000100 0.000100 0.357377
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.221663 250.0 0.666995 3.190823 0.155482 0.221663 0.221663 0.221663 27.635426
    714af Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.233111 250.0 0.411415 0.475560 0.027502 0.204674 0.233111 0.326329 3.026657
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.151704 250.0 0.139625 0.181602 0.000100 0.073383 0.151704 0.176694 2.807864
        \(\tau_D\) from\nslow sp. of 2 sp. fit 15.624278 247.0 33.247501 63.227049 0.137890 6.196147 15.624278 35.200767 651.235702
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.366270 250.0 0.401344 0.128259 0.187158 0.329494 0.366270 0.431351 1.122314
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.077699 250.0 0.101588 0.078889 0.000100 0.050206 0.077699 0.153557 0.330826
        \(\tau_D\) from\nslow sp. of 2 sp. fit 3.390052 250.0 4.456640 4.540913 0.198274 1.685021 3.390052 5.868710 36.023611
    No correction Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.356176 250.0 0.356892 0.017251 0.316204 0.345597 0.356176 0.367787 0.422647
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.348573 249.0 0.330113 0.080803 0.000100 0.334796 0.348573 0.359479 0.422648
        \(\tau_D\) from\nslow sp. of 2 sp. fit 42.013383 156.0 234.082459 382.506491 0.301974 10.840074 42.013383 273.555579 1999.121327
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.437270 250.0 0.507154 0.229794 0.351314 0.403647 0.437270 0.498338 2.429498
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.391268 249.0 0.389270 0.136774 0.000100 0.365634 0.391268 0.428259 1.044106
        \(\tau_D\) from\nslow sp. of 2 sp. fit 15.194065 226.0 89.237400 267.388024 0.352227 5.441904 15.194065 43.653002 2000.000000
    c1204 Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.651378 250.0 4.339958 9.135442 0.000100 0.255066 0.651378 3.500988 70.322682
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000100 248.0 0.194788 1.877687 0.000100 0.000100 0.000100 0.000100 26.384233
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.195006 248.0 1.556390 12.510745 0.099500 0.195006 0.195006 0.195006 193.005430
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 4.027498 250.0 39.287596 137.224405 0.087313 2.197479 4.027498 42.922206 1999.613089
        \(\tau_D\) from\nfast sp. of 2 sp. fit 3.121523 242.0 24.498094 44.439024 0.000100 0.078008 3.121523 35.018711 300.809427
        \(\tau_D\) from\nslow sp. of 2 sp. fit 1182.632990 177.0 1021.164847 960.486419 0.148180 10.943002 1182.632990 1999.979383 2000.000000
    fe81d Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.270886 250.0 0.264426 0.040805 0.126198 0.239281 0.270886 0.292043 0.417882
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000100 250.0 0.005696 0.031403 0.000100 0.000100 0.000100 0.000225 0.277912
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.253200 250.0 1.574326 8.690581 0.159645 0.253200 0.253200 0.253200 91.512999
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.237785 250.0 0.239106 0.035075 0.162728 0.215458 0.237785 0.258728 0.452019
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.095902 228.0 0.111506 0.108528 0.000100 0.000513 0.095902 0.223517 0.452037
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.238129 235.0 25.725146 77.901884 0.148100 0.201307 0.238129 7.581677 739.642771
    ff67b Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.230441 250.0 0.239749 0.047058 0.144283 0.213528 0.230441 0.250664 0.577085
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000100 250.0 0.007750 0.041582 0.000100 0.000100 0.000100 0.000100 0.288617
        \(\tau_D\) from\nslow sp. of 2 sp. fit 0.203118 250.0 5.851806 61.517373 0.148434 0.203118 0.203118 0.203118 922.471752
      Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.280494 250.0 0.281235 0.040631 0.184676 0.253043 0.280494 0.306884 0.405158
        \(\tau_D\) from\nfast sp. of 2 sp. fit 0.237870 250.0 0.229680 0.058269 0.000100 0.206773 0.237870 0.265449 0.362244
        \(\tau_D\) from\nslow sp. of 2 sp. fit 31.791098 249.0 46.205757 52.410003 0.158099 14.756188 31.791098 58.344302 455.148873
  • now we plot fit outcomes (transit times, particle numbers) after neural network prediction and cut and stitch correction. For this PEX5 data, we compare Hs-PEX5-eGFP (no artifacts) against Tb-PEX5-eGFP (peak artifacts). The gold standard was the 1 component fit of Hs-PEX5-eGFP without any correction (see median values plotted with a horizontal line). Here, the results were much more mixed, so I kept the 1 species fit, which worked best, and all 2 species fits. The best method was 0cd20 (only 1 species fits) which corrected the Tb-PEX5-eGFP traces without distorting the Hs-PEX5-eGFP traces. All other models had problems.
           pub_param = all_param.replace(['0cd20'], '0cd20: large model\n(200 MB), 6 levels,\npool size=4, scaler\n=quantile transform\n(Gaussian pdf)')
           pub_param = pub_param.replace(['34a6d'], '34a6d: small model\n(7 MB), 3 levels,\npool size=4, scaler=l2')
           pub_param = pub_param.replace(['484af'], '484af: large model\n(275 MB), 7 levels,\npool_size=2, scaler\n=standard')
           pub_param = pub_param.replace(['fe81d'], 'fe81d: large model\n(186 MB), 4 levels,\npool_size=4, scaler\n=standard')
           pub_param = pub_param.replace(['ff67b'], 'ff67b: small model\n(14 MB), 5 levels,\npool_size=4, scaler\n=minmax')
           pub_param = pub_param.replace(['19e3e'], '19e3e: large model\n(172 MB), 3 levels,\npool_size=4, scaler\n=standard')
           pub_param = pub_param.replace(['34766'], '34766: middle-sized\nmodel (73 MB), 5 levels,\npool_size=4, scaler\n=robust')
           pub_param = pub_param.replace(['c1204'], 'c1204: large model\n(312 MB), 9 levels,\npool_size=2, scaler\n=robust')
           pub_param = pub_param.replace(['714af'], '714af: large model\n(234 MB), 5 levels,\npool_size=4, scaler\n=maxabs')
           # to make log plot work with a catplot violin plot, we have to do the
           # log transform manually
           pub_param.loc[:, 't'] = pub_param.loc[:, 't'].apply(lambda x: np.log10(x))
    
           g = sns.catplot(data=pub_param,
                           y='t',
                           x='processing',
                           row='artifact',
                           hue='legend',
                           height=9,
                           aspect=3.5,
                           legend_out=True,
                           kind='violin',
                           sharey=True,
                           showfliers=False,
                           scale='width',
                           cut=0)
           g._legend.remove()
           for i, ax in enumerate(g.axes):
               clean = pub_param[(pub_param['processing'] == 'No correction') &
                                 (pub_param['artifact'] == 'Hs-PEX5-eGFP')]
               median = clean['t'].median()
               median_text = 10**median
               line = ax[0].axhline(median, lw=4, label='', ls='--')
               line_legend = {f'\n$\\tau_{{exp}}={median_text:.2f}ms$' : line}
               g._legend_data.update(line_legend)
           g.add_legend(g._legend_data)
    
           g.fig.suptitle('Model performance in simulation → prediction → correction pipeline successfully (transit times)', size=25)
    
           plt.setp(g.axes, yscale='linear', ylabel=r'log transit time $\tau_{D}$ $[ms]$',
                    xlabel='', xlim=None)
           for i, ax in enumerate(g.axes):
               ylab = ax[0].get_yticklabels()
               # because seaborns violinplot does not support kde calculation in log values,
               # I have to do this manually, by first log-transforming the data, now
               # extracting the yticklabels and manually transforming them back.
               ylab_power = [10**lab.get_position()[1] for lab in ylab]
               ax[0].set_yticklabels(ylab_power)
           # the following code snippet makes minor grid lines in log plots visible. Since I have to
           # hack the log axis here to make violin catplots work, this is not possible
           # for ax in g.axes.flatten():
           #     ax.grid(visible=True, which='both', axis='y')
           g.tight_layout()
           savefig = f'./data/exp-220227-unet/jupyter/analysis3_pex5_transit-times'
           plt.savefig(f'{savefig}.pdf', dpi=300)
           # os.system(f'pdf2svg {savefig}.pdf {savefig}.svg')
           plt.close('all')
    
           g = sns.catplot(data=pub_param,
                           y='N',
                           x='processing',
                           row='artifact',
                           hue='legend',
                           height=9,
                           aspect=3.5,
                           legend_out=True,
                           kind='violin',
                           sharey=True,
                           showfliers=False,
                           scale='width',
                           cut=0)
           g._legend.remove()
           for i, ax in enumerate(g.axes):
               clean = pub_param[(pub_param['processing'] == 'No correction') &
                                 (pub_param['artifact'] == 'Hs-PEX5-eGFP')]
               median = clean['N'].median()
               line = ax[0].axhline(median, lw=4, label='', ls=':')
               line_legend = {f'\n$N{{exp}}={median:.2f}$' : line}
               g._legend_data.update(line_legend)
           g.add_legend(g._legend_data)
    
           g.fig.suptitle('Model performance in Simulation → prediction → correction pipeline (particle numbers)', size=25)
    
           plt.setp(g.axes, yscale='linear', ylabel=r'particle number $N$ $[fl^{-1}]$',
                    xlabel='', ylim=[-0.1, 3])
           # for i, ax in enumerate(g.axes):
           #     ylab = ax[0].get_yticklabels()
           #     # because seaborns violinplot does not support kde calculation in log values,
           #     # I have to do this manually, by first log-transforming the data, now
           #     # extracting the yticklabels and manually transforming them back.
           #     ylab_power = [10**lab.get_position()[1] for lab in ylab]
           #     ax[0].set_yticklabels(ylab_power)
    
           g.tight_layout()
           savefig =  f'./data/exp-220227-unet/jupyter/analysis3_pex5_particle-numbers'
           plt.savefig(f'{savefig}.pdf', dpi=300)
           # os.system(f'pdf2svg {savefig}.pdf {savefig}.svg')
           plt.close('all')
    
    /tmp/ipykernel_371129/654097065.py:48: UserWarning: FixedFormatter should only be used together with FixedLocator
      ax[0].set_yticklabels(ylab_power)
    
  • this is the two plots as PDFs, first the comparison of transit times, second the comparison of particle numbers

2.6.14 final remarks

  • This is a table for quick lookup of all metrics of the best models after 100th epoch with hparams
    run valauc valf1 0.5 valprec 0.5 valrecall 0.5 model size hpbatchsize hpfirstfilters hpinputsize hplrpower hplrstart hpnlevels hppoolsize hpscaler
    484af471c61943fa90e5f78e78a229f0 0.9814 0.9187 0.9091 0.9285 275 MB 26 44 16384 (here: 14000) 1 0.0136170138242663 7 2 standard
    0cd2023eeaf745aca0d3e8ad5e1fc653 0.9818 0.9069 0.8955 0.9185 200 MB 15 23 16384 (here: 14000) 7 0.0305060808685107 6 4 quantg
    fe81d71c52404ed790b3a32051258da9 0.9849 0.9260 0.9184 0.9338 186 MB 20 78 16384 (here: 14000) 4 0.0584071108418767 4 4 standard
    ff67be0b68e540a9a29a36a2d0c7a5be + 0.9859 0.9298 0.9230 0.9367 14 MB 28 6 16384 (here: 14000) 1 0.0553313915596308 5 4 minmax
    19e3e786e1bc4e2b93856f5dc9de8216 0.9595 0.8911 0.8983 0.8839 172 MB 20 128 16384 (here: 14000) 1 0.043549707353273 3 4 standard
    347669d050f344ad9fb9e480c814f727 + 0.9848 0.9246 0.9254 0.9238 73 MB 10 16 8192 (here: 14000) 1 0.0627676336651573 5 4 robust
    c1204e3a8a1e4c40a35b5b7b1922d1ce 0.9858 0.9207 0.9179 0.9234 312 MB 14 16 16384 (here: 14000) 5 0.0192390310290551 9 2 robust
    714af8cd12c1441eac4ca980e8c20070 + 0.9843 0.9304 0.9257 0.9352 234 MB 9 64 4096 (here: 14000) 1 0.0100697459464075 5 4 maxabs
    34a6d207ac594035b1009c330fb67a65 + 0.9652 0.8613 0.8598 0.8629 7 MB 17 16 16384 (here: 14000) 5 0.0101590069352232 3 4 l2
  • I did further evaluation of the most promising model, 0cd20, and applied averaging and set to zero corrections. For these results, see exp-220316-publication1

2.7 exp-220316-publication1

2.7.1 Setup: Jupyter on local computer

  1. let’s start a conda environment in the sh session local and start jupterlab there.
            conda activate tf
            jupyter lab --no-browser --port=8888
    
    sh-5.1$ [I 2023-01-03 14:36:05.432 ServerApp] jupyterlab | extension was successfully linked.
    [I 2023-01-03 14:36:05.738 ServerApp] nbclassic | extension was successfully linked.
    [I 2023-01-03 14:36:05.805 LabApp] JupyterLab extension loaded from /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/jupyterlab
    [I 2023-01-03 14:36:05.805 LabApp] JupyterLab application directory is /home/lex/Programme/miniconda3/envs/tf/share/jupyter/lab
    [I 2023-01-03 14:36:05.811 ServerApp] jupyterlab | extension was successfully loaded.
    [I 2023-01-03 14:36:05.823 ServerApp] nbclassic | extension was successfully loaded.
    [I 2023-01-03 14:36:05.824 ServerApp] Serving notebooks from local directory: /home/lex/Programme/drmed-git
    [I 2023-01-03 14:36:05.824 ServerApp] Jupyter Server 1.4.1 is running at:
    [I 2023-01-03 14:36:05.824 ServerApp] http://localhost:8888/lab?token=8b657ca59261218ed47d32775aa4dd87bac4e9116158bfbd
    [I 2023-01-03 14:36:05.824 ServerApp]  or http://127.0.0.1:8888/lab?token=8b657ca59261218ed47d32775aa4dd87bac4e9116158bfbd
    [I 2023-01-03 14:36:05.824 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
    [C 2023-01-03 14:36:05.837 ServerApp]
    
        To access the server, open this file in a browser:
            file:///home/lex/.local/share/jupyter/runtime/jpserver-7169-open.html
        Or copy and paste one of these URLs:
            http://localhost:8888/lab?token=8b657ca59261218ed47d32775aa4dd87bac4e9116158bfbd
         or http://127.0.0.1:8888/lab?token=8b657ca59261218ed47d32775aa4dd87bac4e9116158bfbd
    
    
  2. I started a Python3 kernel using jupyter-server-list-kernels. Then I added the kernel ID to the :PROPERTIES: drawer of this (and following) subtrees.
          python3           03038b73-b2b5-49ce-a1dc-21afb6247d0f   a few seconds ago    starting   0
    
  3. Test: (#+CALL: jp-metadata(_long='True))
            No of CPUs in system: 4
            No of CPUs the current process can use: 4
            load average: (0.5380859375, 0.63232421875, 1.0)
            os.uname():  posix.uname_result(sysname='Linux', nodename='Topialex', release='5.15.60-1-MANJARO', version='#1 SMP PREEMPT Thu Aug 11 13:14:05 UTC 2022', machine='x86_64')
            PID of process: 196700
            RAM total: 16Gi, RAM used: 8,6Gi, RAM free: 5,9Gi
            the current directory: /home/lex/Programme/drmed-git
            My disk usage:
            Filesystem      Size  Used Avail Use% Mounted on
            dev             3,9G     0  3,9G   0% /dev
            run             3,9G  1,5M  3,9G   1% /run
            /dev/sda2       167G  133G   26G  85% /
            tmpfs           3,9G  197M  3,7G   6% /dev/shm
            tmpfs           3,9G   23M  3,9G   1% /tmp
            /dev/sda1       300M  264K  300M   1% /boot/efi
            tmpfs           784M  124K  784M   1% /run/user/1000# packages in environment at /home/lex/Programme/miniconda3/envs/tf:
            #
            # Name                    Version                   Build  Channel
            _libgcc_mutex             0.1                        main
            _openmp_mutex             4.5                       1_gnu
            absl-py                   1.0.0                    pypi_0    pypi
            alembic                   1.4.1                    pypi_0    pypi
            anyio                     2.2.0            py39h06a4308_1
            argon2-cffi               20.1.0           py39h27cfd23_1
            asteval                   0.9.25                   pypi_0    pypi
            astroid                   2.9.2                    pypi_0    pypi
            astunparse                1.6.3                    pypi_0    pypi
            async_generator           1.10               pyhd3eb1b0_0
            attrs                     21.2.0             pyhd3eb1b0_0
            babel                     2.9.1              pyhd3eb1b0_0
            backcall                  0.2.0              pyhd3eb1b0_0
            bleach                    4.0.0              pyhd3eb1b0_0
            brotlipy                  0.7.0           py39h27cfd23_1003
            ca-certificates           2021.10.26           h06a4308_2
            cachetools                4.2.4                    pypi_0    pypi
            certifi                   2021.10.8        py39h06a4308_0
            cffi                      1.14.6           py39h400218f_0
            charset-normalizer        2.0.4              pyhd3eb1b0_0
            click                     8.0.3                    pypi_0    pypi
            cloudpickle               2.0.0                    pypi_0    pypi
            cryptography              36.0.0           py39h9ce1e76_0
            cycler                    0.11.0                   pypi_0    pypi
            cython                    0.29.26                  pypi_0    pypi
            databricks-cli            0.16.2                   pypi_0    pypi
            debugpy                   1.5.1            py39h295c915_0
            decorator                 5.1.0              pyhd3eb1b0_0
            defusedxml                0.7.1              pyhd3eb1b0_0
            docker                    5.0.3                    pypi_0    pypi
            entrypoints               0.3              py39h06a4308_0
            fcsfiles                  2021.6.6                 pypi_0    pypi
            flake8                    4.0.1                    pypi_0    pypi
            flask                     2.0.2                    pypi_0    pypi
            flatbuffers               2.0                      pypi_0    pypi
            focuspoint                0.1                      pypi_0    pypi
            fonttools                 4.28.5                   pypi_0    pypi
            future                    0.18.2                   pypi_0    pypi
            gast                      0.4.0                    pypi_0    pypi
            gitdb                     4.0.9                    pypi_0    pypi
            gitpython                 3.1.24                   pypi_0    pypi
            google-auth               2.3.3                    pypi_0    pypi
            google-auth-oauthlib      0.4.6                    pypi_0    pypi
            google-pasta              0.2.0                    pypi_0    pypi
            greenlet                  1.1.2                    pypi_0    pypi
            grpcio                    1.43.0                   pypi_0    pypi
            gunicorn                  20.1.0                   pypi_0    pypi
            h5py                      3.6.0                    pypi_0    pypi
            idna                      3.3                pyhd3eb1b0_0
            importlib-metadata        4.8.2            py39h06a4308_0
            importlib_metadata        4.8.2                hd3eb1b0_0
            ipykernel                 6.4.1            py39h06a4308_1
            ipython                   7.29.0           py39hb070fc8_0
            ipython_genutils          0.2.0              pyhd3eb1b0_1
            isort                     5.10.1                   pypi_0    pypi
            itsdangerous              2.0.1                    pypi_0    pypi
            jedi                      0.18.0           py39h06a4308_1
            jinja2                    3.0.2              pyhd3eb1b0_0
            joblib                    1.1.0                    pypi_0    pypi
            json5                     0.9.6              pyhd3eb1b0_0
            jsonschema                3.2.0              pyhd3eb1b0_2
            jupyter_client            7.1.0              pyhd3eb1b0_0
            jupyter_core              4.9.1            py39h06a4308_0
            jupyter_server            1.4.1            py39h06a4308_0
            jupyterlab                3.2.1              pyhd3eb1b0_1
            jupyterlab_pygments       0.1.2                      py_0
            jupyterlab_server         2.8.2              pyhd3eb1b0_0
            keras                     2.7.0                    pypi_0    pypi
            keras-preprocessing       1.1.2                    pypi_0    pypi
            kiwisolver                1.3.2                    pypi_0    pypi
            lazy-object-proxy         1.7.1                    pypi_0    pypi
            ld_impl_linux-64          2.35.1               h7274673_9
            libclang                  12.0.0                   pypi_0    pypi
            libffi                    3.3                  he6710b0_2
            libgcc-ng                 9.3.0               h5101ec6_17
            libgomp                   9.3.0               h5101ec6_17
            libsodium                 1.0.18               h7b6447c_0
            libstdcxx-ng              9.3.0               hd4cf53a_17
            lmfit                     1.0.3                    pypi_0    pypi
            mako                      1.1.6                    pypi_0    pypi
            markdown                  3.3.6                    pypi_0    pypi
            markupsafe                2.0.1            py39h27cfd23_0
            matplotlib                3.5.1                    pypi_0    pypi
            matplotlib-inline         0.1.2              pyhd3eb1b0_2
            mccabe                    0.6.1                    pypi_0    pypi
            mistune                   0.8.4           py39h27cfd23_1000
            mlflow                    1.22.0                   pypi_0    pypi
            multipletau               0.3.3                    pypi_0    pypi
            mypy                      0.930                    pypi_0    pypi
            mypy-extensions           0.4.3                    pypi_0    pypi
            nbclassic                 0.2.6              pyhd3eb1b0_0
            nbclient                  0.5.3              pyhd3eb1b0_0
            nbconvert                 6.1.0            py39h06a4308_0
            nbformat                  5.1.3              pyhd3eb1b0_0
            ncurses                   6.3                  h7f8727e_2
            nest-asyncio              1.5.1              pyhd3eb1b0_0
            nodeenv                   1.6.0                    pypi_0    pypi
            notebook                  6.4.6            py39h06a4308_0
            numpy                     1.21.5                   pypi_0    pypi
            oauthlib                  3.1.1                    pypi_0    pypi
            openssl                   1.1.1l               h7f8727e_0
            opt-einsum                3.3.0                    pypi_0    pypi
            packaging                 21.3               pyhd3eb1b0_0
            pandas                    1.3.5                    pypi_0    pypi
            pandocfilters             1.4.3            py39h06a4308_1
            parso                     0.8.2              pyhd3eb1b0_0
            pexpect                   4.8.0              pyhd3eb1b0_3
            pickleshare               0.7.5           pyhd3eb1b0_1003
            pillow                    8.4.0                    pypi_0    pypi
            pip                       21.2.4           py39h06a4308_0
            platformdirs              2.4.1                    pypi_0    pypi
            prometheus-flask-exporter 0.18.7                   pypi_0    pypi
            prometheus_client         0.12.0             pyhd3eb1b0_0
            prompt-toolkit            3.0.20             pyhd3eb1b0_0
            protobuf                  3.19.1                   pypi_0    pypi
            ptyprocess                0.7.0              pyhd3eb1b0_2
            pyasn1                    0.4.8                    pypi_0    pypi
            pyasn1-modules            0.2.8                    pypi_0    pypi
            pycodestyle               2.8.0                    pypi_0    pypi
            pycparser                 2.21               pyhd3eb1b0_0
            pydot                     1.4.2                    pypi_0    pypi
            pyflakes                  2.4.0                    pypi_0    pypi
            pygments                  2.10.0             pyhd3eb1b0_0
            pylint                    2.12.2                   pypi_0    pypi
            pyopenssl                 21.0.0             pyhd3eb1b0_1
            pyparsing                 3.0.4              pyhd3eb1b0_0
            pyright                   0.0.13                   pypi_0    pypi
            pyrsistent                0.18.0           py39heee7806_0
            pysocks                   1.7.1            py39h06a4308_0
            python                    3.9.7                h12debd9_1
            python-dateutil           2.8.2              pyhd3eb1b0_0
            python-editor             1.0.4                    pypi_0    pypi
            pytz                      2021.3             pyhd3eb1b0_0
            pyyaml                    6.0                      pypi_0    pypi
            pyzmq                     22.3.0           py39h295c915_2
            querystring-parser        1.2.4                    pypi_0    pypi
            readline                  8.1                  h27cfd23_0
            requests                  2.26.0             pyhd3eb1b0_0
            requests-oauthlib         1.3.0                    pypi_0    pypi
            rsa                       4.8                      pypi_0    pypi
            scikit-learn              1.0.2                    pypi_0    pypi
            scipy                     1.7.3                    pypi_0    pypi
            seaborn                   0.11.2                   pypi_0    pypi
            send2trash                1.8.0              pyhd3eb1b0_1
            setuptools                58.0.4           py39h06a4308_0
            six                       1.16.0             pyhd3eb1b0_0
            smmap                     5.0.0                    pypi_0    pypi
            sniffio                   1.2.0            py39h06a4308_1
            sqlalchemy                1.4.29                   pypi_0    pypi
            sqlite                    3.37.0               hc218d9a_0
            sqlparse                  0.4.2                    pypi_0    pypi
            tabulate                  0.8.9                    pypi_0    pypi
            tensorboard               2.7.0                    pypi_0    pypi
            tensorboard-data-server   0.6.1                    pypi_0    pypi
            tensorboard-plugin-wit    1.8.0                    pypi_0    pypi
            tensorflow                2.7.0                    pypi_0    pypi
            tensorflow-estimator      2.7.0                    pypi_0    pypi
            tensorflow-io-gcs-filesystem 0.23.1                   pypi_0    pypi
            termcolor                 1.1.0                    pypi_0    pypi
            terminado                 0.9.4            py39h06a4308_0
            testpath                  0.5.0              pyhd3eb1b0_0
            threadpoolctl             3.0.0                    pypi_0    pypi
            tk                        8.6.11               h1ccaba5_0
            toml                      0.10.2                   pypi_0    pypi
            tomli                     2.0.0                    pypi_0    pypi
            tornado                   6.1              py39h27cfd23_0
            traitlets                 5.1.1              pyhd3eb1b0_0
            typing-extensions         4.0.1                    pypi_0    pypi
            tzdata                    2021e                hda174b7_0
            uncertainties             3.1.6                    pypi_0    pypi
            urllib3                   1.26.7             pyhd3eb1b0_0
            wcwidth                   0.2.5              pyhd3eb1b0_0
            webencodings              0.5.1            py39h06a4308_1
            websocket-client          1.2.3                    pypi_0    pypi
            werkzeug                  2.0.2                    pypi_0    pypi
            wheel                     0.37.0             pyhd3eb1b0_1
            wrapt                     1.13.3                   pypi_0    pypi
            xz                        5.2.5                h7b6447c_0
            zeromq                    4.3.4                h2531618_0
            zipp                      3.6.0              pyhd3eb1b0_0
            zlib                      1.2.11               h7f8727e_4
    
            Note: you may need to restart the kernel to use updated packages.
            {'SHELL': '/bin/bash',
             'SESSION_MANAGER': 'local/Topialex:@/tmp/.ICE-unix/986,unix/Topialex:/tmp/.ICE-unix/986',
             'XDG_CONFIG_DIRS': '/home/lex/.config/kdedefaults:/etc/xdg',
             'XDG_SESSION_PATH': '/org/freedesktop/DisplayManager/Session1',
             'CONDA_EXE': '/home/lex/Programme/miniconda3/bin/conda',
             '_CE_M': '',
             'LANGUAGE': 'en_GB',
             'TERMCAP': '',
             'LC_ADDRESS': 'de_DE.UTF-8',
             'LC_NAME': 'de_DE.UTF-8',
             'INSIDE_EMACS': '28.1,comint',
             'DESKTOP_SESSION': 'plasma',
             'LC_MONETARY': 'de_DE.UTF-8',
             'GTK_RC_FILES': '/etc/gtk/gtkrc:/home/lex/.gtkrc:/home/lex/.config/gtkrc',
             'XCURSOR_SIZE': '24',
             'GTK_MODULES': 'canberra-gtk-module',
             'XDG_SEAT': 'seat0',
             'PWD': '/home/lex/Programme/drmed-git',
             'LOGNAME': 'lex',
             'XDG_SESSION_DESKTOP': 'KDE',
             'XDG_SESSION_TYPE': 'x11',
             'CONDA_PREFIX': '/home/lex/Programme/miniconda3/envs/tf',
             'DSSI_PATH': '/home/lex/.dssi:/usr/lib/dssi:/usr/local/lib/dssi',
             'SYSTEMD_EXEC_PID': '877',
             'XAUTHORITY': '/home/lex/.Xauthority',
             'MOTD_SHOWN': 'pam',
             'GTK2_RC_FILES': '/etc/gtk-2.0/gtkrc:/home/lex/.gtkrc-2.0:/home/lex/.config/gtkrc-2.0',
             'HOME': '/home/lex',
             'LANG': 'de_DE.UTF-8',
             'LC_PAPER': 'de_DE.UTF-8',
             'VST_PATH': '/home/lex/.vst:/usr/lib/vst:/usr/local/lib/vst',
             'XDG_CURRENT_DESKTOP': 'KDE',
             'COLUMNS': '163',
             'CONDA_PROMPT_MODIFIER': '',
             'XDG_SEAT_PATH': '/org/freedesktop/DisplayManager/Seat0',
             'KDE_SESSION_UID': '1000',
             'XDG_SESSION_CLASS': 'user',
             'LC_IDENTIFICATION': 'de_DE.UTF-8',
             'TERM': 'xterm-color',
             '_CE_CONDA': '',
             'USER': 'lex',
             'CONDA_SHLVL': '1',
             'KDE_SESSION_VERSION': '5',
             'PAM_KWALLET5_LOGIN': '/run/user/1000/kwallet5.socket',
             'DISPLAY': ':0',
             'SHLVL': '2',
             'LC_TELEPHONE': 'de_DE.UTF-8',
             'LC_MEASUREMENT': 'de_DE.UTF-8',
             'XDG_VTNR': '1',
             'XDG_SESSION_ID': '2',
             'QT_LINUX_ACCESSIBILITY_ALWAYS_ON': '1',
             'CONDA_PYTHON_EXE': '/home/lex/Programme/miniconda3/bin/python',
             'MOZ_PLUGIN_PATH': '/usr/lib/mozilla/plugins',
             'XDG_RUNTIME_DIR': '/run/user/1000',
             'CONDA_DEFAULT_ENV': 'tf',
             'LC_TIME': 'de_DE.UTF-8',
             'QT_AUTO_SCREEN_SCALE_FACTOR': '0',
             'XCURSOR_THEME': 'breeze_cursors',
             'XDG_DATA_DIRS': '/home/lex/.local/share/flatpak/exports/share:/var/lib/flatpak/exports/share:/usr/local/share:/usr/share:/var/lib/snapd/desktop',
             'KDE_FULL_SESSION': 'true',
             'BROWSER': 'vivaldi-stable',
             'PATH': '/home/lex/Programme/miniconda3/envs/tf/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin',
             'DBUS_SESSION_BUS_ADDRESS': 'unix:path=/run/user/1000/bus',
             'LV2_PATH': '/home/lex/.lv2:/usr/lib/lv2:/usr/local/lib/lv2',
             'KDE_APPLICATIONS_AS_SCOPE': '1',
             'MAIL': '/var/spool/mail/lex',
             'LC_NUMERIC': 'de_DE.UTF-8',
             'LADSPA_PATH': '/home/lex/.ladspa:/usr/lib/ladspa:/usr/local/lib/ladspa',
             'CADENCE_AUTO_STARTED': 'true',
             '_': '/home/lex/Programme/miniconda3/envs/tf/bin/jupyter',
             'PYDEVD_USE_FRAME_EVAL': 'NO',
             'JPY_PARENT_PID': '156430',
             'CLICOLOR': '1',
             'PAGER': 'cat',
             'GIT_PAGER': 'cat',
             'MPLBACKEND': 'module://matplotlib_inline.backend_inline'}
    
  4. Branch out git branch exp-220316-publication1 from main (done via magit) and make sure you are on the correct branch
            cd /home/lex/Programme/drmed-git
            git status
    
            sh-5.1$ cd /home/lex/Programme/drmed-git
            sh-5.1$ git status
            On branch exp-220316-publication1
            Your branch is up to date with 'origin/exp-220316-publication1'.
    
  5. Create experiment folder including the plot folder for jupyter plots
            mkdir -p ./data/exp-220316-publication1/jupyter
    
  6. set output directory for matplotlib plots in jupyter
            (setq org-babel-jupyter-resource-directory "./data/exp-220316-publication1/jupyter")
    
    ./data/exp-220316-publication1/jupyter
    

2.7.2 Setup: Jupyter node on HPC

  1. Set up tmux (if we haven’t done that before) (#+CALL: setup-tmux[:session local])
         
    sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:
    > ye53nis@ara-login01.rz.uni-jena.de’s password:
  2. Request compute node
             cd /
             srun -p b_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
    
  1. Start Jupyter Lab (#+CALL: jpt-tmux[:session jpmux])
           (tf) [ye53nis@node117 /]$ jupyter lab --no-browser --port=$PORT
             [I 2023-01-03 22:14:33.399 ServerApp] jupyterlab | extension was successfully linked.
             [I 2023-01-03 22:14:40.846 ServerApp] nbclassic | extension was successfully linked.
             [I 2023-01-03 22:14:41.330 ServerApp] nbclassic | extension was successfully loaded.
             [I 2023-01-03 22:14:41.332 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab
             [I 2023-01-03 22:14:41.332 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab
             [I 2023-01-03 22:14:41.340 ServerApp] jupyterlab | extension was successfully loaded.
             [I 2023-01-03 22:14:41.342 ServerApp] Serving notebooks from local directory: /
             [I 2023-01-03 22:14:41.342 ServerApp] Jupyter Server 1.13.5 is running at:
             [I 2023-01-03 22:14:41.342 ServerApp] http://localhost:8889/lab?token=2ff8ed3f281a95c2bda81a0c453699c478ee1fd2e52e8bab
             [I 2023-01-03 22:14:41.342 ServerApp]  or http://127.0.0.1:8889/lab?token=2ff8ed3f281a95c2bda81a0c453699c478ee1fd2e52e8bab
             [I 2023-01-03 22:14:41.342 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
             [C 2023-01-03 22:14:41.456 ServerApp]
    
                 To access the server, open this file in a browser:
                     file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-158816-open.html
                 Or copy and paste one of these URLs:
                     http://localhost:8889/lab?token=2ff8ed3f281a95c2bda81a0c453699c478ee1fd2e52e8bab
                  or http://127.0.0.1:8889/lab?token=2ff8ed3f281a95c2bda81a0c453699c478ee1fd2e52e8bab
    
  2. Create SSH Tunnel for jupyter lab to the local computer (e.g. #+CALL: ssh-tunnel(port="8889", node="node160"))
                     
    sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:          
    ye53nis@node117’s password:              
    Last login: Tue Jan 3 22:15:58 2023 from login01.ara
  3. I started a Python3 kernel using jupyter-server-list-kernels. Then I added the kernel ID to the :PROPERTIES: drawer of this (and following) subtrees.
           python3           c4f3acce-60c4-489d-922c-407da110fd6a   a few seconds ago    idle       1
    
  4. Test (#+CALL: jp-metadata(_long='True)) and record metadata:
             No of CPUs in system: 48
             No of CPUs the current process can use: 24
             load average: (1658.36, 1661.86, 1648.89)
             os.uname():  posix.uname_result(sysname='Linux', nodename='node095', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64')
             PID of process: 189118
             RAM total: 137G, RAM used: 18G, RAM free: 103G
             the current directory: /
             My disk usage:
             Filesystem           Size  Used Avail Use% Mounted on
             /dev/sda1             50G  5.0G   46G  10% /
             devtmpfs              63G     0   63G   0% /dev
             tmpfs                 63G  199M   63G   1% /dev/shm
             tmpfs                 63G   27M   63G   1% /run
             tmpfs                 63G     0   63G   0% /sys/fs/cgroup
             nfs01-ib:/home        80T   63T   18T  79% /home
             nfs03-ib:/pool/work  100T   72T   29T  72% /nfsdata
             nfs01-ib:/cluster    2.0T  496G  1.6T  25% /cluster
             /dev/sda3            6.0G  429M  5.6G   7% /var
             /dev/sda6            169G  3.8G  165G   3% /local
             /dev/sda5            2.0G  119M  1.9G   6% /tmp
             beegfs_nodev         524T  456T   69T  87% /beegfs
             tmpfs                 13G     0   13G   0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf:
             #
             # Name                    Version                   Build  Channel
             _libgcc_mutex             0.1                        main
             _openmp_mutex             5.1                       1_gnu
             absl-py                   1.0.0                    pypi_0    pypi
             alembic                   1.7.7                    pypi_0    pypi
             anyio                     3.5.0            py39h06a4308_0
             argon2-cffi               21.3.0             pyhd3eb1b0_0
             argon2-cffi-bindings      21.2.0           py39h7f8727e_0
             asteval                   0.9.26                   pypi_0    pypi
             asttokens                 2.0.5              pyhd3eb1b0_0
             astunparse                1.6.3                    pypi_0    pypi
             attrs                     21.4.0             pyhd3eb1b0_0
             babel                     2.9.1              pyhd3eb1b0_0
             backcall                  0.2.0              pyhd3eb1b0_0
             beautifulsoup4            4.11.1           py39h06a4308_0
             bleach                    4.1.0              pyhd3eb1b0_0
             brotlipy                  0.7.0           py39h27cfd23_1003
             ca-certificates           2022.4.26            h06a4308_0
             cachetools                5.1.0                    pypi_0    pypi
             certifi                   2021.10.8        py39h06a4308_2
             cffi                      1.15.0           py39hd667e15_1
             charset-normalizer        2.0.4              pyhd3eb1b0_0
             click                     8.1.3                    pypi_0    pypi
             cloudpickle               2.0.0                    pypi_0    pypi
             cryptography              37.0.1           py39h9ce1e76_0
             cycler                    0.11.0                   pypi_0    pypi
             cython                    0.29.30                  pypi_0    pypi
             databricks-cli            0.16.6                   pypi_0    pypi
             debugpy                   1.5.1            py39h295c915_0
             decorator                 5.1.1              pyhd3eb1b0_0
             defusedxml                0.7.1              pyhd3eb1b0_0
             docker                    5.0.3                    pypi_0    pypi
             entrypoints               0.4              py39h06a4308_0
             executing                 0.8.3              pyhd3eb1b0_0
             fcsfiles                  2022.2.2                 pypi_0    pypi
             flask                     2.1.2                    pypi_0    pypi
             flatbuffers               1.12                     pypi_0    pypi
             fonttools                 4.33.3                   pypi_0    pypi
             future                    0.18.2                   pypi_0    pypi
             gast                      0.4.0                    pypi_0    pypi
             gitdb                     4.0.9                    pypi_0    pypi
             gitpython                 3.1.27                   pypi_0    pypi
             google-auth               2.6.6                    pypi_0    pypi
             google-auth-oauthlib      0.4.6                    pypi_0    pypi
             google-pasta              0.2.0                    pypi_0    pypi
             greenlet                  1.1.2                    pypi_0    pypi
             grpcio                    1.46.1                   pypi_0    pypi
             gunicorn                  20.1.0                   pypi_0    pypi
             h5py                      3.6.0                    pypi_0    pypi
             idna                      3.3                pyhd3eb1b0_0
             importlib-metadata        4.11.3                   pypi_0    pypi
             ipykernel                 6.9.1            py39h06a4308_0
             ipython                   8.3.0            py39h06a4308_0
             ipython_genutils          0.2.0              pyhd3eb1b0_1
             itsdangerous              2.1.2                    pypi_0    pypi
             jedi                      0.18.1           py39h06a4308_1
             jinja2                    3.0.3              pyhd3eb1b0_0
             joblib                    1.1.0                    pypi_0    pypi
             json5                     0.9.6              pyhd3eb1b0_0
             jsonschema                4.4.0            py39h06a4308_0
             jupyter_client            7.2.2            py39h06a4308_0
             jupyter_core              4.10.0           py39h06a4308_0
             jupyter_server            1.13.5             pyhd3eb1b0_0
             jupyterlab                3.3.2              pyhd3eb1b0_0
             jupyterlab_pygments       0.1.2                      py_0
             jupyterlab_server         2.12.0           py39h06a4308_0
             keras                     2.9.0                    pypi_0    pypi
             keras-preprocessing       1.1.2                    pypi_0    pypi
             kiwisolver                1.4.2                    pypi_0    pypi
             ld_impl_linux-64          2.38                 h1181459_0
             libclang                  14.0.1                   pypi_0    pypi
             libffi                    3.3                  he6710b0_2
             libgcc-ng                 11.2.0               h1234567_0
             libgomp                   11.2.0               h1234567_0
             libsodium                 1.0.18               h7b6447c_0
             libstdcxx-ng              11.2.0               h1234567_0
             lmfit                     1.0.3                    pypi_0    pypi
             mako                      1.2.0                    pypi_0    pypi
             markdown                  3.3.7                    pypi_0    pypi
             markupsafe                2.0.1            py39h27cfd23_0
             matplotlib                3.5.2                    pypi_0    pypi
             matplotlib-inline         0.1.2              pyhd3eb1b0_2
             mistune                   0.8.4           py39h27cfd23_1000
             mlflow                    1.26.0                   pypi_0    pypi
             multipletau               0.3.3                    pypi_0    pypi
             nbclassic                 0.3.5              pyhd3eb1b0_0
             nbclient                  0.5.13           py39h06a4308_0
             nbconvert                 6.4.4            py39h06a4308_0
             nbformat                  5.3.0            py39h06a4308_0
             ncurses                   6.3                  h7f8727e_2
             nest-asyncio              1.5.5            py39h06a4308_0
             notebook                  6.4.11           py39h06a4308_0
             numpy                     1.22.3                   pypi_0    pypi
             oauthlib                  3.2.0                    pypi_0    pypi
             openssl                   1.1.1o               h7f8727e_0
             opt-einsum                3.3.0                    pypi_0    pypi
             packaging                 21.3               pyhd3eb1b0_0
             pandas                    1.4.2                    pypi_0    pypi
             pandocfilters             1.5.0              pyhd3eb1b0_0
             parso                     0.8.3              pyhd3eb1b0_0
             pexpect                   4.8.0              pyhd3eb1b0_3
             pickleshare               0.7.5           pyhd3eb1b0_1003
             pillow                    9.1.1                    pypi_0    pypi
             pip                       21.2.4           py39h06a4308_0
             prometheus-flask-exporter 0.20.1                   pypi_0    pypi
             prometheus_client         0.13.1             pyhd3eb1b0_0
             prompt-toolkit            3.0.20             pyhd3eb1b0_0
             protobuf                  3.20.1                   pypi_0    pypi
             ptyprocess                0.7.0              pyhd3eb1b0_2
             pure_eval                 0.2.2              pyhd3eb1b0_0
             pyasn1                    0.4.8                    pypi_0    pypi
             pyasn1-modules            0.2.8                    pypi_0    pypi
             pycparser                 2.21               pyhd3eb1b0_0
             pygments                  2.11.2             pyhd3eb1b0_0
             pyjwt                     2.4.0                    pypi_0    pypi
             pyopenssl                 22.0.0             pyhd3eb1b0_0
             pyparsing                 3.0.4              pyhd3eb1b0_0
             pyrsistent                0.18.0           py39heee7806_0
             pysocks                   1.7.1            py39h06a4308_0
             python                    3.9.12               h12debd9_0
             python-dateutil           2.8.2              pyhd3eb1b0_0
             python-fastjsonschema     2.15.1             pyhd3eb1b0_0
             pytz                      2021.3             pyhd3eb1b0_0
             pyyaml                    6.0                      pypi_0    pypi
             pyzmq                     22.3.0           py39h295c915_2
             querystring-parser        1.2.4                    pypi_0    pypi
             readline                  8.1.2                h7f8727e_1
             requests                  2.27.1             pyhd3eb1b0_0
             requests-oauthlib         1.3.1                    pypi_0    pypi
             rsa                       4.8                      pypi_0    pypi
             scikit-learn              1.1.0                    pypi_0    pypi
             scipy                     1.8.1                    pypi_0    pypi
             seaborn                   0.11.2                   pypi_0    pypi
             send2trash                1.8.0              pyhd3eb1b0_1
             setuptools                61.2.0           py39h06a4308_0
             six                       1.16.0             pyhd3eb1b0_1
             smmap                     5.0.0                    pypi_0    pypi
             sniffio                   1.2.0            py39h06a4308_1
             soupsieve                 2.3.1              pyhd3eb1b0_0
             sqlalchemy                1.4.36                   pypi_0    pypi
             sqlite                    3.38.3               hc218d9a_0
             sqlparse                  0.4.2                    pypi_0    pypi
             stack_data                0.2.0              pyhd3eb1b0_0
             tabulate                  0.8.9                    pypi_0    pypi
             tensorboard               2.9.0                    pypi_0    pypi
             tensorboard-data-server   0.6.1                    pypi_0    pypi
             tensorboard-plugin-wit    1.8.1                    pypi_0    pypi
             tensorflow                2.9.0                    pypi_0    pypi
             tensorflow-estimator      2.9.0                    pypi_0    pypi
             tensorflow-io-gcs-filesystem 0.26.0                   pypi_0    pypi
             termcolor                 1.1.0                    pypi_0    pypi
             terminado                 0.13.1           py39h06a4308_0
             testpath                  0.5.0              pyhd3eb1b0_0
             threadpoolctl             3.1.0                    pypi_0    pypi
             tk                        8.6.11               h1ccaba5_1
             tornado                   6.1              py39h27cfd23_0
             traitlets                 5.1.1              pyhd3eb1b0_0
             typing-extensions         4.1.1                hd3eb1b0_0
             typing_extensions         4.1.1              pyh06a4308_0
             tzdata                    2022a                hda174b7_0
             uncertainties             3.1.6                    pypi_0    pypi
             urllib3                   1.26.9           py39h06a4308_0
             wcwidth                   0.2.5              pyhd3eb1b0_0
             webencodings              0.5.1            py39h06a4308_1
             websocket-client          0.58.0           py39h06a4308_4
             werkzeug                  2.1.2                    pypi_0    pypi
             wheel                     0.37.1             pyhd3eb1b0_0
             wrapt                     1.14.1                   pypi_0    pypi
             xz                        5.2.5                h7f8727e_1
             zeromq                    4.3.4                h2531618_0
             zipp                      3.8.0                    pypi_0    pypi
             zlib                      1.2.12               h7f8727e_2
    
             Note: you may need to restart the kernel to use updated packages.
             {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint',
              'SLURM_NODELIST': 'node095',
              'SLURM_JOB_NAME': 'bash',
              'XDG_SESSION_ID': '135386',
              'SLURMD_NODENAME': 'node095',
              'SLURM_TOPOLOGY_ADDR': 'node095',
              'SLURM_NTASKS_PER_NODE': '24',
              'HOSTNAME': 'login01',
              'SLURM_PRIO_PROCESS': '0',
              'SLURM_SRUN_COMM_PORT': '43002',
              'SHELL': '/bin/bash',
              'TERM': 'xterm-color',
              'SLURM_JOB_QOS': 'qstand',
              'SLURM_PTY_WIN_ROW': '48',
              'HISTSIZE': '1000',
              'TMPDIR': '/tmp',
              'SLURM_TOPOLOGY_ADDR_PATTERN': 'node',
              'SSH_CLIENT': '10.231.185.64 42170 22',
              'CONDA_SHLVL': '2',
              'CONDA_PROMPT_MODIFIER': '(tf) ',
              'WINDOWID': '0',
              'QTDIR': '/usr/lib64/qt-3.3',
              'QTINC': '/usr/lib64/qt-3.3/include',
              'SSH_TTY': '/dev/pts/19',
              'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
              'QT_GRAPHICSSYSTEM_CHECKED': '1',
              'SLURM_NNODES': '1',
              'USER': 'ye53nis',
              'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:',
              'CONDA_EXE': '/cluster/miniconda3/bin/conda',
              'SLURM_STEP_NUM_NODES': '1',
              'SLURM_JOBID': '1679082',
              'SRUN_DEBUG': '3',
              'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
              'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'SLURM_NTASKS': '24',
              'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5',
              'SLURM_STEP_ID': '0',
              'TMUX': '/tmp/tmux-67339/default,14861,2',
              '_CE_CONDA': '',
              'CONDA_PREFIX_1': '/cluster/miniconda3',
              'SLURM_STEP_LAUNCHER_PORT': '43002',
              'SLURM_TASKS_PER_NODE': '24',
              'MAIL': '/var/spool/mail/ye53nis',
              'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/home/lex/Programme/miniconda3/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin',
              'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448',
              'SLURM_JOB_ID': '1679082',
              'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf',
              'SLURM_JOB_USER': 'ye53nis',
              'SLURM_STEPID': '0',
              'PWD': '/',
              'SLURM_SRUN_COMM_HOST': '192.168.192.5',
              'LANG': 'en_US.UTF-8',
              'SLURM_PTY_WIN_COL': '236',
              'SLURM_UMASK': '0022',
              'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles',
              'SLURM_JOB_UID': '67339',
              'LOADEDMODULES': '',
              'SLURM_NODEID': '0',
              'TMUX_PANE': '%2',
              'SLURM_SUBMIT_DIR': '/',
              'SLURM_TASK_PID': '186350',
              'SLURM_NPROCS': '24',
              'SLURM_CPUS_ON_NODE': '24',
              'SLURM_DISTRIBUTION': 'block',
              'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
              'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
              'SLURM_PROCID': '0',
              'HISTCONTROL': 'ignoredups',
              '_CE_M': '',
              'SLURM_JOB_NODELIST': 'node095',
              'SLURM_PTY_PORT': '41832',
              'HOME': '/home/ye53nis',
              'SHLVL': '3',
              'SLURM_LOCALID': '0',
              'SLURM_JOB_GID': '13280',
              'SLURM_JOB_CPUS_PER_NODE': '24',
              'SLURM_CLUSTER_NAME': 'hpc',
              'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001',
              'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23',
              'SLURM_SUBMIT_HOST': 'login01',
              'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
             'SLURM_JOB_PARTITION': 'b_standard',
             'MATHEMATICA_HOME': '/cluster/apps/mathematica/12.3',
             'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python',
             'LOGNAME': 'ye53nis',
             'SLURM_STEP_NUM_TASKS': '24',
             'QTLIB': '/usr/lib64/qt-3.3/lib',
             'SLURM_JOB_ACCOUNT': 'iaob',
             'SLURM_JOB_NUM_NODES': '1',
             'MODULESHOME': '/usr/share/Modules',
             'CONDA_DEFAULT_ENV': 'tf',
             'LESSOPEN': '||/usr/bin/lesspipe.sh %s',
             'SLURM_STEP_TASKS_PER_NODE': '24',
             'PORT': '8889',
             'SLURM_STEP_NODELIST': 'node095',
             'DISPLAY': ':0',
             'XDG_RUNTIME_DIR': '',
             'XAUTHORITY': '/home/lex/.Xauthority',
             'BASH_FUNC_module()': '() {  eval `/usr/bin/modulecmd bash $*`\n}',
             '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter',
             'PYDEVD_USE_FRAME_EVAL': 'NO',
             'JPY_PARENT_PID': '187359',
             'CLICOLOR': '1',
             'PAGER': 'cat',
             'GIT_PAGER': 'cat',
             'MPLBACKEND': 'module://matplotlib_inline.backend_inline'}
    

2.7.3 Setup: current git log

       pwd
       git --no-pager log -5
     /home/lex/Programme/drmed-git
     commit d51b11eda090b9301e783ec35bdfd26c7bf0709c (HEAD -> exp-220316-publication1, origin/main, origin/exp-220316-publication1, origin/HEAD, main)
     Date:   Sun Feb 27 18:40:00 2022 +0100

         fix model input_size to None; else to crop_size

     commit c637444d8b798603629f6f0bd72ee55af7f81a5f
     Date:   Sun Feb 27 18:39:29 2022 +0100

         Fix function call correlate_and_fit

     commit 291c6619c12bc39d526137a43d976b3cb4881e50
     Date:   Sat Feb 26 20:04:07 2022 +0100

         Fix scale_trace; simplify tf_pad_trace call

     commit dcca8b9e17909a95b824c8a7b1fec52eeed198c3
     Date:   Thu Feb 24 16:11:39 2022 +0100

         test tf_pad_trace

     commit 6cf2da85748ef13f2e752bea8989a6d31549ced3
     Date:   Thu Feb 24 16:10:33 2022 +0100

         Fix tf_pad_trace

2.7.4 Exp: simexps - weight=0 vs cut and shift vs avg

  • To justify cut and shift as a method, let’s eliminate the confounder of bad prediction and compare it to the alternative based on a segmentation we know from the simulations that is correct.
    • weight=0 gives each time bin classified as ’dominated by clusters’ a weight of 0.
    • cut and shift gives removes each time bin classified as ’dominated by clusters’ and shifts all remaining time bins together.
  • After re-reading a lot of literature and putting it into text (<2023-01-02 Mo>), I decided to add the averaging method:
    1. segment trace in artifactual and non-artifactual (here: given by simulations)
    2. correlate all non-artifactual segments
    3. average correlations and fit the average
           %cd /beegfs/ye53nis/drmed-git
    
    /beegfs/ye53nis/drmed-git
    
  • load modules
           import datetime
           import logging
           import multipletau
           import os
           import scipy
           import sys
    
           import matplotlib.pyplot as plt
           import numpy as np
           import pandas as pd
           import seaborn as sns
    
           from pathlib import Path
           from pprint import pprint
    
           FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/'
           sys.path.append(FLUOTRACIFY_PATH)
    
           from fluotracify.applications import correlate
           from fluotracify.simulations import (
              import_simulation_from_csv as isfc,
              analyze_simulations as ans,
           )
    
           logging.basicConfig(filename="/beegfs/ye53nis/drmed-git/data/exp-220316-publication1/jupyter.log",
                               filemode='w', format='%(asctime)s - %(message)s',
                               force=True,
                               level=logging.DEBUG)
           log = logging.getLogger(__name__)
           log.setLevel(logging.DEBUG)
    
           sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind',
                         context='paper')
    
    2023-01-03 23:23:38.245766: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2023-01-03 23:23:38.245806: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
          import importlib
          importlib.reload(isfc)
    
    <module 'fluotracify.applications.corr_fit_object' from '/home/lex/Programme/drmed-git/src/fluotracify/applications/corr_fit_object.py'>
    
  • load simulated data
           col_per_example = 3
           # lab_thresh = 0.04
           # artifact = 0
           # model_type = 1
           fwhm = 250
           sim_path = Path('/beegfs/ye53nis/saves/firstartifact_Nov2020_test')
    
           sim, _, nsamples, sim_params = isfc.import_from_csv(
               folder=sim_path,
               header=12,
               frac_train=1,
               col_per_example=col_per_example,
               dropindex=None,
               dropcolumns=None)
           diffrates = sim_params.loc[
               'diffusion rate of molecules in micrometer^2 / s'].astype(np.float32)
           nmols = sim_params.loc['number of fast molecules'].astype(np.float32)
           clusters = sim_params.loc[
               'diffusion rate of clusters in micrometer^2 / s'].astype(np.float32)
           sim_columns = [f'{d:.4}-{c:.4}' for d, c in zip(
               np.repeat(diffrates, nsamples[0]),
               np.repeat(clusters, nsamples[0]))]
    
           sim_sep = isfc.separate_data_and_labels(array=sim,
                                                   nsamples=nsamples,
                                                   col_per_example=col_per_example)
           sim_dirty = sim_sep['0']
           sim_dirty.columns = sim_columns
    
           sim_labels = sim_sep['1']
           sim_labels.columns = sim_columns
    
           sim_clean = sim_sep['2']
           sim_clean.columns = sim_columns
    
           sim
    
      trace001 label0011 label0012 trace002 label0021 label0022 trace003 label0031 label0032 trace004 label0972 trace098 label0981 label0982 trace099 label0991 label0992 trace100 label1001 label1002
    0 395.062347 4.538784e-20 395.062347 542.019287 8.120830e-03 501.415161 259.171783 2.228045e-24 259.171783 378.006470 1231.325928 2721.381592 0.195874 1154.387695 1671.956787 6.682719e-04 1667.278809 1572.913452 1.325364e-02 1466.884277
    1 395.732605 1.310606e-19 395.732605 676.451477 3.468467e-02 503.028076 263.082733 1.117190e-24 263.082733 365.738861 1197.367310 2785.768066 0.203337 1159.073364 1749.072510 7.613653e-04 1743.742920 1544.390259 1.122567e-02 1454.584839
    2 385.598785 6.306126e-22 385.598785 565.850403 1.276007e-02 502.050110 258.483124 8.280664e-26 258.483124 350.939362 1229.265015 2961.105225 0.226369 1150.153320 1643.184204 6.983961e-04 1638.295532 1486.991211 1.182248e-02 1392.411377
    3 375.055664 8.333913e-22 375.055664 569.737793 7.499466e-03 532.240479 252.117035 6.761740e-26 252.117035 364.043427 1190.224854 3127.305664 0.243025 1183.104492 1713.993042 7.364776e-04 1708.837769 1427.290771 1.086318e-02 1340.385376
    4 400.554443 2.098773e-21 400.554443 590.014893 7.808361e-03 550.973083 241.840240 7.160055e-28 241.840240 376.104645 1268.028931 2997.608887 0.223969 1205.857422 1744.911865 6.761284e-04 1740.178955 1426.806763 9.973858e-03 1347.015869
    16379 433.562714 2.027369e-11 433.562714 624.462646 1.359731e-07 624.461975 643.004944 1.486138e-06 642.994568 518.733643 1281.519775 1172.255371 0.000024 1172.062500 1347.495239 1.545398e-07 1347.494141 756.805908 3.299088e-13 756.805908
    16380 462.284454 4.281444e-14 462.284454 616.137512 5.455384e-08 616.137268 597.266296 1.347712e-06 597.256836 487.652924 1384.850098 1191.984253 0.000021 1191.816162 1482.415894 1.717639e-07 1482.414673 712.499878 2.858745e-13 712.499878
    16381 472.551483 6.157024e-11 472.551483 612.926758 7.076798e-07 612.923218 615.009460 3.518227e-08 615.009216 516.941528 1274.193848 1173.113770 0.000031 1172.869263 1520.151367 2.125578e-07 1520.149780 587.645203 2.861725e-13 587.645203
    16382 486.679413 3.604344e-09 486.679382 637.962769 1.704117e-08 637.962708 616.344116 4.384124e-08 616.343811 502.372345 1310.505981 1124.065552 0.000027 1123.853271 1572.194336 2.867827e-07 1572.192261 618.202820 4.085783e-13 618.202820
    16383 489.893646 1.907032e-08 489.893555 614.733704 1.560388e-06 614.725891 614.638000 6.400571e-07 614.633545 511.408234 1324.207275 1070.131104 0.000030 1069.894531 1602.530029 2.109545e-07 1602.528564 654.377380 5.819386e-13 654.377380

    16384 rows × 9000 columns

  • define plotting functions
           def label_correct_correlate(sim_dirty, sim_labels, sim_columns,
                                       lab_thresh, out_path):
               sim_labbool = sim_labels > lab_thresh
               sim_labbool.columns = sim_columns
    
               sim_cas, sim_del = pd.DataFrame(), pd.DataFrame()
               for i in range(len(sim_dirty.columns)):
                   # cut and shift correction
                   sim_cas_trace = np.delete(sim_dirty.iloc[:, i].values,
                                              sim_labbool.iloc[:, i].values)
                   sim_cas_trace = pd.DataFrame(sim_cas_trace)
                   sim_cas = pd.concat([sim_cas, sim_cas_trace], axis='columns')
                   # weight=0 / delete correction
                   sim_del_trace = np.where(sim_labbool.iloc[:, i].values == 1, 0,
                                            sim_dirty.iloc[:, i].values)
                   sim_del_trace = pd.DataFrame(sim_del_trace)
                   sim_del = pd.concat([sim_del, sim_del_trace], axis='columns')
               sim_cas.columns, sim_del.columns = sim_dirty.columns, sim_dirty.columns
    
               log.debug('label_correct_correlate: Finished "cut and shift" and '
                         '"weight=0" correction.')
    
               # after correction
               lab_str = f'{lab_thresh}'.replace(".", "dot")
               cas_txt = f'labthresh-{lab_str}_cutandshift'
               del_txt = f'labthresh-{lab_str}_delete'
               correlate.correlate_timetrace_and_save(df=sim_cas, out_path=out_path,
                                                      out_txt=cas_txt)
               correlate.correlate_timetrace_and_save(df=sim_del, out_path=out_path,
                                                      out_txt=del_txt)
    
    
  • plot simulated data with label thresholds of interest
           out_path = "/beegfs/ye53nis/drmed-git/data/exp-220316-publication1/220517_simulations/"
    
           label_correct_correlate(
               sim_dirty=sim_dirty,
               sim_labels=sim_labels,
               sim_columns=sim_columns,
               lab_thresh=0.04,
               out_path=out_path)
    
  • now order the correlations in respective folders
           cd /beegfs/ye53nis/drmed-git/data/exp-220316-publication1/220517_simulations
           mkdir -p labthresh-0.04-cutandshift/0.069
           mkdir -p labthresh-0.04-cutandshift/0.08
           mkdir -p labthresh-0.04-cutandshift/0.1
           mkdir -p labthresh-0.04-cutandshift/0.2
           mkdir -p labthresh-0.04-cutandshift/0.4
           mkdir -p labthresh-0.04-cutandshift/0.6
           mkdir -p labthresh-0.04-cutandshift/1.0
           mkdir -p labthresh-0.04-cutandshift/3.0
           mkdir -p labthresh-0.04-cutandshift/10.0
           mkdir -p labthresh-0.04-cutandshift/50.0
    
           mkdir -p labthresh-0.04-delete/0.069
           mkdir -p labthresh-0.04-delete/0.08
           mkdir -p labthresh-0.04-delete/0.1
           mkdir -p labthresh-0.04-delete/0.2
           mkdir -p labthresh-0.04-delete/0.4
           mkdir -p labthresh-0.04-delete/0.6
           mkdir -p labthresh-0.04-delete/1.0
           mkdir -p labthresh-0.04-delete/3.0
           mkdir -p labthresh-0.04-delete/10.0
           mkdir -p labthresh-0.04-delete/50.0
    
           mv *cutandshift_0dot069* labthresh-0.04-cutandshift/0.069
           mv *cutandshift_0dot08* labthresh-0.04-cutandshift/0.08
           mv *cutandshift_0dot1* labthresh-0.04-cutandshift/0.1
           mv *cutandshift_0dot2* labthresh-0.04-cutandshift/0.2
           mv *cutandshift_0dot4* labthresh-0.04-cutandshift/0.4
           mv *cutandshift_0dot6* labthresh-0.04-cutandshift/0.6
           mv *cutandshift_1dot0* labthresh-0.04-cutandshift/1.0
           mv *cutandshift_3dot0* labthresh-0.04-cutandshift/3.0
           mv *cutandshift_10dot0* labthresh-0.04-cutandshift/10.0
           mv *cutandshift_50dot0* labthresh-0.04-cutandshift/50.0
    
           mv *delete_0dot069* labthresh-0.04-delete/0.069
           mv *delete_0dot08* labthresh-0.04-delete/0.08
           mv *delete_0dot1* labthresh-0.04-delete/0.1
           mv *delete_0dot2* labthresh-0.04-delete/0.2
           mv *delete_0dot4* labthresh-0.04-delete/0.4
           mv *delete_0dot6* labthresh-0.04-delete/0.6
           mv *delete_1dot0* labthresh-0.04-delete/1.0
           mv *delete_3dot0* labthresh-0.04-delete/3.0
           mv *delete_10dot0* labthresh-0.04-delete/10.0
           mv *delete_50dot0* labthresh-0.04-delete/50.0
    

2.7.5 Exp: simexps - characterization of cutandshift

  • We want to check the following properties of FCS trace cutting: does cutting introduce artifacts (Does condition of stationarity hold?) → plot of mean / median / mode of transit times in clean trace when cut with growing number of cuts and then shuffling the trace
           %cd ~/Programme/drmed-git
    
    /home/lex/Programme/drmed-git
    
  • load modules
           import logging
           import os
           import pdb
           import sys
    
           import matplotlib.pyplot as plt
           import numpy as np
           import pandas as pd
           import seaborn as sns
    
           from pathlib import Path
           from pprint import pprint
    
           FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/'
           sys.path.append(FLUOTRACIFY_PATH)
           from fluotracify.applications import (corr_fit_object as cfo,
                                                 correlate)
           from fluotracify.imports import ptu_utils as ptu
           from fluotracify.simulations import (
              import_simulation_from_csv as isfc,
              analyze_simulations as ans,
           )
    
           logging.basicConfig(filename="/home/lex/Programme/drmed-git/data/exp-220316-publication1/jupyter.log",
                               filemode='w', format='%(asctime)s - %(message)s',
                               force=True,
                               level=logging.DEBUG)
    
           sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind',
                         context='paper')
    
          import importlib
          importlib.reload(correlate)
          importlib.reload(ans)
    
    <module 'fluotracify.simulations.analyze_simulations' from '/home/lex/Programme/drmed-git/src/fluotracify/simulations/analyze_simulations.py'>
    
  • load simulated data
           col_per_example = 3
           lab_thresh = 0.04
           artifact = 0
           model_type = 1
           fwhm = 250
           sim_path = Path('/home/lex/Programme/drmed-collections/drmed-simexps/firstartifact_Nov2020_test')
    
           sim, _, nsamples, sim_params = isfc.import_from_csv(
               folder=sim_path,
               header=12,
               frac_train=1,
               col_per_example=col_per_example,
               dropindex=None,
               dropcolumns=None)
    
           diffrates = sim_params.loc[
               'diffusion rate of molecules in micrometer^2 / s'].astype(np.float32)
           nmols = sim_params.loc['number of fast molecules'].astype(np.float32)
           clusters = sim_params.loc[
               'diffusion rate of clusters in micrometer^2 / s'].astype(np.float32)
           sim_columns = [f'{d:.4}' for d, c in zip(
               np.repeat(diffrates, nsamples[0]),
               np.repeat(clusters, nsamples[0]))]
    
           sim_sep = isfc.separate_data_and_labels(array=sim,
                                                   nsamples=nsamples,
                                                   col_per_example=col_per_example)
           sim_dirty = sim_sep['0']
           sim_dirty.columns = sim_columns
    
           sim_labels = sim_sep['1']
           sim_labels.columns = sim_columns
           sim_labbool = sim_labels > lab_thresh
           sim_labbool.columns = sim_columns
           sim_clean = sim_sep['2']
           sim_clean.columns = sim_columns
    
           sim_dirty
    
      0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
    0 1187.467896 907.677734 480.048798 454.669403 466.063232 384.734467 543.981323 640.921509 795.946167 410.471893 1897.398193 2279.646484 3088.531006 2034.432495 2187.548584 2105.736084 1789.366577 2023.093994 2331.185791 2185.028076
    1 1184.055176 945.760315 471.065216 458.392487 473.306152 395.165527 558.603088 622.421204 776.199402 409.149170 1499.969849 2199.652100 3207.333008 1650.523926 2122.935791 2791.281006 1661.286377 1111.879761 1853.699585 1926.844971
    2 1191.848877 980.117798 459.479706 426.087982 482.370209 425.123413 551.536072 624.498535 778.671265 400.971954 1822.985229 2456.422607 2969.562500 1934.118286 1457.731812 2251.077393 1903.003662 2063.915527 2198.018066 2038.683105
    3 1199.065918 974.313110 462.205566 444.041809 463.703125 434.186615 573.044128 626.252502 747.284058 393.178162 1741.839355 2467.149414 2588.980957 2136.627686 1930.263672 2323.700684 2133.313721 1638.169312 1926.058716 1815.259521
    4 1221.957397 968.779175 464.918030 455.205292 474.615540 437.029419 586.489136 619.319092 781.954102 406.468018 2431.400879 2246.336670 3000.961182 1915.518066 2052.773682 2359.145508 1699.926147 1862.709595 2291.338379 1332.422241
    16379 506.409668 1012.403931 855.006226 674.470703 769.859192 2110.732178 799.565247 1981.221436 528.844604 483.055878 1512.586548 3212.712891 1491.119995 1843.866943 1748.956665 2048.602051 1662.244385 2593.879639 1921.427856 1664.831909
    16380 536.809692 1022.029724 840.287720 671.095215 738.908997 2118.984863 807.995789 2624.343262 552.687012 479.768372 1661.331055 3190.809570 1770.193970 2081.854248 2164.372803 2295.646729 1846.683594 2038.272339 2222.708252 2122.753662
    16381 570.668884 989.891235 839.180298 689.863586 695.739136 2033.681885 786.547852 3528.163574 572.166077 484.491211 1643.470337 2564.206787 2025.219971 2104.706787 1792.828613 2106.199463 2087.914062 1457.817871 1874.736938 1683.072021
    16382 562.505310 977.029785 1005.927673 683.250183 661.608337 2566.123047 805.594116 3731.086426 566.710571 489.289673 1556.492188 2783.619385 1312.174561 2378.643311 2466.965576 2160.641357 1691.332520 2013.095093 1632.475708 1352.443237
    16383 567.307373 1006.794067 982.376526 677.099854 657.040588 2545.080322 784.917969 3850.334717 570.241699 512.688232 2127.414551 2448.062012 1398.359253 1665.321167 2241.687256 1823.699829 1340.686035 1972.661743 1550.770142 1727.808228

    16384 rows × 1500 columns

  • I wrote a small function to cut the simulated traces and shuffle the resulting chunks. Let’s look at the timing:
           sim_clean_cut = ans.cut_simulations_and_shuffle_chunks(sim_clean, 1000)
    
    /home/lex/Programme/drmed-git/src/fluotracify/simulations/analyze_simulations.py:406: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
      # shuffle the list of series
    
           %%timeit
           sim_clean_cut = pd.DataFrame()
           # 230 µs ± 6.17
           pos_of_cuts = rng.choice(sim_clean.iloc[:, 0].index, 15000,
                                    replace=False, shuffle=False)
           # 3.81 ms ± 186 µs
           pos_of_cuts.sort()
           # 15.8 ms ± 796 µs
           trace = np.split(sim_clean.iloc[:, 0].to_numpy(), pos_of_cuts)
           # 1.3 ms ± 32.2 µs
           trace = rng.permuted(trace)
           # 2.97 ms ± 173 µs
           trace = np.concatenate(trace)
    
           trace = pd.Series(trace, name=sim_clean.iloc[:, 0].name)
           sim_clean_cut = pd.concat([sim_clean_cut, trace], axis=1)
    
    <magic-timeit>:9: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
    38.4 ms ± 1.7 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
    
  • now create all the shuffled traces, correlate them, and save them:
           out_path = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220714_sim-cutandshift')
           for i in [1, 10, 100, 1000, 10000]:
               sim_clean_cut = ans.cut_simulations_and_shuffle_chunks(sim_clean, i)
    
               for name in set(sim_clean.columns):
                   out_folder = out_path / f'{name}' /  f'{i}_cuts'
                   out_txt = f'{i}-cuts'
                   %mkdir -p $out_folder
                   correlate.correlate_timetrace_and_save(sim_clean_cut.loc[:, name],
                                                          out_folder, out_txt)
    
    /home/lex/Programme/drmed-git/src/fluotracify/simulations/analyze_simulations.py:471: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
      trace = rng.permuted(trace)
    
           out_path = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220714_sim-cutandshift')
           for i in [2 , 4, 8, 20, 40, 80, 200, 400, 800]:
               sim_clean_cut = ans.cut_simulations_and_shuffle_chunks(sim_clean, i)
    
               for name in set(sim_clean.columns):
                   out_folder = out_path / f'{name}' /  f'{i}_cuts'
                   out_txt = f'{i}-cuts'
                   %mkdir -p $out_folder
                   correlate.correlate_timetrace_and_save(
                       sim_clean_cut.loc[:, name], out_folder, out_txt)
    
           out_path = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220714_sim-cutandshift')
           for i in [0]:
               for name in set(sim_clean.columns):
                   out_folder = out_path / f'{name}' /  f'{i}_cuts'
                   out_txt = f'{i}-cuts'
                   %mkdir -p $out_folder
                   correlate.correlate_timetrace_and_save(
                       sim_clean.loc[:, name], out_folder, out_txt)
    
           out_path = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220714_sim-cutandshift')
           for i in [0, 1, 2 , 4, 8, 10, 20, 40, 80, 100, 200, 400, 800, 1000, 10000]:
               if i == 0:
                   for name in set(sim_clean.loc[:, '3.0'].columns):
                       out_folder = out_path / f'{name}' /  f'{i}_cuts'
                       out_txt = f'{i}-cuts'
                       %mkdir -p $out_folder
                       correlate.correlate_timetrace_and_save(
                           sim_clean.loc[:, name], out_folder, out_txt)
               else:
                   sim_clean_cut = ans.cut_simulations_and_shuffle_chunks(
                       sim_clean.loc[:, '3.0'], i)
                   for name in set(sim_clean.loc[:, '3.0'].columns):
                       out_folder = out_path / f'{name}' /  f'{i}_cuts'
                       out_txt = f'{i}-cuts'
                       %mkdir -p $out_folder
                       correlate.correlate_timetrace_and_save(
                           sim_clean_cut.loc[:, name], out_folder, out_txt)
    
    /home/lex/Programme/drmed-git/src/fluotracify/simulations/analyze_simulations.py:519: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
      trace = rng.permuted(trace)
    

2.7.6 Exp: simexps - prediction by threshold

  • As basline for peak prediction compare UNET performance against common peak finding algorithms. I decided on simple manual thresholding after robust scaling. The following would be alternatives we could try later:
  • call jupyter-set-output-directory and prepare modules and data
    ./data/exp-220316-publication1/jupyter
    
           %cd ~/Programme/drmed-git
    
    /home/lex/Programme/drmed-git
    
  • load modules
           import logging
           import os
           import pdb
           import sys
    
           import matplotlib.pyplot as plt
           import numpy as np
           import pandas as pd
           import seaborn as sns
    
           from pathlib import Path
           from pprint import pprint
    
           FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/'
           sys.path.append(FLUOTRACIFY_PATH)
           from fluotracify.applications import (corr_fit_object as cfo,
                                                 correlate)
           from fluotracify.imports import ptu_utils as ptu
           from fluotracify.simulations import (
              import_simulation_from_csv as isfc,
              analyze_simulations as ans,
           )
    
           logging.basicConfig(filename="/home/lex/Programme/drmed-git/data/exp-220316-publication1/jupyter.log",
                               filemode='w', format='%(asctime)s - %(message)s',
                               force=True,
                               level=logging.DEBUG)
    
           sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind',
                         context='paper')
    
    2022-08-11 13:27:20.978319: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2022-08-11 13:27:20.978362: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
          import importlib
          importlib.reload(correlate)
          importlib.reload(ans)
    
    <module 'fluotracify.simulations.analyze_simulations' from '/home/lex/Programme/drmed-git/src/fluotracify/simulations/analyze_simulations.py'>
    
  • load simulated data
           col_per_example = 3
           lab_thresh = 0.04
           artifact = 0
           model_type = 1
           fwhm = 250
           sim_path = Path('/home/lex/Programme/drmed-collections/drmed-simexps/firstartifact_Nov2020_test')
    
           sim, _, nsamples, sim_params = isfc.import_from_csv(
               folder=sim_path,
               header=12,
               frac_train=1,
               col_per_example=col_per_example,
               dropindex=None,
               dropcolumns=None)
    
           diffrates = sim_params.loc[
               'diffusion rate of molecules in micrometer^2 / s'].astype(np.float32)
           nmols = sim_params.loc['number of fast molecules'].astype(np.float32)
           clusters = sim_params.loc[
               'diffusion rate of clusters in micrometer^2 / s'].astype(np.float32)
           sim_columns = [f'{d:.4}' for d, c in zip(
               np.repeat(diffrates, nsamples[0]),
               np.repeat(clusters, nsamples[0]))]
    
           sim_sep = isfc.separate_data_and_labels(array=sim,
                                                   nsamples=nsamples,
                                                   col_per_example=col_per_example)
           sim_dirty = sim_sep['0']
           sim_dirty.columns = sim_columns
    
           sim_labels = sim_sep['1']
           sim_labels.columns = sim_columns
           sim_labbool = sim_labels > lab_thresh
           sim_labbool.columns = sim_columns
           sim_clean = sim_sep['2']
           sim_clean.columns = sim_columns
    
           sim_dirty
    
      0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
    0 1187.467896 907.677734 480.048798 454.669403 466.063232 384.734467 543.981323 640.921509 795.946167 410.471893 1897.398193 2279.646484 3088.531006 2034.432495 2187.548584 2105.736084 1789.366577 2023.093994 2331.185791 2185.028076
    1 1184.055176 945.760315 471.065216 458.392487 473.306152 395.165527 558.603088 622.421204 776.199402 409.149170 1499.969849 2199.652100 3207.333008 1650.523926 2122.935791 2791.281006 1661.286377 1111.879761 1853.699585 1926.844971
    2 1191.848877 980.117798 459.479706 426.087982 482.370209 425.123413 551.536072 624.498535 778.671265 400.971954 1822.985229 2456.422607 2969.562500 1934.118286 1457.731812 2251.077393 1903.003662 2063.915527 2198.018066 2038.683105
    3 1199.065918 974.313110 462.205566 444.041809 463.703125 434.186615 573.044128 626.252502 747.284058 393.178162 1741.839355 2467.149414 2588.980957 2136.627686 1930.263672 2323.700684 2133.313721 1638.169312 1926.058716 1815.259521
    4 1221.957397 968.779175 464.918030 455.205292 474.615540 437.029419 586.489136 619.319092 781.954102 406.468018 2431.400879 2246.336670 3000.961182 1915.518066 2052.773682 2359.145508 1699.926147 1862.709595 2291.338379 1332.422241
    16379 506.409668 1012.403931 855.006226 674.470703 769.859192 2110.732178 799.565247 1981.221436 528.844604 483.055878 1512.586548 3212.712891 1491.119995 1843.866943 1748.956665 2048.602051 1662.244385 2593.879639 1921.427856 1664.831909
    16380 536.809692 1022.029724 840.287720 671.095215 738.908997 2118.984863 807.995789 2624.343262 552.687012 479.768372 1661.331055 3190.809570 1770.193970 2081.854248 2164.372803 2295.646729 1846.683594 2038.272339 2222.708252 2122.753662
    16381 570.668884 989.891235 839.180298 689.863586 695.739136 2033.681885 786.547852 3528.163574 572.166077 484.491211 1643.470337 2564.206787 2025.219971 2104.706787 1792.828613 2106.199463 2087.914062 1457.817871 1874.736938 1683.072021
    16382 562.505310 977.029785 1005.927673 683.250183 661.608337 2566.123047 805.594116 3731.086426 566.710571 489.289673 1556.492188 2783.619385 1312.174561 2378.643311 2466.965576 2160.641357 1691.332520 2013.095093 1632.475708 1352.443237
    16383 567.307373 1006.794067 982.376526 677.099854 657.040588 2545.080322 784.917969 3850.334717 570.241699 512.688232 2127.414551 2448.062012 1398.359253 1665.321167 2241.687256 1823.699829 1340.686035 1972.661743 1550.770142 1727.808228

    16384 rows × 1500 columns

  • I implemented a simple control prediction algorithm:
    1. apply robust scaling to the fluorescence trace
    2. manual threshold
  • here the code
           threshold = 2
    
           sim_pred = pd.DataFrame()
           sim_corr = pd.DataFrame()
           sim_robust = pd.DataFrame()
           for i in range(len(sim_dirty.columns)):
               trace = sim_dirty.iloc[:, i].to_numpy()
               trace_robust = ppd.scale_trace(trace.reshape(-1, 1), 'robust')
               trace_pred = trace_robust.flatten() > threshold
               trace_corr = np.delete(trace, trace_pred)
    
               trace_corr = pd.DataFrame(trace_corr)
               trace_pred = pd.DataFrame(trace_pred)
               trace_robust = pd.DataFrame(trace_robust)
               sim_corr = pd.concat([sim_corr, trace_corr], axis='columns')
               sim_pred = pd.concat([sim_pred, trace_pred], axis='columns')
               sim_robust = pd.concat([sim_robust, trace_robust], axis='columns')
           sim_corr.columns = sim_dirty.columns
           sim_pred.columns = sim_dirty.columns
           sim_robust.columns = sim_dirty.columns
    
           for i in [4, 100, 200, 400]:
               fig = plt.figure(figsize=(16,9))
               ax1 = plt.subplot(311, title='Original trace')
               ax1.set_prop_cycle(color=[sns.color_palette()[0]])
               sns.lineplot(x=sim_dirty.iloc[:, i].index,
                            y=sim_dirty.iloc[:, i])
               ax1.set_ylabel(r'intensity $[a.u.]$')
    
               ax2 = plt.subplot(312, title='Scaled trace and prediction',
                                 sharex=ax1)
               ax2.set_prop_cycle(color=[sns.color_palette()[0]])
               sns.lineplot(x=sim_robust.iloc[:, i].index,
                            y=sim_robust.iloc[:, i], alpha=0.5)
               ax2.set_prop_cycle(color=[sns.color_palette()[1]])
               sns.lineplot(x=sim_pred.iloc[:, i].index,
                            y=sim_pred.iloc[:, i] * sim_robust.iloc[:, i].max())
               ax2.set_prop_cycle(color=[sns.color_palette()[2]])
               plt.hlines(y=2, xmin=0, xmax=sim_pred.index.max(),
                          ls='--', color=sns.color_palette()[2])
               ax2.set_ylabel(r'scaled intensity $[a.u.]$')
    
               ax3 = plt.subplot(313, title='Corrected trace by cutandshift',
                                 sharex=ax1)
               ax3.set_prop_cycle(color=[sns.color_palette()[0]])
               sns.lineplot(x=sim_corr.iloc[:, i].index,
                            y=sim_corr.iloc[:, i])
               ax3.set_ylabel(r'intensity $[a.u.]$')
               ax3.set_xlabel(r'time steps $[ms]$')
    
               fig.suptitle('Control of robust scaling and thresholding. Molecule'
                            f' speed = {sim_dirty.columns[i]}')
               fig.tight_layout()
               plt.show()
               plt.close('all')
    
  • here the examplary plots:
    • example for diffusion coefficient D=0.069: plotX_0dot069_robust-control-pred.png
    • example for D=0.2: plotX_0dot2_robust-control-pred.png
    • example for D=1.0: plotX_1_robust-control-pred.png
    • example for D=50.0 plotX_50_robust-control-pred.png
  • now let’s save correlations and fit them with FOCUSpoint
           mkdir /home/lex/Programme/drmed-git/data/exp-220316-publication1/220719_threshold-prediction
    
           out_path = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220719_threshold-prediction')
           threshold = 2
    
           for name in set(sim_dirty.columns):
               out_folder = out_path / f'{name}'
               out_txt = f'robust_thresh-{threshold}'
               %mkdir -p $out_folder
               ans.threshold_predict_correct_correlate_simulations(
                   sim_dirty.loc[:, name],
                   out_path=out_folder,
                   out_txt=out_txt,
                   threshold=threshold)
    
    2022-07-21 16:48:51.311194: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2022-07-21 16:48:51.312823: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
    2022-07-21 16:48:51.314823: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (Topialex): /proc/driver/nvidia/version does not exist
    2022-07-21 16:48:51.368332: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    
  • another thing I didn’t do before is correlate the clean traces, so here it comes
           out_path = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220719_threshold-prediction/')
           for name in set(sim_clean.columns):
               out_folder = out_path / f'{name}-clean'
               out_txt = 'clean'
               %mkdir -p $out_folder
               correlate.correlate_timetrace_and_save(
                   df=sim_clean.loc[:, name],
                   out_path=out_folder,
                   out_txt=out_txt)
    

2.7.7 Exp: simexps - failed attempts: weight=np.nan correction and modulation filtering

  • modulation filtering (@perssonmodulation2009). The algorithmic approach is to divide the correlation function of the registered intensity trace with that of a modulation (a square wave pattern, in this case representing the peak artifacts)
  • since I have time constraints in my project, I will try if the straight forward approach
    1. take the dirty trace and the given mask from the simulations
    2. correlate dirty trace and mask trace (0 = no artifact, 1 = artifact)
    3. divide correlation of dirty trace by correlation of mask
  • call jupyter-set-output-directory and prepare modules and data
    ./data/exp-220316-publication1/jupyter
    
           %cd ~/Programme/drmed-git
    
    /home/lex/Programme/drmed-git
    
  • load modules
           import datetime
           import logging
           import os
           import pdb
           import sys
    
           import matplotlib.pyplot as plt
           import numpy as np
           import pandas as pd
           import seaborn as sns
    
           from multipletau import autocorrelate
           from pathlib import Path
           from pprint import pprint
    
           FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/'
           sys.path.append(FLUOTRACIFY_PATH)
           from fluotracify.applications import (corr_fit_object as cfo,
                                                 correlate)
           from fluotracify.imports import ptu_utils as ptu
           from fluotracify.simulations import (
              import_simulation_from_csv as isfc,
              analyze_simulations as ans,
           )
    
           logging.basicConfig(filename="/home/lex/Programme/drmed-git/data/exp-220316-publication1/jupyter.log",
                               filemode='w', format='%(asctime)s - %(message)s',
                               force=True,
                               level=logging.DEBUG)
    
           sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind',
                         context='paper')
    
    2023-07-10 11:04:18.480020: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2023-07-10 11:04:18.480133: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
           import importlib
           importlib.reload(correlate)
           importlib.reload(ans)
    
    <module 'fluotracify.simulations.analyze_simulations' from '/home/lex/Programme/drmed-git/src/fluotracify/simulations/analyze_simulations.py'>
    
  • load simulated data
           col_per_example = 3
           lab_thresh = 0.04
           artifact = 0
           model_type = 1
           fwhm = 250
           sim_path = Path('/home/lex/Programme/drmed-collections/drmed-simexps/'
                           '2020-11-FCS-peak-artifacts-dataset-test-split')
    
           sim, _, nsamples, sim_params = isfc.import_from_csv(
               folder=sim_path,
               header=12,
               frac_train=1,
               col_per_example=col_per_example,
               dropindex=None,
               dropcolumns=None)
    
           diffrates = sim_params.loc[
               'diffusion rate of molecules in micrometer^2 / s'].astype(np.float32)
           nmols = sim_params.loc['number of fast molecules'].astype(np.float32)
           clusters = sim_params.loc[
               'diffusion rate of clusters in micrometer^2 / s'].astype(np.float32)
           sim_columns = [f'{d:.4}' for d, c in zip(
               np.repeat(diffrates, nsamples[0]),
               np.repeat(clusters, nsamples[0]))]
    
           sim_sep = isfc.separate_data_and_labels(array=sim,
                                                   nsamples=nsamples,
                                                   col_per_example=col_per_example)
           sim_dirty = sim_sep['0']
           sim_dirty.columns = sim_columns
    
           sim_labels = sim_sep['1']
           sim_labels.columns = sim_columns
           sim_labbool = sim_labels > lab_thresh
           sim_labbool.columns = sim_columns
           sim_clean = sim_sep['2']
           sim_clean.columns = sim_columns
    
           sim_dirty
    
           set(sim_labbool.columns)
    
    0.069 0.2 3.0
           for col in set(sim_labbool.columns):
               print(col)
    
               dirty_trace = sim_dirty.loc[:, col].iloc[:, 0].astype(np.float64)
               clean_trace = sim_clean.loc[:, col].iloc[:, 0].astype(np.float64)
               mod_trace = (~sim_labbool.loc[:, col].iloc[:, 0]).astype(np.float64)
    
               # adjusting the amplitude of the modulation trace makes no difference,
               # because the correlation normalization in autocorrelate()
               # dirty_amp = np.max(dirty_trace) - np.min(dirty_trace)
               # mod_trace *= dirty_amp
    
               mod_corr = autocorrelate(
                   a=mod_trace,
                   m=16,
                   deltat=1,
                   normalize=True)
               dirty_corr = autocorrelate(
                   a=dirty_trace,
                   m=16,
                   deltat=1,
                   normalize=True)
               clean_corr = autocorrelate(
                   a=clean_trace,
                   m=16,
                   deltat=1,
                   normalize=True)
               mod_corr[:, 1] += 1
               dirty_corr[:, 1] += 1
               filt_corr = dirty_corr[1:, 1] / mod_corr[1:, 1]
               filt_corr -= 1
               fig, ax = plt.subplots(3, 2, figsize=(16, 9))
               ax2 = plt.twinx(ax=ax[2, 1])
               ax2.set_prop_cycle(color=[sns.color_palette()[1]])
               sns.lineplot(x=clean_trace.index, y=clean_trace, ax=ax[2, 0]).set(
                   title='clean')
               line1 = sns.lineplot(
                   x=mod_corr[1:, 0], y=filt_corr, ax=ax[2, 1], label='filtered',
                   legend=False).set(
                       title='clean vs filtered (dirty corr / modulation corr)')
               line2 = sns.lineplot(x=mod_corr[1:, 0], y=clean_corr[1:, 1], ax=ax2,
                                    label='clean', legend=False)
               sns.lineplot(x=mod_trace.index, y=mod_trace, ax=ax[1, 0]).set(
                   title='modulation')
               sns.lineplot(x=mod_corr[1:, 0], y=mod_corr[1:, 1], ax=ax[1, 1]).set(
                   title='modulation corr')
               sns.lineplot(x=dirty_trace.index, y=dirty_trace, ax=ax[0, 0]).set(
                   title='dirty')
               sns.lineplot(x=dirty_corr[1:, 0], y=dirty_corr[1:, 1], ax=ax[0, 1]).set(
                   title='dirty corr')
               plt.setp(ax[:, 1], xscale='log')
               fig.legend(loc='lower right')
               # plt.setp(ax[1, :], ylim=[-1, 5])
               # lns = lns1 + lns2 + lns3
               # labs = [l.get_label() for l in lns]
               # ax.legend(lns, labs, loc=0)
               plt.tight_layout()
               plt.show()
    
  • here the plots:
    • diffusion coefficient D=3.0

    plotX_3_modulation-filtering.png

    • D=0.069

    plotX_0dot069_modulation-filtering.png

    • D=0.2

    plotX_0dot2_modulation-filtering.png

  • it seems like this simple approach does not work since it introduces at least huge instabilities in the tail of the correlation curve (and the start doesn’t look tidy as well). In the publications by persson et al they also spoke of an analytical solution to the correlation of the modulation - but I have not time to figure this out at the moment
  • at MAF2022, Thorsten Wohland mentioned my current implementation of weight=0 correction might be problematic. Instead of setting the part of the trace to 0, I should try to set it to nan, and that most correlation algorithms would account for these missing values. Let’s try that for multipletau and tttr2xfcs
           sim_nan = pd.DataFrame()
           for i in range(len(sim_dirty.columns)):
    
               # weight=nan
               sim_nan_trace = np.where(sim_labbool.iloc[:, i].values == 1, np.nan,
                                        sim_dirty.iloc[:, i].values)
               sim_nan_trace = pd.DataFrame(sim_nan_trace)
               sim_nan = pd.concat([sim_nan, sim_nan_trace], axis='columns')
           sim_nan.columns = sim_columns
    
           # log.debug('label_correct_correlate: Finished "cut and shift" correction.')
    
           # after correction
           # lab_str = f'{lab_thresh}'.replace(".", "dot")
           # cas_txt = f'labthresh-{lab_str}_cutandshift'
           # del_txt = f'labthresh-{lab_str}_delete'
           # correlate.correlate_timetrace_and_save(df=sim_cas, out_path=out_path, out_txt=cas_txt)
           # correlate.correlate_timetrace_and_save(df=sim_del, out_path=out_path, out_txt=del_txt)
           sim_nan
    
      0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
    0 1187.467896 907.677734 480.048798 454.669403 466.063232 384.734467 543.981323 640.921509 795.946167 410.471893 1897.398193 NaN NaN 2034.432495 2187.548584 2105.736084 1789.366577 2023.093994 2331.185791 2185.028076
    1 1184.055176 945.760315 471.065216 458.392487 473.306152 395.165527 558.603088 622.421204 776.199402 409.149170 1499.969849 NaN NaN 1650.523926 2122.935791 2791.281006 1661.286377 1111.879761 1853.699585 1926.844971
    2 1191.848877 980.117798 459.479706 426.087982 482.370209 425.123413 551.536072 624.498535 778.671265 400.971954 1822.985229 NaN NaN 1934.118286 NaN 2251.077393 1903.003662 2063.915527 2198.018066 2038.683105
    3 1199.065918 974.313110 462.205566 444.041809 463.703125 434.186615 573.044128 626.252502 747.284058 393.178162 1741.839355 NaN NaN 2136.627686 NaN 2323.700684 2133.313721 1638.169312 1926.058716 1815.259521
    4 1221.957397 968.779175 464.918030 455.205292 474.615540 437.029419 586.489136 619.319092 781.954102 406.468018 2431.400879 NaN NaN 1915.518066 NaN 2359.145508 1699.926147 1862.709595 2291.338379 1332.422241
    16379 506.409668 1012.403931 855.006226 674.470703 769.859192 NaN 799.565247 NaN 528.844604 483.055878 1512.586548 NaN 1491.119995 1843.866943 NaN 2048.602051 1662.244385 2593.879639 1921.427856 1664.831909
    16380 536.809692 1022.029724 840.287720 671.095215 738.908997 NaN 807.995789 NaN 552.687012 479.768372 1661.331055 NaN 1770.193970 2081.854248 NaN 2295.646729 1846.683594 2038.272339 2222.708252 2122.753662
    16381 570.668884 989.891235 839.180298 689.863586 695.739136 NaN 786.547852 NaN 572.166077 484.491211 1643.470337 NaN 2025.219971 2104.706787 NaN 2106.199463 2087.914062 1457.817871 1874.736938 1683.072021
    16382 562.505310 977.029785 1005.927673 683.250183 661.608337 NaN 805.594116 NaN 566.710571 489.289673 1556.492188 NaN 1312.174561 2378.643311 NaN 2160.641357 1691.332520 2013.095093 1632.475708 1352.443237
    16383 567.307373 1006.794067 982.376526 677.099854 657.040588 NaN 784.917969 NaN 570.241699 512.688232 2127.414551 NaN 1398.359253 1665.321167 NaN 1823.699829 1340.686035 1972.661743 1550.770142 1727.808228

    16384 rows × 1500 columns

           for idx, col in enumerate(sim_nan.columns):
               trace = sim_nan.iloc[:, idx]
               corr_fn = autocorrelate(
                   a=trace,
                   m=16,
                   deltat=1,
                   normalize=True,
                   compress='first')
    
               # try:
               #     corr_fn = autocorrelate(
               #         a=trace,
               #         m=16,
               #         deltat=1,
               #         normalize=True)
                   # autotime = corr_fn[1:, 0]
                   # autonorm = corr_fn[1:, 1]
                   # out_file_txt = f'nan_{col.replace(".", "dot")}'
                   # out_file = Path(f'{datetime.date.today()}_multipletau_'
                   #                 f'{out_file_txt}_{idx:04}_correlation.csv')
                   # out_file = out_path / out_file
                   #
                   # with open(out_file, 'w', encoding='utf-8') as out:
                   #     out.write('version,3.0\n')
                   #     out.write('numOfCh,1\n')
                   #     out.write('type,point\n')
                   #     out.write(f'parent_name,nan\n')
                   #     out.write('ch_type,1_1\n')
                   #     out.write('kcount,1\n')  # arbitrary value
                   #     out.write('numberNandB,1\n')  # arbitrary value
                   #     out.write('brightnessNandB,1\n')  # arbitrary value
                   #     out.write('carpet pos,0\n')
                   #     out.write('pc,0\n')
                   #     out.write('Time (ms),CH1 Auto-Correlation\n')
                   #     for i in range(autotime.shape[0]):
                   #         out.write(f'{autotime[i]},{autonorm[i]}\n')
                   #     out.write('end\n')
                   # logging.debug('predict_correct_correlate: Finished saving of file %s',
                   #           out_file)
    
               # except KeyError:
               #     logging.debug(f'skipped {col}-{idx}')
               #     continue
               break
    
  • I checked these files with Focus-point. the Python multipletau library does not seem able to handle np.nan

2.7.8 Exp: simexps - correlation averaging

  • After re-reading a lot of literature and putting it into text (<2023-01-02 Mo>), I decided to add the averaging method:
    1. segment trace in artifactual and non-artifactual (here: given by simulations)
    2. correlate all non-artifactual segments
    3. average correlations and fit the average
  • call jupyter-set-output-directory and prepare modules and data
    ./data/exp-220316-publication1/jupyter
    
        %cd ~/Programme/drmed-git
    
    /home/lex/Programme/drmed-git
    
  • load modules and correlation function
        import datetime
        import logging
        import os
        import pdb
        import scipy
        import sys
    
        import matplotlib.pyplot as plt
        import numpy as np
        import pandas as pd
        import seaborn as sns
    
        from multipletau import autocorrelate
        from pathlib import Path
        from pprint import pprint
    
        FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/'
        sys.path.append(FLUOTRACIFY_PATH)
        from fluotracify.applications import (corr_fit_object as cfo,
                                              correlate)
        from fluotracify.imports import ptu_utils as ptu
        from fluotracify.simulations import (
           import_simulation_from_csv as isfc,
           analyze_simulations as ans,
        )
    
        logging.basicConfig(filename="/home/lex/Programme/drmed-git/data/exp-220316-publication1/jupyter.log",
                            filemode='w', format='%(asctime)s - %(message)s',
                            force=True,
                            level=logging.DEBUG)
    
        sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind',
                      context='paper')
    
        def label_avg_correct_correlate(sim_dirty, sim_labels, sim_columns,
                                        lab_thresh, out_path):
            sim_labbool = sim_labels > lab_thresh
            sim_labbool.columns = sim_columns
    
            sim_avg = pd.DataFrame()
            for i in range(len(sim_dirty.columns)):
                # sim_labbool gives False (or 0) for parts deemed non-artifactual
                # and True (or 1) for parts deemed artifactual. Switch 0 and 1
                # for label() fct. Take all connected segments with value 1
                # (non-artifactual) and give them a distinct label
                sim_segments = scipy.ndimage.label(~sim_labbool.iloc[:, i])
                time_and_corrs = []
                for u in np.unique(sim_segments[0]):
                    # ignore all parts with value 0 (artifactual)
                    if u == 0:
                        continue
                    # now get intensities for each label and correlate the parts
                    part = np.where(sim_segments[0] == u, sim_dirty.iloc[:, i],
                                    np.nan)
                    part = part[~np.isnan(part)]
                    if len(part) > 32:  # minimal length for multipletau
                        corr_fn = multipletau.autocorrelate(
                            a=part,
                            m=16,
                            deltat=1,
                            normalize=True)
                        time_and_corrs.append(corr_fn)
                max_autotime = max([len(c[1:, 0]) for c in time_and_corrs])
                autotime = [c[1:, 0] for c in time_and_corrs
                            if len(c[1:, 0]) == max_autotime][0]
                corrs = [c[1:, 1] for c in time_and_corrs]
                # convert to pandas dataframe to easily compute the mean
                corr_df = pd.DataFrame(corrs)
                corr_df.columns = autotime
                sim_avg = pd.concat([sim_avg, corr_df.mean()], axis='columns')
            sim_avg.columns = sim_dirty.columns
    
            log.debug('label_avg_correct_correlate: Finished "averaging" '
                      'correction.')
    
            lab_str = f'{lab_thresh}'.replace(".", "dot")
            avg_txt = f'labthresh-{lab_str}_avgcorrs'
            correlate.save_correlations(sim_avg, out_path, out_txt=avg_txt)
    
    2023-07-10 11:48:22.796540: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2023-07-10 11:48:22.796574: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
        import importlib
        importlib.reload(correlate)
        importlib.reload(ans)
    
    <module 'fluotracify.simulations.analyze_simulations'" from '/home/lex/Programme/drmed-git/src/fluotracify/simulations/analyze_simulations.py'>
    
  • load simulated data
        col_per_example = 3
        lab_thresh = 0.04
        artifact = 0
        model_type = 1
        fwhm = 250
        sim_path = Path('/home/lex/Programme/drmed-collections/drmed-simexps/'
                        '2020-11-FCS-peak-artifacts-dataset-test-split')
    
        sim, _, nsamples, sim_params = isfc.import_from_csv(
            folder=sim_path,
            header=12,
            frac_train=1,
            col_per_example=col_per_example,
            dropindex=None,
            dropcolumns=None)
    
        diffrates = sim_params.loc[
            'diffusion rate of molecules in micrometer^2 / s'].astype(np.float32)
        nmols = sim_params.loc[
            'number of fast molecules'].astype(np.float32)
        clusters = sim_params.loc[
            'diffusion rate of clusters in micrometer^2 / s'].astype(np.float32)
        sim_columns = [f'{d:.4}' for d, c in zip(
            np.repeat(diffrates, nsamples[0]),
            np.repeat(clusters, nsamples[0]))]
    
        sim_sep = isfc.separate_data_and_labels(array=sim,
                                                nsamples=nsamples,
                                                col_per_example=col_per_example)
        sim_dirty = sim_sep['0']
        sim_dirty.columns = sim_columns
    
        sim_labels = sim_sep['1']
        sim_labels.columns = sim_columns
        sim_labbool = sim_labels > lab_thresh
        sim_labbool.columns = sim_columns
        sim_clean = sim_sep['2']
        sim_clean.columns = sim_columns
    
        sim_dirty
    
      0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
    0 713.265991 744.802124 826.520020 1026.031250 722.783569 535.900879 451.262878 1367.333374 681.179382 535.767944 2261.223389 2543.748047 2256.473389 2542.755127 2330.921387 2305.083252 2173.232666 2062.797119 2289.139648 2152.042480
    1 722.252319 683.359253 880.494141 1007.574158 799.677307 482.778961 454.336945 1940.016602 651.036133 499.024017 2266.271240 2587.961914 2031.263794 2432.657959 2406.232910 2352.105469 2160.110596 2065.708252 2417.550293 2122.049072
    2 733.600647 649.684509 877.483398 998.538635 831.312439 512.006714 363.979126 2271.991943 625.854797 566.044983 2044.131836 2745.176025 2255.511475 2752.760010 2274.791504 2367.735107 2438.015625 2010.474243 2499.894287 2342.889404
    3 691.043701 639.145508 873.966919 968.573364 884.279236 549.445007 343.515106 2651.022705 695.761230 530.203247 2230.916992 2731.761719 2393.619141 2296.860352 2555.209473 2386.559570 2486.250488 2485.065430 2527.566162 2480.090576
    4 682.564026 655.725647 840.207397 963.088501 838.273865 633.566284 340.292023 2005.732788 694.750122 555.557312 2264.185547 2576.068848 1982.958008 2461.842285 2413.839844 2401.447754 1931.255737 2544.301514 2350.519531 2328.060303
    16379 600.689514 7167.673828 1000.159180 3518.484131 834.950256 742.670410 701.583862 839.283447 1272.512939 656.729065 2214.889160 2510.637939 1935.603516 2684.689453 2603.836182 2310.200928 1734.098999 2858.153320 1930.742920 1907.025391
    16380 611.448669 7144.153320 943.029175 3300.464111 833.614929 758.665100 654.534546 828.262878 1227.944214 680.955994 2341.741699 2702.447998 2133.985596 2922.751465 2096.801514 2249.673340 1593.777466 3053.259277 1608.163696 2044.107910
    16381 573.900452 7138.144531 866.439880 3580.420654 848.203918 710.973389 658.252441 787.160461 1316.438721 658.184998 2368.291748 2579.004639 2052.473633 2915.779785 2403.829346 2225.661377 1544.997437 3116.909912 1916.492798 2009.656250
    16382 568.064331 7123.159668 816.428101 3322.972656 770.866638 732.948914 722.686584 744.262878 1739.399414 630.757263 2236.975586 2199.813232 1976.238037 2792.360107 2691.937500 2318.651123 1828.193726 2749.119629 2232.070312 2055.447266
    16383 606.832397 7652.136230 809.240173 3446.315674 716.062012 663.057251 692.925720 734.263550 1758.154663 659.775452 2856.197021 2314.668213 1927.936157 2672.146729 2615.285156 2549.162109 1872.694458 2377.272217 2335.970215 2172.795898

    16384 rows × 900 columns

  • let’s start implementing the averaging
        testtrace = [5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 9]
        testsegme = [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1]
        testlabel = scipy.ndimage.label(testsegme)
        testparts = []
        for u in np.unique(testlabel[0]):
            if u == 0:
                continue
            part = np.where(testlabel[0] == u, testtrace, np.nan)
            part = part[~np.isnan(part)]
            testparts.append(part)
        print(testparts)
    
    [array([7., 8., 3.]), array([6., 7.]), array([9.])]
    
        sim_avg = pd.DataFrame()
        for i in range(len(sim_dirty.columns)):
            # sim_labbool gives False (or 0) for parts deemed non-artifactual and
            # True (or 1) for parts deemed artifactual. Take all connected segments
            # with value 0 and give them a distinct label
            sim_segments = scipy.ndimage.label(~sim_labbool.iloc[:, i])
            time_and_corrs = []
            for u in np.unique(sim_segments[0]):
                if u == 0:
                    continue
                # now get intensities for each label and correlate the parts
                part = np.where(sim_segments[0] == u, sim_dirty.iloc[:, i], np.nan)
                part = part[~np.isnan(part)]
                if len(part) > 32:
                    corr_fn = autocorrelate(
                        a=part,
                        m=16,
                        deltat=1,
                        normalize=True)
                    time_and_corrs.append(corr_fn)
            max_autotime = max([len(c[1:, 0]) for c in time_and_corrs])
            autotime = [c[1:, 0] for c in time_and_corrs
                        if len(c[1:, 0]) == max_autotime][0]
            corrs = [c[1:, 1] for c in time_and_corrs]
            # convert to pandas dataframe to easily compute the mean
            corr_df = pd.DataFrame(corrs)
            corr_df.columns = autotime
            sim_avg = pd.concat([sim_avg, corr_df.mean()], axis='columns')
        sim_avg.columns = sim_dirty.columns
    
  • plot some examples:
        plt.figure(figsize=(12, 6))
        for i, _ in enumerate(sim_avg.columns):
            plt.subplot(2, 3, i+1).semilogx(sim_avg.index, sim_avg.iloc[:, i])
            if i > 4:
                break
        plt.tight_layout()
        plt.show()
    

    plotX_averaging_6examples.png

  • also plot the error margins:
        ax = sns.lineplot(x=corr_df.columns, y=corr_df.mean())
        plt.setp(ax, xscale='log')
        ax.fill_between(corr_df.columns, (corr_df.mean() - corr_df.std()).values, (corr_df.mean() + corr_df.std()).values, alpha=0.3)
        plt.show()
    

    plotX_averaging_1example.png

  • now the averaging method:
        out_path = Path('/beegfs/ye53nis/drmed-git/data/exp-220316-publication1/230103_avg-correction')
    
        for name in set(sim_dirty.columns):
            out_folder = out_path / f'{name.split("-")[0]}'
    
            %mkdir -p $out_folder
            label_avg_correct_correlate(
                sim_dirty=sim_dirty.loc[:, name],
                sim_labels=sim_labels,
                sim_columns=sim_columns,
                lab_thresh=0.04,
                out_path=out_folder)
    
        set(sim_dirty.columns)
    
    0.069-0.01 0.069-0.1 0.069-1.0 0.08-0.01 0.08-0.1 0.08-1.0 0.1-0.01 0.1-0.1 0.1-1.0 0.2-0.01 0.2-0.1 0.2-1.0 0.4-0.01 0.4-0.1 0.4-1.0 0.6-0.01 0.6-0.1 0.6-1.0 1.0-0.01 1.0-0.1 1.0-1.0 10.0-0.01 10.0-0.1 10.0-1.0 3.0-0.01 3.0-0.1 3.0-1.0 50.0-0.01 50.0-0.1 50.0-1.0

2.7.9 Exp: bioexps - prediction by threshold

  • these calculations take some time, so I used the High Performance Cluster for computation.
  • call jupyter-set-output-directory and prepare modules and data
    ./data/exp-220316-publication1/jupyter
    
          import importlib
          importlib.reload(cfo)
    
    <module 'fluotracify.applications.corr_fit_object' from '/beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py'>
    
          %cd /beegfs/ye53nis/drmed-git
          import logging
          import os
          import sys
    
          import matplotlib.pyplot as plt
          import numpy as np
          import pandas as pd
          import seaborn as sns
    
          from pathlib import Path
          from pprint import pprint
    
          FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/'
          sys.path.append(FLUOTRACIFY_PATH)
          from fluotracify.applications import corr_fit_object as cfo
    
          data_path = Path(data_path)
          output_path = Path(output_path)
          %mkdir -p output_path
    
          log_path = output_path.parent / f'{output_path.name}.log'
    
          logging.basicConfig(filename=log_path,
                              filemode='w', format='%(asctime)s - %(message)s',
                              force=True)
    
          log = logging.getLogger(__name__)
          log.setLevel(logging.DEBUG)
    
          sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind',
                        context='paper')
          class ParameterClass():
              """Stores parameters for correlation """
              def __init__(self):
                  # Where the data is stored.
                  self.data = []
                  self.objectRef = []
                  self.subObjectRef = []
                  self.colors = ['blue', 'green', 'red', 'cyan', 'magenta',
                                 'yellow', 'black']
                  self.numOfLoaded = 0
                  # very fast from Ncasc ~ 14 onwards
                  self.NcascStart = 0
                  self.NcascEnd = 30  # 25
                  self.Nsub = 6  # 6
                  self.photonLifetimeBin = 10  # used for photon decay
                  self.photonCountBin = 1  # used for time series
    
          par_obj = ParameterClass()
    
          if data_path.name == "1911DD_atto+LUVs":
              ylim_clean = [-0.01, 0.08]
              ylim_dirty = [-0.01, 0.07]
              path_clean1 = data_path / 'clean_ptu_part1/'
              path_clean2 = data_path / 'clean_ptu_part2/'
              path_dirty1 = data_path / 'dirty_ptu_part1/'
              path_dirty2 = data_path / 'dirty_ptu_part2/'
              files_clean1 = [path_clean1 / f for f in os.listdir(path_clean1) if f.endswith('.ptu')]
              files_clean2 = [path_clean2 / f for f in os.listdir(path_clean2) if f.endswith('.ptu')]
              files_dirty1 = [path_dirty1 / f for f in os.listdir(path_dirty1) if f.endswith('.ptu')]
              files_dirty2 = [path_dirty2 / f for f in os.listdir(path_dirty2) if f.endswith('.ptu')]
    
          if data_path.name == "191113_Pex5_2_structured":
              ylim_clean = [-0.1, 0.8]
              ylim_dirty = [-0.1, 1.2]
              path_clean3 = data_path / 'HsPEX5EGFP 1-100001'
              path_dirty3 = data_path / 'TbPEX5EGFP 1-10002'
              files_clean3 = [path_clean3 / f for f in os.listdir(path_clean3) if f.endswith('.ptu')]
              files_dirty3 = [path_dirty3 / f for f in os.listdir(path_dirty3) if f.endswith('.ptu')]
    
          def threshold_predict_correct_correlate_ptu(
                  files, pred_method, pred_threshold, correction_method, out_path):
              scaler = 'robust'
              if correction_method == 'delete_and_shift':
                  method_str = 'DELSHIFT'
              elif correction_method == 'delete':
                  method_str = 'DEL'
              for idx, myfile in enumerate(files):
                  ptufile = cfo.PicoObject(myfile, par_obj)
                  ptufile.predictTimeSeries(method=pred_method,
                                            scaler=scaler,
                                            threshold=pred_threshold)
                  ptufile.correctTCSPC(method=correction_method)
                  for key in list(ptufile.trueTimeArr.keys()):
                      if method_str in key:
                          ptufile.get_autocorrelation(method='tttr2xfcs', name=key)
    
                  for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                      if m in list(ptufile.autoNorm.keys()):
                          for key, item in list(ptufile.autoNorm[m].items()):
                              if method_str in key:
                                  ptufile.save_autocorrelation(name=key, method=m,
                                                               output_path=out_path)
                  # only for plot_threshold_predict_correct_ptu()
                  # return ptufile
    
          def plot_threshold_predict_correct_ptu(files, pred_threshold, out_dir,
                                                 ylim):
              ptufile = threshold_predict_correct_correlate_ptu(
                  files=files,
                  pred_method='threshold',
                  pred_threshold=pred_threshold,
                  correction_method='delete_and_shift',
                  out_path=out_dir)
    
              fig = plt.figure(figsize=(10, 15), constrained_layout=True,
                               facecolor='white')
              gs = fig.add_gridspec(6, 2)
              ax1 = fig.add_subplot(gs[0, :])
              ax1.plot(ptufile.timeSeries[f'{ptufile.name}']['CH2_BIN1.0'])
              ax1.set_title('original trace')
              ax2 = fig.add_subplot(gs[1, :], sharex=ax1)
              ax2.plot(ptufile.timeSeries[f'{ptufile.name}']['CH2_BIN1.0_PREPRO'])
              ax2.set_title('preprocessed trace after robust scaling')
              ax3 = fig.add_subplot(gs[2, :], sharex=ax1)
              ax3.plot(ptufile.predictions[f'{ptufile.name}']['CH2_BIN1.0'])
              ax3.set_title(f'predictions after threshold={pred_threshold} on '
                            'preprocessed trace')
              ax4 = fig.add_subplot(gs[3, :], sharex=ax1)
              ax4.plot(ptufile.timeSeries[f'{ptufile.name}_DELSHIFT']['CH2_BIN1.0'])
              ax4.set_title('trace after "cut and shift" correction')
              ax4.set_xlabel(r'timesteps in $[ms]$')
              ax5 = fig.add_subplot(gs[4:, 0])
              ax5.plot(ptufile.autotime['tttr2xfcs'][f'CH2_BIN1.0_{ptufile.name}_'
                                                     'DELSHIFT'].flatten(),
                       ptufile.autoNorm['tttr2xfcs'][f'CH2_BIN1.0_{ptufile.name}_'
                                                     'DELSHIFT'].flatten(), ls=':', lw=3)
              ax5.set_xlim([0.001, 1000])
              ax5.set_ylim(ylim)
              plt.setp(ax5, xscale='log', title='correlation after correction',
                       xlabel=r'$\tau [ms]$', ylabel=r'Correlation $G(\tau)$')
              plt.setp([ax1.get_xticklabels(), ax2.get_xticklabels(),
                        ax3.get_xticklabels()], visible=False)
              plt.setp([ax1, ax2, ax3, ax4], ylabel=r'intensity $[a.u.]$')
              fig.align_labels()
              plt.show()
    
    /beegfs/ye53nis/drmed-git
    
          os._exit(00)
    
    5d59a92a-218e-4749-87b0-fed81557d851
    
  • first, plot an example of each experimental dataset (images not saved)
    /beegfs/ye53nis/drmed-git
    2022-07-26 15:34:25.807464: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2022-07-26 15:34:25.807515: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
            out_dir = output_path / f'af488+luvs'
            pred_method = 'threshold'
            correction_method = 'delete_and_shift'
            threshold_ls = [0.8, 1, 1.5, 2, 2.5]
            os.makedirs(out_dir, exist_ok=True)
            for thr in threshold_ls:
                plot_threshold_predict_correct_ptu(files=files_dirty1, pred_threshold=thr,
                                                   out_dir=out_dir, ylim=ylim_dirty)
    
    
            for thr in threshold_ls:
                plot_threshold_predict_correct_ptu(files=files_clean1, pred_threshold=thr,
                                                   out_dir=out_dir, ylim=ylim_clean)
    
  • now, let’s predict, correct, and correlate all the experimental traces. I used 3 different compute nodes to make the process faster. Because we have some memory allocation issue, I restart the jupyter kernel after each new threshold for each dataset. First, we start with the AlexaFluor488+LUVs data
              # threshold[0]: node1
              # threshold[1]: node2
              # threshold[2]: node3
              # threshold[3]: node2
              # threshold[4]: node3
                for thr in threshold_ls:
                out_folder = out_dir / f'robust_thresh-{thr}'
                  %mkdir -p $out_folder
                  threshold_predict_correct_correlate_ptu(
                      files=files_dirty1,
                      pred_method=pred_method,
                      pred_threshold=thr,
                      correction_method=correction_method,
                      out_path=out_folder)
                  break
    
    2022-07-26 15:38:12.573339: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2022-07-26 15:38:12.573387: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
    2022-07-26 15:38:12.573411: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node095): /proc/driver/nvidia/version does not exist
    2022-07-26 15:38:12.574336: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    
    • #+CALL: kill-jupyter()
    • #+CALL: prepare-jupyter()
      /beegfs/ye53nis/drmed-git
      2022-07-27 10:44:51.957570: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-07-27 10:44:51.957621: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
                # threshold[0]: node1
                # threshold[1]: node1
                # threshold[2]: node2
                # threshold[3]: node3
                # threshold[4]: node1  # just 431
                out_dir = output_path / f'af488+luvs'
                pred_method = 'threshold'
                correction_method = 'delete_and_shift'
                threshold_ls = [0.8, 1, 1.5, 2, 2.5]
      
                for thr in threshold_ls[4:]:
                      out_folder = out_dir / f'robust_thresh-{thr}'
                      # %mkdir -p $out_folder
                      threshold_predict_correct_correlate_ptu(
                            files=files_dirty2,
                        pred_method=pred_method,
                          pred_threshold=thr,
                          correction_method=correction_method,
                          out_path=out_folder)
                      break
      
      2022-07-27 00:18:27.343506: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-07-27 00:18:27.343564: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-07-27 00:18:27.343589: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node095): /proc/driver/nvidia/version does not exist
      2022-07-27 00:18:27.344160: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      
    • #+CALL: kill-jupyter()
    • now, let’s do AlexaFluor488 (clean) data
    • #+CALL: prepare-jupyter()
                # threshold[0]: node2
                # threshold[1]: node3
                # threshold[2]: node2
                # threshold[3]: node3
                # threshold[4]: node1
                out_dir = output_path / f'af488'
                pred_method = 'threshold'
                correction_method = 'delete_and_shift'
                threshold_ls = [0.8, 1, 1.5, 2, 2.5]
      
                for thr in threshold_ls[4:]:
                      out_folder = out_dir / f'robust_thresh-{thr}'
                  %mkdir -p $out_folder
                    threshold_predict_correct_correlate_ptu(
                        files=files_clean1,
                        pred_method=pred_method,
                        pred_threshold=thr,
                        correction_method=correction_method,
                        out_path=out_folder)
                    break
      
      2022-07-27 03:54:07.972324: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-07-27 03:54:07.972364: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-07-27 03:54:07.972390: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node095): /proc/driver/nvidia/version does not exist
      2022-07-27 03:54:07.972933: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      
    • #+CALL: kill-jupyter()
    • #+CALL: prepare-jupyter()
                # threshold[0]: node2  # just 420
                # threshold[1]: node3
                # threshold[2]: node1  # just 422
                # threshold[3]: node3
                # threshold[4]: node3
                out_dir = output_path / f'af488'
                pred_method = 'threshold'
                correction_method = 'delete_and_shift'
                threshold_ls = [0.8, 1, 1.5, 2, 2.5]
      
                for thr in threshold_ls[2:]:
                      out_folder = out_dir / f'robust_thresh-{thr}'
                      # %mkdir -p $out_folder
                      threshold_predict_correct_correlate_ptu(
                            files=files_clean2,
                        pred_method=pred_method,
                          pred_threshold=thr,
                          correction_method=correction_method,
                          out_path=out_folder)
                      break
      
      2022-07-27 10:45:14.050433: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
      2022-07-27 10:45:14.050526: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
      2022-07-27 10:45:14.050552: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node095): /proc/driver/nvidia/version does not exist
      2022-07-27 10:45:14.051164: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
      To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
      
    • #+CALL: kill-jupyter()
  • now, let’s do human pex5 data. First, we plot again example plots (images not saved)
    • #+CALL: prepare-jupyter(data_path="/beegfs/ye53nis/data/191113_Pex5_2_structured")
      /beegfs/ye53nis/drmed-git
      2022-07-27 12:50:42.718757: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
      2022-07-27 12:50:42.718819: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
      
    • compute
                threshold_ls = [5, 7, 10]
                for thr in threshold_ls:
                    plot_threshold_predict_correct_ptu(
                        files=files_clean3, pred_threshold=thr, out_dir=out_dir,
                        ylim=ylim_clean)
      
                threshold_ls = [5, 7, 10]
                for thr in threshold_ls:
                    plot_threshold_predict_correct_ptu(
                        files=files_dirty3[5:], pred_threshold=thr, out_dir=out_dir,
                        ylim=ylim_dirty)
      
                # threshold[0]:
                # threshold[1]:
                # threshold[2]: node1
                out_dir = output_path / 'Hs-PEX5-eGFP'
                pred_method = 'threshold'
                correction_method = 'delete_and_shift'
                threshold_ls = [5, 7, 10]
      
                for thr in threshold_ls[:2]:
                    out_folder = out_dir / f'robust_thresh-{thr}'
                    %mkdir -p $out_folder
                    threshold_predict_correct_correlate_ptu(
                        files=files_clean3,
                        pred_method=pred_method,
                        pred_threshold=thr,
                        correction_method=correction_method,
                        out_path=out_folder)
      
                # threshold[0]: node2
                # threshold[1]: node2
                # threshold[2]: node2
                out_dir = output_path / 'Tb-PEX5-eGFP'
                pred_method = 'threshold'
                correction_method = 'delete_and_shift'
                threshold_ls = [5, 7, 10]
      
                for thr in threshold_ls[2:]:
                    out_folder = out_dir / f'robust_thresh-{thr}'
                    %mkdir -p $out_folder
                    threshold_predict_correct_correlate_ptu(
                        files=files_dirty3,
                        pred_method=pred_method,
                        pred_threshold=thr,
                        correction_method=correction_method,
                        out_path=out_folder)
      
2.7.9.1 node 2
  1. Set up tmux (if we haven’t done that before) (#+CALL: setup-tmux[:session local])
         
    sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:
    > ye53nis@ara-login01.rz.uni-jena.de’s password:
  2. Request compute node
             cd /
             srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
    
  3. Start Jupyter Lab (#+CALL: jpt-tmux[:session jpmux])
           conda activate tf
           export PORT=8890
           export XDG_RUNTIME_DIR=''
           export XDG_RUNTIME_DIR=""
           jupyter lab --no-browser --port=$PORT
    
             (tf) [ye53nis@node159 /]$ jupyter lab --no-browser --port=$PORT
             [I 2022-07-26 15:41:02.905 ServerApp] jupyterlab | extension was successfully linked.
             [I 2022-07-26 15:41:04.628 ServerApp] nbclassic | extension was successfully linked.
             [I 2022-07-26 15:41:04.768 ServerApp] nbclassic | extension was successfully loaded.
             [I 2022-07-26 15:41:04.771 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab
             [I 2022-07-26 15:41:04.771 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab
             [I 2022-07-26 15:41:04.781 ServerApp] jupyterlab | extension was successfully loaded.
             [I 2022-07-26 15:41:04.783 ServerApp] Serving notebooks from local directory: /
             [I 2022-07-26 15:41:04.783 ServerApp] Jupyter Server 1.13.5 is running at:
             [I 2022-07-26 15:41:04.783 ServerApp] http://localhost:8890/lab?token=d395885914fc03bc2970ad2f723a2cbcd46c9b2a23982d8f
             [I 2022-07-26 15:41:04.783 ServerApp]  or http://127.0.0.1:8890/lab?token=d395885914fc03bc2970ad2f723a2cbcd46c9b2a23982d8f
             [I 2022-07-26 15:41:04.783 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
             [C 2022-07-26 15:41:04.800 ServerApp]
    
                 To access the server, open this file in a browser:
                     file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-18143-open.html
                 Or copy and paste one of these URLs:
                     http://localhost:8890/lab?token=d395885914fc03bc2970ad2f723a2cbcd46c9b2a23982d8f
                  or http://127.0.0.1:8890/lab?token=d395885914fc03bc2970ad2f723a2cbcd46c9b2a23982d8f
    
  4. Create SSH Tunnel for jupyter lab to the local computer (e.g. #+CALL: ssh-tunnel(port="8889", node="node160"))
                     
    sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:          
    ye53nis@node159’s password:              
    Last login: Tue Jul 26 22:11:00 2022 from login01.ara
  5. #+CALL: kill-jupyter()
  6. #+CALL: prepare-jupyter(data_path="/beegfs/ye53nis/data/191113_Pex5_2_structured") and compute
    /beegfs/ye53nis/drmed-git
    2022-07-27 12:53:09.499191: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2022-07-27 12:53:09.499274: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
             # threshold[0]: node2
             # threshold[1]: node2
             # threshold[2]: node2
             out_dir = output_path / 'Tb-PEX5-eGFP'
             pred_method = 'threshold'
             correction_method = 'delete_and_shift'
             threshold_ls = [5, 7, 10]
    
             for thr in threshold_ls:
                 out_folder = out_dir / f'robust_thresh-{thr}'
                 %mkdir -p $out_folder
                 threshold_predict_correct_correlate_ptu(
                     files=files_dirty3,
                     pred_method=pred_method,
                     pred_threshold=thr,
                     correction_method=correction_method,
                     out_path=out_folder)
    
    2022-07-27 12:54:02.705997: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2022-07-27 12:54:02.706040: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
    2022-07-27 12:54:02.706062: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node159): /proc/driver/nvidia/version does not exist
    2022-07-27 12:54:02.706560: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    
2.7.9.2 node 3
  1. Set up tmux (if we haven’t done that before) (#+CALL: setup-tmux[:session local])
         
    sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:
    > ye53nis@ara-login01.rz.uni-jena.de’s password:
  2. Request compute node
             cd /
             srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
    
  3. Start Jupyter Lab (#+CALL: jpt-tmux[:session jpmux])
           conda activate tf
           export PORT=8891
           export XDG_RUNTIME_DIR=''
           export XDG_RUNTIME_DIR=""
           jupyter lab --no-browser --port=$PORT
    
             (tf) [ye53nis@node313 /]$ jupyter lab --no-browser --port=$PORT
             [I 2022-07-26 15:41:17.402 ServerApp] jupyterlab | extension was successfully linked.
             [I 2022-07-26 15:41:18.325 ServerApp] nbclassic | extension was successfully linked.
             [I 2022-07-26 15:41:18.431 ServerApp] nbclassic | extension was successfully loaded.
             [I 2022-07-26 15:41:18.434 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab
             [I 2022-07-26 15:41:18.434 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab
             [I 2022-07-26 15:41:18.443 ServerApp] jupyterlab | extension was successfully loaded.
             [I 2022-07-26 15:41:18.444 ServerApp] Serving notebooks from local directory: /
             [I 2022-07-26 15:41:18.444 ServerApp] Jupyter Server 1.13.5 is running at:
             [I 2022-07-26 15:41:18.444 ServerApp] http://localhost:8891/lab?token=9471873c7815b3b2691a44102251c64823a1fb61f5076036
             [I 2022-07-26 15:41:18.444 ServerApp]  or http://127.0.0.1:8891/lab?token=9471873c7815b3b2691a44102251c64823a1fb61f5076036
             [I 2022-07-26 15:41:18.444 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
             [C 2022-07-26 15:41:18.460 ServerApp]
    
                 To access the server, open this file in a browser:
                     file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-94844-open.html
                 Or copy and paste one of these URLs:
                     http://localhost:8891/lab?token=9471873c7815b3b2691a44102251c64823a1fb61f5076036
                  or http://127.0.0.1:8891/lab?token=9471873c7815b3b2691a44102251c64823a1fb61f5076036
    
  4. Create SSH Tunnel for jupyter lab to the local computer (e.g. #+CALL: ssh-tunnel(port="8889", node="node160"))
                     
    sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password:          
    ye53nis@node313’s password:              
    Last login: Tue Jul 26 22:11:17 2022 from login01.ara
  5. calculations
    /beegfs/ye53nis/drmed-git
    2022-07-27 12:31:19.642954: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2022-07-27 12:31:19.643031: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
             out_dir = output_path / f'af488'
             pred_method = 'threshold'
             correction_method = 'delete_and_shift'
             threshold_ls = [0.8, 1, 1.5, 2, 2.5]
    
             for thr in threshold_ls[4:]:
                 out_folder = out_dir / f'robust_thresh-{thr}'
                 # %mkdir -p $out_folder
                 threshold_predict_correct_correlate_ptu(
                     files=files_clean2,
                     pred_method=pred_method,
                     pred_threshold=thr,
                     correction_method=correction_method,
                     out_path=out_folder)
                 break
    
    2022-07-27 12:31:40.270292: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2022-07-27 12:31:40.270377: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
    2022-07-27 12:31:40.270427: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node313): /proc/driver/nvidia/version does not exist
    2022-07-27 12:31:40.271076: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    
    6c6240a9-a9d6-4fac-936c-a02553ce2158
    

2.7.10 Exp: bioexps - example traces

  • call jupyter-set-output-directory and prepare modules and data
    ./data/exp-220316-publication1/jupyter
    
  • to interprete the correlations correctly, let’s plot the underlying experimental data.
           %cd ~/Programme/drmed-git
    
    /home/lex/Programme/drmed-git
    
  • load modules
           import logging
           import os
           import sys
    
           import matplotlib.pyplot as plt
           import numpy as np
           import pandas as pd
           import seaborn as sns
    
           from pathlib import Path
           from pprint import pprint
           from tensorflow.keras.optimizers import Adam
           from mlflow.keras import load_model
    
           FLUOTRACIFY_PATH = './src/'
           sys.path.append(FLUOTRACIFY_PATH)
           from fluotracify.applications import corr_fit_object as cfo
           from fluotracify.imports import ptu_utils as ptu
           from fluotracify.training import (build_model as bm,
                                             preprocess_data as ppd)
           from fluotracify.simulations import (
              import_simulation_from_csv as isfc,
              analyze_simulations as ans,
           )
    
           logging.basicConfig(filename="./data/exp-220316-publication1/jupyter.log",
                               filemode='w', format='%(asctime)s - %(message)s',
                               force=True,
                               level=logging.DEBUG)
    
           sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind',
                         context='paper')
    
           model_ls = [
               'ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727',
               '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65'
           ]
    
           model_name_ls = ['ff67b', '34766', '714af', '34a6d']
    
           scaler_ls = ['minmax', 'robust', 'maxabs', 'l2']
    
          import importlib
          importlib.reload(ppd)
          importlib.reload(isfc)
          importlib.reload(cfo)
    
    <module 'fluotracify.applications.corr_fit_object' from '/home/lex/Programme/drmed-git/src/fluotracify/applications/corr_fit_object.py'>
    
  • first, we prepare our correction functions as we did before
           data_path = Path("../drmed-collections/drmed-bioexps/brightbursts/")
           af488_path = data_path / '1911DD_alexafluor488+LUVs/clean_subsample/'
           af488luv_path = data_path / '1911DD_alexafluor488+LUVs/dirty_subsample/'
           hspex5_path = data_path / '191113_Pex5_2_structured/HsPEX5EGFP_1-100001_3of250'
           tbpex5_path = data_path / '191113_Pex5_2_structured/TbPEX5EGFP_1-10002_3of250'
           output_path = Path("data/exp-220316-publication1/220323_bioexps")
    
           def get_traces_and_predictions_from_ptu(path, model_id, output_path,
                                                   pred_method='unet'):
               class ParameterClass():
                   """Stores parameters for correlation """
                   def __init__(self):
                       self.data = []
                       self.objectRef = []
                       self.numOfLoaded = 0
                       self.colors = ['blue', 'green', 'red', 'cyan', 'magenta',
                           'yellow', 'black']
                       # very fast from Ncasc ~ 14 onwards
                       self.NcascStart = 0
                       self.NcascEnd = 30  # 25
                       self.Nsub = 6  # 6
                       self.photonLifetimeBin = 10  # used for photon decay
                       self.photonCountBin = 1  # used for time series
    
               par_obj = ParameterClass()
    
               if pred_method == 'unet':
                   scaler = scaler_ls[model_id]
                   logged_model = Path(f'./data/mlruns/10/{model_ls[model_id]}/artifacts/model')
                   loaded_model = load_model(logged_model, compile=False)
                   loaded_model.compile(loss=bm.binary_ce_dice_loss(),
                                        optimizer=Adam(),
                                        metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9]))
               elif pred_method == 'threshold':
                   scaler = 'robust'
                   threshold = 7
               else:
                   raise ValueError('pred_method has to be "unet" or "threshold"')
    
               files = [path / f for f in os.listdir(path) if f.endswith('.ptu')]
               traces = pd.DataFrame()
               predtraces = pd.DataFrame()
               preds = pd.DataFrame()
               corrtraces = pd.DataFrame()
    
               for myfile in (files):
                   ptufile = cfo.PicoObject(myfile, par_obj)
                   if pred_method == 'unet':
                       ptufile.predictTimeSeries(method=pred_method,
                                                 scaler=scaler,
                                                 model=loaded_model)
                   elif pred_method == 'threshold':
                       ptufile.predictTimeSeries(method=pred_method,
                                                 scaler=scaler,
                                                 threshold=threshold)
                   ptufile.correctTCSPC(method='delete_and_shift')
    
                   for key in list(ptufile.trueTimeArr.keys()):
                       ptufile.get_autocorrelation(method='tttr2xfcs', name=key)
                   for key in list(ptufile.timeSeries.keys()):
                       if "DELSHIFT" in key:
                           for k, i in ptufile.timeSeries[key].items():
                               if "1.0" in k:
                                   corrtraces = pd.concat([corrtraces, pd.DataFrame(
                                       i, columns=[f'{key}_{k}'])],
                                                          axis='columns')
                       else:
                           for k, i in ptufile.timeSeries[key].items():
                               if "PREPRO" in k:
                                   if "1.0" in k:
                                       predtraces = pd.concat([predtraces, pd.DataFrame(
                                           i, columns=[f'{key}_{k}'])],
                                                              axis='columns')
                               elif "1.0" in k:
                                   traces = pd.concat([traces, pd.DataFrame(
                                       i, columns=[f'{key}_{k}'])],
                                                      axis='columns')
                                   preds = pd.concat([preds, pd.DataFrame(
                                       data=ptufile.predictions[key][k],
                                       columns=[f'{key}_{k}'])],
                                                     axis='columns')
    
                   for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']:
                       if m in list(ptufile.autoNorm.keys()):
                           for key, item in list(ptufile.autoNorm[m].items()):
                               ptufile.save_autocorrelation(name=key, method=m,
                                                            output_path=output_path)
               predtraces.to_csv(Path(output_path) / f'{path.name}_predtraces.csv')
               traces.to_csv(Path(output_path) / f'{path.name}_traces.csv')
               preds.to_csv(Path(output_path) / f'{path.name}_preds.csv')
               corrtraces.to_csv(Path(output_path) / f'{path.name}_corrtraces.csv')
    
    
  • now let’s load, correlate, edit, and save those traces:
           model_id = 0
           ptufile = get_traces_and_predictions_from_ptu(af488luv_path, model_id,
                                                         output_path)
    
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    
           model_id = 0
           get_traces_and_predictions_from_ptu(af488_path, model_id, output_path)
    
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    
           pred_method = 'threshold'
           get_traces_and_predictions_from_ptu(hspex5_path, model_id, output_path,
                                               pred_method=pred_method)
    
    
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    
           pred_method = 'threshold'
           get_traces_and_predictions_from_ptu(tbpex5_path, model_id, output_path,
                                               pred_method=pred_method)
    
    WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
    
  • Lastly, we load a ptufile just to visualize the cut and stitch correction method on TCSPC data (here: TTTR)
           data_path = Path("../drmed-collections/drmed-bioexps/brightbursts/1911DD_alexafluor488+LUVs")
           path_clean = data_path / 'clean_subsample/'
           path_dirty = data_path / 'dirty_subsample/'
           output_path = Path("data/exp-220316-publication1/220323_bioexps")
    
           def get_ptu(path, output_path):
    
               files = [path / f for f in os.listdir(path) if f.endswith('.ptu')]
    
               for myfile in (files):
                   myfile = Path(myfile)
                   (out, ptu_tags, ptu_num_records, glob_res) = ptu.import_ptu(myfile)
                   (subChanArrFull, trueTimeArrFull, dTimeArrFull,
                    resolution) = (out["chanArr"], out["trueTimeArr"],
                                   out["dTimeArr"], out["resolution"])
                    # Remove Overflow and Markers; they are not handled at the
                    # moment.
                   subChanArr = np.array([i for i in subChanArrFull
                                          if not isinstance(i, tuple)])
                   trueTimeArr = np.array([i for i in trueTimeArrFull
                                           if not isinstance(i, tuple)])
                   dTimeArr = np.array([i for i in dTimeArrFull
                                        if not isinstance(i, tuple)])
                   return trueTimeArr, dTimeArr
    
           ptufile = get_ptu(path_dirty, output_path)
    
  • this is how a TCSPC file conceptually looks like (index = photons)
           test = pd.DataFrame(data=[ptufile[0], ptufile[1]], index=['macroscopic times', 'microscobpic times'], dtype=int)
           test
    
    /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/pandas/core/frame.py:702: FutureWarning: In a future version, passing float-dtype values and an integer dtype to DataFrame will retain floating dtype if they cannot be cast losslessly (matching Series behavior). To retain the old behavior, use DataFrame(data).astype(dtype)
      mgr = arrays_to_mgr(
    
      0 1 2 5018346 5018347 5018348
    macroscopic times 875 1400 2525 9996191498 9996192848 9996196673
    microscobpic times 39 46 602 238 111 42

    2 rows × 5018349 columns

  • I will use the numbers of the macroscopic times for a figure explaining cut and stitch, see Fig 2: cut and stitch viz
           display(test.iloc[:, 750:753])
           display(test.iloc[:, 1540:1543])
    
      750 751 752
    macroscopic times 999781 1001257 1001582
    microscobpic times 84 101 220
      1540 1541 1542
    macroscopic times 1999613 2000339 2000814
    microscopic times 72 103 970

2.7.11 Plots: jupyter

  • first, we define some functions which we will use more often
          %pwd
    
    /home/lex/Programme/drmed-git
    
  • load modules (called simulations-prepare-modules)
           %cd ~/Programme/drmed-git
    
           import logging
           import os
           import sys
    
           import matplotlib.pyplot as plt
           import numpy as np
           import pandas as pd
           import seaborn as sns
    
           from mlflow.keras import load_model
           from pathlib import Path
           from pprint import pprint
           from sklearn.preprocessing import MaxAbsScaler
           from tensorflow.keras.optimizers import Adam
    
           FLUOTRACIFY_PATH = './src/'
           sys.path.append(FLUOTRACIFY_PATH)
           from fluotracify.applications import corr_fit_object as cfo
           from fluotracify.imports import ptu_utils as ptu
           from fluotracify.training import (build_model as bm,
                                             preprocess_data as ppd)
           from fluotracify.simulations import (
              import_simulation_from_csv as isfc,
              analyze_simulations as ans,
           )
    
           logging.basicConfig(filename="./data/exp-220316-publication1/jupyter.log",
                               filemode='w', format='%(asctime)s - %(message)s',
                               force=True,
                               level=logging.DEBUG)
    
           sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind',
                         context='paper')
    
           model_ls = [
               'ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727',
               '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65',
               '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653',
               'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216',
               'c1204e3a8a1e4c40a35b5b7b1922d1ce'
           ]
    
           model_name_ls = [f'{s:.5}' for s in model_ls]
    
           pred_thresh = 0.5
    
           def sort_fit(param_ls):
               sim = param_ls[-1]
               nfcs = param_ls[-2]
    
               tt, tt_low_high = ans.convert_diffcoeff_to_transittimes(sim, fwhm=250)
    
               array = np.array(list(param_ls)[:-2]).reshape((2, 2))
               # sort by transit times
               array = array[:, array[0, :].argsort()]
               A_fast = array[1, 0]
               A_slow = array[1, 1]
               N_fast = A_fast * nfcs
               N_slow = A_slow * nfcs
               t_fast = array[0, 0]
               t_slow = array[0, 1]
               if np.isnan(t_slow):
                   # if tt_low_high[0] <= t_fast <= tt_low_high[1]:
                   #     out =
    
                   out = t_fast, nfcs, pd.NA, pd.NA, tt
    
               elif f'{A_fast:.0%}' == '100%':
                   # if tt_low_high[0] <= t_fast <= tt_low_high[1]:
                   #     out =
    
                   out = t_fast, N_fast, pd.NA, pd.NA, tt
               elif f'{A_slow:.0%}' == '100%':
                   # if tt_low_high[0] <= t_slow <= tt_low_high[1]:
                   #     out =
                   out = pd.NA, pd.NA, t_slow, N_slow, tt
               else:
                   # if (tt_low_high[0] <= t_fast <= tt_low_high[1]) or (
                   #     tt_low_high[0] <= t_slow <= tt_low_high[1]):
                   #     out =
                   out = t_fast, N_fast, t_slow, N_slow, tt
    
               return out
    
           def sort_fit_legend(param_ls):
               species = param_ls[0]
               component = param_ls[1]
    
               if species == 1:
                   legend = '$\\tau_D$ from\n1 species fit'
               elif (species == 2) and (component == 'fast'):
                   legend = '$\\tau_D$ from\nfast sp. of 2 sp. fit'
               elif (species == 2) and (component == 'slow'):
                   legend = '$\\tau_D$ from\nslow sp. of 2 sp. fit'
               return legend
    
           def prepare_all_param(all_param):
               all_param[['t_fast', 'N_fast', 't_slow', 'N_slow', 'expected transit time']
                         ] = all_param[['txy1', 'txy2', 'A1', 'A2', 'N (FCS)', 'sim']].apply(
                             lambda x: sort_fit(x), axis=1, result_type='expand')
               all_param = pd.wide_to_long(all_param, stubnames=['t', 'N'],
                                           i=['name_of_plot', 'Diff_species', 'processing'],
                                           j='fit component',
                                           sep='_', suffix=r'\w+')
    
               all_param = all_param.reset_index()
               # if Diff_species is 1, there is only 1 component
               all_param = all_param[~((all_param['fit component'] == 'slow') &
                                       (all_param['Diff_species'] == 1))]
               all_param = all_param.reset_index()
    
               all_param['legend'] = all_param[['Diff_species', 'fit component']].apply(
                   lambda x: sort_fit_legend(x), axis=1)
               print('before dropping NaNs')
               print('1 species fit: {}'.format(len(
                   all_param[all_param["legend"] == "$\\tau_D$ from\n1 species fit"])))
               print('slow sp of 2 sp fit: {}'.format(len(
                   all_param[all_param["legend"] == "$\\tau_D$ from\nslow sp. of 2 sp. fit"])))
               print('fast sp of 2 sp fit: {}'.format(len(
                   all_param[all_param["legend"] == "$\\tau_D$ from\nfast sp. of 2 sp. fit"])))
    
               all_param = all_param[~pd.isna(all_param['t'])]
               print('after dropping NaNs')
               print('1 species fit: {}'.format(len(
                   all_param[all_param["legend"] == "$\\tau_D$ from\n1 species fit"])))
               print('slow sp of 2 sp fit: {}'.format(len(
                   all_param[all_param["legend"] == "$\\tau_D$ from\nslow sp. of 2 sp. fit"])))
               print('fast sp of 2 sp fit: {}'.format(len(
                   all_param[all_param["legend"] == "$\\tau_D$ from\nfast sp. of 2 sp. fit"])))
    
               all_param = all_param[
                   ['legend', 't', 'N', 'expected transit time', 'sim', 'processing']]
               all_param.loc[:, ['t', 'N']] = all_param.loc[:, ['t', 'N']].apply(pd.to_numeric)
               return all_param
    
           def simplot(data, x, order, height, aspect, hue, xlim, kind='boxen',
                       add_text='other'):
               if kind == 'violin':
                   kwargs = dict(showfliers=True, scale='width', cut=0)
               elif kind == 'boxen':
                   kwargs = dict(showfliers=False, scale='exponential')
               g = sns.catplot(data=data,
                               x=x,
                               y='processing',
                               order=order,
                               col='expected transit time',
                               col_wrap=3,
                               hue=hue,
                               height=height,
                               aspect=aspect,
                               legend_out=True,
                               kind=kind,
                               sharex=True,
                               **kwargs)
               if hue is not None:
                   g._legend.remove()
               styles = ['--', ':', '-', '-.', (0, (3, 1, 1, 1, 1, 1)),
                         (0, (3, 1, 1, 1, 1, 1, 1, 1))]
               for i, ax in enumerate(g.axes):
                   tt = str(ax.title).split('= ')
                   tt = tt[1].strip("')")
                   tt = float(tt)
                   clean = data[(data['processing'] == 'clean noc') &
                                (data['expected transit time'] == tt)]
                   median = clean[x].median()
                   if x == 'N':
                       line = ax.axvline(median, lw=4, label='', ls=styles[::-1][i])
                       line_legend = {f'\n$N{{exp}}={median:.2f}$' : line}
                   else:
                       line = ax.axvline(median, lw=4, label='', ls=styles[i])
                       median = np.round(10**clean[x].median(), decimals=2)
                       line_legend = {f'\n$\\tau_{{exp}}={median:.2f}ms$' : line}
               g._legend_data.update(line_legend)
               g.add_legend(g._legend_data)
               if hue is None:
                   dodge = False
               else:
                   dodge = True
               if kind == 'boxen':
                   g.map_dataframe(sns.stripplot,
                                   x=x,
                                   y='processing',
                                   order=order,
                                   hue=hue,
                                   dodge=dodge,
                                   palette=sns.color_palette(['0.3']),
                                   size=2,
                                   jitter=0.05,
                                   hue_order=['$\\tau_D$ from\n1 species fit',
                                              '$\\tau_D$ from\nfast sp. of 2 sp. fit',
                                              '$\\tau_D$ from\nslow sp. of 2 sp. fit'])
               g.fig.suptitle('', size=25)
               for ax in g.axes:
                   # ax[0].set_title('')
                   tt = str(ax.title).split('= ')
                   tt = tt[1].strip("')")
                   tt = float(tt)
                   clean = data[(data['processing'] == 'clean noc') &
                                (data['expected transit time'] == tt)]
                   if x == 'N':
                       median = clean[x].median()
                       ax.set_title(f'$N_{{exp}}={median:.2f}$')
                   else:
                       median = np.round(10**clean[x].median(), decimals=2)
                       ax.set_title(f'$\\tau_{{exp}}={median:.2f}ms$')
    
               if x == 't':
                   plt.setp(g.axes, xlabel='log transit time $\\tau_{D}$ $[ms]$',
                            ylabel='', xlim=xlim)
               else:
                   plt.setp(g.axes, xlabel='particle number $N$',
                            ylabel='', xlim=xlim)
    
               g.tight_layout()
               if x == 't':
                   for i, ax in enumerate(g.axes):
                       xlab = ax.get_xticklabels()
                       # because seaborns violinplot does not support kde calculation
                       # in log values, I have to do this manually, by first
                       # log-transforming the data, now extracting the xticklabels
                       # and manually transforming them
                       xlab_power = [lab.get_position()[0] for lab in xlab]
                       xlab_power = sorted(xlab_power)
                       print(i, xlab_power)
                       xlab_power = [10**lab for lab in xlab_power]
                       xlab_power = [np.round(lab, decimals=4) for lab in xlab_power]
                       print(xlab_power)
                       ax.set_xticklabels(xlab_power)
    
               g.tight_layout()
               savefig = f'./data/exp-220316-publication1/jupyter/{add_text}'
               plt.savefig(f'{savefig}.pdf', dpi=300)
               os.system(f'pdf2svg {savefig}.pdf {savefig}.svg')
               plt.close('all')
    
  • load simulated data (called simulations-prepare-data)
           col_per_example = 3
           lab_thresh = 0.04
           artifact = 0
           model_type = 1
           fwhm = 250
           sim_path = Path('../drmed-collections/drmed-simexps/2020-11-FCS-peak-'
                           'artifacts-dataset-test-split')
    
           sim, _, nsamples, sim_params = isfc.import_from_csv(
               folder=sim_path,
               header=12,
               frac_train=1,
               col_per_example=col_per_example,
               dropindex=None,
               dropcolumns=None)
    
           diffrates = sim_params.loc[
               'diffusion rate of molecules in micrometer^2 / s'].astype(np.float32)
           nmols = sim_params.loc['number of fast molecules'].astype(np.float32)
           clusters = sim_params.loc[
               'diffusion rate of clusters in micrometer^2 / s'].astype(np.float32)
           sim_columns = [f'{d:.4}-{c:.4}' for d, c in zip(
               np.repeat(diffrates, nsamples[0]),
               np.repeat(clusters, nsamples[0]))]
    
           sim_sep = isfc.separate_data_and_labels(array=sim,
                                                   nsamples=nsamples,
                                                   col_per_example=col_per_example)
           sim_dirty = sim_sep['0']
           sim_dirty.columns = sim_columns
    
           sim_labels = sim_sep['1']
           sim_labels.columns = sim_columns
           sim_labbool = sim_labels > lab_thresh
           sim_labbool.columns = sim_columns
           sim_clean = sim_sep['2']
           sim_clean.columns = sim_columns
    
           sim_dirty
    
           import importlib
           importlib.reload(ppd)
           importlib.reload(isfc)
           importlib.reload(cfo)
    
2.7.11.1 Plot A: traces with labels
  • call jupyter-set-output-directory, simulations-prepare-modules and simulations-prepare-data
    ./data/exp-220316-publication1/jupyter
    
    /home/lex/Programme/drmed-git
    2023-01-16 15:28:48.365303: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2023-01-16 15:28:48.365357: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
      0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01
    0 1187.467896 907.677734 480.048798 454.669403 466.063232 384.734467 543.981323 640.921509 795.946167 410.471893 1897.398193 2279.646484 3088.531006 2034.432495 2187.548584 2105.736084 1789.366577 2023.093994 2331.185791 2185.028076
    1 1184.055176 945.760315 471.065216 458.392487 473.306152 395.165527 558.603088 622.421204 776.199402 409.149170 1499.969849 2199.652100 3207.333008 1650.523926 2122.935791 2791.281006 1661.286377 1111.879761 1853.699585 1926.844971
    2 1191.848877 980.117798 459.479706 426.087982 482.370209 425.123413 551.536072 624.498535 778.671265 400.971954 1822.985229 2456.422607 2969.562500 1934.118286 1457.731812 2251.077393 1903.003662 2063.915527 2198.018066 2038.683105
    3 1199.065918 974.313110 462.205566 444.041809 463.703125 434.186615 573.044128 626.252502 747.284058 393.178162 1741.839355 2467.149414 2588.980957 2136.627686 1930.263672 2323.700684 2133.313721 1638.169312 1926.058716 1815.259521
    4 1221.957397 968.779175 464.918030 455.205292 474.615540 437.029419 586.489136 619.319092 781.954102 406.468018 2431.400879 2246.336670 3000.961182 1915.518066 2052.773682 2359.145508 1699.926147 1862.709595 2291.338379 1332.422241
    16379 506.409668 1012.403931 855.006226 674.470703 769.859192 2110.732178 799.565247 1981.221436 528.844604 483.055878 1512.586548 3212.712891 1491.119995 1843.866943 1748.956665 2048.602051 1662.244385 2593.879639 1921.427856 1664.831909
    16380 536.809692 1022.029724 840.287720 671.095215 738.908997 2118.984863 807.995789 2624.343262 552.687012 479.768372 1661.331055 3190.809570 1770.193970 2081.854248 2164.372803 2295.646729 1846.683594 2038.272339 2222.708252 2122.753662
    16381 570.668884 989.891235 839.180298 689.863586 695.739136 2033.681885 786.547852 3528.163574 572.166077 484.491211 1643.470337 2564.206787 2025.219971 2104.706787 1792.828613 2106.199463 2087.914062 1457.817871 1874.736938 1683.072021
    16382 562.505310 977.029785 1005.927673 683.250183 661.608337 2566.123047 805.594116 3731.086426 566.710571 489.289673 1556.492188 2783.619385 1312.174561 2378.643311 2466.965576 2160.641357 1691.332520 2013.095093 1632.475708 1352.443237
    16383 567.307373 1006.794067 982.376526 677.099854 657.040588 2545.080322 784.917969 3850.334717 570.241699 512.688232 2127.414551 2448.062012 1398.359253 1665.321167 2241.687256 1823.699829 1340.686035 1972.661743 1550.770142 1727.808228

    16384 rows × 1500 columns

  • define plotting functions
           plot1_index = ['3.0-0.01', '3.0-0.1', '3.0-1.0',
                          '0.2-0.01', '0.2-0.1', '0.2-1.0',
                          '0.069-0.01', '0.069-0.1', '0.069-1.0']
    
           plot1_traceno = [1, 1, 0,
                            5, 0, 0,
                            1, 1, 0]
    
           def get_tt(dr):
               dr = dr.removesuffix('-0.01').removesuffix('-0.1').removesuffix('-1.0')
               dr = float(dr)
               tt, _ = ans.convert_diffcoeff_to_transittimes(dr, 250)
               return f'\nsimulated trace\n$\\tau_{{sim}}={tt:.2f}ms$'
    
           def save_plot(filename, txt):
               plot_file = f'{filename}_{txt}'.replace(' ', '_').replace(
                   '\n', '_').replace('"', '').replace('{', '').replace(
                   '}', '').replace('$', '').replace('=', '-').replace('\\', '')
               plt.savefig(f'{plot_file}.pdf', bbox_inches='tight', dpi=300)
               os.system(f'pdf2svg {plot_file}.pdf {plot_file}.svg')
               os.system(f'rm {plot_file}.pdf')
    
           def plot_label_based_cut_and_shift_correction(filename):
               for i, (idx, t) in enumerate(zip(plot1_index, plot1_traceno)):
                   fig = plt.figure()
                   ax = plt.subplot(111)
                   txt = get_tt(idx)
                   ax.set_prop_cycle(color=[sns.color_palette()[4]])
                   sim_labbool_scaled = sim_dirty.loc[:, idx].iloc[
                       :, t].max() * sim_labbool.loc[:, idx].iloc[:, t]
                   sns.lineplot(data=sim_labbool_scaled, alpha=0.5)
                   plt.fill_between(x=sim_labbool.loc[:, idx].iloc[:, t].index,
                                    y1=sim_labbool_scaled,
                                    y2=0, alpha=0.5, label='label:\npeak artifacts')
    
                   ax.set_prop_cycle(color=[sns.color_palette()[2]])
                   sim_invbool_scaled = sim_dirty.loc[:, idx].iloc[
                       :, t].max() * ~sim_labbool.loc[:, idx].iloc[:, t]
                   plt.fill_between(x=sim_labbool.loc[:, idx].iloc[:, t].index,
                                    y1=sim_invbool_scaled,
                                    y2=0, alpha=0.5, label='\nlabel:\nno artifacts')
                   ax.set_prop_cycle(color=[sns.color_palette()[0]])
                   sns.lineplot(data=sim_dirty.loc[:, idx].iloc[:, t], label=txt)
                   plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
                   plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'Intensity [a.u.]', title='')
                   save_plot(filename, f'{txt}_{i}')
               plt.close('all')
    
    
  • do the plotting
           plot_label_based_cut_and_shift_correction('data/exp-220316-publication1/jupyter/plot2_labseg')
    

    plotA_labseg__simulated_trace_tau_sim-11.27_0.svg plotA_labseg__simulated_trace_tau_sim-11.27_1.svg plotA_labseg__simulated_trace_tau_sim-11.27_2.svg plotA_labseg__simulated_trace_tau_sim-163.35ms_6.svg plotA_labseg__simulated_trace_tau_sim-163.35ms_7.svg plotA_labseg__simulated_trace_tau_sim-163.35ms_8.svg plotA_labseg__simulated_trace_tau_sim-3.76ms_0.svg plotA_labseg__simulated_trace_tau_sim-3.76ms_1.svg plotA_labseg__simulated_trace_tau_sim-3.76ms_2.svg plotA_labseg__simulated_trace_tau_sim-56.36ms_3.svg plotA_labseg__simulated_trace_tau_sim-56.36ms_4.svg plotA_labseg__simulated_trace_tau_sim-56.36ms_5.svg

2.7.11.2 Plot B: transit times vs random cuts in clean trace
  • call jupyter-set-output-directory and simulations-prepare-modules
    ./data/exp-220316-publication1/jupyter
    
    /home/lex/Programme/drmed-git
    
  • let’s load and plot cuts vs transit times from 3 different base molecule speeds (varying molecule numbers): 0.069, 0.2, and 1.0 um2/s respectively.
           path = Path('data/exp-220316-publication1/220714_sim-cutandshift')
    
           # slowest molecules
           odot069_0cuts_path = path / '0.069/0.069-all-results/0dot069_0-cuts_outputParam.csv'
           odot069_1cuts_path = path / '0.069/0.069-all-results/0dot069_1-cuts_outputParam.csv'
           odot069_2cuts_path = path / '0.069/0.069-all-results/0dot069_2-cuts_outputParam.csv'
           odot069_4cuts_path = path / '0.069/0.069-all-results/0dot069_4-cuts_outputParam.csv'
           odot069_8cuts_path = path / '0.069/0.069-all-results/0dot069_8-cuts_outputParam.csv'
           odot069_10cuts_path = path / '0.069/0.069-all-results/0dot069_10-cuts_outputParam.csv'
           odot069_20cuts_path = path / '0.069/0.069-all-results/0dot069_20-cuts_outputParam.csv'
           odot069_40cuts_path = path / '0.069/0.069-all-results/0dot069_40-cuts_outputParam.csv'
           odot069_80cuts_path = path / '0.069/0.069-all-results/0dot069_80-cuts_outputParam.csv'
           odot069_100cuts_path = path / '0.069/0.069-all-results/0dot069_100-cuts_outputParam.csv'
           odot069_200cuts_path = path / '0.069/0.069-all-results/0dot069_200-cuts_outputParam.csv'
           odot069_400cuts_path = path / '0.069/0.069-all-results/0dot069_400-cuts_outputParam.csv'
           odot069_800cuts_path = path / '0.069/0.069-all-results/0dot069_800-cuts_outputParam.csv'
           odot069_1000cuts_path = path / '0.069/0.069-all-results/0dot069_1000-cuts_outputParam.csv'
           odot069_10000cuts_path = path / '0.069/0.069-all-results/0dot069_10000-cuts_outputParam.csv'
    
           # medium molecules
           odot2_0cuts_path = path / '0.2/0.2-all-results/0dot2_0-cuts_outputParam.csv'
           odot2_1cuts_path = path / '0.2/0.2-all-results/0dot2_1-cuts_outputParam.csv'
           odot2_2cuts_path = path / '0.2/0.2-all-results/0dot2_2-cuts_outputParam.csv'
           odot2_4cuts_path = path / '0.2/0.2-all-results/0dot2_4-cuts_outputParam.csv'
           odot2_8cuts_path = path / '0.2/0.2-all-results/0dot2_8-cuts_outputParam.csv'
           odot2_10cuts_path = path / '0.2/0.2-all-results/0dot2_10-cuts_outputParam.csv'
           odot2_20cuts_path = path / '0.2/0.2-all-results/0dot2_20-cuts_outputParam.csv'
           odot2_40cuts_path = path / '0.2/0.2-all-results/0dot2_40-cuts_outputParam.csv'
           odot2_80cuts_path = path / '0.2/0.2-all-results/0dot2_80-cuts_outputParam.csv'
           odot2_100cuts_path = path / '0.2/0.2-all-results/0dot2_100-cuts_outputParam.csv'
           odot2_200cuts_path = path / '0.2/0.2-all-results/0dot2_200-cuts_outputParam.csv'
           odot2_400cuts_path = path / '0.2/0.2-all-results/0dot2_400-cuts_outputParam.csv'
           odot2_800cuts_path = path / '0.2/0.2-all-results/0dot2_800-cuts_outputParam.csv'
           odot2_1000cuts_path = path / '0.2/0.2-all-results/0dot2_1000-cuts_outputParam.csv'
           odot2_10000cuts_path = path / '0.2/0.2-all-results/0dot2_10000-cuts_outputParam.csv'
    
           # fast molecules
           # one_0cuts_path = path / '1.0/1.0-all-results/1dot0_0-cuts_outputParam.csv'
           # one_1cuts_path = path / '1.0/1.0-all-results/1dot0_1-cuts_outputParam.csv'
           # one_2cuts_path = path / '1.0/1.0-all-results/1dot0_2-cuts_outputParam.csv'
           # one_4cuts_path = path / '1.0/1.0-all-results/1dot0_4-cuts_outputParam.csv'
           # one_8cuts_path = path / '1.0/1.0-all-results/1dot0_8-cuts_outputParam.csv'
           # one_10cuts_path = path / '1.0/1.0-all-results/1dot0_10-cuts_outputParam.csv'
           # one_20cuts_path = path / '1.0/1.0-all-results/1dot0_20-cuts_outputParam.csv'
           # one_40cuts_path = path / '1.0/1.0-all-results/1dot0_40-cuts_outputParam.csv'
           # one_80cuts_path = path / '1.0/1.0-all-results/1dot0_80-cuts_outputParam.csv'
           # one_100cuts_path = path / '1.0/1.0-all-results/1dot0_100-cuts_outputParam.csv'
           # one_200cuts_path = path / '1.0/1.0-all-results/1dot0_200-cuts_outputParam.csv'
           # one_400cuts_path = path / '1.0/1.0-all-results/1dot0_400-cuts_outputParam.csv'
           # one_800cuts_path = path / '1.0/1.0-all-results/1dot0_800-cuts_outputParam.csv'
           # one_1000cuts_path = path / '1.0/1.0-all-results/1dot0_1000-cuts_outputParam.csv'
           # one_10000cuts_path = path / '1.0/1.0-all-results/1dot0_10000-cuts_outputParam.csv'
    
           # fastest molecules
           three_0cuts_path = path / '3.0/3.0-all-results/3dot0_0-cuts_outputParam.csv'
           three_1cuts_path = path / '3.0/3.0-all-results/3dot0_1-cuts_outputParam.csv'
           three_2cuts_path = path / '3.0/3.0-all-results/3dot0_2-cuts_outputParam.csv'
           three_4cuts_path = path / '3.0/3.0-all-results/3dot0_4-cuts_outputParam.csv'
           three_8cuts_path = path / '3.0/3.0-all-results/3dot0_8-cuts_outputParam.csv'
           three_10cuts_path = path / '3.0/3.0-all-results/3dot0_10-cuts_outputParam.csv'
           three_20cuts_path = path / '3.0/3.0-all-results/3dot0_20-cuts_outputParam.csv'
           three_40cuts_path = path / '3.0/3.0-all-results/3dot0_40-cuts_outputParam.csv'
           three_80cuts_path = path / '3.0/3.0-all-results/3dot0_80-cuts_outputParam.csv'
           three_100cuts_path = path / '3.0/3.0-all-results/3dot0_100-cuts_outputParam.csv'
           three_200cuts_path = path / '3.0/3.0-all-results/3dot0_200-cuts_outputParam.csv'
           three_400cuts_path = path / '3.0/3.0-all-results/3dot0_400-cuts_outputParam.csv'
           three_800cuts_path = path / '3.0/3.0-all-results/3dot0_800-cuts_outputParam.csv'
           three_1000cuts_path = path / '3.0/3.0-all-results/3dot0_1000-cuts_outputParam.csv'
           three_10000cuts_path = path / '3.0/3.0-all-results/3dot0_10000-cuts_outputParam.csv'
    
           # slowest molecules
           odot069_0cuts = pd.read_csv(odot069_0cuts_path, sep=',').assign(speed=300*[0.069,])
           odot069_1cuts = pd.read_csv(odot069_1cuts_path, sep=',').assign(speed=300*[0.069,])
           odot069_2cuts = pd.read_csv(odot069_2cuts_path, sep=',').assign(speed=300*[0.069,])
           odot069_4cuts = pd.read_csv(odot069_4cuts_path, sep=',').assign(speed=300*[0.069,])
           odot069_8cuts = pd.read_csv(odot069_8cuts_path, sep=',').assign(speed=300*[0.069,])
           odot069_10cuts = pd.read_csv(odot069_10cuts_path, sep=',').assign(speed=300*[0.069,])
           odot069_20cuts = pd.read_csv(odot069_20cuts_path, sep=',').assign(speed=300*[0.069,])
           odot069_40cuts = pd.read_csv(odot069_40cuts_path, sep=',').assign(speed=300*[0.069,])
           odot069_80cuts = pd.read_csv(odot069_80cuts_path, sep=',').assign(speed=300*[0.069,])
           odot069_100cuts = pd.read_csv(odot069_100cuts_path, sep=',').assign(speed=300*[0.069,])
           odot069_200cuts = pd.read_csv(odot069_200cuts_path, sep=',').assign(speed=300*[0.069,])
           odot069_400cuts = pd.read_csv(odot069_400cuts_path, sep=',').assign(speed=300*[0.069,])
           odot069_800cuts = pd.read_csv(odot069_800cuts_path, sep=',').assign(speed=300*[0.069,])
           odot069_1000cuts = pd.read_csv(odot069_1000cuts_path, sep=',').assign(speed=300*[0.069,])
           odot069_10000cuts = pd.read_csv(odot069_10000cuts_path, sep=',').assign(speed=300*[0.069,])
    
           # medium speed molecules
           odot2_0cuts = pd.read_csv(odot2_0cuts_path, sep=',').assign(speed=300*[0.2,])
           odot2_1cuts = pd.read_csv(odot2_1cuts_path, sep=',').assign(speed=300*[0.2,])
           odot2_2cuts = pd.read_csv(odot2_2cuts_path, sep=',').assign(speed=300*[0.2,])
           odot2_4cuts = pd.read_csv(odot2_4cuts_path, sep=',').assign(speed=300*[0.2,])
           odot2_8cuts = pd.read_csv(odot2_8cuts_path, sep=',').assign(speed=300*[0.2,])
           odot2_10cuts = pd.read_csv(odot2_10cuts_path, sep=',').assign(speed=300*[0.2,])
           odot2_20cuts = pd.read_csv(odot2_20cuts_path, sep=',').assign(speed=300*[0.2,])
           odot2_40cuts = pd.read_csv(odot2_40cuts_path, sep=',').assign(speed=300*[0.2,])
           odot2_80cuts = pd.read_csv(odot2_80cuts_path, sep=',').assign(speed=300*[0.2,])
           odot2_100cuts = pd.read_csv(odot2_100cuts_path, sep=',').assign(speed=300*[0.2,])
           odot2_200cuts = pd.read_csv(odot2_200cuts_path, sep=',').assign(speed=300*[0.2,])
           odot2_400cuts = pd.read_csv(odot2_400cuts_path, sep=',').assign(speed=300*[0.2,])
           odot2_800cuts = pd.read_csv(odot2_800cuts_path, sep=',').assign(speed=300*[0.2,])
           odot2_1000cuts = pd.read_csv(odot2_1000cuts_path, sep=',').assign(speed=300*[0.2,])
           odot2_10000cuts = pd.read_csv(odot2_10000cuts_path, sep=',').assign(speed=300*[0.2,])
    
           # faster molecules
           # one_0cuts = pd.read_csv(one_0cuts_path, sep=',').assign(speed=300*[1.0,])
           # one_1cuts = pd.read_csv(one_1cuts_path, sep=',').assign(speed=300*[1.0,])
           # one_2cuts = pd.read_csv(one_2cuts_path, sep=',').assign(speed=300*[1.0,])
           # one_4cuts = pd.read_csv(one_4cuts_path, sep=',').assign(speed=300*[1.0,])
           # one_8cuts = pd.read_csv(one_8cuts_path, sep=',').assign(speed=300*[1.0,])
           # one_10cuts = pd.read_csv(one_10cuts_path, sep=',').assign(speed=300*[1.0,])
           # one_20cuts = pd.read_csv(one_20cuts_path, sep=',').assign(speed=300*[1.0,])
           # one_40cuts = pd.read_csv(one_40cuts_path, sep=',').assign(speed=300*[1.0,])
           # one_80cuts = pd.read_csv(one_80cuts_path, sep=',').assign(speed=300*[1.0,])
           # one_100cuts = pd.read_csv(one_100cuts_path, sep=',').assign(speed=300*[1.0,])
           # one_200cuts = pd.read_csv(one_200cuts_path, sep=',').assign(speed=300*[1.0,])
           # one_400cuts = pd.read_csv(one_400cuts_path, sep=',').assign(speed=300*[1.0,])
           # one_800cuts = pd.read_csv(one_800cuts_path, sep=',').assign(speed=300*[1.0,])
           # one_1000cuts = pd.read_csv(one_1000cuts_path, sep=',').assign(speed=300*[1.0,])
           # one_10000cuts = pd.read_csv(one_10000cuts_path, sep=',').assign(speed=300*[1.0,])
    
           # fastest molecules
           three_0cuts = pd.read_csv(three_0cuts_path, sep=',').assign(speed=300*[3.0,])
           three_1cuts = pd.read_csv(three_1cuts_path, sep=',').assign(speed=300*[3.0,])
           three_2cuts = pd.read_csv(three_2cuts_path, sep=',').assign(speed=300*[3.0,])
           three_4cuts = pd.read_csv(three_4cuts_path, sep=',').assign(speed=300*[3.0,])
           three_8cuts = pd.read_csv(three_8cuts_path, sep=',').assign(speed=300*[3.0,])
           three_10cuts = pd.read_csv(three_10cuts_path, sep=',').assign(speed=300*[3.0,])
           three_20cuts = pd.read_csv(three_20cuts_path, sep=',').assign(speed=300*[3.0,])
           three_40cuts = pd.read_csv(three_40cuts_path, sep=',').assign(speed=300*[3.0,])
           three_80cuts = pd.read_csv(three_80cuts_path, sep=',').assign(speed=300*[3.0,])
           three_100cuts = pd.read_csv(three_100cuts_path, sep=',').assign(speed=300*[3.0,])
           three_200cuts = pd.read_csv(three_200cuts_path, sep=',').assign(speed=300*[3.0,])
           three_400cuts = pd.read_csv(three_400cuts_path, sep=',').assign(speed=300*[3.0,])
           three_800cuts = pd.read_csv(three_800cuts_path, sep=',').assign(speed=300*[3.0,])
           three_1000cuts = pd.read_csv(three_1000cuts_path, sep=',').assign(speed=300*[3.0,])
           three_10000cuts = pd.read_csv(three_10000cuts_path, sep=',').assign(speed=300*[3.0,])
    
           all_param = pd.concat([odot069_0cuts, odot069_1cuts, odot069_2cuts,
                                  odot069_4cuts, odot069_8cuts, odot069_10cuts,
                                  odot069_20cuts, odot069_40cuts, odot069_80cuts,
                                  odot069_100cuts, odot069_200cuts, odot069_400cuts,
                                  odot069_800cuts, odot069_1000cuts, # odot069_10000cuts,
                                  odot2_0cuts, odot2_1cuts, odot2_2cuts,
                                  odot2_4cuts, odot2_8cuts, odot2_10cuts,
                                  odot2_20cuts, odot2_40cuts, odot2_80cuts,
                                  odot2_100cuts, odot2_200cuts, odot2_400cuts,
                                  odot2_800cuts, odot2_1000cuts, # odot2_10000cuts,
           #                        one_0cuts, one_1cuts, one_2cuts,
           #                        one_4cuts, one_8cuts, one_10cuts,
           #                        one_20cuts, one_40cuts, one_80cuts,
           #                        one_100cuts, one_200cuts, one_400cuts,
           #                        one_800cuts, one_1000cuts, one_10000cuts,
                                  three_0cuts, three_1cuts, three_2cuts,
                                  three_4cuts, three_8cuts, three_10cuts,
                                  three_20cuts, three_40cuts, three_80cuts,
                                  three_100cuts, three_200cuts, three_400cuts,
                                  three_800cuts, three_1000cuts]) # , three_10000cuts])
           def cuts_to_integer(param_ls):
               cuts = param_ls.replace('-cuts', '')
               return int(cuts)
    
           def add_transit_time_legend(param_ls):
               tt, _ = ans.convert_diffcoeff_to_transittimes(param_ls, fwhm=250)
               return tt
    
           all_param['cuts'] = all_param['parent_name'].apply(
               lambda x: cuts_to_integer(x))
           all_param['legend'] = all_param['speed'].apply(
               lambda x: add_transit_time_legend(x))
           all_param
    
           def simcuts(data):
               g = sns.catplot(data=all_param,
                               y='txy1',
                               x='cuts',
                               row='legend',
                               height=5,
                               aspect=2,
                               legend_out=True,
                               kind=kind,
                               sharey=False,
                               **kwargs)
               styles = ['--', ':', '-', '-.']
               for i, ax in enumerate(g.axes):
                   tt = str(ax[0].title).split('= ')
                   tt = tt[1].strip("')")
                   tt = float(tt)
                   hline = ax[0].axhline(tt, lw=3, label='', ls=styles[i])
                   hline_legend = {f'\n$\\tau_{{sim}}={tt:.2f}ms$' : hline}
                   g._legend_data.update(hline_legend)
               g.add_legend(g._legend_data)
               if kind == 'boxen':
                    g.map_dataframe(sns.stripplot,
                                    y='txy1',
                                    x='cuts',
                                    dodge=True,
                                    palette=sns.color_palette(['0.3']),
                                    size=4,
                                    jitter=0.2)
               g.fig.suptitle('', size=25)
               for ax in g.axes:
                   # ax[0].set_title('')
                   tt = str(ax[0].title).split('= ')
                   tt = tt[1].strip("')")
                   tt = float(tt)
                   ax[0].set_title(f'sim. trace $\\tau_{{sim}}={tt:.2f}ms$,\nno '
                                   'artifacts, $n=300$, $\\tau_D$ from 1 sp. fit')
    
               # g._legend.set_title('')
               # new_labels = ['424 traces of\nAlexaFluor488\n(no artifacts)\n$\\tau_D$ from\n1 species fit',
               #               '440 traces of\nAF488 + DiO LUVs\n(peak artifacts)\n$\\tau_D$ from\nfast sp. of 2 sp. fit']
               # for t, l in zip(g._legend.texts, new_labels):
               #     t.set_text(l)
               for i, axes in enumerate(g.axes.flat):
                  _ = axes.set_xticklabels(axes.get_xticklabels(), rotation=45)
    
               plt.setp(g.axes, yscale='log', xlabel='number of cuts',
                        ylabel=r'log transit time $\tau_{D}$ $[ms]$')
               g.fig.align_ylabels()
               g.tight_layout()
    
               savefig = f'./data/exp-220316-publication1/jupyter/{add_text}'
               plt.savefig(f'{savefig}.pdf', bbox_inches='tight', dpi=300)
               os.system(f'pdf2svg {savefig}.pdf {savefig}.svg')
               plt.close('all')
    
  • first version: boxen + strip plot
           sns.set_theme(style="whitegrid", font_scale=2.4, palette='colorblind',
                         context='paper')
           simcuts(all_param, add_text='plot2_transit-times-vs-cuts_BOXEN')
    
  • second version: violin plot
           sns.set_theme(style="whitegrid", font_scale=2.4, palette='colorblind',
                         context='paper')
           simcuts(all_param, kind='violin',
                   add_text='plot2_transit-times-vs-cuts')
    

    plotB_transit-times-vs-cuts.svg

2.7.11.3 Plot C: correction methods fit outcomes
  • call jupyter-set-output-directory and simulations-prepare-modules
    ./data/exp-220316-publication1/jupyter
    
    /home/lex/Programme/drmed-git
    
  • let’s compare correction methods on 3 different simulated base molecule speeds (0.069, 0.2, and 3.0 um2/s; varying molecule numbers) and af488 vs af488+LUV data and hs-pex5 vs tb-pex5 data
           # dirty correlations - check out from  branch exp-220227-unet
           path1 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-04-25_simulations/dirty')
           odot069_dirty_1comp_path = path1 / '0.069_results/dirty_0dot069-all_1comp_outputParam.csv'
           odot069_dirty_2comp_path = path1 / '0.069_results/dirty_0dot069-all_2comp_outputParam.csv'
           odot2_dirty_1comp_path = path1 / '0.2_results/dirty_0dot2-all_1comp_outputParam.csv'
           odot2_dirty_2comp_path = path1 / '0.2_results/dirty_0dot2-all_2comp_outputParam.csv'
           # one_dirty_1comp_path = path1 / '1.0_results/dirty_1dot0-all_1comp_outputParam.csv'
           # one_dirty_2comp_path = path1 / '1.0_results/dirty_1dot0-all_2comp_outputParam.csv'
           three_dirty_1comp_path = path1 / '3.0_results/dirty_3dot0-all_1comp_outputParam.csv'
           three_dirty_2comp_path = path1 / '3.0_results/dirty_3dot0-all_2comp_outputParam.csv'
    
           # clean correlations
           path2 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220719_threshold-prediction/threshold-all-results')
           odot069_clean_1comp_path = path2 / '0dot069_clean_1comp_outputParam.csv'
           odot2_clean_1comp_path = path2 / '0dot2_clean_1comp_outputParam.csv'
           # one_clean_1comp_path = path2 / '1dot0_clean_1comp_outputParam.csv'
           three_clean_1comp_path = path2 / '3dot0_clean_1comp_outputParam.csv'
           #
           # # control with prediction threshold
           # odot069_thresh2_1comp_path = path2 / '0dot069_robust_thresh2_1comp_outputParam.csv'
           # odot069_thresh2_2comp_path = path2 / '0dot069_robust_thresh2_2comp_outputParam.csv'
           # odot2_thresh2_1comp_path = path2 / '0dot2_robust_thresh2_1comp_outputParam.csv'
           # odot2_thresh2_2comp_path = path2 / '0dot2_robust_thresh2_2comp_outputParam.csv'
           # # one_thresh2_1comp_path = path2 / '1dot0_robust_thresh2_1comp_outputParam.csv'
           # # one_thresh2_2comp_path = path2 / '1dot0_robust_thresh2_2comp_outputParam.csv'
           # three_thresh2_1comp_path = path2 / '3dot0_robust_thresh2_1comp_outputParam.csv'
           # three_thresh2_2comp_path = path2 / '3dot0_robust_thresh2_2comp_outputParam.csv'
           # # fifty_thresh2_1comp_path = path2 / '50dot0_robust_thresh2_1comp_outputParam.csv'
    
           # load correction by label information as baseline
           path4 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220517_simulations/')
           odot069_labcas_1comp_path = path4 / '0.069-all-results/0dot069_lab_cas_1comp_outputParam.csv'
           odot069_labcas_2comp_path = path4 / '0.069-all-results/0dot069_lab_cas_2comp_outputParam.csv'
           odot2_labcas_1comp_path = path4 / '0.2-all-results/0dot2_lab_cas_1comp_outputParam.csv'
           odot2_labcas_2comp_path = path4 / '0.2-all-results/0dot2_lab_cas_2comp_outputParam.csv'
           three_labcas_1comp_path = path4 / '3.0-all-results/3dot0_lab_cas_1comp_outputParam.csv'
           three_labcas_2comp_path = path4 / '3.0-all-results/3dot0_lab_cas_2comp_outputParam.csv'
           odot069_labdel_1comp_path = path4 / '0.069-all-results/0dot069_lab_del_1comp_outputParam.csv'
           odot069_labdel_2comp_path = path4 / '0.069-all-results/0dot069_lab_del_2comp_outputParam.csv'
           odot2_labdel_1comp_path = path4 / '0.2-all-results/0dot2_lab_del_1comp_outputParam.csv'
           odot2_labdel_2comp_path = path4 / '0.2-all-results/0dot2_lab_del_2comp_outputParam.csv'
           three_labdel_1comp_path = path4 / '3.0-all-results/3dot0_lab_del_1comp_outputParam.csv'
           three_labdel_2comp_path = path4 / '3.0-all-results/3dot0_lab_del_2comp_outputParam.csv'
    
           path5 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/230103_avg-correction/')
           odot069_labavg_1comp_path = path5 / 'all-results/0dot069_lab_avg_1comp_outputParam.csv'
           odot069_labavg_2comp_path = path5 / 'all-results/0dot069_lab_avg_2comp_outputParam.csv'
           odot2_labavg_1comp_path = path5 / 'all-results/0dot2_lab_avg_1comp_outputParam.csv'
           odot2_labavg_2comp_path = path5 / 'all-results/0dot2_lab_avg_2comp_outputParam.csv'
           three_labavg_1comp_path = path5 / 'all-results/three_lab_avg_1comp_outputParam.csv'
           three_labavg_2comp_path = path5 / 'all-results/three_lab_avg_2comp_outputParam.csv'
    
           # prediction by best unet 0cd20 - check out from branch exp-220227-unet
           # path3 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-04-25_simulations/0cd20')
           # odot069_0cd20_1comp_path = path3 / '0.069_results/0cd20_0dot069-all_1comp_outputParam.csv'
           # odot069_0cd20_2comp_path = path3 / '0.069_results/0cd20_0dot069-all_2comp_outputParam.csv'
           # odot2_0cd20_1comp_path = path3 / '0.2_results/0cd20_0dot2-all_1comp_outputParam.csv'
           # odot2_0cd20_2comp_path = path3 / '0.2_results/0cd20_0dot2-all_2comp_outputParam.csv'
           # # one_0cd20_1comp_path = path3 / '1.0_results/0cd20_1dot0-all_1comp_outputParam.csv'
           # # one_0cd20_2comp_path = path3 / '1.0_results/0cd20_1dot0-all_2comp_outputParam.csv'
           # three_0cd20_1comp_path = path3 / '3.0_results/0cd20_3dot0-all_1comp_outputParam.csv'
           # three_0cd20_2comp_path = path3 / '3.0_results/0cd20_3dot0-all_2comp_outputParam.csv'
    
           # biological data - clean, dirty, cut and stitch
           path6 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-05-22_experimental-af488')
           af488_noc_1comp_path = path6 / 'clean-all-results/clean_no-correction_1comp_outputParam.csv'
           # af488_0cd20cas_1comp_path = path6 / 'clean-all-results/clean_0cd20_1comp_outputParam.csv'
    
           af488luv_noc_1comp_path = path6 / 'dirty-all-results/dirty_no-correction_1comp_outputParam.csv'
           af488luv_noc_2comp_path = path6 / 'dirty-all-results/dirty_no-correction_2comp_outputParam.csv'
           af488luv_0cd20cas_1comp_path = path6 / 'dirty-all-results/dirty_0cd20_1comp_outputParam.csv'
           af488luv_0cd20cas_2comp_path = path6 / 'dirty-all-results/dirty_0cd20_2comp_outputParam.csv'
    
           path7 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-06-02_experimental-pex5')
           hspex5_noc_1comp_path = path7 / 'clean-all-results/Hs-PEX5-eGFP_no-correction_1comp_outputParam.csv'
           # hspex5_0cd20cas_1comp_path = path7 / 'clean-all-results/Hs-PEX5-eGFP_no-correction_1comp_outputParam.csv'
    
           tbpex5_noc_1comp_path = path7 / 'dirty-all-results/Tb-PEX5-eGFP_no-correction_1comp_outputParam.csv'
           tbpex5_noc_2comp_path = path7 / 'dirty-all-results/Tb-PEX5-eGFP_no-correction_2comp_outputParam.csv'
           tbpex5_0cd20cas_1comp_path = path7 / 'dirty-all-results/Tb-PEX5-eGFP_0cd20_1comp_outputParam.csv'
           tbpex5_0cd20cas_2comp_path = path7 / 'dirty-all-results/Tb-PEX5-eGFP_0cd20_2comp_outputParam.csv'
    
           # biological data - averaging, set to zero
           path8 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2023-01-10_experimental-averaging-delete/all-results')
           # af488_0cd20avg_1comp_path = path8 / 'af488_0cd20_averaging_1comp_outputParam.csv'
           # af488_0cd20del_1comp_path = path8 / 'af488_0cd20_delete_1comp_outputParam.csv'
    
           af488luv_0cd20avg_1comp_path = path8 / 'af488luv_0cd20_averaging_1comp_outputParam.csv'
           af488luv_0cd20avg_2comp_path = path8 / 'af488luv_0cd20_averaging_2comp_outputParam.csv'
           af488luv_0cd20del_1comp_path = path8 / 'af488luv_0cd20_delete_1comp_outputParam.csv'
           af488luv_0cd20del_2comp_path = path8 / 'af488luv_0cd20_delete_2comp_outputParam.csv'
    
           # hspex5_0cd20avg_1comp_path = path8 / 'hspex5_0cd20_averaging_1comp_outputParam.csv'
           # hspex5_0cd20del_1comp_path = path8 / 'hspex5_0cd20_delete_1comp_outputParam.csv'
    
           tbpex5_0cd20avg_1comp_path = path8 / 'tbpex5_0cd20_averaging_1comp_outputParam.csv'
           tbpex5_0cd20avg_2comp_path = path8 / 'tbpex5_0cd20_averaging_2comp_outputParam.csv'
           tbpex5_0cd20del_1comp_path = path8 / 'tbpex5_0cd20_delete_1comp_outputParam.csv'
           tbpex5_0cd20del_2comp_path = path8 / 'tbpex5_0cd20_delete_2comp_outputParam.csv'
    
           # load data
           odot069_clean_1comp = pd.read_csv(odot069_clean_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['clean noc',])
           odot2_clean_1comp = pd.read_csv(odot2_clean_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['clean noc',])
           # one_clean_1comp = pd.read_csv(one_clean_1comp_path, sep=',').assign(sim=300*[1,], processing=300*['clean noc',])
           three_clean_1comp = pd.read_csv(three_clean_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['clean noc',])
           af488_1comp = pd.read_csv(af488_noc_1comp_path, sep=',').assign(sim=424*[280,], processing=424*['clean noc',])
           hspex5_1comp = pd.read_csv(hspex5_noc_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['clean noc',])
    
           odot069_dirty_1comp = pd.read_csv(odot069_dirty_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty noc',])
           odot069_dirty_2comp = pd.read_csv(odot069_dirty_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty noc',])
           odot2_dirty_1comp = pd.read_csv(odot2_dirty_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty noc',])
           odot2_dirty_2comp = pd.read_csv(odot2_dirty_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty noc',])
           # one_dirty_1comp = pd.read_csv(one_dirty_1comp_path, sep=',').assign(sim=300*[1,], processing=300*['dirty noc',])
           # one_dirty_2comp = pd.read_csv(one_dirty_2comp_path, sep=',').assign(sim=300*[1,], processing=300*['dirty noc',])
           three_dirty_1comp = pd.read_csv(three_dirty_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty noc',])
           three_dirty_2comp = pd.read_csv(three_dirty_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty noc',])
           af488luv_1comp = pd.read_csv(af488luv_noc_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty noc',])
           af488luv_2comp = pd.read_csv(af488luv_noc_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty noc',])
           tbpex5_1comp = pd.read_csv(tbpex5_noc_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty noc',])
           tbpex5_2comp = pd.read_csv(tbpex5_noc_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty noc',])
    
           # load correction by label information as baseline
           odot069_labdel_1comp = pd.read_csv(odot069_labdel_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty del',])
           odot069_labdel_2comp = pd.read_csv(odot069_labdel_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty del',])
           odot2_labdel_1comp = pd.read_csv(odot2_labdel_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty del',])
           odot2_labdel_2comp = pd.read_csv(odot2_labdel_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty del',])
           three_labdel_1comp = pd.read_csv(three_labdel_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty del',])
           three_labdel_2comp = pd.read_csv(three_labdel_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty del',])
           af488luv_0cd20del_1comp = pd.read_csv(af488luv_0cd20del_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty del'])
           af488luv_0cd20del_2comp = pd.read_csv(af488luv_0cd20del_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty del'])
           tbpex5_0cd20del_1comp = pd.read_csv(tbpex5_0cd20del_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty del'])
           tbpex5_0cd20del_2comp = pd.read_csv(tbpex5_0cd20del_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty del'])
    
           odot069_labcas_1comp = pd.read_csv(odot069_labcas_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty cas',])
           odot069_labcas_2comp = pd.read_csv(odot069_labcas_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty cas',])
           odot2_labcas_1comp = pd.read_csv(odot2_labcas_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty cas',])
           odot2_labcas_2comp = pd.read_csv(odot2_labcas_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty cas',])
           three_labcas_1comp = pd.read_csv(three_labcas_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty cas',])
           three_labcas_2comp = pd.read_csv(three_labcas_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty cas',])
           af488luv_0cd20cas_1comp = pd.read_csv(af488luv_0cd20cas_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty cas'])
           af488luv_0cd20cas_2comp = pd.read_csv(af488luv_0cd20cas_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty cas'])
           tbpex5_0cd20cas_1comp = pd.read_csv(tbpex5_0cd20cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty cas'])
           tbpex5_0cd20cas_2comp = pd.read_csv(tbpex5_0cd20cas_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty cas'])
    
           odot069_labavg_1comp = pd.read_csv(odot069_labavg_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty avg',])
           odot069_labavg_2comp = pd.read_csv(odot069_labavg_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty avg',])
           odot2_labavg_1comp = pd.read_csv(odot2_labavg_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty avg',])
           odot2_labavg_2comp = pd.read_csv(odot2_labavg_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty avg',])
           three_labavg_1comp = pd.read_csv(three_labavg_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty avg',])
           three_labavg_2comp = pd.read_csv(three_labavg_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty avg',])
           af488luv_0cd20avg_1comp = pd.read_csv(af488luv_0cd20avg_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty avg'])
           af488luv_0cd20avg_2comp = pd.read_csv(af488luv_0cd20avg_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty avg'])
           tbpex5_0cd20avg_1comp = pd.read_csv(tbpex5_0cd20avg_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty avg'])
           tbpex5_0cd20avg_2comp = pd.read_csv(tbpex5_0cd20avg_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty avg'])
    
           # # control with prediction threshold
           # odot069_thresh2_1comp = pd.read_csv(odot069_thresh2_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           # odot069_thresh2_2comp = pd.read_csv(odot069_thresh2_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           # odot2_thresh2_1comp = pd.read_csv(odot2_thresh2_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           # odot2_thresh2_2comp = pd.read_csv(odot2_thresh2_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           # # one_thresh2_1comp = pd.read_csv(one_thresh2_1comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           # # one_thresh2_2comp = pd.read_csv(one_thresh2_2comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           # three_thresh2_1comp = pd.read_csv(three_thresh2_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           # three_thresh2_2comp = pd.read_csv(three_thresh2_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           #
           # # pred. by best unet 0cd20 - check out from branch exp-220227-unet
           # odot069_0cd20_1comp = pd.read_csv(odot069_0cd20_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
           # odot069_0cd20_2comp = pd.read_csv(odot069_0cd20_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
           # odot2_0cd20_1comp = pd.read_csv(odot2_0cd20_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
           # odot2_0cd20_2comp = pd.read_csv(odot2_0cd20_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
           # # one_0cd20_1comp = pd.read_csv(one_0cd20_1comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
           # # one_0cd20_2comp = pd.read_csv(one_0cd20_2comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
           # three_0cd20_1comp = pd.read_csv(three_0cd20_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
           # three_0cd20_2comp = pd.read_csv(three_0cd20_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
    
           all_param = pd.concat([odot069_clean_1comp, odot2_clean_1comp, three_clean_1comp,
                                  af488_1comp, hspex5_1comp,
                                  odot069_dirty_1comp, odot2_dirty_1comp, three_dirty_1comp,
                                  odot069_dirty_2comp, odot2_dirty_2comp, three_dirty_2comp,
                                  af488luv_1comp, tbpex5_1comp,
                                  af488luv_2comp, tbpex5_2comp,
                                  odot069_labdel_1comp, odot2_labdel_1comp, three_labdel_1comp,
                                  odot069_labdel_2comp, odot2_labdel_2comp, three_labdel_2comp,
                                  af488luv_0cd20del_1comp, tbpex5_0cd20del_1comp,
                                  af488luv_0cd20del_2comp, tbpex5_0cd20del_2comp,
                                  odot069_labcas_1comp, odot2_labcas_1comp, three_labcas_1comp,
                                  odot069_labcas_2comp, odot2_labcas_2comp, three_labcas_2comp,
                                  af488luv_0cd20cas_1comp, tbpex5_0cd20cas_1comp,
                                  af488luv_0cd20cas_2comp, tbpex5_0cd20cas_2comp,
                                  odot069_labavg_1comp, odot2_labavg_1comp, three_labavg_1comp,
                                  odot069_labavg_2comp, odot2_labavg_2comp, three_labavg_2comp,
                                  af488luv_0cd20avg_1comp, tbpex5_0cd20avg_1comp,
                                  af488luv_0cd20avg_2comp, tbpex5_0cd20avg_2comp])
    
           #                        odot069_thresh2_1comp, odot069_thresh2_2comp, odot2_thresh2_1comp,
           #                        odot2_thresh2_2comp, three_thresh2_1comp, three_thresh2_2comp,
           #                        odot069_0cd20_1comp, odot069_0cd20_2comp, odot2_0cd20_1comp,
           #                        odot2_0cd20_2comp, three_0cd20_1comp, three_0cd20_2comp])
    
           # assert the following fit parameters
           assert set(all_param['Dimen']) == {'2D', '3D'}
           assert set(all_param[all_param['Dimen'] == '2D']['sim']
                      ) == {0.069, 0.2, 3.0}
           assert set(all_param[all_param['Dimen'] == '3D']['sim']
                      ) == {31.0, 280.0}
           assert set(all_param[(all_param['Dimen'] == '3D') &
                                (all_param['sim'] == 31.0)]['AR1']) == {6.0}
           assert set(all_param[(all_param['Dimen'] == '3D') &
                                (all_param['sim'] == 280.0)]['AR1']) == {5.0}
           assert set(all_param['Diff_eq']) == {'Equation 1A', 'Equation 1B'}
           assert set(all_param[all_param['Diff_eq'] == 'Equation 1A']['sim']
                      ) == {0.069, 0.2, 3.0}
           assert set(all_param[all_param['Diff_eq'] == 'Equation 1B']['sim']
                      ) == {31.0, 280.0}
           assert set(all_param['Triplet_eq']) == {'Triplet Eq 2B', 'no triplet'}
           assert set(all_param[all_param['Triplet_eq'] == 'no triplet']['sim']
                      ) == {0.069, 0.2, 3.0, 280.0}
           assert set(all_param[all_param['Triplet_eq'] == 'Triplet Eq 2B']['sim']
                      ) == {31.0}
           assert set(all_param['alpha1']) == {1.0}
           assert set(all_param['xmin']) == {0.001018, 1.0}
           assert set(all_param[all_param['xmin'] == 1.0]['sim']
                      ) == {0.069, 0.2, 3.0}
           assert set(all_param[all_param['xmin'] == 0.001018]['sim']
                      ) == {31.0, 280.0}
           assert set(all_param['xmax']) == {0.524282, 100.66329, 469.762042, 512.0,
                                             896.0, 939.52409, 1024.0, 2048.0,
                                             4096.0, 7168.0, 8192.0}
           # biological af488 correlations were fitted with xmax=500 for peak
           # artifacts, except xmax=0.5 for peak artifacts with averaging correction,
           # and xmax=100 for correlations without peak artifacts,
           assert set(all_param[all_param['xmax'] == 0.524282]['sim']
                      ) == {31.0, 280.0}
           assert set(all_param[all_param['xmax'] == 0.524282]['processing']
                      ) == {'dirty avg'}
           assert set(all_param[all_param['xmax'].isin(
               [100.66329, 469.762042])]['sim']) == {280.0}
           assert set(all_param[all_param['xmax'] == 100.66329]['processing']
                      ) == {'clean noc'}
           assert set(all_param[all_param['xmax'] == 469.762042]['processing']
                      ) == {'dirty cas', 'dirty del', 'dirty noc'}
           assert set(all_param[all_param['xmax'].isin(
               [512.0, 896.0, 1024.0, 2048.0, 4096.0, 7168.0, 8192.0])]['sim']
                      ) == {0.069, 0.2, 3.0}
           # simulated correlations with and without peak artifacts were fitted
           # with xmax=8192 (except see below)
           assert set(all_param[all_param['xmax'] == 8192.0]['processing']
                      ) == {'clean noc', 'dirty cas', 'dirty del', 'dirty noc'}
           # 294 of 300 correlations with peak artifacts and averaging correction
           # were fitted with xmax=1024,
           # this failed for 6 correlations which were too short and thus
           # automatically got xmax=512 or xmax=896.0
           assert len(set(all_param[(all_param['xmax'] == 1024.0) &
                                    (all_param['processing'] == 'dirty avg')].index)
                      ) == 294
           assert set(all_param[all_param['xmax'].isin(
               [512.0, 896.0])]['processing']) == {'dirty avg'}
           assert len(set(all_param[all_param['xmax'].isin(
               [512.0, 896.0])].index)) == 6
           # 279, 288, or 276 of 300 correlations with peak artifacts and cut and
           # stitch correction were fitted with xmax=8192
           # (3 groups depending on simulated molecule speed)
           # this failed for 55 correlations which were too short and thus
           # automatically got xmax={1024, 2048, 4096, 7168}
           assert len(set(all_param[(all_param['xmax'] == 8192.0) &
                                    (all_param['processing'] == 'dirty cas') &
                                    (all_param['sim'] == 0.069)].index))
           assert len(set(all_param[(all_param['xmax'] == 8192.0) &
                                    (all_param['processing'] == 'dirty cas') &
                                    (all_param['sim'] == 0.2)].index))
           assert len(set(all_param[(all_param['xmax'] == 8192.0) &
                                    (all_param['processing'] == 'dirty cas') &
                                    (all_param['sim'] == 3.0)].index))
           assert set(all_param[all_param['xmax'].isin(
               [2048.0, 4096.0, 7168.0])]['processing']) == {'dirty cas'}
           assert len(set(all_param[
               (all_param['xmax'].isin([2048.0, 4096.0, 7168.0])) |
               ((all_param['xmax'] == 1024) &
                (all_param['processing'] == 'dirty cas'))].index)) == 55
    
           pprint(all_param.keys())
           all_param = all_param[['name_of_plot', 'Diff_species', 'N (FCS)', 'A1',
                                  'txy1', 'sim', 'processing', 'A2', 'txy2']]
           with pd.option_context("max_colwidth", 1000):
               display(all_param)
    
    Index(['name_of_plot', 'master_file', 'parent_name', 'parent_uqid',
           'time of fit', 'Diff_eq', 'Diff_species', 'Triplet_eq',
           'Triplet_species', 'Dimen', 'xmin', 'xmax', 'offset', 'stdev(offset)',
           'GN0', 'stdev(GN0)', 'N (FCS)', 'cpm (kHz)', 'A1', 'stdev(A1)', 'txy1',
           'stdev(txy1)', 'alpha1', 'stdev(alpha1)', 'N (mom)', 'bri (kHz)',
           'above zero', 'sim', 'processing', 'AR1', 'stdev(AR1)', 'T1',
           'stdev(T1)', 'tauT1', 'stdev(tauT1)', 'A2', 'stdev(A2)', 'txy2',
           'stdev(txy2)', 'alpha2', 'stdev(alpha2)', 'AR2', 'stdev(AR2)'],
          dtype='object')
    
                                                                                                  name_of_plot  \
         0                                         2022-07-21_multipletau_clean_0dot069_0000_correlation-CH1_1
         1                                         2022-07-21_multipletau_clean_0dot069_0001_correlation-CH1_1
         2                                         2022-07-21_multipletau_clean_0dot069_0002_correlation-CH1_1
         3                                         2022-07-21_multipletau_clean_0dot069_0003_correlation-CH1_1
         4                                         2022-07-21_multipletau_clean_0dot069_0004_correlation-CH1_1
         ..                                                                                                ...
         245  2023-01-18_tttr2xfcs_with_averaging_CH2_BIN1dot0_TbPEX5EGFP 1-1000246_T5364s_1_correlation-CH2_2
         246  2023-01-18_tttr2xfcs_with_averaging_CH2_BIN1dot0_TbPEX5EGFP 1-1000247_T5386s_1_correlation-CH2_2
         247  2023-01-18_tttr2xfcs_with_averaging_CH2_BIN1dot0_TbPEX5EGFP 1-1000248_T5408s_1_correlation-CH2_2
         248  2023-01-18_tttr2xfcs_with_averaging_CH2_BIN1dot0_TbPEX5EGFP 1-1000249_T5430s_1_correlation-CH2_2
         249  2023-01-18_tttr2xfcs_with_averaging_CH2_BIN1dot0_TbPEX5EGFP 1-1000250_T5451s_1_correlation-CH2_2
    
              Diff_species    N (FCS)        A1        txy1     sim processing  \
         0               1  13.940974  1.000000  150.165642   0.069  clean noc
         1               1  16.272292  1.000000  133.758850   0.069  clean noc
         2               1  17.590156  1.000000  109.396491   0.069  clean noc
         3               1  13.739355  1.000000  140.176075   0.069  clean noc
         4               1  10.985121  1.000000  520.784146   0.069  clean noc
         ..            ...        ...       ...         ...     ...        ...
         245             2   1.717779  0.554806    0.007325  31.000  dirty avg
         246             2   1.717779  0.554806    0.007325  31.000  dirty avg
         247             2   1.717779  0.554806    0.007325  31.000  dirty avg
         248             2   1.717779  0.554806    0.007325  31.000  dirty avg
         249             2   1.717779  0.554806    0.007325  31.000  dirty avg
    
                    A2     txy2
         0         NaN      NaN
         1         NaN      NaN
         2         NaN      NaN
         3         NaN      NaN
         4         NaN      NaN
         ..        ...      ...
         245  0.445194  0.34921
         246  0.445194  0.34921
         247  0.445194  0.34921
         248  0.445194  0.34921
         249  0.445194  0.34921
    
         [14294 rows x 9 columns]
    
           all_param = prepare_all_param(all_param)
           # with pd.option_context("max_colwidth", 1000):
           #     display(all_param[['legend', 't', 'A', 'expected transit time', 'sim', 'processing']])
           pub_cond1 = ((all_param['legend'] == '$\\tau_D$ from\n1 species fit') &
                        ~((all_param['processing'].isin(
                            ['dirty noc', 'dirty del', 'dirty cas'])) &
                          (all_param['expected transit time'] == 0.040253767881946526)) &
                        ~((all_param['processing'] == 'dirty avg') &
                          (all_param['expected transit time'] == 0.36358241957887183)))
           pub_cond2 = ((all_param['legend'] == '$\\tau_D$ from\nfast sp. of 2 sp. fit') &
                        ((all_param['processing'].isin(
                            ['dirty noc', 'dirty del', 'dirty cas'])) &
                         (all_param['expected transit time'] == 0.040253767881946526)))
           pub_cond3 = ((all_param['legend'] == "$\\tau_D$ from\nslow sp. of 2 sp. fit") &
                        ((all_param['processing'] == 'dirty avg') &
                         (all_param['expected transit time'] == 0.36358241957887183)))
    
           pub_param = all_param[pub_cond1 | pub_cond2 | pub_cond3]
           pub_param
    
    before dropping NaNs
    1 species fit: 7934
    slow sp of 2 sp fit: 6360
    fast sp of 2 sp fit: 6360
    after dropping NaNs
    1 species fit: 7934
    slow sp of 2 sp fit: 5459
    fast sp of 2 sp fit: 5812
    
                                              legend           t          N  \
         0              $\tau_D$ from\n1 species fit  150.165642  13.940974
         1              $\tau_D$ from\n1 species fit  133.758850  16.272292
         2              $\tau_D$ from\n1 species fit  109.396491  17.590156
         3              $\tau_D$ from\n1 species fit  140.176075  13.739355
         4              $\tau_D$ from\n1 species fit  520.784146  10.985121
         ...                                     ...         ...        ...
         20645  $\tau_D$ from\nslow sp. of 2 sp. fit    0.349210   0.764745
         20647  $\tau_D$ from\nslow sp. of 2 sp. fit    0.349210   0.764745
         20649  $\tau_D$ from\nslow sp. of 2 sp. fit    0.349210   0.764745
         20651  $\tau_D$ from\nslow sp. of 2 sp. fit    0.349210   0.764745
         20653  $\tau_D$ from\nslow sp. of 2 sp. fit    0.349210   0.764745
    
                expected transit time     sim processing
         0                 163.348623   0.069  clean noc
         1                 163.348623   0.069  clean noc
         2                 163.348623   0.069  clean noc
         3                 163.348623   0.069  clean noc
         4                 163.348623   0.069  clean noc
         ...                      ...     ...        ...
         20645               0.363582  31.000  dirty avg
         20647               0.363582  31.000  dirty avg
         20649               0.363582  31.000  dirty avg
         20651               0.363582  31.000  dirty avg
         20653               0.363582  31.000  dirty avg
    
         [7934 rows x 6 columns]
    
  • the following constraints are given by the nanoletters template:
    • one column: up to 240 points wide (3.33 in.)
    • double-column: between 300 and 504 points (4.167 in. and 7 in.).
    • maximum depth: 660 points (9.167 in.) including the caption (allow 12 pts. For each line of caption text)
    • Lettering should be no smaller than 4.5 points in the final published format. The text should be legible when the graphic is viewed full-size. Helvetica or Arial fonts work well for lettering. Lines should be no thinner than 0.5 point.
  1. statistics simulated data
           print(set(pub_param.sim))
           print(set(pub_param.processing))
    
    {0.069, 0.2, 3.0, 280.0, 31.0}
    {'dirty noc', 'dirty del', 'clean noc', 'dirty cas', 'dirty avg'}
    
    • click the following for statistics using pandas
             pub_param.query('sim == 0.069 and processing == "clean noc"').describe()
      
      t           N  expected transit time           sim
      count   300.000000  300.000000           3.000000e+02  3.000000e+02
      mean    201.730974   18.819845           1.633486e+02  6.900000e-02
      std     144.719279    9.770235           2.846920e-14  1.390098e-17
      min      65.930197    5.603608           1.633486e+02  6.900000e-02
      25%     125.468166   11.323578           1.633486e+02  6.900000e-02
      50%     166.004316   14.498767           1.633486e+02  6.900000e-02
      75%     221.537952   27.449559           1.633486e+02  6.900000e-02
      max    1599.606863   47.155710           1.633486e+02  6.900000e-02
      
             pub_param.query('sim == 0.069 and processing == "dirty noc"').describe()
      
      t           N  expected transit time           sim
      count   300.000000  300.000000           3.000000e+02  3.000000e+02
      mean    282.030509    4.816232           1.633486e+02  6.900000e-02
      std     568.622322    9.009920           2.846920e-14  1.390098e-17
      min       6.518842    0.455831           1.633486e+02  6.900000e-02
      25%      15.071449    0.811827           1.633486e+02  6.900000e-02
      50%      92.128805    1.243144           1.633486e+02  6.900000e-02
      75%     224.452807    2.496275           1.633486e+02  6.900000e-02
      max    3915.067003   42.282714           1.633486e+02  6.900000e-02
      
             pub_param.query('sim == 0.069 and processing == "dirty cas"').describe()
      
      t           N  expected transit time           sim
      count   300.000000  300.000000           3.000000e+02  3.000000e+02
      mean    199.035236   18.978114           1.633486e+02  6.900000e-02
      std     224.025740   10.306636           2.846920e-14  1.390098e-17
      min      29.507311    5.762238           1.633486e+02  6.900000e-02
      25%     109.418713   11.317119           1.633486e+02  6.900000e-02
      50%     144.247381   14.284064           1.633486e+02  6.900000e-02
      75%     200.133375   26.790708           1.633486e+02  6.900000e-02
      max    2853.319763   51.362164           1.633486e+02  6.900000e-02
      
             pub_param.query('sim == 0.069 and processing == "dirty del"').describe()
      
      t           N  expected transit time           sim
      count   300.000000  300.000000           3.000000e+02  3.000000e+02
      mean    386.812799    6.912346           1.633486e+02  6.900000e-02
      std     731.629974    7.365161           2.846920e-14  1.390098e-17
      min      31.333599    0.110818           1.633486e+02  6.900000e-02
      25%      83.373890    2.773181           1.633486e+02  6.900000e-02
      50%     136.948888    5.405113           1.633486e+02  6.900000e-02
      75%     287.895504    7.654565           1.633486e+02  6.900000e-02
      max    5740.894352   42.282635           1.633486e+02  6.900000e-02
      
             pub_param.query('sim == 0.069 and processing == "dirty avg"').describe()
      
      t           N  expected transit time           sim
      count   300.000000  300.000000           3.000000e+02  3.000000e+02
      mean    699.580346   21.083470           1.633486e+02  6.900000e-02
      std    1716.200624   59.511588           2.846920e-14  1.390098e-17
      min      15.751980    1.450327           1.633486e+02  6.900000e-02
      25%      57.028273    4.260944           1.633486e+02  6.900000e-02
      50%     104.906130   14.731348           1.633486e+02  6.900000e-02
      75%     279.021688   23.955900           1.633486e+02  6.900000e-02
      max    9999.999921  999.999978           1.633486e+02  6.900000e-02
      
             pub_param.query('sim == 0.2 and processing == "clean noc"').describe()
      
      t           N  expected transit time           sim
      count  300.000000  300.000000             300.000000  3.000000e+02
      mean    58.893184   28.932434              56.355275  2.000000e-01
      std     21.552815   12.327634               0.000000  2.780195e-17
      min     25.055875   10.564774              56.355275  2.000000e-01
      25%     45.577125   15.250247              56.355275  2.000000e-01
      50%     53.481307   28.536186              56.355275  2.000000e-01
      75%     66.793896   40.569270              56.355275  2.000000e-01
      max    170.467807   56.067450              56.355275  2.000000e-01
      
             pub_param.query('sim == 0.2 and processing == "dirty noc"').describe()
      
      t           N  expected transit time           sim
      count   300.000000  300.000000             300.000000  3.000000e+02
      mean    280.942172    7.664457              56.355275  2.000000e-01
      std     638.964634    8.083462               0.000000  2.780195e-17
      min       8.443209    0.486735              56.355275  2.000000e-01
      25%      17.938976    1.224729              56.355275  2.000000e-01
      50%      70.407443    5.117287              56.355275  2.000000e-01
      75%     177.926211   10.815966              56.355275  2.000000e-01
      max    6033.761312   33.153615              56.355275  2.000000e-01
      
             pub_param.query('sim == 0.2 and processing == "dirty cas"').describe()
      
      t           N  expected transit time           sim
      count  300.000000  300.000000             300.000000  3.000000e+02
      mean    58.064144   28.860908              56.355275  2.000000e-01
      std     34.386274   12.506826               0.000000  2.780195e-17
      min     22.407733   10.906952              56.355275  2.000000e-01
      25%     42.273276   15.105780              56.355275  2.000000e-01
      50%     51.379569   28.567553              56.355275  2.000000e-01
      75%     63.970930   40.527620              56.355275  2.000000e-01
      max    516.434581   55.139663              56.355275  2.000000e-01
      
             pub_param.query('sim == 0.2 and processing == "dirty del"').describe()
      
      t           N  expected transit time           sim
      count   300.000000  300.000000             300.000000  3.000000e+02
      mean    346.179473    8.259799              56.355275  2.000000e-01
      std     818.221805    6.758370               0.000000  2.780195e-17
      min      11.902476    0.201675              56.355275  2.000000e-01
      25%      29.526389    3.292221              56.355275  2.000000e-01
      50%      73.506942    7.185639              56.355275  2.000000e-01
      75%     167.043540   11.138888              56.355275  2.000000e-01
      max    5626.381686   33.153679              56.355275  2.000000e-01
      
             pub_param.query('sim == 0.2 and processing == "dirty avg"').describe()
      
      t           N  expected transit time           sim
      count   300.000000  300.000000             300.000000  3.000000e+02
      mean    541.982991   15.343520              56.355275  2.000000e-01
      std    1600.009204   13.536181               0.000000  2.780195e-17
      min       3.018830    1.633221              56.355275  2.000000e-01
      25%       9.690143    4.907674              56.355275  2.000000e-01
      50%      27.600092   11.873491              56.355275  2.000000e-01
      75%     104.596235   19.946061              56.355275  2.000000e-01
      max    9999.999993   62.084397              56.355275  2.000000e-01
      
             pub_param.query('sim == 3.0 and processing == "clean noc"').describe()
      
      t           N  expected transit time    sim
      count  300.000000  300.000000           3.000000e+02  300.0
      mean     3.456995   40.218462           3.757018e+00    3.0
      std      0.545879    8.919564           8.896624e-16    0.0
      min      2.220943   25.273087           3.757018e+00    3.0
      25%      3.070289   28.830730           3.757018e+00    3.0
      50%      3.442130   45.190401           3.757018e+00    3.0
      75%      3.805593   47.026327           3.757018e+00    3.0
      max      5.834915   52.537602           3.757018e+00    3.0
      
             pub_param.query('sim == 3.0 and processing == "dirty noc"').describe()
      
      t           N  expected transit time    sim
      count   300.000000  300.000000           3.000000e+02  300.0
      mean    254.276689   10.051766           3.757018e+00    3.0
      std     502.659293    8.758858           8.896624e-16    0.0
      min       2.674362    0.707357           3.757018e+00    3.0
      25%       8.759164    3.881247           3.757018e+00    3.0
      50%      55.200335    7.201136           3.757018e+00    3.0
      75%     177.056184   12.252256           3.757018e+00    3.0
      max    3297.756062   40.709815           3.757018e+00    3.0
      
             pub_param.query('sim == 3.0 and processing == "dirty cas"').describe()
      
      t           N  expected transit time    sim
      count  300.000000  300.000000           3.000000e+02  300.0
      mean     6.968229   40.681289           3.757018e+00    3.0
      std     56.378906    8.239986           8.896624e-16    0.0
      min      2.304519   15.199689           3.757018e+00    3.0
      25%      3.079279   30.743552           3.757018e+00    3.0
      50%      3.577223   44.797976           3.757018e+00    3.0
      75%      4.045806   46.689409           3.757018e+00    3.0
      max    980.098513   55.057712           3.757018e+00    3.0
      
             pub_param.query('sim == 3.0 and processing == "dirty del"').describe()
      
      t           N  expected transit time    sim
      count   300.000000  300.000000           3.000000e+02  300.0
      mean    404.846385    9.130129           3.757018e+00    3.0
      std     901.841937    7.550757           8.896624e-16    0.0
      min       2.674359    0.076923           3.757018e+00    3.0
      25%      13.544493    2.861955           3.757018e+00    3.0
      50%      89.152541    8.085497           3.757018e+00    3.0
      75%     306.027597   12.373742           3.757018e+00    3.0
      max    6998.470368   34.971443           3.757018e+00    3.0
      
             pub_param.query('sim == 3.0 and processing == "dirty avg"').describe()
      
      t           N  expected transit time    sim
      count   300.000000  300.000000           3.000000e+02  300.0
      mean    396.263460   17.599825           3.757018e+00    3.0
      std    1249.550827   10.011633           8.896624e-16    0.0
      min       0.000100    1.743806           3.757018e+00    3.0
      25%       4.136277   10.961715           3.757018e+00    3.0
      50%      10.418607   15.991130           3.757018e+00    3.0
      75%      73.647793   23.380313           3.757018e+00    3.0
      max    9320.774911   91.383366           3.757018e+00    3.0
      
  2. statistics application data
           set(pub_param.sim)
    
    0.069 0.2 3.0 31.0 280.0
    • click the following for statistics with pandas
             pub_param.query('sim == 31.0 and processing == "clean noc"').describe()
      
      t           N  expected transit time    sim
      count  250.000000  250.000000             250.000000  250.0
      mean     0.356892    1.184233               0.363582   31.0
      std      0.017251    0.331666               0.000000    0.0
      min      0.316204    0.626433               0.363582   31.0
      25%      0.345597    0.901067               0.363582   31.0
      50%      0.356176    1.251875               0.363582   31.0
      75%      0.367787    1.446506               0.363582   31.0
      max      0.422647    2.335207               0.363582   31.0
      
             pub_param.query('sim == 31.0 and processing == "dirty noc"').describe()
      
      t           N  expected transit time    sim
      count  250.000000  250.000000             250.000000  250.0
      mean     0.507154    0.865429               0.363582   31.0
      std      0.229794    0.146621               0.000000    0.0
      min      0.351314    0.240379               0.363582   31.0
      25%      0.403647    0.802527               0.363582   31.0
      50%      0.437270    0.871601               0.363582   31.0
      75%      0.498338    0.942197               0.363582   31.0
      max      2.429498    1.185128               0.363582   31.0
      
             pub_param.query('sim == 31.0 and processing == "dirty cas"').describe()
      
      t           N  expected transit time    sim
      count  250.000000  250.000000             250.000000  250.0
      mean     0.326603    1.034571               0.363582   31.0
      std      0.027692    0.089300               0.000000    0.0
      min      0.259626    0.831271               0.363582   31.0
      25%      0.309170    0.979233               0.363582   31.0
      50%      0.324881    1.020413               0.363582   31.0
      75%      0.343199    1.071515               0.363582   31.0
      max      0.429618    1.247246               0.363582   31.0
      
             pub_param.query('sim == 31.0 and processing == "dirty del"').describe()
      
      t           N  expected transit time    sim
      count  250.000000  250.000000             250.000000  250.0
      mean     0.366597    0.960330               0.363582   31.0
      std      0.028811    0.087365               0.000000    0.0
      min      0.295380    0.762634               0.363582   31.0
      25%      0.347739    0.903386               0.363582   31.0
      50%      0.366389    0.941637               0.363582   31.0
      75%      0.383148    0.993536               0.363582   31.0
      max      0.462216    1.190092               0.363582   31.0
      
             pub_param.query('sim == 31.0 and processing == "dirty avg"').describe()
      
      t           N  expected transit time    sim
      count  250.000000  250.000000             250.000000  250.0
      mean     0.348313    2.298929               0.363582   31.0
      std      0.028811   22.341037               0.000000    0.0
      min      0.139923    0.035053               0.363582   31.0
      25%      0.349210    0.764745               0.363582   31.0
      50%      0.349210    0.764745               0.363582   31.0
      75%      0.349210    0.764745               0.363582   31.0
      max      0.653701  352.797026               0.363582   31.0
      
             pub_param.query('sim == 280 and processing == "clean noc"').describe()
      
      t           N  expected transit time    sim
      count  424.000000  424.000000           4.240000e+02  424.0
      mean     0.039726   14.324938           4.025377e-02  280.0
      std      0.001038    0.264089           1.389418e-17    0.0
      min      0.037049   13.369703           4.025377e-02  280.0
      25%      0.039010   14.194097           4.025377e-02  280.0
      50%      0.039678   14.331944           4.025377e-02  280.0
      75%      0.040445   14.503913           4.025377e-02  280.0
      max      0.042681   14.925030           4.025377e-02  280.0
      
             pub_param.query('sim == 280 and processing == "dirty noc"').describe()
      
      t           N  expected transit time    sim
      count  440.000000  440.000000             440.000000  440.0
      mean     0.295129    1.115437               0.040254  280.0
      std      0.823954    0.832436               0.000000    0.0
      min      0.004885    0.111298               0.040254  280.0
      25%      0.042516    0.497226               0.040254  280.0
      50%      0.059671    0.928103               0.040254  280.0
      75%      0.117828    1.475898               0.040254  280.0
      max      9.785473    5.530194               0.040254  280.0
      
             pub_param.query('sim == 280 and processing == "dirty cas"').describe()
      
      t           N  expected transit time    sim
      count  440.000000  440.000000             440.000000  440.0
      mean     0.038934   15.106186               0.040254  280.0
      std      0.005460    1.484036               0.000000    0.0
      min      0.021356    6.267150               0.040254  280.0
      25%      0.035229   14.334271               0.040254  280.0
      50%      0.038763   15.248202               0.040254  280.0
      75%      0.042262   16.039287               0.040254  280.0
      max      0.062131   18.110889               0.040254  280.0
      
             pub_param.query('sim == 280 and processing == "dirty del"').describe()
      
      t           N  expected transit time    sim
      count  440.000000  440.000000             440.000000  440.0
      mean     0.150001    0.509272               0.040254  280.0
      std      0.232081    0.161864               0.000000    0.0
      min      0.035726    0.175117               0.040254  280.0
      25%      0.073251    0.385334               0.040254  280.0
      50%      0.102000    0.487138               0.040254  280.0
      75%      0.151827    0.610576               0.040254  280.0
      max      3.535464    1.108399               0.040254  280.0
      
             pub_param.query('sim == 280 and processing == "dirty avg"').describe()
      
      t           N  expected transit time    sim
      count  440.000000  440.000000             440.000000  440.0
      mean     0.084284   18.112860               0.040254  280.0
      std      0.022509    1.615360               0.000000    0.0
      min      0.039713   14.057908               0.040254  280.0
      25%      0.069354   17.030536               0.040254  280.0
      50%      0.082400   18.066652               0.040254  280.0
      75%      0.096017   19.096856               0.040254  280.0
      max      0.175513   24.030180               0.040254  280.0
      
  3. Plot C v1: boxen + strip plots
    • the following was the first version of plots done with boxen plots and overlayed strip plots. I later shifted to violin plots. I only archive one of those plots just as an example.
      • plot simulated data - transit times
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
               # sns.set(rc={'figure.figsize':(3.33, 7)})
               simplot(pub_param[~(pub_param['expected transit time'].isin([0.040253767881946526, 0.36358241957887183]))],
                       order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                       x='t', height=3, aspect=3/3, hue=None, xlim=[1, 10000], kind='boxen',
                       add_text='plot2_compare-correction-sim_transit-times')
        
      • plot biological af488 data - transit times
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
               # sns.set(rc={'figure.figsize':(3.33, 7)})
               simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)],
                       order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                       x='t', height=3, aspect=3/3, hue=None, xlim=None, kind='boxen',
                       add_text='plot2_compare-correction-af488_transit-times')
        
      • plot biological af488 data - particle numbers
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
               # sns.set(rc={'figure.figsize':(3.33, 7)})
               simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)],
                       order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                       x='N', height=3, aspect=3/3, hue=None, xlim=None, kind='boxen',
                       add_text='plot2_compare-correction-af488_particle-numbers')
        
      • plot biological pex5 data - transit times
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
               # sns.set(rc={'figure.figsize':(3.33, 7)})
               simplot(pub_param[(pub_param['expected transit time'] == 0.36358241957887183)],
                       order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                       x='t', height=3, aspect=3/3, hue=None, xlim=[0.1, 10], kind='boxen',
                       add_text='plot2_compare-correction-pex5_transit-times')
        
      • plot biological pex5 data - particle numbers
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
               # sns.set(rc={'figure.figsize':(3.33, 7)})
               simplot(pub_param[(pub_param['expected transit time'] == 0.36358241957887183)],
                       order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                       x='N', height=3, aspect=3/3, hue=None, xlim=[0, 2], kind='boxen',
                       add_text='plot2_compare-correction-pex5_particle-numbers')
        
      • for supplementary, plot 1 and 2 species fits for every category for transit times
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
               # sns.set(rc={'figure.figsize':(3.33, 7)})
               simplot(all_param,
                       order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                       x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='boxen',
                       add_text='plot2_compare-correction-sim-bio-allfits')
        
      • for supplementary, plot 1 and 2 species fits for simulated data - transit times
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
               # sns.set(rc={'figure.figsize':(3.33, 7)})
               simplot(all_param[~(all_param['expected transit time'].isin([0.040253767881946526, 0.36358241957887183]))],
                       order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                       x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='boxen',
                       add_text='plot2_compare-correction-sim_transit-times-allfits')
        
      • for supplementary, plot 1 and 2 species fits for af488 particle numbers
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
               # sns.set(rc={'figure.figsize':(3.33, 7)})
               simplot(all_param[all_param['expected transit time'] == 0.040253767881946526],
                       order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                       x='N', height=4, aspect=3/4, hue='legend', xlim=None, kind='boxen',
                       add_text='plot2_compare-correction-af488_particle-numbers-allfits')
        
      • for supplementary, plot 1 and 2 species fits for af488 transit times
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
               # sns.set(rc={'figure.figsize':(3.33, 7)})
               simplot(all_param[all_param['expected transit time'] == 0.040253767881946526],
                       order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                       x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='boxen',
                       add_text='plot2_compare-correction-af488_transit-times-allfits')
        
      • for supplementary, plot 1 and 2 species fits for pex5 transit times
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
               # sns.set(rc={'figure.figsize':(3.33, 7)})
               simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)],
                       order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                       x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='boxen',
                       add_text='plot2_compare-correction-pex5_transit-times-allfits')
        
      • for supplementary, plot 1 and 2 species fits for pex5 particle numbers
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
               # sns.set(rc={'figure.figsize':(3.33, 7)})
               simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)],
                       order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                       x='N', height=4, aspect=3/4, hue='legend', xlim=[0, 3], kind='boxen',
                       add_text='plot2_compare-correction-pex5_particle-numbers-allfits')
        
    • here is the example of the simulated transit times:
  4. Plot C v2: violin plots
    • try violin plots - first just take a look at the log values for different tau values. because seaborns violinplot does not support kde calculation in log values, I have to do this manually, by first log-transforming the data, now extracting the xticklabels and manually transforming them
             # for violin plots
             all_param.loc[:, 't'] = all_param.loc[:, 't'].apply(lambda x: np.log10(x))
             pub_param.loc[:, 't'] = pub_param.loc[:, 't'].apply(lambda x: np.log10(x))
             print(f'change xlim=0.1 to {np.log10(0.1)}')
             print(f'change xlim=1 to {np.log10(1)}')
             print(f'change xlim=2 to {np.log10(2)}')
             print(f'change xlim=3 to {np.log10(3)}')
             print(f'change xlim=10 to {np.log10(10)}')
             print(f'change xlim=10000 to {np.log10(10000)}')
      
           change xlim=0.1 to -1.0
           change xlim=1 to 0.0
           change xlim=2 to 0.3010299956639812
           change xlim=3 to 0.47712125471966244
           change xlim=10 to 1.0
           change xlim=10000 to 4.0
      
    • plot simulated data - transit times
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
             # sns.set(rc={'figure.figsize':(3.33, 7)})
             g = simplot(pub_param[~(pub_param['expected transit time'].isin([0.040253767881946526, 0.36358241957887183]))],
                     order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                     x='t', height=3, aspect=3/3, hue=None, xlim=None, kind='violin',
                     add_text='plot2_compare-correction-sim_transit-times')
      
      0 [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0]
      [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0]
      1 [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0]
      [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0]
      2 [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0]
      [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0]
      /tmp/ipykernel_15489/134815032.py:229: UserWarning: FixedFormatter should only be used together with FixedLocator
        ax.set_xticklabels(xlab_power)
      

      plotC_compare-correction-sim_transit-times.svg

    • plot biological af488 data - transit times
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
             # sns.set(rc={'figure.figsize':(3.33, 7)})
             simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)],
                     order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                     x='t', height=3, aspect=3/3, hue=None, xlim=None, kind='violin',
                     add_text='plotC_compare-correction-af488_transit-times')
      

      plotC_compare-correction-af488_transit-times.svg

    • plot biological af488 data - particle numbers
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
             # sns.set(rc={'figure.figsize':(3.33, 7)})
             simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)],
                     order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                     x='N', height=3, aspect=3/3, hue=None, xlim=None, kind='violin',
                     add_text='plotC_compare-correction-af488_particle-numbers')
      

      plotC_compare-correction-af488_particle-numbers.svg

    • plot biological pex5 data - transit times
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
             # sns.set(rc={'figure.figsize':(3.33, 7)})
             simplot(pub_param[(pub_param['expected transit time'] == 0.36358241957887183)],
                     order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                     x='t', height=2.5, aspect=2.5/3, hue=None, xlim=[-1, 0], kind='violin',
                     add_text='plotC_compare-correction-pex5_transit-times')
      
      0 [Text(-1.0, 0, '−1.00'), Text(-0.75, 0, '−0.75'), Text(-0.5, 0, '−0.50'), Text(-0.25, 0, '−0.25'), Text(0.0, 0, '0.00')]
      {0.1, 0.5623, 0.3162, 0.1778, 1.0}
      /tmp/ipykernel_38203/1869914210.py:86: UserWarning: FixedFormatter should only be used together with FixedLocator
        ax.set_xticklabels(xlab_power)
      

      plotC_compare-correction-pex5_transit-times.svg

    • for supplementary, plot 1 and 2 species fits for every category for transit times
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
             # sns.set(rc={'figure.figsize':(3.33, 7)})
             simplot(all_param,
                     order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                     x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='violin',
                     add_text='plotC_compare-correction-sim-bio-allfits')
      
           0 []
           []
           1 []
           []
           2 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4'), Text(6.0, 0, '6')]
           [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0]
           3 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4'), Text(6.0, 0, '6')]
           [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0]
           4 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4'), Text(6.0, 0, '6')]
           [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0]
           /tmp/ipykernel_25877/3410783254.py:84: UserWarning: FixedFormatter should only be used together with FixedLocator
             ax.set_xticklabels(xlab_power)
      

      plotC_compare-correction-sim-bio-allfits.svg

    • for supplementary, plot 1 and 2 species fits for simulated data - transit times
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
             # sns.set(rc={'figure.figsize':(3.33, 7)})
             simplot(all_param[~(all_param['expected transit time']
                                 .isin([0.040253767881946526, 0.36358241957887183]))],
                     order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                     x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='violin',
                     add_text='plotC_compare-correction-sim_transit-times-allfits')
      
      0 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4'), Text(6.0, 0, '6')]
      [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0]
      1 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4'), Text(6.0, 0, '6')]
      [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0]
      2 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4'), Text(6.0, 0, '6')]
      [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0]
      /tmp/ipykernel_25877/1072788822.py:85: UserWarning: FixedFormatter should only be used together with FixedLocator
        ax.set_xticklabels(xlab_power)
      

      plotC_compare-correction-sim_transit-times-allfits.svg

    • for supplementary, plot 1 and 2 species fits for af488 particle numbers
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
             # sns.set(rc={'figure.figsize':(3.33, 7)})
             simplot(all_param[all_param['expected transit time'] == 0.040253767881946526],
                     order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                     x='N', height=4, aspect=3/4, hue='legend', xlim=None, kind='violin',
                     add_text='plotC_compare-correction-af488_particle-numbers-allfits')
      

      plotC_compare-correction-af488_particle-numbers-allfits.svg

    • for supplementary, plot 1 and 2 species fits for af488 transit times
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
             # sns.set(rc={'figure.figsize':(3.33, 7)})
             # here a version for the plot, but with corrupt xlabels
             simplot(all_param[all_param['expected transit time'] == 0.040253767881946526],
                     order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                     x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='violin',
                     add_text='plot2_compare-correction-af488_transit-times-allfits')
             # here a version only to extract correct xlabels
             simplot(all_param[all_param['expected transit time'] == 0.040253767881946526],
                     order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                     x='t', height=4, aspect=4/3, hue='legend', xlim=None, kind='violin',
                     add_text='plotC_compare-correction-af488_transit-times-allfits_XLABELS')
      
      0 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4'), Text(1.0, 0, '1'), Text(2.0, 0, '2'), Text(3.0, 0, '3'), Text(4.0, 0, '4')]
      [-6.0, -4.0, -2.0, 0.0, 1.0, 2.0, 2.0, 3.0, 4.0, 4.0]
      [0.0, 0.0001, 0.01, 1.0, 10.0, 100.0, 100.0, 1000.0, 10000.0, 10000.0]
      /tmp/ipykernel_38203/1673237170.py:87: UserWarning: FixedFormatter should only be used together with FixedLocator
        ax.set_xticklabels(xlab_power)
      0 [Text(-5.0, 0, '−5'), Text(-4.0, 0, '−4'), Text(-3.0, 0, '−3'), Text(-2.0, 0, '−2'), Text(-1.0, 0, '−1'), Text(0.0, 0, '0'), Text(1.0, 0, '1'), Text(2.0, 0, '2'), Text(3.0, 0, '3'), Text(4.0, 0, '4')]
      [-5.0, -4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0]
      [0.0, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, 10000.0]
      /tmp/ipykernel_38203/1673237170.py:87: UserWarning: FixedFormatter should only be used together with FixedLocator
        ax.set_xticklabels(xlab_power)
      

      plotC_compare-correction-af488_transit-times-allfits.svg plotC_compare-correction-af488_transit-times-allfits_XLABELS.svg

    • for supplementary, plot 1 and 2 species fits for pex5 transit times
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
             # sns.set(rc={'figure.figsize':(3.33, 7)})
             simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)],
                     order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                     x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='violin',
                     add_text='plotC_compare-correction-pex5_transit-times-allfits')
      
      0 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4')]
      [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0]
      [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0]
      /tmp/ipykernel_38203/1673237170.py:87: UserWarning: FixedFormatter should only be used together with FixedLocator
        ax.set_xticklabels(xlab_power)
      

      plotC_compare-correction-pex5_transit-times-allfits.svg

    • for supplementary, plot 1 and 2 species fits for pex5 particle numbers
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
             # sns.set(rc={'figure.figsize':(3.33, 7)})
             # setting a xlim becaues the figure is unreadable otherwise
             simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)],
                     order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'],
                     x='N', height=4, aspect=3/4, hue='legend', xlim=[0, 3], kind='violin',
                     add_text='plotC_compare-correction-pex5_particle-numbers-allfits')
      

      plotC_compare-correction-pex5_particle-numbers-allfits.svg

2.7.11.4 Plot D: prediction methods fit outcomes
  • call jupyter-set-output-directory and simulations-prepare-modules
    ./data/exp-220316-publication1/jupyter
    
    /home/lex/Programme/drmed-git
    2023-06-21 13:24:07.016300: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2023-06-21 13:24:07.016412: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
  • let’s compare prediction methods on 3 different simulated base molecule speeds (0.069, 0.2, and 3.0 um2/s; varying molecule numbers) and af488 vs af488+LUV data and hs-pex5 vs tb-pex5 data
           # dirty correlations - check out from  branch exp-220227-unet
           path1 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-04-25_simulations/dirty')
           odot069_dirty_1comp_path = path1 / '0.069_results/dirty_0dot069-all_1comp_outputParam.csv'
           odot069_dirty_2comp_path = path1 / '0.069_results/dirty_0dot069-all_2comp_outputParam.csv'
           odot2_dirty_1comp_path = path1 / '0.2_results/dirty_0dot2-all_1comp_outputParam.csv'
           odot2_dirty_2comp_path = path1 / '0.2_results/dirty_0dot2-all_2comp_outputParam.csv'
           three_dirty_1comp_path = path1 / '3.0_results/dirty_3dot0-all_1comp_outputParam.csv'
           three_dirty_2comp_path = path1 / '3.0_results/dirty_3dot0-all_2comp_outputParam.csv'
    
           # clean correlations
           path2 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220719_threshold-prediction/threshold-all-results')
           odot069_clean_1comp_path = path2 / '0dot069_clean_1comp_outputParam.csv'
           odot2_clean_1comp_path = path2 / '0dot2_clean_1comp_outputParam.csv'
           three_clean_1comp_path = path2 / '3dot0_clean_1comp_outputParam.csv'
    
           # control with prediction threshold
           odot069_2cas_1comp_path = path2 / '0dot069_robust_thresh2_1comp_outputParam.csv'
           odot069_2cas_2comp_path = path2 / '0dot069_robust_thresh2_2comp_outputParam.csv'
           odot2_2cas_1comp_path = path2 / '0dot2_robust_thresh2_1comp_outputParam.csv'
           odot2_2cas_2comp_path = path2 / '0dot2_robust_thresh2_2comp_outputParam.csv'
           three_2cas_1comp_path = path2 / '3dot0_robust_thresh2_1comp_outputParam.csv'
           three_2cas_2comp_path = path2 / '3dot0_robust_thresh2_2comp_outputParam.csv'
    
           # prediction by best unet 0cd20 - check out from branch exp-220227-unet
           path3 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-04-25_simulations/0cd20')
           odot069_0cd20cas_1comp_path = path3 / '0.069_results/0cd20_0dot069-all_1comp_outputParam.csv'
           odot069_0cd20cas_2comp_path = path3 / '0.069_results/0cd20_0dot069-all_2comp_outputParam.csv'
           odot2_0cd20cas_1comp_path = path3 / '0.2_results/0cd20_0dot2-all_1comp_outputParam.csv'
           odot2_0cd20cas_2comp_path = path3 / '0.2_results/0cd20_0dot2-all_2comp_outputParam.csv'
           three_0cd20cas_1comp_path = path3 / '3.0_results/0cd20_3dot0-all_1comp_outputParam.csv'
           three_0cd20cas_2comp_path = path3 / '3.0_results/0cd20_3dot0-all_2comp_outputParam.csv'
    
           # biological data - af488
           path6 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-05-22_experimental-af488')
           path7 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220726_bioexps/af488')
           path8 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220726_bioexps/af488+luvs/')
           af488_noc_1comp_path = path6 / 'clean-all-results/clean_no-correction_1comp_outputParam.csv'
           af488_0cd20cas_1comp_path = path6 / 'clean-all-results/clean_0cd20_1comp_outputParam.csv'
           af488_ff67bcas_1comp_path = path6 / 'clean-all-results/clean_ff67b_1comp_outputParam.csv'
    
           af488_1dot5cas_1comp_path = path7 / 'af488-all-results/af488_thresh-1.5_1comp_outputParam.csv'
           af488_2cas_1comp_path = path7 / 'af488-all-results/af488_thresh-2_1comp_outputParam.csv'
           af488_2dot5cas_1comp_path = path7 / 'af488-all-results/af488_thresh-2.5_1comp_outputParam.csv'
    
           af488luv_noc_1comp_path = path6 / 'dirty-all-results/dirty_no-correction_1comp_outputParam.csv'
           af488luv_noc_2comp_path = path6 / 'dirty-all-results/dirty_no-correction_2comp_outputParam.csv'
           af488luv_0cd20cas_1comp_path = path6 / 'dirty-all-results/dirty_0cd20_1comp_outputParam.csv'
           af488luv_0cd20cas_2comp_path = path6 / 'dirty-all-results/dirty_0cd20_2comp_outputParam.csv'
           af488luv_ff67bcas_1comp_path = path6 / 'dirty-all-results/dirty_ff67b_1comp_outputParam.csv'
           af488luv_ff67bcas_2comp_path = path6 / 'dirty-all-results/dirty_ff67b_2comp_outputParam.csv'
    
           af488luv_1dot5cas_1comp_path = path8 / 'af488+luvs-all-results/af488+luvs_thresh-1.5_1comp_outputParam.csv'
           af488luv_1dot5cas_2comp_path = path8 / 'af488+luvs-all-results/af488+luvs_thresh-1.5_2comp_outputParam.csv'
           af488luv_2cas_1comp_path = path8 / 'af488+luvs-all-results/af488+luvs_thresh-2_1comp_outputParam.csv'
           af488luv_2cas_2comp_path = path8 / 'af488+luvs-all-results/af488+luvs_thresh-2_2comp_outputParam.csv'
           af488luv_2dot5cas_1comp_path = path8 / 'af488+luvs-all-results/af488+luvs_thresh-2.5_1comp_outputParam.csv'
           af488luv_2dot5cas_2comp_path = path8 / 'af488+luvs-all-results/af488+luvs_thresh-2.5_2comp_outputParam.csv'
    
           # Hs-PEX5-eGFP (clean), only 1comp fits, with triplets fixed to 0.04ms (triplet fraction floating)
           # see https://www.sciencedirect.com/science/article/pii/S266707472200012X#bib35 for 0.04 reference
           path9 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-06-02_experimental-pex5')
           path10 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220726_bioexps/Hs-PEX5-eGFP')
           path11 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220726_bioexps/Tb-PEX5-eGFP/')
           hspex5_noc_1comp_path = path9 / 'clean-all-results/Hs-PEX5-eGFP_no-correction_1comp_outputParam.csv'
           hspex5_0cd20cas_1comp_path = path9 / 'clean-all-results/Hs-PEX5-eGFP_0cd20_1comp_outputParam.csv'
           hspex5_ff67bcas_1comp_path = path9 / 'clean-all-results/Hs-PEX5-eGFP_ff67b_1comp_outputParam.csv'
    
           hspex5_5cas_1comp_path = path10 / 'Hs-PEX5-eGFP-all-results/Hs-PEX5-eGFP_thresh-5_1comp_outputParam.csv'
           hspex5_7cas_1comp_path = path10 / 'Hs-PEX5-eGFP-all-results/Hs-PEX5-eGFP_thresh-7_1comp_outputParam.csv'
           hspex5_10cas_1comp_path = path10 / 'Hs-PEX5-eGFP-all-results/Hs-PEX5-eGFP_thresh-10_1comp_outputParam.csv'
    
           tbpex5_noc_1comp_path = path9 / 'dirty-all-results/Tb-PEX5-eGFP_no-correction_1comp_outputParam.csv'
           tbpex5_noc_2comp_path = path9 / 'dirty-all-results/Tb-PEX5-eGFP_no-correction_2comp_outputParam.csv'
           tbpex5_0cd20cas_1comp_path = path9 / 'dirty-all-results/Tb-PEX5-eGFP_0cd20_1comp_outputParam.csv'
           tbpex5_0cd20cas_2comp_path = path9 / 'dirty-all-results/Tb-PEX5-eGFP_0cd20_2comp_outputParam.csv'
           tbpex5_ff67bcas_1comp_path = path9 / 'dirty-all-results/Tb-PEX5-eGFP_ff67b_1comp_outputParam.csv'
           tbpex5_ff67bcas_2comp_path = path9 / 'dirty-all-results/Tb-PEX5-eGFP_ff67b_2comp_outputParam.csv'
    
           tbpex5_5cas_1comp_path = path11 / 'Tb-PEX5-eGFP-all-results/Tb-PEX5-eGFP_thresh-5_1comp_outputParam.csv'
           tbpex5_5cas_2comp_path = path11 / 'Tb-PEX5-eGFP-all-results/Tb-PEX5-eGFP_thresh-5_2comp_outputParam.csv'
           tbpex5_7cas_1comp_path = path11 / 'Tb-PEX5-eGFP-all-results/Tb-PEX5-eGFP_thresh-7_1comp_outputParam.csv'
           tbpex5_7cas_2comp_path = path11 / 'Tb-PEX5-eGFP-all-results/Tb-PEX5-eGFP_thresh-7_2comp_outputParam.csv'
           tbpex5_10cas_1comp_path = path11 / 'Tb-PEX5-eGFP-all-results/Tb-PEX5-eGFP_thresh-10_1comp_outputParam.csv'
           tbpex5_10cas_2comp_path = path11 / 'Tb-PEX5-eGFP-all-results/Tb-PEX5-eGFP_thresh-10_2comp_outputParam.csv'
    
           # hspex5_0cd20avg_1comp_path = path / 'hspex5_0cd20_averaging_1comp_outputParam.csv'
           # hspex5_0cd20del_1comp_path = path / 'hspex5_0cd20_delete_1comp_outputParam.csv'
    
           # tbpex5_0cd20avg_1comp_path = path / 'tbpex5_0cd20_averaging_1comp_outputParam.csv'
           # tbpex5_0cd20avg_2comp_path = path / 'tbpex5_0cd20_averaging_2comp_outputParam.csv'
           # tbpex5_0cd20del_1comp_path = path / 'tbpex5_0cd20_delete_1comp_outputParam.csv'
           # tbpex5_0cd20del_2comp_path = path / 'tbpex5_0cd20_delete_2comp_outputParam.csv'
    
           # load data
           odot069_clean_1comp = pd.read_csv(odot069_clean_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['clean noc',])
           odot2_clean_1comp = pd.read_csv(odot2_clean_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['clean noc',])
           three_clean_1comp = pd.read_csv(three_clean_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['clean noc',])
    
           af488_1comp = pd.read_csv(af488_noc_1comp_path, sep=',').assign(sim=424*[280,], processing=424*['clean noc',])
           af488_0cd20cas_1comp = pd.read_csv(af488_0cd20cas_1comp_path, sep=',').assign(sim=424*[280,], processing=424*['clean 0cd20',])
           af488_ff67bcas_1comp = pd.read_csv(af488_ff67bcas_1comp_path, sep=',').assign(sim=424*[280,], processing=424*['clean ff67b',])
           af488_1dot5cas_1comp = pd.read_csv(af488_1dot5cas_1comp_path, sep=',').assign(sim=422*[280,], processing=422*['clean thr1',])
           af488_2cas_1comp = pd.read_csv(af488_2cas_1comp_path, sep=',').assign(sim=424*[280,], processing=424*['clean thr2',])
           af488_2dot5cas_1comp = pd.read_csv(af488_2dot5cas_1comp_path, sep=',').assign(sim=424*[280,], processing=424*['clean thr3',])
    
           hspex5_1comp = pd.read_csv(hspex5_noc_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['clean noc',])
           hspex5_0cd20cas_1comp = pd.read_csv(hspex5_0cd20cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['clean 0cd20',])
           hspex5_ff67bcas_1comp = pd.read_csv(hspex5_ff67bcas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['clean ff67b',])
           hspex5_5cas_1comp = pd.read_csv(hspex5_5cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['clean thr1',])
           hspex5_7cas_1comp = pd.read_csv(hspex5_7cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['clean thr2',])
           hspex5_10cas_1comp = pd.read_csv(hspex5_10cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['clean thr3',])
    
           odot069_dirty_1comp = pd.read_csv(odot069_dirty_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty noc',])
           odot069_dirty_2comp = pd.read_csv(odot069_dirty_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty noc',])
           odot2_dirty_1comp = pd.read_csv(odot2_dirty_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty noc',])
           odot2_dirty_2comp = pd.read_csv(odot2_dirty_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty noc',])
           three_dirty_1comp = pd.read_csv(three_dirty_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty noc',])
           three_dirty_2comp = pd.read_csv(three_dirty_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty noc',])
           af488luv_1comp = pd.read_csv(af488luv_noc_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty noc',])
           af488luv_2comp = pd.read_csv(af488luv_noc_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty noc',])
           tbpex5_1comp = pd.read_csv(tbpex5_noc_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty noc',])
           tbpex5_2comp = pd.read_csv(tbpex5_noc_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty noc',])
    
           odot069_dirty_0cd20cas_1comp = pd.read_csv(odot069_0cd20cas_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty 0cd20',])
           odot069_dirty_0cd20cas_2comp = pd.read_csv(odot069_0cd20cas_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty 0cd20',])
           odot2_dirty_0cd20cas_1comp = pd.read_csv(odot2_0cd20cas_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty 0cd20',])
           odot2_dirty_0cd20cas_2comp = pd.read_csv(odot2_0cd20cas_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty 0cd20',])
           three_dirty_0cd20cas_1comp = pd.read_csv(three_0cd20cas_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty 0cd20',])
           three_dirty_0cd20cas_2comp = pd.read_csv(three_0cd20cas_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty 0cd20',])
           odot069_dirty_2cas_1comp = pd.read_csv(odot069_2cas_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty thr1',])
           odot069_dirty_2cas_2comp = pd.read_csv(odot069_2cas_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty thr1',])
           odot2_dirty_2cas_1comp = pd.read_csv(odot2_2cas_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty thr1',])
           odot2_dirty_2cas_2comp = pd.read_csv(odot2_2cas_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty thr1',])
           three_dirty_2cas_1comp = pd.read_csv(three_2cas_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty thr1',])
           three_dirty_2cas_2comp = pd.read_csv(three_2cas_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty thr1',])
    
           # load correction by label information as baseline
           af488luv_0cd20cas_1comp = pd.read_csv(af488luv_0cd20cas_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty 0cd20'])
           af488luv_0cd20cas_2comp = pd.read_csv(af488luv_0cd20cas_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty 0cd20'])
           af488luv_ff67bcas_1comp = pd.read_csv(af488luv_ff67bcas_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty ff67b'])
           af488luv_ff67bcas_2comp = pd.read_csv(af488luv_ff67bcas_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty ff67b'])
           af488luv_1dot5cas_1comp = pd.read_csv(af488luv_1dot5cas_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty thr1'])
           af488luv_1dot5cas_2comp = pd.read_csv(af488luv_1dot5cas_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty thr1'])
           af488luv_2cas_1comp = pd.read_csv(af488luv_2cas_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty thr2'])
           af488luv_2cas_2comp = pd.read_csv(af488luv_2cas_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty thr2'])
           af488luv_2dot5cas_1comp = pd.read_csv(af488luv_2dot5cas_1comp_path, sep=',').assign(sim=431*[280,], processing=431*['dirty thr3'])
           af488luv_2dot5cas_2comp = pd.read_csv(af488luv_2dot5cas_2comp_path, sep=',').assign(sim=431*[280,], processing=431*['dirty thr3'])
    
           tbpex5_0cd20cas_1comp = pd.read_csv(tbpex5_0cd20cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty 0cd20'])
           tbpex5_0cd20cas_2comp = pd.read_csv(tbpex5_0cd20cas_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty 0cd20'])
           tbpex5_ff67bcas_1comp = pd.read_csv(tbpex5_ff67bcas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty ff67b'])
           tbpex5_ff67bcas_2comp = pd.read_csv(tbpex5_ff67bcas_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty ff67b'])
           tbpex5_5cas_1comp = pd.read_csv(tbpex5_5cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty thr1'])
           tbpex5_5cas_2comp = pd.read_csv(tbpex5_5cas_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty thr1'])
           tbpex5_7cas_1comp = pd.read_csv(tbpex5_7cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty thr2'])
           tbpex5_7cas_2comp = pd.read_csv(tbpex5_7cas_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty thr2'])
           tbpex5_10cas_1comp = pd.read_csv(tbpex5_10cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty thr3'])
           tbpex5_10cas_2comp = pd.read_csv(tbpex5_10cas_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty thr3'])
    
           # af488luv_0cd20del_1comp = pd.read_csv(af488luv_0cd20del_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty del'])
           # af488luv_0cd20del_2comp = pd.read_csv(af488luv_0cd20del_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty del'])
           # tbpex5_0cd20del_1comp = pd.read_csv(tbpex5_0cd20del_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty del'])
           # tbpex5_0cd20del_2comp = pd.read_csv(tbpex5_0cd20del_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty del'])
           #
           # af488luv_0cd20avg_1comp = pd.read_csv(af488luv_0cd20avg_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty avg'])
           # af488luv_0cd20avg_2comp = pd.read_csv(af488luv_0cd20avg_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty avg'])
           # tbpex5_0cd20avg_1comp = pd.read_csv(tbpex5_0cd20avg_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty avg'])
           # tbpex5_0cd20avg_2comp = pd.read_csv(tbpex5_0cd20avg_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty avg'])
    
           # # control with prediction threshold
           # odot069_thresh2_1comp = pd.read_csv(odot069_thresh2_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           # odot069_thresh2_2comp = pd.read_csv(odot069_thresh2_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           # odot2_thresh2_1comp = pd.read_csv(odot2_thresh2_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           # odot2_thresh2_2comp = pd.read_csv(odot2_thresh2_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           # # one_thresh2_1comp = pd.read_csv(one_thresh2_1comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           # # one_thresh2_2comp = pd.read_csv(one_thresh2_2comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           # three_thresh2_1comp = pd.read_csv(three_thresh2_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           # three_thresh2_2comp = pd.read_csv(three_thresh2_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',])
           #
           # # pred. by best unet 0cd20 - check out from branch exp-220227-unet
           # odot069_0cd20_1comp = pd.read_csv(odot069_0cd20_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
           # odot069_0cd20_2comp = pd.read_csv(odot069_0cd20_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
           # odot2_0cd20_1comp = pd.read_csv(odot2_0cd20_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
           # odot2_0cd20_2comp = pd.read_csv(odot2_0cd20_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
           # # one_0cd20_1comp = pd.read_csv(one_0cd20_1comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
           # # one_0cd20_2comp = pd.read_csv(one_0cd20_2comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
           # three_0cd20_1comp = pd.read_csv(three_0cd20_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
           # three_0cd20_2comp = pd.read_csv(three_0cd20_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',])
    
           all_param = pd.concat([odot069_clean_1comp, odot2_clean_1comp, three_clean_1comp,
                                  af488_1comp, af488_0cd20cas_1comp, af488_ff67bcas_1comp,
                                  af488_1dot5cas_1comp, af488_2cas_1comp, af488_2dot5cas_1comp,
                                  hspex5_1comp, hspex5_0cd20cas_1comp, hspex5_ff67bcas_1comp,
                                  hspex5_5cas_1comp, hspex5_7cas_1comp, hspex5_10cas_1comp,
                                  odot069_dirty_1comp, odot2_dirty_1comp, three_dirty_1comp,
                                  odot069_dirty_2comp, odot2_dirty_2comp, three_dirty_2comp,
                                  odot069_dirty_0cd20cas_1comp, odot2_dirty_0cd20cas_1comp,
                                  three_dirty_0cd20cas_1comp,
                                  odot069_dirty_0cd20cas_2comp, odot2_dirty_0cd20cas_2comp,
                                  three_dirty_0cd20cas_2comp,
                                  odot069_dirty_2cas_1comp, odot2_dirty_2cas_1comp,
                                  three_dirty_2cas_1comp,
                                  odot069_dirty_2cas_2comp, odot2_dirty_2cas_2comp,
                                  three_dirty_2cas_2comp,
                                  af488luv_1comp, tbpex5_1comp,
                                  af488luv_2comp, tbpex5_2comp,
                                  af488luv_0cd20cas_1comp, tbpex5_0cd20cas_1comp,
                                  af488luv_0cd20cas_2comp, tbpex5_0cd20cas_2comp,
                                  af488luv_ff67bcas_1comp, tbpex5_ff67bcas_1comp,
                                  af488luv_ff67bcas_2comp, tbpex5_ff67bcas_2comp,
                                  af488luv_1dot5cas_1comp, tbpex5_5cas_1comp,
                                  af488luv_1dot5cas_2comp, tbpex5_5cas_2comp,
                                  af488luv_2cas_1comp, tbpex5_7cas_1comp,
                                  af488luv_2cas_2comp, tbpex5_7cas_2comp,
                                  af488luv_2dot5cas_1comp, tbpex5_10cas_1comp,
                                  af488luv_2dot5cas_2comp, tbpex5_10cas_2comp])
    
           # assert the following fit parameters
           assert set(all_param['Dimen']) == {'2D', '3D'}
           assert set(all_param[all_param['Dimen'] == '2D']['sim']
                      ) == {0.069, 0.2, 3.0}
           assert set(all_param[all_param['Dimen'] == '3D']['sim']
                      ) == {31.0, 280.0}
           assert set(all_param[(all_param['Dimen'] == '3D') &
                                (all_param['sim'] == 31.0)]['AR1']) == {6.0}
           assert set(all_param[(all_param['Dimen'] == '3D') &
                                (all_param['sim'] == 280.0)]['AR1']) == {5.0}
           assert set(all_param['Diff_eq']) == {'Equation 1A', 'Equation 1B'}
           assert set(all_param[all_param['Diff_eq'] == 'Equation 1A']['sim']
                      ) == {0.069, 0.2, 3.0}
           assert set(all_param[all_param['Diff_eq'] == 'Equation 1B']['sim']
                      ) == {31.0, 280.0}
           assert set(all_param['Triplet_eq']) == {'Triplet Eq 2B', 'no triplet'}
           assert set(all_param[all_param['Triplet_eq'] == 'no triplet']['sim']
                      ) == {0.069, 0.2, 3.0, 280.0}
           assert set(all_param[all_param['Triplet_eq'] == 'Triplet Eq 2B']['sim']
                      ) == {31.0}
           assert set(all_param['alpha1']) == {1.0}
           assert set(all_param['xmin']) == {0.001018, 1.0}
           assert set(all_param[all_param['xmin'] == 1.0]['sim']
                      ) == {0.069, 0.2, 3.0}
           assert set(all_param[all_param['xmin'] == 0.001018]['sim']
                      ) == {31.0, 280.0}
           assert set(all_param['xmax']) == {100.66329, 469.762042, 939.52409,
                                             3584.0, 4096.0, 7168.0, 8192.0}
           # biological pex5 correlations were fitted with xmax=1000
           assert set(all_param[all_param['xmax'] == 939.52409]['sim']) == {31.0}
           # biological af488 correlations were fitted with xmax=500 for peak artifacts,
           # and xmax=100 for correlations without peak artifacts,
           assert set(all_param[all_param['xmax'].isin(
               [100.66329, 469.762042])]['sim']) == {280.0}
           assert set(all_param[all_param['xmax'] == 100.66329]['processing']
                      ) == {'clean 0cd20', 'clean ff67b', 'clean noc', 'clean thr1',
                            'clean thr2', 'clean thr3'}
           assert set(all_param[all_param['xmax'] == 469.762042]['processing']
                      ) == {'dirty 0cd20', 'dirty ff67b', 'dirty noc', 'dirty thr1',
                            'dirty thr2', 'dirty thr3'}
           # simulated correlations with and without peak artifacts were fitted with
           # xmax=8192 (except see below)
           assert set(all_param[all_param['xmax'].isin(
               [3584.0, 4096.0, 7168.0, 8192.0])]['sim']) == {0.069, 0.2, 3.0}
           assert set(all_param[all_param['xmax'] == 8192.0]['processing']
                      ) == {'clean noc', 'dirty 0cd20', 'dirty noc', 'dirty thr1'}
           # 283, 293, or 282 of 300 correlations with peak artifacts and 0cd20
           # prediction and cut and stitch correction were fitted with xmax=8192
           # (3 groups depending on simulated molecule speed)
           # this failed for 41 correlations which were too short and thus
           # automatically got xmax={3584, 4096, 7168}
           assert len(set(all_param[(all_param['xmax'] == 8192.0) &
                                    (all_param['processing'] == 'dirty 0cd20') &
                                    (all_param['sim'] == 0.069)].index)) == 283
           assert len(set(all_param[(all_param['xmax'] == 8192.0) &
                                    (all_param['processing'] == 'dirty 0cd20') &
                                    (all_param['sim'] == 0.2)].index)) == 293
           assert len(set(all_param[(all_param['xmax'] == 8192.0) &
                                    (all_param['processing'] == 'dirty 0cd20') &
                                    (all_param['sim'] == 3.0)].index)) == 282
           assert set(all_param[all_param['xmax'].isin(
               [3584.0, 4096.0, 7168.0])]['processing']) == {'dirty 0cd20'}
           assert len(set(all_param[all_param['xmax'].isin(
               [3584.0, 4096.0, 7168.0])]['processing'].index)) == 41
    
           pprint(all_param.keys())
           all_param = all_param[['name_of_plot', 'Diff_species', 'N (FCS)', 'A1',
                                  'txy1', 'sim', 'processing', 'A2', 'txy2']]
           with pd.option_context("max_colwidth", 1000):
               display(all_param)
    
           all_param = prepare_all_param(all_param)
           # with pd.option_context("max_colwidth", 1000):
           #     display(all_param[['legend', 't', 'A', 'expected transit time', 'sim', 'processing']])
           pub_cond1 = ((all_param['legend'] == '$\\tau_D$ from\n1 species fit') &
                        (all_param['processing'].isin(
                            ['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc',
                             'dirty 0cd20', 'dirty thr2'])) &
                        ~((all_param['processing'].isin(
                            ['dirty noc', 'dirty 0cd20', 'dirty thr2'])) &
                          (all_param['expected transit time'] == 0.040253767881946526)))
           pub_cond2 = ((all_param['legend'] == '$\\tau_D$ from\nfast sp. of 2 sp. fit') &
                        ((all_param['processing'].isin(
                            ['dirty noc', 'dirty 0cd20', 'dirty thr2'])) &
                         (all_param['expected transit time'] == 0.040253767881946526)))
    
           pub_param = all_param[pub_cond1 | pub_cond2]
           pub_param
    
    before dropping NaNs
    1 species fit: 11773
    slow sp of 2 sp fit: 6831
    fast sp of 2 sp fit: 6831
    after dropping NaNs
    1 species fit: 11773
    slow sp of 2 sp fit: 6228
    fast sp of 2 sp fit: 6577
    
                                              legend           t          N  \
         0              $\tau_D$ from\n1 species fit  150.165642  13.940974
         1              $\tau_D$ from\n1 species fit  133.758850  16.272292
         2              $\tau_D$ from\n1 species fit  109.396491  17.590156
         3              $\tau_D$ from\n1 species fit  140.176075  13.739355
         4              $\tau_D$ from\n1 species fit  520.784146  10.985121
         ...                                     ...         ...        ...
         22882  $\tau_D$ from\nfast sp. of 2 sp. fit    0.045014  10.206993
         22884  $\tau_D$ from\nfast sp. of 2 sp. fit    0.053724  11.111890
         22886  $\tau_D$ from\nfast sp. of 2 sp. fit    0.046132  10.239869
         22888  $\tau_D$ from\nfast sp. of 2 sp. fit    0.039516  15.640813
         22890  $\tau_D$ from\nfast sp. of 2 sp. fit    0.038100  14.548366
    
                expected transit time      sim  processing
         0                 163.348623    0.069   clean noc
         1                 163.348623    0.069   clean noc
         2                 163.348623    0.069   clean noc
         3                 163.348623    0.069   clean noc
         4                 163.348623    0.069   clean noc
         ...                      ...      ...         ...
         22882               0.040254  280.000  dirty thr2
         22884               0.040254  280.000  dirty thr2
         22886               0.040254  280.000  dirty thr2
         22888               0.040254  280.000  dirty thr2
         22890               0.040254  280.000  dirty thr2
    
         [6792 rows x 6 columns]
    
           list(set(all_param['expected transit time']))[::-1]
    
    56.35527503472514 3.7570183356483424 163.34862328905834 0.040253767881946526 0.36358241957887183
  • the following constraints are given by the nanoletters template:
    • one column: up to 240 points wide (3.33 in.)
    • double-column: between 300 and 504 points (4.167 in. and 7 in.).
    • maximum depth: 660 points (9.167 in.) including the caption (allow 12 pts. For each line of caption text)
    • Lettering should be no smaller than 4.5 points in the final published format. The text should be legible when the graphic is viewed full-size. Helvetica or Arial fonts work well for lettering. Lines should be no thinner than 0.5 point.
  1. statistics application data
    • we have the following data
             print(set(pub_param.sim))
             print(set(pub_param.processing))
      
      {0.069, 0.2, 3.0, 280.0, 31.0}
      {'dirty 0cd20', 'clean thr2', 'clean 0cd20', 'dirty thr2', 'dirty noc', 'clean noc'}
      
    • we only look at the applied experiments (sim in [31, 280]). for clean noc and dirty noc of these see comparison of correction methods.
             pub_param.query('sim == 31.0 and processing == "clean thr2"').describe()
      
      t           N  expected transit time    sim
      count  250.000000  250.000000             250.000000  250.0
      mean     0.340037    1.227446               0.363582   31.0
      std      0.028890    0.286673               0.000000    0.0
      min      0.243326    0.779710               0.363582   31.0
      25%      0.326529    0.958762               0.363582   31.0
      50%      0.347706    1.274026               0.363582   31.0
      75%      0.360155    1.454889               0.363582   31.0
      max      0.399503    2.335252               0.363582   31.0
      
             pub_param.query('sim == 31.0 and processing == "clean 0cd20"').describe()
      
      t           N  expected transit time    sim
      count  250.000000  250.000000             250.000000  250.0
      mean     0.320864    1.228129               0.363582   31.0
      std      0.020821    0.315381               0.000000    0.0
      min      0.249462    0.680973               0.363582   31.0
      25%      0.308254    0.955120               0.363582   31.0
      50%      0.323617    1.289567               0.363582   31.0
      75%      0.335541    1.477269               0.363582   31.0
      max      0.359334    2.354698               0.363582   31.0
      
             pub_param.query('sim == 31.0 and processing == "dirty thr2"').describe()
      
      t           N  expected transit time    sim
      count  250.000000  250.000000             250.000000  250.0
      mean     0.365504    1.041985               0.363582   31.0
      std      0.030503    0.075999               0.000000    0.0
      min      0.305025    0.878546               0.363582   31.0
      25%      0.344342    0.989282               0.363582   31.0
      50%      0.361656    1.021738               0.363582   31.0
      75%      0.382897    1.085336               0.363582   31.0
      max      0.554518    1.241418               0.363582   31.0
      
             pub_param.query('sim == 31.0 and processing == "dirty 0cd20"').describe()
      
      t           N  expected transit time    sim
      count  250.000000  250.000000             250.000000  250.0
      mean     0.326603    1.034571               0.363582   31.0
      std      0.027692    0.089300               0.000000    0.0
      min      0.259626    0.831271               0.363582   31.0
      25%      0.309170    0.979233               0.363582   31.0
      50%      0.324881    1.020413               0.363582   31.0
      75%      0.343199    1.071515               0.363582   31.0
      max      0.429618    1.247246               0.363582   31.0
      
             pub_param.query('sim == 280 and processing == "clean thr2"').describe()
      
      t           N  expected transit time    sim
      count  424.000000  424.000000           4.240000e+02  424.0
      mean     0.038106   14.453011           4.025377e-02  280.0
      std      0.001021    0.268328           1.389418e-17    0.0
      min      0.035056   13.466612           4.025377e-02  280.0
      25%      0.037439   14.320043           4.025377e-02  280.0
      50%      0.038121   14.468799           4.025377e-02  280.0
      75%      0.038790   14.635632           4.025377e-02  280.0
      max      0.040840   15.130011           4.025377e-02  280.0
      
             pub_param.query('sim == 280 and processing == "clean 0cd20"').describe()
      
      t           N  expected transit time    sim
      count  424.000000  424.000000           4.240000e+02  424.0
      mean     0.039574   14.335000           4.025377e-02  280.0
      std      0.001040    0.263291           1.389418e-17    0.0
      min      0.037191   13.412392           4.025377e-02  280.0
      25%      0.038880   14.205747           4.025377e-02  280.0
      50%      0.039576   14.341568           4.025377e-02  280.0
      75%      0.040279   14.505898           4.025377e-02  280.0
      max      0.042985   14.988332           4.025377e-02  280.0
      
             pub_param.query('sim == 280 and processing == "dirty thr2"').describe()
      
      t           N  expected transit time    sim
      count  440.000000  440.000000             440.000000  440.0
      mean     0.043988   11.886572               0.040254  280.0
      std      0.004865    2.173709               0.000000    0.0
      min      0.032468    4.292937               0.040254  280.0
      25%      0.040648   10.296895               0.040254  280.0
      50%      0.043329   11.979796               0.040254  280.0
      75%      0.046810   13.531079               0.040254  280.0
      max      0.065194   16.797951               0.040254  280.0
      
             pub_param.query('sim == 280 and processing == "dirty 0cd20"').describe()
      
      t           N  expected transit time    sim
      count  440.000000  440.000000             440.000000  440.0
      mean     0.038934   15.106186               0.040254  280.0
      std      0.005460    1.484036               0.000000    0.0
      min      0.021356    6.267150               0.040254  280.0
      25%      0.035229   14.334271               0.040254  280.0
      50%      0.038763   15.248202               0.040254  280.0
      75%      0.042262   16.039287               0.040254  280.0
      max      0.062131   18.110889               0.040254  280.0
      
  2. Plot D v1: boxen + strip plots
    • the following was the first version of plots done with boxen plots and overlayed strip plots. I later shifted to violin plots. I only archive one of those plots just as an example.
      • plot biological af488 data - transit times
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
        
               simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)],
                       order=['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc',
                              'dirty 0cd20', 'dirty thr2'],
                       x='t', height=3, aspect=3/3, hue=None, xlim=None,
                       add_text='plot4_compare-prediction-af488_transit-times')
        
      • plot biological af488 data - particle numbers
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
        
               simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)],
                       order=['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc',
                              'dirty 0cd20', 'dirty thr2'],
                       x='N', height=3, aspect=3/3, hue=None, xlim=None,
                       add_text='plot4_compare-prediction-af488_particle-numbers')
        
      • plot biological pex5 data - transit times
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
               # sns.set(rc={'figure.figsize':(3.33, 7)})
               simplot(pub_param[(pub_param['expected transit time'] == 0.36358241957887183)],
                       order=['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc',
                              'dirty 0cd20', 'dirty thr2'],
                       x='t', height=3, aspect=3/3, hue=None, xlim=[0.1, 10],
                       add_text='plot4_compare-prediction-pex5_transit-times')
        
      • for supplementary, plot 1 and 2 species fits, as well as additional prediction methods, for biological af488 data - transit times
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
        
               simplot(all_param[(all_param['expected transit time'] == 0.040253767881946526)],
                       order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1',
                              'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20',
                              'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'],
                       x='t', height=5, aspect=3/5, hue='legend', xlim=None,
                       add_text='plot4_compare-prediction-af488_transit-times_allfits')
        
      • for supplementary, plot 1 and 2 species fits, as well as additional prediction methods, for biological af488 data - particle numbers
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
        
               simplot(all_param[(all_param['expected transit time'] == 0.040253767881946526)],
                       order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1',
                              'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20',
                              'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'],
                       x='N', height=5, aspect=3/5, hue='legend', xlim=None,
                       add_text='plot4_compare-prediction-af488_particle-numbers_allfits')
        
      • for supplementary, plot 1 and 2 species fits, as well as additional prediction methods, for biological pex5 data - transit times
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
        
               simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)],
                       order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1',
                              'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20',
                              'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'],
                       x='t', height=5, aspect=3/5, hue='legend', xlim=[0.1, 10],
                       add_text='plot4_compare-prediction-pex5_transit-times_allfits')
        
      • for supplementary, plot 1 and 2 species fits, as well as additional prediction methods, for biological pex5 data - particle numbers
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
        
               simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)],
                       order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1',
                              'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20',
                              'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'],
                       x='N', height=5, aspect=3/5, hue='legend', xlim=None,
                       add_text='plot4_compare-prediction-pex5_particle-numbers_allfits')
        
      • for supplementary, plot 1 and 2 species fits, as well as additional prediction methods, for simulated data - transit times
               sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                             context='paper')
               # sns.set(rc={'figure.figsize':(3.33, 7)})
               simplot(all_param[~(all_param['expected transit time'].isin(
                   [0.040253767881946526, 0.36358241957887183]))],
                       x='t', height=5, aspect=3/5, hue='legend', xlim=[1, 10000],
                       add_text='plot4_compare-prediction-sim_transit-times')
        
        /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/seaborn/categorical.py:1143: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
          hue_mask = self.plot_hues[i] == hue_level
        /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/seaborn/categorical.py:1143: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
          hue_mask = self.plot_hues[i] == hue_level
        /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/seaborn/categorical.py:1143: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
          hue_mask = self.plot_hues[i] == hue_level
        
    • the exemplary plot:
  3. Plot D v2: violin plots
    • plot biological af488 data - transit times
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
      
             simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)],
                     order=['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc',
                            'dirty 0cd20', 'dirty thr2'],
                     x='t', height=3, aspect=3/3, hue=None, xlim=None, kind='violin',
                     add_text='plot4_compare-prediction-af488_transit-times')
      
      0 [-3.0, -2.0, -1.0, 0.0, 1.0, 2.0]
      [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]
      /tmp/ipykernel_15333/2452455692.py:230: UserWarning: FixedFormatter should only be used together with FixedLocator
        ax.set_xticklabels(xlab_power)
      

      plotD_compare-prediction-af488_transit-times.svg

    • plot biological af488 data - particle numbers
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
      
             simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)],
                     order=['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc',
                            'dirty 0cd20', 'dirty thr2'],
                     x='N', height=3, aspect=3/3, hue=None, xlim=None, kind='violin',
                     add_text='plot4_compare-prediction-af488_particle-numbers')
      

      plotD_compare-prediction-af488_particle-numbers.svg

    • plot biological pex5 data - transit times
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
             # sns.set(rc={'figure.figsize':(3.33, 7)})
             # one plot with the correct ratio
             simplot(pub_param[(pub_param['expected transit time'] == 0.36358241957887183)],
                     order=['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc',
                            'dirty 0cd20', 'dirty thr2'],
                     x='t', height=3, aspect=3/3, hue=None, xlim=[-1, 0], kind='violin',
                     add_text='plot4_compare-prediction-pex5_transit-times')
             # one plot to extract xlabels label positions
             simplot(pub_param[(pub_param['expected transit time'] == 0.36358241957887183)],
                     order=['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc',
                            'dirty 0cd20', 'dirty thr2'],
                     x='t', height=2.5, aspect=2.5/3, hue=None, xlim=[-1, 0], kind='violin',
                     add_text='plot4_compare-prediction-pex5_transit-times_XLABELS')
      
      0 [-1.0, -0.8, -0.6, -0.3999999999999999, -0.19999999999999996, 0.0]
      [0.1, 0.1585, 0.2512, 0.3981, 0.631, 1.0]
      /tmp/ipykernel_15333/2452455692.py:230: UserWarning: FixedFormatter should only be used together with FixedLocator
        ax.set_xticklabels(xlab_power)
      0 [-1.0, -0.75, -0.5, -0.25, 0.0]
      [0.1, 0.1778, 0.3162, 0.5623, 1.0]
      /tmp/ipykernel_15333/2452455692.py:230: UserWarning: FixedFormatter should only be used together with FixedLocator
        ax.set_xticklabels(xlab_power)
      

      plotD_compare-prediction-pex5_transit-times.svg plotD_compare-prediction-pex5_transit-times_XLABELS.svg

    • for supplementary, plot 1 and 2 species fits, as well as additional prediction methods, for biological af488 data - transit times
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
      
             simplot(all_param[(all_param['expected transit time'] == 0.040253767881946526)],
                     order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1',
                            'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20',
                            'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'],
                     x='t', height=5, aspect=3/5, hue='legend', xlim=None, kind='violin',
                     add_text='plot4_compare-prediction-af488_transit-times_allfits')
      
      0 [-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0]
      [0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, 10000.0]
      /tmp/ipykernel_15333/2452455692.py:230: UserWarning: FixedFormatter should only be used together with FixedLocator
        ax.set_xticklabels(xlab_power)
      

      plotD_compare-prediction-af488_transit-times_allfits.svg

    • for supplementary, plot 1 and 2 species fits, as well as additional prediction methods, for biological af488 data - particle numbers
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
      
             simplot(all_param[(all_param['expected transit time'] == 0.040253767881946526)],
                     order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1',
                            'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20',
                            'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'],
                     x='N', height=5, aspect=3/5, hue='legend', xlim=None, kind='violin',
                     add_text='plot4_compare-prediction-af488_particle-numbers_allfits')
      

      plotD_compare-prediction-af488_particle-numbers_allfits.svg

    • for supplementary, plot 1 and 2 species fits, as well as additional prediction methods, for biological pex5 data - transit times
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
      
             simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)],
                     order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1',
                            'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20',
                            'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'],
                     x='t', height=5, aspect=3/5, hue='legend', xlim=None, kind='violin',
                     add_text='plot4_compare-prediction-pex5_transit-times_allfits')
      
      0 [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0]
      [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0]
      /tmp/ipykernel_15333/2452455692.py:230: UserWarning: FixedFormatter should only be used together with FixedLocator
        ax.set_xticklabels(xlab_power)
      

      plotD_compare-prediction-pex5_transit-times_allfits.svg

    • for supplementary, plot 1 and 2 species fits, as well as additional prediction methods, for biological pex5 data - particle numbers
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
      
             simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)],
                     order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1',
                            'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20',
                            'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'],
                     x='N', height=5, aspect=3/5, hue='legend', xlim=None, kind='violin',
                     add_text='plot4_compare-prediction-pex5_particle-numbers_allfits')
      

      plotD_compare-prediction-pex5_particle-numbers_allfits.svg

    • I decided not to use simulated plots for this figure, that’s why I stopped doing the correlations midway. As can be seen be the incomplete data, the automated and manual approaches worked in simulated data as well.
             sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind',
                           context='paper')
             # sns.set(rc={'figure.figsize':(3.33, 7)})
             simplot(all_param[~(all_param['expected transit time']
                                 .isin([0.040253767881946526, 0.36358241957887183]))],
                     order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1',
                            'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20',
                            'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'],
                     x='t', height=5, aspect=3/5, hue='legend', xlim=None, kind='violin',
                     add_text='plot4_compare-prediction-sim_transit-times')
      
      0 [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0]
      [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0]
      1 [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0]
      [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0]
      2 [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0]
      [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0]
      /tmp/ipykernel_15333/2452455692.py:230: UserWarning: FixedFormatter should only be used together with FixedLocator
        ax.set_xticklabels(xlab_power)
      

      plotD_compare-prediction-sim_transit-times.svg

2.7.11.5 Plot E: correction methods corr&fit examples
  • call jupyter-set-output-directory and simulations-prepare-modules
    ./data/exp-220316-publication1/jupyter
    
    /home/lex/Programme/drmed-git
    2023-01-19 16:29:03.924662: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2023-01-19 16:29:03.924767: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    
  • let’s load and plot 3 different base molecule speeds (varying molecule numbers): 0.069, 0.2, and 3.0 um2/s respectively.
  • this time for supplementary plot of examples of individual correlations and fits
           # dirty correlations - check out from  branch exp-220227-unet
           path1 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-04-25_simulations/')
           odot069_0dot01_dirty_1comp_ex_path = path1 / '0.069-all-results/0dot069_dirty_1comp_example-0dot01-2657_rawFitData.csv'
           odot069_0dot01_dirty_1comp_av_path = path1 / '0.069-all-results/0dot069_dirty_1comp_100curves-avg-0dot01_rawFitData.csv'
           odot069_0dot1_dirty_1comp_ex_path = path1 / '0.069-all-results/0dot069_dirty_1comp_example-0dot1-1614_rawFitData.csv'
           odot069_0dot1_dirty_1comp_av_path = path1 / '0.069-all-results/0dot069_dirty_1comp_100curves-avg-0dot1_rawFitData.csv'
           odot069_1dot0_dirty_1comp_ex_path = path1 / '0.069-all-results/0dot069_dirty_1comp_example-1dot0-0024_rawFitData.csv'
           odot069_1dot0_dirty_1comp_av_path = path1 / '0.069-all-results/0dot069_dirty_1comp_100curves-avg-1dot0_rawFitData.csv'
           odot2_0dot01_dirty_1comp_ex_path = path1 / '0.2-all-results/0dot2_dirty_1comp_example-0dot01-2219_rawFitData.csv'
           odot2_0dot01_dirty_1comp_av_path = path1 / '0.2-all-results/0dot2_dirty_1comp_100curves-avg-0dot01_rawFitData.csv'
           odot2_0dot1_dirty_1comp_ex_path = path1 / '0.2-all-results/0dot2_dirty_1comp_example-0dot1-0312_rawFitData.csv'
           odot2_0dot1_dirty_1comp_av_path = path1 / '0.2-all-results/0dot2_dirty_1comp_100curves-avg-0dot1_rawFitData.csv'
           odot2_1dot0_dirty_1comp_ex_path = path1 / '0.2-all-results/0dot2_dirty_1comp_example-1dot0-0700_rawFitData.csv'
           odot2_1dot0_dirty_1comp_av_path = path1 / '0.2-all-results/0dot2_dirty_1comp_100curves-avg-1dot0_rawFitData.csv'
           three_0dot01_dirty_1comp_ex_path = path1 / '3.0-all-results/3dot0_dirty_1comp_example-0dot01-0501_rawFitData.csv'
           three_0dot01_dirty_1comp_av_path = path1 / '3.0-all-results/3dot0_dirty_1comp_100curves-avg-0dot01_rawFitData.csv'
           three_0dot1_dirty_1comp_ex_path = path1 / '3.0-all-results/3dot0_dirty_1comp_example-0dot1-2408_rawFitData.csv'
           three_0dot1_dirty_1comp_av_path = path1 / '3.0-all-results/3dot0_dirty_1comp_100curves-avg-0dot1_rawFitData.csv'
           three_1dot0_dirty_1comp_ex_path = path1 / '3.0-all-results/3dot0_dirty_1comp_example-1dot0-0400_rawFitData.csv'
           three_1dot0_dirty_1comp_av_path = path1 / '3.0-all-results/3dot0_dirty_1comp_100curves-avg-1dot0_rawFitData.csv'
    
           # clean correlations
           path2 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220719_threshold-prediction/threshold-all-results')
           odot069_clean_1comp_ex_path = path2 / '0dot069_clean_1comp_example-0021_rawFitData.csv'
           odot069_clean_1comp_av_path = path2 / '0dot069_clean_1comp_300curves-avg_rawFitData.csv'
           odot2_clean_1comp_ex_path = path2 / '0dot2_clean_1comp_example-0001_rawFitData.csv'
           odot2_clean_1comp_av_path = path2 / '0dot2_clean_1comp_300curves-avg_rawFitData.csv'
           three_clean_1comp_ex_path = path2 / '3dot0_clean_1comp_example-0002_rawFitData.csv'
           three_clean_1comp_av_path = path2 / '3dot0_clean_1comp_300curves-avg_rawFitData.csv'
    
           # load correction methods for comparison - here segmentation is given by simulations
           path4 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220517_simulations/')
           odot069_labcas_1comp_ex_path = path4 / '0.069-all-results/0dot069_lab_cas_1comp_example-1642_rawFitData.csv'
           odot069_labcas_1comp_av_path = path4 / '0.069-all-results/0dot069_lab_cas_1comp_300curves-avg_rawFitData.csv'
           odot2_labcas_1comp_ex_path = path4 / '0.2-all-results/0dot2_lab_cas_1comp_example-0304_rawFitData.csv'
           odot2_labcas_1comp_av_path = path4 / '0.2-all-results/0dot2_lab_cas_1comp_300curves-avg_rawFitData.csv'
           three_labcas_1comp_ex_path = path4 / '3.0-all-results/3dot0_lab_cas_1comp_example-0507_rawFitData.csv'
           three_labcas_1comp_av_path = path4 / '3.0-all-results/3dot0_lab_cas_1comp_300curves-avg_rawFitData.csv'
    
           odot069_labdel_1comp_ex_path = path4 / '0.069-all-results/0dot069_lab_del_1comp_example-2666_rawFitData.csv'
           odot069_labdel_1comp_av_path = path4 / '0.069-all-results/0dot069_lab_del_1comp_300curves-avg_rawFitData.csv'
           odot2_labdel_1comp_ex_path = path4 / '0.2-all-results/0dot2_lab_del_1comp_example-0304_rawFitData.csv'
           odot2_labdel_1comp_av_path = path4 / '0.2-all-results/0dot2_lab_del_1comp_300curves-avg_rawFitData.csv'
           three_labdel_1comp_ex_path = path4 / '3.0-all-results/3dot0_lab_del_1comp_example-2402_rawFitData.csv'
           three_labdel_1comp_av_path = path4 / '3.0-all-results/3dot0_lab_del_1comp_300curves-avg_rawFitData.csv'
    
           path5 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/230103_avg-correction/')
           odot069_labavg_1comp_ex_path = path5 / 'all-results/0dot069_lab_avg_1comp_example-0039_rawFitData.csv'
           odot069_labavg_1comp_av_path = path5 / 'all-results/0dot069_lab_avg_1comp_300curves-avg_rawFitData.csv'
           odot2_labavg_1comp_ex_path = path5 / 'all-results/0dot2_lab_avg_1comp_example-0006_rawFitData.csv'
           odot2_labavg_1comp_av_path = path5 / 'all-results/0dot2_lab_avg_1comp_300curves-avg_rawFitData.csv'
           three_labavg_1comp_ex_path = path5 / 'all-results/three_lab_avg_1comp_example-0002_rawFitData.csv'
           three_labavg_1comp_av_path = path5 / 'all-results/three_lab_avg_1comp_300curves-avg_rawFitData.csv'
    
           # load data - clean
           kwargs = dict(sep=',', usecols=[0, 1, 2], na_values=' ', header=0,
                         names=['lag time [ms]', 'correlation', 'fit'])
           odot069_clean_1comp_ex = pd.read_csv(odot069_clean_1comp_ex_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Ex: No artifacts,\nno correction',])
           odot069_clean_1comp_av = pd.read_csv(odot069_clean_1comp_av_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Avg: No artifacts,\nno correction',])
           odot2_clean_1comp_ex = pd.read_csv(odot2_clean_1comp_ex_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Ex: No artifacts,\nno correction',])
           odot2_clean_1comp_av = pd.read_csv(odot2_clean_1comp_av_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Avg: No artifacts,\nno correction',])
           three_clean_1comp_ex = pd.read_csv(three_clean_1comp_ex_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Ex: No artifacts,\nno correction',])
           three_clean_1comp_av = pd.read_csv(three_clean_1comp_av_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Avg: No artifacts,\nno correction',])
    
           # load data - dirty
           odot069_0dot01_dirty_1comp_ex = pd.read_csv(odot069_0dot01_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Ex1: Peak artifacts,\nno correction',])
           odot069_0dot1_dirty_1comp_ex = pd.read_csv(odot069_0dot1_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Ex2: Peak artifacts,\nno correction',])
           odot069_1dot0_dirty_1comp_ex = pd.read_csv(odot069_1dot0_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Ex3: Peak artifacts,\nno correction',])
           odot069_0dot01_dirty_1comp_av = pd.read_csv(odot069_0dot01_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Avg1: Peak artifacts,\nno correction',])
           odot069_0dot1_dirty_1comp_av = pd.read_csv(odot069_0dot1_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Avg2: Peak artifacts,\nno correction',])
           odot069_1dot0_dirty_1comp_av = pd.read_csv(odot069_1dot0_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Avg3: Peak artifacts,\nno correction',])
    
           odot2_0dot01_dirty_1comp_ex = pd.read_csv(odot2_0dot01_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Ex1: Peak artifacts,\nno correction',])
           odot2_0dot1_dirty_1comp_ex = pd.read_csv(odot2_0dot1_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Ex2: Peak artifacts,\nno correction',])
           odot2_1dot0_dirty_1comp_ex = pd.read_csv(odot2_1dot0_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Ex3: Peak artifacts,\nno correction',])
           odot2_0dot01_dirty_1comp_av = pd.read_csv(odot2_0dot01_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Avg1: Peak artifacts,\nno correction',])
           odot2_0dot1_dirty_1comp_av = pd.read_csv(odot2_0dot1_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Avg2: Peak artifacts,\nno correction',])
           odot2_1dot0_dirty_1comp_av = pd.read_csv(odot2_1dot0_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Avg3: Peak artifacts,\nno correction',])
    
           three_0dot01_dirty_1comp_ex = pd.read_csv(three_0dot01_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Ex1: Peak artifacts,\nno correction',])
           three_0dot1_dirty_1comp_ex = pd.read_csv(three_0dot1_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Ex2: Peak artifacts,\nno correction',])
           three_1dot0_dirty_1comp_ex = pd.read_csv(three_1dot0_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Ex3: Peak artifacts,\nno correction',])
           three_0dot01_dirty_1comp_av = pd.read_csv(three_0dot01_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Avg1: Peak artifacts,\nno correction',])
           three_0dot1_dirty_1comp_av = pd.read_csv(three_0dot1_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Avg2: Peak artifacts,\nno correction',])
           three_1dot0_dirty_1comp_av = pd.read_csv(three_1dot0_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Avg3: Peak artifacts,\nno correction',])
    
           # load correction methods
           odot069_labcas_1comp_ex = pd.read_csv(odot069_labcas_1comp_ex_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Ex: Peak artifacts,\nsim.-based pred.\n+ cut and shift corr.',])
           odot069_labcas_1comp_av = pd.read_csv(odot069_labcas_1comp_av_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Avg: Peak artifacts,\nsim.-based pred.\n+ cut and shift corr.',])
           odot2_labcas_1comp_ex = pd.read_csv(odot2_labcas_1comp_ex_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Ex: Peak artifacts,\nsim.-based pred.\n+ cut and shift corr.',])
           odot2_labcas_1comp_av = pd.read_csv(odot2_labcas_1comp_av_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Avg: Peak artifacts,\nsim.-based pred.\n+ cut and shift corr.',])
           three_labcas_1comp_ex = pd.read_csv(three_labcas_1comp_ex_path, **kwargs).T.assign(sim=3*[3,], processing=3*['Ex: Peak artifacts,\nsim.-based pred.\n+ cut and shift corr.',])
           three_labcas_1comp_av = pd.read_csv(three_labcas_1comp_av_path, **kwargs).T.assign(sim=3*[3,], processing=3*['Avg: Peak artifacts,\nsim.-based pred.\n+ cut and shift corr.',])
    
           odot069_labdel_1comp_ex = pd.read_csv(odot069_labdel_1comp_ex_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Ex: Peak artifacts,\nsim.-based prediction\n+ weight=0 correction',])
           odot069_labdel_1comp_av = pd.read_csv(odot069_labdel_1comp_av_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Avg: Peak artifacts,\nsim.-based prediction\n+ weight=0 correction',])
           odot2_labdel_1comp_ex = pd.read_csv(odot2_labdel_1comp_ex_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Ex: Peak artifacts,\nsim.-based prediction\n+ weight=0 correction',])
           odot2_labdel_1comp_av = pd.read_csv(odot2_labdel_1comp_av_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Avg: Peak artifacts,\nsim.-based prediction\n+ weight=0 correction',])
           three_labdel_1comp_ex = pd.read_csv(three_labdel_1comp_ex_path, **kwargs).T.assign(sim=3*[3,], processing=3*['Ex: Peak artifacts,\nsim.-based prediction\n+ weight=0 correction',])
           three_labdel_1comp_av = pd.read_csv(three_labdel_1comp_av_path, **kwargs).T.assign(sim=3*[3,], processing=3*['Avg: Peak artifacts,\nsim.-based prediction\n+ weight=0 correction',])
    
           odot069_labavg_1comp_ex = pd.read_csv(odot069_labavg_1comp_ex_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Ex: Peak artifacts,\nsim.-based pred.\n+ averaging corr.',])
           odot069_labavg_1comp_av = pd.read_csv(odot069_labavg_1comp_av_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Avg: Peak artifacts,\nsim.-based pred.\n+ averaging corr.',])
           odot2_labavg_1comp_ex = pd.read_csv(odot2_labavg_1comp_ex_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Ex: Peak artifacts,\nsim.-based pred.\n+ averaging corr.',])
           odot2_labavg_1comp_av = pd.read_csv(odot2_labavg_1comp_av_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Avg: Peak artifacts,\nsim.-based pred.\n+ averaging corr.',])
           three_labavg_1comp_ex = pd.read_csv(three_labavg_1comp_ex_path, **kwargs).T.assign(sim=3*[3,], processing=3*['Ex: Peak artifacts,\nsim.-based pred.\n+ averaging corr.',])
           three_labavg_1comp_av = pd.read_csv(three_labavg_1comp_av_path, **kwargs).T.assign(sim=3*[3,], processing=3*['Avg: Peak artifacts,\nsim.-based pred.\n+ averaging corr.',])
    
    
           all_fit = pd.concat(
               [odot069_clean_1comp_ex, odot069_clean_1comp_av, odot2_clean_1comp_ex,
                odot2_clean_1comp_av, three_clean_1comp_ex, three_clean_1comp_av,
                odot069_0dot01_dirty_1comp_ex, odot069_0dot01_dirty_1comp_av, odot2_0dot01_dirty_1comp_ex,
                odot2_0dot01_dirty_1comp_av, three_0dot01_dirty_1comp_ex, three_0dot01_dirty_1comp_av,
                odot069_0dot1_dirty_1comp_ex, odot069_0dot1_dirty_1comp_av, odot2_0dot1_dirty_1comp_ex,
                odot2_0dot1_dirty_1comp_av, three_0dot1_dirty_1comp_ex, three_0dot1_dirty_1comp_av,
                odot069_1dot0_dirty_1comp_ex, odot069_1dot0_dirty_1comp_av, odot2_1dot0_dirty_1comp_ex,
                odot2_1dot0_dirty_1comp_av, three_1dot0_dirty_1comp_ex, three_1dot0_dirty_1comp_av,
                odot069_labdel_1comp_ex, odot069_labdel_1comp_av, odot2_labdel_1comp_ex,
                odot2_labdel_1comp_av, three_labdel_1comp_ex, three_labdel_1comp_av,
                odot069_labavg_1comp_ex, odot069_labavg_1comp_av, odot2_labavg_1comp_ex,
                odot2_labavg_1comp_av, three_labavg_1comp_ex, three_labavg_1comp_av,
                odot069_labcas_1comp_ex, odot069_labcas_1comp_av, odot2_labcas_1comp_ex,
                odot2_labcas_1comp_av, three_labcas_1comp_ex, three_labcas_1comp_av]
           )
           first = set(all_fit.index)
           second = set(all_fit['sim'])
           third = set(all_fit['processing'])
    
           third_avg = set(['Avg1: Peak artifacts,\nno correction',
                            'Avg2: Peak artifacts,\nno correction',
                            'Avg3: Peak artifacts,\nno correction',
                            'Avg: No artifacts,\nno correction',
                            'Avg: Peak artifacts,\nsim.-based pred.\n+ averaging corr.',
                            'Avg: Peak artifacts,\nsim.-based prediction\n+ weight=0 correction',
                            'Avg: Peak artifacts,\nsim.-based pred.\n+ cut and shift corr.'])
           new_index = pd.MultiIndex.from_product(
               [first, second, third], names=['axis', 'sim', 'processing'])
           all_fit = all_fit.reset_index()
           all_fit = all_fit.set_index(['index', 'sim', 'processing'])
    
           all_fit = all_fit.reindex(new_index)
           # pprint(all_param.keys())
           # all_param = all_param[['name_of_plot', 'Diff_species', 'A1', 'txy1', 'sim', 'processing', 'A2', 'txy2']]
           with pd.option_context("max_colwidth", 1000):
               display(all_fit)
    
  • I am scaling the correlation and fit of the dirty data with the sklearn.preprocessing.MaxAbsScaler to make the final plot better readable. The relevant information is the difference in lag time. The particle number in the simulations was randomized, thus the amplitude of the correlation function does not yield reliable information anyway.
  • also, let’s compute the residuals of correlations and fits - I use the original data for all, not the scaled data
  • here an examplary plot for 1 trace of the effect of scaling - notice the difference when scaling the correlation and scaling the fit. That’s why I compute residuals before and also only scale the dirty data with 3 lines in one plot
           fig = plt.figure(figsize=(14,4))
           count = 0
           for ind in all_fit.loc['fit'].index:
               if count < 2:
                   count += 1
                   continue
               # lags = all_fit.loc[:, (('lag time [ms]',) + ind)]
               lag_idx = (('lag time [ms]',) + ind)
               corr_idx = (('correlation',) + ind)
               fit_idx = (('fit',) + ind)
               res_idx = (('residual',) + ind)
               fit = np.array(all_fit.loc[fit_idx])
               corr = np.array(all_fit.loc[corr_idx])
               residual = corr - fit
               fit_scaled = MaxAbsScaler().fit_transform(fit.reshape(-1, 1)).flatten()
               corr_scaled = MaxAbsScaler().fit_transform(corr.reshape(-1, 1)).flatten()
               residual_scaled = corr_scaled - fit_scaled
               plt.subplot(141, title='unscaled corr&fit')
               plt.semilogx(all_fit.loc[lag_idx], all_fit.loc[corr_idx],
                             all_fit.loc[lag_idx], all_fit.loc[fit_idx])
               plt.subplot(142, title='scaled corr&fit')
               plt.semilogx(all_fit.loc[lag_idx], corr_scaled,
                            all_fit.loc[lag_idx], fit_scaled)
               plt.subplot(143, title='unscaled residuals')
               plt.semilogx(all_fit.loc[lag_idx], residual)
               plt.subplot(144, title='scaled residuals')
               plt.semilogx(all_fit.loc[lag_idx], residual_scaled)
               plt.tight_layout()
               plt.show()
               break
    

    plotE-example.png

  • now the computation of residuals and scaling
           for ind in all_fit.loc['fit'].index:
               lag_idx = (('lag time [ms]',) + ind)
               corr_idx = (('correlation',) + ind)
               fit_idx = (('fit',) + ind)
               res_idx = (('residual',) + ind)
               fit = np.array(all_fit.loc[fit_idx])
               corr = np.array(all_fit.loc[corr_idx])
               residual = corr - fit
               if f'{ind[1]}' in list(third_avg) + ['Ex1: Peak artifacts,\nno correction',
                                  'Ex2: Peak artifacts,\nno correction',
                                  'Ex3: Peak artifacts,\nno correction']:
                   fit_scaled = MaxAbsScaler().fit_transform(fit.reshape(-1, 1)).flatten()
                   corr_scaled = MaxAbsScaler().fit_transform(corr.reshape(-1, 1)).flatten()
                   all_fit.loc[fit_idx] = pd.Series(fit_scaled)
                   all_fit.loc[corr_idx] = pd.Series(corr_scaled)
               all_fit.loc[res_idx] = pd.Series(residual)
    
  • let’s first plot the residuals
           fig, ax = plt.subplots(len(third-third_avg), len(second),
                                  figsize=(16, 15), sharex=True, sharey=False,
                                  tight_layout=True)
    
    
           for i, sim in enumerate(second):
               for j, proc in enumerate(third-third_avg):
                   if proc in ['Ex1: Peak artifacts,\nno correction',
                              'Ex2: Peak artifacts,\nno correction',
                              'Ex3: Peak artifacts,\nno correction']:
                       for k in range(3):
                           sns.lineplot(
                               x=all_fit.loc['lag time [ms]'].loc[
                                   sim, f'Ex{k+1}: Peak artifacts,\nno correction'],
                               y=all_fit.loc['residual'].loc[
                                   sim, f'Ex{k+1}: Peak artifacts,\nno correction'],
                               color=sns.color_palette()[k+3],
                               # marker=['o', 'v', 's'][k], markersize=5,
                               ax=ax[j, i], lw=5).set(title=f'{sim}-{proc}')
                   else:
                       lag_idx = (('lag time [ms]',) + (sim,) + (proc,))
                       res_idx = (('residual',) + (sim,) + (proc,))
                       sns.lineplot(x=all_fit.loc[lag_idx], y=all_fit.loc[res_idx],
                                    color=sns.color_palette()[3],
                                    # marker='o', markersize=10,
                                    ax=ax[j, i], lw=5).set(
                                        title=f'{sim}-{proc}')
    
    
           plt.setp(ax, xscale='log', xlabel=r'lag time $\tau$ $[ms]$',
                    ylabel=r'')  # Correlation $G(\tau)$ $[ms]$
    
           savefig = f'./data/exp-220316-publication1/jupyter/plotE_sim-correlations-fits_residuals'
           plt.savefig(f'{savefig}.pdf', dpi=300)
           # os.system(f'pdf2svg {savefig}.pdf {savefig}.svg')
           plt.close('all')
    

    plotE_sim-correlations-fits_residuals.svg

  • now plot the single correlations and plots
           fig, ax = plt.subplots(len(third-third_avg), len(second),
                                  figsize=(16, 30), sharex=True, sharey=False,
                                  tight_layout=True)
    
    
           for i, sim in enumerate(second):
               for j, proc in enumerate(third-third_avg):
                   if proc in ['Ex1: Peak artifacts,\nno correction',
                              'Ex2: Peak artifacts,\nno correction',
                              'Ex3: Peak artifacts,\nno correction']:
                       for k in range(3):
                           sns.lineplot(
                               x=all_fit.loc['lag time [ms]'].loc[
                                   sim, f'Ex{k+1}: Peak artifacts,\nno correction'],
                               y=all_fit.loc['correlation'].loc[
                                   sim, f'Ex{k+1}: Peak artifacts,\nno correction'],
                               color=sns.color_palette()[k], lw=4,
                               marker=['o', 'v', 's'][k], markersize=10,
                               ax=ax[j, i]).set(title=f'{sim}-{proc}')
                           sns.lineplot(
                               x=all_fit.loc['lag time [ms]'].loc[
                                   (sim, f'Ex{k+1}: Peak artifacts,\nno correction')],
                               y=all_fit.loc['fit'].loc[
                                   (sim, f'Ex{k+1}: Peak artifacts,\nno correction')],
                               color=sns.color_palette()[k+3], lw=5, ax=ax[j, i])
                   else:
                       lag_idx = (('lag time [ms]',) + (sim,) + (proc,))
                       corr_idx = (('correlation',) + (sim,) + (proc,))
                       fit_idx = (('fit',) + (sim,) + (proc,))
                       sns.lineplot(x=all_fit.loc[lag_idx], y=all_fit.loc[corr_idx],
                                    color=sns.color_palette()[0],
                                    lw=4, marker='o', markersize=10,
                                    ax=ax[j, i]).set(
                                        title=f'{sim}-{proc}')
                       sns.lineplot(x=all_fit.loc[lag_idx], y=all_fit.loc[fit_idx],
                                    color=sns.color_palette()[3],
                                    lw=5,
                                    ax=ax[j, i])
    
    
           plt.setp(ax, xscale='log', xlabel=r'lag time $\tau$ $[ms]$',
                    ylabel=r'', yticklabels=[])  # Correlation $G(\tau)$ $[ms]$
    
           savefig = f'./data/exp-220316-publication1/jupyter/plotE_sim-correlations-fits_plots'
           plt.savefig(f'{savefig}.pdf', dpi=300)
           os.system(f'pdf2svg {savefig}.pdf {savefig}.svg')
           plt.close('all')
    
  • as an inset, I want the average correlations over 100 traces (for dirty) or 300 traces (for clean, and corrections). First the code:
           sns.set_theme(style="darkgrid", font_scale=2, palette='colorblind',
                         context='paper')
    
           fig, ax = plt.subplots(len(third_avg), len(second),
                                  figsize=(8, 20), sharex=True, sharey=False,
                                  tight_layout=True)
    
    
           for i, sim in enumerate(second):
               for j, proc in enumerate(third_avg):
                   if proc in ['Avg1: Peak artifacts,\nno correction',
                              'Avg2: Peak artifacts,\nno correction',
                              'Avg3: Peak artifacts,\nno correction']:
                       for k in range(3):
                           sns.lineplot(
                               x=all_fit.loc['lag time [ms]'].loc[
                                   sim, f'Avg{k+1}: Peak artifacts,\nno correction'],
                               y=all_fit.loc['correlation'].loc[
                                   sim, f'Avg{k+1}: Peak artifacts,\nno correction'],
                               color=sns.color_palette()[k], lw=4,
                               ax=ax[j, i]).set(title=f'{sim}-{proc}')
    
                   else:
                       lag_idx = (('lag time [ms]',) + (sim,) + (proc,))
                       corr_idx = (('correlation',) + (sim,) + (proc,))
                       sns.lineplot(x=all_fit.loc[lag_idx], y=all_fit.loc[corr_idx],
                                    color=sns.color_palette()[0], lw=4,
                                    ax=ax[j, i]).set(
                                        title=f'{sim}-{proc}')
    
           plt.setp(ax, xscale='log', xlabel=r'',
                    ylabel=r'') #, yticklabels=[])  # Correlation $G(\tau)$ $[ms]$
    
           savefig = f'./data/exp-220316-publication1/jupyter/plotE_sim-correlations-fits_inset'
           plt.savefig(f'{savefig}.pdf', dpi=300)
           os.system(f'pdf2svg {savefig}.pdf {savefig}.svg')
           plt.close('all')
    
  • here the plot:

    plotE_sim-correlations-fits_inset.svg

2.7.11.6 Plot F: Unused further traces
  • First - exemplary plots of the simulated traces (only) and the label information including the label threshold (only)
           plot1_index = ['3.0-0.01', '3.0-0.1', '3.0-1.0',
                          '0.2-0.01', '0.2-0.1', '0.2-1.0',
                          '0.069-0.01', '0.069-0.1', '0.069-1.0']
    
           plot1_traceno = [1, 1, 0,
                            5, 0, 0,
                            1, 1, 0]
    
           plot1_titles = ['fast molecules and slow clusters:\nsimulations',
                           'fast molecules and medium clusters:\nsimulations',
                           'fast molecules and fast clusters:\nsimulations',
                           'medium molecules and slow clusters:\nsimulations',
                           'medium molecules and medium clusters:\nsimulations',
                           'medium molecules and fast clusters:\nsimulations',
                           'slow molecules and slow clusters:\nsimulations',
                           'slow molecules and medium clusters:\nsimulations',
                           'slow molecules and fast clusters:\nsimulations']
    
           for txt, idx, t in zip(plot1_titles, plot1_index, plot1_traceno):
               fig = plt.figure()
               ax = plt.subplot(111)
               ax.set_prop_cycle(color=[sns.color_palette()[0]])
               sns.lineplot(data=sim_dirty.loc[:, idx].iloc[:, t], label='trace')
               plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
               plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'Intensity [$a.u.$]',
                 title=txt)
               plot1_file = f'data/exp-220316-publication1/jupyter/plotF_{txt}'.replace(' ', '_').replace('\n', '_')
               plt.savefig(f'{plot1_file}.pdf', bbox_inches='tight', dpi=300)
               os.system(f'pdf2svg {plot1_file}.pdf {plot1_file}.svg')
               os.system(f'rm {plot1_file}.pdf')
    
           plot1_index = ['3.0-0.01', '3.0-0.1', '3.0-1.0',
                          '0.2-0.01', '0.2-0.1', '0.2-1.0',
                          '0.069-0.01', '0.069-0.1', '0.069-1.0']
    
           plot1_traceno = [1, 1, 0,
                            5, 0, 0,
                            1, 1, 0]
    
           plot1_titles1 = ['fast molecules:\nslow cluster labels',
                            'fast molecules:\nmedium cluster labels',
                            'fast molecules:\nfast cluster labels',
                            'medium molecules:\nslow cluster labels',
                            'medium molecules:\nmedium cluster labels',
                            'medium molecules:\nfast cluster labels',
                            'slow molecules:\nslow cluster labels',
                            'slow molecules:\nmedium cluster labels',
                            'slow molecules:\nfast cluster labels']
    
           for txt, idx, t in zip(plot1_titles1, plot1_index, plot1_traceno):
               fig = plt.figure()
               ax = plt.subplot(111)
               ax.set_prop_cycle(color=[sns.color_palette()[4]])
               sns.lineplot(data=sim_labels.loc[:, idx].iloc[:, t], label='cluster\ntrace')
               plt.axhline(y=0.04, xmin=0, xmax=1, label='label\nthreshold',
                           color=sns.color_palette()[7], linestyle='--')
               plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
               plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'Intensity [$a.u.$]',
                 title=txt)
               plot1_file = f'data/exp-220316-publication1/jupyter/plotF_{txt}'.replace(' ', '_').replace('\n', '_')
    
               plt.savefig(f'{plot1_file}.pdf', bbox_inches='tight', dpi=300)
               os.system(f'pdf2svg {plot1_file}.pdf {plot1_file}.svg')
               os.system(f'rm {plot1_file}.pdf')
    
  • and here are the plots

    plotF_slow_molecules_and_slow_clusters:_simulations.svg plotF_slow_molecules:_slow_cluster_labels.svg plotF_slow_molecules_and_medium_clusters:_simulations.svg plotF_slow_molecules:_medium_cluster_labels.svg plotF_slow_molecules_and_fast_clusters:_simulations.svg plotF_slow_molecules:_fast_cluster_labels.svg plotF_medium_molecules_and_slow_clusters:_simulations.svg plotF_medium_molecules:_slow_cluster_labels.svg plotF_medium_molecules_and_medium_clusters:_simulations.svg plotF_medium_molecules:_medium_cluster_labels.svg plotF_medium_molecules_and_fast_clusters:_simulations.svg plotF_medium_molecules:_fast_cluster_labels.svg plotF_fast_molecules_and_slow_clusters:_simulations.svg plotF_fast_molecules:_slow_cluster_labels.svg plotF_fast_molecules_and_medium_clusters:_simulations.svg plotF_fast_molecules:_medium_cluster_labels.svg plotF_fast_molecules_and_fast_clusters:_simulations.svg plotF_fast_molecules:_fast_cluster_labels.svg

2.7.11.7 Plot G: bio example traces
  • call jupyter-set-output-directory and load necessary modules
    ./data/exp-220316-publication1/jupyter
    
           import os
           import numpy as np
           import matplotlib.pyplot as plt
           import matplotlib.ticker as ticker
           import pandas as pd
           import seaborn as sns
           from pathlib import Path
           from pprint import pprint
    
           sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind',
                         context='paper')
    
           model_ls = [
               'ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727',
               '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65',
               '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653',
               'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216',
               'c1204e3a8a1e4c40a35b5b7b1922d1ce']
    
           model_name_ls = [f'{s:.5}' for s in model_ls]
    
           pred_thresh = 0.5
    
  • I generated 3 files for these exemplary plots, but only kept the one which I used for the publication.
  • first, load data
           output_path = Path('./data/exp-220316-publication1/220323_bioexps')
    
           corr_af488 = pd.read_csv(
               Path(output_path) / 'clean_nocorrection_3D-AR5_1spec_rawFitData.csv',
               index_col=0, usecols=[0, 1, 3, 5], na_values=' ')
           fit_af488 = pd.read_csv(
               Path(output_path) / 'clean_nocorrection_3D-AR5_1spec_rawFitData.csv',
               index_col=0, usecols=[0, 2, 4, 6], na_values=' ')
           param_af488 = pd.read_csv(
               Path(output_path) / 'clean_nocorrection_3D-AR5_1spec_outputParam.csv',
               index_col=0)
    
           preds_af488 = pd.read_csv(
               Path(output_path) / 'clean_subsample_preds.csv', index_col=0)
           predtraces_af488 = pd.read_csv(
               Path(output_path) / 'clean_subsample_predtraces.csv', index_col=0)
           traces_af488 = pd.read_csv(Path(
               output_path) / 'clean_subsample_traces.csv', index_col=0)
           corrtraces_af488 = pd.read_csv(
               Path(output_path) / 'clean_subsample_corrtraces.csv', index_col=0)
    
           corr_noc_af488luv = pd.read_csv(
               Path(output_path) / 'dirty_nocorrection_3D-AR5_2spec_rawFitData.csv',
               index_col=0, usecols=[0, 1, 3, 5], na_values=' ')
           fit_noc_af488luv = pd.read_csv(
               Path(output_path) / 'dirty_nocorrection_3D-AR5_2spec_rawFitData.csv',
               index_col=0, usecols=[0, 2, 4, 6], na_values=' ')
           param_noc_af488luv = pd.read_csv(
               Path(output_path) / 'dirty_nocorrection_3D-AR5_2spec_outputParam.csv',
               index_col=0)
           corr_cas_af488luv = pd.read_csv(
               Path(output_path) / 'dirty_cutandshift_3D-AR5_2spec_rawFitData.csv',
               index_col=0, usecols=[0, 1, 3, 5], na_values=' ')
           fit_cas_af488luv = pd.read_csv(
               Path(output_path) / 'dirty_cutandshift_3D-AR5_2spec_rawFitData.csv',
               index_col=0, usecols=[0, 2, 4, 6], na_values=' ')
           param_cas_af488luv = pd.read_csv(
               Path(output_path) / 'dirty_cutandshift_3D-AR5_2spec_outputParam.csv',
               index_col=0)
    
           preds_af488luv = pd.read_csv(
               Path(output_path) / 'dirty_subsample_preds.csv', index_col=0)
           predtraces_af488luv = pd.read_csv(
               Path(output_path) / 'dirty_subsample_predtraces.csv', index_col=0)
           traces_af488luv = pd.read_csv(
               Path(output_path) / 'dirty_subsample_traces.csv', index_col=0)
           corrtraces_af488luv = pd.read_csv(
               Path(output_path) / 'dirty_subsample_corrtraces.csv', index_col=0)
    
           preds_hspex5 = pd.read_csv(
               Path(output_path) / 'HsPEX5EGFP_1-100001_3of250_preds.csv',
               index_col=0)
           predtraces_hspex5 = pd.read_csv(
               Path(output_path) / 'HsPEX5EGFP_1-100001_3of250_predtraces.csv',
               index_col=0)
           traces_hspex5 = pd.read_csv(
               Path(output_path) / 'HsPEX5EGFP_1-100001_3of250_traces.csv',
               index_col=0)
           corrtraces_hspex5 = pd.read_csv(
               Path(output_path) / 'HsPEX5EGFP_1-100001_3of250_corrtraces.csv',
               index_col=0)
    
           preds_tbpex5 = pd.read_csv(
               Path(output_path) / 'TbPEX5EGFP_1-10002_3of250_preds.csv',
               index_col=0)
           predtraces_tbpex5 = pd.read_csv(
               Path(output_path) / 'TbPEX5EGFP_1-10002_3of250_predtraces.csv',
               index_col=0)
           traces_tbpex5 = pd.read_csv(
               Path(output_path) / 'TbPEX5EGFP_1-10002_3of250_traces.csv',
               index_col=0)
           corrtraces_tbpex5 = pd.read_csv(
               Path(output_path) / 'TbPEX5EGFP_1-10002_3of250_corrtraces.csv',
               index_col=0)
    
           all_af488_corr = pd.read_csv(
               Path(output_path) / 'af488noc_af488luv-noc_af488luv-0cd20_af488luv-thr-2_2comp_rawFitData.csv',
               index_col=0, usecols=[0, 1, 3, 5, 7], na_values=' ')
           all_af488_param = pd.read_csv(
               Path(output_path) / 'af488noc_af488luv-noc_af488luv-0cd20_af488luv-thr-2_2comp_outputParam.csv',
               index_col=0)
           all_pex5_corr = pd.read_csv(
               Path(output_path) / 'hs-pex5-noc_tb-pex5-noc_tb-pex5-0cd20_tb-pex5-thr-7_triplet-0.04_1comp_rawFitData.csv',
               index_col=0, usecols=[0, 1, 3, 5, 7], na_values=' ')
           all_pex5_param = pd.read_csv(
               Path(output_path) / 'hs-pex5-noc_tb-pex5-noc_tb-pex5-0cd20_tb-pex5-thr-7_triplet-0.04_1comp_outputParam.csv',
               index_col=0)
    
  • define plotting functions
           def plot_bio_traces(df, txt):
               for i, t in enumerate(df.items()):
                   t = t[1]
                   fig = plt.figure()
                   ax = plt.subplot(111)
                   ax.set_prop_cycle(color=[sns.color_palette()[0]])
                   sns.lineplot(data=t, label=txt)
                   plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left',
                              borderaxespad=0)
                   plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'Intensity [a.u.]',
                     title='')
                   plot1_file = f'data/exp-220316-publication1/jupyter/plotG_{txt}_{i}'.replace(
                       ' ', '_').replace('\n', '_').replace('(', '').replace(')', '').replace('"', '')
                   plt.savefig(f'{plot1_file}.pdf', bbox_inches='tight', dpi=300)
                   os.system(f'pdf2svg {plot1_file}.pdf {plot1_file}.svg')
                   os.system(f'rm {plot1_file}.pdf')
               plt.close('all')
    
           def plot_bio_cluster_prediction(df, txt):
               for i, col in enumerate(df.columns):
                   fig = plt.figure()
                   ax = plt.subplot(111)
                   ax.set_prop_cycle(color=[sns.color_palette()[3]])
                   sns.lineplot(data=df.loc[:, col],
                                label='prediction')
                   plt.axhline(y=pred_thresh, xmin=0, xmax=1,
                               label='prediction\nthreshold',
                               color=sns.color_palette()[7], linestyle='--')
                   plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left',
                              borderaxespad=0)
                   plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'artifact probability',
                     title=txt, ylim=[0, 1])
                   plot1_file = f'data/exp-220316-publication1/jupyter/plotG_{txt}_preds_{i}'.replace(
                       ' ', '_').replace('\n', '_').replace('(', '').replace(')', '')
                   plt.savefig(f'{plot1_file}.pdf', bbox_inches='tight', dpi=300)
                   os.system(f'pdf2svg {plot1_file}.pdf {plot1_file}.svg')
                   os.system(f'rm {plot1_file}.pdf')
               plt.close('all')
    
           def plot_bio_prediction_based_segmentation(traces_df, pred_df, txt):
               for i, (t, p) in enumerate(zip(traces_df.items(), pred_df.items())):
                   t = t[1]
                   p = p[1] > pred_thresh
                   p = p[:t.size]
                   p_bool = t.max() * p
                   p_invbool = t.max() * ~p
    
                   fig = plt.figure()
                   ax = plt.subplot(111)
                   ax.set_prop_cycle(color=[sns.color_palette()[3]])
                   sns.lineplot(data=p_bool, alpha=0.5)
                   plt.fill_between(
                       x=p_bool.index, y1=p_bool, y2=0, alpha=0.5,
                       label='prediction:\npeak artifacts')
    
                   ax.set_prop_cycle(color=[sns.color_palette()[2]])
                   plt.fill_between(
                       x=p_invbool.index, y1=p_invbool, y2=0, alpha=0.5,
                       label='\nprediction\nno artifacts')
                   ax.set_prop_cycle(color=[sns.color_palette()[0]])
                   sns.lineplot(data=t, label=txt)
                   plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left',
                              borderaxespad=0)
                   plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'Intensity [a.u.]',
                     title='')
                   plot1_file = f'data/exp-220316-publication1/jupyter/plotG_{txt}_seg_{i}'.replace(
                       ' ', '_').replace('\n', '_').replace('(', '').replace(')', '')
                   plt.savefig(f'{plot1_file}.pdf', bbox_inches='tight', dpi=300)
                   os.system(f'pdf2svg {plot1_file}.pdf {plot1_file}.svg')
                   os.system(f'rm {plot1_file}.pdf')
               plt.close('all')
    
           def plot_bio_clean_corr_and_fit(corr_df, fit_df, param_df, txt):
               for i, (c, f, param) in enumerate(zip(corr_df.items(), fit_df.items(),
                                                     param_df.T.items())):
                   c = c[1]
                   f = f[1]
                   txy = param[1].loc['txy1']
                   f_xmin = f.dropna().index[0]
                   f_xmax = f.dropna().index[-1]
                   xlims = [f_xmin - 0.5*f_xmin, f_xmax + f_xmax]
                   ylims = [f.dropna().iloc[-1] - 0.01, f.dropna().iloc[0] + 0.01]
    
                   fig = plt.figure()
                   ax = plt.subplot(111)
                   ax.set_prop_cycle(color=[sns.color_palette()[0]])
                   plt.semilogx(c.index, c, '.', label='Correlation')
                   ax.set_prop_cycle(color=[sns.color_palette()[2]])
                   plt.semilogx(f.index, f, '-', lw=3.0,
                                label='Fit\n'+rf'$\tau_D=${txy:.3f}')
                   plt.axvline(x=txy, color=sns.color_palette()[2])
                   plt.setp(ax, xlim=xlims, ylim=ylims, title=txt,
                            xlabel=r'$\tau$ (ms)', ylabel=r'Correlation G($\tau$)')
                   ax.grid(False)
                   plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left',
                              borderaxespad=0)
                   plot1_file = f'data/exp-220316-publication1/jupyter/plotG_{txt}_{i}'.replace(
                       ' ', '_').replace('\n', '_').replace('(', '').replace(')', '')
                   plt.savefig(f'{plot1_file}.pdf', bbox_inches='tight', dpi=300)
                   os.system(f'pdf2svg {plot1_file}.pdf {plot1_file}.svg')
                   os.system(f'rm {plot1_file}.pdf')
               plt.close('all')
    
           def plot_bio_corrs_and_fits(corr_df1, corr_df2, fit_df1, fit_df2,
                                       param_df1, param_df2, txt):
               for i, (c1, c2, f1, f2, param1, param2) in enumerate(zip(corr_df1.items(), corr_df2.items(),
                          fit_df1.items(), fit_df2.items(), param_df1.T.items(), param_df2.T.items())):
                   c1, c2 = c1[1], c2[1]
                   f1, f2 = f1[1], f2[1]
                   txy11, txy12 = param1[1].loc['txy1'], param2[1].loc['txy1']
                   txy21, txy22 = param1[1].loc['txy2'], param2[1].loc['txy2']
                   f_xmin = np.min([f1.dropna().index[0], f2.dropna().index[0]])
                   f_xmax = np.max([f1.dropna().index[-1], f2.dropna().index[-1]])
                   f_ymin1, f_ymin2 = f1.dropna().iloc[-1], f2.dropna().iloc[-1]
                   f_ymax1, f_ymax2 = f1.dropna().iloc[0], f2.dropna().iloc[0]
                   xlims = [f_xmin - 0.5*f_xmin, f_xmax + f_xmax]
                   ylims1 = [f_ymin1 - np.abs(2*f_ymin1), f_ymax1 + 0.1*f_ymax1]
                   ylims2= [f_ymin2 - np.abs(2*f_ymin2), f_ymax2 + 0.1*f_ymax2]
                   fig = plt.figure()
                   ax1 = plt.subplot(111)
                   ax1.set_prop_cycle(color=[sns.color_palette()[0]])
                   p1, = ax1.semilogx(c1.index, c1, '.',
                                      label='Correlation\n(no correction)')
                   ax1.set_prop_cycle(color=[sns.color_palette()[2]])
                   f1_label = 'Fit (no correction)\n'+r'$\tau_{D,1}=$'+f'{txy11:.3f}\n'+r'$\tau_{D,2}=$'+f'{txy21:.3f}'
                   p2, = ax1.semilogx(f1.index, f1, '-', lw=3.0, label=f1_label)
    
                   ax2 = ax1.twinx()
                   ax2.set_prop_cycle(color=[sns.color_palette()[1]])
                   p3, = ax2.semilogx(c2.index, c2, '.',
                                      label='Correlation\n(cut and shift)')
                   ax2.set_prop_cycle(color=[sns.color_palette()[3]])
                   f2_label = 'Fit (cut and shift)\n'+r'$\tau_{D,1}=$'+f'{txy12:.3f}\n'+r'$\tau_{D,2}=$'+f'{txy22:.3f}'
                   p4, = ax2.semilogx(f2.index, f2, '-', lw=3.0, label=f2_label)
                   plt.axvline(x=txy11, color=sns.color_palette()[2])
                   plt.axvline(x=txy12, color=sns.color_palette()[3])
                   plt.axvline(x=txy21, color=sns.color_palette()[2])
                   plt.axvline(x=txy22, color=sns.color_palette()[3])
    
                   plt.setp(ax1, xlim=xlims, ylim=ylims1, title=txt,
                            xlabel=r'$\tau$ (ms)', ylabel=r'Normalized $G(\tau)$',
                            yticklabels=[], yticks=[])
                   ax1.grid(False)
                   plt.setp(ax2, xlim=xlims, ylim=ylims2, title=txt,
                            xlabel=r'$\tau$ (ms)', yticklabels=[], yticks=[])
                   ax2.grid(False)
                   plt.legend(handles=[p1, p3, p2, p4], bbox_to_anchor=(1.02, 1),
                              loc='upper left', borderaxespad=0)
                   plot1_file = f'data/exp-220316-publication1/jupyter/plotG_{txt}_{i}'.replace(
                       ' ', '_').replace('\n', '_').replace('(', '').replace(')', '')
                   plt.savefig(f'{plot1_file}.pdf', bbox_inches='tight', dpi=300)
                   os.system(f'pdf2svg {plot1_file}.pdf {plot1_file}.svg')
                   os.system(f'rm {plot1_file}.pdf')
               plt.close('all')
    
           def plot_all_bio_corrs(corr_df, param_df, bio):
               if bio == 'af488':
                   legend = ['AlexaFluor488\n(n=424,\nno correction)',
                             '\nAF488 + DiO\nLUVs(n=440,\nno correction)',
                             '\nAF488 + DiO\nLUVs(n=440,\nautom. corr.)',
                             '\nAF488 + DiO\nLUVs(n=440,\nmanual corr.)']
               elif bio == 'pex5':
                   legend = ['Hs-PEX5-eGFP\n(n=250,\nno correction)',
                             '\nTb-PEX5-eGFP\n(n=250,\nno correction)',
                             '\nTb-PEX5-eGFP\n(n=250,\nautom. corr.)',
                             '\nTb-PEX5-eGFP\n(n=250,\nmanual corr.)']
               sns.set_theme(style="whitegrid", font_scale=3.5, palette='colorblind',
                             context='paper')
    
               xmin = min(param_df['xmin'])
               xmax = max(param_df['xmax'])
               ymin = min(param_df['offset'])
               ymax = max(param_df['GN0'])
               xlims = [xmin - 0.5*xmin, xmax + xmax]
               ylims = [ymin - np.abs(5*ymin), ymax + 0.1*ymax]
               fig = plt.figure(figsize=(16,9))
               ax1 = plt.subplot(111)
               lines = sns.lineplot(data=corr_df, lw=6, ls=':', legend=False)
               plt.legend(legend, loc = 2, bbox_to_anchor = (1,1))
               plt.setp(ax1, xlim=xlims, ylim=ylims, xscale='log',
                        xlabel=r'$\tau [ms]$',
                        ylabel=r'Avg correlation $G(\tau)$ [a.u.]')
               plt.tight_layout()
    
               plot_file = f'plotG_bioexps_{bio}_avg-correlations'
               savefig = f'./data/exp-220316-publication1/jupyter/{plot_file}'
               plt.savefig(f'{savefig}.pdf', bbox_inches='tight', dpi=300)
               os.system(f'pdf2svg {savefig}.pdf {savefig}.svg')
               # os.system(f'rm {plot1_file}.pdf')
               plt.close('all')
    
  • now the plots
           plot_bio_traces(traces_af488,
                           txt='AlexaFluor488\n(n=1,\nno artifacts,\nno correction)')
           plot_bio_traces(traces_af488luv,
                           txt='AF488 + DiO\nLUVs (n=1,\npeak artifacts,\nno correction)')
           plot_bio_traces(traces_hspex5,
                           txt='Hs-PEX5-eGFP\n(n=1,\nno artifacts,\nno correction)')
           plot_bio_traces(traces_tbpex5,
                           txt='Tb-PEX5-eGFP\n(n=1,\npeak artifacts,\nno correction)')
           plot_bio_traces(corrtraces_af488,
                           txt='AlexaFluor488\n(n=1,\nno artifacts,\nautom. corr.)')
           plot_bio_traces(corrtraces_af488luv,
                           txt='AF488 + DiO\nLUVs (n=1,\npeak artifacts,\nautom. corr.)')
           plot_bio_traces(corrtraces_hspex5,
                           txt='Hs-PEX5-eGFP\n(n=1,\nno artifacts,\nautom. corr.)')
           plot_bio_traces(corrtraces_tbpex5,
                           txt='Tb-PEX5-eGFP\n(n=1,\npeak artifacts,\nautom. corr.)')
    
    • AlexaFluor 488 in solution (used for publication): plotG_AlexaFluor488_n=1,_no_artifacts,_no_correction_0.svg
    • AF488 + DiO-LUVs (used for publication): plotG_AF488_+_DiO_LUVs_n=1,_peak_artifacts,_no_correction_2.svg
    • Hs-PEX5-eGFP (used for publication): plotG_Hs-PEX5-eGFP_n=1,_no_artifacts,_no_correction_0.svg
    • Tb-PEX5-eGFP (used for publication): plotG_Tb-PEX5-eGFP_n=1,_peak_artifacts,_no_correction_2.svg
    • AlexaFluor488 in solution, automated correction pipeline was used (U-Net prediction and cut and stitch correction). Not used in publication. plotG_AlexaFluor488_n=1,_no_artifacts,_autom._corr._0.svg
    • AF488 + DiO-LUVs, automated correction pipeline was used (U-Net prediction and cut and stitch correction). Not used in publication. plotG_AF488_+_DiO_LUVs_n=1,_peak_artifacts,_autom._corr._2.svg
    • Hs-PEX5-eGFP, automated correction pipeline was used (U-Net prediction and cut and stitch correction). Not used in publication. plotG_Hs-PEX5-eGFP_n=1,_no_artifacts,_autom._corr._0.svg
    • Tb-PEX5-eGFP, automated correction pipeline was used (U-Net prediction and cut and stitch correction). Not used in publication. plotG_Tb-PEX5-eGFP_n=1,_peak_artifacts,_autom._corr._2.svg
           plot_bio_cluster_prediction(
               preds_af488,
               txt='AlexaFluor 488 in solution (clean):\nLUV prediction')
           plot_bio_cluster_prediction(
               preds_af488luv,
               txt='AlexaFluor 488 + DiO LUVs in solution (dirty):\nLUV prediction')
    
    • Output of U-Net model when applied to AlexaFluor 488 in solution + the prediction threshold used for all correlation analyses plotG_AlexaFluor_488_in_solution_clean:_LUV_prediction_preds_0.svg
    • Output of U-Net model when applied to AF488 + DiO-LUVs + the prediction threshold used for all correlation analyses plotG_AlexaFluor_488_+_DiO_LUVs_in_solution_dirty:_LUV_prediction_preds_2.svg
           plot_bio_prediction_based_segmentation(
               traces_af488luv, preds_af488luv,
               txt='\nAF488 + DiO\nLUVs (n=1,\npeak artifacts,\nno correction)')
           plot_bio_prediction_based_segmentation(
               traces_af488, preds_af488,
               txt='\nAlexaFluor488\n(n=1,\nno artifacts,\nno correction)')
           plot_bio_prediction_based_segmentation(
               traces_hspex5, preds_hspex5,
               txt='\nHs-PEX5-eGFP\n(n=1,\nno artifacts,\nno correction)')
           plot_bio_prediction_based_segmentation(
               traces_tbpex5, preds_tbpex5,
               txt='\nTb-PEX5-eGFP\n(n=1,\npeak artifacts,\nno correction)')
    
    • Segmentation based on U-Net model (+ fixed 0.5 thresholding) when applied to AlexaFluor 488 in solution plotG_AlexaFluor488_n=1,_no_artifacts,_no_correction_seg_0.svg
    • Segmentation based on U-Net model (+ fixed 0.5 thresholding) when applied to AF488 + DiO-LUVs. Here 2 versions, because I used both: plotG_AF488_+_DiO_LUVs_n=1,_peak_artifacts,_no_correction_seg_2.svg plotG_AF488_+_DiO_LUVs_n=1,_peak_artifacts,_no_correction_seg_1.svg
    • Segmentation based on U-Net model (+ fixed 0.5 thresholding) when applied to Hs-PEX5-eGFP plotG_Hs-PEX5-eGFP_n=1,_no_artifacts,_no_correction_seg_0.svg
    • Segmentation based on U-Net model (+ fixed 0.5 thresholding) when applied to Tb-PEX5-eGFP plotG_Tb-PEX5-eGFP_n=1,_peak_artifacts,_no_correction_seg_2.svg
           plot_bio_clean_corr_and_fit(
               corr_af488, fit_af488, param_af488,
               txt='AlexaFluor 488 in solution (clean):\nCorrelation and 1-component Fit')
           plot_bio_corrs_and_fits(
               corr_noc_af488luv, corr_cas_af488luv, fit_noc_af488luv,
               fit_cas_af488luv, param_noc_af488luv, param_cas_af488luv,
               txt='AlexaFluor 488 + DiO LUVs in solution (dirty):\nCorrelations and 2-component Fits')
    
    • 1-component correlation and fit of AlexaFluor 488 in solution plotG_AlexaFluor_488_in_solution_clean:_Correlation_and_1-component_Fit_0.svg
    • 2-component correlation and fit of AF488 + DiO-LUVs plotG_AlexaFluor_488_+_DiO_LUVs_in_solution_dirty:_Correlations_and_2-component_Fits_2.svg
           plot_all_bio_corrs(all_af488_corr, all_af488_param, 'af488')
           plot_all_bio_corrs(all_pex5_corr, all_pex5_param, 'pex5')
    
    • Comparison of averged correlations of AF488 (no correction, automated correction) and AF488 in solution (no correction, automated correction) plotG_bioexps_af488_avg-correlations.svg
    • Comparison of averaged correlations of Hs-PEX5-eGFP (no correction, automated correction) and Tb-PEX5-eGFP (no correction, automated correction) plotG_bioexps_pex5_avg-correlations.svg

2.7.12 Plots: inkscape

  • I changed these plots a lot during the process, but did not keep all the intermediates, that is why numbers are missing
2.7.12.1 Fig 1: graphical TOC
2.7.12.2 Fig 2: cut and stitch viz
2.7.12.3 Fig 6: prediction methods
2.7.12.4 Fig 7: prediction methods
  • done by myself in inkscape. Only the time-series and segmentation vector are taken from Plot F: Unused further traces (specifically, a cropped, segmented version of “fast molecules and fast clusters”)
  • here is the plot: plot7_prediction-method-principles.svg
2.7.12.5 Fig 9: simexps for publication
  • a combination of plots of simulated data from Plot A: traces with labels and Plot C v2: violin plots
  • the sketches were done by myself in inkscape
  • the text parts were also re-done by myself in inkscape to get the figure-size-to-text-size proportions correct
  • here is the figure:
2.7.12.6 Fig 10: AF488 for publication
2.7.12.7 Fig 11: PEX5 for publication
2.7.12.8 Supp Fig 1: corr&fit examples
2.7.12.9 Supp Fig 2: stitching artifacts
2.7.12.10 Supp Fig 4: compare corrections
2.7.12.11 Supp Fig 5: compare predictions

2.7.13 some additional useful computations and notes

2.7.13.1 the trained models
  1. all metrics after 100th epoch with hparams
    run valauc valf1 0.5 valprec 0.5 valrecall 0.5 model size hpbatchsize hpfirstfilters hpinputsize hplrpower hplrstart hpnlevels hppoolsize hpscaler
    484af471c61943fa90e5f78e78a229f0 0.9814 0.9187 0.9091 0.9285 275 MB 26 44 16384 (here: 14000) 1 0.0136170138242663 7 2 standard
    0cd2023eeaf745aca0d3e8ad5e1fc653 0.9818 0.9069 0.8955 0.9185 200 MB 15 23 16384 (here: 14000) 7 0.0305060808685107 6 4 quantg
    fe81d71c52404ed790b3a32051258da9 0.9849 0.9260 0.9184 0.9338 186 MB 20 78 16384 (here: 14000) 4 0.0584071108418767 4 4 standard
    ff67be0b68e540a9a29a36a2d0c7a5be + 0.9859 0.9298 0.9230 0.9367 14 MB 28 6 16384 (here: 14000) 1 0.0553313915596308 5 4 minmax
    19e3e786e1bc4e2b93856f5dc9de8216 0.9595 0.8911 0.8983 0.8839 172 MB 20 128 16384 (here: 14000) 1 0.043549707353273 3 4 standard
    347669d050f344ad9fb9e480c814f727 + 0.9848 0.9246 0.9254 0.9238 73 MB 10 16 8192 (here: 14000) 1 0.0627676336651573 5 4 robust
    c1204e3a8a1e4c40a35b5b7b1922d1ce 0.9858 0.9207 0.9179 0.9234 312 MB 14 16 16384 (here: 14000) 5 0.0192390310290551 9 2 robust
    714af8cd12c1441eac4ca980e8c20070 + 0.9843 0.9304 0.9257 0.9352 234 MB 9 64 4096 (here: 14000) 1 0.0100697459464075 5 4 maxabs
    34a6d207ac594035b1009c330fb67a65 + 0.9652 0.8613 0.8598 0.8629 7 MB 17 16 16384 (here: 14000) 5 0.0101590069352232 3 4 l2
2.7.13.2 simulated diffrates to transittimes
  • to interprete the correlations correctly, let’s plot the underlying experimental data.
           %cd ~/Programme/drmed-git
    
    /home/lex/Programme/drmed-git
    
           import sys
           FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/'
           sys.path.append(FLUOTRACIFY_PATH)
           from fluotracify.simulations.analyze_simulations import convert_diffcoeff_to_transittimes
    
           diffcoeffs = [0.01, 0.069, 0.08, 0.1, 0.2, 0.4, 0.5, 0.6, 1.0, 1.5, 2,
                         2.5, 3.0, 3.5, 4, 4.5, 5, 10, 50]
           for i in diffcoeffs:
               tt, _ = convert_diffcoeff_to_transittimes(i, 250)
               print(f'{i} um^2 / s -> {tt:.2f} ms')
    
           print('----------')
           diffcoeff, _ = convert_diffcoeff_to_transittimes(0.04, 250)
           print(f'af488: {0.04} ms -> {diffcoeff:.2f} um^2 / s')
           diffcoeff, _ = convert_diffcoeff_to_transittimes(0.36, 250)
           print(f'hspex5: {0.36} ms -> {diffcoeff:.2f} um^2 / s')
    
    
         0.01 um^2 / s -> 1127.11 ms
         0.069 um^2 / s -> 163.35 ms
         0.08 um^2 / s -> 140.89 ms
         0.1 um^2 / s -> 112.71 ms
         0.2 um^2 / s -> 56.36 ms
         0.4 um^2 / s -> 28.18 ms
         0.5 um^2 / s -> 22.54 ms
         0.6 um^2 / s -> 18.79 ms
         1.0 um^2 / s -> 11.27 ms
         1.5 um^2 / s -> 7.51 ms
         2 um^2 / s -> 5.64 ms
         2.5 um^2 / s -> 4.51 ms
         3.0 um^2 / s -> 3.76 ms
         3.5 um^2 / s -> 3.22 ms
         4 um^2 / s -> 2.82 ms
         4.5 um^2 / s -> 2.50 ms
         5 um^2 / s -> 2.25 ms
         10 um^2 / s -> 1.13 ms
         50 um^2 / s -> 0.23 ms
         ----------
         af488: 0.04 ms -> 281.78 um^2 / s
         hspex5: 0.36 ms -> 31.31 um^2 / s
    
2.7.13.3 notes on data publishing
  • I decided to contact the ZeroCostDL4Mic team. There, I can present the whole workflow in an interactive Colab Notebook (similar to Jupyter notebooks, hosted by Google, free access to computation power including GPUs). This facilitates:
    • easy model sharing
    • re-training of model
    • own simulations
    • applying the correction method after prediction
  • for the data repository I chose Zonodo. There are different Zenodo uploads planned:
    • one for the whole Github repository at the state of submission
    • one for simulated time-series with and without peak artifacts: https://doi.org/10.5281/zenodo.8074408
      • For publishing, I renamed the following folders (and zipped them):
        • firstartifact_Nov2020_test2020-11-FCS-peak-artifacts-dataset-test-split.zip
        • firstartifact_Nov2020_train_max2sets2020-11-FCS-peak-artifacts-dataset-train-split.zip
        • firstartifact_Nov2020_val_max2sets_SORTEDIN2020-11-FCS-peak-artifacts-dataset-validation-split.zip
    • one for applied AF488 data with and without peak artifacts: https://doi.org/10.5281/zenodo.8082558
      • For publishing, I renamed and combined the following folders (and zipped them):
        • 1911DD_atto+LUVs/clean_ptu_part1 + 1911DD_atto+LUVs/clean_ptu_part22019-11-FCS-TCSPC-no-artifacts-AF488-primary-data.zip
        • 1911DD_atto+LUVs/dirty_ptu_part1 + 1911DD_atto+LUVs/dirty_ptu_part22019-11-FCS-TCSPC-peak-artifacts-AF488-and-DiO-LUVs-primary-data.zip
      • additionally, I added secondary data, which was taken by Pablo (.pqres files from the PicoQuant microscope). I did not use this data in any of these analyses.
        • 2019-11-FCS-TCSPC-no-artifacts-AF488-secondary-data.zip
        • 2019-11-FCS-TCSPC-peak-artifacts-AF488-and-DiO-LUVs-secondary-data.zip
    • one for applied PEX5 data with and without peak artifacts https://doi.org/10.5281/zenodo.8109282
      • For publishing, I renamed the following folders (and zipped them):
        • 191113_Pex5_2_structured/HsPEX5EGFP 1-1000012019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data.zip
        • 191113_Pex5_2_structured/TbPEX5EGFP 1-100022019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data.zip
      • additionally, I added secondary data, which was taken by Pablo (.pqres files from the PicoQuant microscope). I did not use this data in any of these analyses.
        • 2019-11-FCS-TCSPC-no-artifacts-AF488-secondary-data.zip
        • 2019-11-FCS-TCSPC-peak-artifacts-AF488-and-DiO-LUVs-secondary-data.zip
    • the mlflow models of exp-220227-unet were partly larger than 100MB and thus reached Github’s file size limit. They are archived here: https://doi.org/10.5281/zenodo.8137129
      • this is a .zip file with the mlruns directory with only experiment 10 (= exp-220227-unet) and there the experiments 0cd20, 34163, 714af, 34766, fe81d, ff67b and the 10 folder with all it’s contents should be put in data/mlruns to load the models as done in e.g. exp-220227-unet
  • move and rename PEX5 folders for Zenodo upload
           cd ~/Programme/drmed-collections/drmed-bioexps/brightbursts/191113_Pex5_2_structured/
           mkdir 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data
           mkdir 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data
           mkdir 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data
           mkdir 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data
           mv HsPEX5EGFP\ 1-100001/*.ptu 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data
           mv HsPEX5EGFP\ 1-100001/*.pqres 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data
           mv TbPEX5EGFP\ 1-10002/*.ptu 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data
           mv TbPEX5EGFP\ 1-10002/*.pqres 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data
    
  • check number of files. Primary data should be 250 (.ptu files), secondary data should be 750 (for each record one *_OFCS.pqres, *_OTCSPC.pqres, *_OTrace.pqres)
           ls 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data | wc -l
           ls 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data | wc -l
           ls 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data | wc -l
           ls 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data | wc -l
    
    250
    750
    250
    750
    
  • zip these folders for the Zotero upload. Cave: these commands might take some minutes…
           zip -r 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data.zip 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data
    
         adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/ (stored 0%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000151_T3283s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000099_T2142s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000152_T3305s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000134_T2911s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000086_T1858s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000172_T3742s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000063_T1356s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000071_T1531s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000120_T2605s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000032_T679s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000234_T5097s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000181_T3939s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000071_T1531s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000180_T3917s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000155_T3371s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000070_T1509s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000030_T635s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000183_T3983s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000098_T2121s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000077_T1662s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000242_T5272s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000136_T2955s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000045_T963s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000185_T4027s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000195_T4245s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000162_T3524s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000165_T3589s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000056_T1203s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000166_T3611s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000213_T4638s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000127_T2758s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000110_T2385s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000109_T2363s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000112_T2429s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000149_T3240s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000032_T679s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000020_T418s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000138_T2998s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000239_T5207s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000083_T1793s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000068_T1466s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000169_T3676s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000022_T461s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000103_T2230s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000173_T3764s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000035_T745s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000205_T4463s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000038_T810s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000102_T2208s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000113_T2452s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000145_T3152s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000135_T2933s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000042_T898s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000177_T3851s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000197_T4288s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000217_T4726s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000147_T3196s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000134_T2911s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000172_T3742s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000025_T527s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000105_T2275s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000194_T4223s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000118_T2561s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000013_T266s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000123_T2671s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000247_T5381s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000246_T5360s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000126_T2736s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000088_T1902s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000090_T1946s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000075_T1618s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000187_T4070s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000131_T2845s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000165_T3589s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000094_T2033s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000190_T4136s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000073_T1574s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000170_T3698s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000056_T1203s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000098_T2121s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000205_T4463s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000130_T2823s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000013_T266s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000237_T5163s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000202_T4398s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000247_T5381s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000012_T244s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000078_T1684s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000128_T2780s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000191_T4157s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000021_T440s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000076_T1640s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000137_T2977s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000059_T1269s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000221_T4813s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000119_T2584s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000190_T4136s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000079_T1705s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000186_T4049s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000213_T4638s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000011_T221s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000089_T1923s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000230_T5010s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000139_T3021s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000190_T4136s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000092_T1989s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000147_T3196s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000113_T2452s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000096_T2077s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000155_T3371s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000141_T3064s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000051_T1094s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000201_T4376s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000244_T5316s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000126_T2736s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000094_T2033s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000127_T2758s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000219_T4769s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000229_T4988s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100003_T46s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000061_T1313s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100005_T89s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000102_T2208s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000195_T4245s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000223_T4857s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000074_T1596s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000223_T4857s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000125_T2714s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000112_T2429s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000114_T2474s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000189_T4114s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000085_T1836s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000148_T3218s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000117_T2539s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000227_T4945s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000075_T1618s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000156_T3393s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000026_T548s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000237_T5163s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000081_T1749s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000047_T1007s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000095_T2055s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000183_T3983s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000249_T5425s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000097_T2098s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000231_T5032s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000079_T1705s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000019_T396s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000249_T5425s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000194_T4223s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000248_T5403s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000046_T985s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000197_T4288s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000062_T1335s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100006_T111s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000167_T3633s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000202_T4398s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000196_T4266s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000245_T5338s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000199_T4332s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000051_T1094s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000129_T2801s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000060_T1291s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000081_T1749s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000200_T4354s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000073_T1574s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000123_T2671s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000064_T1378s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000225_T4900s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000213_T4638s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000116_T2517s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000077_T1662s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000086_T1858s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000233_T5075s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000110_T2385s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000232_T5054s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000218_T4747s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000058_T1246s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000045_T963s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000115_T2496s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000225_T4900s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000133_T2889s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000096_T2077s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000195_T4245s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100001_T0s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000016_T331s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000189_T4114s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000161_T3502s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000065_T1400s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000084_T1814s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000141_T3064s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000116_T2517s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000114_T2474s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000014_T287s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000145_T3152s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000129_T2801s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000046_T985s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000229_T4988s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000149_T3240s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000211_T4595s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000184_T4005s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000023_T483s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000170_T3698s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000100_T2164s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000020_T418s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000215_T4682s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000052_T1116s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000081_T1749s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000028_T592s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000078_T1684s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000024_T505s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000235_T5119s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000083_T1793s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000025_T527s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000214_T4660s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000019_T396s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000131_T2845s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000107_T2319s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000089_T1923s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000106_T2297s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000164_T3567s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000176_T3829s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000112_T2429s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000121_T2627s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000155_T3371s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000132_T2867s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000151_T3283s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000032_T679s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000047_T1007s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000070_T1509s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000063_T1356s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100004_T67s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000158_T3437s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000028_T592s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000070_T1509s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000068_T1466s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000069_T1488s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000175_T3807s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000168_T3655s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000189_T4114s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000015_T309s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000227_T4945s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000171_T3720s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000194_T4223s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000121_T2627s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000218_T4747s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000123_T2671s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000144_T3130s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000142_T3086s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000122_T2649s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000066_T1422s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000016_T331s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000171_T3720s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000062_T1335s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000224_T4878s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000078_T1684s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000031_T657s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000180_T3917s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000122_T2649s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000168_T3655s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000107_T2319s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000052_T1116s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000188_T4092s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000104_T2252s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000196_T4266s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000066_T1422s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000048_T1028s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000080_T1727s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100006_T111s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000241_T5250s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000174_T3786s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000082_T1771s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000219_T4769s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000095_T2055s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000232_T5054s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000058_T1246s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000041_T876s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000033_T701s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000030_T635s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000067_T1444s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000201_T4376s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000041_T876s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000144_T3130s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000111_T2407s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000010_T199s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000186_T4049s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000205_T4463s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000017_T353s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000124_T2693s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000193_T4201s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000015_T309s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000136_T2955s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000065_T1400s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000237_T5163s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000133_T2889s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000050_T1072s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000152_T3305s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000203_T4419s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000080_T1727s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000244_T5316s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000044_T941s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100002_T24s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000139_T3021s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000217_T4726s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000191_T4157s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000091_T1968s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000029_T614s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000210_T4573s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000231_T5032s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000137_T2977s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000103_T2230s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000027_T570s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000240_T5229s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000089_T1923s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000221_T4813s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000012_T244s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000211_T4595s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000121_T2627s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000050_T1072s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100008_T156s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000043_T919s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000120_T2605s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000219_T4769s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000214_T4660s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000206_T4485s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000050_T1072s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000222_T4835s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000068_T1466s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000040_T854s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000141_T3064s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000208_T4529s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000224_T4878s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000207_T4507s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000163_T3546s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000019_T396s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000183_T3983s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000071_T1531s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000142_T3086s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000029_T614s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000085_T1836s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000011_T221s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000072_T1553s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000158_T3437s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000167_T3633s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000117_T2539s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000069_T1488s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000039_T832s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000230_T5010s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000125_T2714s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000199_T4332s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100004_T67s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000053_T1138s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000163_T3546s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000076_T1640s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000215_T4682s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000232_T5054s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000231_T5032s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000150_T3262s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000221_T4813s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000160_T3480s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000095_T2055s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000153_T3328s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000016_T331s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000243_T5294s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000100_T2164s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000241_T5250s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000090_T1946s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000035_T745s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000069_T1488s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000124_T2693s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000198_T4310s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000132_T2867s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000206_T4485s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000154_T3349s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000037_T789s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000118_T2561s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000247_T5381s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000105_T2275s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100007_T133s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000174_T3786s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000040_T854s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000087_T1880s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000054_T1159s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000027_T570s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000198_T4310s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000049_T1051s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000212_T4616s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000150_T3262s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000241_T5250s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000240_T5229s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000223_T4857s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000114_T2474s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000023_T483s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000216_T4704s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000092_T1989s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000159_T3458s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000055_T1181s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000135_T2933s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000169_T3676s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000085_T1836s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000161_T3502s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000018_T375s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000017_T353s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000220_T4791s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000140_T3042s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000092_T1989s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000118_T2561s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000178_T3873s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000036_T766s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000152_T3305s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000226_T4922s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000234_T5097s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000020_T418s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000025_T527s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000226_T4922s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100001_T0s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000052_T1116s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000238_T5185s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000191_T4157s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000177_T3851s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000088_T1902s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100002_T24s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000057_T1225s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000166_T3611s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000181_T3939s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000055_T1181s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000043_T919s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000182_T3961s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100005_T89s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000125_T2714s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000034_T723s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000140_T3042s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000250_T5447s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000209_T4551s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000014_T287s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000059_T1269s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000145_T3152s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000177_T3851s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000250_T5447s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100007_T133s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000199_T4332s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100003_T46s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000244_T5316s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000196_T4266s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000236_T5141s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000012_T244s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000088_T1902s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000162_T3524s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000198_T4310s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000111_T2407s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000115_T2496s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000098_T2121s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000159_T3458s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000072_T1553s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000130_T2823s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100002_T24s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000163_T3546s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000220_T4791s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000076_T1640s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000104_T2252s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000153_T3328s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000184_T4005s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000059_T1269s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000048_T1028s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000203_T4419s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000137_T2977s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000214_T4660s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000051_T1094s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000082_T1771s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000039_T832s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000014_T287s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000233_T5075s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000075_T1618s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000185_T4027s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000146_T3174s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000147_T3196s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000148_T3218s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000126_T2736s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000153_T3328s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000146_T3174s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000136_T2955s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000239_T5207s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000179_T3895s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000010_T199s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000130_T2823s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000209_T4551s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000033_T701s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000015_T309s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000058_T1246s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000060_T1291s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000204_T4441s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000049_T1051s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000249_T5425s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000210_T4573s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000162_T3524s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000021_T440s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000169_T3676s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000192_T4179s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000119_T2584s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000083_T1793s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100009_T177s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000018_T375s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000063_T1356s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000227_T4945s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000096_T2077s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000228_T4966s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000102_T2208s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000108_T2341s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000143_T3107s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000044_T941s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000181_T3939s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000074_T1596s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000115_T2496s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000164_T3567s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000216_T4704s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000106_T2297s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000091_T1968s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000093_T2011s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000144_T3130s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000158_T3437s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000202_T4398s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000026_T548s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000113_T2452s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000185_T4027s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000220_T4791s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100001_T0s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000086_T1858s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000236_T5141s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000036_T766s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000072_T1553s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000128_T2780s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100009_T177s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000037_T789s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000168_T3655s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000107_T2319s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000235_T5119s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000090_T1946s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000093_T2011s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000224_T4878s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000182_T3961s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000039_T832s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000154_T3349s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000166_T3611s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000160_T3480s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000234_T5097s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000248_T5403s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000192_T4179s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000182_T3961s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000091_T1968s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000159_T3458s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000064_T1378s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000054_T1159s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000065_T1400s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000193_T4201s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000250_T5447s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000208_T4529s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000100_T2164s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000242_T5272s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000134_T2911s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000034_T723s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000110_T2385s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000197_T4288s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000239_T5207s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000024_T505s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000056_T1203s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000192_T4179s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000150_T3262s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000140_T3042s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000117_T2539s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000053_T1138s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000222_T4835s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000101_T2186s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000023_T483s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100004_T67s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000043_T919s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000157_T3415s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000037_T789s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000067_T1444s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000204_T4441s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000173_T3764s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000212_T4616s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000235_T5119s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000243_T5294s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000230_T5010s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000142_T3086s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000204_T4441s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000217_T4726s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000200_T4354s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000193_T4201s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000128_T2780s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000018_T375s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000207_T4507s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000082_T1771s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000061_T1313s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000064_T1378s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000109_T2363s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000154_T3349s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000057_T1225s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000049_T1051s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000035_T745s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000054_T1159s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000010_T199s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000176_T3829s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000207_T4507s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000099_T2142s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000156_T3393s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000170_T3698s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000186_T4049s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000243_T5294s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000160_T3480s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000228_T4966s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000053_T1138s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000066_T1422s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000067_T1444s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000157_T3415s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000179_T3895s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000028_T592s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000048_T1028s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000246_T5360s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000061_T1313s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000031_T657s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000104_T2252s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000175_T3807s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000184_T4005s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000094_T2033s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000021_T440s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100008_T156s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000017_T353s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000038_T810s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000044_T941s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000138_T2998s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000022_T461s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000240_T5229s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000248_T5403s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000176_T3829s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000080_T1727s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000038_T810s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000222_T4835s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000175_T3807s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000215_T4682s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000101_T2186s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000187_T4070s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000157_T3415s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000042_T898s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000135_T2933s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000013_T266s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000208_T4529s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000146_T3174s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000040_T854s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000087_T1880s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000233_T5075s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000122_T2649s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000238_T5185s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000236_T5141s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000138_T2998s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000229_T4988s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000024_T505s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000074_T1596s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000161_T3502s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000238_T5185s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000108_T2341s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000172_T3742s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000105_T2275s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000132_T2867s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000218_T4747s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000033_T701s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000084_T1814s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000149_T3240s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000173_T3764s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000242_T5272s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000165_T3589s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000047_T1007s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000178_T3873s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000226_T4922s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000225_T4900s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000148_T3218s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000108_T2341s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100009_T177s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000097_T2098s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000245_T5338s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000097_T2098s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000228_T4966s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000201_T4376s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000200_T4354s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000057_T1225s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000246_T5360s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000111_T2407s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000245_T5338s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000093_T2011s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100003_T46s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000045_T963s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000212_T4616s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000131_T2845s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000188_T4092s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000143_T3107s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000030_T635s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000084_T1814s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000087_T1880s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000027_T570s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000046_T985s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000179_T3895s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100006_T111s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000211_T4595s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000026_T548s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000180_T3917s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000164_T3567s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000042_T898s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000187_T4070s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000156_T3393s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000079_T1705s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000216_T4704s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000210_T4573s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000171_T3720s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000022_T461s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000133_T2889s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000167_T3633s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000129_T2801s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000011_T221s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000127_T2758s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000139_T3021s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000174_T3786s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100005_T89s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000073_T1574s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000209_T4551s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000151_T3283s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000109_T2363s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000031_T657s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100007_T133s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000036_T766s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000106_T2297s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000119_T2584s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000178_T3873s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000103_T2230s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000188_T4092s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000124_T2693s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000062_T1335s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000099_T2142s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000029_T614s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000116_T2517s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000206_T4485s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000041_T876s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000143_T3107s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000034_T723s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000120_T2605s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000203_T4419s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000060_T1291s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100008_T156s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000077_T1662s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000101_T2186s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000055_T1181s_1_OFCS.pqres (deflated 66%)
    
           zip -r 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data.zip 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data
    
         adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/ (stored 0%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100013_T264s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100092_T1990s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000130_T2822s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100047_T1007s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000149_T3238s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000145_T3151s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100083_T1793s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100015_T308s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000235_T5123s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100066_T1422s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100064_T1378s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000230_T5013s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000197_T4290s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000115_T2494s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000227_T4948s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100084_T1815s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100056_T1204s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000158_T3434s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100053_T1139s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100080_T1728s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100063_T1356s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000203_T4421s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000172_T3742s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100059_T1269s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100069_T1488s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100014_T286s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100034_T723s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000176_T3830s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100041_T876s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100059_T1269s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000171_T3720s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000241_T5255s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000219_T4772s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100036_T767s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100066_T1422s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100050_T1073s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000226_T4925s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000178_T3874s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100019_T395s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000144_T3129s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100032_T680s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000199_T4333s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100017_T352s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100046_T985s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000182_T3961s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100091_T1968s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100086_T1859s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000145_T3151s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000133_T2888s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000122_T2647s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10002_T24s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000113_T2450s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100096_T2077s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10005_T90s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000167_T3632s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100017_T352s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000103_T2231s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100097_T2100s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000120_T2604s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100055_T1182s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000205_T4465s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000138_T2997s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100061_T1313s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000189_T4114s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000207_T4509s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000248_T5408s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100032_T680s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000124_T2691s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000243_T5299s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100079_T1706s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100020_T417s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100035_T745s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10003_T46s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000156_T3390s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000125_T2713s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000237_T5167s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100023_T483s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100018_T374s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000144_T3129s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000220_T4793s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100082_T1771s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000131_T2844s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000149_T3238s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10007_T134s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000155_T3368s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000183_T3983s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100058_T1247s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100014_T286s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000173_T3764s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000135_T2932s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100024_T505s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000155_T3368s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10004_T68s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100054_T1160s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000249_T5430s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100078_T1684s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100061_T1313s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000221_T4815s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100016_T330s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100042_T898s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000195_T4246s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000132_T2866s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000240_T5233s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000109_T2362s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000118_T2560s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000246_T5364s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000116_T2516s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000137_T2976s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000142_T3085s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100093_T2012s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000141_T3063s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000229_T4991s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000148_T3216s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100064_T1378s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100058_T1247s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000214_T4662s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100036_T767s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000123_T2669s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000248_T5408s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000143_T3107s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100057_T1226s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100035_T745s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100040_T854s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000231_T5035s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100021_T439s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100054_T1160s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100034_T723s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10004_T68s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000218_T4750s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000202_T4399s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100060_T1291s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000114_T2473s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10001_T0s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100012_T242s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000133_T2888s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000112_T2429s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000134_T2910s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000111_T2407s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000120_T2604s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000129_T2800s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000203_T4421s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100065_T1400s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000104_T2253s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100029_T614s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000116_T2516s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000224_T4882s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100094_T2034s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000179_T3895s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000124_T2691s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100037_T789s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000244_T5321s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000193_T4202s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000160_T3479s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000196_T4268s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100030_T636s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100025_T527s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000210_T4574s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000228_T4969s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000147_T3194s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000132_T2866s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100048_T1029s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100093_T2012s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10001_T0s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100072_T1553s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100015_T308s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000244_T5321s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000122_T2647s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000187_T4071s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000165_T3588s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100083_T1793s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000164_T3566s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000101_T2188s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000231_T5035s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100062_T1335s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100011_T221s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000139_T3019s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000134_T2910s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000204_T4443s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000225_T4903s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000204_T4443s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000201_T4377s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100010_T199s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000199_T4333s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000149_T3238s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000161_T3500s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100056_T1204s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100094_T2034s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000128_T2778s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100070_T1510s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100024_T505s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000177_T3852s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000141_T3063s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000227_T4948s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000189_T4114s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000216_T4706s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100079_T1706s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100065_T1400s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000120_T2604s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000109_T2362s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000226_T4925s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000238_T5189s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100074_T1597s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000218_T4750s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000228_T4969s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000206_T4487s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000240_T5233s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000205_T4465s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000215_T4683s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000172_T3742s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000121_T2625s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000142_T3085s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000230_T5013s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000143_T3107s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000102_T2209s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100074_T1597s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000241_T5255s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100089_T1924s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100067_T1444s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100034_T723s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000156_T3390s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100083_T1793s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000110_T2384s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100084_T1815s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000222_T4837s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000232_T5057s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000170_T3698s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000157_T3412s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000242_T5277s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100038_T811s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100095_T2056s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000194_T4224s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100029_T614s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000190_T4137s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000155_T3368s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100044_T942s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000179_T3895s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100098_T2122s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000217_T4728s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100082_T1771s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100055_T1182s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100050_T1073s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100073_T1575s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000236_T5145s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000100_T2166s_1_OTrace.pqres (deflated 67%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000217_T4728s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000131_T2844s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000196_T4268s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000213_T4640s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000137_T2976s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000182_T3961s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000235_T5123s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10003_T46s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100088_T1902s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000234_T5101s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000126_T2734s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000151_T3282s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000245_T5343s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10006_T112s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100050_T1073s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000121_T2625s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100056_T1204s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100054_T1160s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100013_T264s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000178_T3874s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10006_T112s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100068_T1466s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000188_T4093s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100026_T549s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10005_T90s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000233_T5079s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100096_T2077s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100065_T1400s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000153_T3325s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10004_T68s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100028_T592s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100010_T199s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000192_T4180s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000159_T3456s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000245_T5343s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000152_T3303s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100027_T571s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000239_T5211s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100095_T2056s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000180_T3917s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000190_T4137s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100073_T1575s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100057_T1226s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10001_T0s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000236_T5145s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000231_T5035s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100091_T1968s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100039_T833s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100026_T549s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000188_T4093s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000173_T3764s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000186_T4049s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100067_T1444s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100051_T1095s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100036_T767s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000157_T3412s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100076_T1641s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000183_T3983s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100090_T1946s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000178_T3874s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100010_T199s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000124_T2691s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100022_T461s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100099_T2144s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000224_T4882s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000101_T2188s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000102_T2209s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000146_T3173s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10002_T24s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000114_T2473s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000214_T4662s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000181_T3939s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000161_T3500s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000152_T3303s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000101_T2188s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100052_T1117s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100061_T1313s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000171_T3720s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000232_T5057s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000166_T3610s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000110_T2384s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000245_T5343s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000130_T2822s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000229_T4991s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000147_T3194s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000118_T2560s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000154_T3347s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100080_T1728s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000147_T3194s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000145_T3151s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000215_T4683s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000223_T4859s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000100_T2166s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000117_T2538s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000200_T4356s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000248_T5408s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100092_T1990s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000200_T4356s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000201_T4377s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000146_T3173s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000119_T2582s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100087_T1881s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000184_T4005s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000103_T2231s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100021_T439s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100040_T854s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100060_T1291s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000166_T3610s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100042_T898s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000127_T2756s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000234_T5101s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100081_T1750s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000128_T2778s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100084_T1815s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000169_T3676s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000123_T2669s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000115_T2494s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000213_T4640s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000107_T2319s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000168_T3654s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000104_T2253s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100015_T308s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000209_T4553s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000116_T2516s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000105_T2275s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000246_T5364s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000191_T4158s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100028_T592s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000179_T3895s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000106_T2297s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000206_T4487s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100045_T964s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000210_T4574s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000162_T3522s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000110_T2384s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000194_T4224s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000208_T4531s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000157_T3412s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100094_T2034s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000126_T2734s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000184_T4005s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100032_T680s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100087_T1881s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000216_T4706s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100031_T658s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000187_T4071s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000117_T2538s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000150_T3260s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000106_T2297s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100074_T1597s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000194_T4224s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000211_T4596s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100096_T2077s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000112_T2429s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000200_T4356s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100079_T1706s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000159_T3456s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100072_T1553s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000247_T5386s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000238_T5189s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000102_T2209s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100037_T789s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000105_T2275s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000197_T4290s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000208_T4531s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100073_T1575s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000185_T4027s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100051_T1095s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000131_T2844s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000186_T4049s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000175_T3808s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000223_T4859s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000121_T2625s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000163_T3544s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000237_T5167s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000128_T2778s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10007_T134s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000222_T4837s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000144_T3129s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100047_T1007s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100095_T2056s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000215_T4683s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000165_T3588s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000250_T5451s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10002_T24s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100089_T1924s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100019_T395s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000193_T4202s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100099_T2144s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10009_T177s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000161_T3500s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000198_T4312s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000164_T3566s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000235_T5123s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000238_T5189s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000158_T3434s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000184_T4005s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100023_T483s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000176_T3830s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100076_T1641s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000171_T3720s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000225_T4903s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100011_T221s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000174_T3786s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100048_T1029s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000202_T4399s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100053_T1139s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000170_T3698s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100060_T1291s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100089_T1924s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000108_T2340s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100058_T1247s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000217_T4728s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000173_T3764s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100081_T1750s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000113_T2450s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100070_T1510s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000227_T4948s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000221_T4815s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000175_T3808s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100082_T1771s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100041_T876s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000232_T5057s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100078_T1684s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100049_T1051s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000177_T3852s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100020_T417s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10003_T46s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000174_T3786s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100097_T2100s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100031_T658s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100081_T1750s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100097_T2100s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000234_T5101s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000239_T5211s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100087_T1881s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000151_T3282s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000170_T3698s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000168_T3654s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000136_T2954s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000138_T2997s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000104_T2253s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100027_T571s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100024_T505s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100029_T614s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100085_T1837s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100052_T1117s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000185_T4027s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100067_T1444s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000160_T3479s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000214_T4662s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000191_T4158s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000177_T3852s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000247_T5386s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000210_T4574s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100033_T702s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000197_T4290s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100091_T1968s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100070_T1510s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10007_T134s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000107_T2319s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000224_T4882s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000103_T2231s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100068_T1466s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100049_T1051s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100046_T985s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000205_T4465s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000139_T3019s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000239_T5211s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000193_T4202s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000242_T5277s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100062_T1335s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000204_T4443s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000162_T3522s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000108_T2340s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100088_T1902s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100077_T1662s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100086_T1859s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000212_T4618s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000138_T2997s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000187_T4071s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000243_T5299s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000201_T4377s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000228_T4969s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100077_T1662s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100039_T833s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000237_T5167s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000148_T3216s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000220_T4793s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000176_T3830s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100062_T1335s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100085_T1837s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000153_T3325s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100025_T527s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000196_T4268s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000230_T5013s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000223_T4859s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100022_T461s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100039_T833s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10008_T155s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000127_T2756s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000117_T2538s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100080_T1728s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100020_T417s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100064_T1378s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000111_T2407s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100063_T1356s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000185_T4027s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000188_T4093s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000174_T3786s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000111_T2407s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000139_T3019s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100043_T920s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000172_T3742s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100077_T1662s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000135_T2932s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000250_T5451s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10008_T155s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000203_T4421s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100085_T1837s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100016_T330s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000130_T2822s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100098_T2122s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000134_T2910s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000220_T4793s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100066_T1422s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000211_T4596s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000207_T4509s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000113_T2450s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000180_T3917s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000219_T4772s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000169_T3676s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000189_T4114s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10009_T177s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000164_T3566s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100044_T942s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100045_T964s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000192_T4180s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100093_T2012s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000107_T2319s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100031_T658s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000206_T4487s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100030_T636s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100022_T461s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000216_T4706s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000126_T2734s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000246_T5364s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000212_T4618s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100043_T920s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000222_T4837s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000137_T2976s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000209_T4553s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000140_T3041s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000233_T5079s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000154_T3347s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000129_T2800s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000132_T2866s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000225_T4903s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000148_T3216s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100046_T985s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100059_T1269s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000123_T2669s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000192_T4180s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000244_T5321s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000168_T3654s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100071_T1532s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000156_T3390s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100026_T549s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000106_T2297s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100019_T395s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000142_T3085s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100025_T527s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100042_T898s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100045_T964s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000219_T4772s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100028_T592s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000167_T3632s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100018_T374s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000212_T4618s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100078_T1684s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100092_T1990s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000202_T4399s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100021_T439s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000150_T3260s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000198_T4312s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100063_T1356s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100018_T374s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000105_T2275s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000249_T5430s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000119_T2582s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100017_T352s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000127_T2756s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000190_T4137s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000122_T2647s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000162_T3522s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100043_T920s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000140_T3041s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000160_T3479s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000163_T3544s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000141_T3063s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000195_T4246s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000195_T4246s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000165_T3588s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000243_T5299s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000100_T2166s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100012_T242s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100027_T571s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100090_T1946s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000140_T3041s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10009_T177s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000167_T3632s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000211_T4596s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000208_T4531s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000166_T3610s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100041_T876s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100068_T1466s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000109_T2362s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000182_T3961s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000135_T2932s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000241_T5255s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000136_T2954s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000118_T2560s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100013_T264s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100051_T1095s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100075_T1619s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000169_T3676s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000115_T2494s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100037_T789s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000247_T5386s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000133_T2888s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000181_T3939s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000233_T5079s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100090_T1946s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100055_T1182s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000183_T3983s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100012_T242s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100075_T1619s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100053_T1139s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100099_T2144s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100035_T745s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000242_T5277s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000153_T3325s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000191_T4158s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000158_T3434s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100033_T702s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000250_T5451s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000114_T2473s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000125_T2713s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000236_T5145s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000151_T3282s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000175_T3808s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100016_T330s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100038_T811s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000249_T5430s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000146_T3173s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100072_T1553s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100098_T2122s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000181_T3939s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000163_T3544s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000226_T4925s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100033_T702s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100014_T286s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100047_T1007s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100040_T854s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000198_T4312s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000129_T2800s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100030_T636s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000240_T5233s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000154_T3347s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000108_T2340s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100069_T1488s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100069_T1488s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10005_T90s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000186_T4049s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100075_T1619s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100088_T1902s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100038_T811s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100057_T1226s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000213_T4640s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000159_T3456s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10008_T155s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10006_T112s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100044_T942s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100071_T1532s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000152_T3303s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000207_T4509s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100023_T483s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000209_T4553s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000229_T4991s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000125_T2713s_1_OTCSPC.pqres (deflated 81%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100076_T1641s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000199_T4333s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100048_T1029s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100071_T1532s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100052_T1117s_1_OFCS.pqres (deflated 65%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100049_T1051s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000150_T3260s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000221_T4815s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000143_T3107s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000218_T4750s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000180_T3917s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100086_T1859s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000112_T2429s_1_OFCS.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000119_T2582s_1_OTCSPC.pqres (deflated 80%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000136_T2954s_1_OTrace.pqres (deflated 66%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100011_T221s_1_OTCSPC.pqres (deflated 80%)
    
           zip -r 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data.zip 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data
    
         adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/ (stored 0%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10009_T177s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000229_T4991s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000181_T3939s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000110_T2384s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000143_T3107s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000129_T2800s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100064_T1378s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000162_T3522s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100051_T1095s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000205_T4465s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000156_T3390s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100072_T1553s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100092_T1990s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100046_T985s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100011_T221s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000201_T4377s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000214_T4662s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100052_T1117s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000135_T2932s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100065_T1400s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000240_T5233s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000172_T3742s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100043_T920s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000231_T5035s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100013_T264s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100040_T854s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100028_T592s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100082_T1771s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100055_T1182s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000173_T3764s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000139_T3019s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100080_T1728s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100063_T1356s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100099_T2144s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000235_T5123s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100086_T1859s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100089_T1924s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000228_T4969s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000202_T4399s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000117_T2538s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100014_T286s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000142_T3085s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000150_T3260s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000157_T3412s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100032_T680s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100056_T1204s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000242_T5277s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100083_T1793s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000200_T4356s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000192_T4180s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000131_T2844s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000127_T2756s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100042_T898s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100037_T789s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000193_T4202s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000183_T3983s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000161_T3500s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000159_T3456s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000165_T3588s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100029_T614s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000149_T3238s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000105_T2275s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100030_T636s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100031_T658s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000184_T4005s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100057_T1226s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100039_T833s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100035_T745s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100088_T1902s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000236_T5145s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100016_T330s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100071_T1532s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000203_T4421s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100061_T1313s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10008_T155s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000246_T5364s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10003_T46s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100048_T1029s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000137_T2976s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000190_T4137s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000170_T3698s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000111_T2407s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000153_T3325s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000158_T3434s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100017_T352s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100025_T527s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100075_T1619s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000219_T4772s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000115_T2494s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000174_T3786s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100024_T505s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000166_T3610s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000211_T4596s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000168_T3654s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100067_T1444s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100041_T876s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000118_T2560s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000250_T5451s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100060_T1291s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000237_T5167s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000152_T3303s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000207_T4509s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000238_T5189s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10002_T24s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000102_T2209s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000126_T2734s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000163_T3544s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100066_T1422s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000179_T3895s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100069_T1488s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100074_T1597s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000119_T2582s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000171_T3720s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100050_T1073s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100094_T2034s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000178_T3874s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100019_T395s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000206_T4487s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100091_T1968s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000130_T2822s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100022_T461s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000245_T5343s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000144_T3129s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100010_T199s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000175_T3808s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100045_T964s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000120_T2604s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000196_T4268s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000244_T5321s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000185_T4027s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10005_T90s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000210_T4574s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100093_T2012s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000223_T4859s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100090_T1946s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100070_T1510s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100097_T2100s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100096_T2077s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100078_T1684s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000222_T4837s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000114_T2473s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100077_T1662s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000220_T4793s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000198_T4312s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000160_T3479s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000124_T2691s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000212_T4618s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10006_T112s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100084_T1815s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100062_T1335s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100058_T1247s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100044_T942s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10001_T0s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000167_T3632s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000249_T5430s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000199_T4333s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000121_T2625s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000106_T2297s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100012_T242s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100026_T549s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000141_T3063s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000155_T3368s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100021_T439s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000216_T4706s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000187_T4071s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000107_T2319s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000197_T4290s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000247_T5386s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000218_T4750s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100023_T483s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000123_T2669s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000194_T4224s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000217_T4728s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000230_T5013s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100053_T1139s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000138_T2997s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100034_T723s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100033_T702s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000116_T2516s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100038_T811s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000234_T5101s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000241_T5255s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000188_T4093s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000248_T5408s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000112_T2429s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000213_T4640s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000122_T2647s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000100_T2166s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000233_T5079s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000151_T3282s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000140_T3041s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000128_T2778s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000133_T2888s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000243_T5299s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100015_T308s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100027_T571s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000103_T2231s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100020_T417s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000226_T4925s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100098_T2122s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100085_T1837s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000191_T4158s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000145_T3151s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000227_T4948s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000109_T2362s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100036_T767s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100049_T1051s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000164_T3566s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000176_T3830s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000101_T2188s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000113_T2450s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000177_T3852s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000146_T3173s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000232_T5057s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000134_T2910s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000169_T3676s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000186_T4049s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100087_T1881s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100095_T2056s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100073_T1575s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000204_T4443s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10007_T134s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000180_T3917s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000108_T2340s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000209_T4553s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000132_T2866s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000189_T4114s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100079_T1706s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100054_T1160s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000104_T2253s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100047_T1007s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000225_T4903s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000221_T4815s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000182_T3961s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000147_T3194s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000148_T3216s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000136_T2954s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000125_T2713s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10004_T68s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100081_T1750s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000154_T3347s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100076_T1641s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100059_T1269s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000224_T4882s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100018_T374s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000208_T4531s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000239_T5211s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000215_T4683s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000195_T4246s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100068_T1466s_1.ptu (deflated 46%)
         org_babel_sh_prompt>
    
           zip -r 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data.zip 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data
    
         adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/ (stored 0%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000091_T1968s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000130_T2823s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000167_T3633s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000168_T3655s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000058_T1246s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000128_T2780s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000105_T2275s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100004_T67s_1.ptu (deflated 44%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000226_T4922s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000029_T614s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000225_T4900s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000154_T3349s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000127_T2758s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000224_T4878s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000036_T766s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000035_T745s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000222_T4835s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000196_T4266s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000012_T244s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000076_T1640s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000100_T2164s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000144_T3130s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000124_T2693s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000092_T1989s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000104_T2252s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000126_T2736s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000236_T5141s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000017_T353s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000166_T3611s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000155_T3371s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000045_T963s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000015_T309s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000117_T2539s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000200_T4354s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000055_T1181s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100003_T46s_1.ptu (deflated 43%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000025_T527s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000163_T3546s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000111_T2407s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000189_T4114s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000046_T985s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000138_T2998s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000215_T4682s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000072_T1553s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000197_T4288s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000171_T3720s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000182_T3961s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000237_T5163s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000149_T3240s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000075_T1618s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000087_T1880s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000065_T1400s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000079_T1705s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000239_T5207s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000031_T657s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000146_T3174s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000202_T4398s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000148_T3218s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000192_T4179s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000078_T1684s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000108_T2341s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000053_T1138s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000223_T4857s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000107_T2319s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000230_T5010s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000131_T2845s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000095_T2055s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000077_T1662s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000139_T3021s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000201_T4376s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000209_T4551s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000227_T4945s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000188_T4092s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000242_T5272s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000093_T2011s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000064_T1378s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000229_T4988s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000135_T2933s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000027_T570s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000228_T4966s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000214_T4660s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000213_T4638s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000247_T5381s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000241_T5250s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000243_T5294s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000112_T2429s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000028_T592s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000052_T1116s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000044_T941s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000070_T1509s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000250_T5447s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000061_T1313s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000248_T5403s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000142_T3086s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000176_T3829s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000098_T2121s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000172_T3742s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000206_T4485s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000086_T1858s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000113_T2452s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000062_T1335s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000101_T2186s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000218_T4747s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000068_T1466s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000134_T2911s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000205_T4463s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100006_T111s_1.ptu (deflated 44%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000233_T5075s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100008_T156s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100005_T89s_1.ptu (deflated 44%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000057_T1225s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000054_T1159s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000220_T4791s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000140_T3042s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000122_T2649s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000198_T4310s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000063_T1356s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000040_T854s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000137_T2977s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000069_T1488s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000034_T723s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000021_T440s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000047_T1007s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000150_T3262s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100001_T0s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000221_T4813s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000216_T4704s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000231_T5032s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000165_T3589s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000244_T5316s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000097_T2098s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000204_T4441s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000174_T3786s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000073_T1574s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000080_T1727s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000109_T2363s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000151_T3283s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000090_T1946s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000103_T2230s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000022_T461s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000183_T3983s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000212_T4616s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000164_T3567s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100009_T177s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000023_T483s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000074_T1596s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000013_T266s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000181_T3939s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000118_T2561s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000249_T5425s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000193_T4201s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000043_T919s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000132_T2867s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000141_T3064s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000106_T2297s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000185_T4027s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000050_T1072s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000085_T1836s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000125_T2714s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000037_T789s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000116_T2517s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000161_T3502s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000219_T4769s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000194_T4223s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000207_T4507s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000067_T1444s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000143_T3107s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000245_T5338s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000020_T418s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000157_T3415s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000114_T2474s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000059_T1269s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000160_T3480s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000084_T1814s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000203_T4419s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000042_T898s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000136_T2955s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000175_T3807s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000038_T810s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000186_T4049s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000178_T3873s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000016_T331s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000173_T3764s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000169_T3676s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000060_T1291s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000011_T221s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000156_T3393s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000014_T287s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000217_T4726s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000051_T1094s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000056_T1203s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000238_T5185s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000026_T548s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000096_T2077s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000234_T5097s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000018_T375s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000041_T876s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000039_T832s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000190_T4136s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000024_T505s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000180_T3917s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000121_T2627s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000066_T1422s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000184_T4005s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000133_T2889s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000187_T4070s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000235_T5119s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000115_T2496s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000049_T1051s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000232_T5054s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000158_T3437s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000152_T3305s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000153_T3328s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000145_T3152s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000179_T3895s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000147_T3196s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000081_T1749s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000032_T679s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000129_T2801s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000191_T4157s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000082_T1771s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000030_T635s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000083_T1793s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000010_T199s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000094_T2033s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000123_T2671s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000120_T2605s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000119_T2584s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000071_T1531s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000246_T5360s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000210_T4573s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000088_T1902s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000019_T396s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100007_T133s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000199_T4332s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000033_T701s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000211_T4595s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000240_T5229s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000195_T4245s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100002_T24s_1.ptu (deflated 44%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000099_T2142s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000110_T2385s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000170_T3698s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000162_T3524s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000102_T2208s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000048_T1028s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000208_T4529s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000089_T1923s_1.ptu (deflated 46%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000159_T3458s_1.ptu (deflated 45%)
           adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000177_T3851s_1.ptu (deflated 45%)
    
  • I performed the sorting and zipping manually for the simulation folders and the AF488 experiments in Dolphin 23.04.1, the standard file manager in Manjaro Linux.
  • After manual sorting, I wanted to check for unmatching primary and secondary data. There were some unmatching samples, where the secondary data (.pqres files from the PicoQuant machine) didn’t match the primary data (.ptu files). They were few, and I did not use the secondary data myself and am only archiving what I got from Pablo. Thus, I did leave them as-is.
           %cd ~/Programme/drmed-collections/drmed-bioexps/brightbursts/1911DD_alexafluor488+LUVs/
    
    /home/lex/Programme/drmed-collections/drmed-bioexps/brightbursts/1911DD_alexafluor488+LUVs
    
           import sys
           import pandas as pd
           from pathlib import Path
           FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/'
           sys.path.append(FLUOTRACIFY_PATH)
           from fluotracify.simulations.analyze_simulations import convert_diffcoeff_to_transittimes
    
           primary = Path('./2019-11-FCS-TCSPC-no-artifacts-AF488-primary-data').rglob('*.ptu')
           primary = [p.stem for p in primary]
           print('examples primary:', primary[:5])
           secondary = Path('./2019-11-FCS-TCSPC-no-artifacts-AF488-secondary-data').rglob('*.pqres')
           secondary = [p.stem.strip('_OFCS').strip('_OTCSPC') for p in secondary]
           print('examples secondary:', secondary[:5])
    
           print('only in primary:', set(primary) - set(secondary))
           print('only in secondary:', set(secondary) - set(primary))
    
  • I renamed files from simulations. Here is the code I used for the photobleaching simulations I did (which are not archived in this labbook, because this was in September 2019, just before I started using this LabBook.org file)
           %cd ~/Programme/drmed-collections/drmed-simexps/thirdartefact_Sep2019/
    
           import sys
           import pandas as pd
           from pathlib import Path
           FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/'
           sys.path.append(FLUOTRACIFY_PATH)
           from fluotracify.simulations.analyze_simulations import convert_diffcoeff_to_transittimes
    
           paths = Path('.').rglob('*.csv')
    
           for p in paths:
               set = p.stem.split('_')[-1]
               set = set.split('-')[-1]
               metadata = pd.read_csv(p, delimiter=',', nrows=11, header=None,
                                      index_col=0)
               drate = float(metadata.loc['diffusion rate of molecules'].values[0])
               tau, _ = convert_diffcoeff_to_transittimes(drate, 250)
               tau = round(tau, 2)
               nmol = int(float(metadata.loc['number of fast molecules'].values[0]))
               dir = Path(f'tau-{tau}ms-equals-d-{drate}'.replace('.', 'p'))
               fname = f'2019-09-photobleaching-d-{drate}-n-{nmol}-{set}.csv'
               dir.mkdir(exist_ok=True)
               p_new = dir / fname
               p.rename(p_new)
               print(p_new)