Lab book Fluotracify
1 Technical Notes
1.1 README
1.1.1 General:
- This file corresponds to my lab book for my doctoral thesis tackling artifact correction in Fluorescence Correlation Spectroscopy (FCS) measurements using Deep Neural Networks. It also contains notes taken during the process of setting up this workflow for reproducible research.
- This file contains explanations of how things are organized, of the workflow for doing experiments, changes made to the code, and the observed behavior in the “* Data” section.
- The branching model used is described in this paper. Therefore: if you
are interested in the “* Data” section, you have to
git clone
the data branch of the repository. The main branch is clean from any results, it contains only source code and the analysis. - This project is my take on Open-notebook science. The idea was postulated in
a blog post in 2006:
… there is a URL to a laboratory notebook that is freely available and indexed on common search engines. It does not necessarily have to look like a paper notebook but it is essential that all of the information available to the researchers to make their conclusions is equally available to the rest of the world —Jean-Claude Bradley
- Proposal on how to deal with truly private data (e.g. notes from a confidential meeting with a colleague), which might otherwise be noted in a normal Lab notebook: do not include them here. Only notes relevant to the current project should be taken
1.1.2 Code block languages used in this document
# This is a sh block for shell / bash scripting. In the context of this file, # these blocks are mainly used for operations on my local computer. # In the LabBook.html rendering of this document, these blocks will have a # light green colour (#F0FBE9)
# This block can open and access tmux sessions, used for shell scripting on # remote computing clusters. # In the LabBook.html rendering of this document, these blocks will have a # distinct light green colour (#E1EED8)
# This is a python block. In the context of this file, it is seldomly used # (only for examplary scripts.) # In the LabBook.html rendering of this document, these blocks will have a # light blue colour (#E6EDF4)
# This is a jupyter-python block. The code is sent to a jupyter kernel running # on a remote high performance computing cluster. Most of my jupyter code is # executed this way. # In the LabBook.html rendering of this document, these blocks will have a # light orange colour (#FAEAE1)
;; This is a emacs-lisp block, the language used to customize Emacs, which is ;; sometimes necessary, since the reproducible workflow of this LabBook is ;; tightly integrated with Emacs and org-mode. ;; In the LabBook.html rendering of this document, these blocks will have a ;; light violet colour (#F7ECFB)
This is a literal example block. It can be used very flexibly - in the context of this document the output of most code blocks is displayed this way. In the LabBook.html rendering of this document, these blocks will have a light yellow colour (#FBFBBF)
This is a literal example block enclosed in a details block. This is useful to make the page more readable by collapsing large amounts of output. In the Labbook.html rendering of this document, the details block will have a light grey colour (#f0f0f0) and a pink color when hovering above it.
1.1.3 Experiments workflow:
- Create a new branch from
main
- Print out the git log from the latest commit and the metadata
- Call the analysis scripts, follow the principles outlined in Organization of code
- All machine learning runs are saved in
data/mlruns
, all other data indata/#experiment-name
- Add a
** exp-<date>-<name>
“ section to this file under Data - Commit/push the results of this separate branch
- Merge this new branch with the remote
data
branch
1.1.4 Example for experimental setup procedure
1.1.5 tools used (notes)
1.1.5.1 Emacs magit
gitflow-avh
(magit-flow
) to follow the flow- possibly https://github.com/magit/magit-annex for large files. Follow this: https://git-annex.branchable.com/walkthrough/
- maybe check out git-toolbelt at some point https://github.com/nvie/git-toolbelt#readme with https://nvie.com/posts/git-power-tools/
1.1.5.2 jupyter
- emacs jupyter for running and connecting to kernel on server: https://github.com/dzop/emacs-jupyter
- if I actually still would use .ipynb files, these might come handy:
- jupytext: https://github.com/mwouts/jupytext
- nbstripout: https://github.com/kynan/nbstripout
1.1.5.3 mlflow
1.1.5.4 tensorflow
1.2 Template for data entry and setup notes:
1.2.1 exp-#date-#title
1.2.1.1 git:
git log -1
1.2.1.2 System Metadata:
import os import pprint ramlist = os.popen('free -th').readlines()[-1].split()[1:] print('No of CPUs in system:', os.cpu_count()) print('No of CPUs the current process can use:', len(os.sched_getaffinity(0))) print('load average:', os.getloadavg()) print('os.uname(): ', os.uname()) print('PID of process:', os.getpid()) print('RAM total: {}, RAM used: {}, RAM free: {}'.format( ramlist[0], ramlist[1], ramlist[2])) !echo the current directory: $PWD !echo My disk usage: !df -h if _long: %conda list pprint.pprint(dict(os.environ), sort_dicts=False)
1.2.1.3 Tmux setup and scripts
rm ~/.tmux-local-socket-remote-machine REMOTE_SOCKET=$(ssh ara 'tmux ls -F "#{socket_path}"' | head -1) echo $REMOTE_SOCKET ssh ara -tfN \ -L ~/.tmux-local-socket-remote-machine:$REMOTE_SOCKET
rm: | cannot | remove | ’home/lex.tmux-local-socket-remote-machine’: | No | such | file | or | directory |
ye53nis@ara-login01.rz.uni-jena.de’s | password: | |||||||
/tmp/tmux-67339/default | ||||||||
> | ye53nis@ara-login01.rz.uni-jena.de’s | password: |
1.2.1.4 SSH tunneling
Different applications can be run on the remote compute node. If I want to access them at the local machine, and open them with the browser, I use this tunneling script.
ssh -t -t ara -L $port:localhost:$port ssh $node -L $port:Localhost:$port
Apps I use that way:
- Jupyter lab for running Python 3-Kernels
- TensorBoard
- Mlflow ui
1.2.1.5 jupyter scripts
Starting a jupyter instance on a server where the necessary libraries are installed is easy using this script:
conda activate tf export PORT=9999 export XDG_RUNTIME_DIR='' export XDG_RUNTIME_DIR="" jupyter lab --no-browser --port=$PORT
On the compute node of the HPC, the users’ environment is managed through
module files using the system Lmod. The export XDG_RUNTIME_DIR
statements
are needed because of a jupyter bug which did not let it start. Right now,
ob-tmux
does not support a :var
header like normal org-babel
does. So
the $port
variable has to be set here in the template.
Now this port has to be tunnelled on our local computer (See SSH tunneling). While the tmux session above keeps running, no matter if Emacs is running or not, this following ssh tunnel needs to be active locally to connect to the notebook. If you close Emacs, it would need to be reestablished
1.2.2 Setup notes
1.2.2.1 Setting up a tmux connection from using ob-tmux
in org-babel
- prerequisite: tmux versions need to be the same locally and on the server.
Let’s verify that now.
- the local tmux version:
tmux -V
tmux 3.0a
- the remote tmux version:
ssh ara tmux -V
ye53nis@ara-login01.rz.uni-jena.de’s password: tmux 3.0a
- the local tmux version:
- as is described in the ob-tmux readme, the following code snippet creates
a socket on the remote machine and forwards this socket to the local
machine (note that
socket_path
was introduced in tmux version 2.2)REMOTE_SOCKET=$(ssh ara 'tmux ls -F "#{socket_path}"' | head -1) echo $REMOTE_SOCKET ssh ara -tfN \ -L ~/.tmux-local-socket-remote-machine:$REMOTE_SOCKET
ye53nis@ara-login01.rz.uni-jena.de’s password: /tmp/tmux-67339/default > ye53nis@ara-login01.rz.uni-jena.de’s password: - now a new tmux session with name
ob-NAME
is created when using a code block which looks like this:#+BEGIN_SRC tmux :socket ~/.tmux-local-socket-remote-machine :session NAME
- Commands can be sent now to the remote tmux session, BUT note that the output is not printed yet
- there is a workaround for getting output back to our LabBook.org: A script
which allows to print the output from the tmux session in an
#+begin_example
-Block below the tmux block by pressingC-c C-o
orC-c C-v C-o
when the pointer is inside the tmux block.
1.2.2.2 emacs-jupyter
Setup
Emacs-jupyter
aims to be an API for a lot of functionalities of the
jupyter
project. The documentation can be found on GitHub.
- For the whole document: connect to a running jupyter instance
M-x jupyter-server-list-kernels
- set server URL, e.g.
http://localhost:8889
- set websocket URL, e.g.
http://localhost:8889
- set server URL, e.g.
- two possibilities
- kernel already exists \(\to\) list of kernels and
kernel-ID
is displayed - kernel does not exist \(\to\) prompt asks if you want to start one \(\to\)
yes \(\to\) type kernel you want to start, e.g.
Python 3
- kernel already exists \(\to\) list of kernels and
- In the subtree where you want to use
jupyter-python
blocks withorg babel
- set the
:header-args:jupyter-python :session /jpy:localhost#kernel:8889-ID
- customize the output folder using the following org-mode variable:
(setq org-babel-jupyter-resource-directory "./data/exp-test/plots")
./data/exp-test/plots
- set the
- For each individual block, the following customizations might be useful
- jupyter kernels can return multiple kinds of rich output (images,
html, …) or scalar data (plain text, numbers, lists, …). To force
a plain output, use
:results scalar
. To show the output in the minibuffer only, use:results silent
- to change the priority of different rich outputs, use
:display
header argument, e.g.:display text/plain text/html
prioritizes plain text over html. All supported mimetypes in default order:- text/org
- image/svg+xml, image/jpeg, image/png
- text/html
- text/markdown
- text/latex
- text/plain
- We can set jupyter to output pandas DataFrames as org tables
automatically using the source block header argument
:pandoc t
- useful keybindings
M-i
to open the documentation for wherever your pointer is (like pressingShift-TAB
in Jupyter notebooks)C-c C-i
to interrupt the kernel,C-c C-r
to restart the kernel
- jupyter kernels can return multiple kinds of rich output (images,
html, …) or scalar data (plain text, numbers, lists, …). To force
a plain output, use
1.2.3 Notes on archiving
1.2.3.1 Exporting the LabBook.org to html in a twbs style
- I am partial to the twitter bootstrap theme of html, since I like it’s simple design, but clear structure with a nice table of contents at the side → the following org mode extension supports a seemless export to twitter bootstrap html: https://github.com/marsmining/ox-twbs
- when installed, the export can be triggered via the command
(org-twbs-export-as-html)
or via the keyboard shortcut for exportC-c C-e
followed byw
for Twitter bootstrap andh
for saving the .html - Things to configure:
- in general, there are multiple export options: https://orgmode.org/manual/Export-Settings.html
- E.g. I set 2
#+OPTIONS
keywords at the begin of the file:toc:4
andH:4
which make sure that in my export my sidebar table of contents will show numbered headings till a depth of 4. - I configured my code blocks so that they will not be evaluated when
exporting (I would recommend this especially if you only export for
archiving) and that both the code block and the output will be exported
with the keyword:
#+PROPERTY: header-args :eval never-export :exports both
- To discriminate between code blocks for different languages I gave each
of them a distinct colour using
#+HTML_HEAD_EXTRA: <style...
(see above) - I had to configure a style for
table
, so that thedisplay: block; overflow-x: auto;
gets the table to be restricted to the width of the text and if it is larger, activates scrollingwhite-space: nowrap;
makes it that there is no wrap in a column, so it might be broader, but better readable if you have scrolling anyway
- Things to do before exporting / Troubleshooting while exporting:
- when using a dark theme for you emacs, the export of the code blocks
might show some ugly dark backgrounds from the theme. If this becomes
an issue, change to a light theme for the export with
M-x (load-theme)
and choosesolarized-light
- only in the
data
branch you set the git tags after merging. If you want to show them here, execute the corresponding function in Git TAGs - make sure your file links work properly! I recommend referencing your files relatively (e.g. [ [ f ile:./data/exp-XXXXXX-test/test.png]] without spaces). Otherwise there will be errors in your Messages buffer
- There might be errors with your code blocks
- e.g. the export function expects you to assign a default variable to your functions
- if you call a function via the
#+CALL
mechanism, it wants you to include two parentheses for the function, e.g.#+CALL: test()
- check indentation of code blocks inside lists
- add a
details
block around large output cells. This makes them expandable. I added some#+HTML_HEAD_EXTRA: <style...
inspired by alhassy. That’s how thedetails
block looks like:#+begin_details #+end_details
- If you reference a parameter with an underscore in the name, use the
org markdown tricks to style them like code (
==
or~~
), otherwise the part after the underscore will be rendered like a subscript:under_score
vs underscore
- when using a dark theme for you emacs, the export of the code blocks
might show some ugly dark backgrounds from the theme. If this becomes
an issue, change to a light theme for the export with
- Things to do after exporting:
- In my workflow, the exported
LabBook.html
with the overview of all experiments is in thedata
folder. If you move the file, you will have to fix the file links for the new location, e.g. via “Find and replace”M-%
:- if you move the org file → in the org file find
[[file:./data/
and replace with[[file:./
→ then export withC-c C-e w h
- if you export first with
C-c C-e w h
and move the html file todata
→ in the html file find./data
and replace with.
- if you move the org file → in the org file find
- In my workflow, the exported
1.3 Organization of git
1.3.1 remote/origin/main branch:
- contains all the source code in folder src/ which is used for experiments.
- contains the LabBook.org template
- contains setup- and metadata files such as MLproject or conda.yaml
- the log contains only lasting alterations on the folders and files mentioned above, which are e.g. used for conducting experiments or which introduce new features. Day-to-day changes in code
1.3.2 remote/origin/exp### branches:
- if an experiment is done, the code and templates will be branched out from main in an #experiment-name branch, ### meaning some meaningful descriptor.
- all data generated during the experiment (e.g. .csv files, plots, images, etc), is stored in a folder with the name data/#experiment-name, except machine learning-specific data and metadata from `mlflow` runs, which are saved under data/mlruns (this allows easily comparing machine learning runs with different experimental settings)
- The LabBook.org file is essential
- If possible, all code is executed from inside this file (meaning analysis scripts or calling the code from the scr/ directory).
- All other steps taken during an experiment are noted down, as well as conclusions or my thought process while conducting the experiment
- Provenance data, such as metadata about the environment the code was executed in, the command line output of the code, and some plots
1.3.3 remote/origin/develop branch:
- this is the branch I use for day to day work on features and exploration. All of my current activity can be followed here.
1.3.4 remote/origin/data branch:
- contains a full cronicle of the whole research process
- all #experiment-name branches are merged here. Afterwards the original branch is deleted and on the data branch there is a Git tag which shows the merge commit to make accessing single experiments easy.
- the develop branch is merged here as well.
1.3.5 Git TAGs
1.3.5.1 Stable versions:
1.3.5.2 All tags from git:
git push origin --tags git tag -n1
exp-200402-test Merge branch 'exp-200402-test' into data exp-200520-unet Merge branch 'exp-310520-unet' into data exp-200531-unet Merge branch 'heads/exp-310520-unet' into data exp-201231-clustsim exp-201231-clustsim exp-210204-unet Add exp-210204-unet LabBook part 3 exp-310520-unet move exp-310520-unet to data branch manually
1.4 Organization of code
1.4.1 scripts:
1.4.2 src/
1.4.2.1 fluotracify/
- imports/
- simulations/
- training/
- applications/
- doc/
- use Sphinx
- follow this: https://daler.github.io/sphinxdoc-test/includeme.html
- evtl export org-mode Readme to rst via https://github.com/msnoigrs/ox-rst
- possibly heavily use http://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
- for examples sphinx-galleries could be useful https://sphinx-gallery.github.io/stable/getting_started.html
- use Sphinx
1.4.2.2 nanosimpy/
- cloned from dwaithe with refactoring for Python 3-compatibility
1.5 Changes in this repository (without “* Data” in this file)
1.5.1 Changes in LabBook.org (without “* Data”)
1.5.1.1 2022-02-19
- Add
#+HTML_HEAD_EXTRA: <style...
fortable
to enable scrolling if the table overflows
1.5.1.2 2021-12-16
- Add
details
blocks, corresponding#+HTML_HEAD_EXTRA: <style...
and documentation in Notes on archiving
1.5.1.3 2021-08-05
- Rename
master
branch tomain
branch
1.5.1.4 2021-04-04
- Add
#+OPTIONS: H:4
and#+OPTIONS: toc:4
to show up to 4 levels of depth in the html (twbs) export of this LabBook in the table of contents at the side - I added Notes on archiving
1.5.1.5 2020-11-04
- update “jupyter scripts” in Template for data entry and setup notes:
for new conda environment on server (now
conda activate tf-nightly
)
1.5.1.6 2020-05-31
- extend general documentation in README
- Add code block examples
- extend documentation on experiment workflow
- move setup notes from README to “Template for data entry and setup notes”
- remove emacs-lisp code for custom tmux block functions (not relevant enough)
- change named “jpt-tmux” from starting a jupyter notebook to starting
jupyter lab. Load a conda environment instead of using Lmod’s
module load
1.5.1.7 2020-05-07
- extend documentation on git model
- extend documentation on jupyter setup
1.5.1.8 2020-04-22
- added parts of README which describe the experimental process
- added templates for system metadata, tmux, jupyter setup
- added organization of code
1.5.1.9 2020-03-30
- set up lab book and form git repo accoring to setup by Luka Stanisic et al
1.5.2 Changes in src/fluotracify
2 Data
2.1 exp-310520-unet
2.1.1 Connect
2.1.1.1 Tmux on Ara
ye53nis@ara-login01.rz.uni-jena.de’s | password: | |
/tmp/tmux-67339/default | ||
> | ye53nis@ara-login01.rz.uni-jena.de’s | password: |
Test:
pwd
(tensorflow_nightly) [ye53nis@login01 drmed-git]$ pwd /beegfs/ye53nis/drmed-git
pwd
2.1.1.2 Compute node for script execution
srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
(base) [ye53nis@node151 drmed-git]$
2.1.1.3 Jupyter on Ara
- Request compute node via tmux
srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
(base) [ye53nis@node189 drmed-git]$
cd /home/ye53nis/DOKTOR
- Start Jupyter Lab
[I 10:54:50.672 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/jupyterlab [I 10:54:50.673 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tensorflow_nightly/share/jupyter/lab [I 10:54:50.678 LabApp] Serving notebooks from local directory: /home/ye53nis/DOKTOR [I 10:54:50.678 LabApp] The Jupyter Notebook is running at: [I 10:54:50.678 LabApp] http://localhost:8889/?token=b210da5d453ac75f8f246e3c23917c94578c516ecfe0d95b [I 10:54:50.678 LabApp] or http://127.0.0.1:8889/?token=b210da5d453ac75f8f246e3c23917c94578c516ecfe0d95b [I 10:54:50.678 LabApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 10:54:50.724 LabApp] To access the notebook, open this file in a browser: file:///home/ye53nis/.local/share/jupyter/runtime/nbserver-365563-open.html Or copy and paste one of these URLs: http://localhost:8889/?token=b210da5d453ac75f8f246e3c23917c94578c516ecfe0d95b or http://127.0.0.1:8889/?token=b210da5d453ac75f8f246e3c23917c94578c516ecfe0d95b
sh-5.0$ | ye53nis@ara-login01.rz.uni-jena.de’s | password: | |||||||
ye53nis@node020’s | password: | channel | 3: | open | failed: | connect | failed: | Connection | refused |
channel | 3: | open | failed: | connect | failed: | Connection | refused | ||
Last | login: | Sun | Jul | 5 | 09:52:47 | 2020 | from | login01.ara |
I started a Python3 kernel using jupyter-server-list-kernels
. Then I added the
kernel ID to the :PROPERTIES:
drawer of this (and following) subtrees.
python3 7fe3d66b-d802-4f0f-b105-9536a917b816 a few seconds ago starting 0
Test:
No of CPUs in system: 72 No of CPUs the current process can use: 24 load average: (1.06, 1.01, 0.97) os.uname(): posix.uname_result(sysname='Linux', nodename='node218', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64') PID of process: 10254 RAM total: 199G, RAM used: 6.0G, RAM free: 181G the current directory: /home/ye53nis/DOKTOR My disk usage: Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 3.2G 47G 7% / devtmpfs 94G 0 94G 0% /dev tmpfs 94G 725M 94G 1% /dev/shm tmpfs 94G 75M 94G 1% /run tmpfs 94G 0 94G 0% /sys/fs/cgroup nfs02-ib:/data01 88T 61T 27T 70% /data01 nfs03-ib:/pool/work 100T 79T 22T 79% /nfsdata nfs01-ib:/home 80T 61T 20T 76% /home nfs01-ib:/cluster 2.0T 316G 1.7T 16% /cluster /dev/sda3 6.0G 412M 5.6G 7% /var /dev/sda6 169G 2.8G 166G 2% /local /dev/sda5 2.0G 34M 2.0G 2% /tmp beegfs_nodev 524T 453T 72T 87% /beegfs tmpfs 19G 0 19G 0% /run/user/67339 /bin/sh: conda: command not found {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint', 'SLURM_NODELIST': 'node218', 'SLURM_JOB_NAME': 'bash', 'XDG_SESSION_ID': '8541', 'SLURMD_NODENAME': 'node218', 'SLURM_TOPOLOGY_ADDR': 'node218', 'SLURM_NTASKS_PER_NODE': '24', 'HOSTNAME': 'login01', 'SLURM_PRIO_PROCESS': '0', 'SLURM_SRUN_COMM_PORT': '45911', 'SHELL': '/bin/bash', 'TERM': 'xterm-color', 'SLURM_JOB_QOS': 'qstand', 'SLURM_PTY_WIN_ROW': '52', 'HISTSIZE': '1000', 'TMPDIR': '/tmp', 'SLURM_TOPOLOGY_ADDR_PATTERN': 'node', 'SSH_CLIENT': '10.231.190.186 48592 22', 'CONDA_SHLVL': '2', 'CONDA_PROMPT_MODIFIER': '(tensorflow_nightly) ', 'GSETTINGS_SCHEMA_DIR_CONDA_BACKUP': '', 'WINDOWID': '0', 'OLDPWD': '/beegfs/ye53nis/drmed-git', 'QTDIR': '/usr/lib64/qt-3.3', 'QTINC': '/usr/lib64/qt-3.3/include', 'SSH_TTY': '/dev/pts/57', 'QT_GRAPHICSSYSTEM_CHECKED': '1', 'SLURM_NNODES': '1', 'USER': 'ye53nis', 'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:', 'CONDA_EXE': '/cluster/miniconda3/bin/conda', 'SLURM_STEP_NUM_NODES': '1', 'SLURM_JOBID': '392142', 'SRUN_DEBUG': '3', 'SLURM_NTASKS': '24', 'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5', 'SLURM_STEP_ID': '0', 'TMUX': '/tmp/tmux-67339/default,47311,2', '_CE_CONDA': '', 'CONDA_PREFIX_1': '/cluster/miniconda3', 'SLURM_STEP_LAUNCHER_PORT': '45911', 'SLURM_TASKS_PER_NODE': '24', 'MAIL': '/var/spool/mail/ye53nis', 'PATH': '/home/ye53nis/.conda/envs/tensorflow_nightly/bin:/home/lex/Programme/miniconda3/envs/tensorflow_env/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/home/lex/Programme/miniconda3/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin', 'GSETTINGS_SCHEMA_DIR': '/home/ye53nis/.conda/envs/tensorflow_nightly/share/glib-2.0/schemas', 'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448', 'SLURM_JOB_ID': '392142', 'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tensorflow_nightly', 'SLURM_JOB_USER': 'ye53nis', 'SLURM_STEPID': '0', 'PWD': '/home/ye53nis/DOKTOR', 'SLURM_SRUN_COMM_HOST': '192.168.192.5', 'LANG': 'en_US.UTF-8', 'SLURM_PTY_WIN_COL': '206', 'SLURM_UMASK': '0022', 'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles', 'SLURM_JOB_UID': '67339', 'LOADEDMODULES': '', 'SLURM_NODEID': '0', 'TMUX_PANE': '%2', 'SLURM_SUBMIT_DIR': '/beegfs/ye53nis/drmed-git', 'SLURM_TASK_PID': '696', 'SLURM_NPROCS': '24', 'SLURM_CPUS_ON_NODE': '24', 'SLURM_DISTRIBUTION': 'block', 'https_proxy': 'https://internet4nzm.rz.uni-jena.de:3128', 'SLURM_PROCID': '0', 'HISTCONTROL': 'ignoredups', '_CE_M': '', 'SLURM_JOB_NODELIST': 'node218', 'SLURM_PTY_PORT': '37811', 'HOME': '/home/ye53nis', 'SHLVL': '3', 'SLURM_LOCALID': '0', 'SLURM_JOB_GID': '13280', 'SLURM_JOB_CPUS_PER_NODE': '24', 'SLURM_CLUSTER_NAME': 'hpc', 'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23', 'SLURM_SUBMIT_HOST': 'login01', 'SLURM_JOB_PARTITION': 's_standard', 'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3', 'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python', 'LOGNAME': 'ye53nis', 'SLURM_STEP_NUM_TASKS': '24', 'QTLIB': '/usr/lib64/qt-3.3/lib', 'SLURM_JOB_ACCOUNT': 'iaob', 'SLURM_JOB_NUM_NODES': '1', 'MODULESHOME': '/usr/share/Modules', 'CONDA_DEFAULT_ENV': 'tensorflow_nightly', 'LESSOPEN': '||/usr/bin/lesspipe.sh %s', 'SLURM_STEP_TASKS_PER_NODE': '24', 'PORT': '8889', 'SLURM_STEP_NODELIST': 'node218', 'DISPLAY': ':0', 'XDG_RUNTIME_DIR': '', 'XAUTHORITY': '/tmp/xauth-1000-_0', 'BASH_FUNC_module()': '() { eval `/usr/bin/modulecmd bash $*`\n}', '_': '/home/ye53nis/.conda/envs/tensorflow_nightly/bin/jupyter', 'KERNEL_LAUNCH_TIMEOUT': '40', 'JPY_PARENT_PID': '7566', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
2.1.1.4 Tensorboard tunnel, Mlflow ui tunnel
sh-5.0$ | ye53nis@ara-login01.rz.uni-jena.de’s | password: | ||||||
ye53nis@node171’s | password: | |||||||
Last | login: | Sun | May | 31 | 15:29:02 | 2020 | from | login01.ara |
2.1.2 git exp 1
git status git log -1
(tensorflow_nightly) [ye53nis@node171 drmed-git]$ git status # On branch exp-310520-unet # Untracked files: # (use "git add <file>..." to include in what will be committed) # # data/ # experiment_params.csv # mlruns/ # tramp.YDPCnB nothing added to commit but untracked files present (use "git add" to track) (tensorflow_nightly) [ye53nis@node171 drmed-git]$ git log -1 commit 2225d6fa18cca9044960b6e86a56ec9fb4362d5d Author: Apoplex <oligolex@vivaldi.net> Date: Sun May 31 21:34:12 2020 +0200 Change learning rate
2.1.3 mlflow environment variables
conda activate tensorflow_nightly cd /beegfs/ye53nis/drmed-git export MLFLOW_EXPERIMENT_NAME=exp-310520-unet export MLFLOW_TRACKING_URI=file:./data/mlruns mkdir data/exp-310520-unet
(tensorflow_nightly) [ye53nis@node171 drmed-git]$
2.1.4 Learning rate schedule
learning_rate = 0.2 if epoch > 10: learning_rate = 0.02 if epoch > 20: learning_rate = 0.01 if epoch > 40: learning_rate = 0.001 if epoch > 60: learning_rate = 0.0001 if epoch > 80: learning_rate = 0.00001
2.1.5 test runs
2.1.5.1 no 1 - experiment creation failed
mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=2 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Mar2020 -P steps_per_epoch=400 -P validation_steps=200
(tensorflow_nightly) [ye53nis@node171 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=2 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Mar2020 -P steps_per_epoch=400 -P validation_steps=200 WARNING:root:Malformed experiment '1'. Detailed error Yaml file './data/mlruns/1/meta.yaml' does not exist. Traceback (most recent call last): File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 197, in list_experiments experiment = self._get_experiment(exp_id, view_type) File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 260, in _get_experiment meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME) File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 167, in read_yaml raise MissingConfigException("Yaml file '%s' does not exist." % file_path) mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/1/meta.yaml' does not exist. INFO: 'exp-310520-unet' does not exist. Creating a new experiment WARNING:root:Malformed experiment '1'. Detailed error Yaml file './data/mlruns/1/meta.yaml' does not exist. Traceback (most recent call last): File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 197, in list_experiments experiment = self._get_experiment(exp_id, view_type) File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 260, in _get_experiment meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME) File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 167, in read_yaml raise MissingConfigException("Yaml file '%s' does not exist." % file_path) mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/1/meta.yaml' does not exist. WARNING:root:Malformed experiment '1'. Detailed error Yaml file './data/mlruns/1/meta.yaml' does not exist. Traceback (most recent call last): File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 197, in list_experiments experiment = self._get_experiment(exp_id, view_type) File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 260, in _get_experiment meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME) File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 167, in read_yaml raise MissingConfigException("Yaml file '%s' does not exist." % file_path) mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/1/meta.yaml' does not exist. 2020/05/31 14:00:34 INFO mlflow.projects: === Created directory /tmp/tmpfhabm3p4 for downloading remote URIs passed to arguments of type 'path' === 2020/05/31 14:00:34 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/f luotracify/training/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 2 /beegfs/ye53nis/saves/firstartifact_Mar2020 400 200' in run with ID 'b37371694a004638a6cd7a94d4d2e77f' === 2020-05-31 14:00:38.667018: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory 2020-05-31 14:00:38.667107: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favo ur of importlib; see the module's documentation for alternative uses import imp 2.3.0-dev20200527 2020-05-31 14:00:42.422965: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2020-05-31 14:00:42.422998: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303) 2020-05-31 14:00:42.423020: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node171): /proc/driver/nvidia/version does not exist GPUs: [] train 0 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set027.csv train 1 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set087.csv train 2 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set003.csv train 3 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set056.csv train 4 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set076.csv train 5 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set094.csv train 6 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set017.csv train 7 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set074.csv train 8 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set055.csv train 9 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set096.csv train 10 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set054.csv train 11 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set093.csv train 12 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set079.csv train 13 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set014.csv train 14 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set008.csv train 15 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set031.csv train 16 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set023.csv train 17 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set025.csv train 18 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set034.csv train 19 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set009.csv train 20 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set044.csv train 21 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set063.csv train 22 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set004.csv train 23 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set072.csv train 24 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set046.csv train 25 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set049.csv train 26 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set007.csv train 27 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set100.csv train 28 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set083.csv train 29 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set077.csv train 30 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set061.csv train 31 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set081.csv train 32 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set091.csv train 33 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set069.csv train 34 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set052.csv train 35 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set028.csv train 36 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set019.csv train 37 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set057.csv train 38 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set064.csv train 39 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set075.csv train 40 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set002.csv train 41 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set062.csv train 42 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set043.csv train 43 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set042.csv train 44 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set005.csv train 45 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set016.csv train 46 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set018.csv train 47 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set041.csv train 48 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set039.csv train 49 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set006.csv train 50 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set092.csv train 51 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set060.csv train 52 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set001.csv train 53 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set035.csv train 54 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set029.csv train 55 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set051.csv train 56 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set012.csv train 57 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set036.csv train 58 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set024.csv train 59 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set053.csv train 60 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set011.csv train 61 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set032.csv train 62 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set067.csv train 63 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set058.csv train 64 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set080.csv train 65 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set086.csv train 66 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set033.csv train 67 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set085.csv train 68 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set015.csv train 69 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set090.csv train 70 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set020.csv train 71 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set030.csv train 72 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set050.csv train 73 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set098.csv train 74 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set099.csv train 75 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set070.csv train 76 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set021.csv train 77 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set095.csv train 78 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set073.csv train 79 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set078.csv test 80 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set026.csv test 81 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set038.csv test 82 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set082.csv test 83 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set047.csv test 84 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set040.csv test 85 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set066.csv test 86 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set059.csv test 87 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set013.csv test 88 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set089.csv test 89 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set071.csv test 90 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set088.csv test 91 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set037.csv test 92 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set022.csv test 93 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set084.csv test 94 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set010.csv test 95 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set097.csv test 96 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set068.csv test 97 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set065.csv test 98 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set048.csv test 99 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set045.csv shapes of feature dataframe: (16384, 8000) and label dataframe: (16384, 8000) shapes of feature dataframe: (16384, 2000) and label dataframe: (16384, 2000) for each 20,000 timestap trace there are the following numbers of corrupted timesteps: label001_1 16384 label001_1 16384 label001_1 16384 label001_1 16384 label001_1 16384 dtype: int64 2020-05-31 14:05:15.534482: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical opera tions: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2020-05-31 14:05:15.544530: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz 2020-05-31 14:05:15.545867: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x557b10ed44b0 initialized for platform Host (this does not guarantee that XLA will be used). Devices: 2020-05-31 14:05:15.545896: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version number of training examples: 6400, number of validation examples: 1600 ------------------------ number of test examples: 2000 input - shape: (None, 16384, 1) output - shape: (None, 16384, 1) 2020-05-31 14:05:22.334555: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started. /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the A BCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working if not isinstance(wrapped_dict, collections.Mapping): /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Pytho n 3.0, use inspect.signature() or inspect.getfullargspec() all_param_names, _, _, all_default_values = inspect.getargspec(fn) # pylint: disable=W1505 Epoch 1/2 /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working if not isinstance(values, collections.Sequence): 1/400 [..............................] - ETA: 0s - loss: 0.7153 - tp: 66972.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 14948.0000 - precision: 1.0000 - recall: 0.8175 - accuracy: 0.8175 - auc: 0.0000e+0 02020-05-31 14:05:34.823955: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started. WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager .profiler) is deprecated and will be removed after 2020-07-01. Instructions for updating: use `tf.profiler.experimental.stop` instead. 2020-05-31 14:05:36.334154: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_14_05_36 2020-05-31 14:05:36.348656: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.trace.json.gz 2020-05-31 14:05:36.375326: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_14_05_36 2020-05-31 14:05:36.375452: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.memory _profile.json.gz 2020-05-31 14:05:36.377489: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_14_05_36Dumped tool data for xplane.pb to /tmp/tb/trai n/plugins/profile/2020_05_31_14_05_36/node171.xplane.pb Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.overview_page.pb Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.input_pipeline.pb Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.tensorflow_stats.pb Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.kernel_stats.pb 400/400 [==============================] - 651s 2s/step - loss: 0.0019 - tp: 32753052.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 14948.0000 - precision: 1.0000 - recall: 0.9995 - accuracy: 0.9995 - auc: 0 .0000e+00 - val_loss: 7.3428e-23 - val_tp: 16384000.0000 - val_fp: 0.0000e+00 - val_tn: 0.0000e+00 - val_fn: 0.0000e+00 - val_precision: 1.0000 - val_recall: 1.0000 - val_accuracy: 1.0000 - val_auc: 0.0000e +00 Epoch 2/2 400/400 [==============================] - 645s 2s/step - loss: 2.1658e-09 - tp: 32768000.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 0.0000e+00 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - au c: 0.0000e+00 - val_loss: 8.7165e-23 - val_tp: 16384000.0000 - val_fp: 0.0000e+00 - val_tn: 0.0000e+00 - val_fn: 0.0000e+00 - val_precision: 1.0000 - val_recall: 1.0000 - val_accuracy: 1.0000 - val_auc: 0.0 000e+00 400/400 [==============================] - 119s 298ms/step - loss: 9.0078e-23 - tp: 32768000.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 0.0000e+00 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - auc: 0.0000e+00 2020/05/31 14:29:15 INFO mlflow.projects: === Run (ID 'b37371694a004638a6cd7a94d4d2e77f') succeeded === (tensorflow_nightly) [ye53nis@node171 drmed-git]$ Regard
mlflow ui
(tensorflow_nightly) [ye53nis@node171 drmed-git]$ mlflow ui [2020-05-31 15:27:54 +0200] [200865] [INFO] Starting gunicorn 20.0.4 [2020-05-31 15:27:54 +0200] [200865] [INFO] Listening at: http://127.0.0.1:5000 (200865) [2020-05-31 15:27:54 +0200] [200865] [INFO] Using worker: sync [2020-05-31 15:27:54 +0200] [200871] [INFO] Booting worker with pid: 200871
2.1.5.2 no 2
mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=2 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Mar2020 -P steps_per_epoch=10 -P validation_steps=10
(tensorflow_nightly) [ye53nis@node171 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=2 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Mar2020 -P steps_per_epoch=10 -P validation_steps=10 INFO: 'exp-310520-unet' does not exist. Creating a new experiment 2020/05/31 15:45:30 INFO mlflow.projects: === Created directory /tmp/tmp2vv5kiic for downloading remote URIs passed to arguments of type 'path' === 2020/05/31 15:45:30 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/f luotracify/training/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 2 /beegfs/ye53nis/saves/firstartifact_Mar2020 10 10' in run with ID '7f23f6ba7a244914b3cbbebd731d50a1' === 2020-05-31 15:45:31.886019: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory 2020-05-31 15:45:31.886068: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favo ur of importlib; see the module's documentation for alternative uses import imp 2.3.0-dev20200527 2020-05-31 15:45:35.151500: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2020-05-31 15:45:35.151549: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303) 2020-05-31 15:45:35.151589: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node171): /proc/driver/nvidia/version does not exist GPUs: [] train 0 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set027.csv train 1 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set087.csv train 2 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set003.csv train 3 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set056.csv train 4 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set076.csv train 5 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set094.csv train 6 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set017.csv train 7 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set074.csv train 8 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set055.csv train 9 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set096.csv train 10 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set054.csv train 11 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set093.csv train 12 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set079.csv train 13 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set014.csv train 14 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set008.csv train 15 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set031.csv train 16 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set023.csv train 17 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set025.csv train 18 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set034.csv train 19 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set009.csv train 20 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set044.csv train 21 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set063.csv train 22 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set004.csv train 23 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set072.csv train 24 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set046.csv train 25 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set049.csv train 26 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set007.csv train 27 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set100.csv train 28 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set083.csv train 29 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set077.csv train 30 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set061.csv train 31 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set081.csv train 32 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set091.csv train 33 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set069.csv train 34 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set052.csv train 35 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set028.csv train 36 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set019.csv train 37 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set057.csv train 38 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set064.csv train 39 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set075.csv train 40 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set002.csv train 41 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set062.csv train 42 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set043.csv train 43 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set042.csv train 44 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set005.csv train 45 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set016.csv train 46 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set018.csv train 47 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set041.csv train 48 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set039.csv train 49 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set006.csv train 50 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set092.csv train 51 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set060.csv train 52 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set001.csv train 53 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set035.csv train 54 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set029.csv train 55 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set051.csv train 56 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set012.csv train 57 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set036.csv train 58 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set024.csv train 59 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set053.csv train 60 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set011.csv train 61 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set032.csv train 62 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set067.csv train 63 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set058.csv train 64 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set080.csv train 65 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set086.csv train 66 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set033.csv train 67 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set085.csv train 68 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set015.csv train 69 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set090.csv train 70 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set020.csv train 71 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set030.csv train 72 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set050.csv train 73 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set098.csv train 74 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set099.csv train 75 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set070.csv train 76 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set021.csv train 77 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set095.csv train 78 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set073.csv train 79 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set078.csv test 80 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set026.csv test 81 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set038.csv test 82 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set082.csv test 83 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set047.csv test 84 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set040.csv test 85 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set066.csv test 86 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set059.csv test 87 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set013.csv test 88 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set089.csv test 89 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set071.csv test 90 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set088.csv test 91 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set037.csv test 92 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set022.csv test 93 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set084.csv test 94 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set010.csv test 95 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set097.csv test 96 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set068.csv test 97 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set065.csv test 98 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set048.csv test 99 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set045.csv shapes of feature dataframe: (16384, 8000) and label dataframe: (16384, 8000) shapes of feature dataframe: (16384, 2000) and label dataframe: (16384, 2000) for each 20,000 timestap trace there are the following numbers of corrupted timesteps: label001_1 16384 label001_1 16384 label001_1 16384 label001_1 16384 label001_1 16384 dtype: int64 2020-05-31 15:49:25.643578: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical opera tions: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2020-05-31 15:49:25.653635: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz 2020-05-31 15:49:25.655125: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x556ab2694730 initialized for platform Host (this does not guarantee that XLA will be used). Devices: 2020-05-31 15:49:25.655169: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version number of training examples: 6400, number of validation examples: 1600 ------------------------ number of test examples: 2000 input - shape: (None, 16384, 1) output - shape: (None, 16384, 1) 2020-05-31 15:49:32.395226: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started. /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the A BCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working if not isinstance(wrapped_dict, collections.Mapping): /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Pytho n 3.0, use inspect.signature() or inspect.getfullargspec() all_param_names, _, _, all_default_values = inspect.getargspec(fn) # pylint: disable=W1505 Epoch 1/2 /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working if not isinstance(values, collections.Sequence): 1/10 [==>...........................] - ETA: 0s - loss: 0.5648 - tp: 72554.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 9366.0000 - precision: 1.0000 - recall: 0.8857 - accuracy: 0.8857 - auc: 0.0000e+0020 20-05-31 15:49:44.598769: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started. WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager .profiler) is deprecated and will be removed after 2020-07-01. Instructions for updating: use `tf.profiler.experimental.stop` instead. 2020-05-31 15:49:46.123954: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_15_49_46 2020-05-31 15:49:46.137599: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.trace.json.gz 2020-05-31 15:49:46.163428: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_15_49_46 2020-05-31 15:49:46.163531: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.memory _profile.json.gz 2020-05-31 15:49:46.165569: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_15_49_46Dumped tool data for xplane.pb to /tmp/tb/trai n/plugins/profile/2020_05_31_15_49_46/node171.xplane.pb Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.overview_page.pb Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.input_pipeline.pb Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.tensorflow_stats.pb Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.kernel_stats.pb 10/10 [==============================] - 23s 2s/step - loss: 0.0638 - tp: 809834.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 9366.0000 - precision: 1.0000 - recall: 0.9886 - accuracy: 0.9886 - auc: 0.0000e +00 - val_loss: 0.0000e+00 - val_tp: 819200.0000 - val_fp: 0.0000e+00 - val_tn: 0.0000e+00 - val_fn: 0.0000e+00 - val_precision: 1.0000 - val_recall: 1.0000 - val_accuracy: 1.0000 - val_auc: 0.0000e+00 Epoch 2/2 10/10 [==============================] - 18s 2s/step - loss: 6.4955e-17 - tp: 819200.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 0.0000e+00 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - auc: 0. 0000e+00 - val_loss: 0.0000e+00 - val_tp: 819200.0000 - val_fp: 0.0000e+00 - val_tn: 0.0000e+00 - val_fn: 0.0000e+00 - val_precision: 1.0000 - val_recall: 1.0000 - val_accuracy: 1.0000 - val_auc: 0.0000e+00 400/400 [==============================] - 120s 300ms/step - loss: 0.0000e+00 - tp: 32768000.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 0.0000e+00 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - auc: 0.0000e+00 2020/05/31 15:52:36 INFO mlflow.projects: === Run (ID '7f23f6ba7a244914b3cbbebd731d50a1') succeeded ===
These two test runs used the wrong dataset! the firstartifact_Mar2020
dataset
is bright clusters, but the label is the uncorrupted trace, not just the
artifact information. This dataset is meant for a Variational
Autoencoder-Training.
2.1.6 experimental run
mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=70 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=400 -P validation_steps=200
(tensorflow_nightly) [ye53nis@node171 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=70 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 - P steps_per_epoch=400 -P validation_steps=200 2020/05/31 21:39:53 INFO mlflow.projects: === Created directory /tmp/tmpnc10f5ut for downloading remote URIs passed to arguments of type 'path' === 2020/05/31 21:39:53 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/f luotracify/training/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 70 /beegfs/ye53nis/saves/firstartefact_Sep2019 400 200' in run with ID '1aefda1366f04f5da5d1fc2241ad9208' === 2020-05-31 21:39:54.753597: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory 2020-05-31 21:39:54.753646: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favo ur of importlib; see the module's documentation for alternative uses import imp 2.3.0-dev20200527 2020-05-31 21:39:57.636018: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2020-05-31 21:39:57.636052: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303) 2020-05-31 21:39:57.636075: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node171): /proc/driver/nvidia/version does not exist GPUs: [] train 0 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set027.csv train 1 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set087.csv train 2 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set003.csv train 3 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set056.csv train 4 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set076.csv train 5 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set094.csv train 6 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set017.csv train 7 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set074.csv train 8 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set055.csv train 9 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set096.csv train 10 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set054.csv train 11 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set093.csv train 12 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set079.csv train 13 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set014.csv train 14 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set008.csv train 15 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set031.csv train 16 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set023.csv train 17 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set025.csv train 18 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set034.csv train 19 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set009.csv train 20 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set044.csv train 21 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set063.csv train 22 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set004.csv train 23 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set072.csv train 24 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set046.csv train 25 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set049.csv train 26 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set007.csv train 27 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set100.csv train 28 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set083.csv train 29 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set077.csv train 30 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set061.csv train 31 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set081.csv train 32 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set091.csv train 33 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set069.csv train 34 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set052.csv train 35 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set028.csv train 36 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set019.csv train 37 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set057.csv train 38 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set064.csv train 39 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set075.csv train 40 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set002.csv train 41 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set062.csv train 42 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set043.csv train 43 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set042.csv train 44 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set005.csv train 45 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set016.csv train 46 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set018.csv train 47 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set041.csv train 48 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set039.csv train 49 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set006.csv train 50 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set092.csv train 51 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set060.csv train 52 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set001.csv train 53 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set035.csv train 54 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set029.csv train 55 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set051.csv train 56 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set012.csv train 57 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set036.csv train 58 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set024.csv train 59 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set053.csv train 60 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set011.csv train 61 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set032.csv train 62 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set067.csv train 63 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set058.csv train 64 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set080.csv train 65 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set086.csv train 66 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set033.csv train 67 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set085.csv train 68 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set015.csv train 69 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set090.csv train 70 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set020.csv train 71 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set030.csv train 72 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set050.csv train 73 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set098.csv train 74 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set099.csv train 75 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set070.csv train 76 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set021.csv train 77 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set095.csv train 78 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set073.csv train 79 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set078.csv test 80 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set026.csv test 81 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set038.csv test 82 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set082.csv test 83 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set047.csv test 84 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set040.csv test 85 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set066.csv test 86 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set059.csv test 87 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set013.csv test 88 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set089.csv test 89 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set071.csv test 90 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set088.csv test 91 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set037.csv test 92 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set022.csv test 93 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set084.csv test 94 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set010.csv test 95 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set097.csv test 96 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set068.csv test 97 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set065.csv test 98 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set048.csv test 99 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set045.csv shapes of feature dataframe: (20000, 8000) and label dataframe: (20000, 8000) shapes of feature dataframe: (20000, 2000) and label dataframe: (20000, 2000) for each 20,000 timestap trace there are the following numbers of corrupted timesteps: label001_1 6286 label001_1 2568 label001_1 4495 label001_1 4414 label001_1 1105 dtype: int64 2020-05-31 21:44:15.811359: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical opera tions: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2020-05-31 21:44:15.820877: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz 2020-05-31 21:44:15.822374: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55acbe3932e0 initialized for platform Host (this does not guarantee that XLA will be used). Devices: 2020-05-31 21:44:15.822402: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version number of training examples: 6400, number of validation examples: 1600 ------------------------ number of test examples: 2000 input - shape: (None, 16384, 1) output - shape: (None, 16384, 1) 2020-05-31 21:44:19.667769: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started. /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the A BCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working if not isinstance(wrapped_dict, collections.Mapping): /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Pytho n 3.0, use inspect.signature() or inspect.getfullargspec() all_param_names, _, _, all_default_values = inspect.getargspec(fn) # pylint: disable=W1505 Epoch 1/70 /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working if not isinstance(values, collections.Sequence): 1/400 [..............................] - ETA: 0s - loss: 1.5974 - tp: 3783.0000 - fp: 23102.0000 - tn: 47580.0000 - fn: 7455.0000 - precision: 0.1407 - recall: 0.3366 - accuracy: 0.6270 - auc: 0.51772020- 05-31 21:44:31.349376: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started. WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager .profiler) is deprecated and will be removed after 2020-07-01. Instructions for updating: use `tf.profiler.experimental.stop` instead. 2020-05-31 21:44:32.843703: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_21_44_32 2020-05-31 21:44:32.857345: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.trace.json.gz 2020-05-31 21:44:32.882350: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_21_44_32 2020-05-31 21:44:32.882475: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.memory _profile.json.gz 2020-05-31 21:44:32.884516: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_21_44_32Dumped tool data for xplane.pb to /tmp/tb/trai n/plugins/profile/2020_05_31_21_44_32/node171.xplane.pb Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.overview_page.pb Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.input_pipeline.pb Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.tensorflow_stats.pb Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.kernel_stats.pb 400/400 [==============================] - 648s 2s/step - loss: 1.2332 - tp: 3788781.0000 - fp: 1219922.0000 - tn: 24049440.0000 - fn: 3709858.0000 - precision: 0.7564 - recall: 0.5053 - accuracy: 0.8496 - auc: 0.8489 - val_loss: 322.0566 - val_tp: 3646493.0000 - val_fp: 12737507.0000 - val_tn: 0.0000e+00 - val_fn: 0.0000e+00 - val_precision: 0.2226 - val_recall: 1.0000 - val_accuracy: 0.2226 - val_auc: 0.500 0 Epoch 2/70 400/400 [==============================] - 644s 2s/step - loss: 1.0109 - tp: 5005706.0000 - fp: 1436756.0000 - tn: 23682896.0000 - fn: 2642650.0000 - precision: 0.7770 - recall: 0.6545 - accuracy: 0.8755 - auc: 0.8979 - val_loss: 606.1023 - val_tp: 3756979.0000 - val_fp: 12626343.0000 - val_tn: 645.0000 - val_fn: 33.0000 - val_precision: 0.2293 - val_recall: 1.0000 - val_accuracy: 0.2293 - val_auc: 0.5000 Epoch 3/70 400/400 [==============================] - 628s 2s/step - loss: 0.8285 - tp: 5051785.0000 - fp: 1374618.0000 - tn: 23855938.0000 - fn: 2485671.0000 - precision: 0.7861 - recall: 0.6702 - accuracy: 0.8822 - auc: 0.9026 - val_loss: 10.0331 - val_tp: 3878641.0000 - val_fp: 12500019.0000 - val_tn: 4304.0000 - val_fn: 1036.0000 - val_precision: 0.2368 - val_recall: 0.9997 - val_accuracy: 0.2370 - val_auc: 0.5000 Epoch 4/70 400/400 [==============================] - 629s 2s/step - loss: 0.6738 - tp: 5537594.0000 - fp: 1337082.0000 - tn: 23959264.0000 - fn: 1934060.0000 - precision: 0.8055 - recall: 0.7411 - accuracy: 0.9002 - auc: 0.9303 - val_loss: 1.2653 - val_tp: 3303018.0000 - val_fp: 1870945.0000 - val_tn: 10869556.0000 - val_fn: 340481.0000 - val_precision: 0.6384 - val_recall: 0.9066 - val_accuracy: 0.8650 - val_auc: 0.92 24 Epoch 5/70 400/400 [==============================] - 631s 2s/step - loss: 0.5958 - tp: 5587069.0000 - fp: 1162314.0000 - tn: 24313792.0000 - fn: 1704840.0000 - precision: 0.8278 - recall: 0.7662 - accuracy: 0.9125 - auc: 0.9409 - val_loss: 1.2564 - val_tp: 2402186.0000 - val_fp: 760086.0000 - val_tn: 11788196.0000 - val_fn: 1433532.0000 - val_precision: 0.7596 - val_recall: 0.6263 - val_accuracy: 0.8661 - val_auc: 0.84 39 Epoch 6/70 400/400 [==============================] - 632s 2s/step - loss: 0.5248 - tp: 6187578.0000 - fp: 1102970.0000 - tn: 24040936.0000 - fn: 1436530.0000 - precision: 0.8487 - recall: 0.8116 - accuracy: 0.9225 - auc: 0.9536 - val_loss: 3.8886 - val_tp: 3699587.0000 - val_fp: 5786776.0000 - val_tn: 6872632.0000 - val_fn: 25005.0000 - val_precision: 0.3900 - val_recall: 0.9933 - val_accuracy: 0.6453 - val_auc: 0.8590 Epoch 7/70 400/400 [==============================] - 629s 2s/step - loss: 0.5417 - tp: 6075103.0000 - fp: 1198710.0000 - tn: 23976388.0000 - fn: 1517805.0000 - precision: 0.8352 - recall: 0.8001 - accuracy: 0.9171 - auc: 0.9507 - val_loss: 0.6575 - val_tp: 3549691.0000 - val_fp: 1710464.0000 - val_tn: 10816997.0000 - val_fn: 306848.0000 - val_precision: 0.6748 - val_recall: 0.9204 - val_accuracy: 0.8769 - val_auc: 0.95 25 Epoch 8/70 400/400 [==============================] - 630s 2s/step - loss: 0.5261 - tp: 6041081.0000 - fp: 1000532.0000 - tn: 24306236.0000 - fn: 1420140.0000 - precision: 0.8579 - recall: 0.8097 - accuracy: 0.9261 - auc: 0.9527 - val_loss: 21.2177 - val_tp: 3715793.0000 - val_fp: 9558636.0000 - val_tn: 3103000.0000 - val_fn: 6571.0000 - val_precision: 0.2799 - val_recall: 0.9982 - val_accuracy: 0.4162 - val_auc: 0.6830 Epoch 9/70 400/400 [==============================] - 634s 2s/step - loss: 0.5777 - tp: 5925253.0000 - fp: 1206548.0000 - tn: 23980040.0000 - fn: 1656156.0000 - precision: 0.8308 - recall: 0.7816 - accuracy: 0.9126 - auc: 0.9467 - val_loss: 1.4550 - val_tp: 2525888.0000 - val_fp: 1794119.0000 - val_tn: 10974268.0000 - val_fn: 1089725.0000 - val_precision: 0.5847 - val_recall: 0.6986 - val_accuracy: 0.8240 - val_auc: 0.8 157 Epoch 10/70 400/400 [==============================] - 633s 2s/step - loss: 0.4670 - tp: 6137276.0000 - fp: 1085998.0000 - tn: 24173720.0000 - fn: 1370997.0000 - precision: 0.8497 - recall: 0.8174 - accuracy: 0.9250 - auc: 0.9596 - val_loss: 0.4228 - val_tp: 3267331.0000 - val_fp: 512452.0000 - val_tn: 12134530.0000 - val_fn: 469687.0000 - val_precision: 0.8644 - val_recall: 0.8743 - val_accuracy: 0.9401 - val_auc: 0.958 6 Epoch 11/70 400/400 [==============================] - 636s 2s/step - loss: 0.4183 - tp: 6387249.0000 - fp: 950432.0000 - tn: 24334356.0000 - fn: 1095980.0000 - precision: 0.8705 - recall: 0.8535 - accuracy: 0.9375 - a uc: 0.9662 - val_loss: 2.5835 - val_tp: 3791404.0000 - val_fp: 10983628.0000 - val_tn: 1606117.0000 - val_fn: 2851.0000 - val_precision: 0.2566 - val_recall: 0.9992 - val_accuracy: 0.3294 - val_auc: 0.9205 Epoch 12/70 400/400 [==============================] - 633s 2s/step - loss: 0.3622 - tp: 6622657.0000 - fp: 875498.0000 - tn: 24381258.0000 - fn: 888583.0000 - precision: 0.8832 - recall: 0.8817 - accuracy: 0.9462 - au c: 0.9716 - val_loss: 0.3789 - val_tp: 3055309.0000 - val_fp: 146845.0000 - val_tn: 12452879.0000 - val_fn: 728967.0000 - val_precision: 0.9541 - val_recall: 0.8074 - val_accuracy: 0.9465 - val_auc: 0.9659 Epoch 13/70 400/400 [==============================] - 631s 2s/step - loss: 0.3590 - tp: 6660677.0000 - fp: 869994.0000 - tn: 24335574.0000 - fn: 901756.0000 - precision: 0.8845 - recall: 0.8808 - accuracy: 0.9459 - au c: 0.9722 - val_loss: 0.4284 - val_tp: 2585078.0000 - val_fp: 26120.0000 - val_tn: 12713922.0000 - val_fn: 1058880.0000 - val_precision: 0.9900 - val_recall: 0.7094 - val_accuracy: 0.9338 - val_auc: 0.9595 Epoch 14/70 400/400 [==============================] - 631s 2s/step - loss: 0.3391 - tp: 6632643.0000 - fp: 838058.0000 - tn: 24461996.0000 - fn: 835290.0000 - precision: 0.8878 - recall: 0.8881 - accuracy: 0.9489 - au c: 0.9747 - val_loss: 0.3533 - val_tp: 3003363.0000 - val_fp: 127052.0000 - val_tn: 12492719.0000 - val_fn: 760866.0000 - val_precision: 0.9594 - val_recall: 0.7979 - val_accuracy: 0.9458 - val_auc: 0.9766 Epoch 15/70 400/400 [==============================] - 634s 2s/step - loss: 0.3422 - tp: 6682203.0000 - fp: 861078.0000 - tn: 24351496.0000 - fn: 873232.0000 - precision: 0.8858 - recall: 0.8844 - accuracy: 0.9471 - au c: 0.9741 - val_loss: 0.3630 - val_tp: 2919284.0000 - val_fp: 89104.0000 - val_tn: 12597566.0000 - val_fn: 778046.0000 - val_precision: 0.9704 - val_recall: 0.7896 - val_accuracy: 0.9471 - val_auc: 0.9763 Epoch 16/70 400/400 [==============================] - 632s 2s/step - loss: 0.3356 - tp: 6670288.0000 - fp: 818050.0000 - tn: 24453228.0000 - fn: 826432.0000 - precision: 0.8908 - recall: 0.8898 - accuracy: 0.9498 - au c: 0.9748 - val_loss: 0.7556 - val_tp: 1874704.0000 - val_fp: 1072.0000 - val_tn: 12589343.0000 - val_fn: 1918881.0000 - val_precision: 0.9994 - val_recall: 0.4942 - val_accuracy: 0.8828 - val_auc: 0.9213 Epoch 17/70 400/400 [==============================] - 629s 2s/step - loss: 0.3260 - tp: 6760875.0000 - fp: 795293.0000 - tn: 24413246.0000 - fn: 798585.0000 - precision: 0.8947 - recall: 0.8944 - accuracy: 0.9514 - au c: 0.9761 - val_loss: 0.4649 - val_tp: 2671759.0000 - val_fp: 36166.0000 - val_tn: 12592753.0000 - val_fn: 1083322.0000 - val_precision: 0.9866 - val_recall: 0.7115 - val_accuracy: 0.9317 - val_auc: 0.9546 Epoch 18/70 400/400 [==============================] - 631s 2s/step - loss: 0.3309 - tp: 6559233.0000 - fp: 790466.0000 - tn: 24604904.0000 - fn: 813389.0000 - precision: 0.8924 - recall: 0.8897 - accuracy: 0.9511 - au c: 0.9751 - val_loss: 0.4767 - val_tp: 2812359.0000 - val_fp: 90282.0000 - val_tn: 12389838.0000 - val_fn: 1091521.0000 - val_precision: 0.9689 - val_recall: 0.7204 - val_accuracy: 0.9279 - val_auc: 0.9586 Epoch 19/70 400/400 [==============================] - 631s 2s/step - loss: 0.3375 - tp: 6783791.0000 - fp: 866853.0000 - tn: 24263056.0000 - fn: 854305.0000 - precision: 0.8867 - recall: 0.8882 - accuracy: 0.9475 - au c: 0.9752 - val_loss: 0.3983 - val_tp: 2551077.0000 - val_fp: 35530.0000 - val_tn: 12721430.0000 - val_fn: 1075963.0000 - val_precision: 0.9863 - val_recall: 0.7033 - val_accuracy: 0.9322 - val_auc: 0.9710 Epoch 20/70 400/400 [==============================] - 632s 2s/step - loss: 0.3254 - tp: 6564303.0000 - fp: 830891.0000 - tn: 24563264.0000 - fn: 809541.0000 - precision: 0.8876 - recall: 0.8902 - accuracy: 0.9499 - au c: 0.9757 - val_loss: 0.5314 - val_tp: 2046949.0000 - val_fp: 3561.0000 - val_tn: 12714086.0000 - val_fn: 1619404.0000 - val_precision: 0.9983 - val_recall: 0.5583 - val_accuracy: 0.9009 - val_auc: 0.9545 Epoch 21/70 400/400 [==============================] - 640s 2s/step - loss: 0.3196 - tp: 6686380.0000 - fp: 775563.0000 - tn: 24496560.0000 - fn: 809502.0000 - precision: 0.8961 - recall: 0.8920 - accuracy: 0.9516 - au c: 0.9765 - val_loss: 0.4055 - val_tp: 2871943.0000 - val_fp: 218969.0000 - val_tn: 12467101.0000 - val_fn: 825987.0000 - val_precision: 0.9292 - val_recall: 0.7766 - val_accuracy: 0.9362 - val_auc: 0.9714 Epoch 22/70 400/400 [==============================] - 625s 2s/step - loss: 0.3154 - tp: 6756372.0000 - fp: 777461.0000 - tn: 24450556.0000 - fn: 783609.0000 - precision: 0.8968 - recall: 0.8961 - accuracy: 0.9524 - au c: 0.9770 - val_loss: 0.3362 - val_tp: 3143955.0000 - val_fp: 135752.0000 - val_tn: 12411791.0000 - val_fn: 692502.0000 - val_precision: 0.9586 - val_recall: 0.8195 - val_accuracy: 0.9494 - val_auc: 0.9754 Epoch 23/70 400/400 [==============================] - 633s 2s/step - loss: 0.3294 - tp: 6975026.0000 - fp: 773797.0000 - tn: 24208046.0000 - fn: 811140.0000 - precision: 0.9001 - recall: 0.8958 - accuracy: 0.9516 - au c: 0.9760 - val_loss: 0.3650 - val_tp: 2827380.0000 - val_fp: 88109.0000 - val_tn: 12626725.0000 - val_fn: 841786.0000 - val_precision: 0.9698 - val_recall: 0.7706 - val_accuracy: 0.9432 - val_auc: 0.9697 Epoch 24/70 400/400 [==============================] - 629s 2s/step - loss: 0.3184 - tp: 6701853.0000 - fp: 767247.0000 - tn: 24524388.0000 - fn: 774508.0000 - precision: 0.8973 - recall: 0.8964 - accuracy: 0.9529 - au c: 0.9767 - val_loss: 0.5394 - val_tp: 2252899.0000 - val_fp: 4050.0000 - val_tn: 12590875.0000 - val_fn: 1536176.0000 - val_precision: 0.9982 - val_recall: 0.5946 - val_accuracy: 0.9060 - val_auc: 0.9528 Epoch 25/70 400/400 [==============================] - 633s 2s/step - loss: 0.3189 - tp: 6642243.0000 - fp: 777194.0000 - tn: 24527812.0000 - fn: 820758.0000 - precision: 0.8952 - recall: 0.8900 - accuracy: 0.9512 - au c: 0.9762 - val_loss: 0.3377 - val_tp: 3281478.0000 - val_fp: 329375.0000 - val_tn: 12262368.0000 - val_fn: 510779.0000 - val_precision: 0.9088 - val_recall: 0.8653 - val_accuracy: 0.9487 - val_auc: 0.9760 Epoch 26/70 400/400 [==============================] - 636s 2s/step - loss: 0.3137 - tp: 6689776.0000 - fp: 788613.0000 - tn: 24505860.0000 - fn: 783748.0000 - precision: 0.8945 - recall: 0.8951 - accuracy: 0.9520 - au c: 0.9772 - val_loss: 0.4429 - val_tp: 2772106.0000 - val_fp: 45921.0000 - val_tn: 12444722.0000 - val_fn: 1121251.0000 - val_precision: 0.9837 - val_recall: 0.7120 - val_accuracy: 0.9288 - val_auc: 0.9625 Epoch 27/70 400/400 [==============================] - 632s 2s/step - loss: 0.3110 - tp: 6754135.0000 - fp: 761746.0000 - tn: 24463904.0000 - fn: 788220.0000 - precision: 0.8986 - recall: 0.8955 - accuracy: 0.9527 - au c: 0.9778 - val_loss: 0.3217 - val_tp: 3322329.0000 - val_fp: 341816.0000 - val_tn: 12309980.0000 - val_fn: 409875.0000 - val_precision: 0.9067 - val_recall: 0.8902 - val_accuracy: 0.9541 - val_auc: 0.9829 Epoch 28/70 400/400 [==============================] - 632s 2s/step - loss: 0.3143 - tp: 6711103.0000 - fp: 764757.0000 - tn: 24512308.0000 - fn: 779835.0000 - precision: 0.8977 - recall: 0.8959 - accuracy: 0.9529 - au c: 0.9772 - val_loss: 0.5518 - val_tp: 2137267.0000 - val_fp: 8417.0000 - val_tn: 12762333.0000 - val_fn: 1475983.0000 - val_precision: 0.9961 - val_recall: 0.5915 - val_accuracy: 0.9094 - val_auc: 0.9459 Epoch 29/70 400/400 [==============================] - 636s 2s/step - loss: 0.3172 - tp: 6808597.0000 - fp: 762146.0000 - tn: 24410300.0000 - fn: 786963.0000 - precision: 0.8993 - recall: 0.8964 - accuracy: 0.9527 - au c: 0.9773 - val_loss: 0.3880 - val_tp: 3284429.0000 - val_fp: 149353.0000 - val_tn: 12279814.0000 - val_fn: 670404.0000 - val_precision: 0.9565 - val_recall: 0.8305 - val_accuracy: 0.9500 - val_auc: 0.9824 Epoch 30/70 400/400 [==============================] - 636s 2s/step - loss: 0.3119 - tp: 6732407.0000 - fp: 734825.0000 - tn: 24527008.0000 - fn: 773770.0000 - precision: 0.9016 - recall: 0.8969 - accuracy: 0.9540 - au c: 0.9770 - val_loss: 0.3304 - val_tp: 3197972.0000 - val_fp: 378897.0000 - val_tn: 12377137.0000 - val_fn: 429994.0000 - val_precision: 0.8941 - val_recall: 0.8815 - val_accuracy: 0.9506 - val_auc: 0.9788 Epoch 31/70 400/400 [==============================] - 639s 2s/step - loss: 0.3172 - tp: 6584008.0000 - fp: 749012.0000 - tn: 24635250.0000 - fn: 799720.0000 - precision: 0.8979 - recall: 0.8917 - accuracy: 0.9527 - au c: 0.9763 - val_loss: 0.4527 - val_tp: 3349009.0000 - val_fp: 338939.0000 - val_tn: 12288817.0000 - val_fn: 407235.0000 - val_precision: 0.9081 - val_recall: 0.8916 - val_accuracy: 0.9545 - val_auc: 0.9822 Epoch 32/70 400/400 [==============================] - 632s 2s/step - loss: 0.3146 - tp: 6690763.0000 - fp: 766270.0000 - tn: 24531178.0000 - fn: 779790.0000 - precision: 0.8972 - recall: 0.8956 - accuracy: 0.9528 - au c: 0.9763 - val_loss: 0.3255 - val_tp: 2945281.0000 - val_fp: 103765.0000 - val_tn: 12623298.0000 - val_fn: 711656.0000 - val_precision: 0.9660 - val_recall: 0.8054 - val_accuracy: 0.9502 - val_auc: 0.9761 Epoch 33/70 400/400 [==============================] - 632s 2s/step - loss: 0.2975 - tp: 6744548.0000 - fp: 747413.0000 - tn: 24547794.0000 - fn: 728248.0000 - precision: 0.9002 - recall: 0.9025 - accuracy: 0.9550 - au c: 0.9787 - val_loss: 0.3461 - val_tp: 2865337.0000 - val_fp: 80568.0000 - val_tn: 12713439.0000 - val_fn: 724656.0000 - val_precision: 0.9727 - val_recall: 0.7981 - val_accuracy: 0.9509 - val_auc: 0.9780 Epoch 34/70 400/400 [==============================] - 635s 2s/step - loss: 0.3060 - tp: 6610739.0000 - fp: 717355.0000 - tn: 24665928.0000 - fn: 773982.0000 - precision: 0.9021 - recall: 0.8952 - accuracy: 0.9545 - au c: 0.9768 - val_loss: 0.3895 - val_tp: 2875845.0000 - val_fp: 64187.0000 - val_tn: 12593693.0000 - val_fn: 850275.0000 - val_precision: 0.9782 - val_recall: 0.7718 - val_accuracy: 0.9442 - val_auc: 0.9762 Epoch 35/70 400/400 [==============================] - 632s 2s/step - loss: 0.3131 - tp: 6658644.0000 - fp: 787948.0000 - tn: 24555564.0000 - fn: 765835.0000 - precision: 0.8942 - recall: 0.8968 - accuracy: 0.9526 - au c: 0.9770 - val_loss: 0.3298 - val_tp: 3291381.0000 - val_fp: 128257.0000 - val_tn: 12266428.0000 - val_fn: 697934.0000 - val_precision: 0.9625 - val_recall: 0.8250 - val_accuracy: 0.9496 - val_auc: 0.9787 Epoch 36/70 400/400 [==============================] - 631s 2s/step - loss: 0.3076 - tp: 6714273.0000 - fp: 757539.0000 - tn: 24536108.0000 - fn: 760070.0000 - precision: 0.8986 - recall: 0.8983 - accuracy: 0.9537 - au c: 0.9776 - val_loss: 0.3586 - val_tp: 2828629.0000 - val_fp: 70731.0000 - val_tn: 12691571.0000 - val_fn: 793069.0000 - val_precision: 0.9756 - val_recall: 0.7810 - val_accuracy: 0.9473 - val_auc: 0.9764 Epoch 37/70 400/400 [==============================] - 630s 2s/step - loss: 0.3019 - tp: 6673190.0000 - fp: 759238.0000 - tn: 24567992.0000 - fn: 767563.0000 - precision: 0.8978 - recall: 0.8968 - accuracy: 0.9534 - au c: 0.9783 - val_loss: 0.3614 - val_tp: 3049928.0000 - val_fp: 93276.0000 - val_tn: 12445161.0000 - val_fn: 795635.0000 - val_precision: 0.9703 - val_recall: 0.7931 - val_accuracy: 0.9457 - val_auc: 0.9755 Epoch 38/70 400/400 [==============================] - 631s 2s/step - loss: 0.3022 - tp: 6902334.0000 - fp: 772344.0000 - tn: 24353052.0000 - fn: 740273.0000 - precision: 0.8994 - recall: 0.9031 - accuracy: 0.9538 - au c: 0.9785 - val_loss: 0.3220 - val_tp: 2932889.0000 - val_fp: 104394.0000 - val_tn: 12669356.0000 - val_fn: 677361.0000 - val_precision: 0.9656 - val_recall: 0.8124 - val_accuracy: 0.9523 - val_auc: 0.9783 Epoch 39/70 400/400 [==============================] - 632s 2s/step - loss: 0.2978 - tp: 6800883.0000 - fp: 734721.0000 - tn: 24491858.0000 - fn: 740536.0000 - precision: 0.9025 - recall: 0.9018 - accuracy: 0.9550 - au c: 0.9785 - val_loss: 0.3295 - val_tp: 3082233.0000 - val_fp: 128611.0000 - val_tn: 12542874.0000 - val_fn: 630282.0000 - val_precision: 0.9599 - val_recall: 0.8302 - val_accuracy: 0.9537 - val_auc: 0.9799 Epoch 40/70 400/400 [==============================] - 634s 2s/step - loss: 0.3083 - tp: 6769252.0000 - fp: 762049.0000 - tn: 24472648.0000 - fn: 764043.0000 - precision: 0.8988 - recall: 0.8986 - accuracy: 0.9534 - au c: 0.9771 - val_loss: 0.3593 - val_tp: 2826188.0000 - val_fp: 59581.0000 - val_tn: 12671875.0000 - val_fn: 826356.0000 - val_precision: 0.9794 - val_recall: 0.7738 - val_accuracy: 0.9459 - val_auc: 0.9756 Epoch 41/70 400/400 [==============================] - 630s 2s/step - loss: 0.2953 - tp: 6718090.0000 - fp: 747344.0000 - tn: 24561188.0000 - fn: 741388.0000 - precision: 0.8999 - recall: 0.9006 - accuracy: 0.9546 - au c: 0.9793 - val_loss: 0.3628 - val_tp: 2996938.0000 - val_fp: 97647.0000 - val_tn: 12518986.0000 - val_fn: 770429.0000 - val_precision: 0.9684 - val_recall: 0.7955 - val_accuracy: 0.9470 - val_auc: 0.9774 Epoch 42/70 400/400 [==============================] - 629s 2s/step - loss: 0.3039 - tp: 6654758.0000 - fp: 731543.0000 - tn: 24611838.0000 - fn: 769861.0000 - precision: 0.9010 - recall: 0.8963 - accuracy: 0.9542 - au c: 0.9775 - val_loss: 0.3282 - val_tp: 2923757.0000 - val_fp: 81924.0000 - val_tn: 12615035.0000 - val_fn: 763284.0000 - val_precision: 0.9727 - val_recall: 0.7930 - val_accuracy: 0.9484 - val_auc: 0.9759 Epoch 43/70 400/400 [==============================] - 636s 2s/step - loss: 0.2937 - tp: 6435979.0000 - fp: 733398.0000 - tn: 24870358.0000 - fn: 728270.0000 - precision: 0.8977 - recall: 0.8983 - accuracy: 0.9554 - au c: 0.9781 - val_loss: 0.3116 - val_tp: 3021625.0000 - val_fp: 126888.0000 - val_tn: 12599400.0000 - val_fn: 636087.0000 - val_precision: 0.9597 - val_recall: 0.8261 - val_accuracy: 0.9534 - val_auc: 0.9791 Epoch 44/70 400/400 [==============================] - 638s 2s/step - loss: 0.3207 - tp: 6810749.0000 - fp: 779963.0000 - tn: 24383824.0000 - fn: 793469.0000 - precision: 0.8972 - recall: 0.8957 - accuracy: 0.9520 - au c: 0.9763 - val_loss: 0.3609 - val_tp: 3046190.0000 - val_fp: 96429.0000 - val_tn: 12529182.0000 - val_fn: 712199.0000 - val_precision: 0.9693 - val_recall: 0.8105 - val_accuracy: 0.9506 - val_auc: 0.9784 Epoch 45/70 400/400 [==============================] - 631s 2s/step - loss: 0.3025 - tp: 7086768.0000 - fp: 750575.0000 - tn: 24182492.0000 - fn: 748166.0000 - precision: 0.9042 - recall: 0.9045 - accuracy: 0.9543 - au c: 0.9790 - val_loss: 0.3397 - val_tp: 2823520.0000 - val_fp: 64000.0000 - val_tn: 12722924.0000 - val_fn: 773556.0000 - val_precision: 0.9778 - val_recall: 0.7849 - val_accuracy: 0.9489 - val_auc: 0.9768 Epoch 46/70 400/400 [==============================] - 639s 2s/step - loss: 0.3029 - tp: 6575419.0000 - fp: 752434.0000 - tn: 24679216.0000 - fn: 760935.0000 - precision: 0.8973 - recall: 0.8963 - accuracy: 0.9538 - au c: 0.9777 - val_loss: 0.3449 - val_tp: 3214822.0000 - val_fp: 77887.0000 - val_tn: 12327207.0000 - val_fn: 764084.0000 - val_precision: 0.9763 - val_recall: 0.8080 - val_accuracy: 0.9486 - val_auc: 0.9800 Epoch 47/70 400/400 [==============================] - 638s 2s/step - loss: 0.2988 - tp: 7041341.0000 - fp: 779154.0000 - tn: 24212120.0000 - fn: 735391.0000 - precision: 0.9004 - recall: 0.9054 - accuracy: 0.9538 - au c: 0.9794 - val_loss: 0.3507 - val_tp: 2992658.0000 - val_fp: 83764.0000 - val_tn: 12550469.0000 - val_fn: 757109.0000 - val_precision: 0.9728 - val_recall: 0.7981 - val_accuracy: 0.9487 - val_auc: 0.9795 Epoch 48/70 400/400 [==============================] - 633s 2s/step - loss: 0.3015 - tp: 6740728.0000 - fp: 737863.0000 - tn: 24521192.0000 - fn: 768220.0000 - precision: 0.9013 - recall: 0.8977 - accuracy: 0.9540 - au c: 0.9781 - val_loss: 0.3456 - val_tp: 3135590.0000 - val_fp: 126895.0000 - val_tn: 12407028.0000 - val_fn: 714487.0000 - val_precision: 0.9611 - val_recall: 0.8144 - val_accuracy: 0.9486 - val_auc: 0.9755 Epoch 49/70 400/400 [==============================] - 630s 2s/step - loss: 0.2965 - tp: 6929622.0000 - fp: 773455.0000 - tn: 24334720.0000 - fn: 730210.0000 - precision: 0.8996 - recall: 0.9047 - accuracy: 0.9541 - au c: 0.9793 - val_loss: 0.3253 - val_tp: 2923894.0000 - val_fp: 87045.0000 - val_tn: 12668721.0000 - val_fn: 704340.0000 - val_precision: 0.9711 - val_recall: 0.8059 - val_accuracy: 0.9517 - val_auc: 0.9786 Epoch 50/70 400/400 [==============================] - 631s 2s/step - loss: 0.3053 - tp: 6698368.0000 - fp: 772097.0000 - tn: 24544316.0000 - fn: 753212.0000 - precision: 0.8966 - recall: 0.8989 - accuracy: 0.9535 - au c: 0.9778 - val_loss: 0.3687 - val_tp: 2958570.0000 - val_fp: 52523.0000 - val_tn: 12513477.0000 - val_fn: 859430.0000 - val_precision: 0.9826 - val_recall: 0.7749 - val_accuracy: 0.9443 - val_auc: 0.9771 Epoch 51/70 400/400 [==============================] - 635s 2s/step - loss: 0.2971 - tp: 6664028.0000 - fp: 737094.0000 - tn: 24626012.0000 - fn: 740867.0000 - precision: 0.9004 - recall: 0.8999 - accuracy: 0.9549 - au c: 0.9786 - val_loss: 0.3459 - val_tp: 3029844.0000 - val_fp: 116426.0000 - val_tn: 12539360.0000 - val_fn: 698370.0000 - val_precision: 0.9630 - val_recall: 0.8127 - val_accuracy: 0.9503 - val_auc: 0.9793 Epoch 52/70 400/400 [==============================] - 633s 2s/step - loss: 0.3026 - tp: 6753347.0000 - fp: 678789.0000 - tn: 24527348.0000 - fn: 808513.0000 - precision: 0.9087 - recall: 0.8931 - accuracy: 0.9546 - au c: 0.9785 - val_loss: 0.3330 - val_tp: 2851126.0000 - val_fp: 109294.0000 - val_tn: 12699895.0000 - val_fn: 723685.0000 - val_precision: 0.9631 - val_recall: 0.7976 - val_accuracy: 0.9492 - val_auc: 0.9762 Epoch 53/70 400/400 [==============================] - 636s 2s/step - loss: 0.2980 - tp: 6803599.0000 - fp: 685524.0000 - tn: 24488690.0000 - fn: 790195.0000 - precision: 0.9085 - recall: 0.8959 - accuracy: 0.9550 - au c: 0.9786 - val_loss: 0.3384 - val_tp: 2978082.0000 - val_fp: 84198.0000 - val_tn: 12570606.0000 - val_fn: 751114.0000 - val_precision: 0.9725 - val_recall: 0.7986 - val_accuracy: 0.9490 - val_auc: 0.9782 Epoch 54/70 400/400 [==============================] - 636s 2s/step - loss: 0.3008 - tp: 6617352.0000 - fp: 660115.0000 - tn: 24672528.0000 - fn: 818008.0000 - precision: 0.9093 - recall: 0.8900 - accuracy: 0.9549 - au c: 0.9776 - val_loss: 0.3487 - val_tp: 3069049.0000 - val_fp: 100663.0000 - val_tn: 12450296.0000 - val_fn: 763992.0000 - val_precision: 0.9682 - val_recall: 0.8007 - val_accuracy: 0.9472 - val_auc: 0.9767 Epoch 55/70 400/400 [==============================] - 634s 2s/step - loss: 0.3041 - tp: 6727196.0000 - fp: 696140.0000 - tn: 24540392.0000 - fn: 804270.0000 - precision: 0.9062 - recall: 0.8932 - accuracy: 0.9542 - au c: 0.9781 - val_loss: 0.3201 - val_tp: 2941382.0000 - val_fp: 99527.0000 - val_tn: 12647545.0000 - val_fn: 695546.0000 - val_precision: 0.9673 - val_recall: 0.8088 - val_accuracy: 0.9515 - val_auc: 0.9784 Epoch 56/70 400/400 [==============================] - 636s 2s/step - loss: 0.2960 - tp: 6826521.0000 - fp: 708283.0000 - tn: 24472022.0000 - fn: 761183.0000 - precision: 0.9060 - recall: 0.8997 - accuracy: 0.9552 - au c: 0.9793 - val_loss: 0.3209 - val_tp: 2942017.0000 - val_fp: 95854.0000 - val_tn: 12658328.0000 - val_fn: 687801.0000 - val_precision: 0.9684 - val_recall: 0.8105 - val_accuracy: 0.9522 - val_auc: 0.9787 Epoch 57/70 400/400 [==============================] - 638s 2s/step - loss: 0.2978 - tp: 6648554.0000 - fp: 686959.0000 - tn: 24654000.0000 - fn: 778489.0000 - precision: 0.9064 - recall: 0.8952 - accuracy: 0.9553 - au c: 0.9782 - val_loss: 0.3418 - val_tp: 3047748.0000 - val_fp: 90564.0000 - val_tn: 12482669.0000 - val_fn: 763019.0000 - val_precision: 0.9711 - val_recall: 0.7998 - val_accuracy: 0.9479 - val_auc: 0.9784 Epoch 58/70 400/400 [==============================] - 637s 2s/step - loss: 0.3043 - tp: 6628231.0000 - fp: 693416.0000 - tn: 24639726.0000 - fn: 806627.0000 - precision: 0.9053 - recall: 0.8915 - accuracy: 0.9542 - au c: 0.9777 - val_loss: 0.3313 - val_tp: 3159765.0000 - val_fp: 106822.0000 - val_tn: 12398325.0000 - val_fn: 719088.0000 - val_precision: 0.9673 - val_recall: 0.8146 - val_accuracy: 0.9496 - val_auc: 0.9780 Epoch 59/70 400/400 [==============================] - 637s 2s/step - loss: 0.3006 - tp: 6652559.0000 - fp: 718848.0000 - tn: 24625476.0000 - fn: 771096.0000 - precision: 0.9025 - recall: 0.8961 - accuracy: 0.9545 - au c: 0.9786 - val_loss: 0.3533 - val_tp: 3040082.0000 - val_fp: 82199.0000 - val_tn: 12530147.0000 - val_fn: 731572.0000 - val_precision: 0.9737 - val_recall: 0.8060 - val_accuracy: 0.9503 - val_auc: 0.9795 Epoch 60/70 400/400 [==============================] - 634s 2s/step - loss: 0.3137 - tp: 6891311.0000 - fp: 715443.0000 - tn: 24333106.0000 - fn: 828145.0000 - precision: 0.9059 - recall: 0.8927 - accuracy: 0.9529 - au c: 0.9774 - val_loss: 0.3250 - val_tp: 2930627.0000 - val_fp: 99442.0000 - val_tn: 12670646.0000 - val_fn: 683285.0000 - val_precision: 0.9672 - val_recall: 0.8109 - val_accuracy: 0.9522 - val_auc: 0.9785 Epoch 61/70 400/400 [==============================] - 641s 2s/step - loss: 0.3028 - tp: 6738706.0000 - fp: 737970.0000 - tn: 24529770.0000 - fn: 761545.0000 - precision: 0.9013 - recall: 0.8985 - accuracy: 0.9542 - au c: 0.9783 - val_loss: 0.3347 - val_tp: 3211606.0000 - val_fp: 100010.0000 - val_tn: 12350882.0000 - val_fn: 721502.0000 - val_precision: 0.9698 - val_recall: 0.8166 - val_accuracy: 0.9499 - val_auc: 0.9791 Epoch 62/70 400/400 [==============================] - 635s 2s/step - loss: 0.3047 - tp: 6492872.0000 - fp: 710243.0000 - tn: 24764572.0000 - fn: 800309.0000 - precision: 0.9014 - recall: 0.8903 - accuracy: 0.9539 - au c: 0.9771 - val_loss: 0.3868 - val_tp: 3110246.0000 - val_fp: 71777.0000 - val_tn: 12369449.0000 - val_fn: 832528.0000 - val_precision: 0.9774 - val_recall: 0.7888 - val_accuracy: 0.9448 - val_auc: 0.9764 Epoch 63/70 400/400 [==============================] - 633s 2s/step - loss: 0.3033 - tp: 6979600.0000 - fp: 720858.0000 - tn: 24300348.0000 - fn: 767184.0000 - precision: 0.9064 - recall: 0.9010 - accuracy: 0.9546 - au c: 0.9788 - val_loss: 0.3340 - val_tp: 3093435.0000 - val_fp: 85835.0000 - val_tn: 12442850.0000 - val_fn: 761880.0000 - val_precision: 0.9730 - val_recall: 0.8024 - val_accuracy: 0.9483 - val_auc: 0.9784 Epoch 64/70 400/400 [==============================] - 637s 2s/step - loss: 0.2992 - tp: 6684955.0000 - fp: 717935.0000 - tn: 24597880.0000 - fn: 767241.0000 - precision: 0.9030 - recall: 0.8970 - accuracy: 0.9547 - au c: 0.9787 - val_loss: 0.3498 - val_tp: 2864609.0000 - val_fp: 82878.0000 - val_tn: 12711063.0000 - val_fn: 725450.0000 - val_precision: 0.9719 - val_recall: 0.7979 - val_accuracy: 0.9507 - val_auc: 0.9786 Epoch 65/70 400/400 [==============================] - 637s 2s/step - loss: 0.2992 - tp: 6881058.0000 - fp: 713083.0000 - tn: 24387492.0000 - fn: 786363.0000 - precision: 0.9061 - recall: 0.8974 - accuracy: 0.9542 - au c: 0.9792 - val_loss: 0.3161 - val_tp: 3129890.0000 - val_fp: 123769.0000 - val_tn: 12482708.0000 - val_fn: 647633.0000 - val_precision: 0.9620 - val_recall: 0.8286 - val_accuracy: 0.9529 - val_auc: 0.9799 Epoch 66/70 400/400 [==============================] - 638s 2s/step - loss: 0.2998 - tp: 6513297.0000 - fp: 696712.0000 - tn: 24803000.0000 - fn: 754991.0000 - precision: 0.9034 - recall: 0.8961 - accuracy: 0.9557 - au c: 0.9779 - val_loss: 0.3222 - val_tp: 3039732.0000 - val_fp: 95061.0000 - val_tn: 12541210.0000 - val_fn: 707997.0000 - val_precision: 0.9697 - val_recall: 0.8111 - val_accuracy: 0.9510 - val_auc: 0.9783 Epoch 67/70 400/400 [==============================] - 635s 2s/step - loss: 0.3011 - tp: 6869971.0000 - fp: 709956.0000 - tn: 24396884.0000 - fn: 791177.0000 - precision: 0.9063 - recall: 0.8967 - accuracy: 0.9542 - au c: 0.9787 - val_loss: 0.3435 - val_tp: 3137473.0000 - val_fp: 93385.0000 - val_tn: 12425599.0000 - val_fn: 727543.0000 - val_precision: 0.9711 - val_recall: 0.8118 - val_accuracy: 0.9499 - val_auc: 0.9791 Epoch 68/70 400/400 [==============================] - 632s 2s/step - loss: 0.3034 - tp: 6640807.0000 - fp: 757137.0000 - tn: 24604356.0000 - fn: 765698.0000 - precision: 0.8977 - recall: 0.8966 - accuracy: 0.9535 - au c: 0.9781 - val_loss: 0.3824 - val_tp: 3081203.0000 - val_fp: 98009.0000 - val_tn: 12448722.0000 - val_fn: 756066.0000 - val_precision: 0.9692 - val_recall: 0.8030 - val_accuracy: 0.9479 - val_auc: 0.9776 Epoch 69/70 400/400 [==============================] - 636s 2s/step - loss: 0.2988 - tp: 6698533.0000 - fp: 734236.0000 - tn: 24588786.0000 - fn: 746437.0000 - precision: 0.9012 - recall: 0.8997 - accuracy: 0.9548 - au c: 0.9788 - val_loss: 0.3604 - val_tp: 2967778.0000 - val_fp: 93005.0000 - val_tn: 12540155.0000 - val_fn: 783062.0000 - val_precision: 0.9696 - val_recall: 0.7912 - val_accuracy: 0.9465 - val_auc: 0.9780 Epoch 70/70 400/400 [==============================] - 638s 2s/step - loss: 0.2996 - tp: 6725869.0000 - fp: 711970.0000 - tn: 24565164.0000 - fn: 765019.0000 - precision: 0.9043 - recall: 0.8979 - accuracy: 0.9549 - au c: 0.9786 - val_loss: 0.3505 - val_tp: 3050870.0000 - val_fp: 101786.0000 - val_tn: 12476995.0000 - val_fn: 754349.0000 - val_precision: 0.9677 - val_recall: 0.8018 - val_accuracy: 0.9477 - val_auc: 0.9771 400/400 [==============================] - 121s 301ms/step - loss: 0.3684 - tp: 6266358.0000 - fp: 308665.0000 - tn: 24781578.0000 - fn: 1411378.0000 - precision: 0.9531 - recall: 0.8162 - accuracy: 0.9475 - auc: 0.9778 2020/06/01 10:07:50 INFO mlflow.projects: === Run (ID '1aefda1366f04f5da5d1fc2241ad9208') succeeded === (tensorflow_nightly) [ye53nis@node171 drmed-git]$
mlflow ui
(tensorflow_nightly) [ye53nis@node171 drmed-git]$ mlflow ui [2020-06-01 10:38:40 +0200] [298787] [INFO] Starting gunicorn 20.0.4 [2020-06-01 10:38:40 +0200] [298787] [INFO] Listening at: http://127.0.0.1:5000 (298787) [2020-06-01 10:38:40 +0200] [298787] [INFO] Using worker: sync [2020-06-01 10:38:40 +0200] [298793] [INFO] Booting worker with pid: 298793
2.1.7 read out logs
2.1.7.1 read out mlflow logs using CLI
conda activate tensorflow_env cd Programme/drmed-git export MLFLOW_EXPERIMENT_NAME=exp-devtest export MLFLOW_TRACKING_URI=file:./data/mlruns
mlflow experiments list
mlflow runs list --experiment-id 1
mlflow artifacts list -r 47b870b8fdcb4445956635c6758caff3 mlflow artifacts list -r 47b870b8fdcb4445956635c6758caff3 -a model mlflow artifacts list -r 47b870b8fdcb4445956635c6758caff3 -a model_summary.txt mlflow artifacts list -r 47b870b8fdcb4445956635c6758caff3 -a tensorboard_logs/train/
mlflow artifacts download -r 47b870b8fdcb4445956635c6758caff3 mlflow artifacts download -r 47b870b8fdcb4445956635c6758caff3 -a model mlflow artifacts download -r 47b870b8fdcb4445956635c6758caff3 -a model_summary.txt mlflow artifacts download -r 47b870b8fdcb4445956635c6758caff3 -a tensorboard_logs
mlflow runs describe --run-id 47b870b8fdcb4445956635c6758caff3
tensorboard --logdir=data/mlruns/1/47b870b8fdcb4445956635c6758caff3/artifacts/tensorboard_logs
mlflow ui --backend-store-uri file:///home/lex/Programme/drmed-git/data/mlruns
2.1.7.2 Reading out mlflow logs with Python API
I started local machine:
import mlflow import pprint %cd /home/lex/Programme/drmed-git/
/home/lex/Programme/drmed-git
uri = 'file:///home/lex/Programme/drmed-git/data/mlruns' mlflow.set_tracking_uri(uri) runs = mlflow.search_runs(experiment_ids='0') print('run_id of first in list: ', runs.iloc[0].run_id) print('no of runs in list: ', len(runs)) print() runs
run_id of first in list: 1aefda1366f04f5da5d1fc2241ad9208 no of runs in list: 1
run\id | experiment\id | status | artifact\uri | start\time | end\time | metrics.val\recall | metrics.tn | metrics.auc | metrics.val\loss | … | tags.mlflow.log-model.history | tags.mlflow.source.type | tags.mlflow.user | tags.mlflow.project.entryPoint | tags.mlflow.source.git.repoURL | tags.mlflow.source.name | tags.mlflow.source.git.commit | tags.mlflow.project.backend | tags.mlflow.gitRepoURL | tags.mlflow.project.env | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1aefda1366f04f5da5d1fc2241ad9208 | 0 | FINISHED | ./data/mlruns/0/1aefda1366f04f5da5d1fc224… | 2020-05-31 19:39:51.905000+00:00 | 2020-06-01 08:07:51.011000+00:00 | 0.801759 | 24565164.0 | 0.978632 | 0.350498 | … | [{“run\id”: “1aefda1366f04f5da5d1fc2241ad9208”… | PROJECT | ye53nis | main | https://github.com/aseltmann/fluotracify | file:///beegfs/ye53nis/drmed-git | 2225d6fa18cca9044960b6e86a56ec9fb4362d5d | local | https://github.com/aseltmann/fluotracify | conda |
1 rows × 52 columns
client = mlflow.tracking.MlflowClient(tracking_uri=uri)
run_idx = 0 # mlflow.entities.Experiment print('client.get_experiment()\n', exp.to_proto()) # mlflow.entities.Metric # metent = client.get_metric_history(run_id=runs.iloc[run_idx].run_id, key='loss') # for i in metent: # print(i) print('- - - mlflow.entities.Run - - -') run = client.get_run(runs.iloc[run_idx].run_id) print('run.info.to_proto\n', run.info.to_proto()) pprint.pprint(run.data.metrics, sort_dicts=False) model_path = client.download_artifacts( run_id=runs.iloc[run_idx].run_id, path='model') tensorboard_path = client.download_artifacts( run_id=runs.iloc[run_idx].run_id, path='tensorboard_logs') print('\nmodel_path\n', model_path) print('\nMLmodel file') %cat $model_path/MLmodel print('\nconda.yaml') %cat $model_path/conda.yaml print('\nkeras_module.txt') %cat $model_path/data/keras_module.txt
client.get_experiment() experiment_id: "0" name: "exp-310520-unet" artifact_location: "file:./data/mlruns/0" lifecycle_stage: "active" - - - mlflow.entities.Run - - - run.info.to_proto run_uuid: "1aefda1366f04f5da5d1fc2241ad9208" experiment_id: "0" user_id: "ye53nis" status: FINISHED start_time: 1590953991905 end_time: 1590998871011 artifact_uri: "file:./data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts" lifecycle_stage: "active" run_id: "1aefda1366f04f5da5d1fc2241ad9208" {'learning rate': 1e-05, 'val_loss': 0.3504984378814697, 'precision': 0.9042773246765137, 'fp': 711970.0, 'loss': 0.2996121346950531, 'val_tp': 3050870.0, 'recall': 0.8978734016418457, 'accuracy': 0.9549258947372437, 'val_precision': 0.9677141904830933, 'val_recall': 0.8017593622207642, 'lr': 1e-05, 'fn': 765019.0, 'auc': 0.9786317348480225, 'val_fp': 101786.0, 'val_accuracy': 0.947745680809021, 'val_tn': 12476995.0, 'val_auc': 0.977130651473999, 'val_fn': 754349.0, 'tn': 24565164.0, 'tp': 6725869.0} model_path /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/model MLmodel file artifact_path: model flavors: keras: data: data keras_module: tensorflow.keras keras_version: 2.2.4-tf python_function: data: data env: conda.yaml loader_module: mlflow.keras python_version: 3.8.3 run_id: 1aefda1366f04f5da5d1fc2241ad9208 utc_time_created: '2020-06-01 08:05:46.358978' conda.yaml channels: - defaults dependencies: - python=3.8.3 - pip - pip: - mlflow - tensorflow==2.3.0-dev20200527 name: mlflow-env keras_module.txt tensorflow.keras summary_path /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/model_summary.txt tensorboard_path /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/tensorboard_logs
summary_path = client.download_artifacts( run_id=runs.iloc[run_idx].run_id, path='model_summary.txt') print('summary_path\n', summary_path, '\n') %cat $summary_path
summary_path /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/model_summary.txt Model: "functional_1" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, 16384, 1)] 0 __________________________________________________________________________________________________ encode0 (Sequential) (None, 16384, 64) 13120 input_1[0][0] __________________________________________________________________________________________________ mp_encode0 (MaxPooling1D) (None, 8192, 64) 0 encode0[0][0] __________________________________________________________________________________________________ encode1 (Sequential) (None, 8192, 128) 75008 mp_encode0[0][0] __________________________________________________________________________________________________ mp_encode1 (MaxPooling1D) (None, 4096, 128) 0 encode1[0][0] __________________________________________________________________________________________________ encode2 (Sequential) (None, 4096, 256) 297472 mp_encode1[0][0] __________________________________________________________________________________________________ mp_encode2 (MaxPooling1D) (None, 2048, 256) 0 encode2[0][0] __________________________________________________________________________________________________ encode3 (Sequential) (None, 2048, 512) 1184768 mp_encode2[0][0] __________________________________________________________________________________________________ mp_encode3 (MaxPooling1D) (None, 1024, 512) 0 encode3[0][0] __________________________________________________________________________________________________ encode4 (Sequential) (None, 1024, 512) 1577984 mp_encode3[0][0] __________________________________________________________________________________________________ mp_encode4 (MaxPooling1D) (None, 512, 512) 0 encode4[0][0] __________________________________________________________________________________________________ encode5 (Sequential) (None, 512, 512) 1577984 mp_encode4[0][0] __________________________________________________________________________________________________ mp_encode5 (MaxPooling1D) (None, 256, 512) 0 encode5[0][0] __________________________________________________________________________________________________ encode6 (Sequential) (None, 256, 512) 1577984 mp_encode5[0][0] __________________________________________________________________________________________________ mp_encode6 (MaxPooling1D) (None, 128, 512) 0 encode6[0][0] __________________________________________________________________________________________________ encode7 (Sequential) (None, 128, 512) 1577984 mp_encode6[0][0] __________________________________________________________________________________________________ mp_encode7 (MaxPooling1D) (None, 64, 512) 0 encode7[0][0] __________________________________________________________________________________________________ encode8 (Sequential) (None, 64, 512) 1577984 mp_encode7[0][0] __________________________________________________________________________________________________ mp_encode8 (MaxPooling1D) (None, 32, 512) 0 encode8[0][0] __________________________________________________________________________________________________ two_conv_center (Sequential) (None, 32, 1024) 4728832 mp_encode8[0][0] __________________________________________________________________________________________________ conv_transpose_decoder8 (Sequen (None, 64, 512) 1051136 two_conv_center[0][0] __________________________________________________________________________________________________ decoder8 (Concatenate) (None, 64, 1024) 0 encode8[0][0] conv_transpose_decoder8[0][0] __________________________________________________________________________________________________ two_conv_decoder8 (Sequential) (None, 64, 512) 2364416 decoder8[0][0] __________________________________________________________________________________________________ conv_transpose_decoder7 (Sequen (None, 128, 512) 526848 two_conv_decoder8[0][0] __________________________________________________________________________________________________ decoder7 (Concatenate) (None, 128, 1024) 0 encode7[0][0] conv_transpose_decoder7[0][0] __________________________________________________________________________________________________ two_conv_decoder7 (Sequential) (None, 128, 512) 2364416 decoder7[0][0] __________________________________________________________________________________________________ conv_transpose_decoder6 (Sequen (None, 256, 512) 526848 two_conv_decoder7[0][0] __________________________________________________________________________________________________ decoder6 (Concatenate) (None, 256, 1024) 0 encode6[0][0] conv_transpose_decoder6[0][0] __________________________________________________________________________________________________ two_conv_decoder6 (Sequential) (None, 256, 512) 2364416 decoder6[0][0] __________________________________________________________________________________________________ conv_transpose_decoder5 (Sequen (None, 512, 512) 526848 two_conv_decoder6[0][0] __________________________________________________________________________________________________ decoder5 (Concatenate) (None, 512, 1024) 0 encode5[0][0] conv_transpose_decoder5[0][0] __________________________________________________________________________________________________ two_conv_decoder5 (Sequential) (None, 512, 512) 2364416 decoder5[0][0] __________________________________________________________________________________________________ conv_transpose_decoder4 (Sequen (None, 1024, 512) 526848 two_conv_decoder5[0][0] __________________________________________________________________________________________________ decoder4 (Concatenate) (None, 1024, 1024) 0 encode4[0][0] conv_transpose_decoder4[0][0] __________________________________________________________________________________________________ two_conv_decoder4 (Sequential) (None, 1024, 512) 2364416 decoder4[0][0] __________________________________________________________________________________________________ conv_transpose_decoder3 (Sequen (None, 2048, 512) 526848 two_conv_decoder4[0][0] __________________________________________________________________________________________________ decoder3 (Concatenate) (None, 2048, 1024) 0 encode3[0][0] conv_transpose_decoder3[0][0] __________________________________________________________________________________________________ two_conv_decoder3 (Sequential) (None, 2048, 512) 2364416 decoder3[0][0] __________________________________________________________________________________________________ conv_transpose_decoder2 (Sequen (None, 4096, 256) 263424 two_conv_decoder3[0][0] __________________________________________________________________________________________________ decoder2 (Concatenate) (None, 4096, 512) 0 encode2[0][0] conv_transpose_decoder2[0][0] __________________________________________________________________________________________________ two_conv_decoder2 (Sequential) (None, 4096, 256) 592384 decoder2[0][0] __________________________________________________________________________________________________ conv_transpose_decoder1 (Sequen (None, 8192, 128) 66176 two_conv_decoder2[0][0] __________________________________________________________________________________________________ decoder1 (Concatenate) (None, 8192, 256) 0 encode1[0][0] conv_transpose_decoder1[0][0] __________________________________________________________________________________________________ two_conv_decoder1 (Sequential) (None, 8192, 128) 148736 decoder1[0][0] __________________________________________________________________________________________________ conv_transpose_decoder0 (Sequen (None, 16384, 64) 16704 two_conv_decoder1[0][0] __________________________________________________________________________________________________ decoder0 (Concatenate) (None, 16384, 128) 0 encode0[0][0] conv_transpose_decoder0[0][0] __________________________________________________________________________________________________ two_conv_decoder0 (Sequential) (None, 16384, 64) 37504 decoder0[0][0] __________________________________________________________________________________________________ conv1d_38 (Conv1D) (None, 16384, 1) 65 two_conv_decoder0[0][0] ================================================================================================== Total params: 33,185,985 Trainable params: 33,146,689 Non-trainable params: 39,296 __________________________________________________________________________________________________
print('\ntensorboard_path\n', tensorboard_path) !ls $tensorboard_path # https://stackoverflow.com/questions/41074688/how-do-you-read-tensorboard-files-programmatically from tensorboard.backend.event_processing import event_accumulator path = str(tensorboard_path) + '/train' path2 = str() print(path) ea = event_accumulator.EventAccumulator(path=path, size_guidance={ # see below regarding this argument event_accumulator.COMPRESSED_HISTOGRAMS: 500, event_accumulator.IMAGES: 4, event_accumulator.AUDIO: 4, event_accumulator.SCALARS: 0, event_accumulator.HISTOGRAMS: 1, }) ea.Reload() # loads events from file
tensorboard_path /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/tensorboard_logs image metrics train validation /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/tensorboard_logs/train <tensorboard.backend.event_processing.event_accumulator.EventAccumulator at 0x7fdb70770c70>
ea.Tags()
{'images': ['encode0/conv1d/kernel_0/image/0', 'encode0/conv1d/bias_0/image/0', 'encode0/batch_normalization/gamma_0/image/0', 'encode0/batch_normalization/beta_0/image/0', 'encode0/batch_normalization/moving_mean_0/image/0', 'encode0/batch_normalization/moving_variance_0/image/0', 'encode0/conv1d_1/kernel_0/image/0', 'encode0/conv1d_1/kernel_0/image/1', 'encode0/conv1d_1/kernel_0/image/2', 'encode0/conv1d_1/bias_0/image/0', 'encode0/batch_normalization_1/gamma_0/image/0', 'encode0/batch_normalization_1/beta_0/image/0', 'encode0/batch_normalization_1/moving_mean_0/image/0', 'encode0/batch_normalization_1/moving_variance_0/image/0', 'encode1/conv1d_2/kernel_0/image/0', 'encode1/conv1d_2/kernel_0/image/1', 'encode1/conv1d_2/kernel_0/image/2', 'encode1/conv1d_2/bias_0/image/0', 'encode1/batch_normalization_2/gamma_0/image/0', 'encode1/batch_normalization_2/beta_0/image/0', 'encode1/batch_normalization_2/moving_mean_0/image/0', 'encode1/batch_normalization_2/moving_variance_0/image/0', 'encode1/conv1d_3/kernel_0/image/0', 'encode1/conv1d_3/kernel_0/image/1', 'encode1/conv1d_3/kernel_0/image/2', 'encode1/conv1d_3/bias_0/image/0', 'encode1/batch_normalization_3/gamma_0/image/0', 'encode1/batch_normalization_3/beta_0/image/0', 'encode1/batch_normalization_3/moving_mean_0/image/0', 'encode1/batch_normalization_3/moving_variance_0/image/0', 'encode2/conv1d_4/kernel_0/image/0', 'encode2/conv1d_4/kernel_0/image/1', 'encode2/conv1d_4/kernel_0/image/2', 'encode2/conv1d_4/bias_0/image/0', 'encode2/batch_normalization_4/gamma_0/image/0', 'encode2/batch_normalization_4/beta_0/image/0', 'encode2/batch_normalization_4/moving_mean_0/image/0', 'encode2/batch_normalization_4/moving_variance_0/image/0', 'encode2/conv1d_5/kernel_0/image/0', 'encode2/conv1d_5/kernel_0/image/1', 'encode2/conv1d_5/kernel_0/image/2', 'encode2/conv1d_5/bias_0/image/0', 'encode2/batch_normalization_5/gamma_0/image/0', 'encode2/batch_normalization_5/beta_0/image/0', 'encode2/batch_normalization_5/moving_mean_0/image/0', 'encode2/batch_normalization_5/moving_variance_0/image/0', 'encode3/conv1d_6/kernel_0/image/0', 'encode3/conv1d_6/kernel_0/image/1', 'encode3/conv1d_6/kernel_0/image/2', 'encode3/conv1d_6/bias_0/image/0', 'encode3/batch_normalization_6/gamma_0/image/0', 'encode3/batch_normalization_6/beta_0/image/0', 'encode3/batch_normalization_6/moving_mean_0/image/0', 'encode3/batch_normalization_6/moving_variance_0/image/0', 'encode3/conv1d_7/kernel_0/image/0', 'encode3/conv1d_7/kernel_0/image/1', 'encode3/conv1d_7/kernel_0/image/2', 'encode3/conv1d_7/bias_0/image/0', 'encode3/batch_normalization_7/gamma_0/image/0', 'encode3/batch_normalization_7/beta_0/image/0', 'encode3/batch_normalization_7/moving_mean_0/image/0', 'encode3/batch_normalization_7/moving_variance_0/image/0', 'encode4/conv1d_8/kernel_0/image/0', 'encode4/conv1d_8/kernel_0/image/1', 'encode4/conv1d_8/kernel_0/image/2', 'encode4/conv1d_8/bias_0/image/0', 'encode4/batch_normalization_8/gamma_0/image/0', 'encode4/batch_normalization_8/beta_0/image/0', 'encode4/batch_normalization_8/moving_mean_0/image/0', 'encode4/batch_normalization_8/moving_variance_0/image/0', 'encode4/conv1d_9/kernel_0/image/0', 'encode4/conv1d_9/kernel_0/image/1', 'encode4/conv1d_9/kernel_0/image/2', 'encode4/conv1d_9/bias_0/image/0', 'encode4/batch_normalization_9/gamma_0/image/0', 'encode4/batch_normalization_9/beta_0/image/0', 'encode4/batch_normalization_9/moving_mean_0/image/0', 'encode4/batch_normalization_9/moving_variance_0/image/0', 'encode5/conv1d_10/kernel_0/image/0', 'encode5/conv1d_10/kernel_0/image/1', 'encode5/conv1d_10/kernel_0/image/2', 'encode5/conv1d_10/bias_0/image/0', 'encode5/batch_normalization_10/gamma_0/image/0', 'encode5/batch_normalization_10/beta_0/image/0', 'encode5/batch_normalization_10/moving_mean_0/image/0', 'encode5/batch_normalization_10/moving_variance_0/image/0', 'encode5/conv1d_11/kernel_0/image/0', 'encode5/conv1d_11/kernel_0/image/1', 'encode5/conv1d_11/kernel_0/image/2', 'encode5/conv1d_11/bias_0/image/0', 'encode5/batch_normalization_11/gamma_0/image/0', 'encode5/batch_normalization_11/beta_0/image/0', 'encode5/batch_normalization_11/moving_mean_0/image/0', 'encode5/batch_normalization_11/moving_variance_0/image/0', 'encode6/conv1d_12/kernel_0/image/0', 'encode6/conv1d_12/kernel_0/image/1', 'encode6/conv1d_12/kernel_0/image/2', 'encode6/conv1d_12/bias_0/image/0', 'encode6/batch_normalization_12/gamma_0/image/0', 'encode6/batch_normalization_12/beta_0/image/0', 'encode6/batch_normalization_12/moving_mean_0/image/0', 'encode6/batch_normalization_12/moving_variance_0/image/0', 'encode6/conv1d_13/kernel_0/image/0', 'encode6/conv1d_13/kernel_0/image/1', 'encode6/conv1d_13/kernel_0/image/2', 'encode6/conv1d_13/bias_0/image/0', 'encode6/batch_normalization_13/gamma_0/image/0', 'encode6/batch_normalization_13/beta_0/image/0', 'encode6/batch_normalization_13/moving_mean_0/image/0', 'encode6/batch_normalization_13/moving_variance_0/image/0', 'encode7/conv1d_14/kernel_0/image/0', 'encode7/conv1d_14/kernel_0/image/1', 'encode7/conv1d_14/kernel_0/image/2', 'encode7/conv1d_14/bias_0/image/0', 'encode7/batch_normalization_14/gamma_0/image/0', 'encode7/batch_normalization_14/beta_0/image/0', 'encode7/batch_normalization_14/moving_mean_0/image/0', 'encode7/batch_normalization_14/moving_variance_0/image/0', 'encode7/conv1d_15/kernel_0/image/0', 'encode7/conv1d_15/kernel_0/image/1', 'encode7/conv1d_15/kernel_0/image/2', 'encode7/conv1d_15/bias_0/image/0', 'encode7/batch_normalization_15/gamma_0/image/0', 'encode7/batch_normalization_15/beta_0/image/0', 'encode7/batch_normalization_15/moving_mean_0/image/0', 'encode7/batch_normalization_15/moving_variance_0/image/0', 'encode8/conv1d_16/kernel_0/image/0', 'encode8/conv1d_16/kernel_0/image/1', 'encode8/conv1d_16/kernel_0/image/2', 'encode8/conv1d_16/bias_0/image/0', 'encode8/batch_normalization_16/gamma_0/image/0', 'encode8/batch_normalization_16/beta_0/image/0', 'encode8/batch_normalization_16/moving_mean_0/image/0', 'encode8/batch_normalization_16/moving_variance_0/image/0', 'encode8/conv1d_17/kernel_0/image/0', 'encode8/conv1d_17/kernel_0/image/1', 'encode8/conv1d_17/kernel_0/image/2', 'encode8/conv1d_17/bias_0/image/0', 'encode8/batch_normalization_17/gamma_0/image/0', 'encode8/batch_normalization_17/beta_0/image/0', 'encode8/batch_normalization_17/moving_mean_0/image/0', 'encode8/batch_normalization_17/moving_variance_0/image/0', 'two_conv_center/conv1d_18/kernel_0/image/0', 'two_conv_center/conv1d_18/kernel_0/image/1', 'two_conv_center/conv1d_18/kernel_0/image/2', 'two_conv_center/conv1d_18/bias_0/image/0', 'two_conv_center/batch_normalization_18/gamma_0/image/0', 'two_conv_center/batch_normalization_18/beta_0/image/0', 'two_conv_center/batch_normalization_18/moving_mean_0/image/0', 'two_conv_center/batch_normalization_18/moving_variance_0/image/0', 'two_conv_center/conv1d_19/kernel_0/image/0', 'two_conv_center/conv1d_19/kernel_0/image/1', 'two_conv_center/conv1d_19/kernel_0/image/2', 'two_conv_center/conv1d_19/bias_0/image/0', 'two_conv_center/batch_normalization_19/gamma_0/image/0', 'two_conv_center/batch_normalization_19/beta_0/image/0', 'two_conv_center/batch_normalization_19/moving_mean_0/image/0', 'two_conv_center/batch_normalization_19/moving_variance_0/image/0', 'conv_transpose_decoder8/conv1d_transpose/kernel_0/image/0', 'conv_transpose_decoder8/conv1d_transpose/kernel_0/image/1', 'conv_transpose_decoder8/conv1d_transpose/kernel_0/image/2', 'conv_transpose_decoder8/conv1d_transpose/bias_0/image/0', 'conv_transpose_decoder8/batch_normalization_20/gamma_0/image/0', 'conv_transpose_decoder8/batch_normalization_20/beta_0/image/0', 'conv_transpose_decoder8/batch_normalization_20/moving_mean_0/image/0', 'conv_transpose_decoder8/batch_normalization_20/moving_variance_0/image/0', 'two_conv_decoder8/conv1d_20/kernel_0/image/0', 'two_conv_decoder8/conv1d_20/kernel_0/image/1', 'two_conv_decoder8/conv1d_20/kernel_0/image/2', 'two_conv_decoder8/conv1d_20/bias_0/image/0', 'two_conv_decoder8/batch_normalization_21/gamma_0/image/0', 'two_conv_decoder8/batch_normalization_21/beta_0/image/0', 'two_conv_decoder8/batch_normalization_21/moving_mean_0/image/0', 'two_conv_decoder8/batch_normalization_21/moving_variance_0/image/0', 'two_conv_decoder8/conv1d_21/kernel_0/image/0', 'two_conv_decoder8/conv1d_21/kernel_0/image/1', 'two_conv_decoder8/conv1d_21/kernel_0/image/2', 'two_conv_decoder8/conv1d_21/bias_0/image/0', 'two_conv_decoder8/batch_normalization_22/gamma_0/image/0', 'two_conv_decoder8/batch_normalization_22/beta_0/image/0', 'two_conv_decoder8/batch_normalization_22/moving_mean_0/image/0', 'two_conv_decoder8/batch_normalization_22/moving_variance_0/image/0', 'conv_transpose_decoder7/conv1d_transpose_1/kernel_0/image/0', 'conv_transpose_decoder7/conv1d_transpose_1/kernel_0/image/1', 'conv_transpose_decoder7/conv1d_transpose_1/kernel_0/image/2', 'conv_transpose_decoder7/conv1d_transpose_1/bias_0/image/0', 'conv_transpose_decoder7/batch_normalization_23/gamma_0/image/0', 'conv_transpose_decoder7/batch_normalization_23/beta_0/image/0', 'conv_transpose_decoder7/batch_normalization_23/moving_mean_0/image/0', 'conv_transpose_decoder7/batch_normalization_23/moving_variance_0/image/0', 'two_conv_decoder7/conv1d_22/kernel_0/image/0', 'two_conv_decoder7/conv1d_22/kernel_0/image/1', 'two_conv_decoder7/conv1d_22/kernel_0/image/2', 'two_conv_decoder7/conv1d_22/bias_0/image/0', 'two_conv_decoder7/batch_normalization_24/gamma_0/image/0', 'two_conv_decoder7/batch_normalization_24/beta_0/image/0', 'two_conv_decoder7/batch_normalization_24/moving_mean_0/image/0', 'two_conv_decoder7/batch_normalization_24/moving_variance_0/image/0', 'two_conv_decoder7/conv1d_23/kernel_0/image/0', 'two_conv_decoder7/conv1d_23/kernel_0/image/1', 'two_conv_decoder7/conv1d_23/kernel_0/image/2', 'two_conv_decoder7/conv1d_23/bias_0/image/0', 'two_conv_decoder7/batch_normalization_25/gamma_0/image/0', 'two_conv_decoder7/batch_normalization_25/beta_0/image/0', 'two_conv_decoder7/batch_normalization_25/moving_mean_0/image/0', 'two_conv_decoder7/batch_normalization_25/moving_variance_0/image/0', 'conv_transpose_decoder6/conv1d_transpose_2/kernel_0/image/0', 'conv_transpose_decoder6/conv1d_transpose_2/kernel_0/image/1', 'conv_transpose_decoder6/conv1d_transpose_2/kernel_0/image/2', 'conv_transpose_decoder6/conv1d_transpose_2/bias_0/image/0', 'conv_transpose_decoder6/batch_normalization_26/gamma_0/image/0', 'conv_transpose_decoder6/batch_normalization_26/beta_0/image/0', 'conv_transpose_decoder6/batch_normalization_26/moving_mean_0/image/0', 'conv_transpose_decoder6/batch_normalization_26/moving_variance_0/image/0', 'two_conv_decoder6/conv1d_24/kernel_0/image/0', 'two_conv_decoder6/conv1d_24/kernel_0/image/1', 'two_conv_decoder6/conv1d_24/kernel_0/image/2', 'two_conv_decoder6/conv1d_24/bias_0/image/0', 'two_conv_decoder6/batch_normalization_27/gamma_0/image/0', 'two_conv_decoder6/batch_normalization_27/beta_0/image/0', 'two_conv_decoder6/batch_normalization_27/moving_mean_0/image/0', 'two_conv_decoder6/batch_normalization_27/moving_variance_0/image/0', 'two_conv_decoder6/conv1d_25/kernel_0/image/0', 'two_conv_decoder6/conv1d_25/kernel_0/image/1', 'two_conv_decoder6/conv1d_25/kernel_0/image/2', 'two_conv_decoder6/conv1d_25/bias_0/image/0', 'two_conv_decoder6/batch_normalization_28/gamma_0/image/0', 'two_conv_decoder6/batch_normalization_28/beta_0/image/0', 'two_conv_decoder6/batch_normalization_28/moving_mean_0/image/0', 'two_conv_decoder6/batch_normalization_28/moving_variance_0/image/0', 'conv_transpose_decoder5/conv1d_transpose_3/kernel_0/image/0', 'conv_transpose_decoder5/conv1d_transpose_3/kernel_0/image/1', 'conv_transpose_decoder5/conv1d_transpose_3/kernel_0/image/2', 'conv_transpose_decoder5/conv1d_transpose_3/bias_0/image/0', 'conv_transpose_decoder5/batch_normalization_29/gamma_0/image/0', 'conv_transpose_decoder5/batch_normalization_29/beta_0/image/0', 'conv_transpose_decoder5/batch_normalization_29/moving_mean_0/image/0', 'conv_transpose_decoder5/batch_normalization_29/moving_variance_0/image/0', 'two_conv_decoder5/conv1d_26/kernel_0/image/0', 'two_conv_decoder5/conv1d_26/kernel_0/image/1', 'two_conv_decoder5/conv1d_26/kernel_0/image/2', 'two_conv_decoder5/conv1d_26/bias_0/image/0', 'two_conv_decoder5/batch_normalization_30/gamma_0/image/0', 'two_conv_decoder5/batch_normalization_30/beta_0/image/0', 'two_conv_decoder5/batch_normalization_30/moving_mean_0/image/0', 'two_conv_decoder5/batch_normalization_30/moving_variance_0/image/0', 'two_conv_decoder5/conv1d_27/kernel_0/image/0', 'two_conv_decoder5/conv1d_27/kernel_0/image/1', 'two_conv_decoder5/conv1d_27/kernel_0/image/2', 'two_conv_decoder5/conv1d_27/bias_0/image/0', 'two_conv_decoder5/batch_normalization_31/gamma_0/image/0', 'two_conv_decoder5/batch_normalization_31/beta_0/image/0', 'two_conv_decoder5/batch_normalization_31/moving_mean_0/image/0', 'two_conv_decoder5/batch_normalization_31/moving_variance_0/image/0', 'conv_transpose_decoder4/conv1d_transpose_4/kernel_0/image/0', 'conv_transpose_decoder4/conv1d_transpose_4/kernel_0/image/1', 'conv_transpose_decoder4/conv1d_transpose_4/kernel_0/image/2', 'conv_transpose_decoder4/conv1d_transpose_4/bias_0/image/0', 'conv_transpose_decoder4/batch_normalization_32/gamma_0/image/0', 'conv_transpose_decoder4/batch_normalization_32/beta_0/image/0', 'conv_transpose_decoder4/batch_normalization_32/moving_mean_0/image/0', 'conv_transpose_decoder4/batch_normalization_32/moving_variance_0/image/0', 'two_conv_decoder4/conv1d_28/kernel_0/image/0', 'two_conv_decoder4/conv1d_28/kernel_0/image/1', 'two_conv_decoder4/conv1d_28/kernel_0/image/2', 'two_conv_decoder4/conv1d_28/bias_0/image/0', 'two_conv_decoder4/batch_normalization_33/gamma_0/image/0', 'two_conv_decoder4/batch_normalization_33/beta_0/image/0', 'two_conv_decoder4/batch_normalization_33/moving_mean_0/image/0', 'two_conv_decoder4/batch_normalization_33/moving_variance_0/image/0', 'two_conv_decoder4/conv1d_29/kernel_0/image/0', 'two_conv_decoder4/conv1d_29/kernel_0/image/1', 'two_conv_decoder4/conv1d_29/kernel_0/image/2', 'two_conv_decoder4/conv1d_29/bias_0/image/0', 'two_conv_decoder4/batch_normalization_34/gamma_0/image/0', 'two_conv_decoder4/batch_normalization_34/beta_0/image/0', 'two_conv_decoder4/batch_normalization_34/moving_mean_0/image/0', 'two_conv_decoder4/batch_normalization_34/moving_variance_0/image/0', 'conv_transpose_decoder3/conv1d_transpose_5/kernel_0/image/0', 'conv_transpose_decoder3/conv1d_transpose_5/kernel_0/image/1', 'conv_transpose_decoder3/conv1d_transpose_5/kernel_0/image/2', 'conv_transpose_decoder3/conv1d_transpose_5/bias_0/image/0', 'conv_transpose_decoder3/batch_normalization_35/gamma_0/image/0', 'conv_transpose_decoder3/batch_normalization_35/beta_0/image/0', 'conv_transpose_decoder3/batch_normalization_35/moving_mean_0/image/0', 'conv_transpose_decoder3/batch_normalization_35/moving_variance_0/image/0', 'two_conv_decoder3/conv1d_30/kernel_0/image/0', 'two_conv_decoder3/conv1d_30/kernel_0/image/1', 'two_conv_decoder3/conv1d_30/kernel_0/image/2', 'two_conv_decoder3/conv1d_30/bias_0/image/0', 'two_conv_decoder3/batch_normalization_36/gamma_0/image/0', 'two_conv_decoder3/batch_normalization_36/beta_0/image/0', 'two_conv_decoder3/batch_normalization_36/moving_mean_0/image/0', 'two_conv_decoder3/batch_normalization_36/moving_variance_0/image/0', 'two_conv_decoder3/conv1d_31/kernel_0/image/0', 'two_conv_decoder3/conv1d_31/kernel_0/image/1', 'two_conv_decoder3/conv1d_31/kernel_0/image/2', 'two_conv_decoder3/conv1d_31/bias_0/image/0', 'two_conv_decoder3/batch_normalization_37/gamma_0/image/0', 'two_conv_decoder3/batch_normalization_37/beta_0/image/0', 'two_conv_decoder3/batch_normalization_37/moving_mean_0/image/0', 'two_conv_decoder3/batch_normalization_37/moving_variance_0/image/0', 'conv_transpose_decoder2/conv1d_transpose_6/kernel_0/image/0', 'conv_transpose_decoder2/conv1d_transpose_6/kernel_0/image/1', 'conv_transpose_decoder2/conv1d_transpose_6/kernel_0/image/2', 'conv_transpose_decoder2/conv1d_transpose_6/bias_0/image/0', 'conv_transpose_decoder2/batch_normalization_38/gamma_0/image/0', 'conv_transpose_decoder2/batch_normalization_38/beta_0/image/0', 'conv_transpose_decoder2/batch_normalization_38/moving_mean_0/image/0', 'conv_transpose_decoder2/batch_normalization_38/moving_variance_0/image/0', 'two_conv_decoder2/conv1d_32/kernel_0/image/0', 'two_conv_decoder2/conv1d_32/kernel_0/image/1', 'two_conv_decoder2/conv1d_32/kernel_0/image/2', 'two_conv_decoder2/conv1d_32/bias_0/image/0', 'two_conv_decoder2/batch_normalization_39/gamma_0/image/0', 'two_conv_decoder2/batch_normalization_39/beta_0/image/0', 'two_conv_decoder2/batch_normalization_39/moving_mean_0/image/0', 'two_conv_decoder2/batch_normalization_39/moving_variance_0/image/0', 'two_conv_decoder2/conv1d_33/kernel_0/image/0', 'two_conv_decoder2/conv1d_33/kernel_0/image/1', 'two_conv_decoder2/conv1d_33/kernel_0/image/2', 'two_conv_decoder2/conv1d_33/bias_0/image/0', 'two_conv_decoder2/batch_normalization_40/gamma_0/image/0', 'two_conv_decoder2/batch_normalization_40/beta_0/image/0', 'two_conv_decoder2/batch_normalization_40/moving_mean_0/image/0', 'two_conv_decoder2/batch_normalization_40/moving_variance_0/image/0', 'conv_transpose_decoder1/conv1d_transpose_7/kernel_0/image/0', 'conv_transpose_decoder1/conv1d_transpose_7/kernel_0/image/1', 'conv_transpose_decoder1/conv1d_transpose_7/kernel_0/image/2', 'conv_transpose_decoder1/conv1d_transpose_7/bias_0/image/0', 'conv_transpose_decoder1/batch_normalization_41/gamma_0/image/0', 'conv_transpose_decoder1/batch_normalization_41/beta_0/image/0', 'conv_transpose_decoder1/batch_normalization_41/moving_mean_0/image/0', 'conv_transpose_decoder1/batch_normalization_41/moving_variance_0/image/0', 'two_conv_decoder1/conv1d_34/kernel_0/image/0', 'two_conv_decoder1/conv1d_34/kernel_0/image/1', 'two_conv_decoder1/conv1d_34/kernel_0/image/2', 'two_conv_decoder1/conv1d_34/bias_0/image/0', 'two_conv_decoder1/batch_normalization_42/gamma_0/image/0', 'two_conv_decoder1/batch_normalization_42/beta_0/image/0', 'two_conv_decoder1/batch_normalization_42/moving_mean_0/image/0', 'two_conv_decoder1/batch_normalization_42/moving_variance_0/image/0', 'two_conv_decoder1/conv1d_35/kernel_0/image/0', 'two_conv_decoder1/conv1d_35/kernel_0/image/1', 'two_conv_decoder1/conv1d_35/kernel_0/image/2', 'two_conv_decoder1/conv1d_35/bias_0/image/0', 'two_conv_decoder1/batch_normalization_43/gamma_0/image/0', 'two_conv_decoder1/batch_normalization_43/beta_0/image/0', 'two_conv_decoder1/batch_normalization_43/moving_mean_0/image/0', 'two_conv_decoder1/batch_normalization_43/moving_variance_0/image/0', 'conv_transpose_decoder0/conv1d_transpose_8/kernel_0/image/0', 'conv_transpose_decoder0/conv1d_transpose_8/kernel_0/image/1', 'conv_transpose_decoder0/conv1d_transpose_8/kernel_0/image/2', 'conv_transpose_decoder0/conv1d_transpose_8/bias_0/image/0', 'conv_transpose_decoder0/batch_normalization_44/gamma_0/image/0', 'conv_transpose_decoder0/batch_normalization_44/beta_0/image/0', 'conv_transpose_decoder0/batch_normalization_44/moving_mean_0/image/0', 'conv_transpose_decoder0/batch_normalization_44/moving_variance_0/image/0', 'two_conv_decoder0/conv1d_36/kernel_0/image/0', 'two_conv_decoder0/conv1d_36/kernel_0/image/1', 'two_conv_decoder0/conv1d_36/kernel_0/image/2', 'two_conv_decoder0/conv1d_36/bias_0/image/0', 'two_conv_decoder0/batch_normalization_45/gamma_0/image/0', 'two_conv_decoder0/batch_normalization_45/beta_0/image/0', 'two_conv_decoder0/batch_normalization_45/moving_mean_0/image/0', 'two_conv_decoder0/batch_normalization_45/moving_variance_0/image/0', 'two_conv_decoder0/conv1d_37/kernel_0/image/0', 'two_conv_decoder0/conv1d_37/kernel_0/image/1', 'two_conv_decoder0/conv1d_37/kernel_0/image/2', 'two_conv_decoder0/conv1d_37/bias_0/image/0', 'two_conv_decoder0/batch_normalization_46/gamma_0/image/0', 'two_conv_decoder0/batch_normalization_46/beta_0/image/0', 'two_conv_decoder0/batch_normalization_46/moving_mean_0/image/0', 'two_conv_decoder0/batch_normalization_46/moving_variance_0/image/0', 'conv1d_38/kernel_0/image/0'], 'audio': [], 'histograms': ['encode0/conv1d/kernel_0', 'encode0/conv1d/bias_0', 'encode0/batch_normalization/gamma_0', 'encode0/batch_normalization/beta_0', 'encode0/batch_normalization/moving_mean_0', 'encode0/batch_normalization/moving_variance_0', 'encode0/conv1d_1/kernel_0', 'encode0/conv1d_1/bias_0', 'encode0/batch_normalization_1/gamma_0', 'encode0/batch_normalization_1/beta_0', 'encode0/batch_normalization_1/moving_mean_0', 'encode0/batch_normalization_1/moving_variance_0', 'encode1/conv1d_2/kernel_0', 'encode1/conv1d_2/bias_0', 'encode1/batch_normalization_2/gamma_0', 'encode1/batch_normalization_2/beta_0', 'encode1/batch_normalization_2/moving_mean_0', 'encode1/batch_normalization_2/moving_variance_0', 'encode1/conv1d_3/kernel_0', 'encode1/conv1d_3/bias_0', 'encode1/batch_normalization_3/gamma_0', 'encode1/batch_normalization_3/beta_0', 'encode1/batch_normalization_3/moving_mean_0', 'encode1/batch_normalization_3/moving_variance_0', 'encode2/conv1d_4/kernel_0', 'encode2/conv1d_4/bias_0', 'encode2/batch_normalization_4/gamma_0', 'encode2/batch_normalization_4/beta_0', 'encode2/batch_normalization_4/moving_mean_0', 'encode2/batch_normalization_4/moving_variance_0', 'encode2/conv1d_5/kernel_0', 'encode2/conv1d_5/bias_0', 'encode2/batch_normalization_5/gamma_0', 'encode2/batch_normalization_5/beta_0', 'encode2/batch_normalization_5/moving_mean_0', 'encode2/batch_normalization_5/moving_variance_0', 'encode3/conv1d_6/kernel_0', 'encode3/conv1d_6/bias_0', 'encode3/batch_normalization_6/gamma_0', 'encode3/batch_normalization_6/beta_0', 'encode3/batch_normalization_6/moving_mean_0', 'encode3/batch_normalization_6/moving_variance_0', 'encode3/conv1d_7/kernel_0', 'encode3/conv1d_7/bias_0', 'encode3/batch_normalization_7/gamma_0', 'encode3/batch_normalization_7/beta_0', 'encode3/batch_normalization_7/moving_mean_0', 'encode3/batch_normalization_7/moving_variance_0', 'encode4/conv1d_8/kernel_0', 'encode4/conv1d_8/bias_0', 'encode4/batch_normalization_8/gamma_0', 'encode4/batch_normalization_8/beta_0', 'encode4/batch_normalization_8/moving_mean_0', 'encode4/batch_normalization_8/moving_variance_0', 'encode4/conv1d_9/kernel_0', 'encode4/conv1d_9/bias_0', 'encode4/batch_normalization_9/gamma_0', 'encode4/batch_normalization_9/beta_0', 'encode4/batch_normalization_9/moving_mean_0', 'encode4/batch_normalization_9/moving_variance_0', 'encode5/conv1d_10/kernel_0', 'encode5/conv1d_10/bias_0', 'encode5/batch_normalization_10/gamma_0', 'encode5/batch_normalization_10/beta_0', 'encode5/batch_normalization_10/moving_mean_0', 'encode5/batch_normalization_10/moving_variance_0', 'encode5/conv1d_11/kernel_0', 'encode5/conv1d_11/bias_0', 'encode5/batch_normalization_11/gamma_0', 'encode5/batch_normalization_11/beta_0', 'encode5/batch_normalization_11/moving_mean_0', 'encode5/batch_normalization_11/moving_variance_0', 'encode6/conv1d_12/kernel_0', 'encode6/conv1d_12/bias_0', 'encode6/batch_normalization_12/gamma_0', 'encode6/batch_normalization_12/beta_0', 'encode6/batch_normalization_12/moving_mean_0', 'encode6/batch_normalization_12/moving_variance_0', 'encode6/conv1d_13/kernel_0', 'encode6/conv1d_13/bias_0', 'encode6/batch_normalization_13/gamma_0', 'encode6/batch_normalization_13/beta_0', 'encode6/batch_normalization_13/moving_mean_0', 'encode6/batch_normalization_13/moving_variance_0', 'encode7/conv1d_14/kernel_0', 'encode7/conv1d_14/bias_0', 'encode7/batch_normalization_14/gamma_0', 'encode7/batch_normalization_14/beta_0', 'encode7/batch_normalization_14/moving_mean_0', 'encode7/batch_normalization_14/moving_variance_0', 'encode7/conv1d_15/kernel_0', 'encode7/conv1d_15/bias_0', 'encode7/batch_normalization_15/gamma_0', 'encode7/batch_normalization_15/beta_0', 'encode7/batch_normalization_15/moving_mean_0', 'encode7/batch_normalization_15/moving_variance_0', 'encode8/conv1d_16/kernel_0', 'encode8/conv1d_16/bias_0', 'encode8/batch_normalization_16/gamma_0', 'encode8/batch_normalization_16/beta_0', 'encode8/batch_normalization_16/moving_mean_0', 'encode8/batch_normalization_16/moving_variance_0', 'encode8/conv1d_17/kernel_0', 'encode8/conv1d_17/bias_0', 'encode8/batch_normalization_17/gamma_0', 'encode8/batch_normalization_17/beta_0', 'encode8/batch_normalization_17/moving_mean_0', 'encode8/batch_normalization_17/moving_variance_0', 'two_conv_center/conv1d_18/kernel_0', 'two_conv_center/conv1d_18/bias_0', 'two_conv_center/batch_normalization_18/gamma_0', 'two_conv_center/batch_normalization_18/beta_0', 'two_conv_center/batch_normalization_18/moving_mean_0', 'two_conv_center/batch_normalization_18/moving_variance_0', 'two_conv_center/conv1d_19/kernel_0', 'two_conv_center/conv1d_19/bias_0', 'two_conv_center/batch_normalization_19/gamma_0', 'two_conv_center/batch_normalization_19/beta_0', 'two_conv_center/batch_normalization_19/moving_mean_0', 'two_conv_center/batch_normalization_19/moving_variance_0', 'conv_transpose_decoder8/conv1d_transpose/kernel_0', 'conv_transpose_decoder8/conv1d_transpose/bias_0', 'conv_transpose_decoder8/batch_normalization_20/gamma_0', 'conv_transpose_decoder8/batch_normalization_20/beta_0', 'conv_transpose_decoder8/batch_normalization_20/moving_mean_0', 'conv_transpose_decoder8/batch_normalization_20/moving_variance_0', 'two_conv_decoder8/conv1d_20/kernel_0', 'two_conv_decoder8/conv1d_20/bias_0', 'two_conv_decoder8/batch_normalization_21/gamma_0', 'two_conv_decoder8/batch_normalization_21/beta_0', 'two_conv_decoder8/batch_normalization_21/moving_mean_0', 'two_conv_decoder8/batch_normalization_21/moving_variance_0', 'two_conv_decoder8/conv1d_21/kernel_0', 'two_conv_decoder8/conv1d_21/bias_0', 'two_conv_decoder8/batch_normalization_22/gamma_0', 'two_conv_decoder8/batch_normalization_22/beta_0', 'two_conv_decoder8/batch_normalization_22/moving_mean_0', 'two_conv_decoder8/batch_normalization_22/moving_variance_0', 'conv_transpose_decoder7/conv1d_transpose_1/kernel_0', 'conv_transpose_decoder7/conv1d_transpose_1/bias_0', 'conv_transpose_decoder7/batch_normalization_23/gamma_0', 'conv_transpose_decoder7/batch_normalization_23/beta_0', 'conv_transpose_decoder7/batch_normalization_23/moving_mean_0', 'conv_transpose_decoder7/batch_normalization_23/moving_variance_0', 'two_conv_decoder7/conv1d_22/kernel_0', 'two_conv_decoder7/conv1d_22/bias_0', 'two_conv_decoder7/batch_normalization_24/gamma_0', 'two_conv_decoder7/batch_normalization_24/beta_0', 'two_conv_decoder7/batch_normalization_24/moving_mean_0', 'two_conv_decoder7/batch_normalization_24/moving_variance_0', 'two_conv_decoder7/conv1d_23/kernel_0', 'two_conv_decoder7/conv1d_23/bias_0', 'two_conv_decoder7/batch_normalization_25/gamma_0', 'two_conv_decoder7/batch_normalization_25/beta_0', 'two_conv_decoder7/batch_normalization_25/moving_mean_0', 'two_conv_decoder7/batch_normalization_25/moving_variance_0', 'conv_transpose_decoder6/conv1d_transpose_2/kernel_0', 'conv_transpose_decoder6/conv1d_transpose_2/bias_0', 'conv_transpose_decoder6/batch_normalization_26/gamma_0', 'conv_transpose_decoder6/batch_normalization_26/beta_0', 'conv_transpose_decoder6/batch_normalization_26/moving_mean_0', 'conv_transpose_decoder6/batch_normalization_26/moving_variance_0', 'two_conv_decoder6/conv1d_24/kernel_0', 'two_conv_decoder6/conv1d_24/bias_0', 'two_conv_decoder6/batch_normalization_27/gamma_0', 'two_conv_decoder6/batch_normalization_27/beta_0', 'two_conv_decoder6/batch_normalization_27/moving_mean_0', 'two_conv_decoder6/batch_normalization_27/moving_variance_0', 'two_conv_decoder6/conv1d_25/kernel_0', 'two_conv_decoder6/conv1d_25/bias_0', 'two_conv_decoder6/batch_normalization_28/gamma_0', 'two_conv_decoder6/batch_normalization_28/beta_0', 'two_conv_decoder6/batch_normalization_28/moving_mean_0', 'two_conv_decoder6/batch_normalization_28/moving_variance_0', 'conv_transpose_decoder5/conv1d_transpose_3/kernel_0', 'conv_transpose_decoder5/conv1d_transpose_3/bias_0', 'conv_transpose_decoder5/batch_normalization_29/gamma_0', 'conv_transpose_decoder5/batch_normalization_29/beta_0', 'conv_transpose_decoder5/batch_normalization_29/moving_mean_0', 'conv_transpose_decoder5/batch_normalization_29/moving_variance_0', 'two_conv_decoder5/conv1d_26/kernel_0', 'two_conv_decoder5/conv1d_26/bias_0', 'two_conv_decoder5/batch_normalization_30/gamma_0', 'two_conv_decoder5/batch_normalization_30/beta_0', 'two_conv_decoder5/batch_normalization_30/moving_mean_0', 'two_conv_decoder5/batch_normalization_30/moving_variance_0', 'two_conv_decoder5/conv1d_27/kernel_0', 'two_conv_decoder5/conv1d_27/bias_0', 'two_conv_decoder5/batch_normalization_31/gamma_0', 'two_conv_decoder5/batch_normalization_31/beta_0', 'two_conv_decoder5/batch_normalization_31/moving_mean_0', 'two_conv_decoder5/batch_normalization_31/moving_variance_0', 'conv_transpose_decoder4/conv1d_transpose_4/kernel_0', 'conv_transpose_decoder4/conv1d_transpose_4/bias_0', 'conv_transpose_decoder4/batch_normalization_32/gamma_0', 'conv_transpose_decoder4/batch_normalization_32/beta_0', 'conv_transpose_decoder4/batch_normalization_32/moving_mean_0', 'conv_transpose_decoder4/batch_normalization_32/moving_variance_0', 'two_conv_decoder4/conv1d_28/kernel_0', 'two_conv_decoder4/conv1d_28/bias_0', 'two_conv_decoder4/batch_normalization_33/gamma_0', 'two_conv_decoder4/batch_normalization_33/beta_0', 'two_conv_decoder4/batch_normalization_33/moving_mean_0', 'two_conv_decoder4/batch_normalization_33/moving_variance_0', 'two_conv_decoder4/conv1d_29/kernel_0', 'two_conv_decoder4/conv1d_29/bias_0', 'two_conv_decoder4/batch_normalization_34/gamma_0', 'two_conv_decoder4/batch_normalization_34/beta_0', 'two_conv_decoder4/batch_normalization_34/moving_mean_0', 'two_conv_decoder4/batch_normalization_34/moving_variance_0', 'conv_transpose_decoder3/conv1d_transpose_5/kernel_0', 'conv_transpose_decoder3/conv1d_transpose_5/bias_0', 'conv_transpose_decoder3/batch_normalization_35/gamma_0', 'conv_transpose_decoder3/batch_normalization_35/beta_0', 'conv_transpose_decoder3/batch_normalization_35/moving_mean_0', 'conv_transpose_decoder3/batch_normalization_35/moving_variance_0', 'two_conv_decoder3/conv1d_30/kernel_0', 'two_conv_decoder3/conv1d_30/bias_0', 'two_conv_decoder3/batch_normalization_36/gamma_0', 'two_conv_decoder3/batch_normalization_36/beta_0', 'two_conv_decoder3/batch_normalization_36/moving_mean_0', 'two_conv_decoder3/batch_normalization_36/moving_variance_0', 'two_conv_decoder3/conv1d_31/kernel_0', 'two_conv_decoder3/conv1d_31/bias_0', 'two_conv_decoder3/batch_normalization_37/gamma_0', 'two_conv_decoder3/batch_normalization_37/beta_0', 'two_conv_decoder3/batch_normalization_37/moving_mean_0', 'two_conv_decoder3/batch_normalization_37/moving_variance_0', 'conv_transpose_decoder2/conv1d_transpose_6/kernel_0', 'conv_transpose_decoder2/conv1d_transpose_6/bias_0', 'conv_transpose_decoder2/batch_normalization_38/gamma_0', 'conv_transpose_decoder2/batch_normalization_38/beta_0', 'conv_transpose_decoder2/batch_normalization_38/moving_mean_0', 'conv_transpose_decoder2/batch_normalization_38/moving_variance_0', 'two_conv_decoder2/conv1d_32/kernel_0', 'two_conv_decoder2/conv1d_32/bias_0', 'two_conv_decoder2/batch_normalization_39/gamma_0', 'two_conv_decoder2/batch_normalization_39/beta_0', 'two_conv_decoder2/batch_normalization_39/moving_mean_0', 'two_conv_decoder2/batch_normalization_39/moving_variance_0', 'two_conv_decoder2/conv1d_33/kernel_0', 'two_conv_decoder2/conv1d_33/bias_0', 'two_conv_decoder2/batch_normalization_40/gamma_0', 'two_conv_decoder2/batch_normalization_40/beta_0', 'two_conv_decoder2/batch_normalization_40/moving_mean_0', 'two_conv_decoder2/batch_normalization_40/moving_variance_0', 'conv_transpose_decoder1/conv1d_transpose_7/kernel_0', 'conv_transpose_decoder1/conv1d_transpose_7/bias_0', 'conv_transpose_decoder1/batch_normalization_41/gamma_0', 'conv_transpose_decoder1/batch_normalization_41/beta_0', 'conv_transpose_decoder1/batch_normalization_41/moving_mean_0', 'conv_transpose_decoder1/batch_normalization_41/moving_variance_0', 'two_conv_decoder1/conv1d_34/kernel_0', 'two_conv_decoder1/conv1d_34/bias_0', 'two_conv_decoder1/batch_normalization_42/gamma_0', 'two_conv_decoder1/batch_normalization_42/beta_0', 'two_conv_decoder1/batch_normalization_42/moving_mean_0', 'two_conv_decoder1/batch_normalization_42/moving_variance_0', 'two_conv_decoder1/conv1d_35/kernel_0', 'two_conv_decoder1/conv1d_35/bias_0', 'two_conv_decoder1/batch_normalization_43/gamma_0', 'two_conv_decoder1/batch_normalization_43/beta_0', 'two_conv_decoder1/batch_normalization_43/moving_mean_0', 'two_conv_decoder1/batch_normalization_43/moving_variance_0', 'conv_transpose_decoder0/conv1d_transpose_8/kernel_0', 'conv_transpose_decoder0/conv1d_transpose_8/bias_0', 'conv_transpose_decoder0/batch_normalization_44/gamma_0', 'conv_transpose_decoder0/batch_normalization_44/beta_0', 'conv_transpose_decoder0/batch_normalization_44/moving_mean_0', 'conv_transpose_decoder0/batch_normalization_44/moving_variance_0', 'two_conv_decoder0/conv1d_36/kernel_0', 'two_conv_decoder0/conv1d_36/bias_0', 'two_conv_decoder0/batch_normalization_45/gamma_0', 'two_conv_decoder0/batch_normalization_45/beta_0', 'two_conv_decoder0/batch_normalization_45/moving_mean_0', 'two_conv_decoder0/batch_normalization_45/moving_variance_0', 'two_conv_decoder0/conv1d_37/kernel_0', 'two_conv_decoder0/conv1d_37/bias_0', 'two_conv_decoder0/batch_normalization_46/gamma_0', 'two_conv_decoder0/batch_normalization_46/beta_0', 'two_conv_decoder0/batch_normalization_46/moving_mean_0', 'two_conv_decoder0/batch_normalization_46/moving_variance_0', 'conv1d_38/kernel_0', 'conv1d_38/bias_0'], 'scalars': ['epoch_loss', 'epoch_tp', 'epoch_fp', 'epoch_tn', 'epoch_fn', 'epoch_precision', 'epoch_recall', 'epoch_accuracy', 'epoch_auc'], 'distributions': ['encode0/conv1d/kernel_0', 'encode0/conv1d/bias_0', 'encode0/batch_normalization/gamma_0', 'encode0/batch_normalization/beta_0', 'encode0/batch_normalization/moving_mean_0', 'encode0/batch_normalization/moving_variance_0', 'encode0/conv1d_1/kernel_0', 'encode0/conv1d_1/bias_0', 'encode0/batch_normalization_1/gamma_0', 'encode0/batch_normalization_1/beta_0', 'encode0/batch_normalization_1/moving_mean_0', 'encode0/batch_normalization_1/moving_variance_0', 'encode1/conv1d_2/kernel_0', 'encode1/conv1d_2/bias_0', 'encode1/batch_normalization_2/gamma_0', 'encode1/batch_normalization_2/beta_0', 'encode1/batch_normalization_2/moving_mean_0', 'encode1/batch_normalization_2/moving_variance_0', 'encode1/conv1d_3/kernel_0', 'encode1/conv1d_3/bias_0', 'encode1/batch_normalization_3/gamma_0', 'encode1/batch_normalization_3/beta_0', 'encode1/batch_normalization_3/moving_mean_0', 'encode1/batch_normalization_3/moving_variance_0', 'encode2/conv1d_4/kernel_0', 'encode2/conv1d_4/bias_0', 'encode2/batch_normalization_4/gamma_0', 'encode2/batch_normalization_4/beta_0', 'encode2/batch_normalization_4/moving_mean_0', 'encode2/batch_normalization_4/moving_variance_0', 'encode2/conv1d_5/kernel_0', 'encode2/conv1d_5/bias_0', 'encode2/batch_normalization_5/gamma_0', 'encode2/batch_normalization_5/beta_0', 'encode2/batch_normalization_5/moving_mean_0', 'encode2/batch_normalization_5/moving_variance_0', 'encode3/conv1d_6/kernel_0', 'encode3/conv1d_6/bias_0', 'encode3/batch_normalization_6/gamma_0', 'encode3/batch_normalization_6/beta_0', 'encode3/batch_normalization_6/moving_mean_0', 'encode3/batch_normalization_6/moving_variance_0', 'encode3/conv1d_7/kernel_0', 'encode3/conv1d_7/bias_0', 'encode3/batch_normalization_7/gamma_0', 'encode3/batch_normalization_7/beta_0', 'encode3/batch_normalization_7/moving_mean_0', 'encode3/batch_normalization_7/moving_variance_0', 'encode4/conv1d_8/kernel_0', 'encode4/conv1d_8/bias_0', 'encode4/batch_normalization_8/gamma_0', 'encode4/batch_normalization_8/beta_0', 'encode4/batch_normalization_8/moving_mean_0', 'encode4/batch_normalization_8/moving_variance_0', 'encode4/conv1d_9/kernel_0', 'encode4/conv1d_9/bias_0', 'encode4/batch_normalization_9/gamma_0', 'encode4/batch_normalization_9/beta_0', 'encode4/batch_normalization_9/moving_mean_0', 'encode4/batch_normalization_9/moving_variance_0', 'encode5/conv1d_10/kernel_0', 'encode5/conv1d_10/bias_0', 'encode5/batch_normalization_10/gamma_0', 'encode5/batch_normalization_10/beta_0', 'encode5/batch_normalization_10/moving_mean_0', 'encode5/batch_normalization_10/moving_variance_0', 'encode5/conv1d_11/kernel_0', 'encode5/conv1d_11/bias_0', 'encode5/batch_normalization_11/gamma_0', 'encode5/batch_normalization_11/beta_0', 'encode5/batch_normalization_11/moving_mean_0', 'encode5/batch_normalization_11/moving_variance_0', 'encode6/conv1d_12/kernel_0', 'encode6/conv1d_12/bias_0', 'encode6/batch_normalization_12/gamma_0', 'encode6/batch_normalization_12/beta_0', 'encode6/batch_normalization_12/moving_mean_0', 'encode6/batch_normalization_12/moving_variance_0', 'encode6/conv1d_13/kernel_0', 'encode6/conv1d_13/bias_0', 'encode6/batch_normalization_13/gamma_0', 'encode6/batch_normalization_13/beta_0', 'encode6/batch_normalization_13/moving_mean_0', 'encode6/batch_normalization_13/moving_variance_0', 'encode7/conv1d_14/kernel_0', 'encode7/conv1d_14/bias_0', 'encode7/batch_normalization_14/gamma_0', 'encode7/batch_normalization_14/beta_0', 'encode7/batch_normalization_14/moving_mean_0', 'encode7/batch_normalization_14/moving_variance_0', 'encode7/conv1d_15/kernel_0', 'encode7/conv1d_15/bias_0', 'encode7/batch_normalization_15/gamma_0', 'encode7/batch_normalization_15/beta_0', 'encode7/batch_normalization_15/moving_mean_0', 'encode7/batch_normalization_15/moving_variance_0', 'encode8/conv1d_16/kernel_0', 'encode8/conv1d_16/bias_0', 'encode8/batch_normalization_16/gamma_0', 'encode8/batch_normalization_16/beta_0', 'encode8/batch_normalization_16/moving_mean_0', 'encode8/batch_normalization_16/moving_variance_0', 'encode8/conv1d_17/kernel_0', 'encode8/conv1d_17/bias_0', 'encode8/batch_normalization_17/gamma_0', 'encode8/batch_normalization_17/beta_0', 'encode8/batch_normalization_17/moving_mean_0', 'encode8/batch_normalization_17/moving_variance_0', 'two_conv_center/conv1d_18/kernel_0', 'two_conv_center/conv1d_18/bias_0', 'two_conv_center/batch_normalization_18/gamma_0', 'two_conv_center/batch_normalization_18/beta_0', 'two_conv_center/batch_normalization_18/moving_mean_0', 'two_conv_center/batch_normalization_18/moving_variance_0', 'two_conv_center/conv1d_19/kernel_0', 'two_conv_center/conv1d_19/bias_0', 'two_conv_center/batch_normalization_19/gamma_0', 'two_conv_center/batch_normalization_19/beta_0', 'two_conv_center/batch_normalization_19/moving_mean_0', 'two_conv_center/batch_normalization_19/moving_variance_0', 'conv_transpose_decoder8/conv1d_transpose/kernel_0', 'conv_transpose_decoder8/conv1d_transpose/bias_0', 'conv_transpose_decoder8/batch_normalization_20/gamma_0', 'conv_transpose_decoder8/batch_normalization_20/beta_0', 'conv_transpose_decoder8/batch_normalization_20/moving_mean_0', 'conv_transpose_decoder8/batch_normalization_20/moving_variance_0', 'two_conv_decoder8/conv1d_20/kernel_0', 'two_conv_decoder8/conv1d_20/bias_0', 'two_conv_decoder8/batch_normalization_21/gamma_0', 'two_conv_decoder8/batch_normalization_21/beta_0', 'two_conv_decoder8/batch_normalization_21/moving_mean_0', 'two_conv_decoder8/batch_normalization_21/moving_variance_0', 'two_conv_decoder8/conv1d_21/kernel_0', 'two_conv_decoder8/conv1d_21/bias_0', 'two_conv_decoder8/batch_normalization_22/gamma_0', 'two_conv_decoder8/batch_normalization_22/beta_0', 'two_conv_decoder8/batch_normalization_22/moving_mean_0', 'two_conv_decoder8/batch_normalization_22/moving_variance_0', 'conv_transpose_decoder7/conv1d_transpose_1/kernel_0', 'conv_transpose_decoder7/conv1d_transpose_1/bias_0', 'conv_transpose_decoder7/batch_normalization_23/gamma_0', 'conv_transpose_decoder7/batch_normalization_23/beta_0', 'conv_transpose_decoder7/batch_normalization_23/moving_mean_0', 'conv_transpose_decoder7/batch_normalization_23/moving_variance_0', 'two_conv_decoder7/conv1d_22/kernel_0', 'two_conv_decoder7/conv1d_22/bias_0', 'two_conv_decoder7/batch_normalization_24/gamma_0', 'two_conv_decoder7/batch_normalization_24/beta_0', 'two_conv_decoder7/batch_normalization_24/moving_mean_0', 'two_conv_decoder7/batch_normalization_24/moving_variance_0', 'two_conv_decoder7/conv1d_23/kernel_0', 'two_conv_decoder7/conv1d_23/bias_0', 'two_conv_decoder7/batch_normalization_25/gamma_0', 'two_conv_decoder7/batch_normalization_25/beta_0', 'two_conv_decoder7/batch_normalization_25/moving_mean_0', 'two_conv_decoder7/batch_normalization_25/moving_variance_0', 'conv_transpose_decoder6/conv1d_transpose_2/kernel_0', 'conv_transpose_decoder6/conv1d_transpose_2/bias_0', 'conv_transpose_decoder6/batch_normalization_26/gamma_0', 'conv_transpose_decoder6/batch_normalization_26/beta_0', 'conv_transpose_decoder6/batch_normalization_26/moving_mean_0', 'conv_transpose_decoder6/batch_normalization_26/moving_variance_0', 'two_conv_decoder6/conv1d_24/kernel_0', 'two_conv_decoder6/conv1d_24/bias_0', 'two_conv_decoder6/batch_normalization_27/gamma_0', 'two_conv_decoder6/batch_normalization_27/beta_0', 'two_conv_decoder6/batch_normalization_27/moving_mean_0', 'two_conv_decoder6/batch_normalization_27/moving_variance_0', 'two_conv_decoder6/conv1d_25/kernel_0', 'two_conv_decoder6/conv1d_25/bias_0', 'two_conv_decoder6/batch_normalization_28/gamma_0', 'two_conv_decoder6/batch_normalization_28/beta_0', 'two_conv_decoder6/batch_normalization_28/moving_mean_0', 'two_conv_decoder6/batch_normalization_28/moving_variance_0', 'conv_transpose_decoder5/conv1d_transpose_3/kernel_0', 'conv_transpose_decoder5/conv1d_transpose_3/bias_0', 'conv_transpose_decoder5/batch_normalization_29/gamma_0', 'conv_transpose_decoder5/batch_normalization_29/beta_0', 'conv_transpose_decoder5/batch_normalization_29/moving_mean_0', 'conv_transpose_decoder5/batch_normalization_29/moving_variance_0', 'two_conv_decoder5/conv1d_26/kernel_0', 'two_conv_decoder5/conv1d_26/bias_0', 'two_conv_decoder5/batch_normalization_30/gamma_0', 'two_conv_decoder5/batch_normalization_30/beta_0', 'two_conv_decoder5/batch_normalization_30/moving_mean_0', 'two_conv_decoder5/batch_normalization_30/moving_variance_0', 'two_conv_decoder5/conv1d_27/kernel_0', 'two_conv_decoder5/conv1d_27/bias_0', 'two_conv_decoder5/batch_normalization_31/gamma_0', 'two_conv_decoder5/batch_normalization_31/beta_0', 'two_conv_decoder5/batch_normalization_31/moving_mean_0', 'two_conv_decoder5/batch_normalization_31/moving_variance_0', 'conv_transpose_decoder4/conv1d_transpose_4/kernel_0', 'conv_transpose_decoder4/conv1d_transpose_4/bias_0', 'conv_transpose_decoder4/batch_normalization_32/gamma_0', 'conv_transpose_decoder4/batch_normalization_32/beta_0', 'conv_transpose_decoder4/batch_normalization_32/moving_mean_0', 'conv_transpose_decoder4/batch_normalization_32/moving_variance_0', 'two_conv_decoder4/conv1d_28/kernel_0', 'two_conv_decoder4/conv1d_28/bias_0', 'two_conv_decoder4/batch_normalization_33/gamma_0', 'two_conv_decoder4/batch_normalization_33/beta_0', 'two_conv_decoder4/batch_normalization_33/moving_mean_0', 'two_conv_decoder4/batch_normalization_33/moving_variance_0', 'two_conv_decoder4/conv1d_29/kernel_0', 'two_conv_decoder4/conv1d_29/bias_0', 'two_conv_decoder4/batch_normalization_34/gamma_0', 'two_conv_decoder4/batch_normalization_34/beta_0', 'two_conv_decoder4/batch_normalization_34/moving_mean_0', 'two_conv_decoder4/batch_normalization_34/moving_variance_0', 'conv_transpose_decoder3/conv1d_transpose_5/kernel_0', 'conv_transpose_decoder3/conv1d_transpose_5/bias_0', 'conv_transpose_decoder3/batch_normalization_35/gamma_0', 'conv_transpose_decoder3/batch_normalization_35/beta_0', 'conv_transpose_decoder3/batch_normalization_35/moving_mean_0', 'conv_transpose_decoder3/batch_normalization_35/moving_variance_0', 'two_conv_decoder3/conv1d_30/kernel_0', 'two_conv_decoder3/conv1d_30/bias_0', 'two_conv_decoder3/batch_normalization_36/gamma_0', 'two_conv_decoder3/batch_normalization_36/beta_0', 'two_conv_decoder3/batch_normalization_36/moving_mean_0', 'two_conv_decoder3/batch_normalization_36/moving_variance_0', 'two_conv_decoder3/conv1d_31/kernel_0', 'two_conv_decoder3/conv1d_31/bias_0', 'two_conv_decoder3/batch_normalization_37/gamma_0', 'two_conv_decoder3/batch_normalization_37/beta_0', 'two_conv_decoder3/batch_normalization_37/moving_mean_0', 'two_conv_decoder3/batch_normalization_37/moving_variance_0', 'conv_transpose_decoder2/conv1d_transpose_6/kernel_0', 'conv_transpose_decoder2/conv1d_transpose_6/bias_0', 'conv_transpose_decoder2/batch_normalization_38/gamma_0', 'conv_transpose_decoder2/batch_normalization_38/beta_0', 'conv_transpose_decoder2/batch_normalization_38/moving_mean_0', 'conv_transpose_decoder2/batch_normalization_38/moving_variance_0', 'two_conv_decoder2/conv1d_32/kernel_0', 'two_conv_decoder2/conv1d_32/bias_0', 'two_conv_decoder2/batch_normalization_39/gamma_0', 'two_conv_decoder2/batch_normalization_39/beta_0', 'two_conv_decoder2/batch_normalization_39/moving_mean_0', 'two_conv_decoder2/batch_normalization_39/moving_variance_0', 'two_conv_decoder2/conv1d_33/kernel_0', 'two_conv_decoder2/conv1d_33/bias_0', 'two_conv_decoder2/batch_normalization_40/gamma_0', 'two_conv_decoder2/batch_normalization_40/beta_0', 'two_conv_decoder2/batch_normalization_40/moving_mean_0', 'two_conv_decoder2/batch_normalization_40/moving_variance_0', 'conv_transpose_decoder1/conv1d_transpose_7/kernel_0', 'conv_transpose_decoder1/conv1d_transpose_7/bias_0', 'conv_transpose_decoder1/batch_normalization_41/gamma_0', 'conv_transpose_decoder1/batch_normalization_41/beta_0', 'conv_transpose_decoder1/batch_normalization_41/moving_mean_0', 'conv_transpose_decoder1/batch_normalization_41/moving_variance_0', 'two_conv_decoder1/conv1d_34/kernel_0', 'two_conv_decoder1/conv1d_34/bias_0', 'two_conv_decoder1/batch_normalization_42/gamma_0', 'two_conv_decoder1/batch_normalization_42/beta_0', 'two_conv_decoder1/batch_normalization_42/moving_mean_0', 'two_conv_decoder1/batch_normalization_42/moving_variance_0', 'two_conv_decoder1/conv1d_35/kernel_0', 'two_conv_decoder1/conv1d_35/bias_0', 'two_conv_decoder1/batch_normalization_43/gamma_0', 'two_conv_decoder1/batch_normalization_43/beta_0', 'two_conv_decoder1/batch_normalization_43/moving_mean_0', 'two_conv_decoder1/batch_normalization_43/moving_variance_0', 'conv_transpose_decoder0/conv1d_transpose_8/kernel_0', 'conv_transpose_decoder0/conv1d_transpose_8/bias_0', 'conv_transpose_decoder0/batch_normalization_44/gamma_0', 'conv_transpose_decoder0/batch_normalization_44/beta_0', 'conv_transpose_decoder0/batch_normalization_44/moving_mean_0', 'conv_transpose_decoder0/batch_normalization_44/moving_variance_0', 'two_conv_decoder0/conv1d_36/kernel_0', 'two_conv_decoder0/conv1d_36/bias_0', 'two_conv_decoder0/batch_normalization_45/gamma_0', 'two_conv_decoder0/batch_normalization_45/beta_0', 'two_conv_decoder0/batch_normalization_45/moving_mean_0', 'two_conv_decoder0/batch_normalization_45/moving_variance_0', 'two_conv_decoder0/conv1d_37/kernel_0', 'two_conv_decoder0/conv1d_37/bias_0', 'two_conv_decoder0/batch_normalization_46/gamma_0', 'two_conv_decoder0/batch_normalization_46/beta_0', 'two_conv_decoder0/batch_normalization_46/moving_mean_0', 'two_conv_decoder0/batch_normalization_46/moving_variance_0', 'conv1d_38/kernel_0', 'conv1d_38/bias_0'], 'tensors': ['batch_2'], 'graph': False, 'meta_graph': False, 'run_metadata': []}
ea.Scalars('epoch_loss')
2.1.8 Load model from mlflow logs and predict separately loaded data
First, check if the model file has to be downloaded via git lfs
cd /home/lex/Programme/drmed-git/ git lfs ls-files git lfs checkout
(base) [lex@Topialex drmed-git]$ git lfs ls-files 6526c5abca - data/mlruns/1/47b870b8fdcb4445956635c6758caff3/artifacts/model/data/model.h5 (base) [lex@Topialex drmed-git]$ git lfs checkout Skipped checkout for "data/mlruns/1/47b870b8fdcb4445956635c6758caff3/artifacts/model/data/model.h5", content not local. Use fetch to download. Checking out LFS objects: 100% (1/1), 399 MB | 0 B/s, done.
git lfs pull
fetch: Fetching reference refs/heads/develop Username for 'https://github.com': aseltmann B/s Password for 'https://aseltmann@github.com': (base) [lex@Topialex drmed-git]$ 1), 399 MB | 1.9 MB/s
Note: after these downloads, the GitHub-Version of git lfs didn’t work for me anymore without a payment for download/upload. Initially I thought of git lfs as a distributed way of storing files without the need of a central storage. GitHub does not seem to support that, which is sad - I will move away from it in the future. See here.
import mlflow.keras import mlflow.tensorflow import sys import numpy as np import tensorflow as tf project_path = '/home/lex/Programme/drmed-git' fluotracify_path = '{}/src/'.format(project_path) sys.path.append(fluotracify_path) from fluotracify.simulations import import_simulation_from_csv as isfc from fluotracify.training import build_model as bm, preprocess_data as ppd %cd /home/lex/Programme/drmed-git print(tf.__version__)
/home/lex/Programme/drmed-git 2.3.0-dev20200519
mlflow.set_tracking_uri('file://{}/data/mlruns'.format(project_path)) client = mlflow.tracking.MlflowClient(tracking_uri=mlflow.get_tracking_uri()) model_path = client.download_artifacts( run_id='1aefda1366f04f5da5d1fc2241ad9208', path='model') print(model_path)
/home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/model
bm.binary_ce_dice_loss()
<function fluotracify.training.build_model.binary_ce_dice_loss.<locals>.binary_ce_dice(y_true, y_pred)>
# mlflow.keras module model_keras = mlflow.keras.load_model(model_uri=model_path, custom_objects={'binary_ce_dice': bm.binary_ce_dice_loss()}) model_keras
<tensorflow.python.keras.engine.functional.Functional at 0x7f3afa29d0a0>
data, _, nsamples, experiment_params = isfc.import_from_csv( path='/home/lex/Programme/Jupyter/DOKTOR/saves/firstartefact/subsample_rand/', header=12, frac_train=1, col_per_example=2, dropindex=None, dropcolumns='Unnamed: 200')
train 0 /home/lex/Programme/Jupyter/DOKTOR/saves/firstartefact/subsample_rand/traces_brightclust_rand_Sep2019_set003.csv train 1 /home/lex/Programme/Jupyter/DOKTOR/saves/firstartefact/subsample_rand/traces_brightclust_rand_Sep2019_set002.csv train 2 /home/lex/Programme/Jupyter/DOKTOR/saves/firstartefact/subsample_rand/traces_brightclust_rand_Sep2019_set001.csv
input - shape: (None, 16384, 1) output - shape: (None, 16384, 1) Model: "model" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, 16384, 1)] 0 __________________________________________________________________________________________________ encode0 (Sequential) (None, 16384, 64) 13120 input_1[0][0] __________________________________________________________________________________________________ mp_encode0 (MaxPooling1D) (None, 8192, 64) 0 encode0[0][0] __________________________________________________________________________________________________ encode1 (Sequential) (None, 8192, 128) 75008 mp_encode0[0][0] __________________________________________________________________________________________________ mp_encode1 (MaxPooling1D) (None, 4096, 128) 0 encode1[0][0] __________________________________________________________________________________________________ encode2 (Sequential) (None, 4096, 256) 297472 mp_encode1[0][0] __________________________________________________________________________________________________ mp_encode2 (MaxPooling1D) (None, 2048, 256) 0 encode2[0][0] __________________________________________________________________________________________________ encode3 (Sequential) (None, 2048, 512) 1184768 mp_encode2[0][0] __________________________________________________________________________________________________ mp_encode3 (MaxPooling1D) (None, 1024, 512) 0 encode3[0][0] __________________________________________________________________________________________________ encode4 (Sequential) (None, 1024, 512) 1577984 mp_encode3[0][0] __________________________________________________________________________________________________ mp_encode4 (MaxPooling1D) (None, 512, 512) 0 encode4[0][0] __________________________________________________________________________________________________ encode5 (Sequential) (None, 512, 512) 1577984 mp_encode4[0][0] __________________________________________________________________________________________________ mp_encode5 (MaxPooling1D) (None, 256, 512) 0 encode5[0][0] __________________________________________________________________________________________________ encode6 (Sequential) (None, 256, 512) 1577984 mp_encode5[0][0] __________________________________________________________________________________________________ mp_encode6 (MaxPooling1D) (None, 128, 512) 0 encode6[0][0] __________________________________________________________________________________________________ encode7 (Sequential) (None, 128, 512) 1577984 mp_encode6[0][0] __________________________________________________________________________________________________ mp_encode7 (MaxPooling1D) (None, 64, 512) 0 encode7[0][0] __________________________________________________________________________________________________ encode8 (Sequential) (None, 64, 512) 1577984 mp_encode7[0][0] __________________________________________________________________________________________________ mp_encode8 (MaxPooling1D) (None, 32, 512) 0 encode8[0][0] __________________________________________________________________________________________________ two_conv_center (Sequential) (None, 32, 1024) 4728832 mp_encode8[0][0] __________________________________________________________________________________________________ conv_transpose_decoder8 (Sequen (None, 64, 512) 1051136 two_conv_center[0][0] __________________________________________________________________________________________________ decoder8 (Concatenate) (None, 64, 1024) 0 encode8[0][0] conv_transpose_decoder8[0][0] __________________________________________________________________________________________________ two_conv_decoder8 (Sequential) (None, 64, 512) 2364416 decoder8[0][0] __________________________________________________________________________________________________ conv_transpose_decoder7 (Sequen (None, 128, 512) 526848 two_conv_decoder8[0][0] __________________________________________________________________________________________________ decoder7 (Concatenate) (None, 128, 1024) 0 encode7[0][0] conv_transpose_decoder7[0][0] __________________________________________________________________________________________________ two_conv_decoder7 (Sequential) (None, 128, 512) 2364416 decoder7[0][0] __________________________________________________________________________________________________ conv_transpose_decoder6 (Sequen (None, 256, 512) 526848 two_conv_decoder7[0][0] __________________________________________________________________________________________________ decoder6 (Concatenate) (None, 256, 1024) 0 encode6[0][0] conv_transpose_decoder6[0][0] __________________________________________________________________________________________________ two_conv_decoder6 (Sequential) (None, 256, 512) 2364416 decoder6[0][0] __________________________________________________________________________________________________ conv_transpose_decoder5 (Sequen (None, 512, 512) 526848 two_conv_decoder6[0][0] __________________________________________________________________________________________________ decoder5 (Concatenate) (None, 512, 1024) 0 encode5[0][0] conv_transpose_decoder5[0][0] __________________________________________________________________________________________________ two_conv_decoder5 (Sequential) (None, 512, 512) 2364416 decoder5[0][0] __________________________________________________________________________________________________ conv_transpose_decoder4 (Sequen (None, 1024, 512) 526848 two_conv_decoder5[0][0] __________________________________________________________________________________________________ decoder4 (Concatenate) (None, 1024, 1024) 0 encode4[0][0] conv_transpose_decoder4[0][0] __________________________________________________________________________________________________ two_conv_decoder4 (Sequential) (None, 1024, 512) 2364416 decoder4[0][0] __________________________________________________________________________________________________ conv_transpose_decoder3 (Sequen (None, 2048, 512) 526848 two_conv_decoder4[0][0] __________________________________________________________________________________________________ decoder3 (Concatenate) (None, 2048, 1024) 0 encode3[0][0] conv_transpose_decoder3[0][0] __________________________________________________________________________________________________ two_conv_decoder3 (Sequential) (None, 2048, 512) 2364416 decoder3[0][0] __________________________________________________________________________________________________ conv_transpose_decoder2 (Sequen (None, 4096, 256) 263424 two_conv_decoder3[0][0] __________________________________________________________________________________________________ decoder2 (Concatenate) (None, 4096, 512) 0 encode2[0][0] conv_transpose_decoder2[0][0] __________________________________________________________________________________________________ two_conv_decoder2 (Sequential) (None, 4096, 256) 592384 decoder2[0][0] __________________________________________________________________________________________________ conv_transpose_decoder1 (Sequen (None, 8192, 128) 66176 two_conv_decoder2[0][0] __________________________________________________________________________________________________ decoder1 (Concatenate) (None, 8192, 256) 0 encode1[0][0] conv_transpose_decoder1[0][0] __________________________________________________________________________________________________ two_conv_decoder1 (Sequential) (None, 8192, 128) 148736 decoder1[0][0] __________________________________________________________________________________________________ conv_transpose_decoder0 (Sequen (None, 16384, 64) 16704 two_conv_decoder1[0][0] __________________________________________________________________________________________________ decoder0 (Concatenate) (None, 16384, 128) 0 encode0[0][0] conv_transpose_decoder0[0][0] __________________________________________________________________________________________________ two_conv_decoder0 (Sequential) (None, 16384, 64) 37504 decoder0[0][0] __________________________________________________________________________________________________ conv1d_38 (Conv1D) (None, 16384, 1) 65 two_conv_decoder0[0][0] ================================================================================================== Total params: 33,185,985 Trainable params: 33,146,689 Non-trainable params: 39,296 __________________________________________________________________________________________________ None
prediction = model_keras.predict(np.array(data.iloc[:16384, 0]).reshape(1, -1, 1))
I noticed one problem: directly outputting the prediction
array for large
predictions (e.g. 16384 time steps), will freeze emacs. Especially with my setup
with conversion to org tables. It is possible to output it in the REPL, or print
it using print(prediction)
, because there the output gets truncated, e.g. like
this:
array([[[1.], [1.], [1.], ..., [1.], [1.], [1.]]], dtype=float32)
While here it tries to print everything (I guess). Maybe I should test the
:pandoc t
argument instead of the OrgFormatter
class
Basically, no matter if I choosnpe the :results
header argument, it always gets
printed with :display org
like this.
log_dir="logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=log_dir, histogram_freq=5, write_images=True, update_freq='batch') epochs = 50 history = model.fit(x=dataset_train, epochs=epochs, steps_per_epoch=400, validation_data=dataset_val, validation_steps=tf.math.ceil(num_val_examples / batch_size), callbacks=[tensorboard_callback])
WARNING: Logging before flag parsing goes to stderr. W0413 03:23:05.926374 47620222508736 summary_ops_v2.py:1132] Model failed to serialize as JSON. Ignoring... Layers with arguments in `__init__` must override `get_config`. Train for 400 steps, validate for 534.0 steps Epoch 1/50 8/400 [..............................] - ETA: 1:05:18 - loss: 1.4586 - mean_io_u: 0.4039 - precision: 0.2347 - recall: 0.1408
--------------------------------------------------------------------------- KeyboardInterrupt Traceback (most recent call last)
prediction
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 2043 | 2044 | 2045 | 2046 | 2047 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
To make the output work the desired way (like in the REPL or print()
and
without freezing emacs for large tables), use :display plain
prediction
array([[[1.], [1.], [1.], ..., [1.], [1.], [1.]]], dtype=float32)
2.1.9 git exp 2
git status git log -1
(tensorflow_nightly) [ye53nis@node151 drmed-git]$ git status # On branch exp-310520-unet # Untracked files: # (use "git add <file>..." to include in what will be committed) # ... nothing added to commit but untracked files present (use "git add" to track) (tensorflow_nightly) [ye53nis@node151 drmed-git]$ git log -1 commit 09c1d2a1bc083695026b46c74ea175c9168bb5f2 Author: Apoplex <oligolex@vivaldi.net> Date: Fri Jun 12 14:17:14 2020 +0200 New learning rate schedule
current learning rate schedule:
learning_rate = 0.1 if epoch > 10: learning_rate = 0.01 if epoch > 20: learning_rate = 0.001 if epoch > 30: learning_rate = 0.0001 if epoch > 40: learning_rate = 0.00001 if epoch > 50: learning_rate = 0.000001 if epoch > 60: learning_rate = 0.00000001 if epoch > 70: learning_rate = 0.0000000001 if epoch > 80: learning_rate = 0.000000000001 if epoch > 90: learning_rate = 0.00000000000001
2.1.10 experimental run 2 - full dataset
This time new learning rate
mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=100 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=1280 -P validation_steps=320
(tensorflow_nightly) [ye53nis@node151 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=100 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=1280 -P val idation_steps=320 2020/06/12 14:20:34 INFO mlflow.projects: === Created directory /tmp/tmp2s79px_z for downloading remote URIs passed to arguments of type 'path' === 2020/06/12 14:20:34 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/fluotracify/training/train.py / beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 100 /beegfs/ye53nis/saves/firstartefact_Sep2019 1280 320' in run with ID '037e1d9e4ad74784974f4aaac11138cc' === 2020-06-12 14:20:53.286502: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory 2020-06-12 14:20:53.286593: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favour of importlib; see the modul e's documentation for alternative uses import imp 2.3.0-dev20200527 2020-06-12 14:21:33.782337: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2020-06-12 14:21:33.782422: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303) 2020-06-12 14:21:33.782480: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node151): /proc/driver/nvidia/version does not exist GPUs: [] train 0 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set027.csv train 1 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set087.csv train 2 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set003.csv train 3 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set056.csv train 4 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set076.csv train 5 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set094.csv train 6 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set017.csv train 7 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set074.csv train 8 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set055.csv train 9 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set096.csv train 10 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set054.csv train 11 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set093.csv train 12 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set079.csv train 13 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set014.csv train 14 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set008.csv train 15 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set031.csv train 16 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set023.csv train 17 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set025.csv train 18 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set034.csv train 19 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set009.csv train 20 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set044.csv train 21 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set063.csv train 22 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set004.csv train 23 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set072.csv train 24 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set046.csv train 25 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set049.csv train 26 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set007.csv train 27 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set100.csv train 28 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set083.csv train 29 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set077.csv train 30 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set061.csv train 31 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set081.csv train 32 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set091.csv train 33 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set069.csv train 34 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set052.csv train 35 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set028.csv train 36 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set019.csv train 37 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set057.csv train 38 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set064.csv train 39 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set075.csv train 40 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set002.csv train 41 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set062.csv train 42 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set043.csv train 43 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set042.csv train 44 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set005.csv train 45 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set016.csv train 46 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set018.csv train 47 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set041.csv train 48 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set039.csv train 49 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set006.csv train 50 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set092.csv train 51 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set060.csv train 52 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set001.csv train 53 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set035.csv train 54 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set029.csv train 55 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set051.csv train 56 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set012.csv train 57 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set036.csv train 58 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set024.csv train 59 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set053.csv train 60 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set011.csv train 61 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set032.csv train 62 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set067.csv train 63 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set058.csv train 64 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set080.csv train 65 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set086.csv train 66 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set033.csv train 67 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set085.csv train 68 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set015.csv train 69 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set090.csv train 70 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set020.csv train 71 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set030.csv train 72 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set050.csv train 73 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set098.csv train 74 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set099.csv train 75 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set070.csv train 76 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set021.csv train 77 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set095.csv train 78 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set073.csv train 79 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set078.csv test 80 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set026.csv test 81 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set038.csv test 82 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set082.csv test 83 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set047.csv test 84 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set040.csv test 85 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set066.csv test 86 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set059.csv test 87 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set013.csv test 88 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set089.csv test 89 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set071.csv test 90 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set088.csv test 91 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set037.csv test 92 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set022.csv test 93 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set084.csv test 94 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set010.csv test 95 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set097.csv test 96 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set068.csv test 97 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set065.csv test 98 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set048.csv test 99 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set045.csv shapes of feature dataframe: (20000, 8000) and label dataframe: (20000, 8000) shapes of feature dataframe: (20000, 2000) and label dataframe: (20000, 2000) for each 20,000 timestap trace there are the following numbers of corrupted timesteps: label001_1 6286 label001_1 2568 label001_1 4495 label001_1 4414 label001_1 1105 dtype: int64 2020-06-12 14:26:49.734444: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2020-06-12 14:26:49.744132: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz 2020-06-12 14:26:49.745558: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55721c34af40 initialized for platform Host (this does not guarantee that XLA will be used). Devices: 2020-06-12 14:26:49.745586: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version number of training examples: 6400, number of validation examples: 1600 ------------------------ number of test examples: 2000 input - shape: (None, 16384, 1) output - shape: (None, 16384, 1) 2020-06-12 14:26:53.653730: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started. /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working if not isinstance(wrapped_dict, collections.Mapping): /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Python 3.0, use inspect.signature() or inspect.getfullargspec() all_param_names, _, _, all_default_values = inspect.getargspec(fn) # pylint: disable=W1505 Epoch 1/100 /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working if not isinstance(values, collections.Sequence): 1/1280 [..............................] - ETA: 0s - loss: 1.5430 - tp: 5048.0000 - fp: 18093.0000 - tn: 50755.0000 - fn: 8024.0000 - precision: 0.2181 - recall: 0.3862 - accuracy: 0.6812 - auc: 0.58482020-06-12 14:27:06.190184: I ten sorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started. WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and w ill be removed after 2020-07-01. Instructions for updating: use `tf.profiler.experimental.stop` instead. 2020-06-12 14:27:07.670394: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_12_14_27_07 2020-06-12 14:27:07.684980: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.trace.json.gz 2020-06-12 14:27:07.711539: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_12_14_27_07 2020-06-12 14:27:07.711638: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.memory_profile.json.gz 2020-06-12 14:27:07.713732: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_06_12_14_27_07Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2020_06_12_1 4_27_07/node151.xplane.pb Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.overview_page.pb Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.input_pipeline.pb Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.tensorflow_stats.pb Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.kernel_stats.pb 1280/1280 [==============================] - 2053s 2s/step - loss: 0.9576 - tp: 14931613.0000 - fp: 6406557.0000 - tn: 74369864.0000 - fn: 9149518.0000 - precision: 0.6998 - recall: 0.6201 - accuracy: 0.8516 - auc: 0.8805 - val_loss: 1. 1981 - val_tp: 3451021.0000 - val_fp: 465330.0000 - val_tn: 19870236.0000 - val_fn: 2427812.0000 - val_precision: 0.8812 - val_recall: 0.5870 - val_accuracy: 0.8896 - val_auc: 0.8828 Epoch 2/100 679/1280 [==============>...............] - ETA: 14:47 - loss: 0.6900 - tp: 9867994.0000 - fp: 2756931.0000 - tn: 40089676.0000 - fn: 2909066.0000 - precision: 0.7816 - recall: 0.7723 - accuracy: 0.8981 - auc: 0.9307 1280/1280 [==============================] - 1998s 2s/step - loss: 0.6748 - tp: 18707488.0000 - fp: 4980630.0000 - tn: 75750952.0000 - fn: 5418544.0000 - precision: 0.7897 - recall: 0.7754 - accuracy: 0.9008 - auc: 0.9335 - val_loss: 1. 8923 - val_tp: 1511411.0000 - val_fp: 71511.0000 - val_tn: 20387136.0000 - val_fn: 4244342.0000 - val_precision: 0.9548 - val_recall: 0.2626 - val_accuracy: 0.8354 - val_auc: 0.8004 Epoch 3/100 1280/1280 [==============================] - 1974s 2s/step - loss: 0.6086 - tp: 19388796.0000 - fp: 4672424.0000 - tn: 76028144.0000 - fn: 4768219.0000 - precision: 0.8058 - recall: 0.8026 - accuracy: 0.9100 - auc: 0.9440 - val_loss: 4. 4772 - val_tp: 497608.0000 - val_fp: 47.0000 - val_tn: 20133974.0000 - val_fn: 5582775.0000 - val_precision: 0.9999 - val_recall: 0.0818 - val_accuracy: 0.7870 - val_auc: 0.6095 Epoch 4/100 1280/1280 [==============================] - 2036s 2s/step - loss: 0.5105 - tp: 20225824.0000 - fp: 3816004.0000 - tn: 76833904.0000 - fn: 3981872.0000 - precision: 0.8413 - recall: 0.8355 - accuracy: 0.9256 - auc: 0.9568 - val_loss: 1. 5316 - val_tp: 1395128.0000 - val_fp: 5102.0000 - val_tn: 20164212.0000 - val_fn: 4649960.0000 - val_precision: 0.9964 - val_recall: 0.2308 - val_accuracy: 0.8224 - val_auc: 0.7861 Epoch 5/100 1280/1280 [==============================] - 1961s 2s/step - loss: 0.4310 - tp: 20871492.0000 - fp: 3257518.0000 - tn: 77358976.0000 - fn: 3369640.0000 - precision: 0.8650 - recall: 0.8610 - accuracy: 0.9368 - auc: 0.9655 - val_loss: 0. 6155 - val_tp: 4878880.0000 - val_fp: 1771345.0000 - val_tn: 18827236.0000 - val_fn: 736940.0000 - val_precision: 0.7336 - val_recall: 0.8688 - val_accuracy: 0.9043 - val_auc: 0.9524 Epoch 6/100 1280/1280 [==============================] - 1934s 2s/step - loss: 0.3911 - tp: 20849656.0000 - fp: 2983615.0000 - tn: 77906056.0000 - fn: 3118252.0000 - precision: 0.8748 - recall: 0.8699 - accuracy: 0.9418 - auc: 0.9695 - val_loss: 13 .7751 - val_tp: 5829853.0000 - val_fp: 12729657.0000 - val_tn: 7490981.0000 - val_fn: 163909.0000 - val_precision: 0.3141 - val_recall: 0.9727 - val_accuracy: 0.5081 - val_auc: 0.7568 Epoch 7/100 1280/1280 [==============================] - 1954s 2s/step - loss: 0.3763 - tp: 20945158.0000 - fp: 2869675.0000 - tn: 78062216.0000 - fn: 2980532.0000 - precision: 0.8795 - recall: 0.8754 - accuracy: 0.9442 - auc: 0.9712 - val_loss: 1. 4221 - val_tp: 2763303.0000 - val_fp: 537658.0000 - val_tn: 19870444.0000 - val_fn: 3042995.0000 - val_precision: 0.8371 - val_recall: 0.4759 - val_accuracy: 0.8634 - val_auc: 0.8209 Epoch 8/100 1280/1280 [==============================] - 1959s 2s/step - loss: 0.3565 - tp: 21224852.0000 - fp: 2648995.0000 - tn: 78077912.0000 - fn: 2905816.0000 - precision: 0.8890 - recall: 0.8796 - accuracy: 0.9470 - auc: 0.9734 - val_loss: 4. 1428 - val_tp: 671439.0000 - val_fp: 5.0000 - val_tn: 19926294.0000 - val_fn: 5616654.0000 - val_precision: 1.0000 - val_recall: 0.1068 - val_accuracy: 0.7857 - val_auc: 0.6147 Epoch 9/100 1280/1280 [==============================] - 1959s 2s/step - loss: 0.3532 - tp: 21099540.0000 - fp: 2612022.0000 - tn: 78277824.0000 - fn: 2868197.0000 - precision: 0.8898 - recall: 0.8803 - accuracy: 0.9477 - auc: 0.9736 - val_loss: 0. 4181 - val_tp: 5276605.0000 - val_fp: 1364866.0000 - val_tn: 19070268.0000 - val_fn: 502655.0000 - val_precision: 0.7945 - val_recall: 0.9130 - val_accuracy: 0.9288 - val_auc: 0.9733 Epoch 10/100 1280/1280 [==============================] - 1964s 2s/step - loss: 0.3303 - tp: 21854000.0000 - fp: 2601074.0000 - tn: 77778032.0000 - fn: 2624482.0000 - precision: 0.8936 - recall: 0.8928 - accuracy: 0.9502 - auc: 0.9758 - val_loss: 0. 8186 - val_tp: 4852372.0000 - val_fp: 1259191.0000 - val_tn: 19046032.0000 - val_fn: 1056801.0000 - val_precision: 0.7940 - val_recall: 0.8212 - val_accuracy: 0.9117 - val_auc: 0.9279 Epoch 11/100 1280/1280 [==============================] - 1954s 2s/step - loss: 0.3367 - tp: 21247744.0000 - fp: 2633337.0000 - tn: 78318176.0000 - fn: 2658349.0000 - precision: 0.8897 - recall: 0.8888 - accuracy: 0.9495 - auc: 0.9748 - val_loss: 14 .1746 - val_tp: 5315183.0000 - val_fp: 9292374.0000 - val_tn: 10878559.0000 - val_fn: 728284.0000 - val_precision: 0.3639 - val_recall: 0.8795 - val_accuracy: 0.6177 - val_auc: 0.7350 Epoch 12/100 1280/1280 [==============================] - 1962s 2s/step - loss: 0.3097 - tp: 21383088.0000 - fp: 2165215.0000 - tn: 78747360.0000 - fn: 2561919.0000 - precision: 0.9081 - recall: 0.8930 - accuracy: 0.9549 - auc: 0.9777 - val_loss: 0. 3274 - val_tp: 4925695.0000 - val_fp: 165902.0000 - val_tn: 20004090.0000 - val_fn: 1118702.0000 - val_precision: 0.9674 - val_recall: 0.8149 - val_accuracy: 0.9510 - val_auc: 0.9759 Epoch 13/100 1280/1280 [==============================] - 1969s 2s/step - loss: 0.2912 - tp: 21857506.0000 - fp: 2213488.0000 - tn: 78446488.0000 - fn: 2340152.0000 - precision: 0.9080 - recall: 0.9033 - accuracy: 0.9566 - auc: 0.9793 - val_loss: 0. 4428 - val_tp: 4338892.0000 - val_fp: 35099.0000 - val_tn: 20239610.0000 - val_fn: 1600799.0000 - val_precision: 0.9920 - val_recall: 0.7305 - val_accuracy: 0.9376 - val_auc: 0.9713 Epoch 14/100 1280/1280 [==============================] - 1957s 2s/step - loss: 0.2883 - tp: 21882504.0000 - fp: 2239269.0000 - tn: 78431648.0000 - fn: 2304140.0000 - precision: 0.9072 - recall: 0.9047 - accuracy: 0.9567 - auc: 0.9796 - val_loss: 0. 2957 - val_tp: 5289461.0000 - val_fp: 449961.0000 - val_tn: 19835942.0000 - val_fn: 639032.0000 - val_precision: 0.9216 - val_recall: 0.8922 - val_accuracy: 0.9585 - val_auc: 0.9820 Epoch 15/100 1280/1280 [==============================] - 2044s 2s/step - loss: 0.2825 - tp: 21866824.0000 - fp: 2177254.0000 - tn: 78541248.0000 - fn: 2272316.0000 - precision: 0.9094 - recall: 0.9059 - accuracy: 0.9576 - auc: 0.9802 - val_loss: 0. 3209 - val_tp: 5233737.0000 - val_fp: 520949.0000 - val_tn: 19784424.0000 - val_fn: 675290.0000 - val_precision: 0.9095 - val_recall: 0.8857 - val_accuracy: 0.9544 - val_auc: 0.9800 Epoch 16/100 1280/1280 [==============================] - 1957s 2s/step - loss: 0.2769 - tp: 21749612.0000 - fp: 2170557.0000 - tn: 78722872.0000 - fn: 2214598.0000 - precision: 0.9093 - recall: 0.9076 - accuracy: 0.9582 - auc: 0.9802 - val_loss: 0. 3247 - val_tp: 5660332.0000 - val_fp: 828589.0000 - val_tn: 19303372.0000 - val_fn: 422111.0000 - val_precision: 0.8723 - val_recall: 0.9306 - val_accuracy: 0.9523 - val_auc: 0.9859 Epoch 17/100 1280/1280 [==============================] - 1949s 2s/step - loss: 0.2774 - tp: 21816756.0000 - fp: 2164372.0000 - tn: 78635128.0000 - fn: 2241237.0000 - precision: 0.9097 - recall: 0.9068 - accuracy: 0.9580 - auc: 0.9806 - val_loss: 0. 3148 - val_tp: 4953313.0000 - val_fp: 118813.0000 - val_tn: 20032204.0000 - val_fn: 1110073.0000 - val_precision: 0.9766 - val_recall: 0.8169 - val_accuracy: 0.9531 - val_auc: 0.9788 Epoch 18/100 1280/1280 [==============================] - 1944s 2s/step - loss: 0.2725 - tp: 21678578.0000 - fp: 2114671.0000 - tn: 78865952.0000 - fn: 2198422.0000 - precision: 0.9111 - recall: 0.9079 - accuracy: 0.9589 - auc: 0.9807 - val_loss: 0. 3363 - val_tp: 4425577.0000 - val_fp: 55980.0000 - val_tn: 20363536.0000 - val_fn: 1369309.0000 - val_precision: 0.9875 - val_recall: 0.7637 - val_accuracy: 0.9456 - val_auc: 0.9739 Epoch 19/100 1280/1280 [==============================] - 1947s 2s/step - loss: 0.2757 - tp: 22040606.0000 - fp: 2177952.0000 - tn: 78420008.0000 - fn: 2218997.0000 - precision: 0.9101 - recall: 0.9085 - accuracy: 0.9581 - auc: 0.9805 - val_loss: 0. 3061 - val_tp: 5376668.0000 - val_fp: 295874.0000 - val_tn: 19715332.0000 - val_fn: 826533.0000 - val_precision: 0.9478 - val_recall: 0.8668 - val_accuracy: 0.9572 - val_auc: 0.9796 Epoch 20/100 1280/1280 [==============================] - 1953s 2s/step - loss: 0.2758 - tp: 21804466.0000 - fp: 2129789.0000 - tn: 78704432.0000 - fn: 2218904.0000 - precision: 0.9110 - recall: 0.9076 - accuracy: 0.9585 - auc: 0.9805 - val_loss: 0. 3864 - val_tp: 4404185.0000 - val_fp: 40930.0000 - val_tn: 20226700.0000 - val_fn: 1542578.0000 - val_precision: 0.9908 - val_recall: 0.7406 - val_accuracy: 0.9396 - val_auc: 0.9670 Epoch 21/100 1280/1280 [==============================] - 1956s 2s/step - loss: 0.2715 - tp: 21833378.0000 - fp: 2128388.0000 - tn: 78697688.0000 - fn: 2198099.0000 - precision: 0.9112 - recall: 0.9085 - accuracy: 0.9587 - auc: 0.9812 - val_loss: 0. 3215 - val_tp: 4933923.0000 - val_fp: 100047.0000 - val_tn: 20044032.0000 - val_fn: 1136392.0000 - val_precision: 0.9801 - val_recall: 0.8128 - val_accuracy: 0.9528 - val_auc: 0.9780 Epoch 22/100 1280/1280 [==============================] - 1957s 2s/step - loss: 0.2685 - tp: 22131982.0000 - fp: 2123964.0000 - tn: 78455072.0000 - fn: 2146571.0000 - precision: 0.9124 - recall: 0.9116 - accuracy: 0.9593 - auc: 0.9811 - val_loss: 0. 2843 - val_tp: 5065657.0000 - val_fp: 196579.0000 - val_tn: 20093300.0000 - val_fn: 858874.0000 - val_precision: 0.9626 - val_recall: 0.8550 - val_accuracy: 0.9597 - val_auc: 0.9806 Epoch 23/100 1280/1280 [==============================] - 1974s 2s/step - loss: 0.2667 - tp: 21803614.0000 - fp: 2090465.0000 - tn: 78828520.0000 - fn: 2134989.0000 - precision: 0.9125 - recall: 0.9108 - accuracy: 0.9597 - auc: 0.9811 - val_loss: 0. 3048 - val_tp: 5024525.0000 - val_fp: 147570.0000 - val_tn: 20040236.0000 - val_fn: 1002069.0000 - val_precision: 0.9715 - val_recall: 0.8337 - val_accuracy: 0.9561 - val_auc: 0.9796 Epoch 24/100 1280/1280 [==============================] - 1969s 2s/step - loss: 0.2636 - tp: 21975042.0000 - fp: 2062614.0000 - tn: 78687080.0000 - fn: 2132792.0000 - precision: 0.9142 - recall: 0.9115 - accuracy: 0.9600 - auc: 0.9817 - val_loss: 0. 2889 - val_tp: 5170852.0000 - val_fp: 206375.0000 - val_tn: 19954888.0000 - val_fn: 882289.0000 - val_precision: 0.9616 - val_recall: 0.8542 - val_accuracy: 0.9585 - val_auc: 0.9811 Epoch 25/100 1280/1280 [==============================] - 1966s 2s/step - loss: 0.2654 - tp: 21864694.0000 - fp: 2102611.0000 - tn: 78755144.0000 - fn: 2135188.0000 - precision: 0.9123 - recall: 0.9110 - accuracy: 0.9596 - auc: 0.9815 - val_loss: 0. 2742 - val_tp: 5232587.0000 - val_fp: 220712.0000 - val_tn: 19933466.0000 - val_fn: 827639.0000 - val_precision: 0.9595 - val_recall: 0.8634 - val_accuracy: 0.9600 - val_auc: 0.9812 Epoch 26/100 1280/1280 [==============================] - 1968s 2s/step - loss: 0.2665 - tp: 21870048.0000 - fp: 2112301.0000 - tn: 78741728.0000 - fn: 2133559.0000 - precision: 0.9119 - recall: 0.9111 - accuracy: 0.9595 - auc: 0.9816 - val_loss: 0. 3169 - val_tp: 4986570.0000 - val_fp: 130988.0000 - val_tn: 20053542.0000 - val_fn: 1043297.0000 - val_precision: 0.9744 - val_recall: 0.8270 - val_accuracy: 0.9552 - val_auc: 0.9802 Epoch 27/100 1280/1280 [==============================] - 1952s 2s/step - loss: 0.2678 - tp: 21893164.0000 - fp: 2085167.0000 - tn: 78709264.0000 - fn: 2170034.0000 - precision: 0.9130 - recall: 0.9098 - accuracy: 0.9594 - auc: 0.9813 - val_loss: 0. 2900 - val_tp: 5054986.0000 - val_fp: 200466.0000 - val_tn: 20084900.0000 - val_fn: 874040.0000 - val_precision: 0.9619 - val_recall: 0.8526 - val_accuracy: 0.9590 - val_auc: 0.9804 Epoch 28/100 1280/1280 [==============================] - 1958s 2s/step - loss: 0.2650 - tp: 22049098.0000 - fp: 2106978.0000 - tn: 78571512.0000 - fn: 2130046.0000 - precision: 0.9128 - recall: 0.9119 - accuracy: 0.9596 - auc: 0.9817 - val_loss: 0. 2835 - val_tp: 4962208.0000 - val_fp: 180333.0000 - val_tn: 20181980.0000 - val_fn: 889878.0000 - val_precision: 0.9649 - val_recall: 0.8479 - val_accuracy: 0.9592 - val_auc: 0.9790 Epoch 29/100 1280/1280 [==============================] - 1966s 2s/step - loss: 0.2624 - tp: 21985904.0000 - fp: 2088019.0000 - tn: 78675856.0000 - fn: 2107816.0000 - precision: 0.9133 - recall: 0.9125 - accuracy: 0.9600 - auc: 0.9818 - val_loss: 0. 2769 - val_tp: 5178520.0000 - val_fp: 252398.0000 - val_tn: 20002776.0000 - val_fn: 780712.0000 - val_precision: 0.9535 - val_recall: 0.8690 - val_accuracy: 0.9606 - val_auc: 0.9797 Epoch 30/100 1280/1280 [==============================] - 1938s 2s/step - loss: 0.2616 - tp: 21893676.0000 - fp: 2096355.0000 - tn: 78765992.0000 - fn: 2101589.0000 - precision: 0.9126 - recall: 0.9124 - accuracy: 0.9600 - auc: 0.9820 - val_loss: 0. 2931 - val_tp: 5091699.0000 - val_fp: 180837.0000 - val_tn: 20020972.0000 - val_fn: 920891.0000 - val_precision: 0.9657 - val_recall: 0.8468 - val_accuracy: 0.9580 - val_auc: 0.9803 Epoch 31/100 1280/1280 [==============================] - 1932s 2s/step - loss: 0.2629 - tp: 21900190.0000 - fp: 2102823.0000 - tn: 78738360.0000 - fn: 2116254.0000 - precision: 0.9124 - recall: 0.9119 - accuracy: 0.9598 - auc: 0.9818 - val_loss: 0. 2833 - val_tp: 5068565.0000 - val_fp: 190985.0000 - val_tn: 20068752.0000 - val_fn: 886105.0000 - val_precision: 0.9637 - val_recall: 0.8512 - val_accuracy: 0.9589 - val_auc: 0.9797 Epoch 32/100 1280/1280 [==============================] - 1936s 2s/step - loss: 0.2656 - tp: 21855648.0000 - fp: 2070417.0000 - tn: 78781648.0000 - fn: 2149897.0000 - precision: 0.9135 - recall: 0.9104 - accuracy: 0.9598 - auc: 0.9816 - val_loss: 0. 3086 - val_tp: 5081221.0000 - val_fp: 145540.0000 - val_tn: 20010884.0000 - val_fn: 976755.0000 - val_precision: 0.9722 - val_recall: 0.8388 - val_accuracy: 0.9572 - val_auc: 0.9796 Epoch 33/100 1280/1280 [==============================] - 1896s 1s/step - loss: 0.2601 - tp: 21847706.0000 - fp: 2017783.0000 - tn: 78866344.0000 - fn: 2125796.0000 - precision: 0.9155 - recall: 0.9113 - accuracy: 0.9605 - auc: 0.9820 - val_loss: 0. 3225 - val_tp: 5136058.0000 - val_fp: 129931.0000 - val_tn: 19900672.0000 - val_fn: 1047735.0000 - val_precision: 0.9753 - val_recall: 0.8306 - val_accuracy: 0.9551 - val_auc: 0.9803 Epoch 34/100 1280/1280 [==============================] - 1883s 1s/step - loss: 0.2647 - tp: 21866856.0000 - fp: 2063199.0000 - tn: 78792768.0000 - fn: 2134767.0000 - precision: 0.9138 - recall: 0.9111 - accuracy: 0.9600 - auc: 0.9815 - val_loss: 0. 2877 - val_tp: 5081384.0000 - val_fp: 183837.0000 - val_tn: 20092414.0000 - val_fn: 856762.0000 - val_precision: 0.9651 - val_recall: 0.8557 - val_accuracy: 0.9603 - val_auc: 0.9819 Epoch 35/100 1280/1280 [==============================] - 1909s 1s/step - loss: 0.2644 - tp: 21793352.0000 - fp: 2043704.0000 - tn: 78858192.0000 - fn: 2162348.0000 - precision: 0.9143 - recall: 0.9097 - accuracy: 0.9599 - auc: 0.9813 - val_loss: 0. 2804 - val_tp: 5229124.0000 - val_fp: 199996.0000 - val_tn: 19913378.0000 - val_fn: 871912.0000 - val_precision: 0.9632 - val_recall: 0.8571 - val_accuracy: 0.9591 - val_auc: 0.9811 Epoch 36/100 1280/1280 [==============================] - 1926s 2s/step - loss: 0.2624 - tp: 21694132.0000 - fp: 2078119.0000 - tn: 78982728.0000 - fn: 2102522.0000 - precision: 0.9126 - recall: 0.9116 - accuracy: 0.9601 - auc: 0.9816 - val_loss: 0. 2822 - val_tp: 5091321.0000 - val_fp: 163063.0000 - val_tn: 20040276.0000 - val_fn: 919745.0000 - val_precision: 0.9690 - val_recall: 0.8470 - val_accuracy: 0.9587 - val_auc: 0.9807 Epoch 37/100 1280/1280 [==============================] - 1904s 1s/step - loss: 0.2629 - tp: 21760348.0000 - fp: 2034859.0000 - tn: 78921984.0000 - fn: 2140485.0000 - precision: 0.9145 - recall: 0.9104 - accuracy: 0.9602 - auc: 0.9816 - val_loss: 0. 3176 - val_tp: 5181435.0000 - val_fp: 158434.0000 - val_tn: 19879032.0000 - val_fn: 995505.0000 - val_precision: 0.9703 - val_recall: 0.8388 - val_accuracy: 0.9560 - val_auc: 0.9790 Epoch 38/100 1280/1280 [==============================] - 1894s 1s/step - loss: 0.2660 - tp: 21873788.0000 - fp: 2074315.0000 - tn: 78773216.0000 - fn: 2136309.0000 - precision: 0.9134 - recall: 0.9110 - accuracy: 0.9598 - auc: 0.9814 - val_loss: 0. 2881 - val_tp: 4927277.0000 - val_fp: 173887.0000 - val_tn: 20220536.0000 - val_fn: 892705.0000 - val_precision: 0.9659 - val_recall: 0.8466 - val_accuracy: 0.9593 - val_auc: 0.9789 Epoch 39/100 1280/1280 [==============================] - 1899s 1s/step - loss: 0.2622 - tp: 21838440.0000 - fp: 2067724.0000 - tn: 78836336.0000 - fn: 2115209.0000 - precision: 0.9135 - recall: 0.9117 - accuracy: 0.9601 - auc: 0.9818 - val_loss: 0. 2978 - val_tp: 4918815.0000 - val_fp: 143772.0000 - val_tn: 20190378.0000 - val_fn: 961431.0000 - val_precision: 0.9716 - val_recall: 0.8365 - val_accuracy: 0.9578 - val_auc: 0.9807 Epoch 40/100 1280/1280 [==============================] - 1888s 1s/step - loss: 0.2648 - tp: 21872584.0000 - fp: 2050789.0000 - tn: 78773392.0000 - fn: 2160846.0000 - precision: 0.9143 - recall: 0.9101 - accuracy: 0.9598 - auc: 0.9816 - val_loss: 0. 2909 - val_tp: 5274649.0000 - val_fp: 191573.0000 - val_tn: 19822700.0000 - val_fn: 925468.0000 - val_precision: 0.9650 - val_recall: 0.8507 - val_accuracy: 0.9574 - val_auc: 0.9799 Epoch 41/100 1280/1280 [==============================] - 1910s 1s/step - loss: 0.2648 - tp: 21696836.0000 - fp: 2093251.0000 - tn: 78944688.0000 - fn: 2122855.0000 - precision: 0.9120 - recall: 0.9109 - accuracy: 0.9598 - auc: 0.9814 - val_loss: 0. 2811 - val_tp: 5266549.0000 - val_fp: 194645.0000 - val_tn: 19876088.0000 - val_fn: 877120.0000 - val_precision: 0.9644 - val_recall: 0.8572 - val_accuracy: 0.9591 - val_auc: 0.9805 Epoch 42/100 1280/1280 [==============================] - 1912s 1s/step - loss: 0.2653 - tp: 21816640.0000 - fp: 2044165.0000 - tn: 78832952.0000 - fn: 2163912.0000 - precision: 0.9143 - recall: 0.9098 - accuracy: 0.9599 - auc: 0.9813 - val_loss: 0. 2983 - val_tp: 4907063.0000 - val_fp: 162204.0000 - val_tn: 20208222.0000 - val_fn: 936914.0000 - val_precision: 0.9680 - val_recall: 0.8397 - val_accuracy: 0.9581 - val_auc: 0.9799 Epoch 43/100 1280/1280 [==============================] - 1898s 1s/step - loss: 0.2646 - tp: 22222472.0000 - fp: 2064761.0000 - tn: 78412904.0000 - fn: 2157526.0000 - precision: 0.9150 - recall: 0.9115 - accuracy: 0.9597 - auc: 0.9817 - val_loss: 0. 2900 - val_tp: 5266505.0000 - val_fp: 189111.0000 - val_tn: 19834046.0000 - val_fn: 924743.0000 - val_precision: 0.9653 - val_recall: 0.8506 - val_accuracy: 0.9575 - val_auc: 0.9807 Epoch 44/100 1280/1280 [==============================] - 1937s 2s/step - loss: 0.2625 - tp: 21883992.0000 - fp: 2040394.0000 - tn: 78792808.0000 - fn: 2140429.0000 - precision: 0.9147 - recall: 0.9109 - accuracy: 0.9601 - auc: 0.9817 - val_loss: 0. 3128 - val_tp: 4872292.0000 - val_fp: 140248.0000 - val_tn: 20261372.0000 - val_fn: 940479.0000 - val_precision: 0.9720 - val_recall: 0.8382 - val_accuracy: 0.9588 - val_auc: 0.9805 Epoch 45/100 1280/1280 [==============================] - 1931s 2s/step - loss: 0.2641 - tp: 21804156.0000 - fp: 2047906.0000 - tn: 78877472.0000 - fn: 2128092.0000 - precision: 0.9141 - recall: 0.9111 - accuracy: 0.9602 - auc: 0.9814 - val_loss: 0. 2983 - val_tp: 5262537.0000 - val_fp: 177583.0000 - val_tn: 19827930.0000 - val_fn: 946346.0000 - val_precision: 0.9674 - val_recall: 0.8476 - val_accuracy: 0.9571 - val_auc: 0.9792 Epoch 46/100 1280/1280 [==============================] - 1941s 2s/step - loss: 0.2640 - tp: 21923374.0000 - fp: 2080069.0000 - tn: 78717264.0000 - fn: 2136918.0000 - precision: 0.9133 - recall: 0.9112 - accuracy: 0.9598 - auc: 0.9816 - val_loss: 0. 2822 - val_tp: 5087710.0000 - val_fp: 182249.0000 - val_tn: 20063030.0000 - val_fn: 881411.0000 - val_precision: 0.9654 - val_recall: 0.8523 - val_accuracy: 0.9594 - val_auc: 0.9803 Epoch 47/100 1280/1280 [==============================] - 1944s 2s/step - loss: 0.2620 - tp: 21961636.0000 - fp: 2068701.0000 - tn: 78701112.0000 - fn: 2126225.0000 - precision: 0.9139 - recall: 0.9117 - accuracy: 0.9600 - auc: 0.9818 - val_loss: 0. 2982 - val_tp: 5201830.0000 - val_fp: 170225.0000 - val_tn: 19876590.0000 - val_fn: 965741.0000 - val_precision: 0.9683 - val_recall: 0.8434 - val_accuracy: 0.9567 - val_auc: 0.9799 Epoch 48/100 1280/1280 [==============================] - 1948s 2s/step - loss: 0.2631 - tp: 21971392.0000 - fp: 2056324.0000 - tn: 78695536.0000 - fn: 2134300.0000 - precision: 0.9144 - recall: 0.9115 - accuracy: 0.9600 - auc: 0.9818 - val_loss: 0. 2906 - val_tp: 5083102.0000 - val_fp: 170364.0000 - val_tn: 20046178.0000 - val_fn: 914747.0000 - val_precision: 0.9676 - val_recall: 0.8475 - val_accuracy: 0.9586 - val_auc: 0.9792 Epoch 49/100 1280/1280 [==============================] - 1937s 2s/step - loss: 0.2629 - tp: 21911328.0000 - fp: 2071634.0000 - tn: 78755200.0000 - fn: 2119426.0000 - precision: 0.9136 - recall: 0.9118 - accuracy: 0.9600 - auc: 0.9818 - val_loss: 0. 2839 - val_tp: 5050322.0000 - val_fp: 183661.0000 - val_tn: 20111232.0000 - val_fn: 869193.0000 - val_precision: 0.9649 - val_recall: 0.8532 - val_accuracy: 0.9598 - val_auc: 0.9806 Epoch 50/100 1280/1280 [==============================] - 1964s 2s/step - loss: 0.2634 - tp: 21943356.0000 - fp: 2042601.0000 - tn: 78728936.0000 - fn: 2142696.0000 - precision: 0.9148 - recall: 0.9110 - accuracy: 0.9601 - auc: 0.9816 - val_loss: 0. 2906 - val_tp: 5176414.0000 - val_fp: 195927.0000 - val_tn: 19950280.0000 - val_fn: 891781.0000 - val_precision: 0.9635 - val_recall: 0.8530 - val_accuracy: 0.9585 - val_auc: 0.9800 Epoch 51/100 1280/1280 [==============================] - 1949s 2s/step - loss: 0.2619 - tp: 21905776.0000 - fp: 2054187.0000 - tn: 78790400.0000 - fn: 2107240.0000 - precision: 0.9143 - recall: 0.9122 - accuracy: 0.9603 - auc: 0.9818 - val_loss: 0. 2845 - val_tp: 5128164.0000 - val_fp: 168438.0000 - val_tn: 19986128.0000 - val_fn: 931667.0000 - val_precision: 0.9682 - val_recall: 0.8463 - val_accuracy: 0.9580 - val_auc: 0.9810 Epoch 52/100 1280/1280 [==============================] - 1959s 2s/step - loss: 0.2638 - tp: 21870924.0000 - fp: 2087711.0000 - tn: 78782424.0000 - fn: 2116607.0000 - precision: 0.9129 - recall: 0.9118 - accuracy: 0.9599 - auc: 0.9817 - val_loss: 0. 3062 - val_tp: 5273162.0000 - val_fp: 169306.0000 - val_tn: 19832368.0000 - val_fn: 939566.0000 - val_precision: 0.9689 - val_recall: 0.8488 - val_accuracy: 0.9577 - val_auc: 0.9815 Epoch 53/100 1280/1280 [==============================] - 1958s 2s/step - loss: 0.2648 - tp: 21947556.0000 - fp: 2065779.0000 - tn: 78702432.0000 - fn: 2141837.0000 - precision: 0.9140 - recall: 0.9111 - accuracy: 0.9599 - auc: 0.9816 - val_loss: 0. 2945 - val_tp: 5204859.0000 - val_fp: 153095.0000 - val_tn: 19890892.0000 - val_fn: 965553.0000 - val_precision: 0.9714 - val_recall: 0.8435 - val_accuracy: 0.9573 - val_auc: 0.9800 Epoch 54/100 1280/1280 [==============================] - 1937s 2s/step - loss: 0.2635 - tp: 21905812.0000 - fp: 2049643.0000 - tn: 78761584.0000 - fn: 2140551.0000 - precision: 0.9144 - recall: 0.9110 - accuracy: 0.9600 - auc: 0.9816 - val_loss: 0. 3064 - val_tp: 5062076.0000 - val_fp: 149992.0000 - val_tn: 20054216.0000 - val_fn: 948115.0000 - val_precision: 0.9712 - val_recall: 0.8422 - val_accuracy: 0.9581 - val_auc: 0.9815 Epoch 55/100 1280/1280 [==============================] - 1958s 2s/step - loss: 0.2653 - tp: 22046804.0000 - fp: 2122362.0000 - tn: 78569416.0000 - fn: 2119021.0000 - precision: 0.9122 - recall: 0.9123 - accuracy: 0.9596 - auc: 0.9818 - val_loss: 0. 2913 - val_tp: 5030327.0000 - val_fp: 162722.0000 - val_tn: 20130282.0000 - val_fn: 891077.0000 - val_precision: 0.9687 - val_recall: 0.8495 - val_accuracy: 0.9598 - val_auc: 0.9812 Epoch 56/100 1280/1280 [==============================] - 1946s 2s/step - loss: 0.2644 - tp: 21869356.0000 - fp: 2060246.0000 - tn: 78783952.0000 - fn: 2144064.0000 - precision: 0.9139 - recall: 0.9107 - accuracy: 0.9599 - auc: 0.9814 - val_loss: 0. 2816 - val_tp: 5105422.0000 - val_fp: 167571.0000 - val_tn: 20081292.0000 - val_fn: 860105.0000 - val_precision: 0.9682 - val_recall: 0.8558 - val_accuracy: 0.9608 - val_auc: 0.9805 Epoch 57/100 1280/1280 [==============================] - 1921s 2s/step - loss: 0.2642 - tp: 22001298.0000 - fp: 2070341.0000 - tn: 78641616.0000 - fn: 2144355.0000 - precision: 0.9140 - recall: 0.9112 - accuracy: 0.9598 - auc: 0.9816 - val_loss: 0. 3304 - val_tp: 4955272.0000 - val_fp: 133108.0000 - val_tn: 20129192.0000 - val_fn: 996829.0000 - val_precision: 0.9738 - val_recall: 0.8325 - val_accuracy: 0.9569 - val_auc: 0.9802 Epoch 58/100 1280/1280 [==============================] - 1919s 1s/step - loss: 0.2644 - tp: 21756178.0000 - fp: 2097986.0000 - tn: 78861704.0000 - fn: 2141728.0000 - precision: 0.9120 - recall: 0.9104 - accuracy: 0.9596 - auc: 0.9815 - val_loss: 0. 2800 - val_tp: 5173984.0000 - val_fp: 172737.0000 - val_tn: 19995672.0000 - val_fn: 872006.0000 - val_precision: 0.9677 - val_recall: 0.8558 - val_accuracy: 0.9601 - val_auc: 0.9811 Epoch 59/100 1280/1280 [==============================] - 1937s 2s/step - loss: 0.2639 - tp: 21965856.0000 - fp: 2104414.0000 - tn: 78670312.0000 - fn: 2117059.0000 - precision: 0.9126 - recall: 0.9121 - accuracy: 0.9597 - auc: 0.9817 - val_loss: 0. 2969 - val_tp: 5288252.0000 - val_fp: 187540.0000 - val_tn: 19831520.0000 - val_fn: 907092.0000 - val_precision: 0.9658 - val_recall: 0.8536 - val_accuracy: 0.9582 - val_auc: 0.9792 Epoch 60/100 1280/1280 [==============================] - 1942s 2s/step - loss: 0.2652 - tp: 21972316.0000 - fp: 2103459.0000 - tn: 78666280.0000 - fn: 2115554.0000 - precision: 0.9126 - recall: 0.9122 - accuracy: 0.9598 - auc: 0.9817 - val_loss: 0. 2818 - val_tp: 5166245.0000 - val_fp: 190846.0000 - val_tn: 19971494.0000 - val_fn: 885813.0000 - val_precision: 0.9644 - val_recall: 0.8536 - val_accuracy: 0.9589 - val_auc: 0.9810 Epoch 61/100 1280/1280 [==============================] - 1925s 2s/step - loss: 0.2651 - tp: 21878652.0000 - fp: 2066501.0000 - tn: 78782176.0000 - fn: 2130193.0000 - precision: 0.9137 - recall: 0.9113 - accuracy: 0.9600 - auc: 0.9814 - val_loss: 0. 2793 - val_tp: 5085499.0000 - val_fp: 194718.0000 - val_tn: 20060124.0000 - val_fn: 874059.0000 - val_precision: 0.9631 - val_recall: 0.8533 - val_accuracy: 0.9592 - val_auc: 0.9805 Epoch 62/100 1280/1280 [==============================] - 1922s 2s/step - loss: 0.2645 - tp: 21871498.0000 - fp: 2095977.0000 - tn: 78758960.0000 - fn: 2131121.0000 - precision: 0.9125 - recall: 0.9112 - accuracy: 0.9597 - auc: 0.9816 - val_loss: 0. 3215 - val_tp: 5111082.0000 - val_fp: 129336.0000 - val_tn: 19952116.0000 - val_fn: 1021864.0000 - val_precision: 0.9753 - val_recall: 0.8334 - val_accuracy: 0.9561 - val_auc: 0.9808 Epoch 63/100 1280/1280 [==============================] - 1938s 2s/step - loss: 0.2653 - tp: 21667542.0000 - fp: 2040165.0000 - tn: 78980168.0000 - fn: 2169717.0000 - precision: 0.9139 - recall: 0.9090 - accuracy: 0.9599 - auc: 0.9811 - val_loss: 0. 2935 - val_tp: 5105651.0000 - val_fp: 157582.0000 - val_tn: 19997984.0000 - val_fn: 953187.0000 - val_precision: 0.9701 - val_recall: 0.8427 - val_accuracy: 0.9576 - val_auc: 0.9795 Epoch 64/100 1280/1280 [==============================] - 1922s 2s/step - loss: 0.2621 - tp: 21566260.0000 - fp: 2041653.0000 - tn: 79126792.0000 - fn: 2122825.0000 - precision: 0.9135 - recall: 0.9104 - accuracy: 0.9603 - auc: 0.9816 - val_loss: 0. 2868 - val_tp: 5295960.0000 - val_fp: 181316.0000 - val_tn: 19817780.0000 - val_fn: 919349.0000 - val_precision: 0.9669 - val_recall: 0.8521 - val_accuracy: 0.9580 - val_auc: 0.9802 Epoch 65/100 1280/1280 [==============================] - 1930s 2s/step - loss: 0.2618 - tp: 21803380.0000 - fp: 2046884.0000 - tn: 78875232.0000 - fn: 2132114.0000 - precision: 0.9142 - recall: 0.9109 - accuracy: 0.9601 - auc: 0.9818 - val_loss: 0. 2655 - val_tp: 4998172.0000 - val_fp: 220002.0000 - val_tn: 20208396.0000 - val_fn: 787827.0000 - val_precision: 0.9578 - val_recall: 0.8638 - val_accuracy: 0.9616 - val_auc: 0.9810 Epoch 66/100 1280/1280 [==============================] - 1940s 2s/step - loss: 0.2621 - tp: 21715956.0000 - fp: 2060856.0000 - tn: 78976016.0000 - fn: 2104835.0000 - precision: 0.9133 - recall: 0.9116 - accuracy: 0.9603 - auc: 0.9817 - val_loss: 0. 2934 - val_tp: 4858098.0000 - val_fp: 162111.0000 - val_tn: 20270832.0000 - val_fn: 923350.0000 - val_precision: 0.9677 - val_recall: 0.8403 - val_accuracy: 0.9586 - val_auc: 0.9797 Epoch 67/100 1280/1280 [==============================] - 1936s 2s/step - loss: 0.2641 - tp: 22101508.0000 - fp: 2096796.0000 - tn: 78514056.0000 - fn: 2145167.0000 - precision: 0.9133 - recall: 0.9115 - accuracy: 0.9595 - auc: 0.9819 - val_loss: 0. 2935 - val_tp: 5311098.0000 - val_fp: 189758.0000 - val_tn: 19779840.0000 - val_fn: 933704.0000 - val_precision: 0.9655 - val_recall: 0.8505 - val_accuracy: 0.9571 - val_auc: 0.9804 Epoch 68/100 1280/1280 [==============================] - 1929s 2s/step - loss: 0.2639 - tp: 21973892.0000 - fp: 2058296.0000 - tn: 78690816.0000 - fn: 2134585.0000 - precision: 0.9144 - recall: 0.9115 - accuracy: 0.9600 - auc: 0.9816 - val_loss: 0. 3021 - val_tp: 5393303.0000 - val_fp: 200762.0000 - val_tn: 19679066.0000 - val_fn: 941275.0000 - val_precision: 0.9641 - val_recall: 0.8514 - val_accuracy: 0.9564 - val_auc: 0.9795 Epoch 69/100 1280/1280 [==============================] - 1928s 2s/step - loss: 0.2632 - tp: 21797492.0000 - fp: 2054212.0000 - tn: 78874840.0000 - fn: 2131042.0000 - precision: 0.9139 - recall: 0.9109 - accuracy: 0.9601 - auc: 0.9816 - val_loss: 0. 2970 - val_tp: 5102175.0000 - val_fp: 191344.0000 - val_tn: 19995848.0000 - val_fn: 925037.0000 - val_precision: 0.9639 - val_recall: 0.8465 - val_accuracy: 0.9574 - val_auc: 0.9797 Epoch 70/100 1280/1280 [==============================] - 1936s 2s/step - loss: 0.2629 - tp: 21925510.0000 - fp: 2063262.0000 - tn: 78733408.0000 - fn: 2135445.0000 - precision: 0.9140 - recall: 0.9112 - accuracy: 0.9600 - auc: 0.9818 - val_loss: 0. 2835 - val_tp: 5162856.0000 - val_fp: 228043.0000 - val_tn: 19969488.0000 - val_fn: 854014.0000 - val_precision: 0.9577 - val_recall: 0.8581 - val_accuracy: 0.9587 - val_auc: 0.9802 Epoch 71/100 1280/1280 [==============================] - 1930s 2s/step - loss: 0.2606 - tp: 21986884.0000 - fp: 2118880.0000 - tn: 78684536.0000 - fn: 2067241.0000 - precision: 0.9121 - recall: 0.9141 - accuracy: 0.9601 - auc: 0.9822 - val_loss: 0. 2809 - val_tp: 5176839.0000 - val_fp: 235191.0000 - val_tn: 19977128.0000 - val_fn: 825244.0000 - val_precision: 0.9565 - val_recall: 0.8625 - val_accuracy: 0.9595 - val_auc: 0.9812 Epoch 72/100 1280/1280 [==============================] - 1952s 2s/step - loss: 0.2618 - tp: 22038310.0000 - fp: 2056830.0000 - tn: 78655040.0000 - fn: 2107382.0000 - precision: 0.9146 - recall: 0.9127 - accuracy: 0.9603 - auc: 0.9820 - val_loss: 0. 2895 - val_tp: 5367415.0000 - val_fp: 210844.0000 - val_tn: 19760872.0000 - val_fn: 875261.0000 - val_precision: 0.9622 - val_recall: 0.8598 - val_accuracy: 0.9586 - val_auc: 0.9801 Epoch 73/100 1280/1280 [==============================] - 1931s 2s/step - loss: 0.2642 - tp: 22040244.0000 - fp: 2079148.0000 - tn: 78597176.0000 - fn: 2140976.0000 - precision: 0.9138 - recall: 0.9115 - accuracy: 0.9598 - auc: 0.9817 - val_loss: 0. 3093 - val_tp: 5018548.0000 - val_fp: 149682.0000 - val_tn: 20096504.0000 - val_fn: 949668.0000 - val_precision: 0.9710 - val_recall: 0.8409 - val_accuracy: 0.9581 - val_auc: 0.9804 Epoch 74/100 1280/1280 [==============================] - 1891s 1s/step - loss: 0.2648 - tp: 21823536.0000 - fp: 2026553.0000 - tn: 78842960.0000 - fn: 2164550.0000 - precision: 0.9150 - recall: 0.9098 - accuracy: 0.9600 - auc: 0.9815 - val_loss: 0. 2941 - val_tp: 5138005.0000 - val_fp: 183811.0000 - val_tn: 19970134.0000 - val_fn: 922446.0000 - val_precision: 0.9655 - val_recall: 0.8478 - val_accuracy: 0.9578 - val_auc: 0.9795 Epoch 75/100 1280/1280 [==============================] - 1896s 1s/step - loss: 0.2599 - tp: 21797956.0000 - fp: 2051529.0000 - tn: 78902288.0000 - fn: 2105822.0000 - precision: 0.9140 - recall: 0.9119 - accuracy: 0.9604 - auc: 0.9820 - val_loss: 0. 2866 - val_tp: 5237317.0000 - val_fp: 179478.0000 - val_tn: 19883768.0000 - val_fn: 913840.0000 - val_precision: 0.9669 - val_recall: 0.8514 - val_accuracy: 0.9583 - val_auc: 0.9806 Epoch 76/100 1280/1280 [==============================] - 1920s 2s/step - loss: 0.2644 - tp: 21883500.0000 - fp: 2043967.0000 - tn: 78765848.0000 - fn: 2164260.0000 - precision: 0.9146 - recall: 0.9100 - accuracy: 0.9599 - auc: 0.9815 - val_loss: 0. 2969 - val_tp: 4856771.0000 - val_fp: 158534.0000 - val_tn: 20318780.0000 - val_fn: 880306.0000 - val_precision: 0.9684 - val_recall: 0.8466 - val_accuracy: 0.9604 - val_auc: 0.9810 Epoch 77/100 1280/1280 [==============================] - 1950s 2s/step - loss: 0.2649 - tp: 21977528.0000 - fp: 2098101.0000 - tn: 78653504.0000 - fn: 2128494.0000 - precision: 0.9129 - recall: 0.9117 - accuracy: 0.9597 - auc: 0.9816 - val_loss: 0. 2794 - val_tp: 5248088.0000 - val_fp: 201804.0000 - val_tn: 19923706.0000 - val_fn: 840800.0000 - val_precision: 0.9630 - val_recall: 0.8619 - val_accuracy: 0.9602 - val_auc: 0.9806 Epoch 78/100 1280/1280 [==============================] - 1951s 2s/step - loss: 0.2630 - tp: 21619006.0000 - fp: 2054910.0000 - tn: 79065992.0000 - fn: 2117649.0000 - precision: 0.9132 - recall: 0.9108 - accuracy: 0.9602 - auc: 0.9815 - val_loss: 0. 2924 - val_tp: 5121101.0000 - val_fp: 170363.0000 - val_tn: 20022854.0000 - val_fn: 900073.0000 - val_precision: 0.9678 - val_recall: 0.8505 - val_accuracy: 0.9592 - val_auc: 0.9811 Epoch 79/100 1280/1280 [==============================] - 1956s 2s/step - loss: 0.2646 - tp: 21744384.0000 - fp: 2060624.0000 - tn: 78899240.0000 - fn: 2153398.0000 - precision: 0.9134 - recall: 0.9099 - accuracy: 0.9598 - auc: 0.9814 - val_loss: 0. 2982 - val_tp: 4993843.0000 - val_fp: 185702.0000 - val_tn: 20120108.0000 - val_fn: 914746.0000 - val_precision: 0.9641 - val_recall: 0.8452 - val_accuracy: 0.9580 - val_auc: 0.9797 Epoch 80/100 1280/1280 [==============================] - 1953s 2s/step - loss: 0.2669 - tp: 22055420.0000 - fp: 2135651.0000 - tn: 78526352.0000 - fn: 2140199.0000 - precision: 0.9117 - recall: 0.9115 - accuracy: 0.9592 - auc: 0.9815 - val_loss: 0. 2787 - val_tp: 4984180.0000 - val_fp: 197102.0000 - val_tn: 20178072.0000 - val_fn: 855046.0000 - val_precision: 0.9620 - val_recall: 0.8536 - val_accuracy: 0.9599 - val_auc: 0.9800 Epoch 81/100 1280/1280 [==============================] - 1956s 2s/step - loss: 0.2622 - tp: 21705808.0000 - fp: 2077811.0000 - tn: 78966440.0000 - fn: 2107549.0000 - precision: 0.9126 - recall: 0.9115 - accuracy: 0.9601 - auc: 0.9817 - val_loss: 0. 2877 - val_tp: 4988818.0000 - val_fp: 163659.0000 - val_tn: 20154334.0000 - val_fn: 907589.0000 - val_precision: 0.9682 - val_recall: 0.8461 - val_accuracy: 0.9591 - val_auc: 0.9802 Epoch 82/100 1280/1280 [==============================] - 1945s 2s/step - loss: 0.2660 - tp: 22038244.0000 - fp: 2055404.0000 - tn: 78596896.0000 - fn: 2167084.0000 - precision: 0.9147 - recall: 0.9105 - accuracy: 0.9597 - auc: 0.9813 - val_loss: 0. 2860 - val_tp: 4915941.0000 - val_fp: 173380.0000 - val_tn: 20253348.0000 - val_fn: 871720.0000 - val_precision: 0.9659 - val_recall: 0.8494 - val_accuracy: 0.9601 - val_auc: 0.9808 Epoch 83/100 1280/1280 [==============================] - 1960s 2s/step - loss: 0.2620 - tp: 21828352.0000 - fp: 2096385.0000 - tn: 78818296.0000 - fn: 2114614.0000 - precision: 0.9124 - recall: 0.9117 - accuracy: 0.9598 - auc: 0.9819 - val_loss: 0. 2882 - val_tp: 5181476.0000 - val_fp: 172365.0000 - val_tn: 19932176.0000 - val_fn: 928376.0000 - val_precision: 0.9678 - val_recall: 0.8481 - val_accuracy: 0.9580 - val_auc: 0.9790 Epoch 84/100 1280/1280 [==============================] - 1956s 2s/step - loss: 0.2650 - tp: 21972974.0000 - fp: 2043197.0000 - tn: 78688096.0000 - fn: 2153339.0000 - precision: 0.9149 - recall: 0.9107 - accuracy: 0.9600 - auc: 0.9815 - val_loss: 0. 2884 - val_tp: 5125310.0000 - val_fp: 199354.0000 - val_tn: 20006488.0000 - val_fn: 883247.0000 - val_precision: 0.9626 - val_recall: 0.8530 - val_accuracy: 0.9587 - val_auc: 0.9792 Epoch 85/100 1280/1280 [==============================] - 1932s 2s/step - loss: 0.2665 - tp: 21841062.0000 - fp: 2087044.0000 - tn: 78779464.0000 - fn: 2150003.0000 - precision: 0.9128 - recall: 0.9104 - accuracy: 0.9596 - auc: 0.9813 - val_loss: 0. 2990 - val_tp: 4966995.0000 - val_fp: 155834.0000 - val_tn: 20153514.0000 - val_fn: 938068.0000 - val_precision: 0.9696 - val_recall: 0.8411 - val_accuracy: 0.9583 - val_auc: 0.9797 Epoch 86/100 1280/1280 [==============================] - 1950s 2s/step - loss: 0.2613 - tp: 21989296.0000 - fp: 2028370.0000 - tn: 78716320.0000 - fn: 2123700.0000 - precision: 0.9155 - recall: 0.9119 - accuracy: 0.9604 - auc: 0.9819 - val_loss: 0. 3127 - val_tp: 5106508.0000 - val_fp: 142899.0000 - val_tn: 19982462.0000 - val_fn: 982530.0000 - val_precision: 0.9728 - val_recall: 0.8386 - val_accuracy: 0.9571 - val_auc: 0.9803 Epoch 87/100 1280/1280 [==============================] - 1949s 2s/step - loss: 0.2652 - tp: 21800292.0000 - fp: 2065815.0000 - tn: 78849960.0000 - fn: 2141540.0000 - precision: 0.9134 - recall: 0.9106 - accuracy: 0.9599 - auc: 0.9813 - val_loss: 0. 2862 - val_tp: 5040894.0000 - val_fp: 182758.0000 - val_tn: 20103008.0000 - val_fn: 887735.0000 - val_precision: 0.9650 - val_recall: 0.8503 - val_accuracy: 0.9592 - val_auc: 0.9799 Epoch 88/100 1280/1280 [==============================] - 1920s 2s/step - loss: 0.2629 - tp: 21758816.0000 - fp: 2035708.0000 - tn: 78916872.0000 - fn: 2146157.0000 - precision: 0.9144 - recall: 0.9102 - accuracy: 0.9601 - auc: 0.9815 - val_loss: 0. 2883 - val_tp: 5067502.0000 - val_fp: 156913.0000 - val_tn: 20054418.0000 - val_fn: 935565.0000 - val_precision: 0.9700 - val_recall: 0.8442 - val_accuracy: 0.9583 - val_auc: 0.9804 Epoch 89/100 1280/1280 [==============================] - 1902s 1s/step - loss: 0.2661 - tp: 21907896.0000 - fp: 2077818.0000 - tn: 78708656.0000 - fn: 2163245.0000 - precision: 0.9134 - recall: 0.9101 - accuracy: 0.9596 - auc: 0.9814 - val_loss: 0. 3095 - val_tp: 5120703.0000 - val_fp: 137657.0000 - val_tn: 19965744.0000 - val_fn: 990302.0000 - val_precision: 0.9738 - val_recall: 0.8379 - val_accuracy: 0.9570 - val_auc: 0.9806 Epoch 90/100 1280/1280 [==============================] - 1920s 1s/step - loss: 0.2652 - tp: 21984496.0000 - fp: 2114012.0000 - tn: 78621976.0000 - fn: 2137152.0000 - precision: 0.9123 - recall: 0.9114 - accuracy: 0.9595 - auc: 0.9815 - val_loss: 0. 2829 - val_tp: 5208131.0000 - val_fp: 193268.0000 - val_tn: 19946136.0000 - val_fn: 866871.0000 - val_precision: 0.9642 - val_recall: 0.8573 - val_accuracy: 0.9596 - val_auc: 0.9809 Epoch 91/100 1280/1280 [==============================] - 1917s 1s/step - loss: 0.2631 - tp: 21814944.0000 - fp: 2037460.0000 - tn: 78857032.0000 - fn: 2148231.0000 - precision: 0.9146 - recall: 0.9104 - accuracy: 0.9601 - auc: 0.9817 - val_loss: 0. 2921 - val_tp: 4988873.0000 - val_fp: 154974.0000 - val_tn: 20127408.0000 - val_fn: 943141.0000 - val_precision: 0.9699 - val_recall: 0.8410 - val_accuracy: 0.9581 - val_auc: 0.9797 Epoch 92/100 1280/1280 [==============================] - 1920s 1s/step - loss: 0.2641 - tp: 21926682.0000 - fp: 2066839.0000 - tn: 78722320.0000 - fn: 2141742.0000 - precision: 0.9139 - recall: 0.9110 - accuracy: 0.9599 - auc: 0.9816 - val_loss: 0. 3016 - val_tp: 5074157.0000 - val_fp: 161845.0000 - val_tn: 20024836.0000 - val_fn: 953570.0000 - val_precision: 0.9691 - val_recall: 0.8418 - val_accuracy: 0.9575 - val_auc: 0.9794 Epoch 93/100 1280/1280 [==============================] - 1915s 1s/step - loss: 0.2639 - tp: 21858124.0000 - fp: 2086217.0000 - tn: 78785032.0000 - fn: 2128289.0000 - precision: 0.9129 - recall: 0.9113 - accuracy: 0.9598 - auc: 0.9817 - val_loss: 0. 3349 - val_tp: 5110189.0000 - val_fp: 138626.0000 - val_tn: 19910190.0000 - val_fn: 1055394.0000 - val_precision: 0.9736 - val_recall: 0.8288 - val_accuracy: 0.9545 - val_auc: 0.9781 Epoch 94/100 1280/1280 [==============================] - 1932s 2s/step - loss: 0.2661 - tp: 21972080.0000 - fp: 2067147.0000 - tn: 78645520.0000 - fn: 2172891.0000 - precision: 0.9140 - recall: 0.9100 - accuracy: 0.9596 - auc: 0.9814 - val_loss: 0. 3010 - val_tp: 5379887.0000 - val_fp: 190356.0000 - val_tn: 19720614.0000 - val_fn: 923543.0000 - val_precision: 0.9658 - val_recall: 0.8535 - val_accuracy: 0.9575 - val_auc: 0.9800 Epoch 95/100 1280/1280 [==============================] - 1925s 2s/step - loss: 0.2641 - tp: 21773760.0000 - fp: 2069301.0000 - tn: 78892664.0000 - fn: 2121866.0000 - precision: 0.9132 - recall: 0.9112 - accuracy: 0.9600 - auc: 0.9814 - val_loss: 0. 2834 - val_tp: 5148394.0000 - val_fp: 196890.0000 - val_tn: 20004664.0000 - val_fn: 864450.0000 - val_precision: 0.9632 - val_recall: 0.8562 - val_accuracy: 0.9595 - val_auc: 0.9803 Epoch 96/100 1280/1280 [==============================] - 1924s 2s/step - loss: 0.2620 - tp: 21883636.0000 - fp: 2083221.0000 - tn: 78785256.0000 - fn: 2105458.0000 - precision: 0.9131 - recall: 0.9122 - accuracy: 0.9601 - auc: 0.9819 - val_loss: 0. 3238 - val_tp: 5063114.0000 - val_fp: 150917.0000 - val_tn: 20012972.0000 - val_fn: 987390.0000 - val_precision: 0.9711 - val_recall: 0.8368 - val_accuracy: 0.9566 - val_auc: 0.9792 Epoch 97/100 1280/1280 [==============================] - 1926s 2s/step - loss: 0.2629 - tp: 21759104.0000 - fp: 2051085.0000 - tn: 78912920.0000 - fn: 2134447.0000 - precision: 0.9139 - recall: 0.9107 - accuracy: 0.9601 - auc: 0.9815 - val_loss: 0. 2802 - val_tp: 5228317.0000 - val_fp: 190075.0000 - val_tn: 19926608.0000 - val_fn: 869396.0000 - val_precision: 0.9649 - val_recall: 0.8574 - val_accuracy: 0.9596 - val_auc: 0.9809 Epoch 98/100 1280/1280 [==============================] - 1929s 2s/step - loss: 0.2630 - tp: 21930218.0000 - fp: 2067388.0000 - tn: 78741992.0000 - fn: 2117977.0000 - precision: 0.9139 - recall: 0.9119 - accuracy: 0.9601 - auc: 0.9817 - val_loss: 0. 3097 - val_tp: 4899275.0000 - val_fp: 135668.0000 - val_tn: 20163436.0000 - val_fn: 1016018.0000 - val_precision: 0.9731 - val_recall: 0.8282 - val_accuracy: 0.9561 - val_auc: 0.9789 Epoch 99/100 1280/1280 [==============================] - 1957s 2s/step - loss: 0.2648 - tp: 21993828.0000 - fp: 2052826.0000 - tn: 78663616.0000 - fn: 2147339.0000 - precision: 0.9146 - recall: 0.9111 - accuracy: 0.9599 - auc: 0.9816 - val_loss: 0. 2889 - val_tp: 5106607.0000 - val_fp: 161956.0000 - val_tn: 20025448.0000 - val_fn: 920399.0000 - val_precision: 0.9693 - val_recall: 0.8473 - val_accuracy: 0.9587 - val_auc: 0.9814 Epoch 100/100 1280/1280 [==============================] - 1941s 2s/step - loss: 0.2598 - tp: 21924942.0000 - fp: 2029354.0000 - tn: 78777592.0000 - fn: 2125714.0000 - precision: 0.9153 - recall: 0.9116 - accuracy: 0.9604 - auc: 0.9819 - val_loss: 0. 3001 - val_tp: 5185959.0000 - val_fp: 162584.0000 - val_tn: 19884838.0000 - val_fn: 981025.0000 - val_precision: 0.9696 - val_recall: 0.8409 - val_accuracy: 0.9564 - val_auc: 0.9800 400/400 [==============================] - 121s 302ms/step - loss: 0.3130 - tp: 6560497.0000 - fp: 267592.0000 - tn: 24822684.0000 - fn: 1117239.0000 - precision: 0.9608 - recall: 0.8545 - accuracy: 0.9577 - auc: 0.9801 2020/06/14 20:28:16 INFO mlflow.projects: === Run (ID '037e1d9e4ad74784974f4aaac11138cc') succeeded ===
2.1.11 read out logs experiment 2
2.1.11.1 read out mlflow logs using CLI
conda activate tensorflow_env cd Programme/drmed-git export MLFLOW_EXPERIMENT_NAME=exp-310520-unet export MLFLOW_TRACKING_URI=file:./data/mlruns
mlflow experiments list
Experiment Id Name Artifact Location --------------- --------------- -------------------- 0 exp-310520-unet file:./data/mlruns/0 1 exp-devtest file:./data/mlruns/1
mlflow runs list --experiment-id 0
Date Name ID ------------------------ ------ -------------------------------- 2020-06-12 14:20:30 CEST 037e1d9e4ad74784974f4aaac11138cc 2020-05-31 21:39:51 CEST 1aefda1366f04f5da5d1fc2241ad9208
export EXP2=037e1d9e4ad74784974f4aaac11138cc
I have accidentally run the model with the wrong experiment ID. I’ll check if I
can change the experiment. I will do it later with
mlflow.tracking.MlflowClient().rename_experiment()
mlflow artifacts list -r $EXP2 mlflow artifacts list -r $EXP2 -a model mlflow artifacts list -r $EXP2 -a model_summary.txt mlflow artifacts list -r $EXP2 -a tensorboard_logs/train/
(tensorflow_env) [lex@Topialex drmed-git]$ mlflow artifacts list -r $EXP2 [{ "path": "model", "is_dir": true }, { "path": "model_summary.txt", "is_dir": false, "file_size": "10895" }, { "path": "tensorboard_logs", "is_dir": true }] (tensorflow_env) [lex@Topialex drmed-git]$ mlflow artifacts list -r $EXP2 -a model [{ "path": "model/MLmodel", "is_dir": false, "file_size": "317" }, { "path": "model/conda.yaml", "is_dir": false, "file_size": "125" }, { "path": "model/data", "is_dir": true }] (tensorflow_env) [lex@Topialex drmed-git]$ mlflow artifacts list -r $EXP2 -a model_summary.txt [] (tensorflow_env) [lex@Topialex drmed-git]$ mlflow artifacts list -r $EXP2 -a tensorboard_logs/train/ [{ "path": "tensorboard_logs/train/events.out.tfevents.1591964813.node151.309868.9202.v2", "is_dir": false, "file_size": "20270485" }, { "path": "tensorboard_logs/train/events.out.tfevents.1591964827.node151.profile-empty", "is_dir": false, "file_size": "40" }, { "path": "tensorboard_logs/train/plugins", "is_dir": true }]
mlflow artifacts download -r $EXP2 mlflow artifacts download -r $EXP2 -a model mlflow artifacts download -r $EXP2 -a model_summary.txt mlflow artifacts download -r $EXP2 -a tensorboard_logs
/home/lex/Programme/drmed-git/data/mlruns/0/037e1d9e4ad74784974f4aaac11138cc/artifacts /home/lex/Programme/drmed-git/data/mlruns/0/037e1d9e4ad74784974f4aaac11138cc/artifacts/model /home/lex/Programme/drmed-git/data/mlruns/0/037e1d9e4ad74784974f4aaac11138cc/artifacts/model_summary.txt /home/lex/Programme/drmed-git/data/mlruns/0/037e1d9e4ad74784974f4aaac11138cc/artifacts/tensorboard_logs
mlflow runs describe --run-id $EXP2
{ "info": { "artifact_uri": "file:./data/mlruns/0/037e1d9e4ad74784974f4aaac11138cc/artifacts", "end_time": 1592159296429, "experiment_id": "0", "lifecycle_stage": "active", "run_id": "037e1d9e4ad74784974f4aaac11138cc", "run_uuid": "037e1d9e4ad74784974f4aaac11138cc", "start_time": 1591964430233, "status": "FINISHED", "user_id": "ye53nis" }, "data": { "metrics": { "learning rate": 1e-14, "val_loss": 0.3001052141189575, "precision": 0.9152822494506836, "fp": 2029354.0, "loss": 0.2597578763961792, "val_tp": 5185959.0, "recall": 0.9116151332855225, "accuracy": 0.9603750705718994, "val_precision": 0.9696021676063538, "val_recall": 0.8409230709075928, "lr": 1e-14, "fn": 2125714.0, "auc": 0.9819398522377014, "val_fp": 162584.0, "val_accuracy": 0.9563749432563782, "val_tn": 19884838.0, "val_auc": 0.9799740314483643, "val_fn": 981025.0, "tn": 78777592.0, "tp": 21924942.0 }, "params": { "opt_beta_1": "0.9", "validation_steps": "320", "opt_learning_rate": "0.001", "fluotracify_path": "/beegfs/ye53nis/drmed-git/src/", "opt_amsgrad": "False", "frac_val": "0.2", "batch_size": "5", "epochs": "100", "opt_decay": "0.0", "steps_per_epoch": "1280", "length_delimiter": "16384", "opt_name": "Adam", "opt_beta_2": "0.999", "csv_path": "/beegfs/ye53nis/saves/firstartefact_Sep2019", "learning_rate": "None", "opt_epsilon": "1e-07" }, "tags": { "mlflow.source.git.repoURL": "https://github.com/aseltmann/fluotracify", "mlflow.source.type": "PROJECT", "mlflow.source.name": "file:///beegfs/ye53nis/drmed-git", "mlflow.user": "ye53nis", "mlflow.source.git.commit": "09c1d2a1bc083695026b46c74ea175c9168bb5f2", "mlflow.gitRepoURL": "https://github.com/aseltmann/fluotracify", "mlflow.project.backend": "local", "mlflow.project.env": "conda", "mlflow.project.entryPoint": "main", "mlflow.log-model.history": "[{ \"run_id\": \"037e1d9e4ad74784974f4aaac11138cc\", \"artifact_path\": \"model\", \"utc_time_created\": \"2020-06-14 18:26:02.386982\", \"flavors\": { \"keras\": { \"keras_module\": \"tensorflow.keras\", \"keras_version\": \"2.2.4-tf\", \"data\": \"data\" }, \"python_function\": { \"loader_module\": \"mlflow.keras\", \"python_version\": \"3.8.3\", \"data\": \"data\", \"env\": \"conda.yaml\" } } }]" } } }
tensorboard --logdir=data/mlruns/0/$EXP2/artifacts/tensorboard_logs
mlflow ui --backend-store-uri file:///home/lex/Programme/drmed-git/data/mlruns
2.1.11.2 plots via mlflow ui, comparing run 1 and 2
AUC: Loss: Precision / Recall:
2.1.11.3 plots via tensorboard ui
Prediction 03 Prediction 20 Prediction 24 Prediction 32 Prediction 99 Distribution of Conv1D-Kernel (final layer) Histograms of Conv1D-Kernel (final layer)
2.1.11.4 for next runs
- more steps = good: better recall
- strong fluctuation of validation metrics in beginning and already convergence after ~30 Epochs for the second run → maybe use learning rate a bit more gently and start the lr schedule with lower rates
- judging from the tensorboard histograms, the model architecture can clearly be made simpler
- doing some background reading: in this SO thread it is argued that while
using Adam, an extensive learning rate schedule, as I used, should not
really be necessary.
- Adam (adaptive moment estimation) updates any parameter with an individual learning rate
- every learning rate can vary from 0 (no update) to the given learning rate as an upper limit
- others argue, that it definitely helps (or that you have to start with a very low lr, which I can confirm from own experience) and that it especially could help reducing the loss in the late steps of training
- finding optimal lr:
- start with very very low lr, than increase till loss stops decreasing, and look at where the slope of the loss curve and pick the learning rate that is associated with the fastest decrease
- effect of batch size
- see effect of batch size
- from pracitcal point: larger batch size → computational speedups from parallelism of GPUs. In theory, using a batch equal to the entire dataset guarantees convergence to global optima of objective function - hower on cost of slower, empirical convergence
- well known: too large of a batch size → poor generalization (hoffer,
hubara, soudry argue here that this is not inherently true).
- why poor gen: competing gradients of different training examples → sequential optimization is easier than simultaneous optimization in complex, high dimensional parameter spaces
- smaller batch size pro: faster convergence to “good” solutions
- smaller batch size con: model not guaranteed to converge to global optima, will bounce around, staying outside some \(\epsilon\) - ball of the optima, where \(\epsilon\) depends on the ratio of the batch size to the data size
- if no computational constraints: start at small batch size, steadily grow batch size through training.
- non-convex models: “sweet spot” between batch size of 1 (bad, “noisy”, nn prone to overfitting) and entire training dataset.
- on other hand: “noise” in small batch size might be good → “tug-and-pull” dynamic which might prevent nn from overfitting
- what is “large number of epochs” → number of epochs such that any further training provides little to no boost in test accuracy → difficult to determine → best guess
- example MNIST: bs=64 gets test acc of 98%, bs=1024 gets test acc of 95% → increasing learning rate can compensate for larger batch sizes (for bs=1024 from 0.01 to 0.1 → problem solved) → could be more difficult in more complex datasets
- example MNIST: starting with large batch size does not “get the model stuck” in bad local optimums, better test accuracy can be achieved anytime by switching to lower batch size or higher learning rate
- investigation of how stuff is updated with large batch size:
- larger batch sizes make larger gradient steps than smaller batch sizes for the same number of samples seen
- for same average euclidean norm distance from initial weights of the model, larger batch sizes have larger variance in the distance → if smaller batch sizes are more “noisy”, this would be the other way around
- conclusion:
- large batch size → model makes very large gradient updates and very small gradient updates → size depends on which particular samples are drawn.
- Small batch size → model makes updates of about the same size → weakly dependend on which particular samples are drawn.
- better solutions can be far away from inital weights → if loss is averaged over the batch then large batch sizes simply do not allow the model to travel far enough to reach the better solutions for the same number of training epochs → you take fewer steps → increasing lr makes steps larger → and then they can even move further after seeing the same number of samples
- Adam vs SGD
- Adam claims: insensitivity to weight initialization and initial learning rate choice
- finding: adam finds solutions with much larger weights, which might explain why it has lower test accuracy and is not generalizing as well → this is why weight decay is recommended with Adam
- in SGD the weights are initialized to approx the magnitude you want them to be and most of the learning is shuffling the weights along the hyper-sphere of the initial radius
- in Adam, the model ignores the initialization
- hoffer et al
- propose that in SGD, initial learning phase can be described using high-dimensional “random walk on a random potential” process, with an “ultra-slow” logarithmic increase in the distance of the weights from their initialization (observed empirically)
- remedies
- Use SGD with momentum, gradient clipping, and a decreasing learning rate schedule
- adapt learning rate with batch size (e.g. square root scaling)
- compute batch-norm statistics over several partitions (“ghost batch-norm”)
- use sufficient number of high learning rate training iterations
- the “generalization gap” problem is not related to the batch size but rather the amount of updates
- Smith et al, Google Brain
- instead of learning rate decay, increase batch size with training → works with Adam, Nesterov momentum, SGD with momentum, SGD → reaches equivalent test accuracies after same no of epochs, but with fewer parameter updates → greater parallelism (good for GPU), shorter training time
- using dropout layers with Unet
- Bartolome et al did it in DeepCell for automatic nuclei detection
- encoding block:
- maxpool
- 2 times conv+ELU+batchnorm
- decoding block:
- upsample
- dropout (0.3)
- 2 times conv+ELU
- last block
- 1x1 conv
- sigmoid
- encoding block:
- from this reddit
- Srivastava/Hinton dropout paper: additional gain in performacne obtained by adding dropout in conv layers is worth noting (3% to 2.55%). Dropout in lower layers help, because it provides noisy inputs for the higher fully connected layers which prevents them from overfitting → they use 0.7 prob for conv dropout and 0.5 for FC
- Bartolome et al did it in DeepCell for automatic nuclei detection
2.1.12 use model from run 2 to correct data
2.1.12.1 simulated data from the test set
2.1.12.2 experimental data from Pablo (structured experiment)
- biological metadata
- Who took the data: Pablo Carravilla in November 2019 in Oxford
- a bit of 400 “dirty” and 400 “clean” curves
- AF488: small dye, homogeneous signal
- “clean”
- in folders
GroupMeas_5
“ andGroupMeas_6
- Hs-PEX5-eGFP - PEX5 from Homo sapiens, labelled with eGFP
- typical filename:
20 nM AF488147_T1754s_1.ptu
- in folders
- “dirty”
- in folders
GroupMeas_1
toGroupMeas_4_4
- Tp-PEX5-eGFP - PEX5 from Trypanosoma brucei, labelled with eGFP
- typical filename:
DiO LUV 10uM in 20 nM AF48816_T197s_1.ptu
- Dio LUV: big vesicles, spikes
- in folders
- TODO microscope metadata - paste from pickled pandas dfs
- anecdotal, semi-structured plotting of correlation curves
- first: “clean” data of Hs-PEX5-eGFP
- from plotting 10 traces with the respective binning windows using
correct_correlation_by_unet_prediction
:- prediction didn’t find anything - awesome! So no values were removed and correlations are “pure”
- for correlation at \(1ms\) binning window:
- transit time ~\(0.25...0.5ms\)
- diffusion coefficient ~\(22.5...45 \mu m^2 / s\)
-
- for correlation at \(100\mu s\) binning window:
- transit time ~\(0.4...0.53ms\)
- diffusion coefficient ~\(21...29 \mu m^2 / s\)
- This is probably the most accurate!
- for correlation at \(100\mu s\) binning window:
-
- for correlation at \(10\mu s\) and at 1us binning window:
- transit time ~\(0.09ms\)
- diffusion coefficient ~\(120...133\mu m^2 / s\)
- fit didn’t look too good - probably something is not working correctly here with multipletau. Looks like the start of the correlation curve is flattening, but multipletau fits an increase
- for correlation at \(10\mu s\) and at 1us binning window:
- second: “dirty” data of Tb-PEX5-eGFP
- from plotting 10 traces with the respective binning windows using
correct_correlation_by_unet_prediction
:- for correlation at \(1ms\) binning wnidow:
- transit time
- without correction: ~\(6...20ms\)
- with correction: ~\(2...5ms\)
- diffusion coefficients:
- without correction: ~\(0.6...1.9\mu m^2 / s\)
- with correction: ~\(2...6.3 \mu m^2 / s\)
- transit time
- for correlation at \(1ms\) binning wnidow:
-
- for correlation at \(100 \mu s\) binninw window:
- transit time
- without correction: ~\(43...149ms\)
- with correction: ~\(1.6...42ms\)
- diffusion coefficients:
- without correction: ~\(0.08...0.26\mu m^2/s\)
- with correction: ~\(0.3...7\mu m^2 / s\)
- transit time
- for correlation at \(100 \mu s\) binninw window:
-
- for correlation at \(10\mu s\) binning window:
- fitting looks HORRIBLE for the traces corrected by prediction, while looking “okayish” for traces without correction - even though the values are bad.
- transit time
- without correction: ~\(153...1329ms\)
- with correction: ~\(0.2...346ms\)
- diffusion coefficients:
- without correction: ~\(0.008...0.07 \mu m^2 / s\)
- with correction: ~\(0.03...52\mu m^2 / s\)
- for correlation at \(10\mu s\) binning window:
-
- for correlation at \(1\mu s\) binning window (only 3 traces, because ):
- fits have to be better!
- for correlation at \(1\mu s\) binning window (only 3 traces, because ):
2.1.13 git exp 3
git status git log -1
(base) [ye53nis@node161 drmed-git]$ git status # On branch exp-310520-unet # Untracked files: # ... nothing added to commit but untracked files present (use "git add" to track) (base) [ye53nis@node161 drmed-git]$ git log -1 commit 193d9e3f8d126828b253121e613ddaf5363d7c3d Author: Apoplex <oligolex@vivaldi.net> Date: Wed Jun 17 12:09:44 2020 +0200 Move experiment to correct mlflow id
2.1.14 experimental run 3 - bs=3
conda activate tensorflow_nightly cd /beegfs/ye53nis/drmed-git export MLFLOW_EXPERIMENT_NAME=exp-310520-unet export MLFLOW_TRACKING_URI=file:./data/mlruns
mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src -P batch_size=3 -P epochs=40 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=2100 -P validation_steps=320
2020/06/20 00:43:51 INFO mlflow.projects: === Created directory /tmp/tmpxwtlwi2b for downloading remote URIs passed to arguments of type 'path' === 2020/06/20 00:43:51 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/fluotracify/training/train.py / beegfs/ye53nis/drmed-git/src 3 0.2 16384 None 40 /beegfs/ye53nis/saves/firstartefact_Sep2019 2100 320' in run with ID '1e98b3ed2e1d421da9592058bd5587a8' === 2020-06-20 00:44:08.580506: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory 2020-06-20 00:44:08.580645: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favour of importlib; see the modul e's documentation for alternative uses import imp 2.3.0-dev20200527 2020-06-20 00:44:36.776071: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2020-06-20 00:44:36.776132: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303) 2020-06-20 00:44:36.776174: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node161): /proc/driver/nvidia/version does not exist GPUs: [] train 0 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set027.csv train 1 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set087.csv train 2 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set003.csv train 3 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set056.csv train 4 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set076.csv train 5 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set094.csv train 6 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set017.csv train 7 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set074.csv train 8 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set055.csv train 9 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set096.csv train 10 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set054.csv train 11 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set093.csv train 12 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set079.csv train 13 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set014.csv train 14 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set008.csv train 15 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set031.csv train 16 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set023.csv train 17 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set025.csv train 18 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set034.csv train 19 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set009.csv train 20 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set044.csv train 21 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set063.csv train 22 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set004.csv train 23 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set072.csv train 24 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set046.csv train 25 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set049.csv train 26 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set007.csv train 27 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set100.csv train 28 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set083.csv train 29 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set077.csv train 30 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set061.csv train 31 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set081.csv train 32 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set091.csv train 33 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set069.csv train 34 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set052.csv train 35 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set028.csv train 36 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set019.csv train 37 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set057.csv train 38 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set064.csv train 39 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set075.csv train 40 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set002.csv train 41 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set062.csv train 42 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set043.csv train 43 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set042.csv train 44 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set005.csv train 45 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set016.csv train 46 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set018.csv train 47 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set041.csv train 48 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set039.csv train 49 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set006.csv train 50 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set092.csv train 51 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set060.csv train 52 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set001.csv train 53 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set035.csv train 54 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set029.csv train 55 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set051.csv train 56 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set012.csv train 57 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set036.csv train 58 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set024.csv train 59 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set053.csv train 60 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set011.csv train 61 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set032.csv train 62 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set067.csv train 63 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set058.csv train 64 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set080.csv train 65 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set086.csv train 66 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set033.csv train 67 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set085.csv train 68 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set015.csv train 69 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set090.csv train 70 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set020.csv train 71 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set030.csv train 72 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set050.csv train 73 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set098.csv train 74 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set099.csv train 75 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set070.csv train 76 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set021.csv train 77 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set095.csv train 78 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set073.csv train 79 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set078.csv test 80 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set026.csv test 81 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set038.csv test 82 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set082.csv test 83 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set047.csv test 84 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set040.csv test 85 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set066.csv test 86 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set059.csv test 87 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set013.csv test 88 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set089.csv test 89 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set071.csv test 90 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set088.csv test 91 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set037.csv test 92 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set022.csv test 93 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set084.csv test 94 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set010.csv test 95 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set097.csv test 96 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set068.csv test 97 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set065.csv test 98 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set048.csv test 99 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set045.csv shapes of feature dataframe: (20000, 8000) and label dataframe: (20000, 8000) shapes of feature dataframe: (20000, 2000) and label dataframe: (20000, 2000) for each 20,000 timestap trace there are the following numbers of corrupted timesteps: label001_1 6286 label001_1 2568 label001_1 4495 label001_1 4414 label001_1 1105 dtype: int64 2020-06-20 00:49:48.824441: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2020-06-20 00:49:48.834205: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz 2020-06-20 00:49:48.835707: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5643aca77c10 initialized for platform Host (this does not guarantee that XLA will be used). Devices: 2020-06-20 00:49:48.835736: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version number of training examples: 6400, number of validation examples: 1600 ------------------------ number of test examples: 2000 input - shape: (None, 16384, 1) output - shape: (None, 16384, 1) 2020-06-20 00:49:53.167773: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started. /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working if not isinstance(wrapped_dict, collections.Mapping): /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Python 3.0, use inspect.signature() or inspect.getfullargspec() all_param_names, _, _, all_default_values = inspect.getargspec(fn) # pylint: disable=W1505 Epoch 1/40 /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working if not isinstance(values, collections.Sequence): 1/2100 [..............................] - ETA: 0s - loss: 1.4336 - tp: 11096.0000 - fp: 13747.0000 - tn: 16434.0000 - fn: 7875.0000 - precision: 0.4466 - recall: 0.5849 - accuracy: 0.5601 - auc: 0.59502020-06-20 00:50:06.341154: I te nsorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started. WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and w ill be removed after 2020-07-01. Instructions for updating: use `tf.profiler.experimental.stop` instead. 2020-06-20 00:50:07.661012: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_20_00_50_07 2020-06-20 00:50:07.677958: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.trace.json.gz 2020-06-20 00:50:07.711562: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_20_00_50_07 2020-06-20 00:50:07.711709: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.memory_profile.json.gz 2020-06-20 00:50:07.713980: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_06_20_00_50_07Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2020_06_20_0 0_50_07/node161.xplane.pb Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.overview_page.pb Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.input_pipeline.pb Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.tensorflow_stats.pb Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.kernel_stats.pb 2100/2100 [==============================] - 2619s 1s/step - loss: 1.1651 - tp: 14036256.0000 - fp: 5361485.0000 - tn: 74321616.0000 - fn: 9499881.0000 - precision: 0.7236 - recall: 0.5964 - accuracy: 0.8560 - auc: 0.8712 - val_loss: 6. 7480 - val_tp: 3658812.0000 - val_fp: 7608396.0000 - val_tn: 4305440.0000 - val_fn: 155992.0000 - val_precision: 0.3247 - val_recall: 0.9591 - val_accuracy: 0.5064 - val_auc: 0.7199 Epoch 2/40 2100/2100 [==============================] - 2616s 1s/step - loss: 0.7522 - tp: 16978660.0000 - fp: 4731235.0000 - tn: 74935072.0000 - fn: 6574314.0000 - precision: 0.7821 - recall: 0.7209 - accuracy: 0.8905 - auc: 0.9195 - val_loss: 2. 3699 - val_tp: 1583199.0000 - val_fp: 169213.0000 - val_tn: 11937019.0000 - val_fn: 2039209.0000 - val_precision: 0.9034 - val_recall: 0.4371 - val_accuracy: 0.8596 - val_auc: 0.7654 Epoch 3/40 2100/2100 [==============================] - 2615s 1s/step - loss: 0.5253 - tp: 19558076.0000 - fp: 3583985.0000 - tn: 75779848.0000 - fn: 4297304.0000 - precision: 0.8451 - recall: 0.8199 - accuracy: 0.9236 - auc: 0.9546 - val_loss: 20 .3139 - val_tp: 3551544.0000 - val_fp: 6920318.0000 - val_tn: 5181055.0000 - val_fn: 75723.0000 - val_precision: 0.3392 - val_recall: 0.9791 - val_accuracy: 0.5552 - val_auc: 0.7820 Epoch 4/40 2100/2100 [==============================] - 2593s 1s/step - loss: 0.4607 - tp: 19722116.0000 - fp: 3070380.0000 - tn: 76557328.0000 - fn: 3869410.0000 - precision: 0.8653 - recall: 0.8360 - accuracy: 0.9328 - auc: 0.9621 - val_loss: 0. 6783 - val_tp: 2809999.0000 - val_fp: 1055013.0000 - val_tn: 11273173.0000 - val_fn: 590455.0000 - val_precision: 0.7270 - val_recall: 0.8264 - val_accuracy: 0.8954 - val_auc: 0.9256 Epoch 5/40 2100/2100 [==============================] - 2579s 1s/step - loss: 0.4347 - tp: 20035524.0000 - fp: 2906267.0000 - tn: 76615392.0000 - fn: 3662016.0000 - precision: 0.8733 - recall: 0.8455 - accuracy: 0.9364 - auc: 0.9644 - val_loss: 0. 9250 - val_tp: 2881407.0000 - val_fp: 1446289.0000 - val_tn: 10683025.0000 - val_fn: 717919.0000 - val_precision: 0.6658 - val_recall: 0.8005 - val_accuracy: 0.8624 - val_auc: 0.9110 Epoch 6/40 2100/2100 [==============================] - 2587s 1s/step - loss: 0.3938 - tp: 20159010.0000 - fp: 2640041.0000 - tn: 77171896.0000 - fn: 3248240.0000 - precision: 0.8842 - recall: 0.8612 - accuracy: 0.9430 - auc: 0.9692 - val_loss: 0. 9069 - val_tp: 3350060.0000 - val_fp: 2334741.0000 - val_tn: 9777228.0000 - val_fn: 266611.0000 - val_precision: 0.5893 - val_recall: 0.9263 - val_accuracy: 0.8346 - val_auc: 0.9424 Epoch 7/40 2100/2100 [==============================] - 2596s 1s/step - loss: 0.3898 - tp: 20604918.0000 - fp: 2623827.0000 - tn: 76744272.0000 - fn: 3246144.0000 - precision: 0.8870 - recall: 0.8639 - accuracy: 0.9431 - auc: 0.9700 - val_loss: 1. 1869 - val_tp: 2154011.0000 - val_fp: 161830.0000 - val_tn: 11907682.0000 - val_fn: 1505117.0000 - val_precision: 0.9301 - val_recall: 0.5887 - val_accuracy: 0.8940 - val_auc: 0.8640 Epoch 8/40 2100/2100 [==============================] - 2585s 1s/step - loss: 0.3615 - tp: 20559308.0000 - fp: 2451944.0000 - tn: 77195760.0000 - fn: 3012324.0000 - precision: 0.8934 - recall: 0.8722 - accuracy: 0.9471 - auc: 0.9725 - val_loss: 2. 2166 - val_tp: 457245.0000 - val_fp: 0.0000e+00 - val_tn: 12111846.0000 - val_fn: 3159549.0000 - val_precision: 1.0000 - val_recall: 0.1264 - val_accuracy: 0.7991 - val_auc: 0.7373 Epoch 9/40 2100/2100 [==============================] - 2575s 1s/step - loss: 0.3614 - tp: 20474248.0000 - fp: 2479592.0000 - tn: 77192832.0000 - fn: 3072574.0000 - precision: 0.8920 - recall: 0.8695 - accuracy: 0.9462 - auc: 0.9720 - val_loss: 1. 6778 - val_tp: 3153657.0000 - val_fp: 3799634.0000 - val_tn: 8459831.0000 - val_fn: 315518.0000 - val_precision: 0.4535 - val_recall: 0.9091 - val_accuracy: 0.7384 - val_auc: 0.8806 Epoch 10/40 2100/2100 [==============================] - 2574s 1s/step - loss: 0.3525 - tp: 20915356.0000 - fp: 2417250.0000 - tn: 76968064.0000 - fn: 2918540.0000 - precision: 0.8964 - recall: 0.8775 - accuracy: 0.9483 - auc: 0.9734 - val_loss: 0. 7001 - val_tp: 3011358.0000 - val_fp: 1423566.0000 - val_tn: 10810936.0000 - val_fn: 482780.0000 - val_precision: 0.6790 - val_recall: 0.8618 - val_accuracy: 0.8788 - val_auc: 0.9191 Epoch 11/40 2100/2100 [==============================] - 2583s 1s/step - loss: 0.3536 - tp: 20693556.0000 - fp: 2409057.0000 - tn: 77110336.0000 - fn: 3006188.0000 - precision: 0.8957 - recall: 0.8732 - accuracy: 0.9475 - auc: 0.9731 - val_loss: 0. 8146 - val_tp: 3341267.0000 - val_fp: 1466467.0000 - val_tn: 10619280.0000 - val_fn: 301626.0000 - val_precision: 0.6950 - val_recall: 0.9172 - val_accuracy: 0.8876 - val_auc: 0.9452 Epoch 12/40 2100/2100 [==============================] - 2559s 1s/step - loss: 0.3165 - tp: 21370760.0000 - fp: 2314648.0000 - tn: 77018928.0000 - fn: 2514801.0000 - precision: 0.9023 - recall: 0.8947 - accuracy: 0.9532 - auc: 0.9771 - val_loss: 0. 3977 - val_tp: 2929496.0000 - val_fp: 337784.0000 - val_tn: 11799466.0000 - val_fn: 661894.0000 - val_precision: 0.8966 - val_recall: 0.8157 - val_accuracy: 0.9364 - val_auc: 0.9624 Epoch 13/40 2100/2100 [==============================] - 2555s 1s/step - loss: 0.2959 - tp: 21260244.0000 - fp: 2183093.0000 - tn: 77404592.0000 - fn: 2371187.0000 - precision: 0.9069 - recall: 0.8997 - accuracy: 0.9559 - auc: 0.9785 - val_loss: 0. 4174 - val_tp: 2796648.0000 - val_fp: 277583.0000 - val_tn: 11853440.0000 - val_fn: 800969.0000 - val_precision: 0.9097 - val_recall: 0.7774 - val_accuracy: 0.9314 - val_auc: 0.9595 Epoch 14/40 2100/2100 [==============================] - 2567s 1s/step - loss: 0.2983 - tp: 21268994.0000 - fp: 2193443.0000 - tn: 77331256.0000 - fn: 2425591.0000 - precision: 0.9065 - recall: 0.8976 - accuracy: 0.9552 - auc: 0.9784 - val_loss: 0. 3715 - val_tp: 3222237.0000 - val_fp: 299190.0000 - val_tn: 11646772.0000 - val_fn: 560441.0000 - val_precision: 0.9150 - val_recall: 0.8518 - val_accuracy: 0.9453 - val_auc: 0.9688 Epoch 15/40 2100/2100 [==============================] - 2562s 1s/step - loss: 0.2919 - tp: 21573232.0000 - fp: 2138857.0000 - tn: 77160424.0000 - fn: 2346711.0000 - precision: 0.9098 - recall: 0.9019 - accuracy: 0.9565 - auc: 0.9791 - val_loss: 0. 4316 - val_tp: 3028795.0000 - val_fp: 656530.0000 - val_tn: 11568012.0000 - val_fn: 475303.0000 - val_precision: 0.8219 - val_recall: 0.8644 - val_accuracy: 0.9280 - val_auc: 0.9580 Epoch 16/40 2100/2100 [==============================] - 2544s 1s/step - loss: 0.2915 - tp: 21637290.0000 - fp: 2191368.0000 - tn: 77039000.0000 - fn: 2351546.0000 - precision: 0.9080 - recall: 0.9020 - accuracy: 0.9560 - auc: 0.9792 - val_loss: 0. 4676 - val_tp: 2601966.0000 - val_fp: 397290.0000 - val_tn: 12006863.0000 - val_fn: 722521.0000 - val_precision: 0.8675 - val_recall: 0.7827 - val_accuracy: 0.9288 - val_auc: 0.9455 Epoch 17/40 2100/2100 [==============================] - 2550s 1s/step - loss: 0.2894 - tp: 21593576.0000 - fp: 2107461.0000 - tn: 77151016.0000 - fn: 2367164.0000 - precision: 0.9111 - recall: 0.9012 - accuracy: 0.9566 - auc: 0.9796 - val_loss: 0. 5073 - val_tp: 2723777.0000 - val_fp: 267464.0000 - val_tn: 11851181.0000 - val_fn: 886218.0000 - val_precision: 0.9106 - val_recall: 0.7545 - val_accuracy: 0.9267 - val_auc: 0.9421 Epoch 18/40 2100/2100 [==============================] - 2565s 1s/step - loss: 0.2915 - tp: 21220710.0000 - fp: 2089500.0000 - tn: 77529384.0000 - fn: 2379606.0000 - precision: 0.9104 - recall: 0.8992 - accuracy: 0.9567 - auc: 0.9792 - val_loss: 0. 4440 - val_tp: 3014233.0000 - val_fp: 194294.0000 - val_tn: 11773351.0000 - val_fn: 746762.0000 - val_precision: 0.9394 - val_recall: 0.8014 - val_accuracy: 0.9402 - val_auc: 0.9537 Epoch 19/40 2100/2100 [==============================] - 2555s 1s/step - loss: 0.2859 - tp: 21497494.0000 - fp: 2128539.0000 - tn: 77269760.0000 - fn: 2323349.0000 - precision: 0.9099 - recall: 0.9025 - accuracy: 0.9569 - auc: 0.9798 - val_loss: 0. 4337 - val_tp: 2842516.0000 - val_fp: 264846.0000 - val_tn: 11878934.0000 - val_fn: 742344.0000 - val_precision: 0.9148 - val_recall: 0.7929 - val_accuracy: 0.9360 - val_auc: 0.9550 Epoch 20/40 2100/2100 [==============================] - 2618s 1s/step - loss: 0.2902 - tp: 21548910.0000 - fp: 2102526.0000 - tn: 77221952.0000 - fn: 2345775.0000 - precision: 0.9111 - recall: 0.9018 - accuracy: 0.9569 - auc: 0.9791 - val_loss: 0. 5074 - val_tp: 2805182.0000 - val_fp: 105571.0000 - val_tn: 11861966.0000 - val_fn: 955921.0000 - val_precision: 0.9637 - val_recall: 0.7458 - val_accuracy: 0.9325 - val_auc: 0.9465 Epoch 21/40 2100/2100 [==============================] - 2633s 1s/step - loss: 0.2838 - tp: 21355176.0000 - fp: 2103115.0000 - tn: 77459040.0000 - fn: 2301871.0000 - precision: 0.9103 - recall: 0.9027 - accuracy: 0.9573 - auc: 0.9797 - val_loss: 0. 5292 - val_tp: 2876840.0000 - val_fp: 499247.0000 - val_tn: 11594560.0000 - val_fn: 757993.0000 - val_precision: 0.8521 - val_recall: 0.7915 - val_accuracy: 0.9201 - val_auc: 0.9410 Epoch 22/40 2100/2100 [==============================] - 2623s 1s/step - loss: 0.2770 - tp: 21105648.0000 - fp: 2105094.0000 - tn: 77782320.0000 - fn: 2226166.0000 - precision: 0.9093 - recall: 0.9046 - accuracy: 0.9580 - auc: 0.9804 - val_loss: 0. 4563 - val_tp: 2796040.0000 - val_fp: 290458.0000 - val_tn: 11870456.0000 - val_fn: 771686.0000 - val_precision: 0.9059 - val_recall: 0.7837 - val_accuracy: 0.9325 - val_auc: 0.9511 Epoch 23/40 2100/2100 [==============================] - 2604s 1s/step - loss: 0.2779 - tp: 21230712.0000 - fp: 2051525.0000 - tn: 77688872.0000 - fn: 2248134.0000 - precision: 0.9119 - recall: 0.9042 - accuracy: 0.9583 - auc: 0.9800 - val_loss: 0. 4772 - val_tp: 2839169.0000 - val_fp: 344193.0000 - val_tn: 11784262.0000 - val_fn: 761016.0000 - val_precision: 0.8919 - val_recall: 0.7886 - val_accuracy: 0.9297 - val_auc: 0.9486 Epoch 24/40 2100/2100 [==============================] - 2607s 1s/step - loss: 0.2831 - tp: 21599932.0000 - fp: 2114749.0000 - tn: 77206248.0000 - fn: 2298204.0000 - precision: 0.9108 - recall: 0.9038 - accuracy: 0.9572 - auc: 0.9799 - val_loss: 0. 4515 - val_tp: 3000318.0000 - val_fp: 428123.0000 - val_tn: 11603006.0000 - val_fn: 697193.0000 - val_precision: 0.8751 - val_recall: 0.8114 - val_accuracy: 0.9285 - val_auc: 0.9539 Epoch 25/40 2100/2100 [==============================] - 2608s 1s/step - loss: 0.2802 - tp: 21684768.0000 - fp: 2090639.0000 - tn: 77166856.0000 - fn: 2276865.0000 - precision: 0.9121 - recall: 0.9050 - accuracy: 0.9577 - auc: 0.9803 - val_loss: 0. 4666 - val_tp: 2881923.0000 - val_fp: 449549.0000 - val_tn: 11719217.0000 - val_fn: 677951.0000 - val_precision: 0.8651 - val_recall: 0.8096 - val_accuracy: 0.9283 - val_auc: 0.9492 Epoch 26/40 2100/2100 [==============================] - 2601s 1s/step - loss: 0.2817 - tp: 21424128.0000 - fp: 2071632.0000 - tn: 77450872.0000 - fn: 2272584.0000 - precision: 0.9118 - recall: 0.9041 - accuracy: 0.9579 - auc: 0.9798 - val_loss: 0. 4771 - val_tp: 2777236.0000 - val_fp: 523426.0000 - val_tn: 11747034.0000 - val_fn: 680944.0000 - val_precision: 0.8414 - val_recall: 0.8031 - val_accuracy: 0.9234 - val_auc: 0.9473 Epoch 27/40 2100/2100 [==============================] - 2557s 1s/step - loss: 0.2761 - tp: 21149424.0000 - fp: 2050887.0000 - tn: 77759664.0000 - fn: 2259208.0000 - precision: 0.9116 - recall: 0.9035 - accuracy: 0.9582 - auc: 0.9802 - val_loss: 0. 4809 - val_tp: 2766963.0000 - val_fp: 356057.0000 - val_tn: 11830343.0000 - val_fn: 775277.0000 - val_precision: 0.8860 - val_recall: 0.7811 - val_accuracy: 0.9281 - val_auc: 0.9473 Epoch 28/40 2100/2100 [==============================] - 2572s 1s/step - loss: 0.2787 - tp: 21614004.0000 - fp: 2105764.0000 - tn: 77265320.0000 - fn: 2234175.0000 - precision: 0.9112 - recall: 0.9063 - accuracy: 0.9580 - auc: 0.9804 - val_loss: 0. 4297 - val_tp: 2776882.0000 - val_fp: 304747.0000 - val_tn: 11905345.0000 - val_fn: 741666.0000 - val_precision: 0.9011 - val_recall: 0.7892 - val_accuracy: 0.9335 - val_auc: 0.9558 Epoch 29/40 2100/2100 [==============================] - 2592s 1s/step - loss: 0.2759 - tp: 21330060.0000 - fp: 2032687.0000 - tn: 77600192.0000 - fn: 2256365.0000 - precision: 0.9130 - recall: 0.9043 - accuracy: 0.9584 - auc: 0.9805 - val_loss: 0. 4579 - val_tp: 2999477.0000 - val_fp: 494545.0000 - val_tn: 11578967.0000 - val_fn: 655651.0000 - val_precision: 0.8585 - val_recall: 0.8206 - val_accuracy: 0.9269 - val_auc: 0.9534 Epoch 30/40 2100/2100 [==============================] - 2581s 1s/step - loss: 0.2724 - tp: 21130112.0000 - fp: 2033978.0000 - tn: 77848336.0000 - fn: 2206652.0000 - precision: 0.9122 - recall: 0.9054 - accuracy: 0.9589 - auc: 0.9804 - val_loss: 0. 4905 - val_tp: 2843808.0000 - val_fp: 315711.0000 - val_tn: 11777024.0000 - val_fn: 792097.0000 - val_precision: 0.9001 - val_recall: 0.7821 - val_accuracy: 0.9296 - val_auc: 0.9485 Epoch 31/40 2100/2100 [==============================] - 2600s 1s/step - loss: 0.2785 - tp: 21125680.0000 - fp: 2037613.0000 - tn: 77795080.0000 - fn: 2260802.0000 - precision: 0.9120 - recall: 0.9033 - accuracy: 0.9584 - auc: 0.9796 - val_loss: 0. 4386 - val_tp: 2841391.0000 - val_fp: 466262.0000 - val_tn: 11790714.0000 - val_fn: 630273.0000 - val_precision: 0.8590 - val_recall: 0.8185 - val_accuracy: 0.9303 - val_auc: 0.9549 Epoch 32/40 2100/2100 [==============================] - 2569s 1s/step - loss: 0.2780 - tp: 21701982.0000 - fp: 2120334.0000 - tn: 77174816.0000 - fn: 2221998.0000 - precision: 0.9110 - recall: 0.9071 - accuracy: 0.9579 - auc: 0.9802 - val_loss: 0. 4458 - val_tp: 2760528.0000 - val_fp: 256875.0000 - val_tn: 11974282.0000 - val_fn: 736955.0000 - val_precision: 0.9149 - val_recall: 0.7893 - val_accuracy: 0.9368 - val_auc: 0.9520 Epoch 33/40 2100/2100 [==============================] - 2558s 1s/step - loss: 0.2798 - tp: 21431360.0000 - fp: 2104855.0000 - tn: 77436496.0000 - fn: 2246416.0000 - precision: 0.9106 - recall: 0.9051 - accuracy: 0.9578 - auc: 0.9799 - val_loss: 0. 4787 - val_tp: 2902400.0000 - val_fp: 434973.0000 - val_tn: 11637810.0000 - val_fn: 753457.0000 - val_precision: 0.8697 - val_recall: 0.7939 - val_accuracy: 0.9244 - val_auc: 0.9494 Epoch 34/40 2100/2100 [==============================] - 2540s 1s/step - loss: 0.2773 - tp: 21209216.0000 - fp: 2046492.0000 - tn: 77703984.0000 - fn: 2259570.0000 - precision: 0.9120 - recall: 0.9037 - accuracy: 0.9583 - auc: 0.9800 - val_loss: 0. 4282 - val_tp: 2892899.0000 - val_fp: 378247.0000 - val_tn: 11801593.0000 - val_fn: 655901.0000 - val_precision: 0.8844 - val_recall: 0.8152 - val_accuracy: 0.9343 - val_auc: 0.9564 Epoch 35/40 2100/2100 [==============================] - 2548s 1s/step - loss: 0.2784 - tp: 21515622.0000 - fp: 2084525.0000 - tn: 77370184.0000 - fn: 2248908.0000 - precision: 0.9117 - recall: 0.9054 - accuracy: 0.9580 - auc: 0.9804 - val_loss: 0. 4553 - val_tp: 3086603.0000 - val_fp: 467495.0000 - val_tn: 11473592.0000 - val_fn: 700950.0000 - val_precision: 0.8685 - val_recall: 0.8149 - val_accuracy: 0.9257 - val_auc: 0.9544 Epoch 36/40 2100/2100 [==============================] - 2541s 1s/step - loss: 0.2708 - tp: 20892576.0000 - fp: 2005985.0000 - tn: 78121936.0000 - fn: 2198694.0000 - precision: 0.9124 - recall: 0.9048 - accuracy: 0.9593 - auc: 0.9805 - val_loss: 0. 4393 - val_tp: 2703510.0000 - val_fp: 394771.0000 - val_tn: 11969160.0000 - val_fn: 661199.0000 - val_precision: 0.8726 - val_recall: 0.8035 - val_accuracy: 0.9329 - val_auc: 0.9538 Epoch 37/40 2100/2100 [==============================] - 2552s 1s/step - loss: 0.2788 - tp: 21802620.0000 - fp: 2101735.0000 - tn: 77067912.0000 - fn: 2246918.0000 - precision: 0.9121 - recall: 0.9066 - accuracy: 0.9579 - auc: 0.9805 - val_loss: 0. 4474 - val_tp: 2806677.0000 - val_fp: 219556.0000 - val_tn: 11887825.0000 - val_fn: 814582.0000 - val_precision: 0.9274 - val_recall: 0.7751 - val_accuracy: 0.9343 - val_auc: 0.9537 Epoch 38/40 2100/2100 [==============================] - 2545s 1s/step - loss: 0.2769 - tp: 21191620.0000 - fp: 2046041.0000 - tn: 77717744.0000 - fn: 2263741.0000 - precision: 0.9120 - recall: 0.9035 - accuracy: 0.9582 - auc: 0.9801 - val_loss: 0. 4414 - val_tp: 2927919.0000 - val_fp: 286995.0000 - val_tn: 11783958.0000 - val_fn: 729768.0000 - val_precision: 0.9107 - val_recall: 0.8005 - val_accuracy: 0.9354 - val_auc: 0.9544 Epoch 39/40 2100/2100 [==============================] - 2545s 1s/step - loss: 0.2785 - tp: 21171298.0000 - fp: 2047544.0000 - tn: 77738952.0000 - fn: 2261357.0000 - precision: 0.9118 - recall: 0.9035 - accuracy: 0.9583 - auc: 0.9798 - val_loss: 0. 4576 - val_tp: 2779792.0000 - val_fp: 346642.0000 - val_tn: 11869174.0000 - val_fn: 733032.0000 - val_precision: 0.8891 - val_recall: 0.7913 - val_accuracy: 0.9314 - val_auc: 0.9517 Epoch 40/40 2100/2100 [==============================] - 2538s 1s/step - loss: 0.2811 - tp: 21804190.0000 - fp: 2110823.0000 - tn: 77014800.0000 - fn: 2289448.0000 - precision: 0.9117 - recall: 0.9050 - accuracy: 0.9574 - auc: 0.9803 - val_loss: 0. 4445 - val_tp: 2933937.0000 - val_fp: 327429.0000 - val_tn: 11730665.0000 - val_fn: 736609.0000 - val_precision: 0.8996 - val_recall: 0.7993 - val_accuracy: 0.9324 - val_auc: 0.9543 667/667 [==============================] - 163s 244ms/step - loss: 0.5248 - tp: 6207113.0000 - fp: 1521051.0000 - tn: 23569214.0000 - fn: 1470623.0000 - precision: 0.8032 - recall: 0.8085 - accuracy: 0.9087 - auc: 0.9439 2020/06/21 05:32:13 INFO mlflow.projects: === Run (ID '1e98b3ed2e1d421da9592058bd5587a8') succeeded ===
2.1.15 git exp 4
git status git log -1
(tensorflow_nightly) [ye53nis@node161 drmed-git]$ git status git log -1 # On branch exp-310520-unet # Untracked files: # (use "git add <file>..." to include in what will be committed) # ... nothing added to commit but untracked files present (use "git add" to track) (tensorflow_nightly) [ye53nis@node161 drmed-git]$ git log -1 commit 8adaca82d8e092997828338bc2b730568c3ff74b Author: Alex Seltmann <seltmann@posteo.de> Date: Mon Jun 22 00:45:48 2020 +0200 exp-310520-unet run 3 bs=3
2.1.16 experimental run 4 - bs=7
mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src -P batch_size=7 -P epochs=40 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=910 -P validation_steps=225
2020/06/22 01:46:18 INFO mlflow.projects: === Created directory /tmp/tmpbqom5l09 for downloading remote URIs passed to arguments of type 'path' === 2020/06/22 01:46:18 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/fluotracify/training/train.py / beegfs/ye53nis/drmed-git/src 7 0.2 16384 None 40 /beegfs/ye53nis/saves/firstartefact_Sep2019 910 225' in run with ID '306234c75c9c48058cbd694579eff31b' === 2020-06-22 01:46:38.397450: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory 2020-06-22 01:46:38.397497: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favour of importlib; see the modul e's documentation for alternative uses import imp 2.3.0-dev20200527 2020-06-22 01:47:08.147584: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2020-06-22 01:47:08.147650: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303) 2020-06-22 01:47:08.147696: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node161): /proc/driver/nvidia/version does not exist GPUs: [] train 0 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set027.csv train 1 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set087.csv train 2 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set003.csv train 3 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set056.csv train 4 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set076.csv train 5 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set094.csv train 6 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set017.csv train 7 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set074.csv train 8 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set055.csv train 9 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set096.csv train 10 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set054.csv train 11 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set093.csv train 12 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set079.csv train 13 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set014.csv train 14 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set008.csv train 15 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set031.csv train 16 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set023.csv train 17 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set025.csv train 18 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set034.csv train 19 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set009.csv train 20 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set044.csv train 21 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set063.csv train 22 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set004.csv train 23 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set072.csv train 24 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set046.csv train 25 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set049.csv train 26 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set007.csv train 27 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set100.csv train 28 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set083.csv train 29 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set077.csv train 30 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set061.csv train 31 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set081.csv train 32 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set091.csv train 33 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set069.csv train 34 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set052.csv train 35 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set028.csv train 36 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set019.csv train 37 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set057.csv train 38 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set064.csv train 39 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set075.csv train 40 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set002.csv train 41 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set062.csv train 42 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set043.csv train 43 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set042.csv train 44 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set005.csv train 45 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set016.csv train 46 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set018.csv train 47 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set041.csv train 48 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set039.csv train 49 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set006.csv train 50 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set092.csv train 51 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set060.csv train 52 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set001.csv train 53 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set035.csv train 54 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set029.csv train 55 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set051.csv train 56 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set012.csv train 57 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set036.csv train 58 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set024.csv train 59 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set053.csv train 60 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set011.csv train 61 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set032.csv train 62 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set067.csv train 63 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set058.csv train 64 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set080.csv train 65 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set086.csv train 66 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set033.csv train 67 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set085.csv train 68 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set015.csv train 69 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set090.csv train 70 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set020.csv train 71 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set030.csv train 72 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set050.csv train 73 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set098.csv train 74 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set099.csv train 75 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set070.csv train 76 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set021.csv train 77 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set095.csv train 78 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set073.csv train 79 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set078.csv test 80 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set026.csv test 81 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set038.csv test 82 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set082.csv test 83 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set047.csv test 84 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set040.csv test 85 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set066.csv test 86 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set059.csv test 87 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set013.csv test 88 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set089.csv test 89 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set071.csv test 90 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set088.csv test 91 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set037.csv test 92 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set022.csv test 93 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set084.csv test 94 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set010.csv test 95 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set097.csv test 96 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set068.csv test 97 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set065.csv test 98 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set048.csv test 99 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set045.csv shapes of feature dataframe: (20000, 8000) and label dataframe: (20000, 8000) shapes of feature dataframe: (20000, 2000) and label dataframe: (20000, 2000) for each 20,000 timestap trace there are the following numbers of corrupted timesteps: label001_1 6286 label001_1 2568 label001_1 4495 label001_1 4414 label001_1 1105 dtype: int64 2020-06-22 01:52:37.438938: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2020-06-22 01:52:37.449993: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz 2020-06-22 01:52:37.451959: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5592ec827380 initialized for platform Host (this does not guarantee that XLA will be used). Devices: 2020-06-22 01:52:37.451991: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version number of training examples: 6400, number of validation examples: 1600 ------------------------ number of test examples: 2000 input - shape: (None, 16384, 1) output - shape: (None, 16384, 1) 2020-06-22 01:52:41.793790: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started. /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working if not isinstance(wrapped_dict, collections.Mapping): /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Python 3.0, use inspect.signature() or inspect.getfullargspec() all_param_names, _, _, all_default_values = inspect.getargspec(fn) # pylint: disable=W1505 Epoch 1/40 /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working if not isinstance(values, collections.Sequence): 1/910 [..............................] - ETA: 0s - loss: 1.5123 - tp: 3489.0000 - fp: 12945.0000 - tn: 73461.0000 - fn: 24793.0000 - precision: 0.2123 - recall: 0.1234 - accuracy: 0.6710 - auc: 0.49312020-06-22 01:52:55.410673: I tens orflow/core/profiler/lib/profiler_session.cc:163] Profiler session started. WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and w ill be removed after 2020-07-01. Instructions for updating: use `tf.profiler.experimental.stop` instead. 2020-06-22 01:52:57.883904: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_22_01_52_57 2020-06-22 01:52:57.900920: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.trace.json.gz 2020-06-22 01:52:57.938257: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_22_01_52_57 2020-06-22 01:52:57.938413: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.memory_profile.json.gz 2020-06-22 01:52:57.941154: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_06_22_01_52_57Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2020_06_22_0 1_52_57/node161.xplane.pb Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.overview_page.pb Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.input_pipeline.pb Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.tensorflow_stats.pb Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.kernel_stats.pb 910/910 [==============================] - 2234s 2s/step - loss: 1.1284 - tp: 16644571.0000 - fp: 5060115.0000 - tn: 75211888.0000 - fn: 7449514.0000 - precision: 0.7669 - recall: 0.6908 - accuracy: 0.8801 - auc: 0.9092 - val_loss: 44.1 496 - val_tp: 5991771.0000 - val_fp: 19810554.0000 - val_tn: 2354.0000 - val_fn: 117.0000 - val_precision: 0.2322 - val_recall: 1.0000 - val_accuracy: 0.2323 - val_auc: 0.5235 Epoch 2/40 910/910 [==============================] - 2228s 2s/step - loss: 0.6506 - tp: 18676100.0000 - fp: 3725706.0000 - tn: 76768256.0000 - fn: 5196001.0000 - precision: 0.8337 - recall: 0.7823 - accuracy: 0.9145 - auc: 0.9421 - val_loss: 4.02 94 - val_tp: 5567715.0000 - val_fp: 7766004.0000 - val_tn: 12285671.0000 - val_fn: 185410.0000 - val_precision: 0.4176 - val_recall: 0.9678 - val_accuracy: 0.6919 - val_auc: 0.8550 Epoch 3/40 910/910 [==============================] - 2209s 2s/step - loss: 0.4869 - tp: 19773668.0000 - fp: 3339711.0000 - tn: 77156064.0000 - fn: 4096586.0000 - precision: 0.8555 - recall: 0.8284 - accuracy: 0.9287 - auc: 0.9571 - val_loss: 15.0 428 - val_tp: 5964847.0000 - val_fp: 16182339.0000 - val_tn: 3635866.0000 - val_fn: 21748.0000 - val_precision: 0.2693 - val_recall: 0.9964 - val_accuracy: 0.3721 - val_auc: 0.6686 Epoch 4/40 910/910 [==============================] - 2196s 2s/step - loss: 0.4160 - tp: 20489738.0000 - fp: 2947256.0000 - tn: 77507616.0000 - fn: 3421442.0000 - precision: 0.8742 - recall: 0.8569 - accuracy: 0.9390 - auc: 0.9659 - val_loss: 1.94 92 - val_tp: 5844006.0000 - val_fp: 12298817.0000 - val_tn: 7631163.0000 - val_fn: 30814.0000 - val_precision: 0.3221 - val_recall: 0.9948 - val_accuracy: 0.5222 - val_auc: 0.9445 Epoch 5/40 910/910 [==============================] - 2197s 2s/step - loss: 0.3808 - tp: 20651254.0000 - fp: 2753622.0000 - tn: 77775072.0000 - fn: 3186176.0000 - precision: 0.8823 - recall: 0.8663 - accuracy: 0.9431 - auc: 0.9697 - val_loss: 0.48 60 - val_tp: 5068080.0000 - val_fp: 972440.0000 - val_tn: 19094874.0000 - val_fn: 669407.0000 - val_precision: 0.8390 - val_recall: 0.8833 - val_accuracy: 0.9364 - val_auc: 0.9722 Epoch 6/40 910/910 [==============================] - 2186s 2s/step - loss: 0.3788 - tp: 20770170.0000 - fp: 2708911.0000 - tn: 77787896.0000 - fn: 3099100.0000 - precision: 0.8846 - recall: 0.8702 - accuracy: 0.9444 - auc: 0.9703 - val_loss: 0.86 28 - val_tp: 5389513.0000 - val_fp: 2524440.0000 - val_tn: 17394656.0000 - val_fn: 496188.0000 - val_precision: 0.6810 - val_recall: 0.9157 - val_accuracy: 0.8829 - val_auc: 0.9492 Epoch 7/40 910/910 [==============================] - 2187s 2s/step - loss: 0.3621 - tp: 21038052.0000 - fp: 2650316.0000 - tn: 77692112.0000 - fn: 2985530.0000 - precision: 0.8881 - recall: 0.8757 - accuracy: 0.9460 - auc: 0.9724 - val_loss: 0.90 81 - val_tp: 5562172.0000 - val_fp: 3465595.0000 - val_tn: 16430461.0000 - val_fn: 346572.0000 - val_precision: 0.6161 - val_recall: 0.9413 - val_accuracy: 0.8523 - val_auc: 0.9356 Epoch 8/40 910/910 [==============================] - 2193s 2s/step - loss: 0.3553 - tp: 20964808.0000 - fp: 2536411.0000 - tn: 77880080.0000 - fn: 2984777.0000 - precision: 0.8921 - recall: 0.8754 - accuracy: 0.9471 - auc: 0.9726 - val_loss: 1.75 52 - val_tp: 5773672.0000 - val_fp: 6575655.0000 - val_tn: 13365159.0000 - val_fn: 90314.0000 - val_precision: 0.4675 - val_recall: 0.9846 - val_accuracy: 0.7417 - val_auc: 0.9457 Epoch 9/40 910/910 [==============================] - 2191s 2s/step - loss: 0.3477 - tp: 20855856.0000 - fp: 2530233.0000 - tn: 78070912.0000 - fn: 2908993.0000 - precision: 0.8918 - recall: 0.8776 - accuracy: 0.9479 - auc: 0.9732 - val_loss: 5.37 18 - val_tp: 5639818.0000 - val_fp: 10545935.0000 - val_tn: 9573186.0000 - val_fn: 45861.0000 - val_precision: 0.3484 - val_recall: 0.9919 - val_accuracy: 0.5895 - val_auc: 0.8627 Epoch 10/40 910/910 [==============================] - 2198s 2s/step - loss: 0.3453 - tp: 20967864.0000 - fp: 2537372.0000 - tn: 77932464.0000 - fn: 2928327.0000 - precision: 0.8921 - recall: 0.8775 - accuracy: 0.9476 - auc: 0.9739 - val_loss: 6.18 03 - val_tp: 5843714.0000 - val_fp: 6972956.0000 - val_tn: 12840040.0000 - val_fn: 148090.0000 - val_precision: 0.4559 - val_recall: 0.9753 - val_accuracy: 0.7240 - val_auc: 0.8662 Epoch 11/40 910/910 [==============================] - 2199s 2s/step - loss: 0.3386 - tp: 21061526.0000 - fp: 2493371.0000 - tn: 77979232.0000 - fn: 2831932.0000 - precision: 0.8941 - recall: 0.8815 - accuracy: 0.9490 - auc: 0.9744 - val_loss: 1.93 77 - val_tp: 5141006.0000 - val_fp: 5024287.0000 - val_tn: 14889905.0000 - val_fn: 749602.0000 - val_precision: 0.5057 - val_recall: 0.8727 - val_accuracy: 0.7762 - val_auc: 0.8851 Epoch 12/40 910/910 [==============================] - 2189s 2s/step - loss: 0.3032 - tp: 21443394.0000 - fp: 2244059.0000 - tn: 78197192.0000 - fn: 2481465.0000 - precision: 0.9053 - recall: 0.8963 - accuracy: 0.9547 - auc: 0.9782 - val_loss: 0.41 02 - val_tp: 4447303.0000 - val_fp: 81983.0000 - val_tn: 19938508.0000 - val_fn: 1337008.0000 - val_precision: 0.9819 - val_recall: 0.7689 - val_accuracy: 0.9450 - val_auc: 0.9689 Epoch 13/40 910/910 [==============================] - 2190s 2s/step - loss: 0.2934 - tp: 21384318.0000 - fp: 2224470.0000 - tn: 78382704.0000 - fn: 2374534.0000 - precision: 0.9058 - recall: 0.9001 - accuracy: 0.9559 - auc: 0.9790 - val_loss: 0.39 33 - val_tp: 4709935.0000 - val_fp: 185454.0000 - val_tn: 19874024.0000 - val_fn: 1035376.0000 - val_precision: 0.9621 - val_recall: 0.8198 - val_accuracy: 0.9527 - val_auc: 0.9764 Epoch 14/40 910/910 [==============================] - 2191s 2s/step - loss: 0.2891 - tp: 21659198.0000 - fp: 2221361.0000 - tn: 78137264.0000 - fn: 2348280.0000 - precision: 0.9070 - recall: 0.9022 - accuracy: 0.9562 - auc: 0.9795 - val_loss: 0.34 77 - val_tp: 4962272.0000 - val_fp: 238349.0000 - val_tn: 19698052.0000 - val_fn: 906131.0000 - val_precision: 0.9542 - val_recall: 0.8456 - val_accuracy: 0.9556 - val_auc: 0.9784 Epoch 15/40 910/910 [==============================] - 2190s 2s/step - loss: 0.2855 - tp: 21305984.0000 - fp: 2168209.0000 - tn: 78570984.0000 - fn: 2320894.0000 - precision: 0.9076 - recall: 0.9018 - accuracy: 0.9570 - auc: 0.9794 - val_loss: 0.42 92 - val_tp: 5448927.0000 - val_fp: 691788.0000 - val_tn: 19190140.0000 - val_fn: 473948.0000 - val_precision: 0.8873 - val_recall: 0.9200 - val_accuracy: 0.9548 - val_auc: 0.9843 Epoch 16/40 910/910 [==============================] - 2206s 2s/step - loss: 0.2860 - tp: 21768336.0000 - fp: 2197317.0000 - tn: 78071472.0000 - fn: 2328913.0000 - precision: 0.9083 - recall: 0.9034 - accuracy: 0.9566 - auc: 0.9798 - val_loss: 0.38 76 - val_tp: 5178300.0000 - val_fp: 782337.0000 - val_tn: 19316320.0000 - val_fn: 527843.0000 - val_precision: 0.8687 - val_recall: 0.9075 - val_accuracy: 0.9492 - val_auc: 0.9825 Epoch 17/40 910/910 [==============================] - 2195s 2s/step - loss: 0.2846 - tp: 21434488.0000 - fp: 2169029.0000 - tn: 78438552.0000 - fn: 2324017.0000 - precision: 0.9081 - recall: 0.9022 - accuracy: 0.9570 - auc: 0.9797 - val_loss: 0.30 14 - val_tp: 5075497.0000 - val_fp: 245322.0000 - val_tn: 19617398.0000 - val_fn: 866585.0000 - val_precision: 0.9539 - val_recall: 0.8542 - val_accuracy: 0.9569 - val_auc: 0.9784 Epoch 18/40 910/910 [==============================] - 2194s 2s/step - loss: 0.2779 - tp: 21615928.0000 - fp: 2131081.0000 - tn: 78362064.0000 - fn: 2257103.0000 - precision: 0.9103 - recall: 0.9055 - accuracy: 0.9580 - auc: 0.9802 - val_loss: 0.35 91 - val_tp: 5315886.0000 - val_fp: 630662.0000 - val_tn: 19377184.0000 - val_fn: 481064.0000 - val_precision: 0.8939 - val_recall: 0.9170 - val_accuracy: 0.9569 - val_auc: 0.9853 Epoch 19/40 910/910 [==============================] - 2199s 2s/step - loss: 0.2810 - tp: 21823838.0000 - fp: 2154952.0000 - tn: 78086368.0000 - fn: 2300819.0000 - precision: 0.9101 - recall: 0.9046 - accuracy: 0.9573 - auc: 0.9804 - val_loss: 0.29 36 - val_tp: 5247304.0000 - val_fp: 327869.0000 - val_tn: 19475176.0000 - val_fn: 754455.0000 - val_precision: 0.9412 - val_recall: 0.8743 - val_accuracy: 0.9581 - val_auc: 0.9805 Epoch 20/40 910/910 [==============================] - 2192s 2s/step - loss: 0.2764 - tp: 21738176.0000 - fp: 2123769.0000 - tn: 78235688.0000 - fn: 2268399.0000 - precision: 0.9110 - recall: 0.9055 - accuracy: 0.9579 - auc: 0.9807 - val_loss: 0.31 80 - val_tp: 5172404.0000 - val_fp: 301019.0000 - val_tn: 19568382.0000 - val_fn: 762993.0000 - val_precision: 0.9450 - val_recall: 0.8715 - val_accuracy: 0.9588 - val_auc: 0.9816 Epoch 21/40 910/910 [==============================] - 2198s 2s/step - loss: 0.2753 - tp: 21565306.0000 - fp: 2109464.0000 - tn: 78441872.0000 - fn: 2249478.0000 - precision: 0.9109 - recall: 0.9055 - accuracy: 0.9582 - auc: 0.9805 - val_loss: 0.32 99 - val_tp: 4898108.0000 - val_fp: 133276.0000 - val_tn: 19742242.0000 - val_fn: 1031169.0000 - val_precision: 0.9735 - val_recall: 0.8261 - val_accuracy: 0.9549 - val_auc: 0.9758 Epoch 22/40 910/910 [==============================] - 2194s 2s/step - loss: 0.2705 - tp: 21872064.0000 - fp: 2096978.0000 - tn: 78186784.0000 - fn: 2210292.0000 - precision: 0.9125 - recall: 0.9082 - accuracy: 0.9587 - auc: 0.9812 - val_loss: 0.32 48 - val_tp: 5379907.0000 - val_fp: 361207.0000 - val_tn: 19421612.0000 - val_fn: 642071.0000 - val_precision: 0.9371 - val_recall: 0.8934 - val_accuracy: 0.9611 - val_auc: 0.9833 Epoch 23/40 910/910 [==============================] - 2192s 2s/step - loss: 0.2693 - tp: 21757518.0000 - fp: 2089232.0000 - tn: 78320768.0000 - fn: 2198508.0000 - precision: 0.9124 - recall: 0.9082 - accuracy: 0.9589 - auc: 0.9810 - val_loss: 0.29 60 - val_tp: 5305212.0000 - val_fp: 364327.0000 - val_tn: 19508656.0000 - val_fn: 626605.0000 - val_precision: 0.9357 - val_recall: 0.8944 - val_accuracy: 0.9616 - val_auc: 0.9831 Epoch 24/40 910/910 [==============================] - 2182s 2s/step - loss: 0.2644 - tp: 21582250.0000 - fp: 2055042.0000 - tn: 78581192.0000 - fn: 2147551.0000 - precision: 0.9131 - recall: 0.9095 - accuracy: 0.9597 - auc: 0.9816 - val_loss: 0.31 56 - val_tp: 5259415.0000 - val_fp: 362064.0000 - val_tn: 19527056.0000 - val_fn: 656259.0000 - val_precision: 0.9356 - val_recall: 0.8891 - val_accuracy: 0.9605 - val_auc: 0.9826 Epoch 25/40 910/910 [==============================] - 2182s 2s/step - loss: 0.2646 - tp: 21752094.0000 - fp: 2060925.0000 - tn: 78391832.0000 - fn: 2161242.0000 - precision: 0.9135 - recall: 0.9096 - accuracy: 0.9595 - auc: 0.9816 - val_loss: 0.30 17 - val_tp: 5312792.0000 - val_fp: 398301.0000 - val_tn: 19491284.0000 - val_fn: 602422.0000 - val_precision: 0.9303 - val_recall: 0.8982 - val_accuracy: 0.9612 - val_auc: 0.9832 Epoch 26/40 910/910 [==============================] - 2111s 2s/step - loss: 0.2703 - tp: 21731022.0000 - fp: 2103277.0000 - tn: 78346144.0000 - fn: 2185602.0000 - precision: 0.9118 - recall: 0.9086 - accuracy: 0.9589 - auc: 0.9811 - val_loss: 0.31 48 - val_tp: 5491565.0000 - val_fp: 401219.0000 - val_tn: 19289576.0000 - val_fn: 622446.0000 - val_precision: 0.9319 - val_recall: 0.8982 - val_accuracy: 0.9603 - val_auc: 0.9844 Epoch 27/40 910/910 [==============================] - 2066s 2s/step - loss: 0.2638 - tp: 21622916.0000 - fp: 2036434.0000 - tn: 78564656.0000 - fn: 2142006.0000 - precision: 0.9139 - recall: 0.9099 - accuracy: 0.9600 - auc: 0.9815 - val_loss: 0.28 12 - val_tp: 5310123.0000 - val_fp: 347345.0000 - val_tn: 19514636.0000 - val_fn: 632692.0000 - val_precision: 0.9386 - val_recall: 0.8935 - val_accuracy: 0.9620 - val_auc: 0.9826 Epoch 28/40 910/910 [==============================] - 2084s 2s/step - loss: 0.2644 - tp: 21746928.0000 - fp: 2054824.0000 - tn: 78423840.0000 - fn: 2140490.0000 - precision: 0.9137 - recall: 0.9104 - accuracy: 0.9598 - auc: 0.9815 - val_loss: 0.29 02 - val_tp: 5105988.0000 - val_fp: 301224.0000 - val_tn: 19705344.0000 - val_fn: 692246.0000 - val_precision: 0.9443 - val_recall: 0.8806 - val_accuracy: 0.9615 - val_auc: 0.9816 Epoch 29/40 910/910 [==============================] - 2091s 2s/step - loss: 0.2657 - tp: 21903456.0000 - fp: 2055350.0000 - tn: 78244200.0000 - fn: 2163118.0000 - precision: 0.9142 - recall: 0.9101 - accuracy: 0.9596 - auc: 0.9816 - val_loss: 0.29 28 - val_tp: 5111563.0000 - val_fp: 355341.0000 - val_tn: 19707988.0000 - val_fn: 629909.0000 - val_precision: 0.9350 - val_recall: 0.8903 - val_accuracy: 0.9618 - val_auc: 0.9825 Epoch 30/40 910/910 [==============================] - 2097s 2s/step - loss: 0.2663 - tp: 22007504.0000 - fp: 2072930.0000 - tn: 78112200.0000 - fn: 2173470.0000 - precision: 0.9139 - recall: 0.9101 - accuracy: 0.9593 - auc: 0.9816 - val_loss: 0.30 39 - val_tp: 5361046.0000 - val_fp: 369167.0000 - val_tn: 19426364.0000 - val_fn: 648220.0000 - val_precision: 0.9356 - val_recall: 0.8921 - val_accuracy: 0.9606 - val_auc: 0.9831 Epoch 31/40 910/910 [==============================] - 2092s 2s/step - loss: 0.2670 - tp: 21883968.0000 - fp: 2114417.0000 - tn: 78182464.0000 - fn: 2185257.0000 - precision: 0.9119 - recall: 0.9092 - accuracy: 0.9588 - auc: 0.9816 - val_loss: 0.29 74 - val_tp: 5307833.0000 - val_fp: 308903.0000 - val_tn: 19507264.0000 - val_fn: 680801.0000 - val_precision: 0.9450 - val_recall: 0.8863 - val_accuracy: 0.9616 - val_auc: 0.9830 Epoch 32/40 910/910 [==============================] - 2168s 2s/step - loss: 0.2678 - tp: 21697564.0000 - fp: 2002839.0000 - tn: 78462496.0000 - fn: 2203202.0000 - precision: 0.9155 - recall: 0.9078 - accuracy: 0.9597 - auc: 0.9811 - val_loss: 0.29 81 - val_tp: 4991380.0000 - val_fp: 318033.0000 - val_tn: 19848366.0000 - val_fn: 647024.0000 - val_precision: 0.9401 - val_recall: 0.8852 - val_accuracy: 0.9626 - val_auc: 0.9819 Epoch 33/40 910/910 [==============================] - 2143s 2s/step - loss: 0.2641 - tp: 21608556.0000 - fp: 2029292.0000 - tn: 78569336.0000 - fn: 2158886.0000 - precision: 0.9142 - recall: 0.9092 - accuracy: 0.9599 - auc: 0.9815 - val_loss: 0.30 89 - val_tp: 5377773.0000 - val_fp: 383774.0000 - val_tn: 19419054.0000 - val_fn: 624197.0000 - val_precision: 0.9334 - val_recall: 0.8960 - val_accuracy: 0.9609 - val_auc: 0.9835 Epoch 34/40 910/910 [==============================] - 2148s 2s/step - loss: 0.2636 - tp: 21989192.0000 - fp: 2079253.0000 - tn: 78164408.0000 - fn: 2133219.0000 - precision: 0.9136 - recall: 0.9116 - accuracy: 0.9596 - auc: 0.9818 - val_loss: 0.28 72 - val_tp: 5242507.0000 - val_fp: 383622.0000 - val_tn: 19573328.0000 - val_fn: 605341.0000 - val_precision: 0.9318 - val_recall: 0.8965 - val_accuracy: 0.9617 - val_auc: 0.9836 Epoch 35/40 910/910 [==============================] - 2156s 2s/step - loss: 0.2642 - tp: 21771006.0000 - fp: 2059886.0000 - tn: 78393632.0000 - fn: 2141526.0000 - precision: 0.9136 - recall: 0.9104 - accuracy: 0.9597 - auc: 0.9816 - val_loss: 0.30 80 - val_tp: 5192984.0000 - val_fp: 352885.0000 - val_tn: 19633610.0000 - val_fn: 625321.0000 - val_precision: 0.9364 - val_recall: 0.8925 - val_accuracy: 0.9621 - val_auc: 0.9832 Epoch 36/40 910/910 [==============================] - 2114s 2s/step - loss: 0.2641 - tp: 21936120.0000 - fp: 2076747.0000 - tn: 78200080.0000 - fn: 2153085.0000 - precision: 0.9135 - recall: 0.9106 - accuracy: 0.9595 - auc: 0.9818 - val_loss: 0.29 62 - val_tp: 5151439.0000 - val_fp: 372261.0000 - val_tn: 19674524.0000 - val_fn: 606575.0000 - val_precision: 0.9326 - val_recall: 0.8947 - val_accuracy: 0.9621 - val_auc: 0.9835 Epoch 37/40 910/910 [==============================] - 2083s 2s/step - loss: 0.2591 - tp: 21745408.0000 - fp: 2014129.0000 - tn: 78506376.0000 - fn: 2100146.0000 - precision: 0.9152 - recall: 0.9119 - accuracy: 0.9606 - auc: 0.9821 - val_loss: 0.28 98 - val_tp: 5332435.0000 - val_fp: 349131.0000 - val_tn: 19493176.0000 - val_fn: 630050.0000 - val_precision: 0.9386 - val_recall: 0.8943 - val_accuracy: 0.9621 - val_auc: 0.9841 Epoch 38/40 910/910 [==============================] - 2067s 2s/step - loss: 0.2677 - tp: 22040308.0000 - fp: 2034232.0000 - tn: 78099864.0000 - fn: 2191664.0000 - precision: 0.9155 - recall: 0.9096 - accuracy: 0.9595 - auc: 0.9813 - val_loss: 0.30 58 - val_tp: 5293916.0000 - val_fp: 364251.0000 - val_tn: 19503016.0000 - val_fn: 643618.0000 - val_precision: 0.9356 - val_recall: 0.8916 - val_accuracy: 0.9609 - val_auc: 0.9818 Epoch 39/40 910/910 [==============================] - 2088s 2s/step - loss: 0.2665 - tp: 21782964.0000 - fp: 2071501.0000 - tn: 78364600.0000 - fn: 2146992.0000 - precision: 0.9132 - recall: 0.9103 - accuracy: 0.9596 - auc: 0.9812 - val_loss: 0.28 94 - val_tp: 5190450.0000 - val_fp: 358739.0000 - val_tn: 19624484.0000 - val_fn: 631125.0000 - val_precision: 0.9354 - val_recall: 0.8916 - val_accuracy: 0.9616 - val_auc: 0.9823 Epoch 40/40 910/910 [==============================] - 2093s 2s/step - loss: 0.2610 - tp: 21703476.0000 - fp: 2048057.0000 - tn: 78489664.0000 - fn: 2124881.0000 - precision: 0.9138 - recall: 0.9108 - accuracy: 0.9600 - auc: 0.9819 - val_loss: 0.28 97 - val_tp: 5014376.0000 - val_fp: 339650.0000 - val_tn: 19831600.0000 - val_fn: 619172.0000 - val_precision: 0.9366 - val_recall: 0.8901 - val_accuracy: 0.9628 - val_auc: 0.9828 286/286 [==============================] - 134s 469ms/step - loss: 0.3156 - tp: 6887079.0000 - fp: 534559.0000 - tn: 24555692.0000 - fn: 790657.0000 - precision: 0.9280 - recall: 0.8970 - accuracy: 0.9596 - auc: 0.9821 2020/06/23 01:58:39 INFO mlflow.projects: === Run (ID '306234c75c9c48058cbd694579eff31b') succeeded ===
2.1.17 git exp 5
git status git log -1
(base) [ye53nis@node011 drmed-git]$ git status git log -1 # On branch exp-310520-unet # ... no changes added to commit (use "git add" and/or "git commit -a") (base) [ye53nis@node011 drmed-git]$ git log -1 commit 8811f54920c7089b8a27d7f39a50acede5be64c9 Author: Apoplex <oligolex@vivaldi.net> Date: Fri Jul 3 00:51:59 2020 +0200 Incorporate unet prediction in plotting function
2.1.18 experimental run 5 - full dataset, length=2**13=8192
mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src -P batch_size=5 -P length_delimiter=8192 -P epochs=40 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=1280 -P validation_steps=320
(tensorflow_nightly) [ye53nis@node011 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src -P batch_size=5 -P length_delimiter=8192 -P epochs=40 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact _Sep2019 -P steps_per_epoch=1280 -P validation_steps=320 2020/07/03 13:45:30 INFO mlflow.projects: === Created directory /tmp/tmpqf8ewz0u for downloading remote URIs passed to arguments of type 'path' === 2020/07/03 13:45:30 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/fluotracify/training/train.py / beegfs/ye53nis/drmed-git/src 5 0.2 8192 None 40 /beegfs/ye53nis/saves/firstartefact_Sep2019 1280 320' in run with ID 'd9b44dc2e3d44ea1a71129808b642af6' === 2020-07-03 13:45:57.151501: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory 2020-07-03 13:45:57.151600: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favour of importlib; see the modul e's documentation for alternative uses import imp 2.3.0-dev20200527 2020-07-03 13:46:34.363762: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2020-07-03 13:46:34.363823: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303) 2020-07-03 13:46:34.363865: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node011): /proc/driver/nvidia/version does not exist GPUs: [] train 0 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set027.csv train 1 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set087.csv train 2 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set003.csv train 3 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set056.csv train 4 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set076.csv train 5 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set094.csv train 6 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set017.csv train 7 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set074.csv train 8 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set055.csv train 9 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set096.csv train 10 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set054.csv train 11 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set093.csv train 12 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set079.csv train 13 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set014.csv train 14 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set008.csv train 15 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set031.csv train 16 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set023.csv train 17 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set025.csv train 18 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set034.csv train 19 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set009.csv train 20 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set044.csv train 21 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set063.csv train 22 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set004.csv train 23 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set072.csv train 24 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set046.csv train 25 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set049.csv train 26 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set007.csv train 27 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set100.csv train 28 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set083.csv train 29 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set077.csv train 30 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set061.csv train 31 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set081.csv train 32 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set091.csv train 33 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set069.csv train 34 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set052.csv train 35 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set028.csv train 36 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set019.csv train 37 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set057.csv train 38 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set064.csv train 39 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set075.csv train 40 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set002.csv train 41 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set062.csv train 42 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set043.csv train 43 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set042.csv train 44 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set005.csv train 45 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set016.csv train 46 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set018.csv train 47 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set041.csv train 48 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set039.csv train 49 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set006.csv train 50 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set092.csv train 51 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set060.csv train 52 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set001.csv train 53 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set035.csv train 54 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set029.csv train 55 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set051.csv train 56 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set012.csv train 57 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set036.csv train 58 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set024.csv train 59 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set053.csv train 60 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set011.csv train 61 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set032.csv train 62 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set067.csv train 63 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set058.csv train 64 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set080.csv train 65 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set086.csv train 66 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set033.csv train 67 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set085.csv train 68 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set015.csv train 69 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set090.csv train 70 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set020.csv train 71 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set030.csv train 72 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set050.csv train 73 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set098.csv train 74 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set099.csv train 75 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set070.csv train 76 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set021.csv train 77 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set095.csv train 78 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set073.csv train 79 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set078.csv test 80 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set026.csv test 81 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set038.csv test 82 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set082.csv test 83 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set047.csv test 84 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set040.csv test 85 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set066.csv test 86 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set059.csv test 87 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set013.csv test 88 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set089.csv test 89 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set071.csv test 90 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set088.csv test 91 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set037.csv test 92 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set022.csv test 93 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set084.csv test 94 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set010.csv test 95 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set097.csv test 96 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set068.csv test 97 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set065.csv test 98 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set048.csv test 99 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set045.csv shapes of feature dataframe: (20000, 8000) and label dataframe: (20000, 8000) shapes of feature dataframe: (20000, 2000) and label dataframe: (20000, 2000) for each 20,000 timestap trace there are the following numbers of corrupted timesteps: label001_1 6286 label001_1 2568 label001_1 4495 label001_1 4414 label001_1 1105 dtype: int64 2020-07-03 13:52:37.767508: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2020-07-03 13:52:37.782937: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2194930000 Hz 2020-07-03 13:52:37.784247: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55e467051fe0 initialized for platform Host (this does not guarantee that XLA will be used). Devices: 2020-07-03 13:52:37.784290: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version number of training examples: 6400, number of validation examples: 1600 ------------------------ number of test examples: 2000 input - shape: (None, 8192, 1) output - shape: (None, 8192, 1) 2020-07-03 13:52:43.215627: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started. /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working if not isinstance(wrapped_dict, collections.Mapping): /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Python 3.0, use inspect.signature() or inspect.getfullargspec() all_param_names, _, _, all_default_values = inspect.getargspec(fn) # pylint: disable=W1505 Epoch 1/40 /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working if not isinstance(values, collections.Sequence): 1/1280 [..............................] - ETA: 0s - loss: 1.2862 - tp: 16168.0000 - fp: 12373.0000 - tn: 7437.0000 - fn: 4982.0000 - precision: 0.5665 - recall: 0.7644 - accuracy: 0.5763 - auc: 0.63882020-07-03 13:52:58.138783: I ten sorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started. WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and w ill be removed after 2020-07-01. Instructions for updating: use `tf.profiler.experimental.stop` instead. 2020-07-03 13:52:59.481566: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_07_03_13_52_59 2020-07-03 13:52:59.501564: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.trace.json.gz 2020-07-03 13:52:59.538369: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_07_03_13_52_59 2020-07-03 13:52:59.538526: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.memory_profile.json.gz 2020-07-03 13:52:59.541206: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_07_03_13_52_59Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2020_07_03_1 3_52_59/node011.xplane.pb Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.overview_page.pb Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.input_pipeline.pb Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.tensorflow_stats.pb Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.kernel_stats.pb 1280/1280 [==============================] - 1780s 1s/step - loss: 1.1858 - tp: 7339984.0000 - fp: 2874113.0000 - tn: 37719448.0000 - fn: 4495237.0000 - precision: 0.7186 - recall: 0.6202 - accuracy: 0.8594 - auc: 0.8832 - val_loss: 2.1 472 - val_tp: 2536431.0000 - val_fp: 7204421.0000 - val_tn: 3012796.0000 - val_fn: 353552.0000 - val_precision: 0.2604 - val_recall: 0.8777 - val_accuracy: 0.4234 - val_auc: 0.7624 Epoch 2/40 1280/1280 [==============================] - 1779s 1s/step - loss: 1.0617 - tp: 7423177.0000 - fp: 2931677.0000 - tn: 37621800.0000 - fn: 4452150.0000 - precision: 0.7169 - recall: 0.6251 - accuracy: 0.8592 - auc: 0.8778 - val_loss: 3.9 428 - val_tp: 2825884.0000 - val_fp: 7982935.0000 - val_tn: 2238761.0000 - val_fn: 59620.0000 - val_precision: 0.2614 - val_recall: 0.9793 - val_accuracy: 0.3864 - val_auc: 0.8231 Epoch 3/40 1280/1280 [==============================] - 1777s 1s/step - loss: 0.7857 - tp: 8301792.0000 - fp: 2630361.0000 - tn: 37976972.0000 - fn: 3519672.0000 - precision: 0.7594 - recall: 0.7023 - accuracy: 0.8827 - auc: 0.9097 - val_loss: 66. 2140 - val_tp: 3034899.0000 - val_fp: 9956908.0000 - val_tn: 115041.0000 - val_fn: 352.0000 - val_precision: 0.2336 - val_recall: 0.9999 - val_accuracy: 0.2403 - val_auc: 0.5115 Epoch 4/40 1280/1280 [==============================] - 1760s 1s/step - loss: 0.6022 - tp: 9369523.0000 - fp: 2098170.0000 - tn: 38477736.0000 - fn: 2483339.0000 - precision: 0.8170 - recall: 0.7905 - accuracy: 0.9126 - auc: 0.9419 - val_loss: 1.4 866 - val_tp: 2661698.0000 - val_fp: 4816937.0000 - val_tn: 5366742.0000 - val_fn: 261823.0000 - val_precision: 0.3559 - val_recall: 0.9104 - val_accuracy: 0.6125 - val_auc: 0.8933 Epoch 5/40 1280/1280 [==============================] - 1771s 1s/step - loss: 0.5592 - tp: 9674903.0000 - fp: 1962418.0000 - tn: 38513608.0000 - fn: 2277853.0000 - precision: 0.8314 - recall: 0.8094 - accuracy: 0.9191 - auc: 0.9488 - val_loss: 1.0 996 - val_tp: 565756.0000 - val_fp: 6305.0000 - val_tn: 10145255.0000 - val_fn: 2389884.0000 - val_precision: 0.9890 - val_recall: 0.1914 - val_accuracy: 0.8172 - val_auc: 0.9230 Epoch 6/40 1280/1280 [==============================] - 1774s 1s/step - loss: 0.5210 - tp: 9808780.0000 - fp: 1924251.0000 - tn: 38545780.0000 - fn: 2149975.0000 - precision: 0.8360 - recall: 0.8202 - accuracy: 0.9223 - auc: 0.9528 - val_loss: 1.9 950 - val_tp: 2773239.0000 - val_fp: 6335919.0000 - val_tn: 3933010.0000 - val_fn: 65032.0000 - val_precision: 0.3044 - val_recall: 0.9771 - val_accuracy: 0.5116 - val_auc: 0.9026 Epoch 7/40 1280/1280 [==============================] - 1767s 1s/step - loss: 0.4799 - tp: 9927548.0000 - fp: 1743956.0000 - tn: 38779680.0000 - fn: 1977563.0000 - precision: 0.8506 - recall: 0.8339 - accuracy: 0.9290 - auc: 0.9587 - val_loss: 0.4 051 - val_tp: 2537115.0000 - val_fp: 260830.0000 - val_tn: 9808854.0000 - val_fn: 500401.0000 - val_precision: 0.9068 - val_recall: 0.8353 - val_accuracy: 0.9419 - val_auc: 0.9654 Epoch 8/40 1280/1280 [==============================] - 1771s 1s/step - loss: 0.4655 - tp: 9972310.0000 - fp: 1610651.0000 - tn: 38928064.0000 - fn: 1917779.0000 - precision: 0.8609 - recall: 0.8387 - accuracy: 0.9327 - auc: 0.9611 - val_loss: 1.6 014 - val_tp: 1146828.0000 - val_fp: 2196.0000 - val_tn: 10286639.0000 - val_fn: 1671537.0000 - val_precision: 0.9981 - val_recall: 0.4069 - val_accuracy: 0.8723 - val_auc: 0.7663 Epoch 9/40 1280/1280 [==============================] - 1770s 1s/step - loss: 0.4410 - tp: 9975626.0000 - fp: 1547724.0000 - tn: 39046088.0000 - fn: 1859375.0000 - precision: 0.8657 - recall: 0.8429 - accuracy: 0.9350 - auc: 0.9628 - val_loss: 0.6 413 - val_tp: 2584588.0000 - val_fp: 554056.0000 - val_tn: 9603651.0000 - val_fn: 364905.0000 - val_precision: 0.8235 - val_recall: 0.8763 - val_accuracy: 0.9299 - val_auc: 0.9693 Epoch 10/40 1280/1280 [==============================] - 1761s 1s/step - loss: 0.4217 - tp: 10018262.0000 - fp: 1432905.0000 - tn: 39172740.0000 - fn: 1804910.0000 - precision: 0.8749 - recall: 0.8473 - accuracy: 0.9382 - auc: 0.9649 - val_loss: 0. 6441 - val_tp: 1928738.0000 - val_fp: 27586.0000 - val_tn: 10052344.0000 - val_fn: 1098532.0000 - val_precision: 0.9859 - val_recall: 0.6371 - val_accuracy: 0.9141 - val_auc: 0.9337 Epoch 11/40 1280/1280 [==============================] - 1767s 1s/step - loss: 0.4095 - tp: 10121675.0000 - fp: 1466373.0000 - tn: 39131704.0000 - fn: 1709053.0000 - precision: 0.8735 - recall: 0.8555 - accuracy: 0.9394 - auc: 0.9669 - val_loss: 1. 0952 - val_tp: 2779103.0000 - val_fp: 2929574.0000 - val_tn: 7332225.0000 - val_fn: 66298.0000 - val_precision: 0.4868 - val_recall: 0.9767 - val_accuracy: 0.7714 - val_auc: 0.9444 Epoch 12/40 1280/1280 [==============================] - 1766s 1s/step - loss: 0.3508 - tp: 10558538.0000 - fp: 1308014.0000 - tn: 39148768.0000 - fn: 1413463.0000 - precision: 0.8898 - recall: 0.8819 - accuracy: 0.9481 - auc: 0.9727 - val_loss: 0. 4481 - val_tp: 2197978.0000 - val_fp: 77726.0000 - val_tn: 10018559.0000 - val_fn: 812937.0000 - val_precision: 0.9658 - val_recall: 0.7300 - val_accuracy: 0.9320 - val_auc: 0.9684 Epoch 13/40 1280/1280 [==============================] - 1768s 1s/step - loss: 0.3459 - tp: 10634920.0000 - fp: 1277214.0000 - tn: 39126304.0000 - fn: 1390329.0000 - precision: 0.8928 - recall: 0.8844 - accuracy: 0.9491 - auc: 0.9732 - val_loss: 0. 4022 - val_tp: 2391272.0000 - val_fp: 184993.0000 - val_tn: 9955529.0000 - val_fn: 575406.0000 - val_precision: 0.9282 - val_recall: 0.8060 - val_accuracy: 0.9420 - val_auc: 0.9744 Epoch 14/40 1280/1280 [==============================] - 1771s 1s/step - loss: 0.3308 - tp: 10495827.0000 - fp: 1232895.0000 - tn: 39364996.0000 - fn: 1335085.0000 - precision: 0.8949 - recall: 0.8872 - accuracy: 0.9510 - auc: 0.9745 - val_loss: 0. 3876 - val_tp: 2364208.0000 - val_fp: 159464.0000 - val_tn: 9940852.0000 - val_fn: 642676.0000 - val_precision: 0.9368 - val_recall: 0.7863 - val_accuracy: 0.9388 - val_auc: 0.9704 Epoch 15/40 1280/1280 [==============================] - 1778s 1s/step - loss: 0.3349 - tp: 10513378.0000 - fp: 1247874.0000 - tn: 39301756.0000 - fn: 1365808.0000 - precision: 0.8939 - recall: 0.8850 - accuracy: 0.9501 - auc: 0.9742 - val_loss: 0. 4307 - val_tp: 2108827.0000 - val_fp: 89619.0000 - val_tn: 10175358.0000 - val_fn: 733396.0000 - val_precision: 0.9592 - val_recall: 0.7420 - val_accuracy: 0.9372 - val_auc: 0.9676 Epoch 16/40 1280/1280 [==============================] - 1774s 1s/step - loss: 0.3307 - tp: 10595335.0000 - fp: 1236928.0000 - tn: 39255112.0000 - fn: 1341378.0000 - precision: 0.8955 - recall: 0.8876 - accuracy: 0.9508 - auc: 0.9744 - val_loss: 0. 4616 - val_tp: 2311103.0000 - val_fp: 115583.0000 - val_tn: 10000757.0000 - val_fn: 679757.0000 - val_precision: 0.9524 - val_recall: 0.7727 - val_accuracy: 0.9393 - val_auc: 0.9704 Epoch 17/40 1280/1280 [==============================] - 1767s 1s/step - loss: 0.3289 - tp: 10535633.0000 - fp: 1223924.0000 - tn: 39330720.0000 - fn: 1338507.0000 - precision: 0.8959 - recall: 0.8873 - accuracy: 0.9511 - auc: 0.9748 - val_loss: 0. 4047 - val_tp: 2225304.0000 - val_fp: 97248.0000 - val_tn: 10022325.0000 - val_fn: 762323.0000 - val_precision: 0.9581 - val_recall: 0.7448 - val_accuracy: 0.9344 - val_auc: 0.9659 Epoch 18/40 1280/1280 [==============================] - 1772s 1s/step - loss: 0.3248 - tp: 10613594.0000 - fp: 1201191.0000 - tn: 39285904.0000 - fn: 1328110.0000 - precision: 0.8983 - recall: 0.8888 - accuracy: 0.9518 - auc: 0.9753 - val_loss: 0. 5139 - val_tp: 2072016.0000 - val_fp: 36763.0000 - val_tn: 10080347.0000 - val_fn: 918074.0000 - val_precision: 0.9826 - val_recall: 0.6930 - val_accuracy: 0.9272 - val_auc: 0.9530 Epoch 19/40 1280/1280 [==============================] - 1774s 1s/step - loss: 0.3211 - tp: 10667086.0000 - fp: 1209967.0000 - tn: 39238632.0000 - fn: 1313139.0000 - precision: 0.8981 - recall: 0.8904 - accuracy: 0.9519 - auc: 0.9753 - val_loss: 0. 3749 - val_tp: 2493058.0000 - val_fp: 176033.0000 - val_tn: 9926603.0000 - val_fn: 511506.0000 - val_precision: 0.9340 - val_recall: 0.8298 - val_accuracy: 0.9475 - val_auc: 0.9723 Epoch 20/40 1280/1280 [==============================] - 1771s 1s/step - loss: 0.3176 - tp: 10604079.0000 - fp: 1175083.0000 - tn: 39349048.0000 - fn: 1300586.0000 - precision: 0.9002 - recall: 0.8907 - accuracy: 0.9528 - auc: 0.9758 - val_loss: 0. 4352 - val_tp: 2225431.0000 - val_fp: 169949.0000 - val_tn: 9987117.0000 - val_fn: 724703.0000 - val_precision: 0.9291 - val_recall: 0.7543 - val_accuracy: 0.9317 - val_auc: 0.9660 Epoch 21/40 1280/1280 [==============================] - 1777s 1s/step - loss: 0.3183 - tp: 10753725.0000 - fp: 1207924.0000 - tn: 39171120.0000 - fn: 1296058.0000 - precision: 0.8990 - recall: 0.8924 - accuracy: 0.9522 - auc: 0.9760 - val_loss: 0. 5143 - val_tp: 1923402.0000 - val_fp: 8402.0000 - val_tn: 10080301.0000 - val_fn: 1095095.0000 - val_precision: 0.9957 - val_recall: 0.6372 - val_accuracy: 0.9158 - val_auc: 0.9559 Epoch 22/40 1280/1280 [==============================] - 1772s 1s/step - loss: 0.3155 - tp: 10593298.0000 - fp: 1171798.0000 - tn: 39369164.0000 - fn: 1294568.0000 - precision: 0.9004 - recall: 0.8911 - accuracy: 0.9530 - auc: 0.9766 - val_loss: 0. 3698 - val_tp: 2362795.0000 - val_fp: 98123.0000 - val_tn: 10020849.0000 - val_fn: 625433.0000 - val_precision: 0.9601 - val_recall: 0.7907 - val_accuracy: 0.9448 - val_auc: 0.9722 Epoch 23/40 1280/1280 [==============================] - 1770s 1s/step - loss: 0.3081 - tp: 10733583.0000 - fp: 1175054.0000 - tn: 39255684.0000 - fn: 1264464.0000 - precision: 0.9013 - recall: 0.8946 - accuracy: 0.9535 - auc: 0.9772 - val_loss: 0. 4154 - val_tp: 2216921.0000 - val_fp: 66152.0000 - val_tn: 10061258.0000 - val_fn: 762869.0000 - val_precision: 0.9710 - val_recall: 0.7440 - val_accuracy: 0.9368 - val_auc: 0.9674 Epoch 24/40 1280/1280 [==============================] - 1773s 1s/step - loss: 0.3108 - tp: 10737070.0000 - fp: 1185865.0000 - tn: 39247804.0000 - fn: 1258035.0000 - precision: 0.9005 - recall: 0.8951 - accuracy: 0.9534 - auc: 0.9769 - val_loss: 0. 4095 - val_tp: 2189914.0000 - val_fp: 65716.0000 - val_tn: 10122627.0000 - val_fn: 728943.0000 - val_precision: 0.9709 - val_recall: 0.7503 - val_accuracy: 0.9394 - val_auc: 0.9691 Epoch 25/40 1280/1280 [==============================] - 1778s 1s/step - loss: 0.3092 - tp: 10574009.0000 - fp: 1168082.0000 - tn: 39411864.0000 - fn: 1274842.0000 - precision: 0.9005 - recall: 0.8924 - accuracy: 0.9534 - auc: 0.9769 - val_loss: 0. 3740 - val_tp: 2271238.0000 - val_fp: 99057.0000 - val_tn: 10104250.0000 - val_fn: 632655.0000 - val_precision: 0.9582 - val_recall: 0.7821 - val_accuracy: 0.9442 - val_auc: 0.9706 Epoch 26/40 1280/1280 [==============================] - 1772s 1s/step - loss: 0.3127 - tp: 10661534.0000 - fp: 1178414.0000 - tn: 39303136.0000 - fn: 1285691.0000 - precision: 0.9005 - recall: 0.8924 - accuracy: 0.9530 - auc: 0.9766 - val_loss: 0. 4100 - val_tp: 2160141.0000 - val_fp: 93000.0000 - val_tn: 10111722.0000 - val_fn: 742337.0000 - val_precision: 0.9587 - val_recall: 0.7442 - val_accuracy: 0.9363 - val_auc: 0.9656 Epoch 27/40 1280/1280 [==============================] - 1772s 1s/step - loss: 0.3054 - tp: 10663139.0000 - fp: 1174175.0000 - tn: 39348628.0000 - fn: 1242863.0000 - precision: 0.9008 - recall: 0.8956 - accuracy: 0.9539 - auc: 0.9770 - val_loss: 0. 3826 - val_tp: 2295025.0000 - val_fp: 98538.0000 - val_tn: 10045922.0000 - val_fn: 667715.0000 - val_precision: 0.9588 - val_recall: 0.7746 - val_accuracy: 0.9415 - val_auc: 0.9695 Epoch 28/40 1280/1280 [==============================] - 1766s 1s/step - loss: 0.3101 - tp: 10638913.0000 - fp: 1161985.0000 - tn: 39375784.0000 - fn: 1252135.0000 - precision: 0.9015 - recall: 0.8947 - accuracy: 0.9540 - auc: 0.9766 - val_loss: 0. 3907 - val_tp: 2166669.0000 - val_fp: 37875.0000 - val_tn: 10143155.0000 - val_fn: 759501.0000 - val_precision: 0.9828 - val_recall: 0.7404 - val_accuracy: 0.9392 - val_auc: 0.9686 Epoch 29/40 1280/1280 [==============================] - 1773s 1s/step - loss: 0.3063 - tp: 10554201.0000 - fp: 1162046.0000 - tn: 39456136.0000 - fn: 1256420.0000 - precision: 0.9008 - recall: 0.8936 - accuracy: 0.9539 - auc: 0.9767 - val_loss: 0. 3597 - val_tp: 2286152.0000 - val_fp: 91290.0000 - val_tn: 10085049.0000 - val_fn: 644709.0000 - val_precision: 0.9616 - val_recall: 0.7800 - val_accuracy: 0.9438 - val_auc: 0.9718 Epoch 30/40 1280/1280 [==============================] - 1777s 1s/step - loss: 0.3054 - tp: 10552880.0000 - fp: 1163086.0000 - tn: 39473676.0000 - fn: 1239134.0000 - precision: 0.9007 - recall: 0.8949 - accuracy: 0.9542 - auc: 0.9771 - val_loss: 0. 4182 - val_tp: 2195277.0000 - val_fp: 32841.0000 - val_tn: 10111337.0000 - val_fn: 767745.0000 - val_precision: 0.9853 - val_recall: 0.7409 - val_accuracy: 0.9389 - val_auc: 0.9704 Epoch 31/40 1280/1280 [==============================] - 1779s 1s/step - loss: 0.3083 - tp: 10553649.0000 - fp: 1149510.0000 - tn: 39466480.0000 - fn: 1259216.0000 - precision: 0.9018 - recall: 0.8934 - accuracy: 0.9541 - auc: 0.9765 - val_loss: 0. 4366 - val_tp: 2167915.0000 - val_fp: 58039.0000 - val_tn: 10066034.0000 - val_fn: 815212.0000 - val_precision: 0.9739 - val_recall: 0.7267 - val_accuracy: 0.9334 - val_auc: 0.9673 Epoch 32/40 1280/1280 [==============================] - 1768s 1s/step - loss: 0.3090 - tp: 10850631.0000 - fp: 1193472.0000 - tn: 39117152.0000 - fn: 1267532.0000 - precision: 0.9009 - recall: 0.8954 - accuracy: 0.9531 - auc: 0.9774 - val_loss: 0. 3760 - val_tp: 2399785.0000 - val_fp: 89881.0000 - val_tn: 9935425.0000 - val_fn: 682109.0000 - val_precision: 0.9639 - val_recall: 0.7787 - val_accuracy: 0.9411 - val_auc: 0.9706 Epoch 33/40 1280/1280 [==============================] - 1770s 1s/step - loss: 0.3075 - tp: 10591815.0000 - fp: 1173635.0000 - tn: 39401344.0000 - fn: 1261969.0000 - precision: 0.9002 - recall: 0.8935 - accuracy: 0.9535 - auc: 0.9770 - val_loss: 0. 3749 - val_tp: 2266851.0000 - val_fp: 113739.0000 - val_tn: 10069260.0000 - val_fn: 657350.0000 - val_precision: 0.9522 - val_recall: 0.7752 - val_accuracy: 0.9412 - val_auc: 0.9685 Epoch 34/40 1280/1280 [==============================] - 1774s 1s/step - loss: 0.3046 - tp: 10617309.0000 - fp: 1139098.0000 - tn: 39400540.0000 - fn: 1271864.0000 - precision: 0.9031 - recall: 0.8930 - accuracy: 0.9540 - auc: 0.9772 - val_loss: 0. 4175 - val_tp: 2241531.0000 - val_fp: 87208.0000 - val_tn: 10047153.0000 - val_fn: 731308.0000 - val_precision: 0.9626 - val_recall: 0.7540 - val_accuracy: 0.9376 - val_auc: 0.9662 Epoch 35/40 1280/1280 [==============================] - 1773s 1s/step - loss: 0.3112 - tp: 10604940.0000 - fp: 1177338.0000 - tn: 39382680.0000 - fn: 1263836.0000 - precision: 0.9001 - recall: 0.8935 - accuracy: 0.9534 - auc: 0.9763 - val_loss: 0. 3769 - val_tp: 2350085.0000 - val_fp: 99126.0000 - val_tn: 10001938.0000 - val_fn: 656051.0000 - val_precision: 0.9595 - val_recall: 0.7818 - val_accuracy: 0.9424 - val_auc: 0.9697 Epoch 36/40 1280/1280 [==============================] - 1782s 1s/step - loss: 0.3079 - tp: 10576699.0000 - fp: 1181888.0000 - tn: 39421312.0000 - fn: 1248879.0000 - precision: 0.8995 - recall: 0.8944 - accuracy: 0.9536 - auc: 0.9767 - val_loss: 0. 3834 - val_tp: 2322480.0000 - val_fp: 71956.0000 - val_tn: 10012406.0000 - val_fn: 700358.0000 - val_precision: 0.9699 - val_recall: 0.7683 - val_accuracy: 0.9411 - val_auc: 0.9705 Epoch 37/40 1280/1280 [==============================] - 1775s 1s/step - loss: 0.3129 - tp: 10722707.0000 - fp: 1163322.0000 - tn: 39255528.0000 - fn: 1287232.0000 - precision: 0.9021 - recall: 0.8928 - accuracy: 0.9533 - auc: 0.9765 - val_loss: 0. 4019 - val_tp: 2314261.0000 - val_fp: 62408.0000 - val_tn: 9985730.0000 - val_fn: 744801.0000 - val_precision: 0.9737 - val_recall: 0.7565 - val_accuracy: 0.9384 - val_auc: 0.9702 Epoch 38/40 1280/1280 [==============================] - 1783s 1s/step - loss: 0.3083 - tp: 10594205.0000 - fp: 1165411.0000 - tn: 39412032.0000 - fn: 1257165.0000 - precision: 0.9009 - recall: 0.8939 - accuracy: 0.9538 - auc: 0.9767 - val_loss: 0. 3835 - val_tp: 2223637.0000 - val_fp: 52165.0000 - val_tn: 10117258.0000 - val_fn: 714140.0000 - val_precision: 0.9771 - val_recall: 0.7569 - val_accuracy: 0.9415 - val_auc: 0.9715 Epoch 39/40 1280/1280 [==============================] - 1776s 1s/step - loss: 0.3073 - tp: 10690271.0000 - fp: 1156059.0000 - tn: 39323200.0000 - fn: 1259274.0000 - precision: 0.9024 - recall: 0.8946 - accuracy: 0.9539 - auc: 0.9769 - val_loss: 0. 3965 - val_tp: 2204023.0000 - val_fp: 67630.0000 - val_tn: 10139880.0000 - val_fn: 695667.0000 - val_precision: 0.9702 - val_recall: 0.7601 - val_accuracy: 0.9418 - val_auc: 0.9679 Epoch 40/40 1280/1280 [==============================] - 1771s 1s/step - loss: 0.3049 - tp: 10682842.0000 - fp: 1183309.0000 - tn: 39323412.0000 - fn: 1239227.0000 - precision: 0.9003 - recall: 0.8961 - accuracy: 0.9538 - auc: 0.9773 - val_loss: 0. 3758 - val_tp: 2309020.0000 - val_fp: 116124.0000 - val_tn: 10004803.0000 - val_fn: 677253.0000 - val_precision: 0.9521 - val_recall: 0.7732 - val_accuracy: 0.9395 - val_auc: 0.9702 400/400 [==============================] - 118s 296ms/step - loss: 0.4356 - tp: 2969562.0000 - fp: 289346.0000 - tn: 12303178.0000 - fn: 821914.0000 - precision: 0.9112 - recall: 0.7832 - accuracy: 0.9322 - auc: 0.9648 2020/07/04 09:37:42 INFO mlflow.projects: === Run (ID 'd9b44dc2e3d44ea1a71129808b642af6') succeeded ===
2.2 exp-201231-clustersim
- this experiment is to document the simulation of fluorescence timetraces with “bright cluster” artifacts
2.2.1 connect to jupyter notebook
- Request compute node via tmux
cd / srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
(tf-nightly) [ye53nis@node146 /]$ jupyter lab --no-browser --port=$PORT [I 00:02:39.372 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/jupyterlab [I 00:02:39.372 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf-nightly/share/jupyter/lab [I 00:02:39.375 LabApp] Serving notebooks from local directory: / [I 00:02:39.375 LabApp] Jupyter Notebook 6.1.4 is running at: [I 00:02:39.375 LabApp] http://localhost:9999/?token=93791464f12bacd92a8343c1a3be84117c0674d5703fd278 [I 00:02:39.375 LabApp] or http://127.0.0.1:9999/?token=93791464f12bacd92a8343c1a3be84117c0674d5703fd278 [I 00:02:39.375 LabApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 00:02:39.380 LabApp] To access the notebook, open this file in a browser: file:///home/ye53nis/.local/share/jupyter/runtime/nbserver-54410-open.html Or copy and paste one of these URLs: http://localhost:9999/?token=93791464f12bacd92a8343c1a3be84117c0674d5703fd278 or http://127.0.0.1:9999/?token=93791464f12bacd92a8343c1a3be84117c0674d5703fd278
- Create SSH tunnel
sh-5.0$ | sh-5.0$ | ye53nis@ara-login01.rz.uni-jena.de’s | password: | |||||
ye53nis@node146’s | password: | |||||||
Last | login: | Mon | Jan | 4 | 12:09:39 | 2021 | from | login01.ara |
- connect to Python 3 kernel using
jupyter-server-list-kernels
python3 f6f8ea4a-c473-459c-93b6-4984b0987ff8 a few seconds ago starting 0
2.2.2 record metadata
%cd /beegfs/ye53nis/drmed-git/
/beegfs/ye53nis/drmed-git
!git log -1 !git status
commit 90315560e472cfec38b0f927e905da1635d25240 Author: Apoplex <oligolex@vivaldi.net> Date: Thu Dec 31 01:32:25 2020 +0100 change metadata gathering and add docs # On branch exp-201231-clustersim # Changes not staged for commit: # (use "git add <file>..." to update what will be committed) # (use "git checkout -- <file>..." to discard changes in working directory) # (commit or discard the untracked or modified content in submodules) # # modified: src/nanosimpy (untracked content) # # Untracked files: # (use "git add <file>..." to include in what will be committed) # # data/ # experiment_params.csv # mlruns/ # tramp.YDPCnB no changes added to commit (use "git add" and/or "git commit -a")
#+CALL: jp-metadata(_long='True)
No of CPUs in system: 72 No of CPUs the current process can use: 24 load average: (16.0, 16.04, 16.01) os.uname(): posix.uname_result(sysname='Linux', nodename='node146', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64') PID of process: 173820 RAM total: 199G, RAM used: 70G, RAM free: 99G the current directory: /beegfs/ye53nis/drmed-git My disk usage: Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 3.2G 47G 7% / devtmpfs 94G 0 94G 0% /dev tmpfs 94G 297M 94G 1% /dev/shm tmpfs 94G 195M 94G 1% /run tmpfs 94G 0 94G 0% /sys/fs/cgroup nfs01-ib:/cluster 2.0T 473G 1.6T 24% /cluster nfs03-ib:/pool/work 100T 70T 31T 70% /nfsdata nfs02-ib:/data01 88T 71T 17T 81% /data01 nfs01-ib:/home 80T 71T 9.8T 88% /home /dev/sda3 6.0G 435M 5.6G 8% /var /dev/sda5 2.0G 34M 2.0G 2% /tmp /dev/sda6 169G 18G 152G 11% /local beegfs_nodev 524T 437T 88T 84% /beegfs tmpfs 19G 0 19G 0% /run/user/67339 # packages in environment at /home/ye53nis/.conda/envs/tf-nightly: # # Name Version Build Channel _libgcc_mutex 0.1 main absl-py 0.11.0 pypi_0 pypi alembic 1.4.1 py_0 conda-forge appdirs 1.4.4 pyh9f0ad1d_0 conda-forge argon2-cffi 20.1.0 py38h7b6447c_1 asn1crypto 1.4.0 pyh9f0ad1d_0 conda-forge asteval 0.9.16 pyh5ca1d4c_0 conda-forge astunparse 1.6.3 pypi_0 pypi async_generator 1.10 py_0 attrs 20.2.0 py_0 azure-core 1.8.2 pyh9f0ad1d_0 conda-forge azure-storage-blob 12.5.0 pyh9f0ad1d_0 conda-forge backcall 0.2.0 py_0 blas 1.0 mkl bleach 3.2.1 py_0 blinker 1.4 py_1 conda-forge brotlipy 0.7.0 py38h7b6447c_1000 ca-certificates 2020.12.5 ha878542_0 conda-forge cachetools 4.1.1 pypi_0 pypi certifi 2020.12.5 py38h578d9bd_0 conda-forge cffi 1.14.3 py38he30daa8_0 chardet 3.0.4 py38_1003 click 7.1.2 pyh9f0ad1d_0 conda-forge cloudpickle 1.6.0 py_0 conda-forge configparser 5.0.1 py_0 conda-forge cryptography 3.1.1 py38h1ba5d50_0 cycler 0.10.0 py38_0 databricks-cli 0.9.1 py_0 conda-forge dbus 1.13.18 hb2f20db_0 decorator 4.4.2 py_0 defusedxml 0.6.0 py_0 docker-py 4.3.1 py38h32f6830_1 conda-forge docker-pycreds 0.4.0 py_0 conda-forge entrypoints 0.3 py38_0 expat 2.2.10 he6710b0_2 fcsfiles 2020.9.18 pypi_0 pypi flask 1.1.2 pyh9f0ad1d_0 conda-forge flatbuffers 1.12 pypi_0 pypi fontconfig 2.13.0 h9420a91_0 freetype 2.10.4 h5ab3b9f_0 future 0.18.2 py38h578d9bd_2 conda-forge gast 0.3.3 pypi_0 pypi gitdb 4.0.5 py_0 conda-forge gitpython 3.1.11 py_0 conda-forge glib 2.66.1 h92f7085_0 google-auth 1.23.0 pypi_0 pypi google-auth-oauthlib 0.4.2 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi gorilla 0.3.0 py_0 conda-forge grpcio 1.32.0 pypi_0 pypi gst-plugins-base 1.14.0 hbbd80ab_1 gstreamer 1.14.0 hb31296c_0 gunicorn 20.0.4 py38h32f6830_2 conda-forge h5py 2.10.0 pypi_0 pypi icu 58.2 he6710b0_3 idna 2.10 py_0 importlib-metadata 2.0.0 py_1 importlib_metadata 2.0.0 1 intel-openmp 2020.2 254 ipykernel 5.3.4 py38h5ca1d4c_0 ipython 7.18.1 py38h5ca1d4c_0 ipython_genutils 0.2.0 py38_0 isodate 0.6.0 py_1 conda-forge itsdangerous 1.1.0 py_0 conda-forge jedi 0.17.2 py38_0 jinja2 2.11.2 py_0 jpeg 9b h024ee3a_2 json5 0.9.5 py_0 jsonschema 3.2.0 py_2 jupyter_client 6.1.7 py_0 jupyter_core 4.6.3 py38_0 jupyterlab 2.2.6 py_0 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 1.2.0 py_0 keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.0 py38h2531618_0 lcms2 2.11 h396b838_0 ld_impl_linux-64 2.33.1 h53a641e_7 libedit 3.1.20191231 h14c3975_1 libffi 3.3 he6710b0_2 libgcc-ng 9.1.0 hdf63c60_0 libgfortran-ng 7.3.0 hdf63c60_0 libpng 1.6.37 hbc83047_0 libprotobuf 3.13.0.1 h8b12597_0 conda-forge libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.1.0 hdf63c60_0 libtiff 4.1.0 h2733197_1 libuuid 1.0.3 h1bed415_2 libxcb 1.14 h7b6447c_0 libxml2 2.9.10 hb55368b_3 lmfit 1.0.1 py_1 conda-forge lz4-c 1.9.2 heb0550a_3 mako 1.1.3 pyh9f0ad1d_0 conda-forge markdown 3.3.3 pypi_0 pypi markupsafe 1.1.1 py38h7b6447c_0 matplotlib 3.3.2 0 matplotlib-base 3.3.2 py38h817c723_0 mistune 0.8.4 py38h7b6447c_1000 mkl 2020.2 256 mkl-service 2.3.0 py38he904b0f_0 mkl_fft 1.2.0 py38h23d657b_0 mkl_random 1.1.1 py38h0573a6f_0 mlflow 1.11.0 py38h32f6830_1 conda-forge msrest 0.6.19 pyh9f0ad1d_0 conda-forge multipletau 0.3.3 pypi_0 pypi nbclient 0.5.1 py_0 nbconvert 6.0.7 py38_0 nbformat 5.0.8 py_0 ncurses 6.2 he6710b0_1 nest-asyncio 1.4.1 py_0 notebook 6.1.4 py38_0 numpy 1.19.2 py38h54aff64_0 numpy-base 1.19.2 py38hfa32c7d_0 oauthlib 3.0.1 py_0 conda-forge olefile 0.46 py_0 openssl 1.1.1h h516909a_0 conda-forge opt-einsum 3.3.0 pypi_0 pypi packaging 20.4 py_0 pandas 1.1.3 py38he6710b0_0 pandoc 2.11 hb0f4dca_0 pandocfilters 1.4.2 py38_1 parso 0.7.0 py_0 pcre 8.44 he6710b0_0 pexpect 4.8.0 py38_0 pickleshare 0.7.5 py38_1000 pillow 8.0.1 py38he98fc37_0 pip 20.2.4 py38_0 prometheus_client 0.8.0 py_0 prometheus_flask_exporter 0.18.1 pyh9f0ad1d_0 conda-forge prompt-toolkit 3.0.8 py_0 protobuf 3.13.0.1 py38h950e882_1 conda-forge ptyprocess 0.6.0 py38_0 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.20 py_2 pygments 2.7.2 pyhd3eb1b0_0 pyjwt 1.7.1 py_0 conda-forge pyopenssl 19.1.0 py_1 pyparsing 2.4.7 py_0 pyqt 5.9.2 py38h05f1152_4 pyrsistent 0.17.3 py38h7b6447c_0 pysocks 1.7.1 py38_0 python 3.8.5 h7579374_1 python-dateutil 2.8.1 py_0 python-editor 1.0.4 py_0 conda-forge python_abi 3.8 1_cp38 conda-forge pytz 2020.1 py_0 pyyaml 5.3.1 py38h8df0ef7_1 conda-forge pyzmq 19.0.2 py38he6710b0_1 qt 5.9.7 h5867ecd_1 querystring_parser 1.2.4 py_0 conda-forge readline 8.0 h7b6447c_0 requests 2.24.0 py_0 requests-oauthlib 1.3.0 pyh9f0ad1d_0 conda-forge rsa 4.6 pypi_0 pypi scipy 1.5.2 py38h0b6359f_0 seaborn 0.11.0 py_0 send2trash 1.5.0 py38_0 setuptools 50.3.0 py38hb0f4dca_1 sip 4.19.13 py38he6710b0_0 six 1.15.0 py_0 smmap 3.0.4 pyh9f0ad1d_0 conda-forge sqlalchemy 1.3.13 py38h516909a_0 conda-forge sqlite 3.33.0 h62c20be_0 sqlparse 0.4.1 pyh9f0ad1d_0 conda-forge tabulate 0.8.7 pyh9f0ad1d_0 conda-forge tb-nightly 2.4.0a20201102 pypi_0 pypi tensorboard-plugin-wit 1.7.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.1 py38_0 testpath 0.4.4 py_0 tf-estimator-nightly 2.4.0.dev2020102301 pypi_0 pypi tf-nightly 2.5.0.dev20201029 pypi_0 pypi tifffile 2020.10.1 py38hdd07704_2 tk 8.6.10 hbc83047_0 tornado 6.0.4 py38h7b6447c_1 traitlets 5.0.5 py_0 typing-extensions 3.7.4.3 pypi_0 pypi uncertainties 3.1.5 pyhd8ed1ab_0 conda-forge urllib3 1.25.11 py_0 wcwidth 0.2.5 py_0 webencodings 0.5.1 py38_1 websocket-client 0.57.0 py38h32f6830_3 conda-forge werkzeug 1.0.1 pyh9f0ad1d_0 conda-forge wheel 0.35.1 py_0 wrapt 1.12.1 pypi_0 pypi xz 5.2.5 h7b6447c_0 yaml 0.2.5 h516909a_0 conda-forge zeromq 4.3.3 he6710b0_3 zipp 3.4.0 pyhd3eb1b0_0 zlib 1.2.11 h7b6447c_3 zstd 1.4.5 h9ceee32_0 Note: you may need to restart the kernel to use updated packages. {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint', 'SLURM_NODELIST': 'node146', 'SLURM_JOB_NAME': 'bash', 'XDG_SESSION_ID': '9639', 'SLURMD_NODENAME': 'node146', 'SLURM_TOPOLOGY_ADDR': 'node146', 'SLURM_NTASKS_PER_NODE': '24', 'HOSTNAME': 'login01', 'SLURM_PRIO_PROCESS': '0', 'SLURM_SRUN_COMM_PORT': '43120', 'SHELL': '/bin/bash', 'TERM': 'xterm-color', 'SLURM_JOB_QOS': 'qstand', 'SLURM_PTY_WIN_ROW': '24', 'HISTSIZE': '1000', 'TMPDIR': '/tmp', 'SLURM_TOPOLOGY_ADDR_PATTERN': 'node', 'SSH_CLIENT': '10.231.210.198 43508 22', 'CONDA_SHLVL': '2', 'CONDA_PROMPT_MODIFIER': '(tf-nightly) ', 'WINDOWID': '0', 'QTDIR': '/usr/lib64/qt-3.3', 'QTINC': '/usr/lib64/qt-3.3/include', 'SSH_TTY': '/dev/pts/5', 'QT_GRAPHICSSYSTEM_CHECKED': '1', 'SLURM_NNODES': '1', 'USER': 'ye53nis', 'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:', 'CONDA_EXE': '/cluster/miniconda3/bin/conda', 'SLURM_STEP_NUM_NODES': '1', 'SLURM_JOBID': '534856', 'SRUN_DEBUG': '3', 'SLURM_NTASKS': '24', 'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5', 'SLURM_STEP_ID': '0', 'TMUX': '/tmp/tmux-67339/default,27827,6', '_CE_CONDA': '', 'CONDA_PREFIX_1': '/cluster/miniconda3', 'SLURM_STEP_LAUNCHER_PORT': '43120', 'SLURM_TASKS_PER_NODE': '24', 'MAIL': '/var/spool/mail/ye53nis', 'PATH': '/home/ye53nis/.conda/envs/tf-nightly/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/home/lex/Programme/miniconda3/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin', 'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448', 'SLURM_JOB_ID': '534856', 'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf-nightly', 'SLURM_JOB_USER': 'ye53nis', 'SLURM_STEPID': '0', 'PWD': '/', 'SLURM_SRUN_COMM_HOST': '192.168.192.5', 'LANG': 'en_US.UTF-8', 'SLURM_PTY_WIN_COL': '80', 'SLURM_UMASK': '0022', 'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles', 'SLURM_JOB_UID': '67339', 'LOADEDMODULES': '', 'SLURM_NODEID': '0', 'TMUX_PANE': '%6', 'SLURM_SUBMIT_DIR': '/', 'SLURM_TASK_PID': '53476', 'SLURM_NPROCS': '24', 'SLURM_CPUS_ON_NODE': '24', 'SLURM_DISTRIBUTION': 'block', 'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_PROCID': '0', 'HISTCONTROL': 'ignoredups', '_CE_M': '', 'SLURM_JOB_NODELIST': 'node146', 'SLURM_PTY_PORT': '46638', 'HOME': '/home/ye53nis', 'SHLVL': '3', 'SLURM_LOCALID': '0', 'SLURM_JOB_GID': '13280', 'SLURM_JOB_CPUS_PER_NODE': '24', 'SLURM_CLUSTER_NAME': 'hpc', 'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23', 'SLURM_SUBMIT_HOST': 'login01', 'SLURM_JOB_PARTITION': 's_standard', 'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3', 'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python', 'LOGNAME': 'ye53nis', 'SLURM_STEP_NUM_TASKS': '24', 'QTLIB': '/usr/lib64/qt-3.3/lib', 'SLURM_JOB_ACCOUNT': 'iaob', 'SLURM_JOB_NUM_NODES': '1', 'MODULESHOME': '/usr/share/Modules', 'CONDA_DEFAULT_ENV': 'tf-nightly', 'LESSOPEN': '||/usr/bin/lesspipe.sh %s', 'SLURM_STEP_TASKS_PER_NODE': '24', 'PORT': '9999', 'SLURM_STEP_NODELIST': 'node146', 'DISPLAY': ':0', 'XDG_RUNTIME_DIR': '', 'XAUTHORITY': '/home/lex/.Xauthority', 'BASH_FUNC_module()': '() { eval `/usr/bin/modulecmd bash $*`\n}', '_': '/home/ye53nis/.conda/envs/tf-nightly/bin/jupyter', 'JPY_PARENT_PID': '54410', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
2.2.3 set variables
- any files generated using the
:file
header of org-mode source blocks will be saved here (Note: the destination of the simulations is different, see the variables below)
(setq org-babel-jupyter-resource-directory "./data/exp-201231-clustsim")
./data/exp-201231-clustsim
import sys sys.path.append('/beegfs/ye53nis/drmed-git/src/') from fluotracify.simulations import simulate_trace_with_artifact as stwa
folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020/' file_name = 'traces_brightclust_Nov2020' total_sim_time = 16384 d_mol_arr = [0.069, 0.08, 0.1, 0.2, 0.4, 0.6, 1.0, 3.0, 10, 50] col_per_example = 3 label_for = 'both' number_of_sets = 10 traces_per_set = 100 artifact = 1
- for each diffusion constant given in
d_mol_arr
, 10 .csv files will be generated (number_of_sets
) which each comprise of 100 fluorescence traces (traces_per_set
) - The output of the function will be written to stdout (the terminal inside a tmux session on the machine where the notebook is running). Thus, Emacs can be closed. After the simulations are done, the printed output can be copied from the terminal, because tmux is making it possible to attach and detach to a running terminal session.
sys.stdout = open('/dev/stdout', 'w')
2.2.4 Do the simulation
stwa.produce_training_data(folder=folder, file_name=file_name, col_per_example=col_per_example, number_of_sets=number_of_sets, traces_per_set=traces_per_set, total_sim_time=total_sim_time, artifact=1, d_mol_arr=d_mol_arr, label_for=label_for)
354a0d72-5d50-4e51-b971-a52c0cf8f572
- Note: the results were printed to the terminal, but I didn’t think of the
terminal history limit of tmux, which is at around 1800 lines. This
means, most of the history couldn’t be saved. Here is an example of the
output:
Set 10 ------------------------ num_of_steps 16384 Processing tracks: [=================== ] 99% complete Processing FWHM 250, num_of_steps 16384 Processing tracks: [================= ] 85% complete Processing FWHM 250, Trace 1: Nmol: 2621 d_mol: 50 Cluster multiplier: 9000 num_of_steps 16384 Processing tracks: [=================== ] 99% complete Processing FWHM 250, num_of_steps 16384 Processing tracks: [================= ] 85% complete Processing FWHM 250, Trace 2: Nmol: 2621 d_mol: 50 Cluster multiplier: 5000 num_of_steps 16384 Processing tracks: [=================== ] 99% complete Processing FWHM 250, num_of_steps 16384 Processing tracks: [================= ] 85% complete Processing FWHM 250, Trace 3: Nmol: 2621 d_mol: 50 Cluster multiplier: 5000 num_of_steps 16384 Processing tracks: [=================== ] 99% complete Processing FWHM 250, num_of_steps 16384 Processing tracks: [================= ] 85% complete Processing FWHM 250, Trace 4: Nmol: 2621 d_mol: 50 Cluster multiplier: 9000 num_of_steps 16384 Processing tracks: [=================== ] 99% complete Processing FWHM 250, num_of_steps 16384 Processing tracks: [================= ] 85% complete Processing FWHM 250, Trace 5: Nmol: 2621 d_mol: 50 Cluster multiplier: 7000 num_of_steps 16384 Processing tracks: [=================== ] 99% complete Processing FWHM 250, num_of_steps 16384 Processing tracks: [================= ] 85% complete Processing FWHM 250, Trace 6: Nmol: 2621 d_mol: 50 Cluster multiplier: 8000 num_of_steps 16384 Processing tracks: [=================== ] 99% complete Processing FWHM 250, num_of_steps 16384 Processing tracks: [================= ] 85% complete Processing FWHM 250, Trace 7: Nmol: 2621 d_mol: 50 Cluster multiplier: 7000 num_of_steps 16384 Processing tracks: [=================== ] 99% complete Processing FWHM 250, num_of_steps 16384 Processing tracks: [================= ] 85% complete Processing FWHM 250, Trace 8: Nmol: 2621 d_mol: 50 Cluster multiplier: 5000 num_of_steps 16384 Processing tracks: [=================== ] 99% complete Processing FWHM 250, num_of_steps 16384 Processing tracks: [================= ] 85% complete Processing FWHM 250, Trace 9: Nmol: 2621 d_mol: 50 Cluster multiplier: 9000 num_of_steps 16384 Processing tracks: [=================== ] 99% complete Processing FWHM 250, num_of_steps 16384 Processing tracks: [================= ] 85% complete Processing FWHM 250, Trace 10: Nmol: 2621 d_mol: 50 Cluster multiplier: 9000 num_of_steps 16384 Processing tracks: [=================== ] 99% complete Processing FWHM 250, num_of_steps 16384 Processing tracks: [================= ] 85% complete Processing FWHM 250,
2.2.5 preparing examplary plots of the results (new kernel, new code)
- I used a different jupyter kernel for loading (See properties drawer
above), thus libraries have to be imported again and parameters have to be
set again. On the plus side: the sequence of plotting here is independent
of the sequence of simulation above.
%cd /beegfs/ye53nis/drmed-git/
/beegfs/ye53nis/drmed-git
- I also used some additional code for plotting:
!git log -1 !git status
commit 47d02edd7313d1b172934a17a0aca0a8e47a8fff Author: Apoplex <oligolex@vivaldi.net> Date: Tue Jan 5 21:41:11 2021 +0100 Add docs; rename to drate to diffrate # On branch exp-201231-clustersim # Changes not staged for commit: # (use "git add <file>..." to update what will be committed) # (use "git checkout -- <file>..." to discard changes in working directory) # (commit or discard the untracked or modified content in submodules) # # modified: src/nanosimpy (untracked content) # # Untracked files: # (use "git add <file>..." to include in what will be committed) # # data/ # experiment_params.csv # mlruns/ # test.pdf # test.svg # tramp.YDPCnB no changes added to commit (use "git add" and/or "git commit -a")
- again the file to save plots in - notice that this is on my local machine,
not the remote one, since I open this LabBook.org-file on my local machine.
(setq org-babel-jupyter-resource-directory "./data/exp-201231-clustsim")
./data/exp-201231-clustsim
- then the necessary imports and variables
import sys sys.path.append('/beegfs/ye53nis/drmed-git/src/') from fluotracify.simulations import import_simulation_from_csv as isfc from fluotracify.simulations import plot_simulations as ps
folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020/' col_per_example = 3 d_mol_arr = [0.069, 0.08, 0.1, 0.2, 0.4, 0.6, 1.0, 3.0, 10, 50] artifact = 1
- let’s load our data
dataset, _, nsamples, experiment_params = isfc.import_from_csv( folder=folder, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None)
train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set007.csv train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set007.csv train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set003.csv train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set006.csv train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set006.csv train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set004.csv train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set007.csv train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set004.csv train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set005.csv train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set006.csvtrain 10 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set004.csv train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set003.csv train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set009.csv train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set004.csv train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set008.csv train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set001.csv train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set003.csv train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set005.csv train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set004.csv train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set009.csv train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set004.csv train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set003.csv train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set004.csv train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set002.csv train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set006.csv train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set009.csv train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set007.csv train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set010.csv train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set003.csv train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set007.csv train 30 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set001.csv train 31 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set001.csv train 32 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set001.csv train 33 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set009.csv train 34 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set002.csv train 35 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set008.csv train 36 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set009.csv train 37 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set007.csv train 38 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set004.csv train 39 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set005.csv train 40 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set002.csv train 41 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set002.csv train 42 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set003.csv train 43 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set002.csv train 44 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set005.csv train 45 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set006.csv train 46 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set008.csv train 47 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set001.csv train 48 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set009.csv train 49 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set006.csv train 50 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set002.csv train 51 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set010.csv train 52 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set001.csv train 53 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set005.csv train 54 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set009.csv train 55 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set001.csv train 56 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set002.csv train 57 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set006.csv train 58 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set004.csv train 59 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set003.csv train 60 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set001.csv train 61 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set002.csv train 62 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set007.csv train 63 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set008.csv train 64 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set010.csv train 65 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set006.csv train 66 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set003.csv train 67 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set005.csv train 68 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set005.csv train 69 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set010.csv train 70 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set010.csv train 71 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set010.csv train 72 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set010.csv train 73 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set008.csv train 74 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set009.csv train 75 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set010.csv train 76 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set001.csv train 77 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set005.csv train 78 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set003.csv train 79 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set008.csv train 80 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set006.csv train 81 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set008.csv train 82 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set002.csv train 83 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set007.csv train 84 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set010.csv train 85 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set006.csv train 86 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set009.csv train 87 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set003.csv train 88 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set009.csv train 89 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set001.csv train 90 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set008.csv train 91 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set007.csv train 92 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set002.csv train 93 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set004.csv train 94 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set010.csv train 95 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set007.csv train 96 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set008.csv train 97 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set005.csv train 98 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set008.csv train 99 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set005.csv
out = isfc.separate_data_and_labels( array=dataset, nsamples=nsamples, col_per_example=col_per_example)
The given DataFrame was split into 3 parts with shapes: [(16384, 10000), (16384, 10000), (16384, 10000)]
- added
train
,validation
,test
. Let’s load them and characterize them%cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
!git log -1 !git status
commit 6def0df6b174f2f51efc279d6add74e9f809e1eb Author: Apoplex <oligolex@vivaldi.net> Date: Fri Jul 15 14:36:15 2022 +0200 fix correlate_timetrace_and_save # On branch exp-220227-unet # Changes not staged for commit: # (use "git add <file>..." to update what will be committed) # (use "git checkout -- <file>..." to discard changes in working directory) # (commit or discard the untracked or modified content in submodules) # # modified: src/nanosimpy (untracked content) # # Untracked files: # (use "git add <file>..." to include in what will be committed) # # data/0.069.svg # data/exp-210204-unet/ # data/exp-220120-correlate-ptu/ # data/exp-220227-unet/2022-03-01_experimental/ # data/exp-220227-unet/2022-04-22_simulations/ # data/exp-220227-unet/2022-05-17_simulations/ # data/exp-220227-unet/2022-05-22_experimental/ # data/exp-220227-unet/2022-06-02_experimental-pex5/ # data/exp-220316-publication1/ # data/exp-devtest/ # data/exp-test/ # data/mlruns/ # data/tb/ # experiment_params.csv # src/fluotracify/applications/correlate_cython.c # test # tramp.YDPCnB no changes added to commit (use "git add" and/or "git commit -a")
import sys import numpy as np import pandas as pd from pathlib import Path from pprint import pprint FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, )
2022-08-22 14:53:59.575866: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-08-22 14:53:59.575902: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
col_per_example = 3 lab_thresh = 0.04 artifact = 0 model_type = 1 fwhm = 250 train_path = Path('/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets') val_path = Path('/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN') test_path = Path('/beegfs/ye53nis/saves/firstartifact_Nov2020_test') train, _, nsamples_train, train_params = isfc.import_from_csv( folder=train_path, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None) val, _, nsamples_val, val_params = isfc.import_from_csv( folder=val_path, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None) test, _, nsamples_test, test_params = isfc.import_from_csv( folder=test_path, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None)
2022-08-22 15:01:07,583 - sim import tools - 1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv 2022-08-22 15:01:10,900 - sim import tools - 2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv 2022-08-22 15:01:14,230 - sim import tools - 3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv 2022-08-22 15:01:24,427 - sim import tools - 4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv 2022-08-22 15:01:28,527 - sim import tools - 5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv 2022-08-22 15:01:32,186 - sim import tools - 6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv 2022-08-22 15:01:36,667 - sim import tools - 7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv 2022-08-22 15:01:40,508 - sim import tools - 8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv 2022-08-22 15:01:44,080 - sim import tools - 9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv 2022-08-22 15:01:49,585 - sim import tools - 10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv2022-08-22 15:01:53,212 - sim import tools - 11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv 2022-08-22 15:01:56,689 - sim import tools - 12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv 2022-08-22 15:02:00,568 - sim import tools - 13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv 2022-08-22 15:02:04,222 - sim import tools - 14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv 2022-08-22 15:02:07,872 - sim import tools - 15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv 2022-08-22 15:02:11,754 - sim import tools - 16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv 2022-08-22 15:02:16,110 - sim import tools - 17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv 2022-08-22 15:02:19,635 - sim import tools - 18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv 2022-08-22 15:02:23,317 - sim import tools - 19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv 2022-08-22 15:02:26,787 - sim import tools - 20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv 2022-08-22 15:02:30,350 - sim import tools - 21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv 2022-08-22 15:02:38,204 - sim import tools - 22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv 2022-08-22 15:02:42,002 - sim import tools - 23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv 2022-08-22 15:02:47,861 - sim import tools - 24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv 2022-08-22 15:02:51,915 - sim import tools - 25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv 2022-08-22 15:02:55,479 - sim import tools - 26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv 2022-08-22 15:02:59,060 - sim import tools - 27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv 2022-08-22 15:03:02,729 - sim import tools - 28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv 2022-08-22 15:03:06,402 - sim import tools - 29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv 2022-08-22 15:03:10,838 - sim import tools - 30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv 2022-08-22 15:03:15,520 - sim import tools - 31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv 2022-08-22 15:03:19,243 - sim import tools - 32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv 2022-08-22 15:03:24,959 - sim import tools - 33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv 2022-08-22 15:03:28,685 - sim import tools - 34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv 2022-08-22 15:03:32,498 - sim import tools - 35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv 2022-08-22 15:03:36,044 - sim import tools - 36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv 2022-08-22 15:03:39,848 - sim import tools - 37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv 2022-08-22 15:03:43,605 - sim import tools - 38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv 2022-08-22 15:03:47,474 - sim import tools - 39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv 2022-08-22 15:03:51,072 - sim import tools - 40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv 2022-08-22 15:03:54,988 - sim import tools - 41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv 2022-08-22 15:04:01,497 - sim import tools - 42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv 2022-08-22 15:04:05,120 - sim import tools - 43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv 2022-08-22 15:04:08,664 - sim import tools - 44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv 2022-08-22 15:04:13,252 - sim import tools - 45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv 2022-08-22 15:04:16,976 - sim import tools - 46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv 2022-08-22 15:04:20,744 - sim import tools - 47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv 2022-08-22 15:04:24,635 - sim import tools - 48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv 2022-08-22 15:04:28,258 - sim import tools - 1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv 2022-08-22 15:04:31,883 - sim import tools - 2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv 2022-08-22 15:04:36,746 - sim import tools - 3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv 2022-08-22 15:04:40,324 - sim import tools - 4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv 2022-08-22 15:04:44,167 - sim import tools - 5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv 2022-08-22 15:04:47,733 - sim import tools - 6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv 2022-08-22 15:04:51,261 - sim import tools - 7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv 2022-08-22 15:04:54,837 - sim import tools - 8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv 2022-08-22 15:04:58,638 - sim import tools - 9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv 2022-08-22 15:05:02,079 - sim import tools - 10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv 2022-08-22 15:05:06,190 - sim import tools - 11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv 2022-08-22 15:05:09,643 - sim import tools - 12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv 2022-08-22 15:05:13,347 - sim import tools - 1/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/1.0/traces_brightclust_Nov2020_D0.069_set010.csv 2022-08-22 15:05:17,852 - sim import tools - 2/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/0.1/traces_brightclust_Nov2020_D50_set003.csv 2022-08-22 15:05:21,482 - sim import tools - 3/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/0.1/traces_brightclust_Nov2020_D0.4_set001.csv 2022-08-22 15:05:25,196 - sim import tools - 4/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/0.1/traces_brightclust_Nov2020_D0.2_set007.csv 2022-08-22 15:05:29,300 - sim import tools - 5/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/1.0/traces_brightclust_Nov2020_D3.0_set002.csv 2022-08-22 15:05:32,904 - sim import tools - 6/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/0.01/traces_brightclust_Nov2020_D3.0_set004.csv 2022-08-22 15:05:36,427 - sim import tools - 7/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/0.01/traces_brightclust_Nov2020_D50_set002.csv 2022-08-22 15:05:42,126 - sim import tools - 8/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/1.0/traces_brightclust_Nov2020_D0.2_set005.csv 2022-08-22 15:05:45,767 - sim import tools - 9/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/1.0/traces_brightclust_Nov2020_D0.6_set009.csv 2022-08-22 15:05:49,081 - sim import tools - 10/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/0.1/traces_brightclust_Nov2020_D10_set001.csv 2022-08-22 15:05:52,579 - sim import tools - 11/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/1.0/traces_brightclust_Nov2020_D0.08_set001.csv 2022-08-22 15:05:56,075 - sim import tools - 12/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/0.1/traces_brightclust_Nov2020_D0.6_set003.csv 2022-08-22 15:05:59,546 - sim import tools - 13/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/1.0/traces_brightclust_Nov2020_D0.1_set001.csv 2022-08-22 15:06:03,365 - sim import tools - 14/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/1.0/traces_brightclust_Nov2020_D0.4_set005.csv 2022-08-22 15:06:06,954 - sim import tools - 15/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/1.0/traces_brightclust_Nov2020_D10_set005.csv 2022-08-22 15:06:10,482 - sim import tools - 16/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/1.0/traces_brightclust_Nov2020_D1.0_set005.csv 2022-08-22 15:06:15,475 - sim import tools - 17/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/0.1/traces_brightclust_Nov2020_D0.069_set001.csv 2022-08-22 15:06:19,122 - sim import tools - 18/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/1.0/traces_brightclust_Nov2020_D50_set001.csv 2022-08-22 15:06:22,559 - sim import tools - 19/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/0.01/traces_brightclust_Nov2020_D0.1_set002.csv 2022-08-22 15:06:26,128 - sim import tools - 20/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/0.1/traces_brightclust_Nov2020_D0.08_set003.csv 2022-08-22 15:06:29,503 - sim import tools - 21/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/0.01/traces_brightclust_Nov2020_D1.0_set006.csv 2022-08-22 15:06:32,862 - sim import tools - 22/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/0.1/traces_brightclust_Nov2020_D1.0_set003.csv 2022-08-22 15:06:36,597 - sim import tools - 23/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/0.01/traces_brightclust_Nov2020_D0.2_set002.csv 2022-08-22 15:06:40,322 - sim import tools - 24/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/0.1/traces_brightclust_Nov2020_D0.1_set005.csv 2022-08-22 15:06:43,806 - sim import tools - 25/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/0.1/traces_brightclust_Nov2020_D3.0_set007.csv 2022-08-22 15:06:47,273 - sim import tools - 26/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/0.01/traces_brightclust_Nov2020_D0.08_set005.csv 2022-08-22 15:06:51,150 - sim import tools - 27/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/0.01/traces_brightclust_Nov2020_D0.069_set005.csv 2022-08-22 15:06:54,884 - sim import tools - 28/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/0.01/traces_brightclust_Nov2020_D10_set002.csv 2022-08-22 15:06:58,405 - sim import tools - 29/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/0.01/traces_brightclust_Nov2020_D0.6_set008.csv 2022-08-22 15:07:01,776 - sim import tools - 30/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/0.01/traces_brightclust_Nov2020_D0.4_set008.csv
train_sep = isfc.separate_data_and_labels(array=train, nsamples=nsamples_train, col_per_example=col_per_example) val_sep = isfc.separate_data_and_labels(array=val, nsamples=nsamples_val, col_per_example=col_per_example) test_sep = isfc.separate_data_and_labels(array=test, nsamples=nsamples_test, col_per_example=col_per_example) train_dirty = train_sep['0'] train_labels = train_sep['1'] train_labbool = train_labels > lab_thresh train_clean = train_sep['2'] val_dirty = val_sep['0'] val_labels = val_sep['1'] val_labbool = val_labels > lab_thresh val_clean = val_sep['2'] test_dirty = test_sep['0'] test_labels = test_sep['1'] test_labbool = test_labels > lab_thresh test_clean = test_sep['2'] train_dirty
2022-08-22 15:09:46,295 - sim import tools - The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)] 2022-08-22 15:09:46,389 - sim import tools - The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)] 2022-08-22 15:09:46,630 - sim import tools - The given DataFrame was split into 3 parts with shapes: [(16384, 3000), (16384, 3000), (16384, 3000)]
trace001 trace002 trace003 trace004 trace005 trace006 trace007 trace008 trace009 trace010 … trace091 trace092 trace093 trace094 trace095 trace096 trace097 trace098 trace099 trace100 0 2087.936279 1859.954834 1258.620728 2111.855713 1154.932617 1681.850952 1902.115112 1953.226929 1493.605713 1824.782837 … 2991.938965 3056.693848 3065.942139 3209.311768 3072.823975 2137.467773 2536.288086 2596.720459 2322.556152 3241.336670 1 2225.077148 1538.099731 1234.391113 2202.052979 1106.553467 1599.424927 1756.183716 2155.242676 1453.128052 1733.415771 … 2830.736816 2632.801514 2681.733887 3103.006836 2852.432373 2902.637939 2606.319336 2728.558350 2388.868164 2557.717041 2 2283.867920 1672.847534 1297.318359 2068.382568 1088.629150 1539.257568 1730.095825 1944.324951 1615.796753 1677.323486 … 3424.374268 2697.639648 2094.186279 2632.571777 2324.150879 2309.326904 2808.739746 3119.658447 2337.465332 2208.561035 3 2101.477295 1826.694214 1343.309448 1992.692871 1082.352295 1493.574097 1632.583740 2063.340576 1768.437134 1518.847534 … 3126.366455 2493.093018 1937.462158 2888.637939 2180.181396 2906.921631 2272.959717 2823.713379 2872.672607 3321.868408 4 1987.587769 1914.085205 1294.796875 2188.687256 1047.618774 1740.084961 1642.488403 1969.975830 1540.356079 1479.204956 … 4045.698975 2669.068115 2655.093018 2531.362305 3005.655273 2545.799316 2692.775635 3238.976562 2815.497314 2685.596680 … … … … … … … … … … … … … … … … … … … … … … 16379 2248.828369 1512.159180 2574.389893 2085.525146 5731.513672 1902.472778 1578.385742 1916.452393 1320.047119 1550.951904 … 2291.134277 4845.781250 2534.955322 2397.597900 2810.859375 3058.239746 3012.957520 2055.962646 2597.934814 2275.868896 16380 2194.083984 1545.642700 2921.095459 2010.420410 5787.336426 1907.732056 1580.937744 2172.060059 1421.129517 1479.062744 … 2997.078125 5184.318359 2522.363281 2385.093506 2436.397705 3615.403076 2555.819092 1970.641113 3601.866455 2630.073730 16381 2067.856201 1610.466431 3070.954102 2197.771729 5789.680664 1971.624023 1475.542847 2084.938232 1400.463867 1298.757202 … 2942.168457 5496.346680 3230.807373 3597.340332 2541.044678 2924.228516 1627.710083 2388.055176 2722.604248 2373.275879 16382 2067.812988 1689.094238 3292.006836 2390.899170 6230.407715 1930.711670 1451.472778 2083.847168 1289.194824 1380.650146 … 2794.364746 5706.733887 2287.560303 3041.490723 2482.794189 3858.045654 2195.243896 2333.582764 2728.599365 2198.640869 16383 2240.335205 1743.910645 3327.093018 2357.319092 5435.189453 1860.456299 1333.890869 2038.945801 1358.094727 1312.259766 … 2627.845703 5518.034668 2491.838867 2519.055176 3319.664062 3653.108398 3334.266846 2495.438721 2713.831055 2330.221436 16384 rows × 4800 columns
train_ntot = train_labbool.size train_npos = train_labbool.sum().sum() train_nneg = train_ntot - train_npos train_perc = train_npos / train_ntot val_ntot = val_labbool.size val_npos = val_labbool.sum().sum() val_nneg = val_ntot - val_npos val_perc = val_npos / val_ntot test_ntot = test_labbool.size test_npos = test_labbool.sum().sum() test_nneg = test_ntot - test_npos test_perc = test_npos / test_ntot print(f'Total N train: {train_ntot}, N pos train: {train_npos}, N neg train: {train_nneg}, Percent of pos: {train_perc:.2%}') print(f'Total N val: {val_ntot}, N pos val: {val_npos}, N neg val: {val_nneg}, Percent of pos: {val_perc:.2%}') print(f'Total N test: {test_ntot}, N pos test: {test_npos}, N neg test: {test_nneg}, Percent of pos: {test_perc:.2%}')
Total N train: 78643200, N pos train: 11969767, N neg train: 66673433, Percent of pos: 15.22% Total N val: 19660800, N pos val: 3162854, N neg val: 16497946, Percent of pos: 16.09% Total N test: 49152000, N pos test: 7556233, N neg test: 41595767, Percent of pos: 15.37%
: For machine learning, we did 3 splits of data:
2.2.6 plots of the simulated traces by diffusion rate
- This is the plotting code:
import matplotlib.pyplot as plt import numpy as np import pandas as pd def plot_traces_by_diffrates(ntraces, col_per_example, diffrate_of_interest, data_label_array, experiment_params, artifact): """A plot to examine simulated traces via fluotracify.simulations.simulate_trace_with_artifacts Parameters ---------- ntraces : int The number of traces you want to plot. It determines the size of the plot as well, where columns are fixed at 6 and depending on ntraces and col_per_example the number of rows is determined. col_per_example : int Number of columns per example, first column being a trace, and then one or multiple labels diffrate_of_interest : float diffusion rate used to simulate the traces of interest data_label_array : dict of pandas DataFrames Contains one key per column in each simulated example. E.g. if the simulated features comes with two labels, the key '0' will be the array with the features, '1' will be the array with label A and '2' will be the array with label B. experiment_params : pandas DataFrame Contains metadata of the files artifact : {0, 1, 2, 3} 0 = no artifact, 1 = bright clusters, 2 = detector dropout, 3 = photobleaching Returns ------- Plot of fluorescence traces and labels from their simulations """ drates = experiment_params.loc[ 'diffusion rate of molecules in micrometer^2 / s'] # get indices of diffusion rates of interest dindices = drates.index.where(drates == str(diffrate_of_interest)) dindices = dindices.dropna().astype(int) # get indices of first of each of the 100 traces per file as an example tindices = dindices * 100 if artifact == 1: nclusts = experiment_params.loc['number of slow clusters'][dindices] dclusts = experiment_params.loc[ 'diffusion rate of clusters in micrometer^2 / s'][dindices] cols = 6 rows = int(ntraces // (cols / col_per_example) + (ntraces % (cols / col_per_example) > 0)) # share y axis only if col_per_example is 1 sharey = col_per_example == 1 fig, ax = plt.subplots(rows, cols, figsize=(cols * 4, rows * 4), sharex=True, sharey=sharey) fig.add_subplot(111, frameon=False) # hide tick and tick label of the big axes plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) plt.grid(False) plt.xlabel("time steps in $ms$", fontsize=20) plt.ylabel('fluorescence intensity in $a.u.$', labelpad=20, fontsize=20) suptitle_height = 1 - (fig.get_figheight() * 0.004) plt.suptitle(t='Simulated Fluorescence Traces With D = {} ' '$\\frac{{\mu m^2}}{{s}}$'.format(diffrate_of_interest), y=suptitle_height, fontsize=20) traceid = 0 for idx in range(rows): for jdx in range(0, cols, col_per_example): # first plot the trace try: ax[idx, jdx].plot(data_label_array['0'].iloc[:, tindices[traceid]]) except IndexError: break if artifact == 1: ax[idx, jdx].set_title('trace {} ({} clusters, $D_c$ = ' '{} $\\frac{{\mu m^2}}{{s}}$)'.format( traceid + 1, nclusts.iloc[traceid], dclusts.iloc[traceid])) else: ax[idx, jdx].set_title('trace {}'.format(traceid + 1)) ax[idx, jdx].set_ylim(0, 12000) for kdx in range(1, col_per_example): # then plot the labels, if they are given ax[idx, jdx + kdx].plot( data_label_array['{}'.format(kdx)].iloc[:, tindices[traceid]]) ax[idx, jdx + kdx].set_title('label {}, type {}'.format( traceid + 1, kdx)) traceid += 1 plt.show()
- the actual plotting function:
for drate in d_mol_arr: ps.plot_traces_by_diffrates( ntraces=10, col_per_example=col_per_example, diffrate_of_interest=drate, data_label_array=out, experiment_params=experiment_params, artifact=1)
50: 10: 3: 1: 0.6: 0.4: 0.2: 0.1: 0.08: 0.069:
- the actual plotting function:
- open the plots with
C-c C-o
or toggle inline display withC-c C-x C-v
or view them by themselves in the folder
2.2.7 Learnings
- next time: save output of simulation function not to terminal, but to .txt file.
2.3 exp-210204-unet
2.3.1 Connect
2.3.1.1 Node for script execution
- Setup Tmux
#+CALL: setup-tmux[:session local2]()
rm: cannot remove ’home/lex.tmux-local-socket-remote-machine’: No such file or directory ye53nis@ara-login01.rz.uni-jena.de’s password: /tmp/tmux-67339/default > ye53nis@ara-login01.rz.uni-jena.de’s password: - Request a compute node from Ara cluster
cd / srun -p b_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
(base) [ye53nis@node117 /]$
- Make sure you are on the desired branch (exp-210104-unet)
cd /beegfs/ye53nis/drmed-git git status
(base) [ye53nis@node221 /]$ cd /beegfs/ye53nis/drmed-git (base) [ye53nis@node221 drmed-git]$ git status # On branch exp-210104-unet no changes added to commit (use "git add" and/or "git commit -a") (base) [ye53nis@node221 drmed-git]$
2.3.1.2 Node for running Jupyter
- Setup Tmux (if we haven’t done it before)
sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: > ye53nis@ara-login01.rz.uni-jena.de’s password: - Request compute node from Ara cluster
cd / srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
- Start Jupyter Lab
(base) [ye53nis@login01 /]$ srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash (base) [ye53nis@node302 /]$ conda activate tf-nightly (tf-nightly) [ye53nis@node302 /]$ export PORT=9999 (tf-nightly) [ye53nis@node302 /]$ export XDG_RUNTIME_DIR='' (tf-nightly) [ye53nis@node302 /]$ export XDG_RUNTIME_DIR="" (tf-nightly) [ye53nis@node302 /]$ jupyter lab --no-browser --port=$PORT [I 21:13:32.358 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/jupyterlab [I 21:13:32.358 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf-nightly/share/jupyter/lab [I 21:13:32.382 LabApp] Serving notebooks from local directory: / [I 21:13:32.382 LabApp] Jupyter Notebook 6.2.0 is running at: [I 21:13:32.383 LabApp] http://localhost:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4 [I 21:13:32.383 LabApp] or http://127.0.0.1:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4 [I 21:13:32.383 LabApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 21:13:32.418 LabApp] To access the notebook, open this file in a browser: file:///home/ye53nis/.local/share/jupyter/runtime/nbserver-124120-open.html Or copy and paste one of these URLs: http://localhost:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4 or http://127.0.0.1:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4
- Tunnel the remote jupyter to the local computer
sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: ye53nis@node302’s password: Last login: Fri Apr 2 19:25:33 2021 from login01.ara - Start Python 3 kernel using
jupyter-server-list-kernels
. Then copy the kernel ID to the:PROPERTIES:
drawer for any subtree where you want to use itpython3 f26207a6-d326-45bb-b432-63d05a573ade in a few seconds starting 0
- any files generated using the
:file
header of org-mode source blocks will be saved here(setq org-babel-jupyter-resource-directory "./data/exp-210204-unet")
./data/exp-210204-unet
2.3.1.3 Node for running Mlflow UI
conda activate tf-nightly mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns
(tf-nightly) [ye53nis@login01 data]$ mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns [2021-02-08 11:55:44 +0100] [19566] [INFO] Starting gunicorn 20.0.4 [2021-02-08 11:55:44 +0100] [19566] [INFO] Listening at: http://127.0.0.1:5000 (19566) [2021-02-08 11:55:44 +0100] [19566] [INFO] Using worker: sync [2021-02-08 11:55:44 +0100] [19572] [INFO] Booting worker with pid: 19572
sh-5.1$ | sh-5.1$ | ye53nis@ara-login01.rz.uni-jena.de’s | password: | |||||
ye53nis@login01’s | password: | |||||||
bind: | Address | already | in | use | ||||
Last | login: | Fri | Apr | 2 | 22:54:20 | 2021 | from | 10.231.191.246 |
2.3.2 Run 1 - full dataset
2.3.2.1 Record metadata
- current directory
%cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
- git log
!git log -3
commit bc590b22329ea0dad425a040bb23370b3e9de3d4 Author: Apoplex <oligolex@vivaldi.net> Date: Thu Feb 4 20:40:13 2021 +0100 Increase readability in html export commit bb78ded17807e0ad259440f4ae4624d1576cbba5 Author: Apoplex <oligolex@vivaldi.net> Date: Mon Feb 1 21:44:15 2021 +0100 Add changes from unet branch like unet prepro commit 06186e40f8d4d1aa786e9268651160e96ead2223 Author: Apoplex <oligolex@vivaldi.net> Date: Mon Feb 1 21:16:42 2021 +0100 Add these updates to ptu_utils from unet code
- Metadata of environment
#+CALL: jp-metadata(_long='True)
No of CPUs in system: 72 No of CPUs the current process can use: 24 load average: (16.0, 16.0, 16.05) os.uname(): posix.uname_result(sysname='Linux', nodename='node221', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64') PID of process: 231630 RAM total: 199G, RAM used: 21G, RAM free: 138G the current directory: /beegfs/ye53nis/drmed-git My disk usage: Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 3.2G 47G 7% / devtmpfs 94G 0 94G 0% /dev tmpfs 94G 302M 94G 1% /dev/shm tmpfs 94G 131M 94G 1% /run tmpfs 94G 0 94G 0% /sys/fs/cgroup nfs03-ib:/pool/work 100T 78T 23T 78% /nfsdata nfs01-ib:/cluster 2.0T 412G 1.6T 21% /cluster nfs01-ib:/home 80T 64T 17T 80% /home nfs02-ib:/data01 88T 70T 19T 80% /data01 /dev/sda6 169G 33M 169G 1% /local /dev/sda5 2.0G 34M 2.0G 2% /tmp /dev/sda3 6.0G 295M 5.8G 5% /var beegfs_nodev 524T 277T 248T 53% /beegfs tmpfs 19G 0 19G 0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf-nightly: # # Name Version Build Channel _libgcc_mutex 0.1 main absl-py 0.11.0 pypi_0 pypi alembic 1.4.1 py_0 conda-forge/label/main appdirs 1.4.4 pyh9f0ad1d_0 conda-forge/label/main argon2-cffi 20.1.0 py38h7b6447c_1 asn1crypto 1.4.0 pyh9f0ad1d_0 conda-forge/label/main asteval 0.9.16 pyh5ca1d4c_0 conda-forge/label/main astunparse 1.6.3 pypi_0 pypi async_generator 1.10 pyhd3eb1b0_0 attrs 20.3.0 pyhd3eb1b0_0 azure-core 1.10.0 pyhd8ed1ab_0 conda-forge/label/main azure-storage-blob 12.7.1 pyh44b312d_0 conda-forge/label/main backcall 0.2.0 pyhd3eb1b0_0 blas 1.0 mkl bleach 3.2.3 pyhd3eb1b0_0 blinker 1.4 py_1 conda-forge/label/main blosc 1.20.1 hd408876_0 brotli 1.0.9 he6710b0_2 brotlipy 0.7.0 py38h27cfd23_1003 brunsli 0.1 h2531618_0 bzip2 1.0.8 h7b6447c_0 ca-certificates 2020.12.5 ha878542_0 conda-forge/label/main cachetools 4.2.1 pypi_0 pypi certifi 2020.12.5 py38h578d9bd_1 conda-forge/label/main cffi 1.14.4 py38h261ae71_0 chardet 4.0.0 py38h06a4308_1003 charls 2.1.0 he6710b0_2 click 7.1.2 pyh9f0ad1d_0 conda-forge/label/main cloudpickle 1.6.0 py_0 conda-forge/label/main configparser 5.0.1 py_0 conda-forge/label/main cryptography 3.3.1 py38h3c74f83_0 cycler 0.10.0 py38_0 databricks-cli 0.9.1 py_0 conda-forge/label/main dbus 1.13.18 hb2f20db_0 decorator 4.4.2 pyhd3eb1b0_0 defusedxml 0.6.0 py_0 docker-py 4.4.1 py38h578d9bd_1 conda-forge/label/main docker-pycreds 0.4.0 py_0 conda-forge/label/main entrypoints 0.3 py38_0 expat 2.2.10 he6710b0_2 fcsfiles 2020.9.18 pypi_0 pypi flask 1.1.2 pyh9f0ad1d_0 conda-forge/label/main flatbuffers 1.12 pypi_0 pypi fontconfig 2.13.0 h9420a91_0 freetype 2.10.4 h5ab3b9f_0 future 0.18.2 py38h578d9bd_3 conda-forge/label/main gast 0.4.0 pypi_0 pypi giflib 5.1.4 h14c3975_1 gitdb 4.0.5 py_0 conda-forge/label/main gitpython 3.1.12 pyhd8ed1ab_0 conda-forge/label/main glib 2.66.1 h92f7085_0 google-auth 1.24.0 pypi_0 pypi google-auth-oauthlib 0.4.2 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi gorilla 0.3.0 py_0 conda-forge/label/main grpcio 1.34.1 pypi_0 pypi gst-plugins-base 1.14.0 h8213a91_2 gstreamer 1.14.0 h28cd5cc_2 gunicorn 20.0.4 py38h578d9bd_3 conda-forge/label/main h5py 3.1.0 pypi_0 pypi icu 58.2 he6710b0_3 idna 2.10 pyhd3eb1b0_0 imagecodecs 2021.1.11 py38h581e88b_1 importlib-metadata 2.0.0 py_1 importlib_metadata 2.0.0 1 intel-openmp 2020.2 254 ipykernel 5.3.4 py38h5ca1d4c_0 ipython 7.19.0 py38hb070fc8_1 ipython_genutils 0.2.0 pyhd3eb1b0_1 isodate 0.6.0 py_1 conda-forge/label/main itsdangerous 1.1.0 py_0 conda-forge/label/main jedi 0.17.0 py38_0 jinja2 2.11.2 pyhd3eb1b0_0 jpeg 9b h024ee3a_2 json5 0.9.5 py_0 jsonschema 3.2.0 py_2 jupyter_client 6.1.7 py_0 jupyter_core 4.7.0 py38h06a4308_0 jupyterlab 2.2.6 py_0 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 1.2.0 py_0 jxrlib 1.1 h7b6447c_2 keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.0 py38h2531618_0 lcms2 2.11 h396b838_0 ld_impl_linux-64 2.33.1 h53a641e_7 lerc 2.2.1 h2531618_0 libaec 1.0.4 he6710b0_1 libdeflate 1.7 h27cfd23_5 libedit 3.1.20191231 h14c3975_1 libffi 3.3 he6710b0_2 libgcc-ng 9.1.0 hdf63c60_0 libgfortran-ng 7.3.0 hdf63c60_0 libpng 1.6.37 hbc83047_0 libprotobuf 3.13.0.1 h8b12597_0 conda-forge/label/main libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.1.0 hdf63c60_0 libtiff 4.1.0 h2733197_1 libuuid 1.0.3 h1bed415_2 libwebp 1.0.1 h8e7db2f_0 libxcb 1.14 h7b6447c_0 libxml2 2.9.10 hb55368b_3 libzopfli 1.0.3 he6710b0_0 lmfit 1.0.1 py_1 conda-forge/label/main lz4-c 1.9.3 h2531618_0 mako 1.1.4 pyh44b312d_0 conda-forge/label/main markdown 3.3.3 pypi_0 pypi markupsafe 1.1.1 py38h7b6447c_0 matplotlib 3.3.2 h06a4308_0 matplotlib-base 3.3.2 py38h817c723_0 mistune 0.8.4 py38h7b6447c_1000 mkl 2020.2 256 mkl-service 2.3.0 py38he904b0f_0 mkl_fft 1.2.0 py38h23d657b_0 mkl_random 1.1.1 py38h0573a6f_0 mlflow 1.13.1 py38h578d9bd_2 conda-forge/label/main msrest 0.6.21 pyh44b312d_0 conda-forge/label/main multipletau 0.3.3 pypi_0 pypi nbclient 0.5.1 py_0 nbconvert 6.0.7 py38_0 nbformat 5.1.2 pyhd3eb1b0_1 ncurses 6.2 he6710b0_1 nest-asyncio 1.4.3 pyhd3eb1b0_0 notebook 6.2.0 py38h06a4308_0 numpy 1.19.2 py38h54aff64_0 numpy-base 1.19.2 py38hfa32c7d_0 oauthlib 3.0.1 py_0 conda-forge/label/main olefile 0.46 py_0 openjpeg 2.3.0 h05c96fa_1 openssl 1.1.1i h27cfd23_0 opt-einsum 3.3.0 pypi_0 pypi packaging 20.9 pyhd3eb1b0_0 pandas 1.2.1 py38ha9443f7_0 pandoc 2.11 hb0f4dca_0 pandocfilters 1.4.3 py38h06a4308_1 parso 0.8.1 pyhd3eb1b0_0 pcre 8.44 he6710b0_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 8.1.0 py38he98fc37_0 pip 20.3.3 py38h06a4308_0 prometheus_client 0.9.0 pyhd3eb1b0_0 prometheus_flask_exporter 0.18.1 pyh9f0ad1d_0 conda-forge/label/main prompt-toolkit 3.0.8 py_0 protobuf 3.13.0.1 py38hadf7658_1 conda-forge/label/main ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.20 py_2 pygments 2.7.4 pyhd3eb1b0_0 pyjwt 2.0.1 pyhd8ed1ab_0 conda-forge/label/main pyopenssl 20.0.1 pyhd3eb1b0_1 pyparsing 2.4.7 pyhd3eb1b0_0 pyqt 5.9.2 py38h05f1152_4 pyrsistent 0.17.3 py38h7b6447c_0 pysocks 1.7.1 py38h06a4308_0 python 3.8.5 h7579374_1 python-dateutil 2.8.1 pyhd3eb1b0_0 python-editor 1.0.4 py_0 conda-forge/label/main python_abi 3.8 1_cp38 conda-forge/label/main pytz 2020.5 pyhd3eb1b0_0 pyyaml 5.3.1 py38h8df0ef7_1 conda-forge/label/main pyzmq 20.0.0 py38h2531618_1 qt 5.9.7 h5867ecd_1 querystring_parser 1.2.4 py_0 conda-forge/label/main readline 8.1 h27cfd23_0 requests 2.25.1 pyhd3eb1b0_0 requests-oauthlib 1.3.0 pyh9f0ad1d_0 conda-forge/label/main rsa 4.7 pypi_0 pypi scipy 1.5.2 py38h0b6359f_0 seaborn 0.11.1 pyhd3eb1b0_0 send2trash 1.5.0 pyhd3eb1b0_1 setuptools 52.0.0 py38h06a4308_0 sip 4.19.13 py38he6710b0_0 six 1.15.0 py38h06a4308_0 smmap 4.0.0 pyh44b312d_0 conda-forge/label/main snappy 1.1.8 he6710b0_0 sqlalchemy 1.3.20 py38h1e0a361_0 conda-forge/label/main sqlite 3.33.0 h62c20be_0 sqlparse 0.4.1 pyh9f0ad1d_0 conda-forge/label/main tabulate 0.8.7 pyh9f0ad1d_0 conda-forge/label/main tb-nightly 2.5.0a20210130 pypi_0 pypi tensorboard-plugin-wit 1.8.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.2 py38h06a4308_0 testpath 0.4.4 pyhd3eb1b0_0 tf-estimator-nightly 2.5.0.dev2021020101 pypi_0 pypi tf-nightly 2.5.0.dev20210130 pypi_0 pypi tifffile 2021.1.14 pyhd3eb1b0_1 tk 8.6.10 hbc83047_0 tornado 6.1 py38h27cfd23_0 traitlets 5.0.5 pyhd3eb1b0_0 typing-extensions 3.7.4.3 pypi_0 pypi uncertainties 3.1.5 pyhd8ed1ab_0 conda-forge/label/main urllib3 1.26.3 pyhd3eb1b0_0 wcwidth 0.2.5 py_0 webencodings 0.5.1 py38_1 websocket-client 0.57.0 py38h578d9bd_4 conda-forge/label/main werkzeug 1.0.1 pyh9f0ad1d_0 conda-forge/label/main wheel 0.36.2 pyhd3eb1b0_0 wrapt 1.12.1 pypi_0 pypi xz 5.2.5 h7b6447c_0 yaml 0.2.5 h516909a_0 conda-forge/label/main zeromq 4.3.3 he6710b0_3 zfp 0.5.5 h2531618_4 zipp 3.4.0 pyhd3eb1b0_0 zlib 1.2.11 h7b6447c_3 zstd 1.4.5 h9ceee32_0 Note: you may need to restart the kernel to use updated packages. {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint', 'SLURM_NODELIST': 'node221', 'SLURM_JOB_NAME': 'bash', 'XDG_SESSION_ID': '595', 'SLURMD_NODENAME': 'node221', 'SLURM_TOPOLOGY_ADDR': 'node221', 'SLURM_NTASKS_PER_NODE': '24', 'HOSTNAME': 'login01', 'SLURM_PRIO_PROCESS': '0', 'SLURM_SRUN_COMM_PORT': '33255', 'SHELL': '/bin/bash', 'TERM': 'xterm-color', 'SLURM_JOB_QOS': 'qstand', 'SLURM_PTY_WIN_ROW': '24', 'HISTSIZE': '1000', 'TMPDIR': '/tmp', 'SLURM_TOPOLOGY_ADDR_PATTERN': 'node', 'SSH_CLIENT': '10.231.182.213 44428 22', 'CONDA_SHLVL': '2', 'CONDA_PROMPT_MODIFIER': '(tf-nightly) ', 'QTDIR': '/usr/lib64/qt-3.3', 'QTINC': '/usr/lib64/qt-3.3/include', 'SSH_TTY': '/dev/pts/2', 'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24', 'QT_GRAPHICSSYSTEM_CHECKED': '1', 'SLURM_NNODES': '1', 'USER': 'ye53nis', 'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:', 'CONDA_EXE': '/cluster/miniconda3/bin/conda', 'SLURM_STEP_NUM_NODES': '1', 'SLURM_JOBID': '618588', 'SRUN_DEBUG': '3', 'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_NTASKS': '24', 'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5', 'SLURM_STEP_ID': '0', 'TMUX': '/tmp/tmux-67339/default,43792,2', '_CE_CONDA': '', 'CONDA_PREFIX_1': '/cluster/miniconda3', 'SLURM_STEP_LAUNCHER_PORT': '33255', 'SLURM_TASKS_PER_NODE': '24', 'MAIL': '/var/spool/mail/ye53nis', 'PATH': '/home/ye53nis/.conda/envs/tf-nightly/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin', 'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448', 'SLURM_JOB_ID': '618588', 'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf-nightly', 'SLURM_JOB_USER': 'ye53nis', 'SLURM_STEPID': '0', 'PWD': '/', 'SLURM_SRUN_COMM_HOST': '192.168.192.5', 'LANG': 'en_US.UTF-8', 'SLURM_PTY_WIN_COL': '80', 'SLURM_UMASK': '0022', 'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles', 'SLURM_JOB_UID': '67339', 'LOADEDMODULES': '', 'SLURM_NODEID': '0', 'TMUX_PANE': '%2', 'SLURM_SUBMIT_DIR': '/', 'SLURM_TASK_PID': '75179', 'SLURM_NPROCS': '24', 'SLURM_CPUS_ON_NODE': '24', 'SLURM_DISTRIBUTION': 'block', 'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_PROCID': '0', 'HISTCONTROL': 'ignoredups', '_CE_M': '', 'SLURM_JOB_NODELIST': 'node221', 'SLURM_PTY_PORT': '41588', 'HOME': '/home/ye53nis', 'SHLVL': '3', 'SLURM_LOCALID': '0', 'SLURM_JOB_GID': '13280', 'SLURM_JOB_CPUS_PER_NODE': '24', 'SLURM_CLUSTER_NAME': 'hpc', 'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24', 'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23', 'SLURM_SUBMIT_HOST': 'login01', 'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_JOB_PARTITION': 's_standard', 'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3', 'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python', 'LOGNAME': 'ye53nis', 'SLURM_STEP_NUM_TASKS': '24', 'QTLIB': '/usr/lib64/qt-3.3/lib', 'SLURM_JOB_ACCOUNT': 'iaob', 'SLURM_JOB_NUM_NODES': '1', 'MODULESHOME': '/usr/share/Modules', 'CONDA_DEFAULT_ENV': 'tf-nightly', 'LESSOPEN': '||/usr/bin/lesspipe.sh %s', 'SLURM_STEP_TASKS_PER_NODE': '24', 'PORT': '9999','SLURM_STEP_NODELIST': 'node221', 'DISPLAY': ':0', 'XDG_RUNTIME_DIR': '', 'XAUTHORITY': '/home/lex/.Xauthority', 'BASH_FUNC_module()': '() { eval `/usr/bin/modulecmd bash $*`\n}', '_': '/home/ye53nis/.conda/envs/tf-nightly/bin/jupyter', 'JPY_PARENT_PID': '94022', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
2.3.2.2 Set mlflow variables
- mlflow environment variables
conda activate tf-nightly cd /beegfs/ye53nis/drmed-git export MLFLOW_EXPERIMENT_NAME=exp-210204-unet export MLFLOW_TRACKING_URI=file:./data/mlruns mkdir data/exp-210204-unet
(tf-nightly) [ye53nis@node221 drmed-git]$
2.3.2.3 run mlflow
- Use whole dataset (6400 training, 1600 validation, 2000 test), but during
training, use only 1/5th of it per epoch
mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Nov2020 -P steps_per_epoch=1280 -P validation_steps=320
(tf-nightly) [ye53nis@node221 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Nov2020 -P steps_per_epoch=1280 -P validation_ steps=320 INFO: 'exp-210104-unet' does not exist. Creating a new experiment 2021/02/05 18:23:53 INFO mlflow.projects.utils: === Created directory /tmp/tmptojz254v for downloading remote URIs passed to arguments of type 'path' === 2021/02/05 18:23:53 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c 1>&2 && python src/fluotracify/training/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 50 /beegfs/ye53nis/saves/firstartifact_Nov2020 3 1280 320' in run with ID 'b9935d1e554c423fb2852242f4c4504c' === 2021-02-05 18:24:11.505650: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2021-02-05 18:24:11.505734: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. 2.5.0-dev20210130 2021-02-05 18:24:48.480544: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2021-02-05 18:24:48.480629: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] failed call to cuInit: UNKNOWN ERROR (303) 2021-02-05 18:24:48.480678: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node221): /proc/driver/nvidia/version does not exist GPUs: [] train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set007.csv train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set002.csv train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set003.csv train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set003.csv train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set006.csv train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set009.csv train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set007.csv train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set010.csv train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set007.csv train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set006.csv train 10 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set007.csv train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set007.csv train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set002.csv train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set004.csv train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set008.csv train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set001.csv train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set003.csv train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set005.csv train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set004.csv train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set009.csv train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set004.csv train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set009.csv train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set004.csv train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set005.csv train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set003.csv train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set006.csv train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set007.csv train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set007.csv train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set005.csv train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set010.csv train 30 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set004.csv train 31 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set008.csv train 32 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set001.csv train 33 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set002.csv train 34 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set004.csv train 35 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set008.csv train 36 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set009.csv train 37 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set010.csv train 38 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set010.csv train 39 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set001.csv train 40 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set004.csv train 41 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D3.0_set004.csv train 42 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set002.csv train 43 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set007.csv train 44 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set003.csv train 45 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set002.csv train 46 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set005.csv train 47 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set006.csv train 48 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set008.csv train 49 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set001.csv train 50 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set009.csv train 51 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set006.csv train 52 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set006.csv train 53 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set005.csv train 54 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set001.csv train 55 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set005.csv train 56 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set009.csv train 57 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set006.csv train 58 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set001.csv train 59 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set002.csv train 60 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set006.csv train 61 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set004.csv train 62 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set003.csv train 63 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set001.csv train 64 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set002.csv train 65 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set009.csv train 66 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set008.csv train 67 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set001.csv train 68 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set002.csv train 69 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set003.csv train 70 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set005.csv train 71 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set005.csv train 72 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set004.csv train 73 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set010.csv train 74 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set010.csv train 75 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set010.csv train 76 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D0.2_set002.csv train 77 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D1.0_set003.csv train 78 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set010.csv train 79 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set001.csv train 80 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set009.csv train 81 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set003.csv train 82 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set008.csv test 83 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set006.csv test 84 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set008.csv test 85 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set002.csv test 86 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set007.csv test 87 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set010.csv test 88 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set006.csv test 89 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set009.csv test 90 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set003.csv test 91 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set003.csv test 92 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set009.csv test 93 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set001.csv test 94 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set008.csv test 95 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set007.csv test 96 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set002.csv test 97 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set004.csv test 98 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set010.csv test 99 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D0.069_set001.csv test 100 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set008.csv test 101 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set005.csv test 102 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set008.csv test 103 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set005.csv The given DataFrame was split into 3 parts with shapes: [(16384, 8300), (16384, 8300), (16384, 8300)] The given DataFrame was split into 3 parts with shapes: [(16384, 2100), (16384, 2100), (16384, 2100)] for each 16384 timestap trace there are the following numbers of corrupted timesteps: label001_1 5916 label002_1 7367 label003_1 954 label004_1 2965 label005_1 0 dtype: int64 2021-02-05 18:31:32.060731: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. number of training examples: 6640, number of validation examples: 1660 ------------------------ number of test examples: 2100 input - shape: (None, 16384, 1) output - shape: (None, 16384, 1) 2021-02-05 18:31:38.503252: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing. 2021-02-05 18:31:38.503297: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started. 2021-02-05 18:31:38.503361: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down. 2021/02/05 18:31:38 INFO mlflow.utils.autologging_utils: tensorflow autologging will track hyperparameters, performance metrics, model artifacts, and lineage information for the current tensorflow workflow to the MLflow run with ID 'b9935d1e554c423fb2852242f4c4504c' 2021/02/05 18:31:38 WARNING mlflow.utils.autologging_utils: MLflow issued a warning during tensorflow autologging: "/home/ye53nis/.conda/envs/mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:86: UserWarning: Logging to MLflow failed: Changing param values is not allowed. Param with key='batch_size' was already logged with value='5' for run ID='b9935d1e554c423fb2852242f4c4504c'. Attempted logging new value 'None'." Epoch 1/50 2021-02-05 18:31:49.433599: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:145] None of the MLIR Optimization Passes are enabled (registered 2) 2021-02-05 18:31:49.686354: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2300000000 Hz 2021-02-05 18:31:57.757621: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing. 2021-02-05 18:31:57.757684: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started. 2021-02-05 18:31:59.478997: I tensorflow/core/profiler/lib/profiler_session.cc:66] Profiler session collecting data. 2021-02-05 18:31:59.513272: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down. 2021-02-05 18:31:59.547737: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_02_05_18_31_59 2021-02-05 18:31:59.563056: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.trace.json.gz 2021-02-05 18:31:59.600514: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_02_05_18_31_59 2021-02-05 18:31:59.600709: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.memory_profile.json.gz 2021-02-05 18:31:59.604669: I tensorflow/core/profiler/rpc/client/capture_profile.cc:251] Creating directory: /tmp/tb/train/plugins/profile/2021_02_05_18_31_59Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.xplane.pb Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.overview_page.pb Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.input_pipeline.pb Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.tensorflow_stats.pb Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.kernel_stats.pb 1280/1280 [==============================] - 2294s 2s/step - loss: 0.9535 - tp0.1: 7533469.6347 - fp0.1: 15687196.0695 - tn0.1: 28384947.3810 - fn0.1: 905043.5777 - precision0.1: 0.3192 - recall0.1: 0.8847 - tp0.3: 5299550.3950 - fp0.3 : 6318015.6128 - tn0.3: 37754137.8610 - fn0.3: 3138962.8173 - precision0.3: 0.4501 - recall0.3: 0.6250 - tp0.5: 3326666.3817 - fp0.5: 1645942.8673 - tn0.5: 42426193.8962 - fn0.5: 5111846.8306 - precision0.5: 0.6413 - recall0.5: 0.3856 - tp0.7: 2414052.7869 - fp0.7: 649878.6245 - tn0.7: 43422251.9945 - fn0.7: 6024460.4254 - precision0.7: 0.7630 - recall0.7: 0.2684 - tp0.9: 1333571.2881 - fp0.9: 122667.3622 - tn0.9: 43949483.5308 - fn0.9: 7104941.9243 - precision0.9: 0.8933 - recall0.9: 0.1421 - accuracy: 0.8665 - auc: 0.8370 - val_loss: 4.5065 - val_tp0.1: 3953260.0000 - val_fp0.1: 22248736.0000 - val_tn0.1: 11977.0000 - val_fn0.1: 433.0000 - val_precision0.1: 0.1509 - val_recall0.1: 0.9999 - val_ tp0.3: 3952790.0000 - val_fp0.3: 22240896.0000 - val_tn0.3: 19810.0000 - val_fn0.3: 903.0000 - val_precision0.3: 0.1509 - val_recall0.3: 0.9998 - val_tp0.5: 3932309.0000 - val_fp0.5: 18000460.0000 - val_tn0.5: 4260247.0000 - val_fn0.5: 21384.0000 - val_precision0.5: 0.1793 - val_recall0.5: 0.9946 - val_tp0.7: 3907763.0000 - val_fp0.7: 15479875.0000 - val_tn0.7: 6780832.0000 - val_fn0.7: 45930.0000 - val_precision0.7: 0.2016 - val_recall0.7: 0.9884 - val_tp0.9: 38181 41.0000 - val_fp0.9: 10776068.0000 - val_tn0.9: 11484639.0000 - val_fn0.9: 135552.0000 - val_precision0.9: 0.2616 - val_recall0.9: 0.9657 - val_accuracy: 0.3125 - val_auc: 0.8388 Epoch 2/50 1280/1280 [==============================] - 2266s 2s/step - loss: 0.7086 - tp0.1: 7408524.6518 - fp0.1: 9777539.1296 - tn0.1: 34354079.2826 - fn0.1: 970517.5371 - precision0.1: 0.4242 - recall0.1: 0.8837 - tp0.3: 6604603.1468 - fp0.3: 5177327.2397 - tn0.3: 38954289.9594 - fn0.3: 1774439.0422 - precision0.3: 0.5497 - recall0.3: 0.7873 - tp0.5: 4795568.8735 - fp0.5: 1588506.0874 - tn0.5: 42543101.8407 - fn0.5: 3583473.3154 - precision0.5: 0.7554 - recall0.5: 0.5523 - tp0.7: 3842322.5410 - fp0.7: 585624.8493 - tn0.7: 43545999.7440 - fn0.7: 4536719.6479 - precision0.7: 0.8722 - recall0.7: 0.4455 - tp0.9: 2664836.5355 - fp0.9: 183975.7455 - tn0.9: 43947648.4012 - fn0.9: 5714205.6534 - precision0.9: 0 .9372 - recall0.9: 0.3066 - accuracy: 0.9005 - auc: 0.8983 - val_loss: 8.8910 - val_tp0.1: 4309704.0000 - val_fp0.1: 21433558.0000 - val_tn0.1: 466616.0000 - val_fn0.1: 4509.0000 - val_precision0.1: 0.1674 - val_recall0.1: 0.9990 - val _tp0.3: 4304770.0000 - val_fp0.3: 20572086.0000 - val_tn0.3: 1328101.0000 - val_fn0.3: 9443.0000 - val_precision0.3: 0.1730 - val_recall0.3: 0.9978 - val_tp0.5: 4291421.0000 - val_fp0.5: 18429908.0000 - val_tn0.5: 3470280.0000 - val_fn 0.5: 22792.0000 - val_precision0.5: 0.1889 - val_recall0.5: 0.9947 - val_tp0.7: 4286245.0000 - val_fp0.7: 17960968.0000 - val_tn0.7: 3939218.0000 - val_fn0.7: 27968.0000 - val_precision0.7: 0.1927 - val_recall0.7: 0.9935 - val_tp0.9: 4 275720.0000 - val_fp0.9: 17168184.0000 - val_tn0.9: 4732003.0000 - val_fn0.9: 38493.0000 - val_precision0.9: 0.1994 - val_recall0.9: 0.9911 - val_accuracy: 0.2961 - val_auc: 0.6353 Epoch 3/50 1280/1280 [==============================] - 2269s 2s/step - loss: 0.4737 - tp0.1: 8043601.5324 - fp0.1: 6567924.1288 - tn0.1: 37316662.9188 - fn0.1: 582465.5137 - precision0.1: 0.5472 - recall0.1: 0.9292 - tp0.3: 7343577.1382 - fp0.3: 2667019.8610 - tn0.3: 41217565.9859 - fn0.3: 1282489.9079 - precision0.3: 0.7338 - recall0.3: 0.8450 - tp0.5: 6431038.6987 - fp0.5: 1096394.8681 - tn0.5: 42788211.8212 - fn0.5: 2195028.3474 - precision0.5: 0.8653 - recall0.5: 0.7272 - tp0.7: 5761648.7400 - fp0.7: 554569.4169 - tn0.7: 43330028.4895 - fn0.7: 2864418.3060 - precision0.7: 0.9155 - recall0.7: 0.6553 - tp0.9: 4604418.9586 - fp0.9: 201930.2724 - tn0.9: 43682665.5402 - fn0.9: 4021648.0874 - precision0.9: 0 .9590 - recall0.9: 0.5232 - accuracy: 0.9363 - auc: 0.9445 - val_loss: 0.6077 - val_tp0.1: 3651028.0000 - val_fp0.1: 3375728.0000 - val_tn0.1: 18695272.0000 - val_fn0.1: 492376.0000 - val_precision0.1: 0.5196 - val_recall0.1: 0.8812 - val_tp0.3: 3024227.0000 - val_fp0.3: 1523943.0000 - val_tn0.3: 20547044.0000 - val_fn0.3: 1119177.0000 - val_precision0.3: 0.6649 - val_recall0.3: 0.7299 - val_tp0.5: 2511712.0000 - val_fp0.5: 734684.0000 - val_tn0.5: 21336306.0000 - v al_fn0.5: 1631692.0000 - val_precision0.5: 0.7737 - val_recall0.5: 0.6062 - val_tp0.7: 2014285.0000 - val_fp0.7: 342510.0000 - val_tn0.7: 21728484.0000 - val_fn0.7: 2129119.0000 - val_precision0.7: 0.8547 - val_recall0.7: 0.4861 - val_ tp0.9: 1375650.0000 - val_fp0.9: 83494.0000 - val_tn0.9: 21987508.0000 - val_fn0.9: 2767754.0000 - val_precision0.9: 0.9428 - val_recall0.9: 0.3320 - val_accuracy: 0.9097 - val_auc: 0.9057 Epoch 4/50 1280/1280 [==============================] - 2269s 2s/step - loss: 0.4104 - tp0.1: 8058950.6292 - fp0.1: 5549150.7541 - tn0.1: 38382155.2373 - fn0.1: 520398.2319 - precision0.1: 0.5890 - recall0.1: 0.9388 - tp0.3: 7465362.4442 - fp0.3: 2368717.0968 - tn0.3: 41562596.7416 - fn0.3: 1113986.4169 - precision0.3: 0.7555 - recall0.3: 0.8690 - tp0.5: 6948225.4496 - fp0.5: 1288524.5277 - tn0.5: 42642762.4083 - fn0.5: 1631123.4114 - precision0.5: 0.8408 - recall0.5: 0.8075 - tp0.7: 6012711.4176 - fp0.7: 481306.9664 - tn0.7: 43449995.4871 - fn0.7: 2566637.4434 - precision0.7: 0.9250 - recall0.7: 0.6949 - tp0.9: 4953486.9508 - fp0.9: 170919.6136 - tn0.9: 43760406.4403 - fn0.9: 3625861.9102 - precision0.9: 0 .9659 - recall0.9: 0.5674 - accuracy: 0.9430 - auc: 0.9540 - val_loss: 0.7360 - val_tp0.1: 3518565.0000 - val_fp0.1: 2418501.0000 - val_tn0.1: 19514842.0000 - val_fn0.1: 762498.0000 - val_precision0.1: 0.5926 - val_recall0.1: 0.8219 - val_tp0.3: 2934643.0000 - val_fp0.3: 1727197.0000 - val_tn0.3: 20206140.0000 - val_fn0.3: 1346420.0000 - val_precision0.3: 0.6295 - val_recall0.3: 0.6855 - val_tp0.5: 2401516.0000 - val_fp0.5: 1120115.0000 - val_tn0.5: 20813218.0000 - val_fn0.5: 1879547.0000 - val_precision0.5: 0.6819 - val_recall0.5: 0.5610 - val_tp0.7: 1995881.0000 - val_fp0.7: 587480.0000 - val_tn0.7: 21345854.0000 - val_fn0.7: 2285182.0000 - val_precision0.7: 0.7726 - val_recall0.7: 0.4662 - val _tp0.9: 1458232.0000 - val_fp0.9: 213624.0000 - val_tn0.9: 21719718.0000 - val_fn0.9: 2822831.0000 - val_precision0.9: 0.8722 - val_recall0.9: 0.3406 - val_accuracy: 0.8856 - val_auc: 0.8746 Epoch 5/50 1280/1280 [==============================] - 2256s 2s/step - loss: 0.3330 - tp0.1: 7934527.3903 - fp0.1: 4492667.3357 - tn0.1: 39650554.1023 - fn0.1: 432898.7760 - precision0.1: 0.6303 - recall0.1: 0.9481 - tp0.3: 7499415.2927 - fp0.3: 1967988.6995 - tn0.3: 42175278.8080 - fn0.3: 868010.8735 - precision0.3: 0.7854 - recall0.3: 0.8951 - tp0.5: 7067133.4980 - fp0.5: 1049951.0960 - tn0.5: 43093262.6339 - fn0.5: 1300292.6682 - precision0.5: 0.8642 - recall0.5: 0.8435 - tp0.7: 6367827.1046 - fp0.7: 438987.0765 - tn0.7: 43704237.3872 - fn0.7: 1999599.0617 - precision0.7: 0.9322 - recall0.7: 0.7564 - tp0.9: 5357606.0351 - fp0.9: 138722.6315 - tn0.9: 44004504.8205 - fn0.9: 3009820.1311 - precision0.9: 0. 9715 - recall0.9: 0.6358 - accuracy: 0.9541 - auc: 0.9638 - val_loss: 0.7327 - val_tp0.1: 3649063.0000 - val_fp0.1: 3036718.0000 - val_tn0.1: 18938916.0000 - val_fn0.1: 589701.0000 - val_precision0.1: 0.5458 - val_recall0.1: 0.8609 - v al_tp0.3: 3283999.0000 - val_fp0.3: 2440985.0000 - val_tn0.3: 19534644.0000 - val_fn0.3: 954765.0000 - val_precision0.3: 0.5736 - val_recall0.3: 0.7748 - val_tp0.5: 2951063.0000 - val_fp0.5: 2094966.0000 - val_tn0.5: 19880668.0000 - va l_fn0.5: 1287701.0000 - val_precision0.5: 0.5848 - val_recall0.5: 0.6962 - val_tp0.7: 2702547.0000 - val_fp0.7: 1708012.0000 - val_tn0.7: 20267626.0000 - val_fn0.7: 1536217.0000 - val_precision0.7: 0.6127 - val_recall0.7: 0.6376 - val_ tp0.9: 2269870.0000 - val_fp0.9: 882080.0000 - val_tn0.9: 21093558.0000 - val_fn0.9: 1968894.0000 - val_precision0.9: 0.7201 - val_recall0.9: 0.5355 - val_accuracy: 0.8710 - val_auc: 0.8874 Epoch 6/50 1280/1280 [==============================] - 2267s 2s/step - loss: 0.3148 - tp0.1: 8107422.3794 - fp0.1: 4149459.1678 - tn0.1: 39840764.2201 - fn0.1: 412995.5535 - precision0.1: 0.6568 - recall0.1: 0.9505 - tp0.3: 7702537.1499 - fp0.3: 1842434.6089 - tn0.3: 42147804.7213 - fn0.3: 817880.7830 - precision0.3: 0.8055 - recall0.3: 0.9021 - tp0.5: 7257172.3966 - fp0.5: 947340.6534 - tn0.5: 43042899.9469 - fn0.5: 1263245.5363 - precision0.5: 0.8838 - recall0.5: 0.8495 - t p0.7: 6767789.5652 - fp0.7: 485240.0351 - tn0.7: 43504992.3216 - fn0.7: 1752628.3677 - precision0.7: 0.9324 - recall0.7: 0.7924 - tp0.9: 5789730.9688 - fp0.9: 133595.3934 - tn0.9: 43856655.0180 - fn0.9: 2730686.9641 - precision0.9: 0.9 771 - recall0.9: 0.6757 - accuracy: 0.9572 - auc: 0.9671 - val_loss: 0.5438 - val_tp0.1: 3469770.0000 - val_fp0.1: 1783021.0000 - val_tn0.1: 20362438.0000 - val_fn0.1: 599169.0000 - val_precision0.1: 0.6606 - val_recall0.1: 0.8527 - va l_tp0.3: 2981687.0000 - val_fp0.3: 776413.0000 - val_tn0.3: 21369044.0000 - val_fn0.3: 1087252.0000 - val_precision0.3: 0.7934 - val_recall0.3: 0.7328 - val_tp0.5: 2491815.0000 - val_fp0.5: 326150.0000 - val_tn0.5: 21819316.0000 - val_ fn0.5: 1577124.0000 - val_precision0.5: 0.8843 - val_recall0.5: 0.6124 - val_tp0.7: 2092865.0000 - val_fp0.7: 128692.0000 - val_tn0.7: 22016760.0000 - val_fn0.7: 1976074.0000 - val_precision0.7: 0.9421 - val_recall0.7: 0.5144 - val_tp0 .9: 1584013.0000 - val_fp0.9: 18793.0000 - val_tn0.9: 22126662.0000 - val_fn0.9: 2484926.0000 - val_precision0.9: 0.9883 - val_recall0.9: 0.3893 - val_accuracy: 0.9274 - val_auc: 0.9112 Epoch 7/50 1280/1280 [==============================] - 2250s 2s/step - loss: 0.2752 - tp0.1: 8215921.6979 - fp0.1: 3662051.7354 - tn0.1: 40263427.6151 - fn0.1: 369255.7354 - precision0.1: 0.6930 - recall0.1: 0.9578 - tp0.3: 7873789.5113 - fp0.3: 1775915.5043 - tn0.3: 42149585.2553 - fn0.3: 711387.9219 - precision0.3: 0.8180 - recall0.3: 0.9178 - tp0.5: 7421898.0468 - fp0.5: 864234.9992 - tn0.5: 43061238.2006 - fn0.5: 1163279.3864 - precision0.5: 0.8970 - recall0.5: 0.8653 - t p0.7: 6899341.9555 - fp0.7: 403014.4684 - tn0.7: 43522441.7424 - fn0.7: 1685835.4778 - precision0.7: 0.9455 - recall0.7: 0.8048 - tp0.9: 6047520.0070 - fp0.9: 123672.6019 - tn0.9: 43801830.9766 - fn0.9: 2537657.4262 - precision0.9: 0.9 803 - recall0.9: 0.7036 - accuracy: 0.9616 - auc: 0.9725 - val_loss: 0.5870 - val_tp0.1: 3992712.0000 - val_fp0.1: 3100961.0000 - val_tn0.1: 18785236.0000 - val_fn0.1: 335494.0000 - val_precision0.1: 0.5629 - val_recall0.1: 0.9225 - va l_tp0.3: 3697613.0000 - val_fp0.3: 2362999.0000 - val_tn0.3: 19523192.0000 - val_fn0.3: 630593.0000 - val_precision0.3: 0.6101 - val_recall0.3: 0.8543 - val_tp0.5: 3356073.0000 - val_fp0.5: 1926159.0000 - val_tn0.5: 19960034.0000 - val _fn0.5: 972133.0000 - val_precision0.5: 0.6354 - val_recall0.5: 0.7754 - val_tp0.7: 3025256.0000 - val_fp0.7: 1584253.0000 - val_tn0.7: 20301946.0000 - val_fn0.7: 1302950.0000 - val_precision0.7: 0.6563 - val_recall0.7: 0.6990 - val_tp 0.9: 2583002.0000 - val_fp0.9: 1016388.0000 - val_tn0.9: 20869810.0000 - val_fn0.9: 1745204.0000 - val_precision0.9: 0.7176 - val_recall0.9: 0.5968 - val_accuracy: 0.8894 - val_auc: 0.9219 Epoch 8/50 1280/1280 [==============================] - 2264s 2s/step - loss: 0.2659 - tp0.1: 8145147.1616 - fp0.1: 3529957.8525 - tn0.1: 40486117.0164 - fn0.1: 349436.3614 - precision0.1: 0.6977 - recall0.1: 0.9588 - tp0.3: 7816330.9524 - fp0.3: 1688486.8493 - tn0.3: 42327603.8790 - fn0.3: 678252.5706 - precision0.3: 0.8221 - recall0.3: 0.9201 - tp0.5: 7396513.9524 - fp0.5: 842774.1983 - tn0.5: 43173300.2077 - fn0.5: 1098069.5706 - precision0.5: 0.8972 - recall0.5: 0.8704 - t p0.7: 6908332.2162 - fp0.7: 399714.5441 - tn0.7: 43616338.9617 - fn0.7: 1586251.3068 - precision0.7: 0.9448 - recall0.7: 0.8128 - tp0.9: 6106920.7744 - fp0.9: 123699.0000 - tn0.9: 43892389.6027 - fn0.9: 2387662.7486 - precision0.9: 0.9 796 - recall0.9: 0.7174 - accuracy: 0.9627 - auc: 0.9735 - val_loss: 0.5059 - val_tp0.1: 3832991.0000 - val_fp0.1: 2975127.0000 - val_tn0.1: 19105348.0000 - val_fn0.1: 300933.0000 - val_precision0.1: 0.5630 - val_recall0.1: 0.9272 - va l_tp0.3: 3565080.0000 - val_fp0.3: 2148056.0000 - val_tn0.3: 19932426.0000 - val_fn0.3: 568844.0000 - val_precision0.3: 0.6240 - val_recall0.3: 0.8624 - val_tp0.5: 3244053.0000 - val_fp0.5: 1637048.0000 - val_tn0.5: 20443428.0000 - val _fn0.5: 889871.0000 - val_precision0.5: 0.6646 - val_recall0.5: 0.7847 - val_tp0.7: 2923895.0000 - val_fp0.7: 1240875.0000 - val_tn0.7: 20839598.0000 - val_fn0.7: 1210029.0000 - val_precision0.7: 0.7021 - val_recall0.7: 0.7073 - val_tp 0.9: 2501710.0000 - val_fp0.9: 630185.0000 - val_tn0.9: 21450288.0000 - val_fn0.9: 1632214.0000 - val_precision0.9: 0.7988 - val_recall0.9: 0.6052 - val_accuracy: 0.9036 - val_auc: 0.9333 Epoch 9/50 1280/1280 [==============================] - 2265s 2s/step - loss: 0.2721 - tp0.1: 8177633.5020 - fp0.1: 3535203.1725 - tn0.1: 40418482.1335 - fn0.1: 379327.7697 - precision0.1: 0.7002 - recall0.1: 0.9554 - tp0.3: 7847088.7190 - fp0.3: 1695397.4301 - tn0.3: 42258294.9282 - fn0.3: 709872.5527 - precision0.3: 0.8241 - recall0.3: 0.9169 - tp0.5: 7427192.4395 - fp0.5: 834997.2678 - tn0.5: 43118702.8587 - fn0.5: 1129768.8322 - precision0.5: 0.9006 - recall0.5: 0.8679 - t p0.7: 6938678.2849 - fp0.7: 395857.1007 - tn0.7: 43557853.7744 - fn0.7: 1618282.9867 - precision0.7: 0.9471 - recall0.7: 0.8106 - tp0.9: 6133368.2951 - fp0.9: 120955.7010 - tn0.9: 43832745.2506 - fn0.9: 2423592.9766 - precision0.9: 0.9 811 - recall0.9: 0.7170 - accuracy: 0.9631 - auc: 0.9718 - val_loss: 0.5832 - val_tp0.1: 3893714.0000 - val_fp0.1: 3303616.0000 - val_tn0.1: 18681092.0000 - val_fn0.1: 335977.0000 - val_precision0.1: 0.5410 - val_recall0.1: 0.9206 - va l_tp0.3: 3627551.0000 - val_fp0.3: 2498540.0000 - val_tn0.3: 19486168.0000 - val_fn0.3: 602140.0000 - val_precision0.3: 0.5921 - val_recall0.3: 0.8576 - val_tp0.5: 3322248.0000 - val_fp0.5: 1987125.0000 - val_tn0.5: 19997588.0000 - val _fn0.5: 907443.0000 - val_precision0.5: 0.6257 - val_recall0.5: 0.7855 - val_tp0.7: 3013599.0000 - val_fp0.7: 1581768.0000 - val_tn0.7: 20402948.0000 - val_fn0.7: 1216092.0000 - val_precision0.7: 0.6558 - val_recall0.7: 0.7125 - val_tp 0.9: 2613832.0000 - val_fp0.9: 924572.0000 - val_tn0.9: 21060124.0000 - val_fn0.9: 1615859.0000 - val_precision0.9: 0.7387 - val_recall0.9: 0.6180 - val_accuracy: 0.8896 - val_auc: 0.9233 Epoch 10/50 1280/1280 [==============================] - 2167s 2s/step - loss: 0.2587 - tp0.1: 8173202.1491 - fp0.1: 3419344.5308 - tn0.1: 40568773.3271 - fn0.1: 349346.8673 - precision0.1: 0.7050 - recall0.1: 0.9592 - tp0.3: 7845280.8431 - fp0.3: 1633368.1054 - tn0.3: 42354746.7455 - fn0.3: 677268.1733 - precision0.3: 0.8274 - recall0.3: 0.9210 - tp0.5: 7444574.4614 - fp0.5: 808848.8946 - tn0.5: 43179274.2358 - fn0.5: 1077974.5550 - precision0.5: 0.9017 - recall0.5: 0.8744 - t p0.7: 6974399.5706 - fp0.7: 382341.6963 - tn0.7: 43605795.4044 - fn0.7: 1548149.4457 - precision0.7: 0.9478 - recall0.7: 0.8197 - tp0.9: 6212727.7385 - fp0.9: 117973.7447 - tn0.9: 43870128.1835 - fn0.9: 2309821.2779 - precision0.9: 0.9 813 - recall0.9: 0.7300 - accuracy: 0.9641 - auc: 0.9742 - val_loss: 0.6408 - val_tp0.1: 3921454.0000 - val_fp0.1: 3165544.0000 - val_tn0.1: 18831180.0000 - val_fn0.1: 296224.0000 - val_precision0.1: 0.5533 - val_recall0.1: 0.9298 - va l_tp0.3: 3674710.0000 - val_fp0.3: 2541189.0000 - val_tn0.3: 19455532.0000 - val_fn0.3: 542968.0000 - val_precision0.3: 0.5912 - val_recall0.3: 0.8713 - val_tp0.5: 3370841.0000 - val_fp0.5: 2184413.0000 - val_tn0.5: 19812308.0000 - val _fn0.5: 846837.0000 - val_precision0.5: 0.6068 - val_recall0.5: 0.7992 - val_tp0.7: 3057156.0000 - val_fp0.7: 1929320.0000 - val_tn0.7: 20067408.0000 - val_fn0.7: 1160522.0000 - val_precision0.7: 0.6131 - val_recall0.7: 0.7248 - val_tp 0.9: 2691235.0000 - val_fp0.9: 1545100.0000 - val_tn0.9: 20451626.0000 - val_fn0.9: 1526443.0000 - val_precision0.9: 0.6353 - val_recall0.9: 0.6381 - val_accuracy: 0.8844 - val_auc: 0.9185 Epoch 11/50 1280/1280 [==============================] - 2195s 2s/step - loss: 0.2597 - tp0.1: 8080787.5496 - fp0.1: 3464173.5402 - tn0.1: 40607994.5691 - fn0.1: 357720.7119 - precision0.1: 0.6992 - recall0.1: 0.9583 - tp0.3: 7754354.7728 - fp0.3: 1652487.9594 - tn0.3: 42419634.1717 - fn0.3: 684153.4887 - precision0.3: 0.8245 - recall0.3: 0.9197 - tp0.5: 7350582.6308 - fp0.5: 814018.4028 - tn0.5: 43258092.7291 - fn0.5: 1087925.6308 - precision0.5: 0.9008 - recall0.5: 0.8720 - t p0.7: 6874278.2834 - fp0.7: 383492.2842 - tn0.7: 43688666.7549 - fn0.7: 1564229.9781 - precision0.7: 0.9477 - recall0.7: 0.8158 - tp0.9: 6117529.6448 - fp0.9: 121059.4980 - tn0.9: 43951099.9110 - fn0.9: 2320978.6167 - precision0.9: 0.9 810 - recall0.9: 0.7266 - accuracy: 0.9642 - auc: 0.9736 - val_loss: 0.6007 - val_tp0.1: 3926588.0000 - val_fp0.1: 3104163.0000 - val_tn0.1: 18816186.0000 - val_fn0.1: 367465.0000 - val_precision0.1: 0.5585 - val_recall0.1: 0.9144 - va l_tp0.3: 3638712.0000 - val_fp0.3: 2431931.0000 - val_tn0.3: 19488412.0000 - val_fn0.3: 655341.0000 - val_precision0.3: 0.5994 - val_recall0.3: 0.8474 - val_tp0.5: 3274020.0000 - val_fp0.5: 1937942.0000 - val_tn0.5: 19982404.0000 - val _fn0.5: 1020033.0000 - val_precision0.5: 0.6282 - val_recall0.5: 0.7625 - val_tp0.7: 2918102.0000 - val_fp0.7: 1553208.0000 - val_tn0.7: 20367136.0000 - val_fn0.7: 1375951.0000 - val_precision0.7: 0.6526 - val_recall0.7: 0.6796 - val_t p0.9: 2486914.0000 - val_fp0.9: 949847.0000 - val_tn0.9: 20970500.0000 - val_fn0.9: 1807139.0000 - val_precision0.9: 0.7236 - val_recall0.9: 0.5792 - val_accuracy: 0.8872 - val_auc: 0.9170 Epoch 12/50 1280/1280 [==============================] - 2210s 2s/step - loss: 0.2529 - tp0.1: 8177778.9118 - fp0.1: 3446344.3888 - tn0.1: 40554141.6956 - fn0.1: 332395.2459 - precision0.1: 0.7024 - recall0.1: 0.9615 - tp0.3: 7866160.7268 - fp0.3: 1663533.3247 - tn0.3: 42336942.1569 - fn0.3: 644013.4309 - precision0.3: 0.8244 - recall0.3: 0.9251 - tp0.5: 7468651.7650 - fp0.5: 826902.3630 - tn0.5: 43173597.9063 - fn0.5: 1041522.3927 - precision0.5: 0.8996 - recall0.5: 0.8783 - t p0.7: 6982137.1124 - fp0.7: 384836.8439 - tn0.7: 43615637.7978 - fn0.7: 1528037.0453 - precision0.7: 0.9473 - recall0.7: 0.8206 - tp0.9: 6215436.7151 - fp0.9: 115782.2108 - tn0.9: 43884692.7596 - fn0.9: 2294737.4426 - precision0.9: 0.9 816 - recall0.9: 0.7291 - accuracy: 0.9644 - auc: 0.9753 - val_loss: 0.5433 - val_tp0.1: 3996675.0000 - val_fp0.1: 3049375.0000 - val_tn0.1: 18853738.0000 - val_fn0.1: 314612.0000 - val_precision0.1: 0.5672 - val_recall0.1: 0.9270 - va l_tp0.3: 3730606.0000 - val_fp0.3: 2336826.0000 - val_tn0.3: 19566286.0000 - val_fn0.3: 580681.0000 - val_precision0.3: 0.6149 - val_recall0.3: 0.8653 - val_tp0.5: 3416555.0000 - val_fp0.5: 1856264.0000 - val_tn0.5: 20046848.0000 - val _fn0.5: 894732.0000 - val_precision0.5: 0.6480 - val_recall0.5: 0.7925 - val_tp0.7: 3097348.0000 - val_fp0.7: 1461441.0000 - val_tn0.7: 20441664.0000 - val_fn0.7: 1213939.0000 - val_precision0.7: 0.6794 - val_recall0.7: 0.7184 - val_tp 0.9: 2698173.0000 - val_fp0.9: 854641.0000 - val_tn0.9: 21048466.0000 - val_fn0.9: 1613114.0000 - val_precision0.9: 0.7594 - val_recall0.9: 0.6258 - val_accuracy: 0.8951 - val_auc: 0.9303 Epoch 13/50 1280/1280 [==============================] - 2209s 2s/step - loss: 0.2538 - tp0.1: 8165544.5761 - fp0.1: 3360321.7119 - tn0.1: 40640034.6550 - fn0.1: 344752.3396 - precision0.1: 0.7106 - recall0.1: 0.9599 - tp0.3: 7853592.0312 - fp0.3: 1646282.5488 - tn0.3: 42354071.1335 - fn0.3: 656704.8845 - precision0.3: 0.8279 - recall0.3: 0.9236 - tp0.5: 7458424.3138 - fp0.5: 826341.5082 - tn0.5: 43174017.1226 - fn0.5: 1051872.6019 - precision0.5: 0.9009 - recall0.5: 0.8775 - t p0.7: 6979820.3271 - fp0.7: 395956.8899 - tn0.7: 43604407.7775 - fn0.7: 1530476.5886 - precision0.7: 0.9468 - recall0.7: 0.8215 - tp0.9: 6232427.8197 - fp0.9: 129181.2912 - tn0.9: 43871195.4387 - fn0.9: 2277869.0960 - precision0.9: 0.9 799 - recall0.9: 0.7346 - accuracy: 0.9644 - auc: 0.9747 - val_loss: 0.5485 - val_tp0.1: 3997124.0000 - val_fp0.1: 3403162.0000 - val_tn0.1: 18545812.0000 - val_fn0.1: 268302.0000 - val_precision0.1: 0.5401 - val_recall0.1: 0.9371 - va l_tp0.3: 3749177.0000 - val_fp0.3: 2616473.0000 - val_tn0.3: 19332510.0000 - val_fn0.3: 516249.0000 - val_precision0.3: 0.5890 - val_recall0.3: 0.8790 - val_tp0.5: 3440083.0000 - val_fp0.5: 2075288.0000 - val_tn0.5: 19873688.0000 - val _fn0.5: 825343.0000 - val_precision0.5: 0.6237 - val_recall0.5: 0.8065 - val_tp0.7: 3117260.0000 - val_fp0.7: 1623393.0000 - val_tn0.7: 20325572.0000 - val_fn0.7: 1148166.0000 - val_precision0.7: 0.6576 - val_recall0.7: 0.7308 - val_tp 0.9: 2708258.0000 - val_fp0.9: 926738.0000 - val_tn0.9: 21022226.0000 - val_fn0.9: 1557168.0000 - val_precision0.9: 0.7451 - val_recall0.9: 0.6349 - val_accuracy: 0.8894 - val_auc: 0.9322 Epoch 14/50 1280/1280 [==============================] - 2223s 2s/step - loss: 0.2483 - tp0.1: 8105005.2256 - fp0.1: 3301412.7728 - tn0.1: 40770974.7994 - fn0.1: 333249.2350 - precision0.1: 0.7102 - recall0.1: 0.9606 - tp0.3: 7797681.4614 - fp0.3: 1632480.2381 - tn0.3: 42439931.4738 - fn0.3: 640572.9992 - precision0.3: 0.8273 - recall0.3: 0.9241 - tp0.5: 7399965.9297 - fp0.5: 804918.4660 - tn0.5: 43267490.8134 - fn0.5: 1038288.5308 - precision0.5: 0.9020 - recall0.5: 0.8772 - t p0.7: 6921871.3716 - fp0.7: 370916.4372 - tn0.7: 43701494.4621 - fn0.7: 1516383.0890 - precision0.7: 0.9493 - recall0.7: 0.8208 - tp0.9: 6187238.5597 - fp0.9: 114174.0468 - tn0.9: 43958233.5792 - fn0.9: 2251015.9009 - precision0.9: 0.9 819 - recall0.9: 0.7337 - accuracy: 0.9651 - auc: 0.9752 - val_loss: 0.4990 - val_tp0.1: 3920222.0000 - val_fp0.1: 2895972.0000 - val_tn0.1: 19106396.0000 - val_fn0.1: 291803.0000 - val_precision0.1: 0.5751 - val_recall0.1: 0.9307 - va l_tp0.3: 3647799.0000 - val_fp0.3: 2161341.0000 - val_tn0.3: 19841040.0000 - val_fn0.3: 564226.0000 - val_precision0.3: 0.6279 - val_recall0.3: 0.8660 - val_tp0.5: 3322418.0000 - val_fp0.5: 1638347.0000 - val_tn0.5: 20364020.0000 - val _fn0.5: 889607.0000 - val_precision0.5: 0.6697 - val_recall0.5: 0.7888 - val_tp0.7: 2985353.0000 - val_fp0.7: 1222889.0000 - val_tn0.7: 20779488.0000 - val_fn0.7: 1226672.0000 - val_precision0.7: 0.7094 - val_recall0.7: 0.7088 - val_tp 0.9: 2563095.0000 - val_fp0.9: 657853.0000 - val_tn0.9: 21344516.0000 - val_fn0.9: 1648930.0000 - val_precision0.9: 0.7958 - val_recall0.9: 0.6085 - val_accuracy: 0.9036 - val_auc: 0.9356 Epoch 15/50 1280/1280 [==============================] - 2223s 2s/step - loss: 0.2505 - tp0.1: 8129718.4130 - fp0.1: 3285117.6674 - tn0.1: 40755981.7447 - fn0.1: 339847.1585 - precision0.1: 0.7126 - recall0.1: 0.9599 - tp0.3: 7829732.9274 - fp0.3: 1632416.1491 - tn0.3: 42408661.6440 - fn0.3: 639832.6440 - precision0.3: 0.8279 - recall0.3: 0.9244 - tp0.5: 7437810.6112 - fp0.5: 808981.5230 - tn0.5: 43232126.9953 - fn0.5: 1031754.9602 - precision0.5: 0.9024 - recall0.5: 0.8777 - t p0.7: 6957910.6557 - fp0.7: 373871.2498 - tn0.7: 43667250.3630 - fn0.7: 1511654.9157 - precision0.7: 0.9493 - recall0.7: 0.8208 - tp0.9: 6212919.2295 - fp0.9: 115091.8977 - tn0.9: 43925968.1874 - fn0.9: 2256646.3419 - precision0.9: 0.9 817 - recall0.9: 0.7317 - accuracy: 0.9649 - auc: 0.9750 - val_loss: 0.5413 - val_tp0.1: 3929730.0000 - val_fp0.1: 3234417.0000 - val_tn0.1: 18748682.0000 - val_fn0.1: 301573.0000 - val_precision0.1: 0.5485 - val_recall0.1: 0.9287 - va l_tp0.3: 3652364.0000 - val_fp0.3: 2547235.0000 - val_tn0.3: 19435862.0000 - val_fn0.3: 578939.0000 - val_precision0.3: 0.5891 - val_recall0.3: 0.8632 - val_tp0.5: 3294284.0000 - val_fp0.5: 1952001.0000 - val_tn0.5: 20031108.0000 - val _fn0.5: 937019.0000 - val_precision0.5: 0.6279 - val_recall0.5: 0.7786 - val_tp0.7: 2934269.0000 - val_fp0.7: 1461182.0000 - val_tn0.7: 20521920.0000 - val_fn0.7: 1297034.0000 - val_precision0.7: 0.6676 - val_recall0.7: 0.6935 - val_tp 0.9: 2494237.0000 - val_fp0.9: 748300.0000 - val_tn0.9: 21234804.0000 - val_fn0.9: 1737066.0000 - val_precision0.9: 0.7692 - val_recall0.9: 0.5895 - val_accuracy: 0.8898 - val_auc: 0.9282 Epoch 16/50 1280/1280 [==============================] - 2215s 2s/step - loss: 0.2478 - tp0.1: 8105796.2350 - fp0.1: 3240299.5347 - tn0.1: 40826166.4356 - fn0.1: 338386.8126 - precision0.1: 0.7132 - recall0.1: 0.9597 - tp0.3: 7813940.3685 - fp0.3: 1622845.5285 - tn0.3: 42443650.8525 - fn0.3: 630242.6792 - precision0.3: 0.8274 - recall0.3: 0.9252 - tp0.5: 7422996.8228 - fp0.5: 793661.0414 - tn0.5: 43272824.2966 - fn0.5: 1021186.2248 - precision0.5: 0.9030 - recall0.5: 0.8785 - t p0.7: 6948059.6292 - fp0.7: 366674.7080 - tn0.7: 43699824.9578 - fn0.7: 1496123.4184 - precision0.7: 0.9495 - recall0.7: 0.8219 - tp0.9: 6225846.1991 - fp0.9: 114013.1436 - tn0.9: 43952461.9219 - fn0.9: 2218336.8486 - precision0.9: 0.9 817 - recall0.9: 0.7370 - accuracy: 0.9654 - auc: 0.9750 - val_loss: 0.5514 - val_tp0.1: 3985944.0000 - val_fp0.1: 3204062.0000 - val_tn0.1: 18714132.0000 - val_fn0.1: 310258.0000 - val_precision0.1: 0.5544 - val_recall0.1: 0.9278 - va l_tp0.3: 3706293.0000 - val_fp0.3: 2449108.0000 - val_tn0.3: 19469088.0000 - val_fn0.3: 589909.0000 - val_precision0.3: 0.6021 - val_recall0.3: 0.8627 - val_tp0.5: 3369179.0000 - val_fp0.5: 1882360.0000 - val_tn0.5: 20035840.0000 - val _fn0.5: 927023.0000 - val_precision0.5: 0.6416 - val_recall0.5: 0.7842 - val_tp0.7: 3033922.0000 - val_fp0.7: 1434846.0000 - val_tn0.7: 20483356.0000 - val_fn0.7: 1262280.0000 - val_precision0.7: 0.6789 - val_recall0.7: 0.7062 - val_tp 0.9: 2621404.0000 - val_fp0.9: 840233.0000 - val_tn0.9: 21077966.0000 - val_fn0.9: 1674798.0000 - val_precision0.9: 0.7573 - val_recall0.9: 0.6102 - val_accuracy: 0.8928 - val_auc: 0.9287 Epoch 17/50 1280/1280 [==============================] - 2214s 2s/step - loss: 0.2484 - tp0.1: 8227665.5144 - fp0.1: 3202591.7237 - tn0.1: 40740266.8517 - fn0.1: 340122.5121 - precision0.1: 0.7214 - recall0.1: 0.9603 - tp0.3: 7941320.1460 - fp0.3: 1633513.9258 - tn0.3: 42309362.5909 - fn0.3: 626467.8806 - precision0.3: 0.8301 - recall0.3: 0.9272 - tp0.5: 7558350.9258 - fp0.5: 804203.6698 - tn0.5: 43138639.2201 - fn0.5: 1009437.1007 - precision0.5: 0.9041 - recall0.5: 0.8831 - t p0.7: 7083529.7642 - fp0.7: 372694.8454 - tn0.7: 43570150.8829 - fn0.7: 1484258.2623 - precision0.7: 0.9501 - recall0.7: 0.8284 - tp0.9: 6341241.1249 - fp0.9: 113794.4754 - tn0.9: 43829043.6105 - fn0.9: 2226546.9016 - precision0.9: 0.9 824 - recall0.9: 0.7414 - accuracy: 0.9652 - auc: 0.9756 - val_loss: 0.5142 - val_tp0.1: 3628279.0000 - val_fp0.1: 2753615.0000 - val_tn0.1: 19485962.0000 - val_fn0.1: 346542.0000 - val_precision0.1: 0.5685 - val_recall0.1: 0.9128 - va l_tp0.3: 3324088.0000 - val_fp0.3: 2056425.0000 - val_tn0.3: 20183156.0000 - val_fn0.3: 650733.0000 - val_precision0.3: 0.6178 - val_recall0.3: 0.8363 - val_tp0.5: 2972065.0000 - val_fp0.5: 1467191.0000 - val_tn0.5: 20772396.0000 - val _fn0.5: 1002756.0000 - val_precision0.5: 0.6695 - val_recall0.5: 0.7477 - val_tp0.7: 2650974.0000 - val_fp0.7: 1083574.0000 - val_tn0.7: 21156004.0000 - val_fn0.7: 1323847.0000 - val_precision0.7: 0.7099 - val_recall0.7: 0.6669 - val_t p0.9: 2300149.0000 - val_fp0.9: 585684.0000 - val_tn0.9: 21653888.0000 - val_fn0.9: 1674672.0000 - val_precision0.9: 0.7970 - val_recall0.9: 0.5787 - val_accuracy: 0.9058 - val_auc: 0.9268 Epoch 18/50 1280/1280 [==============================] - 2223s 2s/step - loss: 0.2451 - tp0.1: 8257483.8283 - fp0.1: 3209709.3536 - tn0.1: 40707026.2334 - fn0.1: 336440.2756 - precision0.1: 0.7174 - recall0.1: 0.9618 - tp0.3: 7972148.5215 - fp0.3: 1611985.2998 - tn0.3: 42304753.9649 - fn0.3: 621775.5824 - precision0.3: 0.8295 - recall0.3: 0.9289 - tp0.5: 7592991.5839 - fp0.5: 801375.8977 - tn0.5: 43115384.3333 - fn0.5: 1000932.5199 - precision0.5: 0.9027 - recall0.5: 0.8847 - t p0.7: 7121459.2779 - fp0.7: 371705.6339 - tn0.7: 43545020.0328 - fn0.7: 1472464.8259 - precision0.7: 0.9492 - recall0.7: 0.8297 - tp0.9: 6381060.6097 - fp0.9: 111751.2303 - tn0.9: 43804981.0523 - fn0.9: 2212863.4941 - precision0.9: 0.9 823 - recall0.9: 0.7435 - accuracy: 0.9654 - auc: 0.9764 - val_loss: 0.5303 - val_tp0.1: 3950393.0000 - val_fp0.1: 2825498.0000 - val_tn0.1: 19094474.0000 - val_fn0.1: 344035.0000 - val_precision0.1: 0.5830 - val_recall0.1: 0.9199 - va l_tp0.3: 3645339.0000 - val_fp0.3: 2077885.0000 - val_tn0.3: 19842076.0000 - val_fn0.3: 649089.0000 - val_precision0.3: 0.6369 - val_recall0.3: 0.8489 - val_tp0.5: 3283330.0000 - val_fp0.5: 1558246.0000 - val_tn0.5: 20361722.0000 - val _fn0.5: 1011098.0000 - val_precision0.5: 0.6782 - val_recall0.5: 0.7646 - val_tp0.7: 2947342.0000 - val_fp0.7: 1176365.0000 - val_tn0.7: 20743604.0000 - val_fn0.7: 1347086.0000 - val_precision0.7: 0.7147 - val_recall0.7: 0.6863 - val_t p0.9: 2536959.0000 - val_fp0.9: 698850.0000 - val_tn0.9: 21221120.0000 - val_fn0.9: 1757469.0000 - val_precision0.9: 0.7840 - val_recall0.9: 0.5908 - val_accuracy: 0.9020 - val_auc: 0.9295 Epoch 19/50 1280/1280 [==============================] - 2211s 2s/step - loss: 0.2463 - tp0.1: 8262233.3575 - fp0.1: 3162400.5699 - tn0.1: 40752275.6565 - fn0.1: 333748.0101 - precision0.1: 0.7238 - recall0.1: 0.9607 - tp0.3: 7976781.4278 - fp0.3: 1621499.8923 - tn0.3: 42293181.6620 - fn0.3: 619199.9399 - precision0.3: 0.8316 - recall0.3: 0.9269 - tp0.5: 7600963.2264 - fp0.5: 819732.1842 - tn0.5: 43094936.0523 - fn0.5: 995018.1413 - precision0.5: 0.9028 - recall0.5: 0.8828 - tp 0.7: 7125748.6019 - fp0.7: 384384.1327 - tn0.7: 43530286.4083 - fn0.7: 1470232.7658 - precision0.7: 0.9489 - recall0.7: 0.8275 - tp0.9: 6355596.0687 - fp0.9: 116562.7260 - tn0.9: 43798125.0718 - fn0.9: 2240385.2990 - precision0.9: 0.98 20 - recall0.9: 0.7377 - accuracy: 0.9650 - auc: 0.9759 - val_loss: 0.5854 - val_tp0.1: 3832029.0000 - val_fp0.1: 3030240.0000 - val_tn0.1: 18976838.0000 - val_fn0.1: 375292.0000 - val_precision0.1: 0.5584 - val_recall0.1: 0.9108 - val _tp0.3: 3499789.0000 - val_fp0.3: 2341510.0000 - val_tn0.3: 19665576.0000 - val_fn0.3: 707532.0000 - val_precision0.3: 0.5991 - val_recall0.3: 0.8318 - val_tp0.5: 3162666.0000 - val_fp0.5: 1856596.0000 - val_tn0.5: 20150478.0000 - val_ fn0.5: 1044655.0000 - val_precision0.5: 0.6301 - val_recall0.5: 0.7517 - val_tp0.7: 2854187.0000 - val_fp0.7: 1428102.0000 - val_tn0.7: 20578972.0000 - val_fn0.7: 1353134.0000 - val_precision0.7: 0.6665 - val_recall0.7: 0.6784 - val_tp 0.9: 2488186.0000 - val_fp0.9: 879408.0000 - val_tn0.9: 21127672.0000 - val_fn0.9: 1719135.0000 - val_precision0.9: 0.7389 - val_recall0.9: 0.5914 - val_accuracy: 0.8893 - val_auc: 0.9201 Epoch 20/50 1280/1280 [==============================] - 2220s 2s/step - loss: 0.2304 - tp0.1: 8074195.9617 - fp0.1: 2966270.8033 - tn0.1: 41146339.4450 - fn0.1: 323842.2264 - precision0.1: 0.7319 - recall0.1: 0.9616 - tp0.3: 7805955.5699 - fp0.3: 1533470.4364 - tn0.3: 42579145.3279 - fn0.3: 592082.6183 - precision0.3: 0.8364 - recall0.3: 0.9297 - tp0.5: 7448954.0062 - fp0.5: 779671.7213 - tn0.5: 43332921.9258 - fn0.5: 949084.1819 - precision0.5: 0.9056 - recall0.5: 0.8873 - tp 0.7: 6997774.1819 - fp0.7: 363044.1397 - tn0.7: 43749575.7775 - fn0.7: 1400264.0062 - precision0.7: 0.9510 - recall0.7: 0.8336 - tp0.9: 6267801.5144 - fp0.9: 107614.1304 - tn0.9: 44004989.1429 - fn0.9: 2130236.6737 - precision0.9: 0.98 33 - recall0.9: 0.7471 - accuracy: 0.9673 - auc: 0.9771 - val_loss: 0.5968 - val_tp0.1: 3918274.0000 - val_fp0.1: 3250251.0000 - val_tn0.1: 18736068.0000 - val_fn0.1: 309803.0000 - val_precision0.1: 0.5466 - val_recall0.1: 0.9267 - val _tp0.3: 3617081.0000 - val_fp0.3: 2559029.0000 - val_tn0.3: 19427288.0000 - val_fn0.3: 610996.0000 - val_precision0.3: 0.5857 - val_recall0.3: 0.8555 - val_tp0.5: 3277656.0000 - val_fp0.5: 2084096.0000 - val_tn0.5: 19902236.0000 - val_ fn0.5: 950421.0000 - val_precision0.5: 0.6113 - val_recall0.5: 0.7752 - val_tp0.7: 2954727.0000 - val_fp0.7: 1696039.0000 - val_tn0.7: 20290280.0000 - val_fn0.7: 1273350.0000 - val_precision0.7: 0.6353 - val_recall0.7: 0.6988 - val_tp0 .9: 2580804.0000 - val_fp0.9: 1147305.0000 - val_tn0.9: 20839018.0000 - val_fn0.9: 1647273.0000 - val_precision0.9: 0.6923 - val_recall0.9: 0.6104 - val_accuracy: 0.8842 - val_auc: 0.9226 Epoch 21/50 1280/1280 [==============================] - 2204s 2s/step - loss: 0.2384 - tp0.1: 8140617.7596 - fp0.1: 3066144.5098 - tn0.1: 40972600.1975 - fn0.1: 331283.3044 - precision0.1: 0.7253 - recall0.1: 0.9608 - tp0.3: 7870474.5457 - fp0.3: 1553244.6440 - tn0.3: 42485524.1530 - fn0.3: 601426.5183 - precision0.3: 0.8351 - recall0.3: 0.9289 - tp0.5: 7506928.4785 - fp0.5: 777322.4692 - tn0.5: 43261445.7369 - fn0.5: 964972.5855 - precision0.5: 0.9063 - recall0.5: 0.8856 - tp 0.7: 7045491.5386 - fp0.7: 357699.5441 - tn0.7: 43681060.9094 - fn0.7: 1426409.5254 - precision0.7: 0.9516 - recall0.7: 0.8307 - tp0.9: 6309047.4247 - fp0.9: 104611.4294 - tn0.9: 43934120.4317 - fn0.9: 2162853.6393 - precision0.9: 0.98 35 - recall0.9: 0.7429 - accuracy: 0.9668 - auc: 0.9764 - val_loss: 0.5731 - val_tp0.1: 3942096.0000 - val_fp0.1: 2995461.0000 - val_tn0.1: 18887014.0000 - val_fn0.1: 389824.0000 - val_precision0.1: 0.5682 - val_recall0.1: 0.9100 - val _tp0.3: 3599028.0000 - val_fp0.3: 2149008.0000 - val_tn0.3: 19733476.0000 - val_fn0.3: 732892.0000 - val_precision0.3: 0.6261 - val_recall0.3: 0.8308 - val_tp0.5: 3252555.0000 - val_fp0.5: 1599632.0000 - val_tn0.5: 20282852.0000 - val_ fn0.5: 1079365.0000 - val_precision0.5: 0.6703 - val_recall0.5: 0.7508 - val_tp0.7: 2923628.0000 - val_fp0.7: 1191800.0000 - val_tn0.7: 20690680.0000 - val_fn0.7: 1408292.0000 - val_precision0.7: 0.7104 - val_recall0.7: 0.6749 - val_tp 0.9: 2521604.0000 - val_fp0.9: 728892.0000 - val_tn0.9: 21153588.0000 - val_fn0.9: 1810316.0000 - val_precision0.9: 0.7758 - val_recall0.9: 0.5821 - val_accuracy: 0.8978 - val_auc: 0.9225 Epoch 22/50 1280/1280 [==============================] - 2202s 2s/step - loss: 0.2325 - tp0.1: 8142655.7533 - fp0.1: 2988317.6230 - tn0.1: 41059668.6183 - fn0.1: 320016.3560 - precision0.1: 0.7319 - recall0.1: 0.9621 - tp0.3: 7871852.7736 - fp0.3: 1506270.7799 - tn0.3: 42541714.4848 - fn0.3: 590819.3357 - precision0.3: 0.8406 - recall0.3: 0.9295 - tp0.5: 7524881.3895 - fp0.5: 772793.9836 - tn0.5: 43275195.0945 - fn0.5: 937790.7198 - precision0.5: 0.9075 - recall0.5: 0.8882 - tp 0.7: 7077438.3216 - fp0.7: 364340.6877 - tn0.7: 43683658.4301 - fn0.7: 1385233.7877 - precision0.7: 0.9513 - recall0.7: 0.8352 - tp0.9: 6339229.0827 - fp0.9: 109004.6729 - tn0.9: 43938973.3130 - fn0.9: 2123443.0265 - precision0.9: 0.98 30 - recall0.9: 0.7477 - accuracy: 0.9672 - auc: 0.9774 - val_loss: 0.5088 - val_tp0.1: 4052314.0000 - val_fp0.1: 2813624.0000 - val_tn0.1: 18998480.0000 - val_fn0.1: 349977.0000 - val_precision0.1: 0.5902 - val_recall0.1: 0.9205 - val _tp0.3: 3687682.0000 - val_fp0.3: 1991405.0000 - val_tn0.3: 19820706.0000 - val_fn0.3: 714609.0000 - val_precision0.3: 0.6493 - val_recall0.3: 0.8377 - val_tp0.5: 3320706.0000 - val_fp0.5: 1380622.0000 - val_tn0.5: 20431490.0000 - val_ fn0.5: 1081585.0000 - val_precision0.5: 0.7063 - val_recall0.5: 0.7543 - val_tp0.7: 2967625.0000 - val_fp0.7: 953933.0000 - val_tn0.7: 20858176.0000 - val_fn0.7: 1434666.0000 - val_precision0.7: 0.7567 - val_recall0.7: 0.6741 - val_tp0 .9: 2531957.0000 - val_fp0.9: 497718.0000 - val_tn0.9: 21314390.0000 - val_fn0.9: 1870334.0000 - val_precision0.9: 0.8357 - val_recall0.9: 0.5751 - val_accuracy: 0.9061 - val_auc: 0.9328 Epoch 23/50 1280/1280 [==============================] - 2222s 2s/step - loss: 0.2366 - tp0.1: 8347653.8970 - fp0.1: 3081670.7681 - tn0.1: 40757305.4309 - fn0.1: 324014.3521 - precision0.1: 0.7290 - recall0.1: 0.9623 - tp0.3: 8070883.3950 - fp0.3: 1575587.0781 - tn0.3: 42263394.8119 - fn0.3: 600784.8540 - precision0.3: 0.8352 - recall0.3: 0.9305 - tp0.5: 7717891.5347 - fp0.5: 814813.8595 - tn0.5: 43024150.6456 - fn0.5: 953776.7143 - precision0.5: 0.9036 - recall0.5: 0.8895 - tp 0.7: 7268612.4356 - fp0.7: 391109.7408 - tn0.7: 43447878.6557 - fn0.7: 1403055.8134 - precision0.7: 0.9483 - recall0.7: 0.8378 - tp0.9: 6489543.3856 - fp0.9: 111622.6698 - tn0.9: 43727379.5621 - fn0.9: 2182124.8634 - precision0.9: 0.98 31 - recall0.9: 0.7476 - accuracy: 0.9663 - auc: 0.9772 - val_loss: 0.6052 - val_tp0.1: 3963049.0000 - val_fp0.1: 3225080.0000 - val_tn0.1: 18705446.0000 - val_fn0.1: 320823.0000 - val_precision0.1: 0.5513 - val_recall0.1: 0.9251 - val _tp0.3: 3674699.0000 - val_fp0.3: 2561181.0000 - val_tn0.3: 19369346.0000 - val_fn0.3: 609173.0000 - val_precision0.3: 0.5893 - val_recall0.3: 0.8578 - val_tp0.5: 3373791.0000 - val_fp0.5: 2127280.0000 - val_tn0.5: 19803252.0000 - val_ fn0.5: 910081.0000 - val_precision0.5: 0.6133 - val_recall0.5: 0.7876 - val_tp0.7: 3068979.0000 - val_fp0.7: 1731571.0000 - val_tn0.7: 20198960.0000 - val_fn0.7: 1214893.0000 - val_precision0.7: 0.6393 - val_recall0.7: 0.7164 - val_tp0 .9: 2716240.0000 - val_fp0.9: 1223118.0000 - val_tn0.9: 20707410.0000 - val_fn0.9: 1567632.0000 - val_precision0.9: 0.6895 - val_recall0.9: 0.6341 - val_accuracy: 0.8841 - val_auc: 0.9237 Epoch 24/50 1280/1280 [==============================] - 2204s 2s/step - loss: 0.2289 - tp0.1: 8179279.4356 - fp0.1: 3005191.0726 - tn0.1: 41009950.9407 - fn0.1: 316225.4254 - precision0.1: 0.7325 - recall0.1: 0.9631 - tp0.3: 7901240.7315 - fp0.3: 1504773.7026 - tn0.3: 42510372.7838 - fn0.3: 594264.1296 - precision0.3: 0.8407 - recall0.3: 0.9307 - tp0.5: 7554121.0180 - fp0.5: 777848.4996 - tn0.5: 43237301.8970 - fn0.5: 941383.8431 - precision0.5: 0.9069 - recall0.5: 0.8901 - tp 0.7: 7115199.6105 - fp0.7: 370807.8002 - tn0.7: 43644327.6066 - fn0.7: 1380305.2506 - precision0.7: 0.9505 - recall0.7: 0.8385 - tp0.9: 6375731.2256 - fp0.9: 109566.7822 - tn0.9: 43905607.9274 - fn0.9: 2119773.6354 - precision0.9: 0.98 30 - recall0.9: 0.7519 - accuracy: 0.9674 - auc: 0.9780 - val_loss: 0.5914 - val_tp0.1: 4024334.0000 - val_fp0.1: 3404652.0000 - val_tn0.1: 18506274.0000 - val_fn0.1: 279143.0000 - val_precision0.1: 0.5417 - val_recall0.1: 0.9351 - val _tp0.3: 3754317.0000 - val_fp0.3: 2715350.0000 - val_tn0.3: 19195568.0000 - val_fn0.3: 549160.0000 - val_precision0.3: 0.5803 - val_recall0.3: 0.8724 - val_tp0.5: 3470133.0000 - val_fp0.5: 2252806.0000 - val_tn0.5: 19658116.0000 - val_ fn0.5: 833344.0000 - val_precision0.5: 0.6064 - val_recall0.5: 0.8064 - val_tp0.7: 3161773.0000 - val_fp0.7: 1777262.0000 - val_tn0.7: 20133664.0000 - val_fn0.7: 1141704.0000 - val_precision0.7: 0.6402 - val_recall0.7: 0.7347 - val_tp0 .9: 2787618.0000 - val_fp0.9: 1197991.0000 - val_tn0.9: 20712926.0000 - val_fn0.9: 1515859.0000 - val_precision0.9: 0.6994 - val_recall0.9: 0.6478 - val_accuracy: 0.8823 - val_auc: 0.9283 Epoch 25/50 1280/1280 [==============================] - 2226s 2s/step - loss: 0.2252 - tp0.1: 8291979.4137 - fp0.1: 2984606.2982 - tn0.1: 40931178.3692 - fn0.1: 302890.0656 - precision0.1: 0.7344 - recall0.1: 0.9653 - tp0.3: 8019589.6370 - fp0.3: 1494741.8806 - tn0.3: 42421057.4286 - fn0.3: 575279.8423 - precision0.3: 0.8422 - recall0.3: 0.9335 - tp0.5: 7686923.1866 - fp0.5: 778234.4176 - tn0.5: 43137535.1632 - fn0.5: 907946.2927 - precision0.5: 0.9079 - recall0.5: 0.8947 - tp 0.7: 7250107.4707 - fp0.7: 372459.3240 - tn0.7: 43543354.1975 - fn0.7: 1344762.0086 - precision0.7: 0.9509 - recall0.7: 0.8437 - tp0.9: 6493233.8290 - fp0.9: 107705.5613 - tn0.9: 43808088.1733 - fn0.9: 2101635.6503 - precision0.9: 0.98 38 - recall0.9: 0.7548 - accuracy: 0.9677 - auc: 0.9792 - val_loss: 0.5570 - val_tp0.1: 3995650.0000 - val_fp0.1: 3060009.0000 - val_tn0.1: 18836932.0000 - val_fn0.1: 321813.0000 - val_precision0.1: 0.5663 - val_recall0.1: 0.9255 - val _tp0.3: 3674821.0000 - val_fp0.3: 2374036.0000 - val_tn0.3: 19522900.0000 - val_fn0.3: 642642.0000 - val_precision0.3: 0.6075 - val_recall0.3: 0.8512 - val_tp0.5: 3346516.0000 - val_fp0.5: 1900974.0000 - val_tn0.5: 19995958.0000 - val_ fn0.5: 970947.0000 - val_precision0.5: 0.6377 - val_recall0.5: 0.7751 - val_tp0.7: 3018485.0000 - val_fp0.7: 1460209.0000 - val_tn0.7: 20436728.0000 - val_fn0.7: 1298978.0000 - val_precision0.7: 0.6740 - val_recall0.7: 0.6991 - val_tp0 .9: 2609054.0000 - val_fp0.9: 880392.0000 - val_tn0.9: 21016544.0000 - val_fn0.9: 1708409.0000 - val_precision0.9: 0.7477 - val_recall0.9: 0.6043 - val_accuracy: 0.8904 - val_auc: 0.9280 Epoch 26/50 1280/1280 [==============================] - 2216s 2s/step - loss: 0.2287 - tp0.1: 8319398.9969 - fp0.1: 2952438.8306 - tn0.1: 40921029.8501 - fn0.1: 317787.0890 - precision0.1: 0.7394 - recall0.1: 0.9635 - tp0.3: 8049496.8860 - fp0.3: 1491537.2982 - tn0.3: 42381938.1233 - fn0.3: 587689.1998 - precision0.3: 0.8439 - recall0.3: 0.9326 - tp0.5: 7714917.0734 - fp0.5: 782715.8696 - tn0.5: 43090766.7041 - fn0.5: 922269.0125 - precision0.5: 0.9077 - recall0.5: 0.8941 - tp 0.7: 7279420.8743 - fp0.7: 371072.6573 - tn0.7: 43502429.9672 - fn0.7: 1357765.2116 - precision0.7: 0.9513 - recall0.7: 0.8438 - tp0.9: 6527109.8852 - fp0.9: 103689.7635 - tn0.9: 43769772.2685 - fn0.9: 2110076.2006 - precision0.9: 0.98 45 - recall0.9: 0.7564 - accuracy: 0.9674 - auc: 0.9783 - val_loss: 0.5787 - val_tp0.1: 3910190.0000 - val_fp0.1: 3250030.0000 - val_tn0.1: 18794728.0000 - val_fn0.1: 259453.0000 - val_precision0.1: 0.5461 - val_recall0.1: 0.9378 - val _tp0.3: 3639624.0000 - val_fp0.3: 2570780.0000 - val_tn0.3: 19473980.0000 - val_fn0.3: 530019.0000 - val_precision0.3: 0.5861 - val_recall0.3: 0.8729 - val_tp0.5: 3361012.0000 - val_fp0.5: 2146148.0000 - val_tn0.5: 19898600.0000 - val_ fn0.5: 808631.0000 - val_precision0.5: 0.6103 - val_recall0.5: 0.8061 - val_tp0.7: 3051142.0000 - val_fp0.7: 1790049.0000 - val_tn0.7: 20254708.0000 - val_fn0.7: 1118501.0000 - val_precision0.7: 0.6302 - val_recall0.7: 0.7318 - val_tp0 .9: 2683794.0000 - val_fp0.9: 1283960.0000 - val_tn0.9: 20760796.0000 - val_fn0.9: 1485849.0000 - val_precision0.9: 0.6764 - val_recall0.9: 0.6437 - val_accuracy: 0.8873 - val_auc: 0.9297 Epoch 27/50 1280/1280 [==============================] - 2202s 2s/step - loss: 0.2301 - tp0.1: 8107973.9399 - fp0.1: 2902140.6105 - tn0.1: 41182030.2319 - fn0.1: 318498.9274 - precision0.1: 0.7370 - recall0.1: 0.9620 - tp0.3: 7841754.6401 - fp0.3: 1478702.1952 - tn0.3: 42605477.3365 - fn0.3: 584718.2272 - precision0.3: 0.8414 - recall0.3: 0.9300 - tp0.5: 7511893.1749 - fp0.5: 775511.8610 - tn0.5: 43308683.9024 - fn0.5: 914579.6924 - precision0.5: 0.9061 - recall0.5: 0.8905 - tp 0.7: 7075173.0062 - fp0.7: 368300.9977 - tn0.7: 43715881.6714 - fn0.7: 1351299.8610 - precision0.7: 0.9500 - recall0.7: 0.8385 - tp0.9: 6326135.5004 - fp0.9: 105903.6909 - tn0.9: 43978285.1374 - fn0.9: 2100337.3669 - precision0.9: 0.98 29 - recall0.9: 0.7495 - accuracy: 0.9673 - auc: 0.9774 - val_loss: 0.5563 - val_tp0.1: 3973953.0000 - val_fp0.1: 3033629.0000 - val_tn0.1: 18923208.0000 - val_fn0.1: 283603.0000 - val_precision0.1: 0.5671 - val_recall0.1: 0.9334 - val _tp0.3: 3702270.0000 - val_fp0.3: 2375708.0000 - val_tn0.3: 19581140.0000 - val_fn0.3: 555286.0000 - val_precision0.3: 0.6091 - val_recall0.3: 0.8696 - val_tp0.5: 3427641.0000 - val_fp0.5: 1972155.0000 - val_tn0.5: 19984684.0000 - val_ fn0.5: 829915.0000 - val_precision0.5: 0.6348 - val_recall0.5: 0.8051 - val_tp0.7: 3124472.0000 - val_fp0.7: 1581643.0000 - val_tn0.7: 20375196.0000 - val_fn0.7: 1133084.0000 - val_precision0.7: 0.6639 - val_recall0.7: 0.7339 - val_tp0 .9: 2757974.0000 - val_fp0.9: 1109127.0000 - val_tn0.9: 20847720.0000 - val_fn0.9: 1499582.0000 - val_precision0.9: 0.7132 - val_recall0.9: 0.6478 - val_accuracy: 0.8931 - val_auc: 0.9321 Epoch 28/50 1280/1280 [==============================] - 2087s 2s/step - loss: 0.2197 - tp0.1: 8160795.8228 - fp0.1: 2901034.4309 - tn0.1: 41142814.8181 - fn0.1: 306021.3466 - precision0.1: 0.7381 - recall0.1: 0.9644 - tp0.3: 7892365.4137 - fp0.3: 1440828.1148 - tn0.3: 42603028.9719 - fn0.3: 574451.7557 - precision0.3: 0.8461 - recall0.3: 0.9326 - tp0.5: 7566706.5480 - fp0.5: 755226.4699 - tn0.5: 43288602.1678 - fn0.5: 900110.6214 - precision0.5: 0.9096 - recall0.5: 0.8942 - tp 0.7: 7138328.0726 - fp0.7: 359169.3607 - tn0.7: 43684677.2763 - fn0.7: 1328489.0968 - precision0.7: 0.9523 - recall0.7: 0.8435 - tp0.9: 6407064.9711 - fp0.9: 100987.8735 - tn0.9: 43942848.2186 - fn0.9: 2059752.1983 - precision0.9: 0.98 47 - recall0.9: 0.7566 - accuracy: 0.9687 - auc: 0.9791 - val_loss: 0.4500 - val_tp0.1: 3927337.0000 - val_fp0.1: 2709904.0000 - val_tn0.1: 19279502.0000 - val_fn0.1: 297660.0000 - val_precision0.1: 0.5917 - val_recall0.1: 0.9295 - val _tp0.3: 3622327.0000 - val_fp0.3: 1934449.0000 - val_tn0.3: 20054960.0000 - val_fn0.3: 602670.0000 - val_precision0.3: 0.6519 - val_recall0.3: 0.8574 - val_tp0.5: 3304686.0000 - val_fp0.5: 1267577.0000 - val_tn0.5: 20721824.0000 - val_ fn0.5: 920311.0000 - val_precision0.5: 0.7228 - val_recall0.5: 0.7822 - val_tp0.7: 2969971.0000 - val_fp0.7: 803372.0000 - val_tn0.7: 21186032.0000 - val_fn0.7: 1255026.0000 - val_precision0.7: 0.7871 - val_recall0.7: 0.7030 - val_tp0. 9: 2545450.0000 - val_fp0.9: 373527.0000 - val_tn0.9: 21615866.0000 - val_fn0.9: 1679547.0000 - val_precision0.9: 0.8720 - val_recall0.9: 0.6025 - val_accuracy: 0.9165 - val_auc: 0.9426 Epoch 29/50 1280/1280 [==============================] - 1968s 2s/step - loss: 0.2223 - tp0.1: 8375369.2490 - fp0.1: 2828068.0578 - tn0.1: 41000432.9828 - fn0.1: 306798.1413 - precision0.1: 0.7500 - recall0.1: 0.9648 - tp0.3: 8117816.3411 - fp0.3: 1454670.2927 - tn0.3: 42373821.8306 - fn0.3: 564351.0492 - precision0.3: 0.8489 - recall0.3: 0.9354 - tp0.5: 7795654.3497 - fp0.5: 777398.3349 - tn0.5: 43051103.4832 - fn0.5: 886513.0406 - precision0.5: 0.9098 - recall0.5: 0.8987 - tp 0.7: 7368227.7635 - fp0.7: 376034.1069 - tn0.7: 43452466.5371 - fn0.7: 1313939.6269 - precision0.7: 0.9517 - recall0.7: 0.8498 - tp0.9: 6617754.3536 - fp0.9: 111597.3193 - tn0.9: 43716853.5761 - fn0.9: 2064413.0367 - precision0.9: 0.98 35 - recall0.9: 0.7637 - accuracy: 0.9681 - auc: 0.9792 - val_loss: 0.5416 - val_tp0.1: 3960357.0000 - val_fp0.1: 3230144.0000 - val_tn0.1: 18775996.0000 - val_fn0.1: 247899.0000 - val_precision0.1: 0.5508 - val_recall0.1: 0.9411 - val _tp0.3: 3709415.0000 - val_fp0.3: 2490342.0000 - val_tn0.3: 19515800.0000 - val_fn0.3: 498841.0000 - val_precision0.3: 0.5983 - val_recall0.3: 0.8815 - val_tp0.5: 3451033.0000 - val_fp0.5: 2038241.0000 - val_tn0.5: 19967904.0000 - val_ fn0.5: 757223.0000 - val_precision0.5: 0.6287 - val_recall0.5: 0.8201 - val_tp0.7: 3148179.0000 - val_fp0.7: 1621294.0000 - val_tn0.7: 20384850.0000 - val_fn0.7: 1060077.0000 - val_precision0.7: 0.6601 - val_recall0.7: 0.7481 - val_tp0 .9: 2788544.0000 - val_fp0.9: 1101598.0000 - val_tn0.9: 20904542.0000 - val_fn0.9: 1419712.0000 - val_precision0.9: 0.7168 - val_recall0.9: 0.6626 - val_accuracy: 0.8934 - val_auc: 0.9369 Epoch 30/50 1280/1280 [==============================] - 1987s 2s/step - loss: 0.2171 - tp0.1: 8237924.9360 - fp0.1: 2817507.8111 - tn0.1: 41152156.1608 - fn0.1: 303072.4856 - precision0.1: 0.7480 - recall0.1: 0.9644 - tp0.3: 7981439.7697 - fp0.3: 1425495.2022 - tn0.3: 42544167.9969 - fn0.3: 559557.6518 - precision0.3: 0.8500 - recall0.3: 0.9347 - tp0.5: 7663120.4309 - fp0.5: 752759.7705 - tn0.5: 43216900.0492 - fn0.5: 877876.9906 - precision0.5: 0.9116 - recall0.5: 0.8978 - tp 0.7: 7238382.6721 - fp0.7: 357392.6354 - tn0.7: 43612263.4215 - fn0.7: 1302614.7494 - precision0.7: 0.9538 - recall0.7: 0.8481 - tp0.9: 6495143.9938 - fp0.9: 101203.1015 - tn0.9: 43868469.8891 - fn0.9: 2045853.4278 - precision0.9: 0.98 52 - recall0.9: 0.7605 - accuracy: 0.9692 - auc: 0.9793 - val_loss: 0.5477 - val_tp0.1: 4026668.0000 - val_fp0.1: 3118480.0000 - val_tn0.1: 18786898.0000 - val_fn0.1: 282350.0000 - val_precision0.1: 0.5636 - val_recall0.1: 0.9345 - val _tp0.3: 3769431.0000 - val_fp0.3: 2411082.0000 - val_tn0.3: 19494304.0000 - val_fn0.3: 539587.0000 - val_precision0.3: 0.6099 - val_recall0.3: 0.8748 - val_tp0.5: 3496580.0000 - val_fp0.5: 1951231.0000 - val_tn0.5: 19954152.0000 - val_ fn0.5: 812438.0000 - val_precision0.5: 0.6418 - val_recall0.5: 0.8115 - val_tp0.7: 3175729.0000 - val_fp0.7: 1538001.0000 - val_tn0.7: 20367384.0000 - val_fn0.7: 1133289.0000 - val_precision0.7: 0.6737 - val_recall0.7: 0.7370 - val_tp0 .9: 2769656.0000 - val_fp0.9: 1014413.0000 - val_tn0.9: 20890968.0000 - val_fn0.9: 1539362.0000 - val_precision0.9: 0.7319 - val_recall0.9: 0.6428 - val_accuracy: 0.8946 - val_auc: 0.9332 Epoch 31/50 1280/1280 [==============================] - 1975s 2s/step - loss: 0.2140 - tp0.1: 8254893.9524 - fp0.1: 2820541.8767 - tn0.1: 41143836.3778 - fn0.1: 291401.7947 - precision0.1: 0.7449 - recall0.1: 0.9663 - tp0.3: 8001833.3880 - fp0.3: 1415982.6237 - tn0.3: 42548340.3044 - fn0.3: 544462.3591 - precision0.3: 0.8490 - recall0.3: 0.9370 - tp0.5: 7689740.5105 - fp0.5: 749876.5176 - tn0.5: 43214484.3458 - fn0.5: 856555.2365 - precision0.5: 0.9104 - recall0.5: 0.9008 - tp 0.7: 7273005.2974 - fp0.7: 357730.3216 - tn0.7: 43606618.3302 - fn0.7: 1273290.4496 - precision0.7: 0.9525 - recall0.7: 0.8527 - tp0.9: 6528857.1772 - fp0.9: 101215.2264 - tn0.9: 43863149.4848 - fn0.9: 2017438.5699 - precision0.9: 0.98 45 - recall0.9: 0.7661 - accuracy: 0.9694 - auc: 0.9801 - val_loss: 0.6223 - val_tp0.1: 3930460.0000 - val_fp0.1: 3394464.0000 - val_tn0.1: 18612148.0000 - val_fn0.1: 277327.0000 - val_precision0.1: 0.5366 - val_recall0.1: 0.9341 - val _tp0.3: 3651274.0000 - val_fp0.3: 2652264.0000 - val_tn0.3: 19354352.0000 - val_fn0.3: 556513.0000 - val_precision0.3: 0.5792 - val_recall0.3: 0.8677 - val_tp0.5: 3363770.0000 - val_fp0.5: 2181393.0000 - val_tn0.5: 19825220.0000 - val_ fn0.5: 844017.0000 - val_precision0.5: 0.6066 - val_recall0.5: 0.7994 - val_tp0.7: 3042185.0000 - val_fp0.7: 1805943.0000 - val_tn0.7: 20200670.0000 - val_fn0.7: 1165602.0000 - val_precision0.7: 0.6275 - val_recall0.7: 0.7230 - val_tp0 .9: 2649971.0000 - val_fp0.9: 1376978.0000 - val_tn0.9: 20629630.0000 - val_fn0.9: 1557816.0000 - val_precision0.9: 0.6581 - val_recall0.9: 0.6298 - val_accuracy: 0.8846 - val_auc: 0.9230 Epoch 32/50 1280/1280 [==============================] - 1985s 2s/step - loss: 0.2162 - tp0.1: 8168329.4106 - fp0.1: 2823874.2186 - tn0.1: 41219292.6159 - fn0.1: 299147.5254 - precision0.1: 0.7416 - recall0.1: 0.9648 - tp0.3: 7902494.5543 - fp0.3: 1406775.2030 - tn0.3: 42636384.1311 - fn0.3: 564982.3817 - precision0.3: 0.8486 - recall0.3: 0.9329 - tp0.5: 7587653.1304 - fp0.5: 746883.7400 - tn0.5: 43296303.4005 - fn0.5: 879823.8056 - precision0.5: 0.9100 - recall0.5: 0.8957 - tp 0.7: 7172023.5183 - fp0.7: 358490.8813 - tn0.7: 43684701.1390 - fn0.7: 1295453.4176 - precision0.7: 0.9519 - recall0.7: 0.8466 - tp0.9: 6440127.4231 - fp0.9: 99619.9977 - tn0.9: 43943567.7978 - fn0.9: 2027349.5129 - precision0.9: 0.984 4 - recall0.9: 0.7605 - accuracy: 0.9691 - auc: 0.9792 - val_loss: 0.5922 - val_tp0.1: 4021661.0000 - val_fp0.1: 3341968.0000 - val_tn0.1: 18581152.0000 - val_fn0.1: 269622.0000 - val_precision0.1: 0.5462 - val_recall0.1: 0.9372 - val_ tp0.3: 3723109.0000 - val_fp0.3: 2641493.0000 - val_tn0.3: 19281632.0000 - val_fn0.3: 568174.0000 - val_precision0.3: 0.5850 - val_recall0.3: 0.8676 - val_tp0.5: 3417861.0000 - val_fp0.5: 2185964.0000 - val_tn0.5: 19737154.0000 - val_f n0.5: 873422.0000 - val_precision0.5: 0.6099 - val_recall0.5: 0.7965 - val_tp0.7: 3082813.0000 - val_fp0.7: 1779173.0000 - val_tn0.7: 20143952.0000 - val_fn0.7: 1208470.0000 - val_precision0.7: 0.6341 - val_recall0.7: 0.7184 - val_tp0. 9: 2687718.0000 - val_fp0.9: 1223941.0000 - val_tn0.9: 20699176.0000 - val_fn0.9: 1603565.0000 - val_precision0.9: 0.6871 - val_recall0.9: 0.6263 - val_accuracy: 0.8833 - val_auc: 0.9267 Epoch 33/50 1280/1280 [==============================] - 1990s 2s/step - loss: 0.2153 - tp0.1: 8159566.2951 - fp0.1: 2769324.2404 - tn0.1: 41293176.3880 - fn0.1: 288608.7385 - precision0.1: 0.7434 - recall0.1: 0.9660 - tp0.3: 7912034.2069 - fp0.3: 1418334.3794 - tn0.3: 42644140.5886 - fn0.3: 536140.8267 - precision0.3: 0.8451 - recall0.3: 0.9365 - tp0.5: 7606237.6534 - fp0.5: 760974.3443 - tn0.5: 43301518.3575 - fn0.5: 841937.3802 - precision0.5: 0.9067 - recall0.5: 0.9000 - tp 0.7: 7188970.2584 - fp0.7: 368072.7486 - tn0.7: 43694407.5129 - fn0.7: 1259204.7752 - precision0.7: 0.9494 - recall0.7: 0.8501 - tp0.9: 6447265.7268 - fp0.9: 106096.6183 - tn0.9: 43956391.5020 - fn0.9: 2000909.3068 - precision0.9: 0.98 25 - recall0.9: 0.7622 - accuracy: 0.9690 - auc: 0.9797 - val_loss: 0.6103 - val_tp0.1: 4142693.0000 - val_fp0.1: 3021502.0000 - val_tn0.1: 18751128.0000 - val_fn0.1: 299079.0000 - val_precision0.1: 0.5782 - val_recall0.1: 0.9327 - val _tp0.3: 3873213.0000 - val_fp0.3: 2448264.0000 - val_tn0.3: 19324360.0000 - val_fn0.3: 568559.0000 - val_precision0.3: 0.6127 - val_recall0.3: 0.8720 - val_tp0.5: 3610020.0000 - val_fp0.5: 2106610.0000 - val_tn0.5: 19666014.0000 - val_ fn0.5: 831752.0000 - val_precision0.5: 0.6315 - val_recall0.5: 0.8127 - val_tp0.7: 3302152.0000 - val_fp0.7: 1796893.0000 - val_tn0.7: 19975734.0000 - val_fn0.7: 1139620.0000 - val_precision0.7: 0.6476 - val_recall0.7: 0.7434 - val_tp0 .9: 2940645.0000 - val_fp0.9: 1387374.0000 - val_tn0.9: 20385260.0000 - val_fn0.9: 1501127.0000 - val_precision0.9: 0.6794 - val_recall0.9: 0.6620 - val_accuracy: 0.8879 - val_auc: 0.9267 Epoch 34/50 1280/1280 [==============================] - 1975s 2s/step - loss: 0.2140 - tp0.1: 8354952.6027 - fp0.1: 2805323.7728 - tn0.1: 41057643.9641 - fn0.1: 292731.8275 - precision0.1: 0.7496 - recall0.1: 0.9661 - tp0.3: 8100316.4520 - fp0.3: 1408795.9087 - tn0.3: 42454187.0320 - fn0.3: 547367.9781 - precision0.3: 0.8514 - recall0.3: 0.9370 - tp0.5: 7794247.9141 - fp0.5: 754289.6760 - tn0.5: 43108644.9532 - fn0.5: 853436.5160 - precision0.5: 0.9115 - recall0.5: 0.9017 - tp 0.7: 7381753.1905 - fp0.7: 366912.4387 - tn0.7: 43496065.3107 - fn0.7: 1265931.2397 - precision0.7: 0.9524 - recall0.7: 0.8539 - tp0.9: 6643385.3435 - fp0.9: 104367.8337 - tn0.9: 43758580.2849 - fn0.9: 2004299.0867 - precision0.9: 0.98 45 - recall0.9: 0.7683 - accuracy: 0.9694 - auc: 0.9801 - val_loss: 0.6624 - val_tp0.1: 3856354.0000 - val_fp0.1: 3145321.0000 - val_tn0.1: 18842388.0000 - val_fn0.1: 370344.0000 - val_precision0.1: 0.5508 - val_recall0.1: 0.9124 - val _tp0.3: 3549372.0000 - val_fp0.3: 2542341.0000 - val_tn0.3: 19445350.0000 - val_fn0.3: 677326.0000 - val_precision0.3: 0.5827 - val_recall0.3: 0.8398 - val_tp0.5: 3241294.0000 - val_fp0.5: 2119984.0000 - val_tn0.5: 19867720.0000 - val_ fn0.5: 985404.0000 - val_precision0.5: 0.6046 - val_recall0.5: 0.7669 - val_tp0.7: 2930029.0000 - val_fp0.7: 1781338.0000 - val_tn0.7: 20206368.0000 - val_fn0.7: 1296669.0000 - val_precision0.7: 0.6219 - val_recall0.7: 0.6932 - val_tp0 .9: 2550993.0000 - val_fp0.9: 1347073.0000 - val_tn0.9: 20640632.0000 - val_fn0.9: 1675705.0000 - val_precision0.9: 0.6544 - val_recall0.9: 0.6035 - val_accuracy: 0.8815 - val_auc: 0.9118 Epoch 35/50 1280/1280 [==============================] - 1979s 2s/step - loss: 0.2136 - tp0.1: 8121225.3489 - fp0.1: 2767519.3271 - tn0.1: 41328977.4340 - fn0.1: 292944.1897 - precision0.1: 0.7441 - recall0.1: 0.9648 - tp0.3: 7867775.7931 - fp0.3: 1380664.7354 - tn0.3: 42715785.1093 - fn0.3: 546393.7455 - precision0.3: 0.8496 - recall0.3: 0.9344 - tp0.5: 7568656.2834 - fp0.5: 741064.5824 - tn0.5: 43355403.8126 - fn0.5: 845513.2553 - precision0.5: 0.9099 - recall0.5: 0.8989 - tp 0.7: 7163273.2842 - fp0.7: 355917.4442 - tn0.7: 43740534.9688 - fn0.7: 1250896.2545 - precision0.7: 0.9521 - recall0.7: 0.8507 - tp0.9: 6427745.3263 - fp0.9: 99399.9547 - tn0.9: 43997102.2342 - fn0.9: 1986424.2123 - precision0.9: 0.984 3 - recall0.9: 0.7629 - accuracy: 0.9697 - auc: 0.9794 - val_loss: 0.6109 - val_tp0.1: 3805391.0000 - val_fp0.1: 3155702.0000 - val_tn0.1: 18859740.0000 - val_fn0.1: 393569.0000 - val_precision0.1: 0.5467 - val_recall0.1: 0.9063 - val_ tp0.3: 3505616.0000 - val_fp0.3: 2482634.0000 - val_tn0.3: 19532808.0000 - val_fn0.3: 693344.0000 - val_precision0.3: 0.5854 - val_recall0.3: 0.8349 - val_tp0.5: 3205095.0000 - val_fp0.5: 1968560.0000 - val_tn0.5: 20046874.0000 - val_f n0.5: 993865.0000 - val_precision0.5: 0.6195 - val_recall0.5: 0.7633 - val_tp0.7: 2889262.0000 - val_fp0.7: 1535981.0000 - val_tn0.7: 20479460.0000 - val_fn0.7: 1309698.0000 - val_precision0.7: 0.6529 - val_recall0.7: 0.6881 - val_tp0. 9: 2477042.0000 - val_fp0.9: 982485.0000 - val_tn0.9: 21032952.0000 - val_fn0.9: 1721918.0000 - val_precision0.9: 0.7160 - val_recall0.9: 0.5899 - val_accuracy: 0.8870 - val_auc: 0.9160 Epoch 36/50 1280/1280 [==============================] - 1979s 2s/step - loss: 0.2059 - tp0.1: 8126280.0625 - fp0.1: 2646687.9227 - tn0.1: 41454888.0211 - fn0.1: 282807.8095 - precision0.1: 0.7538 - recall0.1: 0.9656 - tp0.3: 7878883.7135 - fp0.3: 1323333.3552 - tn0.3: 42778233.2834 - fn0.3: 530204.1585 - precision0.3: 0.8559 - recall0.3: 0.9362 - tp0.5: 7591944.3318 - fp0.5: 712271.5222 - tn0.5: 43389291.7783 - fn0.5: 817143.5402 - precision0.5: 0.9140 - recall0.5: 0.9022 - tp 0.7: 7203686.0226 - fp0.7: 343437.4106 - tn0.7: 43758143.1655 - fn0.7: 1205401.8493 - precision0.7: 0.9542 - recall0.7: 0.8564 - tp0.9: 6507343.4036 - fp0.9: 97816.8470 - tn0.9: 44003797.8345 - fn0.9: 1901744.4684 - precision0.9: 0.985 0 - recall0.9: 0.7738 - accuracy: 0.9709 - auc: 0.9801 - val_loss: 0.5870 - val_tp0.1: 4142690.0000 - val_fp0.1: 3187548.0000 - val_tn0.1: 18594374.0000 - val_fn0.1: 289788.0000 - val_precision0.1: 0.5652 - val_recall0.1: 0.9346 - val_ tp0.3: 3873916.0000 - val_fp0.3: 2590674.0000 - val_tn0.3: 19191250.0000 - val_fn0.3: 558562.0000 - val_precision0.3: 0.5993 - val_recall0.3: 0.8740 - val_tp0.5: 3589951.0000 - val_fp0.5: 2186008.0000 - val_tn0.5: 19595906.0000 - val_f n0.5: 842527.0000 - val_precision0.5: 0.6215 - val_recall0.5: 0.8099 - val_tp0.7: 3248583.0000 - val_fp0.7: 1758534.0000 - val_tn0.7: 20023388.0000 - val_fn0.7: 1183895.0000 - val_precision0.7: 0.6488 - val_recall0.7: 0.7329 - val_tp0. 9: 2813690.0000 - val_fp0.9: 1197675.0000 - val_tn0.9: 20584246.0000 - val_fn0.9: 1618788.0000 - val_precision0.9: 0.7014 - val_recall0.9: 0.6348 - val_accuracy: 0.8845 - val_auc: 0.9275 Epoch 37/50 1280/1280 [==============================] - 1993s 2s/step - loss: 0.2130 - tp0.1: 8244281.2553 - fp0.1: 2777623.1632 - tn0.1: 41197305.6495 - fn0.1: 291461.3638 - precision0.1: 0.7465 - recall0.1: 0.9665 - tp0.3: 7992234.6581 - fp0.3: 1376180.9282 - tn0.3: 42598749.7158 - fn0.3: 543507.9610 - precision0.3: 0.8514 - recall0.3: 0.9375 - tp0.5: 7696124.9321 - fp0.5: 737935.7494 - tn0.5: 43236985.3677 - fn0.5: 839617.6870 - precision0.5: 0.9113 - recall0.5: 0.9031 - tp 0.7: 7289915.6175 - fp0.7: 354145.8751 - tn0.7: 43620781.5706 - fn0.7: 1245827.0016 - precision0.7: 0.9529 - recall0.7: 0.8559 - tp0.9: 6568139.6253 - fp0.9: 99108.1030 - tn0.9: 43875848.4980 - fn0.9: 1967602.9938 - precision0.9: 0.985 0 - recall0.9: 0.7707 - accuracy: 0.9697 - auc: 0.9803 - val_loss: 0.6359 - val_tp0.1: 3972718.0000 - val_fp0.1: 2970398.0000 - val_tn0.1: 18895362.0000 - val_fn0.1: 375917.0000 - val_precision0.1: 0.5722 - val_recall0.1: 0.9136 - val_ tp0.3: 3696968.0000 - val_fp0.3: 2407542.0000 - val_tn0.3: 19458224.0000 - val_fn0.3: 651667.0000 - val_precision0.3: 0.6056 - val_recall0.3: 0.8501 - val_tp0.5: 3418831.0000 - val_fp0.5: 2053387.0000 - val_tn0.5: 19812380.0000 - val_f n0.5: 929804.0000 - val_precision0.5: 0.6248 - val_recall0.5: 0.7862 - val_tp0.7: 3101481.0000 - val_fp0.7: 1742891.0000 - val_tn0.7: 20122868.0000 - val_fn0.7: 1247154.0000 - val_precision0.7: 0.6402 - val_recall0.7: 0.7132 - val_tp0. 9: 2727270.0000 - val_fp0.9: 1316358.0000 - val_tn0.9: 20549408.0000 - val_fn0.9: 1621365.0000 - val_precision0.9: 0.6745 - val_recall0.9: 0.6272 - val_accuracy: 0.8862 - val_auc: 0.9173 Epoch 38/50 1280/1280 [==============================] - 1988s 2s/step - loss: 0.2095 - tp0.1: 8322547.4973 - fp0.1: 2736467.1725 - tn0.1: 41169366.0554 - fn0.1: 282238.6792 - precision0.1: 0.7515 - recall0.1: 0.9670 - tp0.3: 8066398.6003 - fp0.3: 1365148.2873 - tn0.3: 42540740.5316 - fn0.3: 538387.5761 - precision0.3: 0.8549 - recall0.3: 0.9365 - tp0.5: 7770556.2529 - fp0.5: 735978.7931 - tn0.5: 43169885.3575 - fn0.5: 834229.9235 - precision0.5: 0.9132 - recall0.5: 0.9022 - tp 0.7: 7368501.9875 - fp0.7: 354363.2201 - tn0.7: 43551529.7572 - fn0.7: 1236284.1889 - precision0.7: 0.9541 - recall0.7: 0.8557 - tp0.9: 6640326.0984 - fp0.9: 97963.4192 - tn0.9: 43807909.1975 - fn0.9: 1964460.0781 - precision0.9: 0.985 5 - recall0.9: 0.7709 - accuracy: 0.9698 - auc: 0.9806 - val_loss: 0.5532 - val_tp0.1: 4070077.0000 - val_fp0.1: 3091837.0000 - val_tn0.1: 18834880.0000 - val_fn0.1: 217612.0000 - val_precision0.1: 0.5683 - val_recall0.1: 0.9492 - val_ tp0.3: 3841354.0000 - val_fp0.3: 2343330.0000 - val_tn0.3: 19583380.0000 - val_fn0.3: 446335.0000 - val_precision0.3: 0.6211 - val_recall0.3: 0.8959 - val_tp0.5: 3610309.0000 - val_fp0.5: 1940937.0000 - val_tn0.5: 19985782.0000 - val_f n0.5: 677380.0000 - val_precision0.5: 0.6504 - val_recall0.5: 0.8420 - val_tp0.7: 3328203.0000 - val_fp0.7: 1620408.0000 - val_tn0.7: 20306288.0000 - val_fn0.7: 959486.0000 - val_precision0.7: 0.6726 - val_recall0.7: 0.7762 - val_tp0.9 : 2957699.0000 - val_fp0.9: 1252356.0000 - val_tn0.9: 20674356.0000 - val_fn0.9: 1329990.0000 - val_precision0.9: 0.7025 - val_recall0.9: 0.6898 - val_accuracy: 0.9001 - val_auc: 0.9387 Epoch 39/50 1280/1280 [==============================] - 1983s 2s/step - loss: 0.2144 - tp0.1: 8366575.3263 - fp0.1: 2766167.9742 - tn0.1: 41080636.4215 - fn0.1: 297288.0242 - precision0.1: 0.7524 - recall0.1: 0.9656 - tp0.3: 8113164.2248 - fp0.3: 1368911.6565 - tn0.3: 42477877.7752 - fn0.3: 550699.1257 - precision0.3: 0.8555 - recall0.3: 0.9368 - tp0.5: 7813941.1093 - fp0.5: 738235.6479 - tn0.5: 43108568.5925 - fn0.5: 849922.2412 - precision0.5: 0.9133 - recall0.5: 0.9025 - tp 0.7: 7408230.3068 - fp0.7: 358148.5066 - tn0.7: 43488651.3341 - fn0.7: 1255633.0437 - precision0.7: 0.9536 - recall0.7: 0.8560 - tp0.9: 6668979.4731 - fp0.9: 100667.4668 - tn0.9: 43746134.9883 - fn0.9: 1994883.8774 - precision0.9: 0.98 51 - recall0.9: 0.7710 - accuracy: 0.9697 - auc: 0.9798 - val_loss: 0.5509 - val_tp0.1: 3928121.0000 - val_fp0.1: 3362312.0000 - val_tn0.1: 18683104.0000 - val_fn0.1: 240862.0000 - val_precision0.1: 0.5388 - val_recall0.1: 0.9422 - val _tp0.3: 3683700.0000 - val_fp0.3: 2630754.0000 - val_tn0.3: 19414668.0000 - val_fn0.3: 485283.0000 - val_precision0.3: 0.5834 - val_recall0.3: 0.8836 - val_tp0.5: 3409649.0000 - val_fp0.5: 2123677.0000 - val_tn0.5: 19921740.0000 - val_ fn0.5: 759334.0000 - val_precision0.5: 0.6162 - val_recall0.5: 0.8179 - val_tp0.7: 3082747.0000 - val_fp0.7: 1673717.0000 - val_tn0.7: 20371692.0000 - val_fn0.7: 1086236.0000 - val_precision0.7: 0.6481 - val_recall0.7: 0.7394 - val_tp0 .9: 2675367.0000 - val_fp0.9: 1106165.0000 - val_tn0.9: 20939250.0000 - val_fn0.9: 1493616.0000 - val_precision0.9: 0.7075 - val_recall0.9: 0.6417 - val_accuracy: 0.8900 - val_auc: 0.9336 Epoch 40/50 1280/1280 [==============================] - 1983s 2s/step - loss: 0.1969 - tp0.1: 8112039.9274 - fp0.1: 2648956.8977 - tn0.1: 41481438.0515 - fn0.1: 268231.5964 - precision0.1: 0.7550 - recall0.1: 0.9682 - tp0.3: 7868925.6425 - fp0.3: 1315040.1202 - tn0.3: 42815365.2927 - fn0.3: 511345.8813 - precision0.3: 0.8571 - recall0.3: 0.9396 - tp0.5: 7584341.2420 - fp0.5: 709881.4247 - tn0.5: 43420518.9040 - fn0.5: 795930.2818 - precision0.5: 0.9147 - recall0.5: 0.9057 - tp 0.7: 7193185.0031 - fp0.7: 342578.8923 - tn0.7: 43787824.5191 - fn0.7: 1187086.5207 - precision0.7: 0.9550 - recall0.7: 0.8587 - tp0.9: 6494738.0343 - fp0.9: 97088.4145 - tn0.9: 44033315.7065 - fn0.9: 1885533.4895 - precision0.9: 0.985 6 - recall0.9: 0.7753 - accuracy: 0.9718 - auc: 0.9815 - val_loss: 0.5690 - val_tp0.1: 3846468.0000 - val_fp0.1: 3007369.0000 - val_tn0.1: 19101806.0000 - val_fn0.1: 258769.0000 - val_precision0.1: 0.5612 - val_recall0.1: 0.9370 - val_ tp0.3: 3613817.0000 - val_fp0.3: 2397217.0000 - val_tn0.3: 19711954.0000 - val_fn0.3: 491420.0000 - val_precision0.3: 0.6012 - val_recall0.3: 0.8803 - val_tp0.5: 3367535.0000 - val_fp0.5: 2008822.0000 - val_tn0.5: 20100340.0000 - val_f n0.5: 737702.0000 - val_precision0.5: 0.6264 - val_recall0.5: 0.8203 - val_tp0.7: 3076985.0000 - val_fp0.7: 1689883.0000 - val_tn0.7: 20419284.0000 - val_fn0.7: 1028252.0000 - val_precision0.7: 0.6455 - val_recall0.7: 0.7495 - val_tp0. 9: 2719452.0000 - val_fp0.9: 1280160.0000 - val_tn0.9: 20829004.0000 - val_fn0.9: 1385785.0000 - val_precision0.9: 0.6799 - val_recall0.9: 0.6624 - val_accuracy: 0.8952 - val_auc: 0.9311 Epoch 41/50 1280/1280 [==============================] - 1978s 2s/step - loss: 0.2044 - tp0.1: 8119761.2217 - fp0.1: 2626596.4067 - tn0.1: 41483268.4879 - fn0.1: 281035.5894 - precision0.1: 0.7571 - recall0.1: 0.9663 - tp0.3: 7878864.4973 - fp0.3: 1320586.7525 - tn0.3: 42789243.0968 - fn0.3: 521932.3138 - precision0.3: 0.8575 - recall0.3: 0.9377 - tp0.5: 7590439.7557 - fp0.5: 709361.4364 - tn0.5: 43400490.0500 - fn0.5: 810357.0554 - precision0.5: 0.9153 - recall0.5: 0.9035 - tp 0.7: 7196681.5800 - fp0.7: 343281.3755 - tn0.7: 43766582.6877 - fn0.7: 1204115.2311 - precision0.7: 0.9549 - recall0.7: 0.8569 - tp0.9: 6477320.2436 - fp0.9: 94404.4832 - tn0.9: 44015438.6300 - fn0.9: 1923476.5675 - precision0.9: 0.985 7 - recall0.9: 0.7709 - accuracy: 0.9710 - auc: 0.9804 - val_loss: 0.7317 - val_tp0.1: 3916023.0000 - val_fp0.1: 3484452.0000 - val_tn0.1: 18565136.0000 - val_fn0.1: 248781.0000 - val_precision0.1: 0.5292 - val_recall0.1: 0.9403 - val_ tp0.3: 3708159.0000 - val_fp0.3: 2970626.0000 - val_tn0.3: 19078970.0000 - val_fn0.3: 456645.0000 - val_precision0.3: 0.5552 - val_recall0.3: 0.8904 - val_tp0.5: 3475102.0000 - val_fp0.5: 2669322.0000 - val_tn0.5: 19380278.0000 - val_f n0.5: 689702.0000 - val_precision0.5: 0.5656 - val_recall0.5: 0.8344 - val_tp0.7: 3188450.0000 - val_fp0.7: 2414665.0000 - val_tn0.7: 19634936.0000 - val_fn0.7: 976354.0000 - val_precision0.7: 0.5690 - val_recall0.7: 0.7656 - val_tp0.9 : 2847371.0000 - val_fp0.9: 2085317.0000 - val_tn0.9: 19964284.0000 - val_fn0.9: 1317433.0000 - val_precision0.9: 0.5772 - val_recall0.9: 0.6837 - val_accuracy: 0.8719 - val_auc: 0.9139 Epoch 42/50 1280/1280 [==============================] - 1987s 2s/step - loss: 0.1985 - tp0.1: 8084262.2818 - fp0.1: 2648823.0039 - tn0.1: 41506455.0390 - fn0.1: 271123.8985 - precision0.1: 0.7515 - recall0.1: 0.9676 - tp0.3: 7842478.2342 - fp0.3: 1315040.6995 - tn0.3: 42840230.2826 - fn0.3: 512907.9461 - precision0.3: 0.8555 - recall0.3: 0.9387 - tp0.5: 7555647.0101 - fp0.5: 708480.3888 - tn0.5: 43446801.7198 - fn0.5: 799739.1702 - precision0.5: 0.9137 - recall0.5: 0.9044 - tp 0.7: 7164901.3419 - fp0.7: 337266.9789 - tn0.7: 43818009.3770 - fn0.7: 1190484.8384 - precision0.7: 0.9549 - recall0.7: 0.8575 - tp0.9: 6464041.4738 - fp0.9: 94869.2607 - tn0.9: 44060414.4278 - fn0.9: 1891344.7065 - precision0.9: 0.985 5 - recall0.9: 0.7739 - accuracy: 0.9716 - auc: 0.9811 - val_loss: 0.5958 - val_tp0.1: 3933554.0000 - val_fp0.1: 2955615.0000 - val_tn0.1: 18990420.0000 - val_fn0.1: 334809.0000 - val_precision0.1: 0.5710 - val_recall0.1: 0.9216 - val_ tp0.3: 3653243.0000 - val_fp0.3: 2331195.0000 - val_tn0.3: 19614844.0000 - val_fn0.3: 615120.0000 - val_precision0.3: 0.6105 - val_recall0.3: 0.8559 - val_tp0.5: 3388864.0000 - val_fp0.5: 1939453.0000 - val_tn0.5: 20006580.0000 - val_f n0.5: 879499.0000 - val_precision0.5: 0.6360 - val_recall0.5: 0.7939 - val_tp0.7: 3079796.0000 - val_fp0.7: 1608320.0000 - val_tn0.7: 20337718.0000 - val_fn0.7: 1188567.0000 - val_precision0.7: 0.6569 - val_recall0.7: 0.7215 - val_tp0. 9: 2715008.0000 - val_fp0.9: 1171919.0000 - val_tn0.9: 20774120.0000 - val_fn0.9: 1553355.0000 - val_precision0.9: 0.6985 - val_recall0.9: 0.6361 - val_accuracy: 0.8925 - val_auc: 0.9240 Epoch 43/50 1280/1280 [==============================] - 1955s 2s/step - loss: 0.1987 - tp0.1: 8221268.6706 - fp0.1: 2670843.3326 - tn0.1: 41354847.4762 - fn0.1: 263685.1889 - precision0.1: 0.7553 - recall0.1: 0.9689 - tp0.3: 7974364.6284 - fp0.3: 1305978.7268 - tn0.3: 42719745.8759 - fn0.3: 510589.2311 - precision0.3: 0.8607 - recall0.3: 0.9397 - tp0.5: 7690894.8962 - fp0.5: 703492.0546 - tn0.5: 43322229.0648 - fn0.5: 794058.9633 - precision0.5: 0.9176 - recall0.5: 0.9062 - tp 0.7: 7300427.2842 - fp0.7: 340590.7377 - tn0.7: 43685101.9196 - fn0.7: 1184526.5753 - precision0.7: 0.9563 - recall0.7: 0.8599 - tp0.9: 6589497.3521 - fp0.9: 94983.5316 - tn0.9: 43930710.3302 - fn0.9: 1895456.5074 - precision0.9: 0.986 2 - recall0.9: 0.7761 - accuracy: 0.9717 - auc: 0.9819 - val_loss: 0.6235 - val_tp0.1: 3909308.0000 - val_fp0.1: 3193225.0000 - val_tn0.1: 18785172.0000 - val_fn0.1: 326693.0000 - val_precision0.1: 0.5504 - val_recall0.1: 0.9229 - val_ tp0.3: 3626074.0000 - val_fp0.3: 2618929.0000 - val_tn0.3: 19359480.0000 - val_fn0.3: 609927.0000 - val_precision0.3: 0.5806 - val_recall0.3: 0.8560 - val_tp0.5: 3338230.0000 - val_fp0.5: 2236986.0000 - val_tn0.5: 19741408.0000 - val_f n0.5: 897771.0000 - val_precision0.5: 0.5988 - val_recall0.5: 0.7881 - val_tp0.7: 2996830.0000 - val_fp0.7: 1846715.0000 - val_tn0.7: 20131684.0000 - val_fn0.7: 1239171.0000 - val_precision0.7: 0.6187 - val_recall0.7: 0.7075 - val_tp0. 9: 2591293.0000 - val_fp0.9: 1332148.0000 - val_tn0.9: 20646248.0000 - val_fn0.9: 1644708.0000 - val_precision0.9: 0.6605 - val_recall0.9: 0.6117 - val_accuracy: 0.8804 - val_auc: 0.9182 Epoch 44/50 1280/1280 [==============================] - 1965s 2s/step - loss: 0.1994 - tp0.1: 8332024.2139 - fp0.1: 2677627.7361 - tn0.1: 41232032.9399 - fn0.1: 268956.1819 - precision0.1: 0.7573 - recall0.1: 0.9690 - tp0.3: 8088072.3755 - fp0.3: 1334673.8392 - tn0.3: 42575000.3903 - fn0.3: 512908.0203 - precision0.3: 0.8587 - recall0.3: 0.9411 - tp0.5: 7804018.2927 - fp0.5: 727991.3505 - tn0.5: 43181681.2311 - fn0.5: 796962.1030 - precision0.5: 0.9148 - recall0.5: 0.9085 - tp 0.7: 7411774.5628 - fp0.7: 351151.7166 - tn0.7: 43558520.9914 - fn0.7: 1189205.8329 - precision0.7: 0.9548 - recall0.7: 0.8632 - tp0.9: 6689648.7783 - fp0.9: 96689.1569 - tn0.9: 43812989.9953 - fn0.9: 1911331.6175 - precision0.9: 0.985 8 - recall0.9: 0.7794 - accuracy: 0.9712 - auc: 0.9819 - val_loss: 0.5577 - val_tp0.1: 3767211.0000 - val_fp0.1: 2896593.0000 - val_tn0.1: 19207012.0000 - val_fn0.1: 343594.0000 - val_precision0.1: 0.5653 - val_recall0.1: 0.9164 - val_ tp0.3: 3483824.0000 - val_fp0.3: 2230299.0000 - val_tn0.3: 19873292.0000 - val_fn0.3: 626981.0000 - val_precision0.3: 0.6097 - val_recall0.3: 0.8475 - val_tp0.5: 3200515.0000 - val_fp0.5: 1719966.0000 - val_tn0.5: 20383632.0000 - val_f n0.5: 910290.0000 - val_precision0.5: 0.6504 - val_recall0.5: 0.7786 - val_tp0.7: 2881571.0000 - val_fp0.7: 1322038.0000 - val_tn0.7: 20781552.0000 - val_fn0.7: 1229234.0000 - val_precision0.7: 0.6855 - val_recall0.7: 0.7010 - val_tp0. 9: 2488169.0000 - val_fp0.9: 864656.0000 - val_tn0.9: 21238940.0000 - val_fn0.9: 1622636.0000 - val_precision0.9: 0.7421 - val_recall0.9: 0.6053 - val_accuracy: 0.8997 - val_auc: 0.9249 Epoch 45/50 1280/1280 [==============================] - 1967s 2s/step - loss: 0.2054 - tp0.1: 8039884.9914 - fp0.1: 2657730.7822 - tn0.1: 41537257.0453 - fn0.1: 275776.4333 - precision0.1: 0.7479 - recall0.1: 0.9656 - tp0.3: 7799006.9430 - fp0.3: 1331880.2607 - tn0.3: 42863099.0406 - fn0.3: 516654.4817 - precision0.3: 0.8527 - recall0.3: 0.9360 - tp0.5: 7508282.6300 - fp0.5: 716584.7447 - tn0.5: 43478405.7619 - fn0.5: 807378.7947 - precision0.5: 0.9120 - recall0.5: 0.9006 - tp 0.7: 7111748.2311 - fp0.7: 345919.2553 - tn0.7: 43849114.1967 - fn0.7: 1203913.1936 - precision0.7: 0.9530 - recall0.7: 0.8525 - tp0.9: 6406401.2319 - fp0.9: 97963.5379 - tn0.9: 44097016.4520 - fn0.9: 1909260.1928 - precision0.9: 0.984 7 - recall0.9: 0.7671 - accuracy: 0.9708 - auc: 0.9799 - val_loss: 0.5755 - val_tp0.1: 3947505.0000 - val_fp0.1: 3387487.0000 - val_tn0.1: 18700156.0000 - val_fn0.1: 179254.0000 - val_precision0.1: 0.5382 - val_recall0.1: 0.9566 - val_ tp0.3: 3738020.0000 - val_fp0.3: 2730917.0000 - val_tn0.3: 19356726.0000 - val_fn0.3: 388739.0000 - val_precision0.3: 0.5778 - val_recall0.3: 0.9058 - val_tp0.5: 3505678.0000 - val_fp0.5: 2359050.0000 - val_tn0.5: 19728584.0000 - val_f n0.5: 621081.0000 - val_precision0.5: 0.5978 - val_recall0.5: 0.8495 - val_tp0.7: 3196056.0000 - val_fp0.7: 1989619.0000 - val_tn0.7: 20098016.0000 - val_fn0.7: 930703.0000 - val_precision0.7: 0.6163 - val_recall0.7: 0.7745 - val_tp0.9 : 2807022.0000 - val_fp0.9: 1495603.0000 - val_tn0.9: 20592028.0000 - val_fn0.9: 1319737.0000 - val_precision0.9: 0.6524 - val_recall0.9: 0.6802 - val_accuracy: 0.8863 - val_auc: 0.9356 Epoch 46/50 1280/1280 [==============================] - 1954s 2s/step - loss: 0.2006 - tp0.1: 8213399.9953 - fp0.1: 2647494.8681 - tn0.1: 41382018.9024 - fn0.1: 267742.8033 - precision0.1: 0.7532 - recall0.1: 0.9684 - tp0.3: 7974876.2194 - fp0.3: 1321606.3544 - tn0.3: 42707910.7440 - fn0.3: 506266.5792 - precision0.3: 0.8563 - recall0.3: 0.9401 - tp0.5: 7686530.4450 - fp0.5: 705127.5909 - tn0.5: 43324387.6230 - fn0.5: 794612.3536 - precision0.5: 0.9155 - recall0.5: 0.9060 - tp 0.7: 7293262.6581 - fp0.7: 337606.6417 - tn0.7: 43691898.0304 - fn0.7: 1187880.1405 - precision0.7: 0.9556 - recall0.7: 0.8595 - tp0.9: 6593016.1983 - fp0.9: 93813.7900 - tn0.9: 43935696.6682 - fn0.9: 1888126.6003 - precision0.9: 0.985 9 - recall0.9: 0.7775 - accuracy: 0.9713 - auc: 0.9815 - val_loss: 0.5779 - val_tp0.1: 3847918.0000 - val_fp0.1: 3630042.0000 - val_tn0.1: 18523056.0000 - val_fn0.1: 213382.0000 - val_precision0.1: 0.5146 - val_recall0.1: 0.9475 - val_ tp0.3: 3624637.0000 - val_fp0.3: 2927247.0000 - val_tn0.3: 19225848.0000 - val_fn0.3: 436663.0000 - val_precision0.3: 0.5532 - val_recall0.3: 0.8925 - val_tp0.5: 3387759.0000 - val_fp0.5: 2442181.0000 - val_tn0.5: 19710918.0000 - val_f n0.5: 673541.0000 - val_precision0.5: 0.5811 - val_recall0.5: 0.8342 - val_tp0.7: 3093355.0000 - val_fp0.7: 1959305.0000 - val_tn0.7: 20193798.0000 - val_fn0.7: 967945.0000 - val_precision0.7: 0.6122 - val_recall0.7: 0.7617 - val_tp0.9 : 2709194.0000 - val_fp0.9: 1315902.0000 - val_tn0.9: 20837192.0000 - val_fn0.9: 1352106.0000 - val_precision0.9: 0.6731 - val_recall0.9: 0.6671 - val_accuracy: 0.8811 - val_auc: 0.9327 Epoch 47/50 1280/1280 [==============================] - 1945s 2s/step - loss: 0.1969 - tp0.1: 8300923.1351 - fp0.1: 2610298.6073 - tn0.1: 41331766.4083 - fn0.1: 267669.1296 - precision0.1: 0.7642 - recall0.1: 0.9694 - tp0.3: 8061644.4340 - fp0.3: 1313054.2631 - tn0.3: 42629006.5870 - fn0.3: 506947.8306 - precision0.3: 0.8611 - recall0.3: 0.9422 - tp0.5: 7779027.9711 - fp0.5: 711910.2787 - tn0.5: 43230141.7112 - fn0.5: 789564.2935 - precision0.5: 0.9166 - recall0.5: 0.9097 - tp 0.7: 7390637.0796 - fp0.7: 345621.5621 - tn0.7: 43596452.1616 - fn0.7: 1177955.1850 - precision0.7: 0.9553 - recall0.7: 0.8650 - tp0.9: 6688557.9680 - fp0.9: 97298.4106 - tn0.9: 43844794.7112 - fn0.9: 1880034.2966 - precision0.9: 0.985 5 - recall0.9: 0.7835 - accuracy: 0.9714 - auc: 0.9821 - val_loss: 0.6259 - val_tp0.1: 3930823.0000 - val_fp0.1: 3136289.0000 - val_tn0.1: 18868696.0000 - val_fn0.1: 278584.0000 - val_precision0.1: 0.5562 - val_recall0.1: 0.9338 - val_ tp0.3: 3682497.0000 - val_fp0.3: 2597221.0000 - val_tn0.3: 19407772.0000 - val_fn0.3: 526910.0000 - val_precision0.3: 0.5864 - val_recall0.3: 0.8748 - val_tp0.5: 3429169.0000 - val_fp0.5: 2237642.0000 - val_tn0.5: 19767344.0000 - val_f n0.5: 780238.0000 - val_precision0.5: 0.6051 - val_recall0.5: 0.8146 - val_tp0.7: 3114765.0000 - val_fp0.7: 1889104.0000 - val_tn0.7: 20115888.0000 - val_fn0.7: 1094642.0000 - val_precision0.7: 0.6225 - val_recall0.7: 0.7400 - val_tp0. 9: 2710793.0000 - val_fp0.9: 1416123.0000 - val_tn0.9: 20588868.0000 - val_fn0.9: 1498614.0000 - val_precision0.9: 0.6569 - val_recall0.9: 0.6440 - val_accuracy: 0.8849 - val_auc: 0.9224 Epoch 48/50 1280/1280 [==============================] - 1953s 2s/step - loss: 0.1928 - tp0.1: 8105003.8283 - fp0.1: 2580803.4801 - tn0.1: 41568825.8158 - fn0.1: 256048.8673 - precision0.1: 0.7573 - recall0.1: 0.9697 - tp0.3: 7868496.5355 - fp0.3: 1297144.6347 - tn0.3: 42852437.2209 - fn0.3: 492556.1600 - precision0.3: 0.8575 - recall0.3: 0.9414 - tp0.5: 7589914.3154 - fp0.5: 704118.4832 - tn0.5: 43445489.9368 - fn0.5: 771138.3802 - precision0.5: 0.9146 - recall0.5: 0.9080 - tp 0.7: 7204444.4348 - fp0.7: 338098.1210 - tn0.7: 43811497.8689 - fn0.7: 1156608.2607 - precision0.7: 0.9549 - recall0.7: 0.8617 - tp0.9: 6516177.3638 - fp0.9: 93695.1686 - tn0.9: 44055912.6136 - fn0.9: 1844875.3318 - precision0.9: 0.985 8 - recall0.9: 0.7794 - accuracy: 0.9719 - auc: 0.9822 - val_loss: 0.5549 - val_tp0.1: 3956721.0000 - val_fp0.1: 3232246.0000 - val_tn0.1: 18771428.0000 - val_fn0.1: 254013.0000 - val_precision0.1: 0.5504 - val_recall0.1: 0.9397 - val_ tp0.3: 3708830.0000 - val_fp0.3: 2603884.0000 - val_tn0.3: 19399780.0000 - val_fn0.3: 501904.0000 - val_precision0.3: 0.5875 - val_recall0.3: 0.8808 - val_tp0.5: 3455265.0000 - val_fp0.5: 2129156.0000 - val_tn0.5: 19874504.0000 - val_f n0.5: 755469.0000 - val_precision0.5: 0.6187 - val_recall0.5: 0.8206 - val_tp0.7: 3150570.0000 - val_fp0.7: 1691047.0000 - val_tn0.7: 20312616.0000 - val_fn0.7: 1060164.0000 - val_precision0.7: 0.6507 - val_recall0.7: 0.7482 - val_tp0. 9: 2734733.0000 - val_fp0.9: 1128005.0000 - val_tn0.9: 20875662.0000 - val_fn0.9: 1476001.0000 - val_precision0.9: 0.7080 - val_recall0.9: 0.6495 - val_accuracy: 0.8900 - val_auc: 0.9326 Epoch 49/50 1280/1280 [==============================] - 1952s 2s/step - loss: 0.1904 - tp0.1: 8205918.2201 - fp0.1: 2597375.0523 - tn0.1: 41463883.8283 - fn0.1: 243494.6815 - precision0.1: 0.7596 - recall0.1: 0.9713 - tp0.3: 7967288.4333 - fp0.3: 1294707.1905 - tn0.3: 42766530.0679 - fn0.3: 482124.4684 - precision0.3: 0.8602 - recall0.3: 0.9426 - tp0.5: 7690726.4028 - fp0.5: 706852.2178 - tn0.5: 43354411.7049 - fn0.5: 758686.4988 - precision0.5: 0.9160 - recall0.5: 0.9099 - tp 0.7: 7310265.9742 - fp0.7: 341418.8126 - tn0.7: 43719824.0367 - fn0.7: 1139146.9274 - precision0.7: 0.9557 - recall0.7: 0.8651 - tp0.9: 6619945.5667 - fp0.9: 95254.3942 - tn0.9: 43965990.5909 - fn0.9: 1829467.3349 - precision0.9: 0.986 3 - recall0.9: 0.7836 - accuracy: 0.9719 - auc: 0.9831 - val_loss: 0.7113 - val_tp0.1: 3891189.0000 - val_fp0.1: 3192765.0000 - val_tn0.1: 18774752.0000 - val_fn0.1: 355695.0000 - val_precision0.1: 0.5493 - val_recall0.1: 0.9162 - val_ tp0.3: 3627202.0000 - val_fp0.3: 2690459.0000 - val_tn0.3: 19277064.0000 - val_fn0.3: 619682.0000 - val_precision0.3: 0.5741 - val_recall0.3: 0.8541 - val_tp0.5: 3369672.0000 - val_fp0.5: 2384023.0000 - val_tn0.5: 19583492.0000 - val_f n0.5: 877212.0000 - val_precision0.5: 0.5857 - val_recall0.5: 0.7934 - val_tp0.7: 3076485.0000 - val_fp0.7: 2107024.0000 - val_tn0.7: 19860492.0000 - val_fn0.7: 1170399.0000 - val_precision0.7: 0.5935 - val_recall0.7: 0.7244 - val_tp0. 9: 2710033.0000 - val_fp0.9: 1728311.0000 - val_tn0.9: 20239206.0000 - val_fn0.9: 1536851.0000 - val_precision0.9: 0.6106 - val_recall0.9: 0.6381 - val_accuracy: 0.8756 - val_auc: 0.9085 Epoch 50/50 1280/1280 [==============================] - 1959s 2s/step - loss: 0.1904 - tp0.1: 8168142.8899 - fp0.1: 2531078.8610 - tn0.1: 41557584.1272 - fn0.1: 253833.5800 - precision0.1: 0.7637 - recall0.1: 0.9699 - tp0.3: 7935448.9009 - fp0.3: 1268230.0484 - tn0.3: 42820446.9766 - fn0.3: 486527.5691 - precision0.3: 0.8629 - recall0.3: 0.9420 - tp0.5: 7667088.7853 - fp0.5: 699134.4457 - tn0.5: 43389534.5613 - fn0.5: 754887.6846 - precision0.5: 0.9167 - recall0.5: 0.9102 - tp 0.7: 7290487.3372 - fp0.7: 342110.9336 - tn0.7: 43746573.7869 - fn0.7: 1131489.1327 - precision0.7: 0.9553 - recall0.7: 0.8655 - tp0.9: 6585906.2607 - fp0.9: 97053.1694 - tn0.9: 43991631.9688 - fn0.9: 1836070.2092 - precision0.9: 0.985 5 - recall0.9: 0.7818 - accuracy: 0.9724 - auc: 0.9826 - val_loss: 0.5552 - val_tp0.1: 3972788.0000 - val_fp0.1: 3022431.0000 - val_tn0.1: 18950448.0000 - val_fn0.1: 268737.0000 - val_precision0.1: 0.5679 - val_recall0.1: 0.9366 - val_ tp0.3: 3744205.0000 - val_fp0.3: 2467134.0000 - val_tn0.3: 19505742.0000 - val_fn0.3: 497320.0000 - val_precision0.3: 0.6028 - val_recall0.3: 0.8827 - val_tp0.5: 3515241.0000 - val_fp0.5: 2098091.0000 - val_tn0.5: 19874784.0000 - val_f n0.5: 726284.0000 - val_precision0.5: 0.6262 - val_recall0.5: 0.8288 - val_tp0.7: 3227939.0000 - val_fp0.7: 1707258.0000 - val_tn0.7: 20265616.0000 - val_fn0.7: 1013586.0000 - val_precision0.7: 0.6541 - val_recall0.7: 0.7610 - val_tp0. 9: 2849341.0000 - val_fp0.9: 1228067.0000 - val_tn0.9: 20744808.0000 - val_fn0.9: 1392184.0000 - val_precision0.9: 0.6988 - val_recall0.9: 0.6718 - val_accuracy: 0.8923 - val_auc: 0.9339 420/420 [==============================] - 126s 300ms/step - loss: 0.5623 - tp0.1: 4784751.0000 - fp0.1: 3873965.0000 - tn0.1: 25422992.0000 - fn0.1: 324680.0000 - precision0.1: 0.5526 - recall0.1: 0.9365 - tp0.3: 4514069.0000 - fp0.3: 3235942.0000 - tn0.3: 26061030.0000 - fn0.3: 595362.0000 - precision0.3: 0.5825 - recall0.3: 0.8835 - tp0.5: 4242444.0000 - fp0.5: 2843465.0000 - tn0.5: 26453508.0000 - fn0.5: 866987.0000 - precision0.5: 0.5987 - recall0.5: 0.8303 - t p0.7: 3892738.0000 - fp0.7: 2409415.0000 - tn0.7: 26887552.0000 - fn0.7: 1216693.0000 - precision0.7: 0.6177 - recall0.7: 0.7619 - tp0.9: 3413153.0000 - fp0.9: 1853895.0000 - tn0.9: 27443078.0000 - fn0.9: 1696278.0000 - precision0.9: 0 .6480 - recall0.9: 0.6680 - accuracy: 0.8922 - auc: 0.9306 2021/02/06 23:57:14 INFO mlflow.projects: === Run (ID 'b9935d1e554c423fb2852242f4c4504c') succeeded === (tf-nightly) [ye53nis@node221 drmed-git]$
2.3.3 Read out logs of Run 1
2.3.3.1 test dataset statistics
- test data is not saved out automatically, but can be copied from the log
above
420/420 [==============================] - 126s 300ms/step - loss: 0.5623
… 0.1 0.3 0.5 0.7 0.9 tp 4784751.0000 4514069.0000 4242444.0000 3892738.0000 3413153.0000 fp 3873965.0000 3235942.0000 2843465.0000 2409415.0000 1853895.0000 fn 324680.0000 595362.0000 866987.0000 1216693.0000 1696278.0000 tn 25422992.0000 26061030.0000 26453508.0000 26887552.0000 27443078.0000 all 34,406,388 34,406,403 34,406,404 34,406,398 34,406,404 precision 0.5526 0.5825 0.5987 0.6177 0.6480 recall 0.9365 0.8835 0.8303 0.7619 0.6680 accuracy: 0.8922 - auc: 0.9306
0.1 actual positive actual negative pred positive 0.13906577 0.11259435 Prec: 0.5526 pred negative 9.4345271e-3 0.73890325 Recall: 0.9365 F1: 0.69506400 0.3 actual positive actual negative pred positive 0.13119852 0.094050575 Prec: 0.5825 pred negative 0.017303814 0.75744709 Recall: 0.8835 F1: 0.70209925 0.5 actual positive actual negative pred positive 0.12330391 0.082643481 Prec: 0.5987 pred negative 0.025198419 0.76885419 Recall: 0.8303 F1: 0.69573213 0.7 actual positive actual negative pred positive 0.11313995 0.070028109 Prec: 0.6177 pred negative 0.035362406 0.78146954 Recall: 0.7619 F1: 0.68226389 0.9 actual positive actual negative pred positive 0.099201096 0.053882266 Prec: 0.6480 pred negative 0.049301229 0.79761541 Recall: 0.6680 F1: 0.65784802
2.3.3.2 prediction plots after each epoch
after epoch 1: epoch 2: epoch 3: epoch 4: epoch 5: epoch 10: epoch 20: epoch 30: epoch 40: epoch 50:
2.3.3.3 Git log after some code additions
!git log -10
commit a070d3b531725e0fb37688dde80e990083ccf1cc Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 15 21:48:01 2021 +0100 Fix photon count bin metadata 2 commit 86bcbfe13f4026f9b554ba8f0c7e3b9360090331 Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 15 21:40:47 2021 +0100 Fix photon count bin metadata commit 1c7ca995b2e550f6b6cb71dca647f170bbd9982d Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 15 19:10:01 2021 +0100 Fix correction by list of prediction thresholds commit 61cbc69dc8be177a754afab9dfea82ab6cd1086e Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 15 19:03:07 2021 +0100 Add correction by different prediction thresholds commit 58aa20f75747c43056ebe56831395b01c0535842 Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 15 11:04:31 2021 +0100 Fix column name \tau commit 01c14384c452ac4106263d088e0587ddf4ebc379 Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 8 18:33:48 2021 +0100 Add FileNotFoundError checks to import functions commit 28640d1360ca77aaa633de04e3349da6f12b208c Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 8 17:45:33 2021 +0100 Fix if ntraces=None commit 5e493d6c826ca24b425a3b11c0b07d31aac8af1a Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 8 17:17:42 2021 +0100 Add correction function for ptu files + csv export commit 61f076ecec76dd1f7c0323feb2b9e48f60368582 Author: Apoplex <oligolex@vivaldi.net> Date: Sat Feb 20 23:43:15 2021 +0100 Fix concatenation order, add missing traces note commit ed974cb634e7e1c47b730b136fbd09d9ee20535f Author: Apoplex <oligolex@vivaldi.net> Date: Sat Feb 20 22:35:14 2021 +0100 Fix np.repeat, remove nfiles, print no of traces
2.3.3.4 Application 1 - load modules, set parameters
- Load the required modules
%cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
from pathlib import Path import sys import mlflow import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns mlflow.version.VERSION
1.13.1
sys.path.append('src/') from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, ) from fluotracify.training import build_model as bm, preprocess_data as ppd from fluotracify.applications import correlate, plots, correction from fluotracify.imports import ptu_utils as ptu
import importlib importlib.reload(correction)
<module 'fluotracify.applications.correction' from 'src/fluotracify/applications/correction.py'>
folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/' col_per_example = 3 lab_thresh = 0.04 pred_thresh = 0.5 xunit = 1 artifact = 0 model_type = 1 fwhm = 250 run_id = 'b9935d1e554c423fb2852242f4c4504c' length_delimiter = 2**14
- now load the trained model
mlflow.set_tracking_uri('file:///beegfs/ye53nis/drmed-git/data/mlruns') client = mlflow.tracking.MlflowClient(tracking_uri=mlflow.get_tracking_uri()) model_path = client.download_artifacts(run_id=run_id, path='model') model_keras = mlflow.keras.load_model(model_uri=model_path, custom_objects={'binary_ce_dice':bm.binary_ce_dice_loss()}) print(model_path, '\n', model_keras)
/beegfs/ye53nis/drmed-git/data/mlruns/3/b9935d1e554c423fb2852242f4c4504c/artifacts/model <tensorflow.python.keras.engine.functional.Functional object at 0x2ae3e21c2d60>
2.3.3.5 Application 2 - test data
- I copied the test data which was randomly sampled in the mlflow run (See
docs above) in an extra directory. Next time, train and test data will be
split beforehand.
dataset, _, nsamples, experiment_params = isfc.import_from_csv( folder=folder, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None) experiment_params
train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set009.csv train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.08_set003.csv train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D50_set003.csv train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.4_set007.csv train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.6_set009.csv train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set008.csv train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.2_set010.csv train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D1.0_set008.csv train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.2_set007.csv train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.1_set002.csvtrain 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.2_set008.csv train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D10_set001.csv train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.4_set008.csv train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.4_set005.csv train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set004.csv train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D1.0_set005.csv train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.1_set006.csv train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.069_set010.csv train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set002.csv train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D1.0_set006.csv
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 unique identifier 340ad302-cf12-4224-addf-9455009bc9b3 b85aeec3-5e79-444f-b0c5-5ba7057fad8c b2b78a0f-278b-4b7d-82a3-5e625fbc91de 32d6e80c-92af-48c2-a756-1eee94d17c74 87d9374a-3ae4-4dfb-8dc3-ec401df4961d 90ec2bbf-d308-4895-b5fd-1974c0b3390d 5c310958-a0cc-4d1d-b721-f8652afd9707 b5d1537c-4113-4f13-a1ca-65664181f8cc 33ee5002-7064-4882-88de-79c773d741cd 9a2f89bd-c64e-4324-910c-46a5b8a657ba 71894018-b950-4672-a182-653d59f3b7db 6a3c00e3-24e6-4758-9c6d-f2a9dc23f7d9 20f0a9df-2c4d-409f-86de-ceda40d1aafe eb3f3035-955f-4e86-bfbd-16421eede63f cf57c545-933f-41b8-bcfe-19723d79b7bf 84116b56-7264-4f63-833a-2fa1af968288 55e826c0-a09a-4f1e-8f57-ddc113715aaf bebf4d6b-0ffe-4dcf-be78-93bfa70dd04c f2dcf7ee-f180-4b26-9706-526ceb6b9fe6 c1a85eb4-f202-40f7-8bce-cd3fd3a843dc path and file name /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/50… /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/1…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/10… /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/1…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/1…. FWHMs of excitation PSFs used in nm [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] Extent of simulated PSF (distance to center of Gaussian) in nm 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 total simulation time in ms 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 time step in ms 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 number of fast molecules 2422 856 2561 2887 1296 766 1247 3300 895 2975 1239 1376 1724 560 1785 2059 2060 679 2900 1357 diffusion rate of molecules in micrometer\2 / s 3.0 0.08 50 0.4 0.6 3.0 0.2 1.0 0.2 0.1 0.2 10 0.4 0.4 3.0 1.0 0.1 0.069 3.0 1.0 width of the simulation in nm 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 height of the simulation in nm 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 number of slow clusters 3 7 7 3 3 10 3 3 7 10 7 7 10 3 10 3 10 3 3 10 diffusion rate of clusters in micrometer\2 / s 1.0 0.1 0.1 1.0 1.0 0.01 1.0 1.0 0.1 0.01 0.1 0.1 0.01 1.0 0.01 1.0 0.01 1.0 1.0 0.01 trace001 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 diffrates = experiment_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32) nmols = experiment_params.loc['number of fast molecules'].astype(np.float32) clusters = experiment_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32) dataset_sep = isfc.separate_data_and_labels(array=dataset, nsamples=nsamples, col_per_example=col_per_example) features = dataset_sep['0'] labels_artifact = dataset_sep['1'] labels_artifact_bool = labels_artifact > lab_thresh labels_puretrace = dataset_sep['2']
The given DataFrame was split into 3 parts with shapes: [(16384, 2000), (16384, 2000), (16384, 2000)]
- First attempt: look at distribution of all correlated diffrates by each
simulated diffusion rate. The following function was thus executed for each
simulated diffusion time and the box plots put together in inkscape by hand.
pred_thresh = 0.5 diffrate_of_interest = 50 transit_time_expected = ((float(fwhm) / 1000)**2 * 1000) / ( diffrate_of_interest * 8 * np.log(2.0)) upper_bin = np.ceil(4*transit_time_expected) xunit_bins = np.arange(0, upper_bin, upper_bin / 50) out = plots.plot_distribution_of_correlations_corrected_by_prediction( diffrate_of_interest=diffrate_of_interest, model=model_keras, lab_thresh=lab_thresh, pred_thresh=pred_thresh, xunit=xunit, artifact=artifact, model_type=model_type, xunit_bins=xunit_bins, experiment_params=experiment_params, nsamples=nsamples, features=features, labels_artifact=labels_artifact, labels_puretrace=labels_puretrace, number_of_traces=100)
- We see some interesting results in the corrupted data without
correction (first box, in blue), can they be explained by the test data?
speed of clusters 0.01 0.1 1.0 0.069 test run1 10 0.08 test run1 3 0.1 test run1 2, 6 0.2 test run1 7, 8 10 0.4 test run1 8 5, 7 0.6 test run1 9 1.0 test run1 6 5, 8 3.0 test run1 4, 8 2, 9 10 test run1 1 50 test run1 3 - subsets which look like the bright clusters lead to a shift in the
correlation curves towards their own transit time:
- 0.069=163.35ms: cluster speed 1.0=11.27ms, median correlated speed 11.6ms
- 0.08=140.89ms: cluster speed 0.1=112.71ms, median correlated speed 100.5ms
- 0.6=18.79ms: cluster speed 1.0=11.27ms, median correlated speed 12.10ms
- 10=1.13ms: cluster speed 0.1=112.71ms, median correlated speed 92.1ms
- 50=0.23ms: cluster speed 0.1=112.71ms, median correlated speed 96.5ms
- subsets which fall out of the pattern where I have to take a closer
look:
- 0.1=112.71ms: cluster speed 0.01=1127ms, median correlated speed 346.6ms → possible explanation: it is a rule of thumb in the FCS community, that you need around 2-3 orders of magnitude of measurement time longer than transit times you want to measure. For speeds of 1.13s that means measurement times of 113-1130s, where we are far away from with our simulated ~16s of trace.
- 0.2=56.36ms: cluster speed 0.1=112.71ms AND 1.0=11.27ms, median correlated speed 73ms → possible explanation: there seem to be two maxima in the distribution, one around 10ms, one around 70-110ms, which kind of fits to the two kinds of clusters in these traces. → another strange thing: it has a quite long tail of transit times, way over 200ms, which does not seem related to the direct cluster speeds.
- 0.4=28.18ms, 1.0=11.27ms and 3.0=3.76ms: cluster speed 0.01=1127ms
AND 1.0=11.27ms, median correlated speed 14.4ms → strange case, since
the traces with the slower 0.01 clusters do not show up in the
distribution! The log of
isfc.import_from_csv
shows, that the respective files were loaded and used for these plots.
- subsets which look like the bright clusters lead to a shift in the
correlation curves towards their own transit time:
- Looking at the predictions (and controls)
- subsets which look fine, as in: predictions ~ controls
- 0.069, 0.08, 0.2, 0.6
- subsets where there seem to be a subsubset of traces where the
prediction fails:
- 0.1: median is fine, but the distribution is a lot wider, including a considerable left-ward skew, which does not show in either of the other distributions (corrupted or controls)
- 0.4: median is fine, distribution is also okay, but a subset of traces gets very low transit times after correlation → have to figure out which subset this is
- 1.0, 3.0: median is fine, but distribution has a considerable left-ward skew, and quite some outliers on the right
- 10, 50: median and distribution are okay, BUT here there is quite a difference between the distribution in predictions, label control and pure control → here, most clearly in 50, it seems artifacts are introduced through the correction method.
- subsets which look fine, as in: predictions ~ controls
corr_out = ans.correlate_simulations_corrected_by_prediction( model=model_keras, lab_thresh=lab_thresh, pred_thresh=pred_thresh, artifact=artifact, model_type=model_type, experiment_params=experiment_params, nsamples=nsamples, features=features, labels_artifact=labels_artifact, labels_puretrace=labels_puretrace, save_as_csv=True) corr_out
processed correlation of 2000 traces with correction by label processed correlation of 1999 traces with correction by prediction processed correlation of 2000 traces without correction processed correlation of pure 2000 traces
Simulated \(D\) | Simulated \(D\_{{clust}}\) | nmol | \(D\) in \(\frac{{\mu m\^2}}{{s}}\) | \(\tau\_{{D}}\) in \(ms\) | Trace lengths | Traces used | |
---|---|---|---|---|---|---|---|
0 | 3.0 | 1.0 | 2422.0 | 1.260146 | 8.944242 | 16384 | corrupted without correction |
1 | 3.0 | 1.0 | 2422.0 | 1.156435 | 9.746384 | 16384 | corrupted without correction |
2 | 3.0 | 1.0 | 2422.0 | 1.716206 | 6.567426 | 16384 | corrupted without correction |
3 | 3.0 | 1.0 | 2422.0 | 0.999673 | 11.274746 | 16384 | corrupted without correction |
4 | 3.0 | 1.0 | 2422.0 | 1.040372 | 10.833679 | 16384 | corrupted without correction |
… | … | … | … | … | … | … | … |
7995 | 1.0 | 0.01 | 1357.0 | 0.706696 | 15.94895 | 14933 | corrected by prediction |
7996 | 1.0 | 0.01 | 1357.0 | 0.765425 | 14.725227 | 11550 | corrected by prediction |
7997 | 1.0 | 0.01 | 1357.0 | 2.033196 | 5.543517 | 1250 | corrected by prediction |
7998 | 1.0 | 0.01 | 1357.0 | 3.744989 | 3.009636 | 261 | corrected by prediction |
7999 | 1.0 | 0.01 | 1357.0 | None | None | None | corrected by prediction |
8000 rows × 7 columns
corr_out = pd.read_csv(filepath_or_buffer='data/exp-210204-unet/2021-02-20_correlations.csv') corr_out
Simulated \(D\) | Simulated \(D\_{{clust}}\) | nmol | \(D\) in \(\frac{{\mu m\^2}}{{s}}\) | \(\tau\_{{D}}\) in \(ms\) | Trace lengths | Traces used | |
---|---|---|---|---|---|---|---|
0 | 3.0 | 1.00 | 2422.0 | 1.260146 | 8.944242 | 16384.0 | corrupted without correction |
1 | 3.0 | 1.00 | 2422.0 | 1.156435 | 9.746384 | 16384.0 | corrupted without correction |
2 | 3.0 | 1.00 | 2422.0 | 1.716206 | 6.567426 | 16384.0 | corrupted without correction |
3 | 3.0 | 1.00 | 2422.0 | 0.999673 | 11.274746 | 16384.0 | corrupted without correction |
4 | 3.0 | 1.00 | 2422.0 | 1.040372 | 10.833679 | 16384.0 | corrupted without correction |
… | … | … | … | … | … | … | … |
7995 | 1.0 | 0.01 | 1357.0 | 0.706696 | 15.948950 | 14933.0 | corrected by prediction |
7996 | 1.0 | 0.01 | 1357.0 | 0.765425 | 14.725227 | 11550.0 | corrected by prediction |
7997 | 1.0 | 0.01 | 1357.0 | 2.033196 | 5.543517 | 1250.0 | corrected by prediction |
7998 | 1.0 | 0.01 | 1357.0 | 3.744989 | 3.009636 | 261.0 | corrected by prediction |
7999 | 1.0 | 0.01 | 1357.0 | NaN | NaN | NaN | corrected by prediction |
8000 rows × 7 columns
Awesome! Now let’s try categorical plotting to examine the results in a more
structured manner. For the following 3 plots, I just changed the x
value.
ax = sns.catplot(data=corr_out, kind='strip', x='$D$ in $\\frac{{\mu m^2}}{{s}}$', y='Traces used', hue='Simulated $D_{{clust}}$', col='Simulated $D$', col_wrap=3, orient='h', dodge=True, sharex=False) plt.show()
Trace lengths: Transit times: Diffusion rates:
I have the theory, that trace lengths have quite an impact on transit times and diffusion rates. Let’s try to do a big plot of transittimes vs trace lengths and diffusion rates against trace lengths.
2.3.3.6 Application 3 - experimental data
Here I used the code in a jupyter notebook to produce this plot:
- There is a problem with the UNet, if it has to classify features
different than the training size (1, 16384, 1) for the first time. It
gives the following error:
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-7-4c721240eb1b> in <module> 3 length_delimiter = 2**13 # for U-Net 4 bin_for_correlation = 1e5 ----> 5 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction( 6 path_list=[path_tb_pex5_egfp], 7 model=model_keras, /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_experimental_traces_from_ptu_by_unet_prediction(path_list, model, pred_thresh, photon_count_bin, ntraces, save_as_csv) 405 print('Processing correlation with correction by prediction ' 406 'of dataset {}'.format(i + 1)) --> 407 data['{}-pred'.format(i)] = correct_correlation_by_unet_prediction( 408 ntraces=ntraces, 409 traces_of_interest=ptu_1ms.astype(np.float64), /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_correlation_by_unet_prediction(ntraces, traces_of_interest, model, pred_thresh, fwhm, length_delimiter, traces_for_correlation, bin_for_correlation, verbose) 215 ntraces_index=ntraces_index) 216 --> 217 predictions = model.predict(features_prepro, verbose=0) 218 predictions = predictions.flatten() 219 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py in predict(self, x, batch_size, verbose, steps, callbacks, max_queue_size, workers, use_multiprocessing) 1661 for step in data_handler.steps(): 1662 callbacks.on_predict_batch_begin(step) -> 1663 tmp_batch_outputs = self.predict_function(iterator) 1664 if data_handler.should_sync: 1665 context.async_wait() ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds) 816 tracing_count = self.experimental_get_tracing_count() 817 with trace.Trace(self._name) as tm: --> 818 result = self._call(*args, **kwds) 819 compiler = "xla" if self._jit_compile else "nonXla" 820 new_tracing_count = self.experimental_get_tracing_count() ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds) 860 # This is the first call of __call__, so we have to initialize. 861 initializers = [] --> 862 self._initialize(args, kwds, add_initializers_to=initializers) 863 finally: 864 # At this point we know that the initialization is complete (or less ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to) 701 self._graph_deleter = FunctionDeleter(self._lifted_initializer_graph) 702 self._concrete_stateful_fn = ( --> 703 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access 704 *args, **kwds)) 705 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs) 3018 args, kwargs = None, None 3019 with self._lock: -> 3020 graph_function, _ = self._maybe_define_function(args, kwargs) 3021 return graph_function 3022 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs) 3412 3413 self._function_cache.missed.add(call_context_key) -> 3414 graph_function = self._create_graph_function(args, kwargs) 3415 self._function_cache.primary[cache_key] = graph_function 3416 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes) 3247 arg_names = base_arg_names + missing_arg_names 3248 graph_function = ConcreteFunction( -> 3249 func_graph_module.func_graph_from_py_func( 3250 self._name, 3251 self._python_function, ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes) 996 _, original_func = tf_decorator.unwrap(python_func) 997 --> 998 func_outputs = python_func(*func_args, **func_kwargs) 999 1000 # invariant: `func_outputs` contains only Tensors, CompositeTensors, ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds) 610 xla_context.Exit() 611 else: --> 612 out = weak_wrapped_fn().__wrapped__(*args, **kwds) 613 return out 614 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs) 983 except Exception as e: # pylint:disable=broad-except 984 if hasattr(e, "ag_error_metadata"): --> 985 raise e.ag_error_metadata.to_exception(e) 986 else: 987 raise ValueError: in user code: /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1512 predict_function * return step_function(self, iterator) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1502 step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:1262 run return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:2734 call_for_each_replica return self._call_for_each_replica(fn, args, kwargs) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:3423 _call_for_each_replica return fn(*args, **kwargs) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1495 run_step ** outputs = model.predict_step(data) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1468 predict_step return self(x, training=False) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py:1018 __call__ input_spec.assert_input_compatibility(self.input_spec, inputs, self.name) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/input_spec.py:271 assert_input_compatibility raise ValueError('Input ' + str(input_index) + ValueError: Input 0 is incompatible with layer model: expected shape=(None, 16384, 1), found shape=(None, 8192, 1)
So how do we solve this? I did not find the real cause, but a workaround is, to let the loaded model first predict a dummy input with the training size:
test_features = np.zeros((2**14)) test_features = np.reshape(test_features, (1, -1, 1)) print(test_features.shape) predictions = model_keras.predict(test_features, verbose=0) predictions = predictions.flatten() predictions
(1, 16384, 1) array([2.7520498e-08, 7.7272375e-09, 5.2612198e-10, ..., 9.8416812e-08, 8.9488267e-08, 3.5880134e-07], dtype=float32)
- Test the algorithm: here it can be seen, that in the ideal case, the
metadata from the single files is joined to each computation. For the
computation of all traces, this will probably not be possible, because
of traces, which get omitted before correlation, because their trace
lengths shrank below 32 time steps after correction. This small traces
can’t be handled by multipletau.
path_tb_pex5_egfp = '/beegfs/ye53nis/data/Pablo_structured_experiment' pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9] length_delimiter = 2**13 # for U-Net bin_for_correlation = 1e5 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction( path_list=path_tb_pex5_egfp, model=model_keras, pred_thresh=pred_thresh, photon_count_bin=bin_for_correlation, ntraces=None, save_as_csv=True) out
Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment with bin=1e6. This can take a while... 1 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu 2 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu Different binning was chosen for correlation. Loading dataset 1 with bin=100000.0. This can take a while... Processing correlation of unprocessed dataset 1 Processing correlation with correction by prediction of dataset 1
\(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\) File\GUID File\CreatingTime Measurement\SubMode File\Comment TTResult\StopReason … MeasDesc\GlobalResolution TTResult\NumberOfRecords MeasDesc\AcquisitionTime TTResult\MDescWarningFlags TTResult\StopAfter TTResultFormat\TTTRRecType TTResultFormat\BitsPerRecord UsrPowerDiode Header\End Number of Channels 0 0.87156 12.932046 8192.0 0-orig 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0 0 … 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1 1 0.091734 122.866229 8192.0 0-orig 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0 0 … 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1 2 3.181256 3.542957 6413.0 0-pred-0.1 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0 0 … 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1 3 1.968434 5.725899 7132.0 0-pred-0.1 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0 0 … 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1 4 0.534267 21.096303 6903.0 0-pred-0.3 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0 0 … 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1 5 0.760655 14.817573 7490.0 0-pred-0.3 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0 0 … 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1 6 0.219843 51.268582 7178.0 0-pred-0.5 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0 0 … 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1 7 0.453877 24.832866 7659.0 0-pred-0.5 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0 0 … 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1 8 0.144134 78.198714 7407.0 0-pred-0.7 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0 0 … 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1 9 0.350758 32.133387 7785.0 0-pred-0.7 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0 0 … 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1 10 0.092882 121.348056 7692.0 0-pred-0.9 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0 0 … 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1 11 0.281531 40.03487 7937.0 0-pred-0.9 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0 0 … 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1 12 rows × 94 columns
- Run correction for all experimental traces
path_pex5_exp = ['/beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu', '/beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu'] pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9] length_delimiter = 2**13 # for U-Net bin_for_correlation = 1e5 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction( path_list=path_pex5_exp, model=model_keras, pred_thresh=pred_thresh, photon_count_bin=bin_for_correlation, ntraces=400, save_as_csv=True) out
Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu with bin=1e6. This can take a while... 1 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1082s_1.ptu 2 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1537s_1.ptu 3 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488210_T2505s_1.ptu 4 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488199_T2375s_1.ptu 5 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2040s_1.ptu 6 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488229_T2733s_1.ptu 7 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1070s_1.ptu 8 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1352s_1.ptu 9 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T986s_1.ptu10 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488227_T2709s_1.ptu 11 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2088s_1.ptu 12 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1214s_1.ptu 13 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1561s_1.ptu 14 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T302s_1.ptu 15 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1932s_1.ptu 16 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2267s_1.ptu 17 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2255s_1.ptu 18 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488208_T2481s_1.ptu 19 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T314s_1.ptu 20 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488221_T2637s_1.ptu 21 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1834s_1.ptu 22 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1883s_1.ptu 23 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488197_T2351s_1.ptu 24 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T254s_1.ptu 25 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48816_T182s_1.ptu 26 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2148s_1.ptu 27 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1238s_1.ptu 28 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T833s_1.ptu 29 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T676s_1.ptu 30 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1496s_1.ptu 31 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T459s_1.ptu 32 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1610s_1.ptu 33 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T592s_1.ptu 34 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1907s_1.ptu 35 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T604s_1.ptu 36 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1895s_1.ptu 37 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T926s_1.ptu 38 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T447s_1.ptu 39 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T821s_1.ptu 40 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48834_T399s_1.ptu 41 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T506s_1.ptu 42 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1076s_1.ptu 43 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2209s_1.ptu 44 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T748s_1.ptu 45 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1232s_1.ptu 46 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2159s_1.ptu 47 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T698s_1.ptu 48 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T855s_1.ptu 49 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1789s_1.ptu 50 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488241_T2877s_1.ptu 51 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488204_T2434s_1.ptu 52 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T918s_1.ptu 53 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2147s_1.ptu 54 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2197s_1.ptu 55 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1908s_1.ptu 56 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488238_T2842s_1.ptu 57 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1968s_1.ptu 58 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488234_T2793s_1.ptu 59 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T979s_1.ptu 60 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1148s_1.ptu 61 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1280s_1.ptu 62 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1654s_1.ptu 63 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1484s_1.ptu 64 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2245s_1.ptu 65 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T879s_1.ptu 66 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1896s_1.ptu 67 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2124s_1.ptu 68 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1328s_1.ptu 69 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T867s_1.ptu 70 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T962s_1.ptu 71 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T628s_1.ptu 72 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48842_T496s_1.ptu 73 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T590s_1.ptu 74 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1184s_1.ptu 75 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488196_T2339s_1.ptu 76 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1956s_1.ptu 77 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488217_T2589s_1.ptu 78 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488218_T2601s_1.ptu 79 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1418s_1.ptu 80 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488206_T2458s_1.ptu 81 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T785s_1.ptu 82 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1226s_1.ptu 83 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T278s_1.ptu 84 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4887_T74s_1.ptu 85 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2099s_1.ptu 86 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48817_T194s_1.ptu 87 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1346s_1.ptu 88 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T688s_1.ptu 89 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488211_T2517s_1.ptu 90 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T712s_1.ptu 91 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48833_T387s_1.ptu 92 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T686s_1.ptu 93 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48813_T146s_1.ptu 94 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488126_T1502s_1.ptu 95 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1118s_1.ptu 96 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1316s_1.ptu 97 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2243s_1.ptu 98 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1430s_1.ptu 99 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488219_T2613s_1.ptu 100 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1646s_1.ptu 101 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2231s_1.ptu 102 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488146_T1742s_1.ptu 103 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488155_T1859s_1.ptu 104 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2075s_1.ptu 105 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1884s_1.ptu 106 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488244_T2914s_1.ptu 107 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4886_T62s_1.ptu 108 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1015s_1.ptu 109 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1979s_1.ptu 110 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T674s_1.ptu 111 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2279s_1.ptu 112 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2183s_1.ptu 113 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1689s_1.ptu 114 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2269s_1.ptu 115 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T266s_1.ptu 116 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488209_T2493s_1.ptu 117 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1630s_1.ptu 118 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488185_T2221s_1.ptu 119 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2135s_1.ptu 120 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T782s_1.ptu 121 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1472s_1.ptu 122 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1919s_1.ptu 123 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T664s_1.ptu 124 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T351s_1.ptu 125 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T375s_1.ptu 126 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T700s_1.ptu 127 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1545s_1.ptu 128 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1714s_1.ptu 129 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1022s_1.ptu 130 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1754s_1.ptu 131 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488193_T2303s_1.ptu 132 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1250s_1.ptu 133 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488228_T2721s_1.ptu 134 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1088s_1.ptu 135 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2040s_1.ptu 136 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48835_T411s_1.ptu 137 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1046s_1.ptu 138 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1466s_1.ptu 139 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T906s_1.ptu 140 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T255s_1.ptu 141 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1730s_1.ptu 142 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1358s_1.ptu 143 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T279s_1.ptu 144 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T638s_1.ptu 145 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2949s_1.ptu 146 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T519s_1.ptu 147 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T482s_1.ptu 148 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T327s_1.ptu 149 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T471s_1.ptu 150 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488225_T2685s_1.ptu 151 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T362s_1.ptu 152 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T578s_1.ptu 153 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T722s_1.ptu 154 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T614s_1.ptu 155 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T616s_1.ptu 156 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1778s_1.ptu 157 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2028s_1.ptu 158 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4883_T26s_1.ptu 159 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T966s_1.ptu 160 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T435s_1.ptu 161 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1666s_1.ptu 162 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2315s_1.ptu 163 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488205_T2446s_1.ptu 164 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48818_T206s_1.ptu 165 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1533s_1.ptu 166 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T602s_1.ptu 167 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488116_T1388s_1.ptu 168 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2196s_1.ptu 169 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1394s_1.ptu 170 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T818s_1.ptu 171 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1130s_1.ptu 172 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2076s_1.ptu 173 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1262s_1.ptu 174 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2993s_1.ptu 175 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1063s_1.ptu 176 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48845_T531s_1.ptu 177 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1400s_1.ptu 178 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488192_T2291s_1.ptu 179 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1992s_1.ptu 180 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1142s_1.ptu 181 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1124s_1.ptu 182 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2111s_1.ptu 183 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48862_T736s_1.ptu 184 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1412s_1.ptu 185 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1100s_1.ptu 186 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T555s_1.ptu 187 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488223_T2661s_1.ptu 188 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T626s_1.ptu 189 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1622s_1.ptu 190 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1810s_1.ptu 191 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2925s_1.ptu 192 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T942s_1.ptu 193 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1448s_1.ptu 194 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T809s_1.ptu 195 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488201_T2398s_1.ptu 196 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1670s_1.ptu 197 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488250_T3006s_1.ptu 198 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4884_T38s_1.ptu 199 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1514s_1.ptu 200 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1244s_1.ptu 201 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2172s_1.ptu 202 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1370s_1.ptu 203 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1678s_1.ptu 204 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T652s_1.ptu 205 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T1003s_1.ptu 206 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T544s_1.ptu 207 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1569s_1.ptu 208 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488236_T2817s_1.ptu 209 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2123s_1.ptu 210 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T869s_1.ptu 211 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1968s_1.ptu 212 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2973s_1.ptu 213 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1801s_1.ptu 214 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488235_T2805s_1.ptu 215 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2028s_1.ptu 216 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2160s_1.ptu 217 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1618s_1.ptu 218 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2281s_1.ptu 219 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T758s_1.ptu 220 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T794s_1.ptu 221 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T891s_1.ptu 222 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T842s_1.ptu 223 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488213_T2541s_1.ptu 224 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2184s_1.ptu 225 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T484s_1.ptu 226 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2052s_1.ptu 227 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1825s_1.ptu 228 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1581s_1.ptu 229 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1762s_1.ptu 230 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1310s_1.ptu 231 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1010s_1.ptu 232 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T290s_1.ptu 233 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488168_T2004s_1.ptu 234 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48820_T230s_1.ptu 235 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1944s_1.ptu 236 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488203_T2422s_1.ptu 237 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488152_T1822s_1.ptu 238 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T243s_1.ptu 239 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T2004s_1.ptu 240 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T436s_1.ptu 241 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1980s_1.ptu 242 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488200_T2386s_1.ptu 243 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1454s_1.ptu 244 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T508s_1.ptu 245 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1220s_1.ptu 246 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T773s_1.ptu 247 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1920s_1.ptu 248 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T267s_1.ptu 249 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T746s_1.ptu 250 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1573s_1.ptu 251 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T797s_1.ptu 252 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1726s_1.ptu 253 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1738s_1.ptu 254 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2016s_1.ptu 255 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1058s_1.ptu 256 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T710s_1.ptu 257 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T363s_1.ptu 258 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488215_T2565s_1.ptu 259 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T930s_1.ptu 260 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T770s_1.ptu 261 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T830s_1.ptu 262 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1364s_1.ptu 263 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488148_T1774s_1.ptu 264 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488224_T2673s_1.ptu 265 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488172_T2052s_1.ptu 266 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T1992s_1.ptu 267 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488100_T1190s_1.ptu 268 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T242s_1.ptu 269 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488240_T2865s_1.ptu 270 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1701s_1.ptu 271 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1549s_1.ptu 272 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T520s_1.ptu 273 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T724s_1.ptu 274 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48814_T158s_1.ptu 275 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1956s_1.ptu 276 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2064s_1.ptu 277 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4885_T50s_1.ptu 278 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T580s_1.ptu 279 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T472s_1.ptu 280 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T991s_1.ptu 281 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2969s_1.ptu 282 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1798s_1.ptu 283 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T566s_1.ptu 284 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1160s_1.ptu 285 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1406s_1.ptu 286 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4889_T98s_1.ptu 287 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T134s_1.ptu 288 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488222_T2649s_1.ptu 289 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1039s_1.ptu 290 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T938s_1.ptu 291 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1051s_1.ptu 292 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T902s_1.ptu 293 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48819_T218s_1.ptu 294 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1112s_1.ptu 295 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1442s_1.ptu 296 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488101_T1208s_1.ptu 297 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488109_T1304s_1.ptu 298 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1526s_1.ptu 299 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488207_T2470s_1.ptu 300 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2937s_1.ptu 301 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488242_T2890s_1.ptu 302 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T640s_1.ptu 303 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T554s_1.ptu 304 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1292s_1.ptu 305 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1597s_1.ptu 306 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4888_T86s_1.ptu 307 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T857s_1.ptu 308 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1786s_1.ptu 309 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T291s_1.ptu 310 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2171s_1.ptu 311 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1871s_1.ptu 312 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488220_T2624s_1.ptu 313 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2981s_1.ptu 314 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1154s_1.ptu 315 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T568s_1.ptu 316 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2100s_1.ptu 317 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1847s_1.ptu 318 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2945s_1.ptu 319 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1658s_1.ptu 320 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T350s_1.ptu 321 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2087s_1.ptu 322 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T662s_1.ptu 323 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488230_T2745s_1.ptu 324 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T894s_1.ptu 325 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1521s_1.ptu 326 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488195_T2327s_1.ptu 327 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T998s_1.ptu 328 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2219s_1.ptu 329 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T974s_1.ptu 330 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1606s_1.ptu 331 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1286s_1.ptu 332 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T315s_1.ptu 333 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488214_T2553s_1.ptu 334 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1944s_1.ptu 335 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T460s_1.ptu 336 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2233s_1.ptu 337 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488243_T2902s_1.ptu 338 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1642s_1.ptu 339 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1861s_1.ptu 340 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4882_T14s_1.ptu 341 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1694s_1.ptu 342 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T123s_1.ptu 343 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2961s_1.ptu 344 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1136s_1.ptu 345 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T303s_1.ptu 346 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2293s_1.ptu 347 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1634s_1.ptu 348 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488133_T1585s_1.ptu 349 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488216_T2577s_1.ptu 350 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1274s_1.ptu 351 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1557s_1.ptu 352 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1436s_1.ptu 353 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T806s_1.ptu 354 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1490s_1.ptu 355 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T374s_1.ptu 356 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1424s_1.ptu 357 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T914s_1.ptu 358 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2257s_1.ptu 359 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48836_T423s_1.ptu 360 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2112s_1.ptu 361 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488112_T1334s_1.ptu 362 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48815_T170s_1.ptu 363 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T448s_1.ptu 364 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2136s_1.ptu 365 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488198_T2363s_1.ptu 366 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T650s_1.ptu 367 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1178s_1.ptu 368 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1931s_1.ptu 369 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2957s_1.ptu 370 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488231_T2757s_1.ptu 371 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1460s_1.ptu 372 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1873s_1.ptu 373 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2329s_1.ptu 374 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T542s_1.ptu 375 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1718s_1.ptu 376 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1322s_1.ptu 377 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1705s_1.ptu 378 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T882s_1.ptu 379 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1478s_1.ptu 380 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1268s_1.ptu 381 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1094s_1.ptu 382 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1376s_1.ptu 383 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T761s_1.ptu 384 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488239_T2853s_1.ptu 385 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1106s_1.ptu 386 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1837s_1.ptu 387 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1256s_1.ptu 388 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48829_T338s_1.ptu 389 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T845s_1.ptu 390 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1172s_1.ptu 391 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48880_T954s_1.ptu 392 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T122s_1.ptu 393 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1682s_1.ptu 394 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488237_T2829s_1.ptu 395 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48810_T110s_1.ptu 396 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1166s_1.ptu 397 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T135s_1.ptu 398 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1034s_1.ptu 399 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488202_T2410s_1.ptu 400 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T326s_1.ptu 401 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1027s_1.ptu Different binning was chosen for correlation. Loading dataset 1 with bin=100000.0. This can take a while... Processing correlation of unprocessed dataset 1 Processing correlation with correction by prediction of dataset 1 Loading dataset 2 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu with bin=1e6. This can take a while... 1 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48869_T825s_1.ptu 2 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488196_T2359s_1.ptu 3 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488146_T1755s_1.ptu 4 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488227_T2733s_1.ptu 5 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T287s_1.ptu 6 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T342s_1.ptu 7 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488194_T2334s_1.ptu 8 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48851_T607s_1.ptu 9 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488210_T2528s_1.ptu 10 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488234_T2818s_1.ptu 11 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48882_T982s_1.ptu 12 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488251_T3022s_1.ptu 13 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T610s_1.ptu 14 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488160_T1924s_1.ptu 15 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T584s_1.ptu 16 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488268_T3227s_1.ptu 17 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T268s_1.ptu 18 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48832_T378s_1.ptu 19 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488241_T2902s_1.ptu 20 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488198_T2383s_1.ptu 21 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48869_T823s_1.ptu 22 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48895_T1139s_1.ptu 23 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48878_T934s_1.ptu 24 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488100_T1197s_1.ptu 25 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488155_T1864s_1.ptu 26 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488132_T1585s_1.ptu 27 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48866_T787s_1.ptu 28 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48877_T922s_1.ptu 29 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48861_T728s_1.ptu 30 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488129_T1548s_1.ptu 31 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T292s_1.ptu 32 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488205_T2468s_1.ptu 33 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4889_T106s_1.ptu 34 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T474s_1.ptu 35 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T546s_1.ptu 36 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48887_T1042s_1.ptu 37 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488116_T1391s_1.ptu 38 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4884_T39s_1.ptu 39 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488110_T1318s_1.ptu 40 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488218_T2625s_1.ptu 41 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48870_T834s_1.ptu 42 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488270_T3251s_1.ptu 43 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488177_T2129s_1.ptu 44 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488136_T1633s_1.ptu 45 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T521s_1.ptu 46 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T341s_1.ptu 47 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T75s_1.ptu 48 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T497s_1.ptu 49 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488291_T3505s_1.ptu 50 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488117_T1403s_1.ptu 51 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T159s_1.ptu 52 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488215_T2589s_1.ptu 53 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488128_T1536s_1.ptu 54 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488135_T1621s_1.ptu 55 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48870_T837s_1.ptu 56 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488239_T2878s_1.ptu 57 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T317s_1.ptu 58 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488231_T2781s_1.ptu 59 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488294_T3541s_1.ptu 60 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488247_T2974s_1.ptu 61 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488226_T2721s_1.ptu 62 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488182_T2189s_1.ptu 63 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488248_T2986s_1.ptu 64 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488216_T2601s_1.ptu 65 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T282s_1.ptu 66 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488152_T1827s_1.ptu 67 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48868_T811s_1.ptu 68 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488112_T1342s_1.ptu 69 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T123s_1.ptu 70 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488185_T2225s_1.ptu 71 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T330s_1.ptu 72 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488232_T2793s_1.ptu 73 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488293_T3529s_1.ptu 74 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T294s_1.ptu 75 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4886_T66s_1.ptu 76 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu 77 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48889_T1067s_1.ptu 78 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T183s_1.ptu 79 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48879_T946s_1.ptu 80 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48876_T910s_1.ptu 81 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T507s_1.ptu 82 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T583s_1.ptu 83 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T595s_1.ptu 84 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T257s_1.ptu 85 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488184_T2213s_1.ptu 86 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T148s_1.ptu 87 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488121_T1452s_1.ptu 88 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488254_T3059s_1.ptu 89 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T171s_1.ptu 90 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T581s_1.ptu 91 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488122_T1464s_1.ptu 92 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488153_T1839s_1.ptu 93 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48851_T605s_1.ptu 94 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T222s_1.ptu 95 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488104_T1246s_1.ptu 96 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488179_T2153s_1.ptu 97 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488130_T1560s_1.ptu 98 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48874_T885s_1.ptu 99 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488115_T1379s_1.ptu 100 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488282_T3397s_1.ptu 101 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488259_T3119s_1.ptu 102 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48858_T690s_1.ptu 103 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T244s_1.ptu 104 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T313s_1.ptu 105 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48861_T726s_1.ptu 106 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T196s_1.ptu 107 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488265_T3191s_1.ptu 108 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48834_T400s_1.ptu 109 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48854_T643s_1.ptu 110 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48873_T873s_1.ptu 111 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48857_T678s_1.ptu 112 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488208_T2504s_1.ptu 113 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4884_T41s_1.ptu 114 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T120s_1.ptu 115 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48873_T870s_1.ptu 116 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48872_T859s_1.ptu 117 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488180_T2165s_1.ptu 118 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T328s_1.ptu 119 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488224_T2697s_1.ptu 120 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488167_T2009s_1.ptu 121 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488237_T2854s_1.ptu 122 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488258_T3107s_1.ptu 123 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488222_T2673s_1.ptu 124 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T534s_1.ptu 125 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488280_T3373s_1.ptu 126 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T569s_1.ptu 127 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T145s_1.ptu 128 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T522s_1.ptu 129 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T351s_1.ptu 130 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488173_T2081s_1.ptu 131 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48893_T1115s_1.ptu 132 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48865_T774s_1.ptu 133 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48862_T740s_1.ptu 134 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488187_T2250s_1.ptu 135 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T136s_1.ptu 136 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48853_T631s_1.ptu 137 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T509s_1.ptu 138 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48880_T955s_1.ptu 139 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T535s_1.ptu 140 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488133_T1597s_1.ptu 141 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48836_T426s_1.ptu 142 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488138_T1658s_1.ptu 143 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488235_T2830s_1.ptu 144 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488111_T1330s_1.ptu 145 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488156_T1876s_1.ptu 146 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48855_T655s_1.ptu 147 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T80s_1.ptu 148 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T365s_1.ptu 149 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48854_T642s_1.ptu 150 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48872_T861s_1.ptu 151 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488107_T1282s_1.ptu 152 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T280s_1.ptu 153 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488256_T3083s_1.ptu 154 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488204_T2456s_1.ptu 155 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488197_T2371s_1.ptu 156 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48852_T619s_1.ptu 157 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488176_T2117s_1.ptu 158 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488229_T2757s_1.ptu 159 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T498s_1.ptu 160 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T305s_1.ptu 161 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48864_T762s_1.ptu 162 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488289_T3481s_1.ptu 163 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T624s_1.ptu 164 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488249_T2998s_1.ptu 165 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T184s_1.ptu 166 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T197s_1.ptu 167 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48884_T1006s_1.ptu 168 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488178_T2141s_1.ptu 169 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48855_T654s_1.ptu 170 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T158s_1.ptu 171 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488118_T1415s_1.ptu 172 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488127_T1524s_1.ptu 173 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48836_T425s_1.ptu 174 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T352s_1.ptu 175 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T340s_1.ptu 176 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488261_T3143s_1.ptu 177 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48837_T468s_1.ptu 178 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T354s_1.ptu 179 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T220s_1.ptu 180 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488236_T2842s_1.ptu 181 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488257_T3095s_1.ptu 182 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T219s_1.ptu 183 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488253_T3047s_1.ptu 184 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T485s_1.ptu 185 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T377s_1.ptu 186 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488201_T2420s_1.ptu 187 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T412s_1.ptu 188 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488269_T3239s_1.ptu 189 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T545s_1.ptu 190 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T416s_1.ptu 191 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T461s_1.ptu 192 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T637s_1.ptu 193 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488276_T3324s_1.ptu 194 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488286_T3445s_1.ptu 195 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488181_T2177s_1.ptu 196 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488199_T2395s_1.ptu 197 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488244_T2938s_1.ptu 198 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488101_T1209s_1.ptu 199 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48881_T970s_1.ptu 200 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488126_T1512s_1.ptu 201 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488223_T2685s_1.ptu 202 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T557s_1.ptu 203 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488158_T1900s_1.ptu 204 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488139_T1670s_1.ptu 205 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T281s_1.ptu 206 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48859_T702s_1.ptu 207 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T546s_1.ptu 208 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488267_T3215s_1.ptu 209 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4883_T28s_1.ptu 210 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T318s_1.ptu 211 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T232s_1.ptu 212 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48860_T716s_1.ptu 213 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4882_T15s_1.ptu 214 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48896_T1151s_1.ptu 215 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T353s_1.ptu 216 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488262_T3155s_1.ptu 217 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48899_T1187s_1.ptu 218 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488209_T2516s_1.ptu 219 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488150_T1803s_1.ptu 220 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488147_T1767s_1.ptu 221 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488134_T1609s_1.ptu 222 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48815_T171s_1.ptu 223 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488264_T3179s_1.ptu 224 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488298_T3590s_1.ptu 225 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488193_T2322s_1.ptu 226 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4888_T87s_1.ptu 227 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488106_T1270s_1.ptu 228 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488284_T3421s_1.ptu 229 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488145_T1743s_1.ptu 230 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T329s_1.ptu 231 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488183_T2201s_1.ptu 232 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48856_T668s_1.ptu 233 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4888_T93s_1.ptu 234 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4889_T100s_1.ptu 235 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T222s_1.ptu 236 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T442s_1.ptu 237 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488175_T2105s_1.ptu 238 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T486s_1.ptu 239 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T390s_1.ptu 240 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488245_T2950s_1.ptu 241 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488195_T2347s_1.ptu 242 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48867_T799s_1.ptu 243 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T494s_1.ptu 244 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T195s_1.ptu 245 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488105_T1258s_1.ptu 246 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48897_T1163s_1.ptu 247 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T413s_1.ptu 248 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T248s_1.ptu 249 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T520s_1.ptu 250 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4881_T0s_1.ptu 251 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488165_T1984s_1.ptu 252 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48887_T1040s_1.ptu 253 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T210s_1.ptu 254 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4883_T27s_1.ptu 255 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48891_T1091s_1.ptu 256 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488233_T2806s_1.ptu 257 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T132s_1.ptu 258 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48876_T906s_1.ptu 259 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T462s_1.ptu 260 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488109_T1306s_1.ptu 261 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488162_T1948s_1.ptu 262 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48858_T692s_1.ptu 263 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488151_T1815s_1.ptu 264 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488203_T2444s_1.ptu 265 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48815_T184s_1.ptu 266 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T366s_1.ptu 267 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48883_T991s_1.ptu 268 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48881_T967s_1.ptu 269 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488287_T3457s_1.ptu 270 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48884_T1003s_1.ptu 271 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48886_T1031s_1.ptu 272 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T234s_1.ptu 273 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T533s_1.ptu 274 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488100_T1199s_1.ptu 275 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488214_T2577s_1.ptu 276 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T571s_1.ptu 277 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48856_T666s_1.ptu 278 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488172_T2069s_1.ptu 279 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48837_T438s_1.ptu 280 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T256s_1.ptu 281 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488243_T2926s_1.ptu 282 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488240_T2890s_1.ptu 283 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488206_T2480s_1.ptu 284 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T208s_1.ptu 285 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48866_T788s_1.ptu 286 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48863_T752s_1.ptu 287 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488238_T2866s_1.ptu 288 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488260_T3131s_1.ptu 289 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T210s_1.ptu 290 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48892_T1103s_1.ptu 291 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T147s_1.ptu 292 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48834_T402s_1.ptu 293 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48853_T630s_1.ptu 294 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488114_T1367s_1.ptu 295 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488300_T3614s_1.ptu 296 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488119_T1427s_1.ptu 297 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48868_T813s_1.ptu 298 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488157_T1888s_1.ptu 299 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488188_T2262s_1.ptu 300 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488212_T2552s_1.ptu 301 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T388s_1.ptu 302 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48864_T764s_1.ptu 303 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T269s_1.ptu 304 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488252_T3035s_1.ptu 305 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488169_T2032s_1.ptu 306 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48890_T1079s_1.ptu 307 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48871_T847s_1.ptu 308 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488137_T1646s_1.ptu 309 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488166_T1997s_1.ptu 310 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488283_T3409s_1.ptu 311 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488279_T3360s_1.ptu 312 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488125_T1500s_1.ptu 313 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488200_T2408s_1.ptu 314 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48882_T979s_1.ptu 315 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488281_T3385s_1.ptu 316 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T124s_1.ptu 317 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488102_T1221s_1.ptu 318 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T293s_1.ptu 319 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488186_T2237s_1.ptu 320 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488274_T3299s_1.ptu 321 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T450s_1.ptu 322 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T304s_1.ptu 323 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488163_T1960s_1.ptu 324 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488174_T2093s_1.ptu 325 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488250_T3010s_1.ptu 326 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488255_T3071s_1.ptu 327 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T597s_1.ptu 328 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488288_T3469s_1.ptu 329 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488103_T1234s_1.ptu 330 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488164_T1972s_1.ptu 331 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48885_T1018s_1.ptu 332 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T246s_1.ptu 333 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T135s_1.ptu 334 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488242_T2914s_1.ptu 335 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488142_T1706s_1.ptu 336 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488159_T1912s_1.ptu 337 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T76s_1.ptu 338 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48886_T1028s_1.ptu 339 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488263_T3167s_1.ptu 340 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T299s_1.ptu 341 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488113_T1354s_1.ptu 342 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488108_T1294s_1.ptu 343 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T197s_1.ptu 344 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48863_T750s_1.ptu 345 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488140_T1682s_1.ptu 346 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488230_T2769s_1.ptu 347 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488131_T1573s_1.ptu 348 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488220_T2649s_1.ptu 349 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T449s_1.ptu 350 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488154_T1852s_1.ptu 351 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T481s_1.ptu 352 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488120_T1439s_1.ptu 353 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488207_T2492s_1.ptu 354 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488171_T2056s_1.ptu 355 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488190_T2286s_1.ptu 356 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T558s_1.ptu 357 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48898_T1175s_1.ptu 358 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48862_T738s_1.ptu 359 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T186s_1.ptu 360 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488299_T3602s_1.ptu 361 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488219_T2637s_1.ptu 362 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T111s_1.ptu 363 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488278_T3348s_1.ptu 364 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488189_T2274s_1.ptu 365 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48859_T704s_1.ptu 366 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48832_T376s_1.ptu 367 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48865_T776s_1.ptu 368 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488225_T2709s_1.ptu 369 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48871_T849s_1.ptu 370 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48883_T994s_1.ptu 371 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T390s_1.ptu 372 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488272_T3276s_1.ptu 373 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488148_T1779s_1.ptu 374 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48875_T898s_1.ptu 375 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T532s_1.ptu 376 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488290_T3493s_1.ptu 377 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48877_T918s_1.ptu 378 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488297_T3578s_1.ptu 379 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488191_T2298s_1.ptu 380 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T160s_1.ptu 381 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T558s_1.ptu 382 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488221_T2661s_1.ptu 383 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488211_T2540s_1.ptu 384 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu 385 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488123_T1475s_1.ptu 386 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48852_T617s_1.ptu 387 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488149_T1791s_1.ptu 388 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488141_T1694s_1.ptu 389 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T338s_1.ptu 390 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488217_T2613s_1.ptu 391 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T571s_1.ptu 392 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4886_T63s_1.ptu 393 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T510s_1.ptu 394 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T112s_1.ptu 395 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488124_T1488s_1.ptu 396 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488271_T3263s_1.ptu 397 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T473s_1.ptu 398 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T306s_1.ptu 399 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4885_T54s_1.ptu 400 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T316s_1.ptu 401 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T593s_1.ptu Different binning was chosen for correlation. Loading dataset 2 with bin=100000.0. This can take a while... Processing correlation of unprocessed dataset 2 Processing correlation with correction by prediction of dataset 2 src/fluotracify/applications/correction.py:508: UserWarning: Metadata is not saved with data. Reason: the correlation algorithm failed for one or more traces which were shorter than 32 time steps after correction.Since metadata is loaded in the beginning, it is not sure, which correlation is missing to ensure proper joining of data and metadata. 'correlation algorithm failed for one or more traces '
\(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\) 0 19.078159 0.590783 8192.0 0-orig 100000.0 1 20.314897 0.554817 8192.0 0-orig 100000.0 2 21.007772 0.536518 8192.0 0-orig 100000.0 3 22.716317 0.496166 8192.0 0-orig 100000.0 4 24.089236 0.467888 8192.0 0-orig 100000.0 … … … … … … 4697 0.006707 1680.558197 7719.0 1-pred-0.9 100000.0 4698 0.071281 158.122526 7592.0 1-pred-0.9 100000.0 4699 1.228636 9.173635 7876.0 1-pred-0.9 100000.0 4700 0.258008 43.684844 7830.0 1-pred-0.9 100000.0 4701 0.436051 25.848023 7974.0 1-pred-0.9 100000.0 4702 rows × 5 columns
2.3.4 learnings from run 1
- while loading data, the subsample folder was loaded even though it should not have been → move it out of the main folder.
- in the end, 3 folders would be good:
Nov2020-train
,Nov2020-test
,Nov2020-subsample
(subsample is used for quick prototyping) - also, I will need 3 .csv files per simulated diffusion rate, because I want to test the algo on each of the 3 different cluster speeds
- I created
firstartifact_Nov2020_test
andfirstartifact_Nov2020_train
:0.01 0.1 1.0 0.069 train 2, 3, 6, 7, 8 9 0.08 train 7 2, 6, 8, 10 4, 9 0.1 train 4, 6, 8, 9, 10 3, 7 0.2 train 3 1, 4, 6, 8 9, 10 0.4 train 4, 10 2, 3, 9 6, 7 0.6 train 10 4, 5, 6, 7 1, 2 1.0 train 10 4, 7, 9 1, 2, 8 3.0 train 5, 6, 8 10 1, 3, 9 10 train 3, 4, 8, 9 6, 7 10 50 train 6 9, 10 4, 5, 7, 8 0.069 test 5 1 10 0.08 test 5 3 1 0.1 test 2 5 1 0.2 test 2 7 5 0.4 test 8 1 5 0.6 test 8 3 9 1.0 test 6 3 5 3.0 test 4 7 2 10 test 2 1 5 50 test 2 3 1 - NOTE: I accidentally deleted set004 (0.01) from 0.069 test file. That means the only remaining simulated file with D=0.01 has to be taken for test (set009) and there is NO training set for 0.01 cluster speed at 0.069 molecule speed. Also, there is no training set for 0.1 clusters and 0.1 molecules (sad!), because there was only one simulated one.
2.3.5 Run 2 - full dataset
2.3.5.1 Record metadata, git log
- current directory
%cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
- git log
!git log -3
commit fa530079f3d8bdbba1eaa4c6bd3eed6a24789d84 Author: Apoplex <oligolex@vivaldi.net> Date: Tue Mar 16 22:20:39 2021 +0100 update mlproject for separate train and test files commit c9dd5f025bbd95e58f8f34796be36bcdb8c1a253 Author: Apoplex <oligolex@vivaldi.net> Date: Tue Mar 16 22:13:35 2021 +0100 Update train for separate train and test paths commit a070d3b531725e0fb37688dde80e990083ccf1cc Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 15 21:48:01 2021 +0100 Fix photon count bin metadata 2
- Metadata of environment
No of CPUs in system: 72 No of CPUs the current process can use: 24 load average: (29.05, 36.29, 43.21) os.uname(): posix.uname_result(sysname='Linux', nodename='node260', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64') PID of process: 41375 RAM total: 199G, RAM used: 7.3G, RAM free: 116G the current directory: /beegfs/ye53nis/drmed-git My disk usage: Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 3.3G 47G 7% / devtmpfs 94G 0 94G 0% /dev tmpfs 94G 133M 94G 1% /dev/shm tmpfs 94G 19M 94G 1% /run tmpfs 94G 0 94G 0% /sys/fs/cgroup nfs02-ib:/data01 88T 69T 19T 79% /data01 nfs01-ib:/home 80T 66T 15T 82% /home nfs01-ib:/cluster 2.0T 417G 1.6T 21% /cluster nfs03-ib:/pool/work 100T 78T 23T 78% /nfsdata /dev/sda5 2.0G 66M 2.0G 4% /tmp /dev/sda6 169G 3.0G 166G 2% /local /dev/sda3 6.0G 397M 5.7G 7% /var beegfs_nodev 524T 303T 222T 58% /beegfs tmpfs 19G 0 19G 0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf-nightly: # # Name Version Build Channel _libgcc_mutex 0.1 main absl-py 0.11.0 pypi_0 pypi alembic 1.4.1 py_0 conda-forge/label/main appdirs 1.4.4 pyh9f0ad1d_0 conda-forge/label/main argon2-cffi 20.1.0 py38h7b6447c_1 asn1crypto 1.4.0 pyh9f0ad1d_0 conda-forge/label/main asteval 0.9.16 pyh5ca1d4c_0 conda-forge/label/main astunparse 1.6.3 pypi_0 pypi async_generator 1.10 pyhd3eb1b0_0 attrs 20.3.0 pyhd3eb1b0_0 azure-core 1.10.0 pyhd8ed1ab_0 conda-forge/label/main azure-storage-blob 12.7.1 pyh44b312d_0 conda-forge/label/main backcall 0.2.0 pyhd3eb1b0_0 blas 1.0 mkl bleach 3.2.3 pyhd3eb1b0_0 blinker 1.4 py_1 conda-forge/label/main blosc 1.20.1 hd408876_0 brotli 1.0.9 he6710b0_2 brotlipy 0.7.0 py38h27cfd23_1003 brunsli 0.1 h2531618_0 bzip2 1.0.8 h7b6447c_0 ca-certificates 2020.12.5 ha878542_0 conda-forge/label/main cachetools 4.2.1 pypi_0 pypi certifi 2020.12.5 py38h578d9bd_1 conda-forge/label/main cffi 1.14.4 py38h261ae71_0 chardet 4.0.0 py38h06a4308_1003 charls 2.1.0 he6710b0_2 click 7.1.2 pyh9f0ad1d_0 conda-forge/label/main cloudpickle 1.6.0 py_0 conda-forge/label/main configparser 5.0.1 py_0 conda-forge/label/main cryptography 3.3.1 py38h3c74f83_0 cycler 0.10.0 py38_0 databricks-cli 0.9.1 py_0 conda-forge/label/main dbus 1.13.18 hb2f20db_0 decorator 4.4.2 pyhd3eb1b0_0 defusedxml 0.6.0 py_0 docker-py 4.4.1 py38h578d9bd_1 conda-forge/label/main docker-pycreds 0.4.0 py_0 conda-forge/label/main entrypoints 0.3 py38_0 expat 2.2.10 he6710b0_2 fcsfiles 2020.9.18 pypi_0 pypi flask 1.1.2 pyh9f0ad1d_0 conda-forge/label/main flatbuffers 1.12 pypi_0 pypi fontconfig 2.13.0 h9420a91_0 freetype 2.10.4 h5ab3b9f_0 future 0.18.2 py38h578d9bd_3 conda-forge/label/main gast 0.4.0 pypi_0 pypi giflib 5.1.4 h14c3975_1 gitdb 4.0.5 py_0 conda-forge/label/main gitpython 3.1.12 pyhd8ed1ab_0 conda-forge/label/main glib 2.66.1 h92f7085_0 google-auth 1.24.0 pypi_0 pypi google-auth-oauthlib 0.4.2 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi gorilla 0.3.0 py_0 conda-forge/label/main grpcio 1.34.1 pypi_0 pypi gst-plugins-base 1.14.0 h8213a91_2 gstreamer 1.14.0 h28cd5cc_2 gunicorn 20.0.4 py38h578d9bd_3 conda-forge/label/main h5py 3.1.0 pypi_0 pypi icu 58.2 he6710b0_3 idna 2.10 pyhd3eb1b0_0 imagecodecs 2021.1.11 py38h581e88b_1 importlib-metadata 2.0.0 py_1 importlib_metadata 2.0.0 1 intel-openmp 2020.2 254 ipykernel 5.3.4 py38h5ca1d4c_0 ipython 7.19.0 py38hb070fc8_1 ipython_genutils 0.2.0 pyhd3eb1b0_1 isodate 0.6.0 py_1 conda-forge/label/main itsdangerous 1.1.0 py_0 conda-forge/label/main jedi 0.17.0 py38_0 jinja2 2.11.2 pyhd3eb1b0_0 jpeg 9b h024ee3a_2 json5 0.9.5 py_0 jsonschema 3.2.0 py_2 jupyter_client 6.1.7 py_0 jupyter_core 4.7.0 py38h06a4308_0 jupyterlab 2.2.6 py_0 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 1.2.0 py_0 jxrlib 1.1 h7b6447c_2 keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.0 py38h2531618_0 lcms2 2.11 h396b838_0 ld_impl_linux-64 2.33.1 h53a641e_7 lerc 2.2.1 h2531618_0 libaec 1.0.4 he6710b0_1 libdeflate 1.7 h27cfd23_5 libedit 3.1.20191231 h14c3975_1 libffi 3.3 he6710b0_2 libgcc-ng 9.1.0 hdf63c60_0 libgfortran-ng 7.3.0 hdf63c60_0 libpng 1.6.37 hbc83047_0 libprotobuf 3.13.0.1 h8b12597_0 conda-forge/label/main libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.1.0 hdf63c60_0 libtiff 4.1.0 h2733197_1 libuuid 1.0.3 h1bed415_2 libwebp 1.0.1 h8e7db2f_0 libxcb 1.14 h7b6447c_0 libxml2 2.9.10 hb55368b_3 libzopfli 1.0.3 he6710b0_0 lmfit 1.0.1 py_1 conda-forge/label/main lz4-c 1.9.3 h2531618_0 mako 1.1.4 pyh44b312d_0 conda-forge/label/main markdown 3.3.3 pypi_0 pypi markupsafe 1.1.1 py38h7b6447c_0 matplotlib 3.3.2 h06a4308_0 matplotlib-base 3.3.2 py38h817c723_0 mistune 0.8.4 py38h7b6447c_1000 mkl 2020.2 256 mkl-service 2.3.0 py38he904b0f_0 mkl_fft 1.2.0 py38h23d657b_0 mkl_random 1.1.1 py38h0573a6f_0 mlflow 1.13.1 py38h578d9bd_2 conda-forge/label/main msrest 0.6.21 pyh44b312d_0 conda-forge/label/main multipletau 0.3.3 pypi_0 pypi nbclient 0.5.1 py_0 nbconvert 6.0.7 py38_0 nbformat 5.1.2 pyhd3eb1b0_1 ncurses 6.2 he6710b0_1 nest-asyncio 1.4.3 pyhd3eb1b0_0 notebook 6.2.0 py38h06a4308_0 numpy 1.19.2 py38h54aff64_0 numpy-base 1.19.2 py38hfa32c7d_0 oauthlib 3.0.1 py_0 conda-forge/label/main olefile 0.46 py_0 openjpeg 2.3.0 h05c96fa_1 openssl 1.1.1i h27cfd23_0 opt-einsum 3.3.0 pypi_0 pypi packaging 20.9 pyhd3eb1b0_0 pandas 1.2.1 py38ha9443f7_0 pandoc 2.11 hb0f4dca_0 pandocfilters 1.4.3 py38h06a4308_1 parso 0.8.1 pyhd3eb1b0_0 pcre 8.44 he6710b0_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 8.1.0 py38he98fc37_0 pip 20.3.3 py38h06a4308_0 prometheus_client 0.9.0 pyhd3eb1b0_0 prometheus_flask_exporter 0.18.1 pyh9f0ad1d_0 conda-forge/label/main prompt-toolkit 3.0.8 py_0 protobuf 3.13.0.1 py38hadf7658_1 conda-forge/label/main ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.20 py_2 pygments 2.7.4 pyhd3eb1b0_0 pyjwt 2.0.1 pyhd8ed1ab_0 conda-forge/label/main pyopenssl 20.0.1 pyhd3eb1b0_1 pyparsing 2.4.7 pyhd3eb1b0_0 pyqt 5.9.2 py38h05f1152_4 pyrsistent 0.17.3 py38h7b6447c_0 pysocks 1.7.1 py38h06a4308_0 python 3.8.5 h7579374_1 python-dateutil 2.8.1 pyhd3eb1b0_0 python-editor 1.0.4 py_0 conda-forge/label/main python_abi 3.8 1_cp38 conda-forge/label/main pytz 2020.5 pyhd3eb1b0_0 pyyaml 5.3.1 py38h8df0ef7_1 conda-forge/label/main pyzmq 20.0.0 py38h2531618_1 qt 5.9.7 h5867ecd_1 querystring_parser 1.2.4 py_0 conda-forge/label/main readline 8.1 h27cfd23_0 requests 2.25.1 pyhd3eb1b0_0 requests-oauthlib 1.3.0 pyh9f0ad1d_0 conda-forge/label/main rsa 4.7 pypi_0 pypi scipy 1.5.2 py38h0b6359f_0 seaborn 0.11.1 pyhd3eb1b0_0 send2trash 1.5.0 pyhd3eb1b0_1 setuptools 52.0.0 py38h06a4308_0 sip 4.19.13 py38he6710b0_0 six 1.15.0 py38h06a4308_0 smmap 4.0.0 pyh44b312d_0 conda-forge/label/main snappy 1.1.8 he6710b0_0 sqlalchemy 1.3.20 py38h1e0a361_0 conda-forge/label/main sqlite 3.33.0 h62c20be_0 sqlparse 0.4.1 pyh9f0ad1d_0 conda-forge/label/main tabulate 0.8.7 pyh9f0ad1d_0 conda-forge/label/main tb-nightly 2.5.0a20210130 pypi_0 pypi tensorboard-plugin-wit 1.8.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.2 py38h06a4308_0 testpath 0.4.4 pyhd3eb1b0_0 tf-estimator-nightly 2.5.0.dev2021020101 pypi_0 pypi tf-nightly 2.5.0.dev20210130 pypi_0 pypi tifffile 2021.1.14 pyhd3eb1b0_1 tk 8.6.10 hbc83047_0 tornado 6.1 py38h27cfd23_0 traitlets 5.0.5 pyhd3eb1b0_0 typing-extensions 3.7.4.3 pypi_0 pypi uncertainties 3.1.5 pyhd8ed1ab_0 conda-forge/label/main urllib3 1.26.3 pyhd3eb1b0_0 wcwidth 0.2.5 py_0 webencodings 0.5.1 py38_1 websocket-client 0.57.0 py38h578d9bd_4 conda-forge/label/main werkzeug 1.0.1 pyh9f0ad1d_0 conda-forge/label/main wheel 0.36.2 pyhd3eb1b0_0 wrapt 1.12.1 pypi_0 pypi xz 5.2.5 h7b6447c_0 yaml 0.2.5 h516909a_0 conda-forge/label/main zeromq 4.3.3 he6710b0_3 zfp 0.5.5 h2531618_4 zipp 3.4.0 pyhd3eb1b0_0 zlib 1.2.11 h7b6447c_3 zstd 1.4.5 h9ceee32_0 Note: you may need to restart the kernel to use updated packages. {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint', 'SLURM_NODELIST': 'node260', 'SLURM_JOB_NAME': 'bash', 'XDG_SESSION_ID': '595', 'SLURMD_NODENAME': 'node260', 'SLURM_TOPOLOGY_ADDR': 'node260', 'SLURM_NTASKS_PER_NODE': '24', 'HOSTNAME': 'login01', 'SLURM_PRIO_PROCESS': '0', 'SLURM_SRUN_COMM_PORT': '39229', 'SHELL': '/bin/bash', 'TERM': 'xterm-color', 'SLURM_JOB_QOS': 'qstand', 'SLURM_PTY_WIN_ROW': '39', 'HISTSIZE': '1000', 'TMPDIR': '/tmp', 'SLURM_TOPOLOGY_ADDR_PATTERN': 'node', 'SSH_CLIENT': '10.231.182.213 44428 22', 'CONDA_SHLVL': '2', 'CONDA_PROMPT_MODIFIER': '(tf-nightly) ', 'QTDIR': '/usr/lib64/qt-3.3', 'QTINC': '/usr/lib64/qt-3.3/include', 'SSH_TTY': '/dev/pts/2', 'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24', 'QT_GRAPHICSSYSTEM_CHECKED': '1', 'SLURM_NNODES': '1', 'USER': 'ye53nis', 'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:', 'CONDA_EXE': '/cluster/miniconda3/bin/conda', 'SLURM_STEP_NUM_NODES': '1', 'SLURM_JOBID': '652176', 'SRUN_DEBUG': '3', 'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_NTASKS': '24', 'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5', 'SLURM_STEP_ID': '0', 'TMUX': '/tmp/tmux-67339/default,43792,2', '_CE_CONDA': '', 'CONDA_PREFIX_1': '/cluster/miniconda3', 'SLURM_STEP_LAUNCHER_PORT': '39229','SLURM_TASKS_PER_NODE': '24', 'MAIL': '/var/spool/mail/ye53nis', 'PATH': '/home/ye53nis/.conda/envs/tf-nightly/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin', 'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448', 'SLURM_JOB_ID': '652176', 'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf-nightly', 'SLURM_JOB_USER': 'ye53nis', 'SLURM_STEPID': '0', 'PWD': '/', 'SLURM_SRUN_COMM_HOST': '192.168.192.5', 'LANG': 'en_US.UTF-8', 'SLURM_PTY_WIN_COL': '205', 'SLURM_UMASK': '0022', 'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles', 'SLURM_JOB_UID': '67339', 'LOADEDMODULES': '', 'SLURM_NODEID': '0', 'TMUX_PANE': '%2', 'SLURM_SUBMIT_DIR': '/', 'SLURM_TASK_PID': '167340', 'SLURM_NPROCS': '24', 'SLURM_CPUS_ON_NODE': '24', 'SLURM_DISTRIBUTION': 'block', 'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_PROCID': '0', 'HISTCONTROL': 'ignoredups', '_CE_M': '', 'SLURM_JOB_NODELIST': 'node260', 'SLURM_PTY_PORT': '33620', 'HOME': '/home/ye53nis', 'SHLVL': '3', 'SLURM_LOCALID': '0', 'SLURM_JOB_GID': '13280', 'SLURM_JOB_CPUS_PER_NODE': '24', 'SLURM_CLUSTER_NAME': 'hpc', 'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24', 'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23', 'SLURM_SUBMIT_HOST': 'login01', 'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_JOB_PARTITION': 's_standard', 'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3', 'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python', 'LOGNAME': 'ye53nis', 'SLURM_STEP_NUM_TASKS': '24', 'QTLIB': '/usr/lib64/qt-3.3/lib', 'SLURM_JOB_ACCOUNT': 'iaob', 'SLURM_JOB_NUM_NODES': '1', 'MODULESHOME': '/usr/share/Modules', 'CONDA_DEFAULT_ENV': 'tf-nightly', 'LESSOPEN': '||/usr/bin/lesspipe.sh %s', 'SLURM_STEP_TASKS_PER_NODE': '24', 'PORT': '9999', 'SLURM_STEP_NODELIST': 'node260', 'DISPLAY': ':0', 'XDG_RUNTIME_DIR': '', 'XAUTHORITY': '/home/lex/.Xauthority', 'BASH_FUNC_module()': '() { eval `/usr/bin/modulecmd bash $*`\n}', '_': '/home/ye53nis/.conda/envs/tf-nightly/bin/jupyter', 'JPY_PARENT_PID': '446797', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
2.3.5.2 Set mlflow variables
- mlflow environment variables
conda activate tf-nightly cd /beegfs/ye53nis/drmed-git export MLFLOW_EXPERIMENT_NAME=exp-210204-unet export MLFLOW_TRACKING_URI=file:./data/mlruns mkdir data/exp-210204-unet
(tf-nightly) [ye53nis@node117 drmed-git]$
2.3.5.3 run mlflow
- Use whole dataset (6400 training, 1600 validation, 2000 test), but during
training, use only 1/5th of it per epoch - but this time with more
balanced test set.
mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train -P csv_path_test=/beegfs/ye53nis/saves/firstartifact_Nov2020_test -P steps_per_epoch=1280 -P validation_steps=320
(tf-nightly) [ye53nis@node117 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train -P csv_path_test=/beegfs/y e53nis/saves/firstartifact_Nov2020_test -P steps_per_epoch=1280 -P validation_steps=320 WARNING:root:Malformed experiment '1'. Detailed error Yaml file './data/mlruns/1/meta.yaml' does not exist. Traceback (most recent call last): File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 237, in list_experiments experiment = self._get_experiment(exp_id, view_type) File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 311, in _get_experiment meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME) File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 170, in read_yaml raise MissingConfigException("Yaml file '%s' does not exist." % file_path) mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/1/meta.yaml' does not exist. WARNING:root:Malformed experiment '0'. Detailed error Yaml file './data/mlruns/0/meta.yaml' does not exist. Traceback (most recent call last): File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 237, in list_experiments experiment = self._get_experiment(exp_id, view_type) File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 311, in _get_experiment meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME) File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 170, in read_yaml raise MissingConfigException("Yaml file '%s' does not exist." % file_path) mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/0/meta.yaml' does not exist. 2021/03/16 22:26:14 INFO mlflow.projects.utils: === Created directory /tmp/tmp4e89kbom for downloading remote URIs passed to arguments of type 'path' === 2021/03/16 22:26:14 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c 1>&2 && python src/fluotracify/trai ning/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 50 /beegfs/ye53nis/saves/firstartifact_Nov2020_train /beegfs/ye53nis/saves/firstartifact_Nov2020_test 3 1280 320' in run with ID '3cec3f26ed2d4004978c4ec37c00fba0' === 2021-03-16 22:26:31.835407: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2021-03-16 22:26:31.835484: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. 2.5.0-dev20210130 2021-03-16 22:27:03.495143: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2021-03-16 22:27:03.495217: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] failed call to cuInit: UNKNOWN ERROR (303) 2021-03-16 22:27:03.495359: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist GPUs: [] train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set005.csv train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set001.csv train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set005.csv train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set008.csv train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set004.csv train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set004.csv train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set004.csv train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set004.csv train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set009.csv train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set001.csv train 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set002.csv train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set006.csv train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set010.csv train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set007.csv train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set004.csv train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set008.csv train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set009.csv train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set002.csv train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set008.csv train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set010.csv train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set003.csv train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set006.csv train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set010.csv train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set009.csv train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set007.csv train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set009.csv train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set010.csv train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set008.csv train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set010.csv train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set003.csv train 30 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set008.csv train 31 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set003.csv train 32 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set009.csv train 33 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set004.csv train 34 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set001.csv train 35 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set010.csv train 36 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set004.csv train 37 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set007.csv train 38 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set002.csv train 39 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set009.csv train 40 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set002.csv train 41 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set006.csv train 42 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set009.csv train 43 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set007.csv train 44 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set001.csv train 45 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set007.csv train 46 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set006.csv train 47 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set003.csv train 48 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set009.csv train 49 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set005.csv train 50 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set008.csv train 51 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set006.csv train 52 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set009.csv train 53 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set010.csv train 54 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set007.csv train 55 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set006.csv train 56 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set003.csv train 57 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set010.csv train 58 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set008.csv train 59 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set008.csv train 60 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set002.csv train 61 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set006.csv train 62 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set004.csv train 63 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set006.csv train 64 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set003.csv train 65 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set007.csv train 66 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set006.csv train 67 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set010.csv train 68 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set007.csv train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set010.csv train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set002.csv train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set005.csv train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set005.csv train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set007.csv train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set002.csv train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set001.csv train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set007.csv train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set009.csv train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set002.csv train 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set005.csv train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set008.csv train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set005.csv train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set008.csv train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set005.csv train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set006.csv train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set005.csv train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set003.csv train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set001.csv train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set003.csv train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set003.csv train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set005.csv train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set002.csv train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set002.csv train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set004.csv train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set001.csv train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set001.csv train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set001.csv train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set003.csv train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set001.csv The given DataFrame was split into 3 parts with shapes: [(16384, 6900), (16384, 6900), (16384, 6900)] The given DataFrame was split into 3 parts with shapes: [(16384, 3000), (16384, 3000), (16384, 3000)] for each 16384 timestap trace there are the following numbers of corrupted timesteps: label001_1 1916 label002_1 1004 label003_1 1476 label004_1 1154 label005_1 1454 dtype: int64 2021-03-16 22:34:23.544689: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operati ons: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. number of training examples: 5520, number of validation examples: 1380 ------------------------ number of test examples: 3000 input - shape: (None, 16384, 1) output - shape: (None, 16384, 1) 2021-03-16 22:34:30.005739: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing. 2021-03-16 22:34:30.005803: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started. 2021-03-16 22:34:30.005880: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down. 2021/03/16 22:34:30 INFO mlflow.utils.autologging_utils: tensorflow autologging will track hyperparameters, performance metrics, model artifacts, and lineage information for the current tensorflow workflow to the MLflow run with ID '3c ec3f26ed2d4004978c4ec37c00fba0' 2021/03/16 22:34:30 WARNING mlflow.utils.autologging_utils: MLflow issued a warning during tensorflow autologging: "/home/ye53nis/.conda/envs/mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c/lib/python3.8/site-packages/mlflow/utils/auto logging_utils.py:86: UserWarning: Logging to MLflow failed: Changing param values is not allowed. Param with key='batch_size' was already logged with value='5' for run ID='3cec3f26ed2d4004978c4ec37c00fba0'. Attempted logging new value 'None'." Epoch 1/50 2021-03-16 22:34:43.027454: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:145] None of the MLIR Optimization Passes are enabled (registered 2) 2021-03-16 22:34:43.259103: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2194880000 Hz 1/1280 [..............................] - ETA: 7:06:43 - loss: 1.7012 - tp0.1: 11443.0000 - fp0.1: 69168.0000 - tn0.1: 50.0000 - fn0.1: 1259.0000 - precision0.1: 0.1420 - recall0.1: 0.9009 - tp0.3: 9371.0000 - fp0.3: 67996.0000 - tn 0.3: 1222.0000 - fn0.3: 3331.0000 - precision0.3: 0.1211 - recall0.3: 0.7378 - tp0.5: 5565.0000 - fp0.5: 37117.0000 - tn0.5: 32101.0000 - fn0.5: 7137.0000 - precision0.5: 0.1304 - recall0.5: 0.4381 - tp0.7: 1504.0000 - fp0.7: 2293.0000 - tn0.7: 66925.0000 - fn0.7: 11198.0000 - precision0.7: 0.3961 - recall0.7: 0.1184 - tp0.9: 284.0000 - fp0.9: 114.0000 - tn0.9: 69104.0000 - fn0.9: 12418.0000 - precision0.9: 0.7136 - recall0.9: 0.0224 - accuracy: 0.4598 - auc: 0.4176 2021-03-16 22:34:50.791836: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing. 2021-03-16 22:34:50.791935: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started. 2/1280 [..............................] - ETA: 55:09 - loss: 1.5706 - tp0.1: 15933.5000 - fp0.1: 91410.0000 - tn0.1: 14176.5000 - fn0.1: 1360.0000 - precision0.1: 0.1471 - recall0.1: 0.9171 - tp0.3: 11355.0000 - fp0.3: 68009.0000 - tn0.3: 37577.5000 - fn0.3: 5938.5000 - precision0.3: 0.1425 - recall0.3: 0.6736 - tp0.5: 7264.0000 - fp0.5: 37126.5000 - tn0.5: 68460.0000 - fn0.5: 10029.5000 - precision0.5: 0.1624 - recall0.5: 0.4238 - tp0.7: 2845.0000 - fp0.7: 2300. 0000 - tn0.7: 103286.5000 - fn0.7: 14448.5000 - precision0.7: 0.5204 - recall0.7: 0.1548 - tp0.9: 1306.5000 - fp0.9: 119.0000 - tn0.9: 105467.5000 - fn0.9: 15987.0000 - precision0.9: 0.8315 - recall0.9: 0.0644 - accuracy: 0.5771 - auc: 0.53722021-03-16 22:34:53.384001: I tensorflow/core/profiler/lib/profiler_session.cc:66] Profiler session collecting data. 2021-03-16 22:34:53.414299: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down. 2021-03-16 22:34:53.449110: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_03_16_22_34_53 2021-03-16 22:34:53.468888: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.trace.json.gz 2021-03-16 22:34:53.498618: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_03_16_22_34_53 2021-03-16 22:34:53.498775: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.memory_profile.json.gz 2021-03-16 22:34:53.501218: I tensorflow/core/profiler/rpc/client/capture_profile.cc:251] Creating directory: /tmp/tb/train/plugins/profile/2021_03_16_22_34_53Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2021_03_16_2 2_34_53/node117.xplane.pb Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.overview_page.pb Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.input_pipeline.pb Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.tensorflow_stats.pb Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.kernel_stats.pb 1280/1280 [==============================] - 3356s 3s/step - loss: 0.9438 - tp0.1: 7090847.5004 - fp0.1: 12587220.8876 - tn0.1: 31719449.0960 - fn0.1: 1113141.3841 - precision0.1: 0.3522 - recall0.1: 0.8539 - tp0.3: 5944647.5215 - fp0. 3: 7704502.4426 - tn0.3: 36602146.0117 - fn0.3: 2259341.3630 - precision0.3: 0.4254 - recall0.3: 0.6980 - tp0.5: 3390349.7166 - fp0.5: 2172177.0687 - tn0.5: 42134502.0273 - fn0.5: 4813639.1678 - precision0.5: 0.5845 - recall0.5: 0.4054 - tp0.7: 2075799.0164 - fp0.7: 570841.5262 - tn0.7: 43735856.3763 - fn0.7: 6128189.8681 - precision0.7: 0.7474 - recall0.7: 0.2354 - tp0.9: 1317276.8236 - fp0.9: 157422.0055 - tn0.9: 44149241.1343 - fn0.9: 6886712.0609 - precision0.9: 0.8734 - recall0.9: 0.1441 - accuracy: 0.8611 - auc: 0.8419 - val_loss: 1.7438 - val_tp0.1: 1858818.0000 - val_fp0.1: 1751074.0000 - val_tn0.1: 20297196.0000 - val_fn0.1: 2307317.0000 - val_precision0.1: 0.5149 - val_recall0.1: 0.4462 - val_tp0.3: 1147351.0000 - val_fp0.3: 857162.0000 - val_tn0.3: 21191096.0000 - val_fn0.3: 3018784.0000 - val_precision0.3: 0.5724 - val_recall0.3: 0.2754 - val_tp0.5: 22832.0000 - val_fp0.5: 2666.0000 - val_tn0.5: 22045600.0000 - val _fn0.5: 4143303.0000 - val_precision0.5: 0.8954 - val_recall0.5: 0.0055 - val_tp0.7: 0.0000e+00 - val_fp0.7: 0.0000e+00 - val_tn0.7: 22048264.0000 - val_fn0.7: 4166135.0000 - val_precision0.7: 0.0000e+00 - val_recall0.7: 0.0000e+00 - v al_tp0.9: 0.0000e+00 - val_fp0.9: 0.0000e+00 - val_tn0.9: 22048264.0000 - val_fn0.9: 4166135.0000 - val_precision0.9: 0.0000e+00 - val_recall0.9: 0.0000e+00 - val_accuracy: 0.8418 - val_auc: 0.7129 Epoch 2/50 1280/1280 [==============================] - 3273s 3s/step - loss: 0.7454 - tp0.1: 7319058.9383 - fp0.1: 12182101.0671 - tn0.1: 32209636.0234 - fn0.1: 799871.6300 - precision0.1: 0.3732 - recall0.1: 0.9003 - tp0.3: 6349950.7744 - fp0.3 : 7864965.2303 - tn0.3: 36526747.8587 - fn0.3: 1768979.7939 - precision0.3: 0.4426 - recall0.3: 0.7794 - tp0.5: 3304850.4598 - fp0.5: 1018320.5308 - tn0.5: 43373388.4637 - fn0.5: 4814080.1085 - precision0.5: 0.7573 - recall0.5: 0.4070 - tp0.7: 2713284.5909 - fp0.7: 370786.4668 - tn0.7: 44020933.5667 - fn0.7: 5405645.9774 - precision0.7: 0.8821 - recall0.7: 0.3298 - tp0.9: 2048963.3240 - fp0.9: 143660.5839 - tn0.9: 44248083.9859 - fn0.9: 6069967.2443 - precision0.9: 0.9325 - recall0.9: 0.2463 - accuracy: 0.8888 - auc: 0.8781 - val_loss: 1.8629 - val_tp0.1: 1696755.0000 - val_fp0.1: 1369278.0000 - val_tn0.1: 20627520.0000 - val_fn0.1: 2520850.0000 - val_precision0.1: 0.5534 - val_recall0.1: 0.4023 - val_tp0.3: 1177823.0000 - val_fp0.3: 724329.0000 - val_tn0.3: 21272468.0000 - val_fn0.3: 3039782.0000 - val_precision0.3: 0.6192 - val_recall0.3: 0.2793 - val_tp0.5: 726105.0000 - val_fp0.5: 220632.0000 - val_tn0.5: 21776148.0000 - v al_fn0.5: 3491500.0000 - val_precision0.5: 0.7670 - val_recall0.5: 0.1722 - val_tp0.7: 622624.0000 - val_fp0.7: 149383.0000 - val_tn0.7: 21847414.0000 - val_fn0.7: 3594981.0000 - val_precision0.7: 0.8065 - val_recall0.7: 0.1476 - val_t p0.9: 478068.0000 - val_fp0.9: 78711.0000 - val_tn0.9: 21918088.0000 - val_fn0.9: 3739537.0000 - val_precision0.9: 0.8586 - val_recall0.9: 0.1134 - val_accuracy: 0.8584 - val_auc: 0.6881 Epoch 3/50 1280/1280 [==============================] - 3268s 3s/step - loss: 0.6401 - tp0.1: 7574454.9469 - fp0.1: 10689439.2311 - tn0.1: 33573907.5972 - fn0.1: 672847.0898 - precision0.1: 0.4156 - recall0.1: 0.9171 - tp0.3: 6542181.5066 - fp0.3 : 5029903.7557 - tn0.3: 39233452.5995 - fn0.3: 1705120.5301 - precision0.3: 0.5571 - recall0.3: 0.7912 - tp0.5: 4316700.4192 - fp0.5: 813585.7369 - tn0.5: 43449769.7229 - fn0.5: 3930601.6175 - precision0.5: 0.8494 - recall0.5: 0.5079 - tp0.7: 3862233.1499 - fp0.7: 434886.9867 - tn0.7: 43828435.6581 - fn0.7: 4385068.8868 - precision0.7: 0.9012 - recall0.7: 0.4570 - tp0.9: 3000635.4949 - fp0.9: 146691.9102 - tn0.9: 44116668.4348 - fn0.9: 5246666.5418 - precision0.9: 0 .9538 - recall0.9: 0.3597 - accuracy: 0.9073 - auc: 0.9113 - val_loss: 1.2681 - val_tp0.1: 2112447.0000 - val_fp0.1: 1372411.0000 - val_tn0.1: 20688214.0000 - val_fn0.1: 2041318.0000 - val_precision0.1: 0.6062 - val_recall0.1: 0.5086 - val_tp0.3: 1459147.0000 - val_fp0.3: 526021.0000 - val_tn0.3: 21534608.0000 - val_fn0.3: 2694618.0000 - val_precision0.3: 0.7350 - val_recall0.3: 0.3513 - val_tp0.5: 1206684.0000 - val_fp0.5: 343698.0000 - val_tn0.5: 21716924.0000 - v al_fn0.5: 2947081.0000 - val_precision0.5: 0.7783 - val_recall0.5: 0.2905 - val_tp0.7: 926901.0000 - val_fp0.7: 212441.0000 - val_tn0.7: 21848180.0000 - val_fn0.7: 3226864.0000 - val_precision0.7: 0.8135 - val_recall0.7: 0.2231 - val_t p0.9: 701556.0000 - val_fp0.9: 119958.0000 - val_tn0.9: 21940680.0000 - val_fn0.9: 3452209.0000 - val_precision0.9: 0.8540 - val_recall0.9: 0.1689 - val_accuracy: 0.8745 - val_auc: 0.7587 Epoch 4/50 1280/1280 [==============================] - 3266s 3s/step - loss: 0.5483 - tp0.1: 7577427.0859 - fp0.1: 8351943.7939 - tn0.1: 35940757.2381 - fn0.1: 640533.9243 - precision0.1: 0.4704 - recall0.1: 0.9241 - tp0.3: 6848424.7369 - fp0.3: 4027475.1538 - tn0.3: 40265212.3185 - fn0.3: 1369536.2732 - precision0.3: 0.6241 - recall0.3: 0.8352 - tp0.5: 6060996.3591 - fp0.5: 2313256.1897 - tn0.5: 41979441.1702 - fn0.5: 2156964.6511 - precision0.5: 0.7177 - recall0.5: 0.7389 - tp0.7: 4556251.4965 - fp0.7: 542255.6714 - tn0.7: 43750437.9961 - fn0.7: 3661709.5137 - precision0.7: 0.8912 - recall0.7: 0.5511 - tp0.9: 3395492.4715 - fp0.9: 154251.2139 - tn0.9: 44138439.1054 - fn0.9: 4822468.5386 - precision0.9: 0 .9548 - recall0.9: 0.4106 - accuracy: 0.9134 - auc: 0.9349 - val_loss: 1.5831 - val_tp0.1: 3220872.0000 - val_fp0.1: 3814830.0000 - val_tn0.1: 18497596.0000 - val_fn0.1: 681105.0000 - val_precision0.1: 0.4578 - val_recall0.1: 0.8254 - val_tp0.3: 2365990.0000 - val_fp0.3: 2561983.0000 - val_tn0.3: 19750440.0000 - val_fn0.3: 1535987.0000 - val_precision0.3: 0.4801 - val_recall0.3: 0.6064 - val_tp0.5: 1952532.0000 - val_fp0.5: 2291714.0000 - val_tn0.5: 20020708.0000 - val_fn0.5: 1949445.0000 - val_precision0.5: 0.4600 - val_recall0.5: 0.5004 - val_tp0.7: 1618270.0000 - val_fp0.7: 2113505.0000 - val_tn0.7: 20198920.0000 - val_fn0.7: 2283707.0000 - val_precision0.7: 0.4336 - val_recall0.7: 0.4147 - va l_tp0.9: 1467404.0000 - val_fp0.9: 1996280.0000 - val_tn0.9: 20316148.0000 - val_fn0.9: 2434573.0000 - val_precision0.9: 0.4237 - val_recall0.9: 0.3761 - val_accuracy: 0.8382 - val_auc: 0.8531 Epoch 5/50 1280/1280 [==============================] - 3259s 3s/step - loss: 0.4575 - tp0.1: 7563591.0968 - fp0.1: 6166461.2155 - tn0.1: 38207695.0180 - fn0.1: 572899.0141 - precision0.1: 0.5449 - recall0.1: 0.9269 - tp0.3: 6976500.9703 - fp0.3: 2853572.8470 - tn0.3: 41520584.7908 - fn0.3: 1159989.1405 - precision0.3: 0.7064 - recall0.3: 0.8492 - tp0.5: 6358931.4910 - fp0.5: 1545188.1085 - tn0.5: 42828968.9243 - fn0.5: 1777558.6198 - precision0.5: 0.8010 - recall0.5: 0.7718 - tp0.7: 5171541.8845 - fp0.7: 510104.5824 - tn0.7: 43864075.8119 - fn0.7: 2964948.2264 - precision0.7: 0.9101 - recall0.7: 0.6254 - tp0.9: 3989419.1991 - fp0.9: 146867.6534 - tn0.9: 44227286.8977 - fn0.9: 4147070.9118 - precision0.9: 0 .9658 - recall0.9: 0.4744 - accuracy: 0.9360 - auc: 0.9496 - val_loss: 1.0113 - val_tp0.1: 2745883.0000 - val_fp0.1: 1806365.0000 - val_tn0.1: 20277030.0000 - val_fn0.1: 1385129.0000 - val_precision0.1: 0.6032 - val_recall0.1: 0.6647 - val_tp0.3: 1898747.0000 - val_fp0.3: 1004741.0000 - val_tn0.3: 21078656.0000 - val_fn0.3: 2232265.0000 - val_precision0.3: 0.6540 - val_recall0.3: 0.4596 - val_tp0.5: 1378572.0000 - val_fp0.5: 684339.0000 - val_tn0.5: 21399046.0000 - val_fn0.5: 2752440.0000 - val_precision0.5: 0.6683 - val_recall0.5: 0.3337 - val_tp0.7: 1058802.0000 - val_fp0.7: 422419.0000 - val_tn0.7: 21660976.0000 - val_fn0.7: 3072210.0000 - val_precision0.7: 0.7148 - val_recall0.7: 0.2563 - val _tp0.9: 633251.0000 - val_fp0.9: 145724.0000 - val_tn0.9: 21937676.0000 - val_fn0.9: 3497761.0000 - val_precision0.9: 0.8129 - val_recall0.9: 0.1533 - val_accuracy: 0.8689 - val_auc: 0.8229 Epoch 6/50 1280/1280 [==============================] - 3293s 3s/step - loss: 0.3999 - tp0.1: 7670968.6714 - fp0.1: 5321303.1358 - tn0.1: 38997617.0039 - fn0.1: 520751.9563 - precision0.1: 0.5842 - recall0.1: 0.9342 - tp0.3: 7188663.1733 - fp0.3: 2542544.6495 - tn0.3: 41776414.2037 - fn0.3: 1003057.4543 - precision0.3: 0.7341 - recall0.3: 0.8729 - tp0.5: 6622211.5550 - fp0.5: 1333118.7088 - tn0.5: 42985778.1749 - fn0.5: 1569509.0726 - precision0.5: 0.8305 - recall0.5: 0.8017 - tp0.7: 5590775.7127 - fp0.7: 478800.2568 - tn0.7: 43840116.4879 - fn0.7: 2600944.9149 - precision0.7: 0.9198 - recall0.7: 0.6746 - tp0.9: 4639602.3575 - fp0.9: 154184.4598 - tn0.9: 44164751.2225 - fn0.9: 3552118.2701 - precision0.9: 0 .9678 - recall0.9: 0.5580 - accuracy: 0.9436 - auc: 0.9557 - val_loss: 0.7256 - val_tp0.1: 3301232.0000 - val_fp0.1: 2777637.0000 - val_tn0.1: 19396900.0000 - val_fn0.1: 738630.0000 - val_precision0.1: 0.5431 - val_recall0.1: 0.8172 - val_tp0.3: 2789396.0000 - val_fp0.3: 1963405.0000 - val_tn0.3: 20211132.0000 - val_fn0.3: 1250466.0000 - val_precision0.3: 0.5869 - val_recall0.3: 0.6905 - val_tp0.5: 2332065.0000 - val_fp0.5: 1478069.0000 - val_tn0.5: 20696466.0000 - val_fn0.5: 1707797.0000 - val_precision0.5: 0.6121 - val_recall0.5: 0.5773 - val_tp0.7: 1949962.0000 - val_fp0.7: 1076978.0000 - val_tn0.7: 21097560.0000 - val_fn0.7: 2089900.0000 - val_precision0.7: 0.6442 - val_recall0.7: 0.4827 - va l_tp0.9: 1380432.0000 - val_fp0.9: 492826.0000 - val_tn0.9: 21681716.0000 - val_fn0.9: 2659430.0000 - val_precision0.9: 0.7369 - val_recall0.9: 0.3417 - val_accuracy: 0.8785 - val_auc: 0.8740 Epoch 7/50 1280/1280 [==============================] - 3286s 3s/step - loss: 0.3597 - tp0.1: 7890232.5785 - fp0.1: 4953542.9781 - tn0.1: 39218777.5909 - fn0.1: 448103.7330 - precision0.1: 0.6178 - recall0.1: 0.9465 - tp0.3: 7467308.2701 - fp0.3: 2391275.9922 - tn0.3: 41781019.9024 - fn0.3: 871028.0414 - precision0.3: 0.7613 - recall0.3: 0.8946 - tp0.5: 6988139.4286 - fp0.5: 1302055.8244 - tn0.5: 42870220.7486 - fn0.5: 1350196.8829 - precision0.5: 0.8451 - recall0.5: 0.8377 - tp0.7: 5947552.7845 - fp0.7: 472146.9633 - tn0.7: 43700160.4223 - fn0.7: 2390783.5269 - precision0.7: 0.9259 - recall0.7: 0.7138 - tp0.9: 4968978.2139 - fp0.9: 143981.8579 - tn0.9: 44028364.7588 - fn0.9: 3369358.0976 - precision0.9: 0. 9713 - recall0.9: 0.5953 - accuracy: 0.9493 - auc: 0.9636 - val_loss: 0.7770 - val_tp0.1: 3234726.0000 - val_fp0.1: 2249439.0000 - val_tn0.1: 19829152.0000 - val_fn0.1: 901082.0000 - val_precision0.1: 0.5898 - val_recall0.1: 0.7821 - v al_tp0.3: 2554897.0000 - val_fp0.3: 1502825.0000 - val_tn0.3: 20575758.0000 - val_fn0.3: 1580911.0000 - val_precision0.3: 0.6296 - val_recall0.3: 0.6178 - val_tp0.5: 1992390.0000 - val_fp0.5: 1136809.0000 - val_tn0.5: 20941788.0000 - v al_fn0.5: 2143418.0000 - val_precision0.5: 0.6367 - val_recall0.5: 0.4817 - val_tp0.7: 1526404.0000 - val_fp0.7: 689435.0000 - val_tn0.7: 21389156.0000 - val_fn0.7: 2609404.0000 - val_precision0.7: 0.6889 - val_recall0.7: 0.3691 - val_ tp0.9: 847679.0000 - val_fp0.9: 133403.0000 - val_tn0.9: 21945180.0000 - val_fn0.9: 3288129.0000 - val_precision0.9: 0.8640 - val_recall0.9: 0.2050 - val_accuracy: 0.8749 - val_auc: 0.8627 Epoch 8/50 1280/1280 [==============================] - 3289s 3s/step - loss: 0.3339 - tp0.1: 7747141.5660 - fp0.1: 4489700.9196 - tn0.1: 39841447.7486 - fn0.1: 432355.7814 - precision0.1: 0.6332 - recall0.1: 0.9472 - tp0.3: 7357958.1397 - fp0.3: 2241207.2966 - tn0.3: 42089942.4052 - fn0.3: 821539.2077 - precision0.3: 0.7676 - recall0.3: 0.9001 - tp0.5: 6904184.2022 - fp0.5: 1214222.3841 - tn0.5: 43116930.9828 - fn0.5: 1275313.1452 - precision0.5: 0.8526 - recall0.5: 0.8448 - tp0.7: 5918119.9930 - fp0.7: 436485.9844 - tn0.7: 43894677.5480 - fn0.7: 2261377.3544 - precision0.7: 0.9324 - recall0.7: 0.7243 - tp0.9: 4978028.0929 - fp0.9: 136413.7908 - tn0.9: 44194744.8298 - fn0.9: 3201469.2545 - precision0.9: 0. 9737 - recall0.9: 0.6094 - accuracy: 0.9533 - auc: 0.9664 - val_loss: 0.7192 - val_tp0.1: 3266754.0000 - val_fp0.1: 2261077.0000 - val_tn0.1: 19887774.0000 - val_fn0.1: 798799.0000 - val_precision0.1: 0.5910 - val_recall0.1: 0.8035 - v al_tp0.3: 2594715.0000 - val_fp0.3: 1533904.0000 - val_tn0.3: 20614936.0000 - val_fn0.3: 1470838.0000 - val_precision0.3: 0.6285 - val_recall0.3: 0.6382 - val_tp0.5: 2022214.0000 - val_fp0.5: 1204526.0000 - val_tn0.5: 20944316.0000 - v al_fn0.5: 2043339.0000 - val_precision0.5: 0.6267 - val_recall0.5: 0.4974 - val_tp0.7: 1633266.0000 - val_fp0.7: 893751.0000 - val_tn0.7: 21255104.0000 - val_fn0.7: 2432287.0000 - val_precision0.7: 0.6463 - val_recall0.7: 0.4017 - val_ tp0.9: 1072066.0000 - val_fp0.9: 366453.0000 - val_tn0.9: 21782404.0000 - val_fn0.9: 2993487.0000 - val_precision0.9: 0.7453 - val_recall0.9: 0.2637 - val_accuracy: 0.8761 - val_auc: 0.8749 Epoch 9/50 1280/1280 [==============================] - 3297s 3s/step - loss: 0.3316 - tp0.1: 7830543.1632 - fp0.1: 4449068.0055 - tn0.1: 39786384.2771 - fn0.1: 444679.2272 - precision0.1: 0.6389 - recall0.1: 0.9467 - tp0.3: 7430622.2623 - fp0.3: 2239407.0976 - tn0.3: 41996012.4926 - fn0.3: 844600.1280 - precision0.3: 0.7686 - recall0.3: 0.8983 - tp0.5: 6975903.1639 - fp0.5: 1214978.6417 - tn0.5: 43020456.3084 - fn0.5: 1299319.2264 - precision0.5: 0.8518 - recall0.5: 0.8438 - tp0.7: 6015111.5628 - fp0.7: 439544.0406 - tn0.7: 43795920.7791 - fn0.7: 2260110.8275 - precision0.7: 0.9325 - recall0.7: 0.7281 - tp0.9: 5071827.3482 - fp0.9: 135401.1327 - tn0.9: 44100020.3169 - fn0.9: 3203395.0422 - precision0.9: 0. 9746 - recall0.9: 0.6139 - accuracy: 0.9520 - auc: 0.9664 - val_loss: 0.7987 - val_tp0.1: 3338155.0000 - val_fp0.1: 2467457.0000 - val_tn0.1: 19568284.0000 - val_fn0.1: 840502.0000 - val_precision0.1: 0.5750 - val_recall0.1: 0.7989 - v al_tp0.3: 2683614.0000 - val_fp0.3: 1892638.0000 - val_tn0.3: 20143100.0000 - val_fn0.3: 1495043.0000 - val_precision0.3: 0.5864 - val_recall0.3: 0.6422 - val_tp0.5: 2192750.0000 - val_fp0.5: 1587985.0000 - val_tn0.5: 20447752.0000 - v al_fn0.5: 1985907.0000 - val_precision0.5: 0.5800 - val_recall0.5: 0.5247 - val_tp0.7: 1808320.0000 - val_fp0.7: 1284650.0000 - val_tn0.7: 20751092.0000 - val_fn0.7: 2370337.0000 - val_precision0.7: 0.5847 - val_recall0.7: 0.4328 - val _tp0.9: 1198897.0000 - val_fp0.9: 618524.0000 - val_tn0.9: 21417220.0000 - val_fn0.9: 2979760.0000 - val_precision0.9: 0.6597 - val_recall0.9: 0.2869 - val_accuracy: 0.8637 - val_auc: 0.8621 Epoch 10/50 1280/1280 [==============================] - 3281s 3s/step - loss: 0.3275 - tp0.1: 7792627.5020 - fp0.1: 4279949.3427 - tn0.1: 40001537.3630 - fn0.1: 436537.2279 - precision0.1: 0.6422 - recall0.1: 0.9472 - tp0.3: 7406705.6987 - fp0.3: 2160243.7174 - tn0.3: 42121245.1132 - fn0.3: 822459.0312 - precision0.3: 0.7727 - recall0.3: 0.8998 - tp0.5: 6961682.1405 - fp0.5: 1207985.9984 - tn0.5: 43073509.1913 - fn0.5: 1267482.5894 - precision0.5: 0.8511 - recall0.5: 0.8457 - tp0.7: 5977782.7900 - fp0.7: 441395.7190 - tn0.7: 43840082.2201 - fn0.7: 2251381.9399 - precision0.7: 0.9300 - recall0.7: 0.7245 - tp0.9: 5047421.8314 - fp0.9: 138119.9415 - tn0.9: 44143384.7346 - fn0.9: 3181742.8985 - precision0.9: 0. 9728 - recall0.9: 0.6102 - accuracy: 0.9528 - auc: 0.9660 - val_loss: 0.8271 - val_tp0.1: 3497398.0000 - val_fp0.1: 2613010.0000 - val_tn0.1: 19230938.0000 - val_fn0.1: 873051.0000 - val_precision0.1: 0.5724 - val_recall0.1: 0.8002 - v al_tp0.3: 2805297.0000 - val_fp0.3: 1928525.0000 - val_tn0.3: 19915426.0000 - val_fn0.3: 1565152.0000 - val_precision0.3: 0.5926 - val_recall0.3: 0.6419 - val_tp0.5: 2250608.0000 - val_fp0.5: 1602046.0000 - val_tn0.5: 20241908.0000 - v al_fn0.5: 2119841.0000 - val_precision0.5: 0.5842 - val_recall0.5: 0.5150 - val_tp0.7: 1873937.0000 - val_fp0.7: 1289178.0000 - val_tn0.7: 20554764.0000 - val_fn0.7: 2496512.0000 - val_precision0.7: 0.5924 - val_recall0.7: 0.4288 - val _tp0.9: 1282739.0000 - val_fp0.9: 663370.0000 - val_tn0.9: 21180588.0000 - val_fn0.9: 3087710.0000 - val_precision0.9: 0.6591 - val_recall0.9: 0.2935 - val_accuracy: 0.8580 - val_auc: 0.8595 Epoch 11/50 1280/1280 [==============================] - 3284s 3s/step - loss: 0.3131 - tp0.1: 7805750.0211 - fp0.1: 4180231.1202 - tn0.1: 40107131.8431 - fn0.1: 417539.0390 - precision0.1: 0.6527 - recall0.1: 0.9499 - tp0.3: 7439055.2615 - fp0.3: 2100484.2233 - tn0.3: 42186897.5113 - fn0.3: 784233.7986 - precision0.3: 0.7813 - recall0.3: 0.9065 - tp0.5: 7021029.5238 - fp0.5: 1158430.3731 - tn0.5: 43128929.4192 - fn0.5: 1202259.5363 - precision0.5: 0.8590 - recall0.5: 0.8568 - tp0.7: 6113168.1468 - fp0.7: 426487.4707 - tn0.7: 43860880.4848 - fn0.7: 2110120.9133 - precision0.7: 0.9352 - recall0.7: 0.7472 - tp0.9: 5208463.6464 - fp0.9: 134634.9001 - tn0.9: 44152728.1069 - fn0.9: 3014825.4137 - precision0.9: 0. 9752 - recall0.9: 0.6369 - accuracy: 0.9554 - auc: 0.9685 - val_loss: 0.8179 - val_tp0.1: 3171244.0000 - val_fp0.1: 2428671.0000 - val_tn0.1: 19710012.0000 - val_fn0.1: 904466.0000 - val_precision0.1: 0.5663 - val_recall0.1: 0.7781 - v al_tp0.3: 2577226.0000 - val_fp0.3: 1780010.0000 - val_tn0.3: 20358686.0000 - val_fn0.3: 1498484.0000 - val_precision0.3: 0.5915 - val_recall0.3: 0.6323 - val_tp0.5: 2103216.0000 - val_fp0.5: 1506964.0000 - val_tn0.5: 20631718.0000 - v al_fn0.5: 1972494.0000 - val_precision0.5: 0.5826 - val_recall0.5: 0.5160 - val_tp0.7: 1740648.0000 - val_fp0.7: 1184962.0000 - val_tn0.7: 20953724.0000 - val_fn0.7: 2335062.0000 - val_precision0.7: 0.5950 - val_recall0.7: 0.4271 - val _tp0.9: 1152892.0000 - val_fp0.9: 479364.0000 - val_tn0.9: 21659326.0000 - val_fn0.9: 2922818.0000 - val_precision0.9: 0.7063 - val_recall0.9: 0.2829 - val_accuracy: 0.8673 - val_auc: 0.8530 Epoch 12/50 1280/1280 [==============================] - 3297s 3s/step - loss: 0.3231 - tp0.1: 7673586.0687 - fp0.1: 4254414.5621 - tn0.1: 40148103.3286 - fn0.1: 434544.6292 - precision0.1: 0.6426 - recall0.1: 0.9456 - tp0.3: 7286525.1889 - fp0.3: 2133646.5324 - tn0.3: 42268881.5730 - fn0.3: 821605.5090 - precision0.3: 0.7727 - recall0.3: 0.8978 - tp0.5: 6849781.8283 - fp0.5: 1164265.2397 - tn0.5: 43238255.9961 - fn0.5: 1258348.8696 - precision0.5: 0.8542 - recall0.5: 0.8438 - tp0.7: 5967163.4153 - fp0.7: 423410.0211 - tn0.7: 43979128.0921 - fn0.7: 2140967.2826 - precision0.7: 0.9348 - recall0.7: 0.7339 - tp0.9: 5093586.0039 - fp0.9: 136848.5098 - tn0.9: 44265710.3138 - fn0.9: 3014544.6940 - precision0.9: 0. 9745 - recall0.9: 0.6262 - accuracy: 0.9537 - auc: 0.9657 - val_loss: 0.7042 - val_tp0.1: 3495859.0000 - val_fp0.1: 2855125.0000 - val_tn0.1: 19280112.0000 - val_fn0.1: 583301.0000 - val_precision0.1: 0.5504 - val_recall0.1: 0.8570 - v al_tp0.3: 2938637.0000 - val_fp0.3: 2173835.0000 - val_tn0.3: 19961412.0000 - val_fn0.3: 1140523.0000 - val_precision0.3: 0.5748 - val_recall0.3: 0.7204 - val_tp0.5: 2404430.0000 - val_fp0.5: 1820758.0000 - val_tn0.5: 20314484.0000 - v al_fn0.5: 1674730.0000 - val_precision0.5: 0.5691 - val_recall0.5: 0.5894 - val_tp0.7: 2024378.0000 - val_fp0.7: 1527093.0000 - val_tn0.7: 20608140.0000 - val_fn0.7: 2054782.0000 - val_precision0.7: 0.5700 - val_recall0.7: 0.4963 - val _tp0.9: 1381535.0000 - val_fp0.9: 912692.0000 - val_tn0.9: 21222556.0000 - val_fn0.9: 2697625.0000 - val_precision0.9: 0.6022 - val_recall0.9: 0.3387 - val_accuracy: 0.8667 - val_auc: 0.8805 Epoch 13/50 1280/1280 [==============================] - 3321s 3s/step - loss: 0.3169 - tp0.1: 7909004.5371 - fp0.1: 4146765.2818 - tn0.1: 40030494.6401 - fn0.1: 424405.8938 - precision0.1: 0.6543 - recall0.1: 0.9500 - tp0.3: 7536643.9977 - fp0.3: 2085465.0749 - tn0.3: 42091771.2584 - fn0.3: 796766.4333 - precision0.3: 0.7808 - recall0.3: 0.9063 - tp0.5: 7106355.0859 - fp0.5: 1146387.5933 - tn0.5: 43030851.5699 - fn0.5: 1227055.3450 - precision0.5: 0.8590 - recall0.5: 0.8551 - tp0.7: 6229305.1702 - fp0.7: 429169.7603 - tn0.7: 43748120.6526 - fn0.7: 2104105.2607 - precision0.7: 0.9350 - recall0.7: 0.7476 - tp0.9: 5365662.5207 - fp0.9: 142482.5558 - tn0.9: 44034765.0882 - fn0.9: 2967747.9102 - precision0.9: 0. 9736 - recall0.9: 0.6436 - accuracy: 0.9544 - auc: 0.9678 - val_loss: 0.8398 - val_tp0.1: 3245885.0000 - val_fp0.1: 2536432.0000 - val_tn0.1: 19519276.0000 - val_fn0.1: 912810.0000 - val_precision0.1: 0.5613 - val_recall0.1: 0.7805 - v al_tp0.3: 2564525.0000 - val_fp0.3: 1814112.0000 - val_tn0.3: 20241596.0000 - val_fn0.3: 1594170.0000 - val_precision0.3: 0.5857 - val_recall0.3: 0.6167 - val_tp0.5: 2015465.0000 - val_fp0.5: 1451082.0000 - val_tn0.5: 20604624.0000 - v al_fn0.5: 2143230.0000 - val_precision0.5: 0.5814 - val_recall0.5: 0.4846 - val_tp0.7: 1621561.0000 - val_fp0.7: 1053037.0000 - val_tn0.7: 21002666.0000 - val_fn0.7: 2537134.0000 - val_precision0.7: 0.6063 - val_recall0.7: 0.3899 - val _tp0.9: 1065568.0000 - val_fp0.9: 460390.0000 - val_tn0.9: 21595312.0000 - val_fn0.9: 3093127.0000 - val_precision0.9: 0.6983 - val_recall0.9: 0.2562 - val_accuracy: 0.8629 - val_auc: 0.8493 Epoch 14/50 1280/1280 [==============================] - 3314s 3s/step - loss: 0.3076 - tp0.1: 7765395.1202 - fp0.1: 4130752.8431 - tn0.1: 40213352.2810 - fn0.1: 401143.6737 - precision0.1: 0.6501 - recall0.1: 0.9503 - tp0.3: 7389168.6144 - fp0.3: 2041484.8189 - tn0.3: 42302624.6870 - fn0.3: 777370.1795 - precision0.3: 0.7825 - recall0.3: 0.9030 - tp0.5: 6961617.5222 - fp0.5: 1091504.5597 - tn0.5: 43252606.1101 - fn0.5: 1204921.2717 - precision0.5: 0.8642 - recall0.5: 0.8492 - tp0.7: 6118152.3286 - fp0.7: 416044.1280 - tn0.7: 43928097.5558 - fn0.7: 2048386.4653 - precision0.7: 0.9364 - recall0.7: 0.7464 - tp0.9: 5275694.6081 - fp0.9: 131773.3169 - tn0.9: 44212345.9774 - fn0.9: 2890844.1858 - precision0.9: 0. 9759 - recall0.9: 0.6429 - accuracy: 0.9559 - auc: 0.9681 - val_loss: 0.7646 - val_tp0.1: 3394116.0000 - val_fp0.1: 2434359.0000 - val_tn0.1: 19620386.0000 - val_fn0.1: 765541.0000 - val_precision0.1: 0.5823 - val_recall0.1: 0.8160 - v al_tp0.3: 2854698.0000 - val_fp0.3: 1867547.0000 - val_tn0.3: 20187194.0000 - val_fn0.3: 1304959.0000 - val_precision0.3: 0.6045 - val_recall0.3: 0.6863 - val_tp0.5: 2392164.0000 - val_fp0.5: 1600876.0000 - val_tn0.5: 20453860.0000 - v al_fn0.5: 1767493.0000 - val_precision0.5: 0.5991 - val_recall0.5: 0.5751 - val_tp0.7: 2014352.0000 - val_fp0.7: 1325938.0000 - val_tn0.7: 20728804.0000 - val_fn0.7: 2145305.0000 - val_precision0.7: 0.6030 - val_recall0.7: 0.4843 - val _tp0.9: 1382581.0000 - val_fp0.9: 710524.0000 - val_tn0.9: 21344216.0000 - val_fn0.9: 2777076.0000 - val_precision0.9: 0.6605 - val_recall0.9: 0.3324 - val_accuracy: 0.8715 - val_auc: 0.8680 Epoch 15/50 1280/1280 [==============================] - 3321s 3s/step - loss: 0.3012 - tp0.1: 7918202.5168 - fp0.1: 3944007.1944 - tn0.1: 40234677.5113 - fn0.1: 413802.1538 - precision0.1: 0.6678 - recall0.1: 0.9509 - tp0.3: 7545589.1913 - fp0.3: 1942385.4692 - tn0.3: 42236259.0687 - fn0.3: 786415.4793 - precision0.3: 0.7966 - recall0.3: 0.9059 - tp0.5: 7139685.9657 - fp0.5: 1075216.9391 - tn0.5: 43103450.5808 - fn0.5: 1192318.7049 - precision0.5: 0.8712 - recall0.5: 0.8570 - tp0.7: 6377161.2748 - fp0.7: 450450.9469 - tn0.7: 43728240.0265 - fn0.7: 1954843.3958 - precision0.7: 0.9369 - recall0.7: 0.7641 - tp0.9: 5506362.6120 - fp0.9: 143446.8002 - tn0.9: 44035203.3466 - fn0.9: 2825642.0585 - precision0.9: 0. 9752 - recall0.9: 0.6625 - accuracy: 0.9571 - auc: 0.9692 - val_loss: 0.7740 - val_tp0.1: 3355047.0000 - val_fp0.1: 2511597.0000 - val_tn0.1: 19571600.0000 - val_fn0.1: 776157.0000 - val_precision0.1: 0.5719 - val_recall0.1: 0.8121 - v al_tp0.3: 2793785.0000 - val_fp0.3: 1928920.0000 - val_tn0.3: 20154280.0000 - val_fn0.3: 1337419.0000 - val_precision0.3: 0.5916 - val_recall0.3: 0.6763 - val_tp0.5: 2272116.0000 - val_fp0.5: 1578770.0000 - val_tn0.5: 20504436.0000 - v al_fn0.5: 1859088.0000 - val_precision0.5: 0.5900 - val_recall0.5: 0.5500 - val_tp0.7: 1883335.0000 - val_fp0.7: 1254872.0000 - val_tn0.7: 20828326.0000 - val_fn0.7: 2247869.0000 - val_precision0.7: 0.6001 - val_recall0.7: 0.4559 - val _tp0.9: 1294491.0000 - val_fp0.9: 656247.0000 - val_tn0.9: 21426948.0000 - val_fn0.9: 2836713.0000 - val_precision0.9: 0.6636 - val_recall0.9: 0.3133 - val_accuracy: 0.8689 - val_auc: 0.8643 Epoch 16/50 1280/1280 [==============================] - 3322s 3s/step - loss: 0.2996 - tp0.1: 7939368.5972 - fp0.1: 3969169.3778 - tn0.1: 40211699.6347 - fn0.1: 390406.3911 - precision0.1: 0.6606 - recall0.1: 0.9528 - tp0.3: 7573992.7580 - fp0.3: 1993073.9243 - tn0.3: 42187811.5020 - fn0.3: 755782.2303 - precision0.3: 0.7866 - recall0.3: 0.9074 - tp0.5: 7177194.8970 - fp0.5: 1109584.0390 - tn0.5: 43071285.9805 - fn0.5: 1152580.0913 - precision0.5: 0.8632 - recall0.5: 0.8586 - tp0.7: 6618657.6151 - fp0.7: 578836.1054 - tn0.7: 43602043.0445 - fn0.7: 1711117.3731 - precision0.7: 0.9188 - recall0.7: 0.7896 - tp0.9: 5482513.6440 - fp0.9: 141140.2100 - tn0.9: 44039753.1483 - fn0.9: 2847261.3443 - precision0.9: 0. 9744 - recall0.9: 0.6538 - accuracy: 0.9565 - auc: 0.9693 - val_loss: 0.8054 - val_tp0.1: 3345481.0000 - val_fp0.1: 2254991.0000 - val_tn0.1: 19696408.0000 - val_fn0.1: 917515.0000 - val_precision0.1: 0.5974 - val_recall0.1: 0.7848 - v al_tp0.3: 2726884.0000 - val_fp0.3: 1640058.0000 - val_tn0.3: 20311344.0000 - val_fn0.3: 1536112.0000 - val_precision0.3: 0.6244 - val_recall0.3: 0.6397 - val_tp0.5: 2263115.0000 - val_fp0.5: 1402171.0000 - val_tn0.5: 20549236.0000 - v al_fn0.5: 1999881.0000 - val_precision0.5: 0.6174 - val_recall0.5: 0.5309 - val_tp0.7: 1906416.0000 - val_fp0.7: 1106825.0000 - val_tn0.7: 20844576.0000 - val_fn0.7: 2356580.0000 - val_precision0.7: 0.6327 - val_recall0.7: 0.4472 - val _tp0.9: 1297258.0000 - val_fp0.9: 495212.0000 - val_tn0.9: 21456192.0000 - val_fn0.9: 2965738.0000 - val_precision0.9: 0.7237 - val_recall0.9: 0.3043 - val_accuracy: 0.8702 - val_auc: 0.8614 Epoch 17/50 1280/1280 [==============================] - 3281s 3s/step - loss: 0.2900 - tp0.1: 7724454.9820 - fp0.1: 3793475.2631 - tn0.1: 40600766.8860 - fn0.1: 391947.2693 - precision0.1: 0.6695 - recall0.1: 0.9516 - tp0.3: 7368504.9789 - fp0.3: 1879500.1913 - tn0.3: 42514764.5855 - fn0.3: 747897.2724 - precision0.3: 0.7960 - recall0.3: 0.9078 - tp0.5: 6984976.5464 - fp0.5: 1046817.2740 - tn0.5: 43347456.7892 - fn0.5: 1131425.7049 - precision0.5: 0.8690 - recall0.5: 0.8606 - tp0.7: 6474243.4176 - fp0.7: 552184.5105 - tn0.7: 43842053.0726 - fn0.7: 1642158.8337 - precision0.7: 0.9206 - recall0.7: 0.7983 - tp0.9: 5438164.0788 - fp0.9: 137406.8056 - tn0.9: 44256829.4044 - fn0.9: 2678238.1725 - precision0.9: 0. 9752 - recall0.9: 0.6718 - accuracy: 0.9584 - auc: 0.9698 - val_loss: 0.8475 - val_tp0.1: 3212091.0000 - val_fp0.1: 2556630.0000 - val_tn0.1: 19565418.0000 - val_fn0.1: 880263.0000 - val_precision0.1: 0.5568 - val_recall0.1: 0.7849 - v al_tp0.3: 2676698.0000 - val_fp0.3: 1975975.0000 - val_tn0.3: 20146070.0000 - val_fn0.3: 1415656.0000 - val_precision0.3: 0.5753 - val_recall0.3: 0.6541 - val_tp0.5: 2228667.0000 - val_fp0.5: 1724443.0000 - val_tn0.5: 20397608.0000 - v al_fn0.5: 1863687.0000 - val_precision0.5: 0.5638 - val_recall0.5: 0.5446 - val_tp0.7: 1876988.0000 - val_fp0.7: 1421139.0000 - val_tn0.7: 20700906.0000 - val_fn0.7: 2215366.0000 - val_precision0.7: 0.5691 - val_recall0.7: 0.4587 - val _tp0.9: 1318523.0000 - val_fp0.9: 744640.0000 - val_tn0.9: 21377414.0000 - val_fn0.9: 2773831.0000 - val_precision0.9: 0.6391 - val_recall0.9: 0.3222 - val_accuracy: 0.8631 - val_auc: 0.8479 Epoch 18/50 1280/1280 [==============================] - 3291s 3s/step - loss: 0.2960 - tp0.1: 7878258.3583 - fp0.1: 3966414.4723 - tn0.1: 40266792.8720 - fn0.1: 399191.5441 - precision0.1: 0.6660 - recall0.1: 0.9518 - tp0.3: 7519728.0133 - fp0.3: 1997387.8189 - tn0.3: 42235815.4325 - fn0.3: 757721.8891 - precision0.3: 0.7910 - recall0.3: 0.9083 - tp0.5: 7117268.5543 - fp0.5: 1103594.4309 - tn0.5: 43129603.3357 - fn0.5: 1160181.3482 - precision0.5: 0.8660 - recall0.5: 0.8598 - tp0.7: 6559720.6885 - fp0.7: 569817.0601 - tn0.7: 43663373.8767 - fn0.7: 1717729.2139 - precision0.7: 0.9203 - recall0.7: 0.7929 - tp0.9: 5460392.9578 - fp0.9: 133811.0039 - tn0.9: 44099404.8353 - fn0.9: 2817056.9446 - precision0.9: 0. 9765 - recall0.9: 0.6620 - accuracy: 0.9569 - auc: 0.9692 - val_loss: 2.4700 - val_tp0.1: 3478680.0000 - val_fp0.1: 2735141.0000 - val_tn0.1: 19398832.0000 - val_fn0.1: 601742.0000 - val_precision0.1: 0.5598 - val_recall0.1: 0.8525 - v al_tp0.3: 2990828.0000 - val_fp0.3: 2147854.0000 - val_tn0.3: 19986120.0000 - val_fn0.3: 1089594.0000 - val_precision0.3: 0.5820 - val_recall0.3: 0.7330 - val_tp0.5: 2523597.0000 - val_fp0.5: 1960329.0000 - val_tn0.5: 20173640.0000 - v al_fn0.5: 1556825.0000 - val_precision0.5: 0.5628 - val_recall0.5: 0.6185 - val_tp0.7: 2211753.0000 - val_fp0.7: 1837061.0000 - val_tn0.7: 20296910.0000 - val_fn0.7: 1868669.0000 - val_precision0.7: 0.5463 - val_recall0.7: 0.5420 - val _tp0.9: 1781271.0000 - val_fp0.9: 1591848.0000 - val_tn0.9: 20542120.0000 - val_fn0.9: 2299151.0000 - val_precision0.9: 0.5281 - val_recall0.9: 0.4365 - val_accuracy: 0.8658 - val_auc: 0.8707 Epoch 19/50 1280/1280 [==============================] - 3287s 3s/step - loss: 0.2909 - tp0.1: 7989303.7198 - fp0.1: 3862557.4653 - tn0.1: 40273532.0609 - fn0.1: 385255.3396 - precision0.1: 0.6759 - recall0.1: 0.9542 - tp0.3: 7630793.7799 - fp0.3: 1926931.7330 - tn0.3: 42209171.3419 - fn0.3: 743765.2795 - precision0.3: 0.7994 - recall0.3: 0.9113 - tp0.5: 7240582.7869 - fp0.5: 1067331.3224 - tn0.5: 43068761.2030 - fn0.5: 1133976.2724 - precision0.5: 0.8729 - recall0.5: 0.8645 - tp0.7: 6700153.0500 - fp0.7: 553561.1038 - tn0.7: 43582525.7065 - fn0.7: 1674406.0094 - precision0.7: 0.9247 - recall0.7: 0.7993 - tp0.9: 5619106.6877 - fp0.9: 138913.2576 - tn0.9: 43997191.2326 - fn0.9: 2755452.3716 - precision0.9: 0. 9761 - recall0.9: 0.6706 - accuracy: 0.9580 - auc: 0.9708 - val_loss: 0.8749 - val_tp0.1: 3092711.0000 - val_fp0.1: 2067604.0000 - val_tn0.1: 20017088.0000 - val_fn0.1: 1036989.0000 - val_precision0.1: 0.5993 - val_recall0.1: 0.7489 - val_tp0.3: 2486761.0000 - val_fp0.3: 1549670.0000 - val_tn0.3: 20535032.0000 - val_fn0.3: 1642939.0000 - val_precision0.3: 0.6161 - val_recall0.3: 0.6022 - val_tp0.5: 2068354.0000 - val_fp0.5: 1334103.0000 - val_tn0.5: 20750600.0000 - val_fn0.5: 2061346.0000 - val_precision0.5: 0.6079 - val_recall0.5: 0.5008 - val_tp0.7: 1728814.0000 - val_fp0.7: 1041223.0000 - val_tn0.7: 21043472.0000 - val_fn0.7: 2400886.0000 - val_precision0.7: 0.6241 - val_recall0.7: 0.4186 - va l_tp0.9: 1199934.0000 - val_fp0.9: 520759.0000 - val_tn0.9: 21563940.0000 - val_fn0.9: 2929766.0000 - val_precision0.9: 0.6974 - val_recall0.9: 0.2906 - val_accuracy: 0.8705 - val_auc: 0.8436 Epoch 20/50 1280/1280 [==============================] - 3278s 3s/step - loss: 0.2874 - tp0.1: 7845801.3482 - fp0.1: 3747571.3029 - tn0.1: 40520331.9508 - fn0.1: 396960.4161 - precision0.1: 0.6782 - recall0.1: 0.9514 - tp0.3: 7499855.0742 - fp0.3: 1875299.3388 - tn0.3: 42392596.7424 - fn0.3: 742906.6901 - precision0.3: 0.8017 - recall0.3: 0.9098 - tp0.5: 7121660.4918 - fp0.5: 1042386.0788 - tn0.5: 43225501.8384 - fn0.5: 1121101.2724 - precision0.5: 0.8739 - recall0.5: 0.8640 - tp0.7: 6592531.3404 - fp0.7: 538088.3911 - tn0.7: 43729809.0500 - fn0.7: 1650230.4239 - precision0.7: 0.9254 - recall0.7: 0.8003 - tp0.9: 5543415.5105 - fp0.9: 131938.6378 - tn0.9: 44135942.6190 - fn0.9: 2699346.2537 - precision0.9: 0. 9770 - recall0.9: 0.6728 - accuracy: 0.9592 - auc: 0.9698 - val_loss: 0.9565 - val_tp0.1: 2943258.0000 - val_fp0.1: 2086336.0000 - val_tn0.1: 20045976.0000 - val_fn0.1: 1138833.0000 - val_precision0.1: 0.5852 - val_recall0.1: 0.7210 - val_tp0.3: 2419480.0000 - val_fp0.3: 1662989.0000 - val_tn0.3: 20469314.0000 - val_fn0.3: 1662611.0000 - val_precision0.3: 0.5927 - val_recall0.3: 0.5927 - val_tp0.5: 2018052.0000 - val_fp0.5: 1478186.0000 - val_tn0.5: 20654124.0000 - val_fn0.5: 2064039.0000 - val_precision0.5: 0.5772 - val_recall0.5: 0.4944 - val_tp0.7: 1715248.0000 - val_fp0.7: 1231354.0000 - val_tn0.7: 20900956.0000 - val_fn0.7: 2366843.0000 - val_precision0.7: 0.5821 - val_recall0.7: 0.4202 - va l_tp0.9: 1245570.0000 - val_fp0.9: 677868.0000 - val_tn0.9: 21454434.0000 - val_fn0.9: 2836521.0000 - val_precision0.9: 0.6476 - val_recall0.9: 0.3051 - val_accuracy: 0.8649 - val_auc: 0.8275 Epoch 21/50 1280/1280 [==============================] - 3290s 3s/step - loss: 0.2804 - tp0.1: 7821343.4738 - fp0.1: 3664726.1171 - tn0.1: 40657232.2397 - fn0.1: 367350.5347 - precision0.1: 0.6815 - recall0.1: 0.9542 - tp0.3: 7489144.7580 - fp0.3: 1868735.6292 - tn0.3: 42453227.8447 - fn0.3: 699549.2506 - precision0.3: 0.8010 - recall0.3: 0.9132 - tp0.5: 7115665.6729 - fp0.5: 1043113.8876 - tn0.5: 43278844.9688 - fn0.5: 1073028.3357 - precision0.5: 0.8724 - recall0.5: 0.8679 - tp0.7: 6602597.8665 - fp0.7: 551623.0804 - tn0.7: 43770320.6628 - fn0.7: 1586096.1421 - precision0.7: 0.9226 - recall0.7: 0.8053 - tp0.9: 5554093.7018 - fp0.9: 134091.5519 - tn0.9: 44187854.0671 - fn0.9: 2634600.3068 - precision0.9: 0. 9763 - recall0.9: 0.6772 - accuracy: 0.9595 - auc: 0.9714 - val_loss: 0.8160 - val_tp0.1: 3192064.0000 - val_fp0.1: 2182394.0000 - val_tn0.1: 19900398.0000 - val_fn0.1: 939537.0000 - val_precision0.1: 0.5939 - val_recall0.1: 0.7726 - v al_tp0.3: 2628251.0000 - val_fp0.3: 1676252.0000 - val_tn0.3: 20406544.0000 - val_fn0.3: 1503350.0000 - val_precision0.3: 0.6106 - val_recall0.3: 0.6361 - val_tp0.5: 2262964.0000 - val_fp0.5: 1459711.0000 - val_tn0.5: 20623092.0000 - v al_fn0.5: 1868637.0000 - val_precision0.5: 0.6079 - val_recall0.5: 0.5477 - val_tp0.7: 1912004.0000 - val_fp0.7: 1114695.0000 - val_tn0.7: 20968108.0000 - val_fn0.7: 2219597.0000 - val_precision0.7: 0.6317 - val_recall0.7: 0.4628 - val _tp0.9: 1266412.0000 - val_fp0.9: 537157.0000 - val_tn0.9: 21545640.0000 - val_fn0.9: 2865189.0000 - val_precision0.9: 0.7022 - val_recall0.9: 0.3065 - val_accuracy: 0.8730 - val_auc: 0.8570 Epoch 22/50 1280/1280 [==============================] - 3337s 3s/step - loss: 0.2695 - tp0.1: 7964599.1304 - fp0.1: 3487980.5644 - tn0.1: 40692123.6760 - fn0.1: 365971.2584 - precision0.1: 0.6952 - recall0.1: 0.9559 - tp0.3: 7639300.1928 - fp0.3: 1768977.4333 - tn0.3: 42411101.8767 - fn0.3: 691270.1959 - precision0.3: 0.8119 - recall0.3: 0.9169 - tp0.5: 7283022.7681 - fp0.5: 1008769.9313 - tn0.5: 43171283.5621 - fn0.5: 1047547.6206 - precision0.5: 0.8781 - recall0.5: 0.8740 - tp0.7: 6797706.8946 - fp0.7: 543031.7963 - tn0.7: 43637044.5636 - fn0.7: 1532863.4941 - precision0.7: 0.9257 - recall0.7: 0.8158 - tp0.9: 5748924.9516 - fp0.9: 136050.2350 - tn0.9: 44044056.0921 - fn0.9: 2581645.4372 - precision0.9: 0. 9771 - recall0.9: 0.6893 - accuracy: 0.9609 - auc: 0.9731 - val_loss: 0.8131 - val_tp0.1: 3187368.0000 - val_fp0.1: 2205558.0000 - val_tn0.1: 19939310.0000 - val_fn0.1: 882169.0000 - val_precision0.1: 0.5910 - val_recall0.1: 0.7832 - v al_tp0.3: 2568349.0000 - val_fp0.3: 1630822.0000 - val_tn0.3: 20514044.0000 - val_fn0.3: 1501188.0000 - val_precision0.3: 0.6116 - val_recall0.3: 0.6311 - val_tp0.5: 2132479.0000 - val_fp0.5: 1391371.0000 - val_tn0.5: 20753492.0000 - v al_fn0.5: 1937058.0000 - val_precision0.5: 0.6052 - val_recall0.5: 0.5240 - val_tp0.7: 1724396.0000 - val_fp0.7: 1052743.0000 - val_tn0.7: 21092120.0000 - val_fn0.7: 2345141.0000 - val_precision0.7: 0.6209 - val_recall0.7: 0.4237 - val _tp0.9: 1088044.0000 - val_fp0.9: 509365.0000 - val_tn0.9: 21635508.0000 - val_fn0.9: 2981493.0000 - val_precision0.9: 0.6811 - val_recall0.9: 0.2674 - val_accuracy: 0.8730 - val_auc: 0.8564 Epoch 23/50 1280/1280 [==============================] - 3288s 3s/step - loss: 0.2689 - tp0.1: 7750995.1733 - fp0.1: 3597605.4887 - tn0.1: 40799177.1624 - fn0.1: 362898.6737 - precision0.1: 0.6830 - recall0.1: 0.9562 - tp0.3: 7415912.0773 - fp0.3: 1777617.9633 - tn0.3: 42619150.5051 - fn0.3: 697981.7697 - precision0.3: 0.8063 - recall0.3: 0.9146 - tp0.5: 7059667.4192 - fp0.5: 992741.5051 - tn0.5: 43404008.9727 - fn0.5: 1054226.4278 - precision0.5: 0.8769 - recall0.5: 0.8705 - t p0.7: 6579822.4957 - fp0.7: 525915.9500 - tn0.7: 43870813.2443 - fn0.7: 1534071.3513 - precision0.7: 0.9263 - recall0.7: 0.8112 - tp0.9: 5573469.2935 - fp0.9: 125489.0593 - tn0.9: 44271266.5379 - fn0.9: 2540424.5535 - precision0.9: 0.9 785 - recall0.9: 0.6878 - accuracy: 0.9612 - auc: 0.9727 - val_loss: 0.8991 - val_tp0.1: 3067116.0000 - val_fp0.1: 2378685.0000 - val_tn0.1: 19772492.0000 - val_fn0.1: 996109.0000 - val_precision0.1: 0.5632 - val_recall0.1: 0.7548 - va l_tp0.3: 2525982.0000 - val_fp0.3: 1869663.0000 - val_tn0.3: 20281514.0000 - val_fn0.3: 1537243.0000 - val_precision0.3: 0.5747 - val_recall0.3: 0.6217 - val_tp0.5: 2090818.0000 - val_fp0.5: 1570273.0000 - val_tn0.5: 20580908.0000 - va l_fn0.5: 1972407.0000 - val_precision0.5: 0.5711 - val_recall0.5: 0.5146 - val_tp0.7: 1691191.0000 - val_fp0.7: 1177904.0000 - val_tn0.7: 20973274.0000 - val_fn0.7: 2372034.0000 - val_precision0.7: 0.5895 - val_recall0.7: 0.4162 - val_ tp0.9: 1101527.0000 - val_fp0.9: 574543.0000 - val_tn0.9: 21576624.0000 - val_fn0.9: 2961698.0000 - val_precision0.9: 0.6572 - val_recall0.9: 0.2711 - val_accuracy: 0.8649 - val_auc: 0.8377 Epoch 24/50 1280/1280 [==============================] - 3284s 3s/step - loss: 0.2805 - tp0.1: 7918656.6589 - fp0.1: 3592495.9235 - tn0.1: 40635399.4606 - fn0.1: 364123.3185 - precision0.1: 0.6839 - recall0.1: 0.9541 - tp0.3: 7581799.2061 - fp0.3: 1810020.2311 - tn0.3: 42417852.9594 - fn0.3: 700980.7713 - precision0.3: 0.8032 - recall0.3: 0.9122 - tp0.5: 7211523.7502 - fp0.5: 1027547.9930 - tn0.5: 43200324.1296 - fn0.5: 1071256.2272 - precision0.5: 0.8718 - recall0.5: 0.8665 - tp0.7: 6727091.3692 - fp0.7: 558955.8712 - tn0.7: 43668944.4075 - fn0.7: 1555688.6081 - precision0.7: 0.9209 - recall0.7: 0.8072 - tp0.9: 5696121.9555 - fp0.9: 142622.7455 - tn0.9: 44085280.0343 - fn0.9: 2586658.0219 - precision0.9: 0. 9746 - recall0.9: 0.6826 - accuracy: 0.9591 - auc: 0.9708 - val_loss: 0.9386 - val_tp0.1: 2779932.0000 - val_fp0.1: 1939286.0000 - val_tn0.1: 20344936.0000 - val_fn0.1: 1150243.0000 - val_precision0.1: 0.5891 - val_recall0.1: 0.7073 - val_tp0.3: 2181594.0000 - val_fp0.3: 1457307.0000 - val_tn0.3: 20826908.0000 - val_fn0.3: 1748581.0000 - val_precision0.3: 0.5995 - val_recall0.3: 0.5551 - val_tp0.5: 1772386.0000 - val_fp0.5: 1197130.0000 - val_tn0.5: 21087092.0000 - val_fn0.5: 2157789.0000 - val_precision0.5: 0.5969 - val_recall0.5: 0.4510 - val_tp0.7: 1397374.0000 - val_fp0.7: 840833.0000 - val_tn0.7: 21443384.0000 - val_fn0.7: 2532801.0000 - val_precision0.7: 0.6243 - val_recall0.7: 0.3556 - val _tp0.9: 891892.0000 - val_fp0.9: 338054.0000 - val_tn0.9: 21946184.0000 - val_fn0.9: 3038283.0000 - val_precision0.9: 0.7251 - val_recall0.9: 0.2269 - val_accuracy: 0.8720 - val_auc: 0.8227 Epoch 25/50 1280/1280 [==============================] - 3312s 3s/step - loss: 0.2614 - tp0.1: 7920216.7338 - fp0.1: 3526618.6542 - tn0.1: 40723751.9001 - fn0.1: 340058.4512 - precision0.1: 0.6948 - recall0.1: 0.9594 - tp0.3: 7591746.0851 - fp0.3: 1770255.0687 - tn0.3: 42480125.7884 - fn0.3: 668529.0999 - precision0.3: 0.8133 - recall0.3: 0.9199 - tp0.5: 7232148.8064 - fp0.5: 1004410.7486 - tn0.5: 43245980.8556 - fn0.5: 1028126.3786 - precision0.5: 0.8800 - recall0.5: 0.8766 - tp0.7: 6751684.1514 - fp0.7: 540161.4325 - tn0.7: 43710214.4629 - fn0.7: 1508591.0336 - precision0.7: 0.9275 - recall0.7: 0.8179 - tp0.9: 5682987.5933 - fp0.9: 133426.7330 - tn0.9: 44116927.1835 - fn0.9: 2577287.5917 - precision0.9: 0. 9781 - recall0.9: 0.6873 - accuracy: 0.9617 - auc: 0.9742 - val_loss: 0.7990 - val_tp0.1: 3208335.0000 - val_fp0.1: 2291707.0000 - val_tn0.1: 19888704.0000 - val_fn0.1: 825651.0000 - val_precision0.1: 0.5833 - val_recall0.1: 0.7953 - v al_tp0.3: 2646324.0000 - val_fp0.3: 1812815.0000 - val_tn0.3: 20367606.0000 - val_fn0.3: 1387662.0000 - val_precision0.3: 0.5935 - val_recall0.3: 0.6560 - val_tp0.5: 2184535.0000 - val_fp0.5: 1449172.0000 - val_tn0.5: 20731252.0000 - v al_fn0.5: 1849451.0000 - val_precision0.5: 0.6012 - val_recall0.5: 0.5415 - val_tp0.7: 1700807.0000 - val_fp0.7: 1059055.0000 - val_tn0.7: 21121356.0000 - val_fn0.7: 2333179.0000 - val_precision0.7: 0.6163 - val_recall0.7: 0.4216 - val _tp0.9: 1000799.0000 - val_fp0.9: 603281.0000 - val_tn0.9: 21577132.0000 - val_fn0.9: 3033187.0000 - val_precision0.9: 0.6239 - val_recall0.9: 0.2481 - val_accuracy: 0.8742 - val_auc: 0.8559 Epoch 26/50 1280/1280 [==============================] - 3292s 3s/step - loss: 0.2564 - tp0.1: 7951938.6698 - fp0.1: 3507608.0250 - tn0.1: 40722855.8618 - fn0.1: 328256.7658 - precision0.1: 0.6956 - recall0.1: 0.9610 - tp0.3: 7628245.6300 - fp0.3: 1764444.8579 - tn0.3: 42466010.5285 - fn0.3: 651949.8056 - precision0.3: 0.8130 - recall0.3: 0.9222 - tp0.5: 7277018.4473 - fp0.5: 993563.1429 - tn0.5: 43236890.8002 - fn0.5: 1003176.9883 - precision0.5: 0.8801 - recall0.5: 0.8802 - t p0.7: 6809211.9329 - fp0.7: 538938.6565 - tn0.7: 43691507.5847 - fn0.7: 1470983.5027 - precision0.7: 0.9271 - recall0.7: 0.8247 - tp0.9: 5778468.3435 - fp0.9: 130088.7877 - tn0.9: 44100381.7361 - fn0.9: 2501727.0921 - precision0.9: 0.9 783 - recall0.9: 0.7006 - accuracy: 0.9620 - auc: 0.9752 - val_loss: 0.9080 - val_tp0.1: 2917153.0000 - val_fp0.1: 2217207.0000 - val_tn0.1: 20036056.0000 - val_fn0.1: 1043985.0000 - val_precision0.1: 0.5682 - val_recall0.1: 0.7364 - v al_tp0.3: 2324132.0000 - val_fp0.3: 1709552.0000 - val_tn0.3: 20543718.0000 - val_fn0.3: 1637006.0000 - val_precision0.3: 0.5762 - val_recall0.3: 0.5867 - val_tp0.5: 1885949.0000 - val_fp0.5: 1373092.0000 - val_tn0.5: 20880176.0000 - v al_fn0.5: 2075189.0000 - val_precision0.5: 0.5787 - val_recall0.5: 0.4761 - val_tp0.7: 1470934.0000 - val_fp0.7: 951612.0000 - val_tn0.7: 21301648.0000 - val_fn0.7: 2490204.0000 - val_precision0.7: 0.6072 - val_recall0.7: 0.3713 - val_ tp0.9: 925487.0000 - val_fp0.9: 440991.0000 - val_tn0.9: 21812280.0000 - val_fn0.9: 3035651.0000 - val_precision0.9: 0.6773 - val_recall0.9: 0.2336 - val_accuracy: 0.8685 - val_auc: 0.8286 Epoch 27/50 1280/1280 [==============================] - 3294s 3s/step - loss: 0.2645 - tp0.1: 8005473.6409 - fp0.1: 3575769.4098 - tn0.1: 40581931.1319 - fn0.1: 347472.6667 - precision0.1: 0.6907 - recall0.1: 0.9587 - tp0.3: 7670517.9243 - fp0.3: 1798604.7674 - tn0.3: 42359111.5941 - fn0.3: 682428.3833 - precision0.3: 0.8108 - recall0.3: 0.9185 - tp0.5: 7312500.5558 - fp0.5: 1024504.0812 - tn0.5: 43133203.4434 - fn0.5: 1040445.7518 - precision0.5: 0.8784 - recall0.5: 0.8764 - tp0.7: 6846122.2201 - fp0.7: 554274.4294 - tn0.7: 43603409.3521 - fn0.7: 1506824.0874 - precision0.7: 0.9264 - recall0.7: 0.8215 - tp0.9: 5804102.2420 - fp0.9: 127947.9672 - tn0.9: 44029764.9969 - fn0.9: 2548844.0656 - precision0.9: 0. 9789 - recall0.9: 0.6991 - accuracy: 0.9613 - auc: 0.9737 - val_loss: 0.7467 - val_tp0.1: 3265250.0000 - val_fp0.1: 2199966.0000 - val_tn0.1: 19968754.0000 - val_fn0.1: 780424.0000 - val_precision0.1: 0.5975 - val_recall0.1: 0.8071 - v al_tp0.3: 2595986.0000 - val_fp0.3: 1569977.0000 - val_tn0.3: 20598752.0000 - val_fn0.3: 1449688.0000 - val_precision0.3: 0.6231 - val_recall0.3: 0.6417 - val_tp0.5: 2090775.0000 - val_fp0.5: 1320764.0000 - val_tn0.5: 20847968.0000 - v al_fn0.5: 1954899.0000 - val_precision0.5: 0.6129 - val_recall0.5: 0.5168 - val_tp0.7: 1610859.0000 - val_fp0.7: 895071.0000 - val_tn0.7: 21273662.0000 - val_fn0.7: 2434815.0000 - val_precision0.7: 0.6428 - val_recall0.7: 0.3982 - val_ tp0.9: 934620.0000 - val_fp0.9: 380349.0000 - val_tn0.9: 21788384.0000 - val_fn0.9: 3111054.0000 - val_precision0.9: 0.7108 - val_recall0.9: 0.2310 - val_accuracy: 0.8750 - val_auc: 0.8659 Epoch 28/50 1280/1280 [==============================] - 3286s 3s/step - loss: 0.2563 - tp0.1: 7900461.9563 - fp0.1: 3575374.1405 - tn0.1: 40711544.3599 - fn0.1: 323306.9867 - precision0.1: 0.6896 - recall0.1: 0.9612 - tp0.3: 7567966.7549 - fp0.3: 1768843.2389 - tn0.3: 42518056.5605 - fn0.3: 655802.1881 - precision0.3: 0.8113 - recall0.3: 0.9206 - tp0.5: 7202561.9477 - fp0.5: 988935.1319 - tn0.5: 43297946.7713 - fn0.5: 1021206.9953 - precision0.5: 0.8795 - recall0.5: 0.8766 - t p0.7: 6725537.1077 - fp0.7: 525482.0679 - tn0.7: 43761380.4372 - fn0.7: 1498231.8353 - precision0.7: 0.9278 - recall0.7: 0.8191 - tp0.9: 5729492.5956 - fp0.9: 139279.5152 - tn0.9: 44147595.4887 - fn0.9: 2494276.3474 - precision0.9: 0.9 761 - recall0.9: 0.7005 - accuracy: 0.9620 - auc: 0.9747 - val_loss: 0.9282 - val_tp0.1: 3074924.0000 - val_fp0.1: 2026526.0000 - val_tn0.1: 20054118.0000 - val_fn0.1: 1058829.0000 - val_precision0.1: 0.6028 - val_recall0.1: 0.7439 - v al_tp0.3: 2384857.0000 - val_fp0.3: 1512374.0000 - val_tn0.3: 20568268.0000 - val_fn0.3: 1748896.0000 - val_precision0.3: 0.6119 - val_recall0.3: 0.5769 - val_tp0.5: 1874790.0000 - val_fp0.5: 1177108.0000 - val_tn0.5: 20903548.0000 - v al_fn0.5: 2258963.0000 - val_precision0.5: 0.6143 - val_recall0.5: 0.4535 - val_tp0.7: 1433826.0000 - val_fp0.7: 875539.0000 - val_tn0.7: 21205108.0000 - val_fn0.7: 2699927.0000 - val_precision0.7: 0.6209 - val_recall0.7: 0.3469 - val_ tp0.9: 876571.0000 - val_fp0.9: 463067.0000 - val_tn0.9: 21617596.0000 - val_fn0.9: 3257182.0000 - val_precision0.9: 0.6543 - val_recall0.9: 0.2121 - val_accuracy: 0.8689 - val_auc: 0.8345 Epoch 29/50 1280/1280 [==============================] - 3301s 3s/step - loss: 0.2631 - tp0.1: 7928634.4387 - fp0.1: 3499371.4231 - tn0.1: 40746977.2912 - fn0.1: 335655.7486 - precision0.1: 0.6931 - recall0.1: 0.9590 - tp0.3: 7590846.6565 - fp0.3: 1745234.9133 - tn0.3: 42501135.9079 - fn0.3: 673443.5308 - precision0.3: 0.8123 - recall0.3: 0.9172 - tp0.5: 7228004.8962 - fp0.5: 987598.6276 - tn0.5: 43258775.8423 - fn0.5: 1036285.2912 - precision0.5: 0.8797 - recall0.5: 0.8722 - t p0.7: 6751780.5855 - fp0.7: 528906.3060 - tn0.7: 43717457.8899 - fn0.7: 1512509.6019 - precision0.7: 0.9276 - recall0.7: 0.8149 - tp0.9: 5739049.2662 - fp0.9: 134220.8212 - tn0.9: 44112121.8931 - fn0.9: 2525240.9212 - precision0.9: 0.9 773 - recall0.9: 0.6932 - accuracy: 0.9610 - auc: 0.9735 - val_loss: 0.9733 - val_tp0.1: 2953631.0000 - val_fp0.1: 2097398.0000 - val_tn0.1: 20016580.0000 - val_fn0.1: 1146781.0000 - val_precision0.1: 0.5848 - val_recall0.1: 0.7203 - v al_tp0.3: 2295553.0000 - val_fp0.3: 1572391.0000 - val_tn0.3: 20541608.0000 - val_fn0.3: 1804859.0000 - val_precision0.3: 0.5935 - val_recall0.3: 0.5598 - val_tp0.5: 1907607.0000 - val_fp0.5: 1337407.0000 - val_tn0.5: 20776580.0000 - v al_fn0.5: 2192805.0000 - val_precision0.5: 0.5879 - val_recall0.5: 0.4652 - val_tp0.7: 1521536.0000 - val_fp0.7: 1008010.0000 - val_tn0.7: 21105980.0000 - val_fn0.7: 2578876.0000 - val_precision0.7: 0.6015 - val_recall0.7: 0.3711 - val _tp0.9: 972957.0000 - val_fp0.9: 483731.0000 - val_tn0.9: 21630266.0000 - val_fn0.9: 3127455.0000 - val_precision0.9: 0.6679 - val_recall0.9: 0.2373 - val_accuracy: 0.8653 - val_auc: 0.8217 Epoch 30/50 1280/1280 [==============================] - 3328s 3s/step - loss: 0.2476 - tp0.1: 7928433.5863 - fp0.1: 3472550.0773 - tn0.1: 40794809.0422 - fn0.1: 314855.4317 - precision0.1: 0.6960 - recall0.1: 0.9627 - tp0.3: 7601842.5277 - fp0.3: 1687439.2631 - tn0.3: 42579912.0640 - fn0.3: 641446.4902 - precision0.3: 0.8211 - recall0.3: 0.9228 - tp0.5: 7249994.1311 - fp0.5: 954111.0289 - tn0.5: 43313245.2014 - fn0.5: 993294.8868 - precision0.5: 0.8862 - recall0.5: 0.8801 - tp 0.7: 6788340.7728 - fp0.7: 512779.7322 - tn0.7: 43754579.6230 - fn0.7: 1454948.2451 - precision0.7: 0.9317 - recall0.7: 0.8242 - tp0.9: 5804142.8977 - fp0.9: 135882.9547 - tn0.9: 44131491.4426 - fn0.9: 2439146.1202 - precision0.9: 0.97 77 - recall0.9: 0.7071 - accuracy: 0.9638 - auc: 0.9759 - val_loss: 0.9000 - val_tp0.1: 3155596.0000 - val_fp0.1: 2364539.0000 - val_tn0.1: 19719286.0000 - val_fn0.1: 974987.0000 - val_precision0.1: 0.5717 - val_recall0.1: 0.7640 - val _tp0.3: 2555024.0000 - val_fp0.3: 1820537.0000 - val_tn0.3: 20263286.0000 - val_fn0.3: 1575559.0000 - val_precision0.3: 0.5839 - val_recall0.3: 0.6186 - val_tp0.5: 2171845.0000 - val_fp0.5: 1530813.0000 - val_tn0.5: 20553012.0000 - val _fn0.5: 1958738.0000 - val_precision0.5: 0.5866 - val_recall0.5: 0.5258 - val_tp0.7: 1696953.0000 - val_fp0.7: 1088079.0000 - val_tn0.7: 20995736.0000 - val_fn0.7: 2433630.0000 - val_precision0.7: 0.6093 - val_recall0.7: 0.4108 - val_t p0.9: 986911.0000 - val_fp0.9: 596529.0000 - val_tn0.9: 21487282.0000 - val_fn0.9: 3143672.0000 - val_precision0.9: 0.6233 - val_recall0.9: 0.2389 - val_accuracy: 0.8669 - val_auc: 0.8372 Epoch 31/50 1280/1280 [==============================] - 3327s 3s/step - loss: 0.2474 - tp0.1: 7893463.6916 - fp0.1: 3376652.6175 - tn0.1: 40920762.5230 - fn0.1: 319751.0945 - precision0.1: 0.6988 - recall0.1: 0.9618 - tp0.3: 7584152.9766 - fp0.3: 1687559.6604 - tn0.3: 42609861.8407 - fn0.3: 629061.8095 - precision0.3: 0.8167 - recall0.3: 0.9246 - tp0.5: 7249654.8931 - fp0.5: 952218.5824 - tn0.5: 43345227.1788 - fn0.5: 963559.8931 - precision0.5: 0.8832 - recall0.5: 0.8838 - tp 0.7: 6813905.7268 - fp0.7: 516513.1452 - tn0.7: 43780937.7900 - fn0.7: 1399309.0593 - precision0.7: 0.9292 - recall0.7: 0.8309 - tp0.9: 5825876.9290 - fp0.9: 123739.9094 - tn0.9: 44173704.9789 - fn0.9: 2387337.8571 - precision0.9: 0.97 94 - recall0.9: 0.7105 - accuracy: 0.9638 - auc: 0.9755 - val_loss: 1.0137 - val_tp0.1: 2843857.0000 - val_fp0.1: 2045215.0000 - val_tn0.1: 20132800.0000 - val_fn0.1: 1192532.0000 - val_precision0.1: 0.5817 - val_recall0.1: 0.7046 - va l_tp0.3: 2207535.0000 - val_fp0.3: 1595385.0000 - val_tn0.3: 20582624.0000 - val_fn0.3: 1828854.0000 - val_precision0.3: 0.5805 - val_recall0.3: 0.5469 - val_tp0.5: 1835971.0000 - val_fp0.5: 1390695.0000 - val_tn0.5: 20787306.0000 - va l_fn0.5: 2200418.0000 - val_precision0.5: 0.5690 - val_recall0.5: 0.4549 - val_tp0.7: 1407052.0000 - val_fp0.7: 1033277.0000 - val_tn0.7: 21144740.0000 - val_fn0.7: 2629337.0000 - val_precision0.7: 0.5766 - val_recall0.7: 0.3486 - val_ tp0.9: 786994.0000 - val_fp0.9: 502079.0000 - val_tn0.9: 21675932.0000 - val_fn0.9: 3249395.0000 - val_precision0.9: 0.6105 - val_recall0.9: 0.1950 - val_accuracy: 0.8630 - val_auc: 0.8121 Epoch 32/50 1280/1280 [==============================] - 3314s 3s/step - loss: 0.2529 - tp0.1: 7921204.5262 - fp0.1: 3486226.5160 - tn0.1: 40787447.0554 - fn0.1: 315795.7416 - precision0.1: 0.6929 - recall0.1: 0.9624 - tp0.3: 7593409.2264 - fp0.3: 1719995.1319 - tn0.3: 42553646.5496 - fn0.3: 643591.0414 - precision0.3: 0.8139 - recall0.3: 0.9227 - tp0.5: 7240041.4294 - fp0.5: 971849.9313 - tn0.5: 43301829.9984 - fn0.5: 996958.8384 - precision0.5: 0.8807 - recall0.5: 0.8794 - tp 0.7: 6782718.2459 - fp0.7: 527577.0203 - tn0.7: 43746081.8454 - fn0.7: 1454282.0219 - precision0.7: 0.9273 - recall0.7: 0.8235 - tp0.9: 5780993.2069 - fp0.9: 137794.4926 - tn0.9: 44135860.1952 - fn0.9: 2456007.0609 - precision0.9: 0.97 62 - recall0.9: 0.7029 - accuracy: 0.9623 - auc: 0.9755 - val_loss: 0.9139 - val_tp0.1: 2984184.0000 - val_fp0.1: 1853144.0000 - val_tn0.1: 20302900.0000 - val_fn0.1: 1074177.0000 - val_precision0.1: 0.6169 - val_recall0.1: 0.7353 - va l_tp0.3: 2282389.0000 - val_fp0.3: 1253127.0000 - val_tn0.3: 20902908.0000 - val_fn0.3: 1775972.0000 - val_precision0.3: 0.6456 - val_recall0.3: 0.5624 - val_tp0.5: 1856088.0000 - val_fp0.5: 1008268.0000 - val_tn0.5: 21147768.0000 - va l_fn0.5: 2202273.0000 - val_precision0.5: 0.6480 - val_recall0.5: 0.4573 - val_tp0.7: 1412568.0000 - val_fp0.7: 746394.0000 - val_tn0.7: 21409650.0000 - val_fn0.7: 2645793.0000 - val_precision0.7: 0.6543 - val_recall0.7: 0.3481 - val_t p0.9: 859420.0000 - val_fp0.9: 382687.0000 - val_tn0.9: 21773356.0000 - val_fn0.9: 3198941.0000 - val_precision0.9: 0.6919 - val_recall0.9: 0.2118 - val_accuracy: 0.8775 - val_auc: 0.8374 Epoch 33/50 1280/1280 [==============================] - 3327s 3s/step - loss: 0.2503 - tp0.1: 8047970.1561 - fp0.1: 3391824.5386 - tn0.1: 40757551.3286 - fn0.1: 313307.7994 - precision0.1: 0.7045 - recall0.1: 0.9628 - tp0.3: 7729505.2756 - fp0.3: 1696243.9040 - tn0.3: 42453121.2498 - fn0.3: 631772.6799 - precision0.3: 0.8217 - recall0.3: 0.9244 - tp0.5: 7388192.9508 - fp0.5: 982075.0718 - tn0.5: 43167288.1382 - fn0.5: 973085.0047 - precision0.5: 0.8838 - recall0.5: 0.8830 - tp 0.7: 6931423.2888 - fp0.7: 537102.3271 - tn0.7: 43612270.6479 - fn0.7: 1429854.6667 - precision0.7: 0.9287 - recall0.7: 0.8280 - tp0.9: 5907919.1241 - fp0.9: 136823.9852 - tn0.9: 44012543.5980 - fn0.9: 2453358.8314 - precision0.9: 0.97 77 - recall0.9: 0.7060 - accuracy: 0.9628 - auc: 0.9760 - val_loss: 1.0074 - val_tp0.1: 3175440.0000 - val_fp0.1: 2183311.0000 - val_tn0.1: 19707500.0000 - val_fn0.1: 1148150.0000 - val_precision0.1: 0.5926 - val_recall0.1: 0.7344 - va l_tp0.3: 2561350.0000 - val_fp0.3: 1772975.0000 - val_tn0.3: 20117834.0000 - val_fn0.3: 1762240.0000 - val_precision0.3: 0.5909 - val_recall0.3: 0.5924 - val_tp0.5: 2236272.0000 - val_fp0.5: 1567765.0000 - val_tn0.5: 20323044.0000 - va l_fn0.5: 2087318.0000 - val_precision0.5: 0.5879 - val_recall0.5: 0.5172 - val_tp0.7: 1860628.0000 - val_fp0.7: 1235466.0000 - val_tn0.7: 20655340.0000 - val_fn0.7: 2462962.0000 - val_precision0.7: 0.6010 - val_recall0.7: 0.4303 - val_ tp0.9: 1296792.0000 - val_fp0.9: 704030.0000 - val_tn0.9: 21186792.0000 - val_fn0.9: 3026798.0000 - val_precision0.9: 0.6481 - val_recall0.9: 0.2999 - val_accuracy: 0.8606 - val_auc: 0.8254 Epoch 34/50 1280/1280 [==============================] - 3324s 3s/step - loss: 0.2507 - tp0.1: 7911580.4098 - fp0.1: 3345203.1913 - tn0.1: 40931131.7447 - fn0.1: 322742.2100 - precision0.1: 0.7028 - recall0.1: 0.9609 - tp0.3: 7599881.2022 - fp0.3: 1647150.7923 - tn0.3: 42629169.7291 - fn0.3: 634441.4176 - precision0.3: 0.8220 - recall0.3: 0.9223 - tp0.5: 7270919.3005 - fp0.5: 951517.5379 - tn0.5: 43324815.6550 - fn0.5: 963403.3193 - precision0.5: 0.8843 - recall0.5: 0.8819 - tp 0.7: 6834573.1491 - fp0.7: 523079.1390 - tn0.7: 43753256.2943 - fn0.7: 1399749.4707 - precision0.7: 0.9292 - recall0.7: 0.8288 - tp0.9: 5841839.3435 - fp0.9: 132340.8064 - tn0.9: 44144004.1702 - fn0.9: 2392483.2763 - precision0.9: 0.97 80 - recall0.9: 0.7081 - accuracy: 0.9633 - auc: 0.9751 - val_loss: 0.9237 - val_tp0.1: 3263836.0000 - val_fp0.1: 1919441.0000 - val_tn0.1: 19948316.0000 - val_fn0.1: 1082810.0000 - val_precision0.1: 0.6297 - val_recall0.1: 0.7509 - va l_tp0.3: 2560242.0000 - val_fp0.3: 1398314.0000 - val_tn0.3: 20469446.0000 - val_fn0.3: 1786404.0000 - val_precision0.3: 0.6468 - val_recall0.3: 0.5890 - val_tp0.5: 2148456.0000 - val_fp0.5: 1146771.0000 - val_tn0.5: 20720984.0000 - va l_fn0.5: 2198190.0000 - val_precision0.5: 0.6520 - val_recall0.5: 0.4943 - val_tp0.7: 1663813.0000 - val_fp0.7: 806718.0000 - val_tn0.7: 21061036.0000 - val_fn0.7: 2682833.0000 - val_precision0.7: 0.6735 - val_recall0.7: 0.3828 - val_t p0.9: 979165.0000 - val_fp0.9: 394579.0000 - val_tn0.9: 21473184.0000 - val_fn0.9: 3367481.0000 - val_precision0.9: 0.7128 - val_recall0.9: 0.2253 - val_accuracy: 0.8724 - val_auc: 0.8405 Epoch 35/50 1280/1280 [==============================] - 3310s 3s/step - loss: 0.2614 - tp0.1: 7937448.7291 - fp0.1: 3421955.0578 - tn0.1: 40822462.2030 - fn0.1: 328785.1717 - precision0.1: 0.6999 - recall0.1: 0.9579 - tp0.3: 7621030.6534 - fp0.3: 1703065.0414 - tn0.3: 42541374.6472 - fn0.3: 645203.2475 - precision0.3: 0.8174 - recall0.3: 0.9200 - tp0.5: 7279229.2404 - fp0.5: 977595.1093 - tn0.5: 43266832.8696 - fn0.5: 987004.6604 - precision0.5: 0.8809 - recall0.5: 0.8792 - tp 0.7: 6838107.3216 - fp0.7: 536670.7908 - tn0.7: 43707710.4473 - fn0.7: 1428126.5792 - precision0.7: 0.9261 - recall0.7: 0.8262 - tp0.9: 5811902.2927 - fp0.9: 135171.2490 - tn0.9: 44109247.1507 - fn0.9: 2454331.6081 - precision0.9: 0.97 71 - recall0.9: 0.7018 - accuracy: 0.9620 - auc: 0.9732 - val_loss: 0.8013 - val_tp0.1: 3284754.0000 - val_fp0.1: 2344554.0000 - val_tn0.1: 19771954.0000 - val_fn0.1: 813139.0000 - val_precision0.1: 0.5835 - val_recall0.1: 0.8016 - val _tp0.3: 2575560.0000 - val_fp0.3: 1777769.0000 - val_tn0.3: 20338744.0000 - val_fn0.3: 1522333.0000 - val_precision0.3: 0.5916 - val_recall0.3: 0.6285 - val_tp0.5: 2179640.0000 - val_fp0.5: 1496577.0000 - val_tn0.5: 20619926.0000 - val _fn0.5: 1918253.0000 - val_precision0.5: 0.5929 - val_recall0.5: 0.5319 - val_tp0.7: 1701082.0000 - val_fp0.7: 1053012.0000 - val_tn0.7: 21063498.0000 - val_fn0.7: 2396811.0000 - val_precision0.7: 0.6177 - val_recall0.7: 0.4151 - val_t p0.9: 989696.0000 - val_fp0.9: 527144.0000 - val_tn0.9: 21589364.0000 - val_fn0.9: 3108197.0000 - val_precision0.9: 0.6525 - val_recall0.9: 0.2415 - val_accuracy: 0.8697 - val_auc: 0.8572 Epoch 36/50 1280/1280 [==============================] - 3341s 3s/step - loss: 0.2585 - tp0.1: 7873502.4785 - fp0.1: 3351134.0312 - tn0.1: 40955766.1046 - fn0.1: 330264.3185 - precision0.1: 0.6971 - recall0.1: 0.9588 - tp0.3: 7549771.1140 - fp0.3: 1661219.6745 - tn0.3: 42645646.7143 - fn0.3: 653995.6831 - precision0.3: 0.8162 - recall0.3: 0.9183 - tp0.5: 7211353.4215 - fp0.5: 964176.2467 - tn0.5: 43342703.0515 - fn0.5: 992413.3755 - precision0.5: 0.8793 - recall0.5: 0.8765 - tp 0.7: 6769812.5121 - fp0.7: 536905.1553 - tn0.7: 43770008.0851 - fn0.7: 1433954.2849 - precision0.7: 0.9245 - recall0.7: 0.8228 - tp0.9: 5783984.8657 - fp0.9: 143730.5753 - tn0.9: 44163162.1390 - fn0.9: 2419781.9313 - precision0.9: 0.97 52 - recall0.9: 0.7042 - accuracy: 0.9619 - auc: 0.9736 - val_loss: 0.7459 - val_tp0.1: 3472629.0000 - val_fp0.1: 2432774.0000 - val_tn0.1: 19591824.0000 - val_fn0.1: 717165.0000 - val_precision0.1: 0.5880 - val_recall0.1: 0.8288 - val _tp0.3: 2809063.0000 - val_fp0.3: 1835029.0000 - val_tn0.3: 20189584.0000 - val_fn0.3: 1380731.0000 - val_precision0.3: 0.6049 - val_recall0.3: 0.6705 - val_tp0.5: 2315959.0000 - val_fp0.5: 1490932.0000 - val_tn0.5: 20533678.0000 - val _fn0.5: 1873835.0000 - val_precision0.5: 0.6084 - val_recall0.5: 0.5528 - val_tp0.7: 1776363.0000 - val_fp0.7: 1094378.0000 - val_tn0.7: 20930232.0000 - val_fn0.7: 2413431.0000 - val_precision0.7: 0.6188 - val_recall0.7: 0.4240 - val_t p0.9: 1035383.0000 - val_fp0.9: 541763.0000 - val_tn0.9: 21482840.0000 - val_fn0.9: 3154411.0000 - val_precision0.9: 0.6565 - val_recall0.9: 0.2471 - val_accuracy: 0.8716 - val_auc: 0.8687 Epoch 37/50 1280/1280 [==============================] - 3295s 3s/step - loss: 0.2437 - tp0.1: 8016183.8337 - fp0.1: 3307100.4614 - tn0.1: 40879834.5652 - fn0.1: 307556.7455 - precision0.1: 0.7070 - recall0.1: 0.9629 - tp0.3: 7712574.3755 - fp0.3: 1659818.0539 - tn0.3: 42527102.4731 - fn0.3: 611166.2037 - precision0.3: 0.8224 - recall0.3: 0.9270 - tp0.5: 7388699.9188 - fp0.5: 964567.5652 - tn0.5: 43222331.7237 - fn0.5: 935040.6604 - precision0.5: 0.8843 - recall0.5: 0.8884 - tp 0.7: 6943361.7510 - fp0.7: 525733.5105 - tn0.7: 43661155.2553 - fn0.7: 1380378.8283 - precision0.7: 0.9294 - recall0.7: 0.8349 - tp0.9: 5919522.7244 - fp0.9: 126122.8407 - tn0.9: 44060797.3005 - fn0.9: 2404217.8548 - precision0.9: 0.97 90 - recall0.9: 0.7122 - accuracy: 0.9641 - auc: 0.9762 - val_loss: 0.8760 - val_tp0.1: 3352442.0000 - val_fp0.1: 2392549.0000 - val_tn0.1: 19544092.0000 - val_fn0.1: 925309.0000 - val_precision0.1: 0.5835 - val_recall0.1: 0.7837 - val _tp0.3: 2658571.0000 - val_fp0.3: 1872790.0000 - val_tn0.3: 20063866.0000 - val_fn0.3: 1619180.0000 - val_precision0.3: 0.5867 - val_recall0.3: 0.6215 - val_tp0.5: 2313864.0000 - val_fp0.5: 1697140.0000 - val_tn0.5: 20239508.0000 - val _fn0.5: 1963887.0000 - val_precision0.5: 0.5769 - val_recall0.5: 0.5409 - val_tp0.7: 1882798.0000 - val_fp0.7: 1331096.0000 - val_tn0.7: 20605548.0000 - val_fn0.7: 2394953.0000 - val_precision0.7: 0.5858 - val_recall0.7: 0.4401 - val_t p0.9: 1104516.0000 - val_fp0.9: 586104.0000 - val_tn0.9: 21350548.0000 - val_fn0.9: 3173235.0000 - val_precision0.9: 0.6533 - val_recall0.9: 0.2582 - val_accuracy: 0.8603 - val_auc: 0.8446 Epoch 38/50 1280/1280 [==============================] - 3369s 3s/step - loss: 0.2413 - tp0.1: 7956859.0180 - fp0.1: 3276078.4895 - tn0.1: 40979600.7861 - fn0.1: 298124.8735 - precision0.1: 0.7090 - recall0.1: 0.9634 - tp0.3: 7646937.8517 - fp0.3: 1590794.5269 - tn0.3: 42664873.7775 - fn0.3: 608046.0398 - precision0.3: 0.8280 - recall0.3: 0.9258 - tp0.5: 7313832.8025 - fp0.5: 911027.5652 - tn0.5: 43344624.5683 - fn0.5: 941151.0890 - precision0.5: 0.8894 - recall0.5: 0.8851 - tp 0.7: 6881091.8657 - fp0.7: 495880.5730 - tn0.7: 43759809.8337 - fn0.7: 1373892.0258 - precision0.7: 0.9331 - recall0.7: 0.8326 - tp0.9: 5927602.7518 - fp0.9: 127784.9633 - tn0.9: 44127895.0578 - fn0.9: 2327381.1397 - precision0.9: 0.97 90 - recall0.9: 0.7159 - accuracy: 0.9644 - auc: 0.9765 - val_loss: 4.9077 - val_tp0.1: 3486973.0000 - val_fp0.1: 2850284.0000 - val_tn0.1: 19285722.0000 - val_fn0.1: 591422.0000 - val_precision0.1: 0.5502 - val_recall0.1: 0.8550 - val _tp0.3: 2787062.0000 - val_fp0.3: 2180072.0000 - val_tn0.3: 19955928.0000 - val_fn0.3: 1291333.0000 - val_precision0.3: 0.5611 - val_recall0.3: 0.6834 - val_tp0.5: 2371435.0000 - val_fp0.5: 2041150.0000 - val_tn0.5: 20094856.0000 - val _fn0.5: 1706960.0000 - val_precision0.5: 0.5374 - val_recall0.5: 0.5815 - val_tp0.7: 2052507.0000 - val_fp0.7: 1911080.0000 - val_tn0.7: 20224928.0000 - val_fn0.7: 2025888.0000 - val_precision0.7: 0.5178 - val_recall0.7: 0.5033 - val_t p0.9: 1593600.0000 - val_fp0.9: 1598028.0000 - val_tn0.9: 20537976.0000 - val_fn0.9: 2484795.0000 - val_precision0.9: 0.4993 - val_recall0.9: 0.3907 - val_accuracy: 0.8570 - val_auc: 0.8622 Epoch 39/50 1280/1280 [==============================] - 3380s 3s/step - loss: 0.2414 - tp0.1: 7803821.4372 - fp0.1: 3354269.5839 - tn0.1: 41052380.7252 - fn0.1: 300171.4941 - precision0.1: 0.6956 - recall0.1: 0.9633 - tp0.3: 7497167.4637 - fp0.3: 1643206.8829 - tn0.3: 42763432.2763 - fn0.3: 606825.4676 - precision0.3: 0.8198 - recall0.3: 0.9250 - tp0.5: 7161284.4465 - fp0.5: 930784.7471 - tn0.5: 43475886.7112 - fn0.5: 942708.4848 - precision0.5: 0.8867 - recall0.5: 0.8828 - tp 0.7: 6716037.1132 - fp0.7: 498289.9742 - tn0.7: 43908382.7361 - fn0.7: 1387955.8181 - precision0.7: 0.9325 - recall0.7: 0.8275 - tp0.9: 5745482.9321 - fp0.9: 129539.1460 - tn0.9: 44277093.8798 - fn0.9: 2358509.9992 - precision0.9: 0.97 87 - recall0.9: 0.7074 - accuracy: 0.9647 - auc: 0.9763 - val_loss: 0.8416 - val_tp0.1: 3152764.0000 - val_fp0.1: 1979016.0000 - val_tn0.1: 20133118.0000 - val_fn0.1: 949499.0000 - val_precision0.1: 0.6144 - val_recall0.1: 0.7685 - val _tp0.3: 2438228.0000 - val_fp0.3: 1470054.0000 - val_tn0.3: 20642072.0000 - val_fn0.3: 1664035.0000 - val_precision0.3: 0.6239 - val_recall0.3: 0.5944 - val_tp0.5: 1977683.0000 - val_fp0.5: 1217609.0000 - val_tn0.5: 20894528.0000 - val _fn0.5: 2124580.0000 - val_precision0.5: 0.6189 - val_recall0.5: 0.4821 - val_tp0.7: 1503343.0000 - val_fp0.7: 862897.0000 - val_tn0.7: 21249240.0000 - val_fn0.7: 2598920.0000 - val_precision0.7: 0.6353 - val_recall0.7: 0.3665 - val_tp 0.9: 896812.0000 - val_fp0.9: 377234.0000 - val_tn0.9: 21734904.0000 - val_fn0.9: 3205451.0000 - val_precision0.9: 0.7039 - val_recall0.9: 0.2186 - val_accuracy: 0.8725 - val_auc: 0.8477 Epoch 40/50 1280/1280 [==============================] - 3386s 3s/step - loss: 0.2375 - tp0.1: 8019265.8907 - fp0.1: 3238880.4543 - tn0.1: 40953284.0133 - fn0.1: 299240.1600 - precision0.1: 0.7138 - recall0.1: 0.9637 - tp0.3: 7719720.4668 - fp0.3: 1605122.1085 - tn0.3: 42587020.9703 - fn0.3: 598785.5839 - precision0.3: 0.8287 - recall0.3: 0.9280 - tp0.5: 7396785.5230 - fp0.5: 927286.7697 - tn0.5: 43264845.8103 - fn0.5: 921720.5277 - precision0.5: 0.8890 - recall0.5: 0.8895 - tp 0.7: 6965247.9297 - fp0.7: 501804.8829 - tn0.7: 43690323.6995 - fn0.7: 1353258.1210 - precision0.7: 0.9328 - recall0.7: 0.8383 - tp0.9: 5960658.1421 - fp0.9: 123056.3981 - tn0.9: 44069097.9461 - fn0.9: 2357847.9087 - precision0.9: 0.97 98 - recall0.9: 0.7181 - accuracy: 0.9649 - auc: 0.9769 - val_loss: 0.7336 - val_tp0.1: 3398410.0000 - val_fp0.1: 2457064.0000 - val_tn0.1: 19690942.0000 - val_fn0.1: 667979.0000 - val_precision0.1: 0.5804 - val_recall0.1: 0.8357 - val _tp0.3: 2749737.0000 - val_fp0.3: 1843797.0000 - val_tn0.3: 20304204.0000 - val_fn0.3: 1316652.0000 - val_precision0.3: 0.5986 - val_recall0.3: 0.6762 - val_tp0.5: 2345968.0000 - val_fp0.5: 1609916.0000 - val_tn0.5: 20538100.0000 - val _fn0.5: 1720421.0000 - val_precision0.5: 0.5930 - val_recall0.5: 0.5769 - val_tp0.7: 1892495.0000 - val_fp0.7: 1225411.0000 - val_tn0.7: 20922604.0000 - val_fn0.7: 2173894.0000 - val_precision0.7: 0.6070 - val_recall0.7: 0.4654 - val_t p0.9: 1133144.0000 - val_fp0.9: 662854.0000 - val_tn0.9: 21485156.0000 - val_fn0.9: 2933245.0000 - val_precision0.9: 0.6309 - val_recall0.9: 0.2787 - val_accuracy: 0.8730 - val_auc: 0.8721 Epoch 41/50 1280/1280 [==============================] - 3385s 3s/step - loss: 0.2342 - tp0.1: 7776741.3099 - fp0.1: 3289425.7650 - tn0.1: 41160217.6448 - fn0.1: 284258.4153 - precision0.1: 0.7028 - recall0.1: 0.9655 - tp0.3: 7475615.4660 - fp0.3: 1607131.3685 - tn0.3: 42842547.8212 - fn0.3: 585384.2592 - precision0.3: 0.8230 - recall0.3: 0.9281 - tp0.5: 7146650.6237 - fp0.5: 908662.7939 - tn0.5: 43541000.6799 - fn0.5: 914349.1015 - precision0.5: 0.8871 - recall0.5: 0.8872 - tp 0.7: 6711653.7861 - fp0.7: 487381.3060 - tn0.7: 43962279.2373 - fn0.7: 1349345.9391 - precision0.7: 0.9322 - recall0.7: 0.8330 - tp0.9: 5745993.2186 - fp0.9: 124517.9758 - tn0.9: 44325130.4988 - fn0.9: 2315006.5066 - precision0.9: 0.97 85 - recall0.9: 0.7118 - accuracy: 0.9651 - auc: 0.9776 - val_loss: 0.9870 - val_tp0.1: 3053092.0000 - val_fp0.1: 1964937.0000 - val_tn0.1: 20015960.0000 - val_fn0.1: 1180406.0000 - val_precision0.1: 0.6084 - val_recall0.1: 0.7212 - va l_tp0.3: 2284036.0000 - val_fp0.3: 1477236.0000 - val_tn0.3: 20503676.0000 - val_fn0.3: 1949462.0000 - val_precision0.3: 0.6073 - val_recall0.3: 0.5395 - val_tp0.5: 1899487.0000 - val_fp0.5: 1256383.0000 - val_tn0.5: 20724524.0000 - va l_fn0.5: 2334011.0000 - val_precision0.5: 0.6019 - val_recall0.5: 0.4487 - val_tp0.7: 1422839.0000 - val_fp0.7: 921281.0000 - val_tn0.7: 21059624.0000 - val_fn0.7: 2810659.0000 - val_precision0.7: 0.6070 - val_recall0.7: 0.3361 - val_t p0.9: 829426.0000 - val_fp0.9: 481727.0000 - val_tn0.9: 21499180.0000 - val_fn0.9: 3404072.0000 - val_precision0.9: 0.6326 - val_recall0.9: 0.1959 - val_accuracy: 0.8630 - val_auc: 0.8226 Epoch 42/50 1280/1280 [==============================] - 3315s 3s/step - loss: 0.2346 - tp0.1: 8105380.3060 - fp0.1: 3217998.5480 - tn0.1: 40897704.3310 - fn0.1: 289593.6690 - precision0.1: 0.7181 - recall0.1: 0.9656 - tp0.3: 7802382.4910 - fp0.3: 1604270.8267 - tn0.3: 42511413.2233 - fn0.3: 592591.4840 - precision0.3: 0.8318 - recall0.3: 0.9298 - tp0.5: 7475287.1304 - fp0.5: 928889.2771 - tn0.5: 43186785.4551 - fn0.5: 919686.8447 - precision0.5: 0.8906 - recall0.5: 0.8917 - tp 0.7: 7046455.8064 - fp0.7: 507457.0898 - tn0.7: 43608208.9945 - fn0.7: 1348518.1686 - precision0.7: 0.9334 - recall0.7: 0.8413 - tp0.9: 6058878.7190 - fp0.9: 128713.2311 - tn0.9: 43986958.0468 - fn0.9: 2336095.2560 - precision0.9: 0.97 95 - recall0.9: 0.7240 - accuracy: 0.9650 - auc: 0.9779 - val_loss: 0.7327 - val_tp0.1: 3402300.0000 - val_fp0.1: 2653288.0000 - val_tn0.1: 19553712.0000 - val_fn0.1: 605094.0000 - val_precision0.1: 0.5618 - val_recall0.1: 0.8490 - val _tp0.3: 2812815.0000 - val_fp0.3: 2101002.0000 - val_tn0.3: 20106008.0000 - val_fn0.3: 1194579.0000 - val_precision0.3: 0.5724 - val_recall0.3: 0.7019 - val_tp0.5: 2455006.0000 - val_fp0.5: 1878473.0000 - val_tn0.5: 20328530.0000 - val _fn0.5: 1552388.0000 - val_precision0.5: 0.5665 - val_recall0.5: 0.6126 - val_tp0.7: 2074881.0000 - val_fp0.7: 1530207.0000 - val_tn0.7: 20676798.0000 - val_fn0.7: 1932513.0000 - val_precision0.7: 0.5755 - val_recall0.7: 0.5178 - val_t p0.9: 1484583.0000 - val_fp0.9: 913417.0000 - val_tn0.9: 21293592.0000 - val_fn0.9: 2522811.0000 - val_precision0.9: 0.6191 - val_recall0.9: 0.3705 - val_accuracy: 0.8691 - val_auc: 0.8751 Epoch 43/50 1280/1280 [==============================] - 3323s 3s/step - loss: 0.2312 - tp0.1: 7991710.0656 - fp0.1: 3249384.0929 - tn0.1: 40992411.0070 - fn0.1: 277145.7760 - precision0.1: 0.7097 - recall0.1: 0.9664 - tp0.3: 7693901.7158 - fp0.3: 1595395.2670 - tn0.3: 42646409.5269 - fn0.3: 574954.1257 - precision0.3: 0.8268 - recall0.3: 0.9305 - tp0.5: 7373192.4247 - fp0.5: 917265.3872 - tn0.5: 43324540.4536 - fn0.5: 895663.4169 - precision0.5: 0.8882 - recall0.5: 0.8913 - tp 0.7: 6950466.7244 - fp0.7: 497989.1148 - tn0.7: 43743813.0945 - fn0.7: 1318389.1171 - precision0.7: 0.9326 - recall0.7: 0.8395 - tp0.9: 5981119.6440 - fp0.9: 128545.2209 - tn0.9: 44113239.2467 - fn0.9: 2287736.1975 - precision0.9: 0.97 92 - recall0.9: 0.7218 - accuracy: 0.9653 - auc: 0.9783 - val_loss: 0.9647 - val_tp0.1: 2876343.0000 - val_fp0.1: 1660425.0000 - val_tn0.1: 20507034.0000 - val_fn0.1: 1170598.0000 - val_precision0.1: 0.6340 - val_recall0.1: 0.7107 - va l_tp0.3: 2209087.0000 - val_fp0.3: 1251945.0000 - val_tn0.3: 20915512.0000 - val_fn0.3: 1837854.0000 - val_precision0.3: 0.6383 - val_recall0.3: 0.5459 - val_tp0.5: 1778622.0000 - val_fp0.5: 995657.0000 - val_tn0.5: 21171812.0000 - val _fn0.5: 2268319.0000 - val_precision0.5: 0.6411 - val_recall0.5: 0.4395 - val_tp0.7: 1307626.0000 - val_fp0.7: 702184.0000 - val_tn0.7: 21465282.0000 - val_fn0.7: 2739315.0000 - val_precision0.7: 0.6506 - val_recall0.7: 0.3231 - val_tp 0.9: 721015.0000 - val_fp0.9: 304685.0000 - val_tn0.9: 21862786.0000 - val_fn0.9: 3325926.0000 - val_precision0.9: 0.7029 - val_recall0.9: 0.1782 - val_accuracy: 0.8755 - val_auc: 0.8252 Epoch 44/50 1280/1280 [==============================] - 3324s 3s/step - loss: 0.2316 - tp0.1: 7993553.5519 - fp0.1: 3116269.6425 - tn0.1: 41108883.5878 - fn0.1: 291939.1897 - precision0.1: 0.7205 - recall0.1: 0.9644 - tp0.3: 7697513.5496 - fp0.3: 1532368.8548 - tn0.3: 42692802.8033 - fn0.3: 587979.1920 - precision0.3: 0.8347 - recall0.3: 0.9284 - tp0.5: 7391393.2475 - fp0.5: 891003.0500 - tn0.5: 43334168.9118 - fn0.5: 894099.4941 - precision0.5: 0.8927 - recall0.5: 0.8916 - tp 0.7: 6972420.4403 - fp0.7: 485629.1991 - tn0.7: 43739548.5152 - fn0.7: 1313072.3013 - precision0.7: 0.9351 - recall0.7: 0.8406 - tp0.9: 6005577.5371 - fp0.9: 125956.1194 - tn0.9: 44099185.2194 - fn0.9: 2279915.2045 - precision0.9: 0.97 93 - recall0.9: 0.7244 - accuracy: 0.9660 - auc: 0.9775 - val_loss: 0.7395 - val_tp0.1: 3516454.0000 - val_fp0.1: 2931698.0000 - val_tn0.1: 19145124.0000 - val_fn0.1: 621132.0000 - val_precision0.1: 0.5453 - val_recall0.1: 0.8499 - val _tp0.3: 2802624.0000 - val_fp0.3: 2096050.0000 - val_tn0.3: 19980764.0000 - val_fn0.3: 1334962.0000 - val_precision0.3: 0.5721 - val_recall0.3: 0.6774 - val_tp0.5: 2395920.0000 - val_fp0.5: 1817727.0000 - val_tn0.5: 20259092.0000 - val _fn0.5: 1741666.0000 - val_precision0.5: 0.5686 - val_recall0.5: 0.5791 - val_tp0.7: 1884999.0000 - val_fp0.7: 1378065.0000 - val_tn0.7: 20698756.0000 - val_fn0.7: 2252587.0000 - val_precision0.7: 0.5777 - val_recall0.7: 0.4556 - val_t p0.9: 983346.0000 - val_fp0.9: 679335.0000 - val_tn0.9: 21397474.0000 - val_fn0.9: 3154240.0000 - val_precision0.9: 0.5914 - val_recall0.9: 0.2377 - val_accuracy: 0.8642 - val_auc: 0.8683 Epoch 45/50 1280/1280 [==============================] - 3312s 3s/step - loss: 0.2330 - tp0.1: 7970480.2670 - fp0.1: 3209589.4871 - tn0.1: 41051845.7307 - fn0.1: 278741.1163 - precision0.1: 0.7127 - recall0.1: 0.9666 - tp0.3: 7675031.2553 - fp0.3: 1589895.0429 - tn0.3: 42671527.8275 - fn0.3: 574190.1280 - precision0.3: 0.8279 - recall0.3: 0.9311 - tp0.5: 7351503.7557 - fp0.5: 918595.6940 - tn0.5: 43342860.1577 - fn0.5: 897717.6276 - precision0.5: 0.8886 - recall0.5: 0.8921 - tp 0.7: 6925182.0765 - fp0.7: 503433.8673 - tn0.7: 43758011.1593 - fn0.7: 1324039.3068 - precision0.7: 0.9318 - recall0.7: 0.8413 - tp0.9: 5948949.5558 - fp0.9: 139165.2740 - tn0.9: 44122272.1593 - fn0.9: 2300271.8275 - precision0.9: 0.97 68 - recall0.9: 0.7246 - accuracy: 0.9651 - auc: 0.9781 - val_loss: 0.7183 - val_tp0.1: 3462944.0000 - val_fp0.1: 2547992.0000 - val_tn0.1: 19584976.0000 - val_fn0.1: 618487.0000 - val_precision0.1: 0.5761 - val_recall0.1: 0.8485 - val _tp0.3: 2757155.0000 - val_fp0.3: 1916541.0000 - val_tn0.3: 20216436.0000 - val_fn0.3: 1324276.0000 - val_precision0.3: 0.5899 - val_recall0.3: 0.6755 - val_tp0.5: 2406562.0000 - val_fp0.5: 1766897.0000 - val_tn0.5: 20366082.0000 - val _fn0.5: 1674869.0000 - val_precision0.5: 0.5766 - val_recall0.5: 0.5896 - val_tp0.7: 2083375.0000 - val_fp0.7: 1557338.0000 - val_tn0.7: 20575626.0000 - val_fn0.7: 1998056.0000 - val_precision0.7: 0.5722 - val_recall0.7: 0.5105 - val_t p0.9: 1330037.0000 - val_fp0.9: 696335.0000 - val_tn0.9: 21436634.0000 - val_fn0.9: 2751394.0000 - val_precision0.9: 0.6564 - val_recall0.9: 0.3259 - val_accuracy: 0.8687 - val_auc: 0.8762 Epoch 46/50 1280/1280 [==============================] - 3307s 3s/step - loss: 0.2304 - tp0.1: 7916214.3216 - fp0.1: 3181145.9766 - tn0.1: 41127786.5941 - fn0.1: 285496.9227 - precision0.1: 0.7125 - recall0.1: 0.9651 - tp0.3: 7621058.9899 - fp0.3: 1584443.6526 - tn0.3: 42724483.9516 - fn0.3: 580652.2545 - precision0.3: 0.8279 - recall0.3: 0.9291 - tp0.5: 7291826.7104 - fp0.5: 896453.6901 - tn0.5: 43412477.0523 - fn0.5: 909884.5340 - precision0.5: 0.8906 - recall0.5: 0.8889 - tp 0.7: 6852507.8103 - fp0.7: 474238.7486 - tn0.7: 43834734.6058 - fn0.7: 1349203.4340 - precision0.7: 0.9355 - recall0.7: 0.8352 - tp0.9: 5907297.4052 - fp0.9: 120870.0991 - tn0.9: 44188071.7377 - fn0.9: 2294413.8392 - precision0.9: 0.98 03 - recall0.9: 0.7195 - accuracy: 0.9658 - auc: 0.9776 - val_loss: 0.8308 - val_tp0.1: 2925415.0000 - val_fp0.1: 999631.0000 - val_tn0.1: 21181596.0000 - val_fn0.1: 1107748.0000 - val_precision0.1: 0.7453 - val_recall0.1: 0.7253 - val _tp0.3: 2129554.0000 - val_fp0.3: 432959.0000 - val_tn0.3: 21748276.0000 - val_fn0.3: 1903609.0000 - val_precision0.3: 0.8310 - val_recall0.3: 0.5280 - val_tp0.5: 1616477.0000 - val_fp0.5: 255434.0000 - val_tn0.5: 21925804.0000 - val_f n0.5: 2416686.0000 - val_precision0.5: 0.8635 - val_recall0.5: 0.4008 - val_tp0.7: 1160120.0000 - val_fp0.7: 159480.0000 - val_tn0.7: 22021744.0000 - val_fn0.7: 2873043.0000 - val_precision0.7: 0.8791 - val_recall0.7: 0.2876 - val_tp0. 9: 660411.0000 - val_fp0.9: 58454.0000 - val_tn0.9: 22122774.0000 - val_fn0.9: 3372752.0000 - val_precision0.9: 0.9187 - val_recall0.9: 0.1637 - val_accuracy: 0.8981 - val_auc: 0.8530 Epoch 47/50 1280/1280 [==============================] - 3373s 3s/step - loss: 0.2224 - tp0.1: 7905453.9578 - fp0.1: 3088525.5402 - tn0.1: 41239482.1889 - fn0.1: 277215.0070 - precision0.1: 0.7202 - recall0.1: 0.9667 - tp0.3: 7625498.5870 - fp0.3: 1552664.1967 - tn0.3: 42775315.1663 - fn0.3: 557170.3778 - precision0.3: 0.8312 - recall0.3: 0.9328 - tp0.5: 7314136.2771 - fp0.5: 889383.1952 - tn0.5: 43438616.4731 - fn0.5: 868532.6877 - precision0.5: 0.8918 - recall0.5: 0.8950 - tp 0.7: 6893069.8415 - fp0.7: 475384.9407 - tn0.7: 43852616.7221 - fn0.7: 1289599.1233 - precision0.7: 0.9360 - recall0.7: 0.8437 - tp0.9: 5954104.8665 - fp0.9: 121730.6745 - tn0.9: 44206239.8525 - fn0.9: 2228564.0984 - precision0.9: 0.98 04 - recall0.9: 0.7290 - accuracy: 0.9667 - auc: 0.9788 - val_loss: 1.0397 - val_tp0.1: 2921669.0000 - val_fp0.1: 1566454.0000 - val_tn0.1: 20378636.0000 - val_fn0.1: 1347646.0000 - val_precision0.1: 0.6510 - val_recall0.1: 0.6843 - va l_tp0.3: 2142218.0000 - val_fp0.3: 1055434.0000 - val_tn0.3: 20889652.0000 - val_fn0.3: 2127097.0000 - val_precision0.3: 0.6699 - val_recall0.3: 0.5018 - val_tp0.5: 1695622.0000 - val_fp0.5: 805323.0000 - val_tn0.5: 21139764.0000 - val _fn0.5: 2573693.0000 - val_precision0.5: 0.6780 - val_recall0.5: 0.3972 - val_tp0.7: 1240483.0000 - val_fp0.7: 547415.0000 - val_tn0.7: 21397672.0000 - val_fn0.7: 3028832.0000 - val_precision0.7: 0.6938 - val_recall0.7: 0.2906 - val_tp 0.9: 699052.0000 - val_fp0.9: 209226.0000 - val_tn0.9: 21735862.0000 - val_fn0.9: 3570263.0000 - val_precision0.9: 0.7696 - val_recall0.9: 0.1637 - val_accuracy: 0.8711 - val_auc: 0.8155 Epoch 48/50 1280/1280 [==============================] - 3304s 3s/step - loss: 0.2335 - tp0.1: 7940859.5363 - fp0.1: 3183249.2857 - tn0.1: 41099674.0820 - fn0.1: 286865.7822 - precision0.1: 0.7138 - recall0.1: 0.9650 - tp0.3: 7641716.9641 - fp0.3: 1582103.0671 - tn0.3: 42700833.3349 - fn0.3: 586008.3544 - precision0.3: 0.8288 - recall0.3: 0.9284 - tp0.5: 7316574.1686 - fp0.5: 906813.2022 - tn0.5: 43376114.1671 - fn0.5: 911151.1499 - precision0.5: 0.8900 - recall0.5: 0.8886 - tp 0.7: 6893099.7447 - fp0.7: 495988.3950 - tn0.7: 43786957.1632 - fn0.7: 1334625.5738 - precision0.7: 0.9332 - recall0.7: 0.8372 - tp0.9: 5936967.9602 - fp0.9: 132958.7853 - tn0.9: 44149966.0359 - fn0.9: 2290757.3583 - precision0.9: 0.97 82 - recall0.9: 0.7212 - accuracy: 0.9651 - auc: 0.9775 - val_loss: 0.8885 - val_tp0.1: 3090482.0000 - val_fp0.1: 1927063.0000 - val_tn0.1: 20147076.0000 - val_fn0.1: 1049776.0000 - val_precision0.1: 0.6159 - val_recall0.1: 0.7464 - va l_tp0.3: 2402659.0000 - val_fp0.3: 1358720.0000 - val_tn0.3: 20715420.0000 - val_fn0.3: 1737599.0000 - val_precision0.3: 0.6388 - val_recall0.3: 0.5803 - val_tp0.5: 2026443.0000 - val_fp0.5: 1121590.0000 - val_tn0.5: 20952544.0000 - va l_fn0.5: 2113815.0000 - val_precision0.5: 0.6437 - val_recall0.5: 0.4894 - val_tp0.7: 1587666.0000 - val_fp0.7: 757043.0000 - val_tn0.7: 21317100.0000 - val_fn0.7: 2552592.0000 - val_precision0.7: 0.6771 - val_recall0.7: 0.3835 - val_t p0.9: 946633.0000 - val_fp0.9: 302967.0000 - val_tn0.9: 21771180.0000 - val_fn0.9: 3193625.0000 - val_precision0.9: 0.7575 - val_recall0.9: 0.2286 - val_accuracy: 0.8766 - val_auc: 0.8420 Epoch 49/50 1280/1280 [==============================] - 3305s 3s/step - loss: 0.2225 - tp0.1: 7979679.4473 - fp0.1: 3114299.9914 - tn0.1: 41145497.0710 - fn0.1: 271189.6027 - precision0.1: 0.7186 - recall0.1: 0.9674 - tp0.3: 7686659.5777 - fp0.3: 1542401.8501 - tn0.3: 42717409.8704 - fn0.3: 564209.4723 - precision0.3: 0.8334 - recall0.3: 0.9319 - tp0.5: 7371634.7557 - fp0.5: 895979.9727 - tn0.5: 43363790.1265 - fn0.5: 879234.2943 - precision0.5: 0.8923 - recall0.5: 0.8937 - tp 0.7: 6947267.2155 - fp0.7: 481955.5433 - tn0.7: 43777844.2342 - fn0.7: 1303601.8345 - precision0.7: 0.9356 - recall0.7: 0.8420 - tp0.9: 6003926.6534 - fp0.9: 121081.5886 - tn0.9: 44138712.2896 - fn0.9: 2246942.3966 - precision0.9: 0.98 05 - recall0.9: 0.7264 - accuracy: 0.9665 - auc: 0.9792 - val_loss: 0.9566 - val_tp0.1: 2861835.0000 - val_fp0.1: 1548477.0000 - val_tn0.1: 20587614.0000 - val_fn0.1: 1216470.0000 - val_precision0.1: 0.6489 - val_recall0.1: 0.7017 - va l_tp0.3: 2113828.0000 - val_fp0.3: 1067547.0000 - val_tn0.3: 21068548.0000 - val_fn0.3: 1964477.0000 - val_precision0.3: 0.6644 - val_recall0.3: 0.5183 - val_tp0.5: 1718632.0000 - val_fp0.5: 841787.0000 - val_tn0.5: 21294304.0000 - val _fn0.5: 2359673.0000 - val_precision0.5: 0.6712 - val_recall0.5: 0.4214 - val_tp0.7: 1302909.0000 - val_fp0.7: 555088.0000 - val_tn0.7: 21581000.0000 - val_fn0.7: 2775396.0000 - val_precision0.7: 0.7012 - val_recall0.7: 0.3195 - val_tp 0.9: 773038.0000 - val_fp0.9: 218091.0000 - val_tn0.9: 21918012.0000 - val_fn0.9: 3305267.0000 - val_precision0.9: 0.7800 - val_recall0.9: 0.1895 - val_accuracy: 0.8779 - val_auc: 0.8265 Epoch 50/50 1280/1280 [==============================] - 3294s 3s/step - loss: 0.2301 - tp0.1: 8047942.4426 - fp0.1: 3082506.1288 - tn0.1: 41101922.8275 - fn0.1: 278310.9493 - precision0.1: 0.7219 - recall0.1: 0.9663 - tp0.3: 7760370.9899 - fp0.3: 1521186.0101 - tn0.3: 42663221.2100 - fn0.3: 565882.4020 - precision0.3: 0.8352 - recall0.3: 0.9315 - tp0.5: 7453452.6776 - fp0.5: 892538.5199 - tn0.5: 43291840.9251 - fn0.5: 872800.7143 - precision0.5: 0.8922 - recall0.5: 0.8941 - tp 0.7: 7032066.8470 - fp0.7: 486059.3411 - tn0.7: 43698327.0984 - fn0.7: 1294186.5449 - precision0.7: 0.9348 - recall0.7: 0.8430 - tp0.9: 6085441.6674 - fp0.9: 123868.2233 - tn0.9: 44060549.1827 - fn0.9: 2240811.7244 - precision0.9: 0.98 05 - recall0.9: 0.7278 - accuracy: 0.9656 - auc: 0.9784 - val_loss: 0.7966 - val_tp0.1: 3023429.0000 - val_fp0.1: 1958644.0000 - val_tn0.1: 20321072.0000 - val_fn0.1: 911248.0000 - val_precision0.1: 0.6069 - val_recall0.1: 0.7684 - val _tp0.3: 2293385.0000 - val_fp0.3: 1327982.0000 - val_tn0.3: 20951742.0000 - val_fn0.3: 1641292.0000 - val_precision0.3: 0.6333 - val_recall0.3: 0.5829 - val_tp0.5: 1893004.0000 - val_fp0.5: 1112093.0000 - val_tn0.5: 21167626.0000 - val _fn0.5: 2041673.0000 - val_precision0.5: 0.6299 - val_recall0.5: 0.4811 - val_tp0.7: 1460348.0000 - val_fp0.7: 748911.0000 - val_tn0.7: 21530808.0000 - val_fn0.7: 2474329.0000 - val_precision0.7: 0.6610 - val_recall0.7: 0.3711 - val_tp 0.9: 871307.0000 - val_fp0.9: 277884.0000 - val_tn0.9: 22001836.0000 - val_fn0.9: 3063370.0000 - val_precision0.9: 0.7582 - val_recall0.9: 0.2214 - val_accuracy: 0.8797 - val_auc: 0.8508 600/600 [==============================] - 317s 527ms/step - loss: 0.9377 - tp0.1: 5542504.0000 - fp0.1: 4670897.0000 - tn0.1: 36924880.0000 - fn0.1: 2013729.0000 - precision0.1: 0.5427 - recall0.1: 0.7335 - tp0.3: 4216657.0000 - fp0.3 : 3293157.0000 - tn0.3: 38302600.0000 - fn0.3: 3339576.0000 - precision0.3: 0.5615 - recall0.3: 0.5580 - tp0.5: 3498904.0000 - fp0.5: 2765631.0000 - tn0.5: 38830152.0000 - fn0.5: 4057329.0000 - precision0.5: 0.5585 - recall0.5: 0.4630 - tp0.7: 2661409.0000 - fp0.7: 1815115.0000 - tn0.7: 39780628.0000 - fn0.7: 4894824.0000 - precision0.7: 0.5945 - recall0.7: 0.3522 - tp0.9: 1573540.0000 - fp0.9: 592773.0000 - tn0.9: 41002980.0000 - fn0.9: 5982693.0000 - precision0.9: 0.7264 - recall0.9: 0.2082 - accuracy: 0.8612 - auc: 0.8217 2021/03/18 20:42:08 INFO mlflow.projects: === Run (ID '3cec3f26ed2d4004978c4ec37c00fba0') succeeded === (tf-nightly) [ye53nis@node117 drmed-git]$
2.3.6 Read out logs of Run 2
2.3.6.1 test dataset statistics
- test data is not saved out automatically, but can be copied from the log
above
600/600 [==============================] - 317s 527ms/step - loss: 0.9377
… 0.1 0.3 0.5 0.7 0.9 tp 5542504.0000 4216657.0000 3498904.0000 2661409.0000 1573540.0000 fp 4670897.0000 3293157.0000 2765631.0000 1815115.0000 592773.0000 fn 2013729.0000 3339576.0000 4057329.0000 4894824.0000 5982693.0000 tn 36924880.0000 38302600.0000 38830152.0000 39780628.0000 41002980.0000 all 49152010 49151990 49152016 49151976 49151986 precision 0.5427 0.5615 0.5585 0.5945 0.7264 recall 0.7335 0.5580 0.4630 0.3522 0.2082 accuracy: 0.8612 auc: 0.8217
0.1 actual positive actual negative pred positive 0.11276251 0.095029623 Prec: 0.5427 pred negative 0.040969413 0.75123845 Recall: 0.7335 F1: 0.62383709 0.3 actual positive actual negative pred positive 0.085788124 0.066999464 Prec: 0.5615 pred negative 0.067943861 0.77926855 Recall: 0.5580 F1: 0.55974453 0.5 actual positive actual negative pred positive 0.071185361 0.056266888 Prec: 0.5585 pred negative 0.082546543 0.79000121 Recall: 0.4630 F1: 0.50628585 0.7 actual positive actual negative pred positive 0.054146531 0.036928627 Prec: 0.5945 pred negative 0.099585498 0.80933934 Recall: 0.3522 F1: 0.44234266 0.9 actual positive actual negative pred positive 0.032013762 0.012060001 Prec: 0.7264 pred negative 0.12171824 0.83420800 Recall: 0.2082 F1: 0.32363895
- looks like
pred_thresh=0.1
leads to the best results (Best F1 score)
2.3.6.2 prediction plots after each epoch
sadly, the random sample traces were not very useful, since the spikes were quite small…
2.3.6.3 Application 1 - git log, load modules, set parameters
- Git log, because some more code changes were made
!git log -5
commit 6586965ec900669bd641d69f85b4999050122502 Author: Apoplex <oligolex@vivaldi.net> Date: Tue Mar 23 20:26:11 2021 +0100 Fix management of correlation failing 2 commit ccdb3fb0887cce929987ef04408133917c02ce58 Author: Apoplex <oligolex@vivaldi.net> Date: Tue Mar 23 17:57:39 2021 +0100 Merge plot_simulations and analyze_simulations 2 commit 7951d725c9d53bbffd18c3fca8ccad05d528a368 Author: Apoplex <oligolex@vivaldi.net> Date: Sun Mar 21 12:49:47 2021 +0100 Fix management of correlation failing; return nan commit 6c2146df58ba0af6a148745e7fafc7ff01a2e1b4 Author: Apoplex <oligolex@vivaldi.net> Date: Sun Mar 21 10:43:04 2021 +0100 New management of correlation failing; return nan commit 940df93d2dacdb9c1951b6d8a8aa92f2c6043695 Author: Apoplex <oligolex@vivaldi.net> Date: Sat Mar 20 19:54:01 2021 +0100 Merge plot_simulations and analyze_simulations
%cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
from pathlib import Path import sys import mlflow import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns mlflow.version.VERSION
1.13.1
sys.path.append('src/') from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, ) from fluotracify.training import build_model as bm, preprocess_data as ppd from fluotracify.applications import correlate, plots, correction from fluotracify.imports import ptu_utils as ptu
import importlib importlib.reload(correction)
<module 'fluotracify.applications.correction' from 'src/fluotracify/applications/correction.py'>
folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020_test' col_per_example = 3 lab_thresh = 0.04 pred_thresh = 0.1 xunit = 1 artifact = 0 model_type = 1 fwhm = 250 run_id = '3cec3f26ed2d4004978c4ec37c00fba0' length_delimiter = 2**14
- now load the trained model
mlflow.set_tracking_uri('file:///beegfs/ye53nis/drmed-git/data/mlruns') client = mlflow.tracking.MlflowClient(tracking_uri=mlflow.get_tracking_uri()) model_path = client.download_artifacts(run_id=run_id, path='model') model_keras = mlflow.keras.load_model(model_uri=model_path, custom_objects={'binary_ce_dice':bm.binary_ce_dice_loss()}) print(model_path, '\n', model_keras)
/beegfs/ye53nis/drmed-git/3cec3f26ed2d4004978c4ec37c00fba0/artifacts/model <tensorflow.python.keras.engine.functional.Functional object at 0x2acdc9893190>
2.3.6.4 Application 2 - test data
- test and train data were separated beforehand. Now, I only load test data.
folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020_test' dataset, _, nsamples, experiment_params = isfc.import_from_csv( folder=folder, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None) experiment_params
train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set010.csv train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set002.csv train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set005.csv train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set005.csv train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set007.csv train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set002.csv train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set001.csv train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set007.csv train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set009.csv train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set002.csvtrain 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set005.csv train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set008.csv train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set005.csv train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set008.csv train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set005.csv train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set006.csv train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set005.csv train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set003.csv train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set001.csv train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set003.csv train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set003.csv train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set005.csv train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set002.csv train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set002.csv train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set004.csv train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set001.csv train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set001.csv train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set001.csv train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set003.csv train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set001.csv
diffrates = experiment_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32) nmols = experiment_params.loc['number of fast molecules'].astype(np.float32) clusters = experiment_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32) dataset_sep = isfc.separate_data_and_labels(array=dataset, nsamples=nsamples, col_per_example=col_per_example) features = dataset_sep['0'] labels_artifact = dataset_sep['1'] labels_artifact_bool = labels_artifact > lab_thresh labels_puretrace = dataset_sep['2']
The given DataFrame was split into 3 parts with shapes: [(16384, 3000), (16384, 3000), (16384, 3000)]
- Let’s correct the traces with the new model and correlate them!
corr_out = ans.correlate_simulations_corrected_by_prediction( model=model_keras, lab_thresh=lab_thresh, pred_thresh=pred_thresh, artifact=artifact, model_type=model_type, experiment_params=experiment_params, nsamples=nsamples, features=features, labels_artifact=labels_artifact, labels_puretrace=labels_puretrace, save_as_csv=True) corr_out
processed correlation of 3000 traces with correction by label processed correlation of 3000 traces with correction by prediction processed correlation of 3000 traces without correction processed correlation of pure 3000 traces
Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used 0 0.069 1.0 679.0 1.037836 10.860146 16384 corrupted without correction 1 0.069 1.0 679.0 0.81403 13.846002 16384 corrupted without correction 2 0.069 1.0 679.0 1.053716 10.696482 16384 corrupted without correction 3 0.069 1.0 679.0 0.897022 12.564974 16384 corrupted without correction 4 0.069 1.0 679.0 1.083577 10.401707 16384 corrupted without correction … … … … … … … … 11995 0.4 0.1 1939.0 0.658104 17.126562 11187 corrected by prediction 11996 0.4 0.1 1939.0 0.336804 33.464773 15720 corrected by prediction 11997 0.4 0.1 1939.0 0.456482 24.691128 15292 corrected by prediction 11998 0.4 0.1 1939.0 0.411872 27.365437 12516 corrected by prediction 11999 0.4 0.1 1939.0 0.244884 46.026059 12986 corrected by prediction 12000 rows × 7 columns
corr_out = pd.read_csv(filepath_or_buffer='data/exp-210204-unet/2021-03-21_correlations.csv') corr_out[corr_out['$D$ in $\\frac{{\mu m^2}}{{s}}$'].isna()]
Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used 9109 50.0 0.01 2323.0 NaN NaN 1 corrected by prediction 9118 50.0 0.01 2323.0 NaN NaN 6 corrected by prediction 9131 50.0 0.01 2323.0 NaN NaN 26 corrected by prediction 9134 50.0 0.01 2323.0 NaN NaN 3 corrected by prediction 9141 50.0 0.01 2323.0 NaN NaN 6 corrected by prediction 9144 50.0 0.01 2323.0 NaN NaN 17 corrected by prediction 9163 50.0 0.01 2323.0 NaN NaN 24 corrected by prediction 9170 50.0 0.01 2323.0 NaN NaN 27 corrected by prediction 9171 50.0 0.01 2323.0 NaN NaN 30 corrected by prediction 9174 50.0 0.01 2323.0 NaN NaN 8 corrected by prediction 9183 50.0 0.01 2323.0 NaN NaN 13 corrected by prediction 9187 50.0 0.01 2323.0 NaN NaN 29 corrected by prediction 9199 50.0 0.01 2323.0 NaN NaN 18 corrected by prediction 9909 10.0 0.01 1396.0 NaN NaN 24 corrected by prediction 9922 10.0 0.01 1396.0 NaN NaN 7 corrected by prediction 9931 10.0 0.01 1396.0 NaN NaN 16 corrected by prediction 9978 10.0 0.01 1396.0 NaN NaN 31 corrected by prediction 9998 10.0 0.01 1396.0 NaN NaN 9 corrected by prediction - We loaded the correlation results from the saved out .csv file and looked at
where it failed. All the cases where basically all the trace was
(wrongfully) removed, was at a very slow simulated cluster speed (0.01) and
a rather high simulated speed of the molecules we are interested in (10
and 50).
Awesome! Now let’s try categorical plotting to examine the results in a more structured manner. First, plot the trace lengths.
x = 'Trace lengths' g = sns.FacetGrid(data=corr_out, col='Simulated $D$', col_wrap=2, sharex=True, aspect=1.5, height=5, legend_out=True) g.map_dataframe(sns.boxplot, x=x, y='Traces used', hue='Simulated $D_{{clust}}$', palette='colorblind', showfliers=False) g.add_legend(title='Simulated $D_{{clust}}$') g.map_dataframe(sns.stripplot, x=x, y='Traces used', hue='Simulated $D_{{clust}}$', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2) g.set_xlabels(x) g.tight_layout() plt.show()
- Then, plot the diffusion rates and transit times. Since they follow a log
normal distribution, use a log scale.
# '$D$ in $\\frac{{\mu m^2}}{{s}}$' # '$\\tau_{{D}}$ in $ms$' x = '$\\tau_{{D}}$ in $ms$' g = sns.FacetGrid(data=corr_out, col='Simulated $D$', col_wrap=2, sharex=False, # False for x=D or x=tau, True for x=Trace lengths aspect=1.5, height=5, legend_out=True) g.map_dataframe(sns.boxplot, x=x, y='Traces used', hue='Simulated $D_{{clust}}$', palette='colorblind', showfliers=False).set(xscale = 'log') g.add_legend(title='Simulated $D_{{clust}}$') g.map_dataframe(sns.stripplot, x=x, y='Traces used', hue='Simulated $D_{{clust}}$', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2).set(xscale = 'log') g.set_xlabels(x) g.tight_layout() plt.show()
- Now let’s look at the corrections a little closer.
corr_scatter = corr_out[corr_out['Traces used'].isin(['corrected by labels (control)', 'corrected by prediction'])] corr_scatter
Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used 6000 0.069 1.0 679.0 0.051680 218.095043 14468 corrected by labels (control) 6001 0.069 1.0 679.0 0.050863 221.596899 15380 corrected by labels (control) 6002 0.069 1.0 679.0 0.060130 187.443486 14908 corrected by labels (control) 6003 0.069 1.0 679.0 0.087759 128.431237 15230 corrected by labels (control) 6004 0.069 1.0 679.0 0.144906 77.781595 14930 corrected by labels (control) … … … … … … … … 11995 0.400 0.1 1939.0 0.658104 17.126562 11187 corrected by prediction 11996 0.400 0.1 1939.0 0.336804 33.464773 15720 corrected by prediction 11997 0.400 0.1 1939.0 0.456482 24.691128 15292 corrected by prediction 11998 0.400 0.1 1939.0 0.411872 27.365437 12516 corrected by prediction 11999 0.400 0.1 1939.0 0.244884 46.026059 12986 corrected by prediction 6000 rows × 7 columns
- This scatterplot shows Diffusion rates / transit times against trace
lengths.
# '$D$ in $\\frac{{\mu m^2}}{{s}}$' # '$\\tau_{{D}}$ in $ms$' x = '$\\tau_{{D}}$ in $ms$' g = sns.FacetGrid(data=corr_scatter, row='Simulated $D$', col='Traces used', sharex='row', aspect=1, height=4, legend_out=True, margin_titles=True) g.map_dataframe(sns.scatterplot, x=x, y='Trace lengths', hue='Simulated $D_{{clust}}$', palette='colorblind').set(xscale = 'log') g.add_legend(title='Simulated $D_{{clust}}$') g.set_xlabels(x) g.tight_layout() plt.show()
- I concatenated the resulting 2 plots into 1 (left diffusion rates, right transit times). Here it can be nicely seen, that they are just two representations of the same dynamic phenomenon.
2.3.6.5 Application 3 - experimental data
- Workaround for the model prediction problem.
test_features = np.zeros((2**14)).reshape(1, -1, 1) print(test_features.shape) predictions = model_keras.predict(test_features, verbose=0).flatten() predictions
(1, 16384, 1) array([3.3430334e-15, 1.2115031e-08, 5.5057057e-09, ..., 3.8589034e-09, 8.7170475e-09, 9.7742303e-14], dtype=float32)
test_features = np.zeros((2**13)).reshape(1, -1, 1) print(test_features.shape) predictions = model_keras.predict(test_features, verbose=0).flatten() predictions
(1, 8192, 1) array([3.3430334e-15, 1.2115031e-08, 5.5057057e-09, ..., 3.8588959e-09, 8.7170475e-09, 9.7742493e-14], dtype=float32)
path_tb_pex5_egfp = '/beegfs/ye53nis/data/Pablo_structured_experiment' pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9] length_delimiter = 2**13 # for U-Net bin_for_correlation = 1e6 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction( path_list=path_tb_pex5_egfp, model=model_keras, pred_thresh=pred_thresh, photon_count_bin=bin_for_correlation, ntraces=None, save_as_csv=True) out
Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment with bin=1e6. This can take a while... 1 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu 2 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu Processing correlation of unprocessed dataset 1 Processing correlation with correction by prediction of dataset 1
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-186-8ad0b763f87d> in <module> 3 length_delimiter = 2**13 # for U-Net 4 bin_for_correlation = 1e6 ----> 5 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction( 6 path_list=path_tb_pex5_egfp, 7 model=model_keras, /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_experimental_traces_from_ptu_by_unet_prediction(path_list, model, pred_thresh, photon_count_bin, ntraces, save_as_csv) 413 for thr in pred_thresh: 414 data['{}-pred-{}'.format( --> 415 i, thr)] = correct_correlation_by_unet_prediction( 416 ntraces=ntraces, 417 traces_of_interest=ptu_1ms.astype(np.float64), /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_correlation_by_unet_prediction(ntraces, traces_of_interest, model, pred_thresh, fwhm, length_delimiter, traces_for_correlation, bin_for_correlation, verbose) 215 ntraces_index=ntraces_index) 216 --> 217 predictions = model.predict(features_prepro, verbose=0) 218 predictions = predictions.flatten() 219 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py in predict(self, x, batch_size, verbose, steps, callbacks, max_queue_size, workers, use_multiprocessing) 1661 for step in data_handler.steps(): 1662 callbacks.on_predict_batch_begin(step) -> 1663 tmp_batch_outputs = self.predict_function(iterator) 1664 if data_handler.should_sync: 1665 context.async_wait() ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds) 816 tracing_count = self.experimental_get_tracing_count() 817 with trace.Trace(self._name) as tm: --> 818 result = self._call(*args, **kwds) 819 compiler = "xla" if self._jit_compile else "nonXla" 820 new_tracing_count = self.experimental_get_tracing_count() ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds) 851 # In this case we have not created variables on the first call. So we can 852 # run the first trace but we should fail if variables are created. --> 853 results = self._stateful_fn(*args, **kwds) 854 if self._created_variables: 855 raise ValueError("Creating variables on a non-first call to a function" ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs) 2990 with self._lock: 2991 (graph_function, -> 2992 filtered_flat_args) = self._maybe_define_function(args, kwargs) 2993 return graph_function._call_flat( 2994 filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs) 3408 self.input_signature is None and 3409 call_context_key in self._function_cache.missed): -> 3410 return self._define_function_with_shape_relaxation( 3411 args, kwargs, flat_args, filtered_flat_args, cache_key_context) 3412 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _define_function_with_shape_relaxation(self, args, kwargs, flat_args, filtered_flat_args, cache_key_context) 3330 expand_composites=True) 3331 -> 3332 graph_function = self._create_graph_function( 3333 args, kwargs, override_flat_arg_shapes=relaxed_arg_shapes) 3334 self._function_cache.arg_relaxed[rank_only_cache_key] = graph_function ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes) 3247 arg_names = base_arg_names + missing_arg_names 3248 graph_function = ConcreteFunction( -> 3249 func_graph_module.func_graph_from_py_func( 3250 self._name, 3251 self._python_function, ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes) 996 _, original_func = tf_decorator.unwrap(python_func) 997 --> 998 func_outputs = python_func(*func_args, **func_kwargs) 999 1000 # invariant: `func_outputs` contains only Tensors, CompositeTensors, ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds) 610 xla_context.Exit() 611 else: --> 612 out = weak_wrapped_fn().__wrapped__(*args, **kwds) 613 return out 614 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs) 983 except Exception as e: # pylint:disable=broad-except 984 if hasattr(e, "ag_error_metadata"): --> 985 raise e.ag_error_metadata.to_exception(e) 986 else: 987 raise ValueError: in user code: /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1512 predict_function * return step_function(self, iterator) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1502 step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:1262 run return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:2734 call_for_each_replica return self._call_for_each_replica(fn, args, kwargs) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:3423 _call_for_each_replica return fn(*args, **kwargs) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1495 run_step ** outputs = model.predict_step(data) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1468 predict_step return self(x, training=False) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py:1018 __call__ input_spec.assert_input_compatibility(self.input_spec, inputs, self.name) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/input_spec.py:271 assert_input_compatibility raise ValueError('Input ' + str(input_index) + ValueError: Input 0 is incompatible with layer model: expected shape=(None, 16384, 1), found shape=(None, 8192, 1)
- Run correction for all experimental traces
path_pex5_exp = ['/beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu', '/beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu'] pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9] length_delimiter = 2**13 # for U-Net bin_for_correlation = 1e5 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction( path_list=path_pex5_exp, model=model_keras, pred_thresh=pred_thresh, photon_count_bin=bin_for_correlation, ntraces=400, save_as_csv=True) out
Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu with bin=1e6. This can take a while... 1 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1082s_1.ptu 2 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1537s_1.ptu 3 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488210_T2505s_1.ptu 4 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488199_T2375s_1.ptu 5 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2040s_1.ptu 6 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488229_T2733s_1.ptu 7 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1070s_1.ptu 8 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1352s_1.ptu 9 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T986s_1.ptu10 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488227_T2709s_1.ptu 11 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2088s_1.ptu 12 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1214s_1.ptu 13 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1561s_1.ptu 14 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T302s_1.ptu 15 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1932s_1.ptu 16 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2267s_1.ptu 17 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2255s_1.ptu 18 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488208_T2481s_1.ptu 19 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T314s_1.ptu 20 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488221_T2637s_1.ptu 21 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1834s_1.ptu 22 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1883s_1.ptu 23 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488197_T2351s_1.ptu 24 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T254s_1.ptu 25 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48816_T182s_1.ptu 26 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2148s_1.ptu 27 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1238s_1.ptu 28 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T833s_1.ptu 29 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T676s_1.ptu 30 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1496s_1.ptu 31 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T459s_1.ptu 32 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1610s_1.ptu 33 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T592s_1.ptu 34 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1907s_1.ptu 35 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T604s_1.ptu 36 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1895s_1.ptu 37 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T926s_1.ptu 38 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T447s_1.ptu 39 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T821s_1.ptu 40 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48834_T399s_1.ptu 41 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T506s_1.ptu 42 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1076s_1.ptu 43 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2209s_1.ptu 44 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T748s_1.ptu 45 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1232s_1.ptu 46 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2159s_1.ptu 47 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T698s_1.ptu 48 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T855s_1.ptu 49 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1789s_1.ptu 50 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488241_T2877s_1.ptu 51 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488204_T2434s_1.ptu 52 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T918s_1.ptu 53 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2147s_1.ptu 54 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2197s_1.ptu 55 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1908s_1.ptu 56 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488238_T2842s_1.ptu 57 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1968s_1.ptu 58 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488234_T2793s_1.ptu 59 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T979s_1.ptu 60 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1148s_1.ptu 61 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1280s_1.ptu 62 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1654s_1.ptu 63 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1484s_1.ptu 64 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2245s_1.ptu 65 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T879s_1.ptu 66 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1896s_1.ptu 67 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2124s_1.ptu 68 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1328s_1.ptu 69 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T867s_1.ptu 70 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T962s_1.ptu 71 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T628s_1.ptu 72 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48842_T496s_1.ptu 73 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T590s_1.ptu 74 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1184s_1.ptu 75 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488196_T2339s_1.ptu 76 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1956s_1.ptu 77 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488217_T2589s_1.ptu 78 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488218_T2601s_1.ptu 79 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1418s_1.ptu 80 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488206_T2458s_1.ptu 81 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T785s_1.ptu 82 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1226s_1.ptu 83 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T278s_1.ptu 84 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4887_T74s_1.ptu 85 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2099s_1.ptu 86 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48817_T194s_1.ptu 87 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1346s_1.ptu 88 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T688s_1.ptu 89 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488211_T2517s_1.ptu 90 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T712s_1.ptu 91 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48833_T387s_1.ptu 92 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T686s_1.ptu 93 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48813_T146s_1.ptu 94 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488126_T1502s_1.ptu 95 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1118s_1.ptu 96 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1316s_1.ptu 97 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2243s_1.ptu 98 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1430s_1.ptu 99 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488219_T2613s_1.ptu 100 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1646s_1.ptu 101 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2231s_1.ptu 102 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488146_T1742s_1.ptu 103 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488155_T1859s_1.ptu 104 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2075s_1.ptu 105 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1884s_1.ptu 106 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488244_T2914s_1.ptu 107 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4886_T62s_1.ptu 108 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1015s_1.ptu 109 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1979s_1.ptu 110 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T674s_1.ptu 111 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2279s_1.ptu 112 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2183s_1.ptu 113 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1689s_1.ptu 114 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2269s_1.ptu 115 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T266s_1.ptu 116 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488209_T2493s_1.ptu 117 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1630s_1.ptu 118 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488185_T2221s_1.ptu 119 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2135s_1.ptu 120 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T782s_1.ptu 121 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1472s_1.ptu 122 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1919s_1.ptu 123 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T664s_1.ptu 124 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T351s_1.ptu 125 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T375s_1.ptu 126 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T700s_1.ptu 127 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1545s_1.ptu 128 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1714s_1.ptu 129 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1022s_1.ptu 130 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1754s_1.ptu 131 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488193_T2303s_1.ptu 132 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1250s_1.ptu 133 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488228_T2721s_1.ptu 134 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1088s_1.ptu 135 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2040s_1.ptu 136 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48835_T411s_1.ptu 137 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1046s_1.ptu 138 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1466s_1.ptu 139 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T906s_1.ptu 140 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T255s_1.ptu 141 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1730s_1.ptu 142 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1358s_1.ptu 143 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T279s_1.ptu 144 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T638s_1.ptu 145 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2949s_1.ptu 146 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T519s_1.ptu 147 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T482s_1.ptu 148 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T327s_1.ptu 149 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T471s_1.ptu 150 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488225_T2685s_1.ptu 151 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T362s_1.ptu 152 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T578s_1.ptu 153 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T722s_1.ptu 154 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T614s_1.ptu 155 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T616s_1.ptu 156 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1778s_1.ptu 157 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2028s_1.ptu 158 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4883_T26s_1.ptu 159 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T966s_1.ptu 160 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T435s_1.ptu 161 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1666s_1.ptu 162 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2315s_1.ptu 163 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488205_T2446s_1.ptu 164 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48818_T206s_1.ptu 165 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1533s_1.ptu 166 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T602s_1.ptu 167 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488116_T1388s_1.ptu 168 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2196s_1.ptu 169 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1394s_1.ptu 170 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T818s_1.ptu 171 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1130s_1.ptu 172 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2076s_1.ptu 173 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1262s_1.ptu 174 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2993s_1.ptu 175 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1063s_1.ptu 176 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48845_T531s_1.ptu 177 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1400s_1.ptu 178 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488192_T2291s_1.ptu 179 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1992s_1.ptu 180 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1142s_1.ptu 181 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1124s_1.ptu 182 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2111s_1.ptu 183 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48862_T736s_1.ptu 184 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1412s_1.ptu 185 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1100s_1.ptu 186 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T555s_1.ptu 187 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488223_T2661s_1.ptu 188 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T626s_1.ptu 189 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1622s_1.ptu 190 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1810s_1.ptu 191 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2925s_1.ptu 192 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T942s_1.ptu 193 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1448s_1.ptu 194 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T809s_1.ptu 195 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488201_T2398s_1.ptu 196 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1670s_1.ptu 197 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488250_T3006s_1.ptu 198 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4884_T38s_1.ptu 199 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1514s_1.ptu 200 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1244s_1.ptu 201 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2172s_1.ptu 202 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1370s_1.ptu 203 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1678s_1.ptu 204 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T652s_1.ptu 205 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T1003s_1.ptu 206 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T544s_1.ptu 207 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1569s_1.ptu 208 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488236_T2817s_1.ptu 209 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2123s_1.ptu 210 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T869s_1.ptu 211 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1968s_1.ptu 212 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2973s_1.ptu 213 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1801s_1.ptu 214 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488235_T2805s_1.ptu 215 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2028s_1.ptu 216 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2160s_1.ptu 217 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1618s_1.ptu 218 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2281s_1.ptu 219 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T758s_1.ptu 220 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T794s_1.ptu 221 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T891s_1.ptu 222 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T842s_1.ptu 223 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488213_T2541s_1.ptu 224 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2184s_1.ptu 225 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T484s_1.ptu 226 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2052s_1.ptu 227 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1825s_1.ptu 228 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1581s_1.ptu 229 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1762s_1.ptu 230 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1310s_1.ptu 231 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1010s_1.ptu 232 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T290s_1.ptu 233 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488168_T2004s_1.ptu 234 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48820_T230s_1.ptu 235 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1944s_1.ptu 236 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488203_T2422s_1.ptu 237 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488152_T1822s_1.ptu 238 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T243s_1.ptu 239 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T2004s_1.ptu 240 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T436s_1.ptu 241 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1980s_1.ptu 242 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488200_T2386s_1.ptu 243 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1454s_1.ptu 244 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T508s_1.ptu 245 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1220s_1.ptu 246 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T773s_1.ptu 247 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1920s_1.ptu 248 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T267s_1.ptu 249 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T746s_1.ptu 250 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1573s_1.ptu 251 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T797s_1.ptu 252 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1726s_1.ptu 253 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1738s_1.ptu 254 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2016s_1.ptu 255 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1058s_1.ptu 256 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T710s_1.ptu 257 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T363s_1.ptu 258 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488215_T2565s_1.ptu 259 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T930s_1.ptu 260 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T770s_1.ptu 261 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T830s_1.ptu 262 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1364s_1.ptu 263 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488148_T1774s_1.ptu 264 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488224_T2673s_1.ptu 265 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488172_T2052s_1.ptu 266 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T1992s_1.ptu 267 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488100_T1190s_1.ptu 268 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T242s_1.ptu 269 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488240_T2865s_1.ptu 270 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1701s_1.ptu 271 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1549s_1.ptu 272 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T520s_1.ptu 273 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T724s_1.ptu 274 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48814_T158s_1.ptu 275 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1956s_1.ptu 276 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2064s_1.ptu 277 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4885_T50s_1.ptu 278 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T580s_1.ptu 279 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T472s_1.ptu 280 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T991s_1.ptu 281 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2969s_1.ptu 282 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1798s_1.ptu 283 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T566s_1.ptu 284 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1160s_1.ptu 285 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1406s_1.ptu 286 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4889_T98s_1.ptu 287 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T134s_1.ptu 288 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488222_T2649s_1.ptu 289 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1039s_1.ptu 290 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T938s_1.ptu 291 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1051s_1.ptu 292 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T902s_1.ptu 293 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48819_T218s_1.ptu 294 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1112s_1.ptu 295 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1442s_1.ptu 296 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488101_T1208s_1.ptu 297 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488109_T1304s_1.ptu 298 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1526s_1.ptu 299 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488207_T2470s_1.ptu 300 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2937s_1.ptu 301 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488242_T2890s_1.ptu 302 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T640s_1.ptu 303 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T554s_1.ptu 304 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1292s_1.ptu 305 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1597s_1.ptu 306 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4888_T86s_1.ptu 307 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T857s_1.ptu 308 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1786s_1.ptu 309 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T291s_1.ptu 310 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2171s_1.ptu 311 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1871s_1.ptu 312 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488220_T2624s_1.ptu 313 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2981s_1.ptu 314 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1154s_1.ptu 315 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T568s_1.ptu 316 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2100s_1.ptu 317 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1847s_1.ptu 318 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2945s_1.ptu 319 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1658s_1.ptu 320 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T350s_1.ptu 321 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2087s_1.ptu 322 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T662s_1.ptu 323 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488230_T2745s_1.ptu 324 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T894s_1.ptu 325 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1521s_1.ptu 326 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488195_T2327s_1.ptu 327 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T998s_1.ptu 328 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2219s_1.ptu 329 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T974s_1.ptu 330 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1606s_1.ptu 331 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1286s_1.ptu 332 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T315s_1.ptu 333 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488214_T2553s_1.ptu 334 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1944s_1.ptu 335 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T460s_1.ptu 336 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2233s_1.ptu 337 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488243_T2902s_1.ptu 338 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1642s_1.ptu 339 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1861s_1.ptu 340 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4882_T14s_1.ptu 341 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1694s_1.ptu 342 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T123s_1.ptu 343 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2961s_1.ptu 344 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1136s_1.ptu 345 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T303s_1.ptu 346 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2293s_1.ptu 347 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1634s_1.ptu 348 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488133_T1585s_1.ptu 349 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488216_T2577s_1.ptu 350 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1274s_1.ptu 351 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1557s_1.ptu 352 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1436s_1.ptu 353 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T806s_1.ptu 354 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1490s_1.ptu 355 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T374s_1.ptu 356 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1424s_1.ptu 357 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T914s_1.ptu 358 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2257s_1.ptu 359 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48836_T423s_1.ptu 360 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2112s_1.ptu 361 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488112_T1334s_1.ptu 362 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48815_T170s_1.ptu 363 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T448s_1.ptu 364 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2136s_1.ptu 365 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488198_T2363s_1.ptu 366 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T650s_1.ptu 367 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1178s_1.ptu 368 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1931s_1.ptu 369 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2957s_1.ptu 370 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488231_T2757s_1.ptu 371 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1460s_1.ptu 372 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1873s_1.ptu 373 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2329s_1.ptu 374 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T542s_1.ptu 375 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1718s_1.ptu 376 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1322s_1.ptu 377 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1705s_1.ptu 378 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T882s_1.ptu 379 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1478s_1.ptu 380 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1268s_1.ptu 381 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1094s_1.ptu 382 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1376s_1.ptu 383 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T761s_1.ptu 384 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488239_T2853s_1.ptu 385 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1106s_1.ptu 386 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1837s_1.ptu 387 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1256s_1.ptu 388 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48829_T338s_1.ptu 389 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T845s_1.ptu 390 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1172s_1.ptu 391 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48880_T954s_1.ptu 392 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T122s_1.ptu 393 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1682s_1.ptu 394 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488237_T2829s_1.ptu 395 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48810_T110s_1.ptu 396 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1166s_1.ptu 397 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T135s_1.ptu 398 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1034s_1.ptu 399 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488202_T2410s_1.ptu 400 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T326s_1.ptu 401 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1027s_1.ptu Different binning was chosen for correlation. Loading dataset 1 with bin=100000.0. This can take a while... Processing correlation of unprocessed dataset 1 Processing correlation with correction by prediction of dataset 1
- Not all of the log was saved (e.g. loading folder alldirtyptu). Load CSV
corr_out = pd.read_csv(filepath_or_buffer='data/exp-210204-unet/2021-03-24_correlations.csv') corr_out
\(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\) 0 19.078159 0.590783 8192.0 0-orig 100000.0 1 20.314897 0.554817 8192.0 0-orig 100000.0 2 21.007772 0.536518 8192.0 0-orig 100000.0 3 22.716317 0.496166 8192.0 0-orig 100000.0 4 24.089236 0.467888 8192.0 0-orig 100000.0 … … … … … … 4795 0.062475 180.409905 8017.0 1-pred-0.9 100000.0 4796 0.054750 205.864659 7976.0 1-pred-0.9 100000.0 4797 0.265582 42.439007 8060.0 1-pred-0.9 100000.0 4798 0.148929 75.680566 8077.0 1-pred-0.9 100000.0 4799 0.331785 33.970940 8091.0 1-pred-0.9 100000.0 4800 rows × 5 columns
looks good! Open question: why were metadata not saved? Since I started handling multipletau failures better (they now return np.nan values for the correlations instead of just skipping the correlation) the shapes of metadata and data should match…
- Check out nan values
corr_out[corr_out['$D$ in $\\frac{{\mu m^2}}{{s}}$'].isna()]
\(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\) 402 NaN NaN 3.0 0-pred-0.1 100000.0 410 NaN NaN 3.0 0-pred-0.1 100000.0 428 NaN NaN 0.0 0-pred-0.1 100000.0 481 NaN NaN 3.0 0-pred-0.1 100000.0 527 NaN NaN 3.0 0-pred-0.1 100000.0 530 NaN NaN 1.0 0-pred-0.1 100000.0 534 NaN NaN 0.0 0-pred-0.1 100000.0 552 NaN NaN 1.0 0-pred-0.1 100000.0 553 NaN NaN 1.0 0-pred-0.1 100000.0 557 NaN NaN 2.0 0-pred-0.1 100000.0 558 NaN NaN 2.0 0-pred-0.1 100000.0 563 NaN NaN 2.0 0-pred-0.1 100000.0 568 NaN NaN 1.0 0-pred-0.1 100000.0 572 NaN NaN 0.0 0-pred-0.1 100000.0 578 NaN NaN 1.0 0-pred-0.1 100000.0 589 NaN NaN 2.0 0-pred-0.1 100000.0 623 NaN NaN 3.0 0-pred-0.1 100000.0 634 NaN NaN 1.0 0-pred-0.1 100000.0 638 NaN NaN 1.0 0-pred-0.1 100000.0 651 NaN NaN 2.0 0-pred-0.1 100000.0 655 NaN NaN 3.0 0-pred-0.1 100000.0 656 NaN NaN 0.0 0-pred-0.1 100000.0 660 NaN NaN 0.0 0-pred-0.1 100000.0 691 NaN NaN 0.0 0-pred-0.1 100000.0 694 NaN NaN 0.0 0-pred-0.1 100000.0 699 NaN NaN 2.0 0-pred-0.1 100000.0 715 NaN NaN 2.0 0-pred-0.1 100000.0 721 NaN NaN 0.0 0-pred-0.1 100000.0 725 NaN NaN 1.0 0-pred-0.1 100000.0 764 NaN NaN 2.0 0-pred-0.1 100000.0 799 NaN NaN 1.0 0-pred-0.1 100000.0 We see, that all of the 31 NaNs happened in the “clean” dataset with a prediction threshold of 0.1 and all were presumably caused by the insufficient trace length, since multipletau needs in this case 32 time steps to correlate the trace.
- Refactor folder-idtraces-used into 2 columns
corr_out['folder_id-traces_used']
0 0-orig 1 0-orig 2 0-orig 3 0-orig 4 0-orig ... 4795 1-pred-0.9 4796 1-pred-0.9 4797 1-pred-0.9 4798 1-pred-0.9 4799 1-pred-0.9 Name: folder_id-traces_used, Length: 4800, dtype: object
corr_out[['Folder ID', 'Traces used']] = corr_out['folder_id-traces_used'].str.split(pat='-', n=1, expand=True)
corr_out
\(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\) Folder ID Traces used 0 19.078159 0.590783 8192.0 0-orig 100000.0 0 orig 1 20.314897 0.554817 8192.0 0-orig 100000.0 0 orig 2 21.007772 0.536518 8192.0 0-orig 100000.0 0 orig 3 22.716317 0.496166 8192.0 0-orig 100000.0 0 orig 4 24.089236 0.467888 8192.0 0-orig 100000.0 0 orig … … … … … … … … 4795 0.062475 180.409905 8017.0 1-pred-0.9 100000.0 1 pred-0.9 4796 0.054750 205.864659 7976.0 1-pred-0.9 100000.0 1 pred-0.9 4797 0.265582 42.439007 8060.0 1-pred-0.9 100000.0 1 pred-0.9 4798 0.148929 75.680566 8077.0 1-pred-0.9 100000.0 1 pred-0.9 4799 0.331785 33.970940 8091.0 1-pred-0.9 100000.0 1 pred-0.9 4800 rows × 7 columns
- plots
x = 'Trace lengths' g = sns.FacetGrid(data=corr_out, col='Folder ID', col_wrap=1, sharex=True, aspect=1.5, height=5, legend_out=True) g.map_dataframe(sns.boxplot, x=x, y='Traces used', palette='colorblind', showfliers=False) g.map_dataframe(sns.stripplot, x=x, y='Traces used', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2) g.set_xlabels(x) g.tight_layout() plt.show()
Trace lengths:
# '$D$ in $\\frac{{\mu m^2}}{{s}}$' # '$\\tau_{{D}}$ in $ms$' x = '$D$ in $\\frac{{\mu m^2}}{{s}}$' g = sns.FacetGrid(data=corr_out, col='Folder ID', col_wrap=1, sharex=True, aspect=1.5, height=5, legend_out=True) g.map_dataframe(sns.boxplot, x=x, y='Traces used', palette='colorblind', showfliers=False).set(xscale = 'log') g.map_dataframe(sns.stripplot, x=x, y='Traces used', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2).set(xscale = 'log') g.set_xlabels(x) g.tight_layout() plt.show()
D: tau:
This scatterplot shows Diffusion rates / transit times against trace lengths. I used a subsample to avoid overplotting.
# '$D$ in $\\frac{{\mu m^2}}{{s}}$' # '$\\tau_{{D}}$ in $ms$' x = '$\\tau_{{D}}$ in $ms$' g = sns.FacetGrid(data=corr_out, row='Traces used', col='Folder ID', hue='Traces used', sharex=True, sharey=True, aspect=1.5, height=3.5, margin_titles=True, legend_out=True) g.map_dataframe(sns.scatterplot, x=x, y='Trace lengths', palette='colorblind').set(xscale = 'log') g.add_legend(title='Traces used') g.set_xlabels(x) g.tight_layout() plt.show()
# '$D$ in $\\frac{{\mu m^2}}{{s}}$' # '$\\tau_{{D}}$ in $ms$' x = '$\\tau_{{D}}$ in $ms$' g = sns.FacetGrid(data=corr_out.sample(1000), row='Folder ID', hue='Traces used', hue_order=['orig', 'pred-0.1', 'pred-0.3', 'pred-0.5', 'pred-0.7', 'pred-0.9'], sharex=True, sharey=True, aspect=1.5, height=4, margin_titles=True, legend_out=True) g.map_dataframe(sns.scatterplot, x=x, y='Trace lengths', palette='colorblind').set(xscale = 'log') g.add_legend(title='Traces used') g.set_xlabels(x) g.tight_layout() plt.show()
Scatterplot on subsample: Scatterplot on full dataset, but categorical:
2.3.7 use MLFLOW to compare run 1 and run 2
- get the experiment ID
conda activate tf-nightly cd Programme/drmed-git export MLFLOW_EXPERIMENT_NAME=exp-210204-unet
export MLFLOW_TRACKING_URI=file:/data/mlruns mlflow experiments list
Experiment Id Name Artifact Location --------------- --------------- ------------------- 2 exp-210124-test file:. 3 exp-210204-unet file:.
mlflow runs list --experiment-id 3
Date Name ID ----------------------- ------ -------------------------------- 2021-03-16 22:26:12 CET 3cec3f26ed2d4004978c4ec37c00fba0 2021-02-05 18:23:50 CET b9935d1e554c423fb2852242f4c4504c
- start tensorboard for the runs
export EXP1=b9935d1e554c423fb2852242f4c4504c export EXP2=3cec3f26ed2d4004978c4ec37c00fba0 tensorboard --logdir=data/mlruns/3/$EXP2/artifacts/tensorboard_logs
sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: ye53nis@login01’s password: bind: Address already in use Last login: Fri Apr 2 23:45:47 2021 from 10.231.191.246
auc and val-auc:
loss and val-loss:
run 1 distribution and histogram of final layer
run 2 distribution and histogram of final layer
2.4 exp-210807-hparams
2.4.1 Connect
2.4.1.1 GPU node for script execution
- Setup tmux
rm: cannot remove ’home/lex.tmux-local-socket-remote-machine’: No such file or directory ye53nis@ara-login01.rz.uni-jena.de’s password: /tmp/tmux-67339/default > ye53nis@ara-login01.rz.uni-jena.de’s password: - first, connect with the GPU node in the high performance cluster
cd / srun -p gpu_v100 --time=5-10:00:00 --ntasks-per-node=12 --mem-per-cpu=4000 --gres=gpu:1 --pty bash
(base) [ye53nis@node130 /]$
- Load CUDA and cuDNN in the version compatible to your tensorflow library
(see https://www.tensorflow.org/install/source#gpu)
module load nvidia/cuda/11.2 module load nvidia/cudnn/8.1 module list
- Branch out git branch
exp-210807-hparams
frommain
(done via magit) and make sure you are on the correct branchcd /beegfs/ye53nis/drmed-git git checkout exp-210807-hparams
(base) [ye53nis@node130 drmed-git]$ git checkout exp-210807-hparams Checking out files: 100% (148/148), done. M src/nanosimpy Branch exp-210807-hparams set up to track remote branch exp-210807-hparams from origin. Switched to a new branch 'exp-210807-hparams' \nThis repository is configured for Git LFS but 'git-lfs' was not found on your path. If you no longer wish to use Git LFS, remove this hook by deleting .git/hooks/post-checkout.\n (base) [ye53nis@node130 drmed-git]$
- Side quest: remove last remnants of failed git LFS experiments
cat .git/hooks/post-checkout rm .git/hooks/post-checkout rm .git/hooks/pre-push
(base) [ye53nis@node130 drmed-git]$ cat .git/hooks/post-checkout #!/bin/sh command -v git-lfs >/dev/null 2>&1 || { echo >&2 "\nThis repository is configured for Git LFS but 'git-lfs' was not found on your path. If you no longer wish to use Git LFS, remove this hook by deleting .git/hooks/post-checkout.\n"; ex it 2; } git lfs post-checkout "$@" (base) [ye53nis@node130 drmed-git]$ rm .git/hooks/post-checkout (base) [ye53nis@node130 drmed-git]$ rm .git/hooks/pre-push (base) [ye53nis@node130 drmed-git]$ git push origin exp-210807-hparams Username for 'https://github.com': aseltmann Password for 'https://aseltmann@github.com': Everything up-to-date (base) [ye53nis@node130 drmed-git]$
- Load conda environment
conda activate tf
(tf) [ye53nis@node130 drmed-git]$
- define MLflow environment variables and create log directory
cd /beegfs/ye53nis/drmed-git export MLFLOW_EXPERIMENT_NAME=exp-210807-hparams export MLFLOW_TRACKING_URI=file:/beegfs/ye53nis/drmed-git/data/mlruns mkdir data/exp-210807-hparams
(tf) [ye53nis@node130 drmed-git]$
2.4.1.2 Node for running Jupyter
- customize the output folder using the following org-mode variable:
(setq org-babel-jupyter-resource-directory "./data/exp-210807-hparams/jupyter")
./data/exp-210807-hparams/jupyter
- Set up tmux (if we haven’t done that before) (
#+CALL: setup-tmux[:session local]
)sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: > ye53nis@ara-login01.rz.uni-jena.de’s password: - Request compute node
cd / srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
- Start Jupyter Lab (
#+CALL: jpt-tmux[:session jpmux]
)(tf) [ye53nis@node144 /]$ jupyter lab --no-browser --port=$PORT [I 2021-12-14 13:02:25.053 ServerApp] jupyterlab | extension was successfully linked. [I 2021-12-14 13:02:30.949 ServerApp] nbclassic | extension was successfully linked. [I 2021-12-14 13:02:31.454 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab [I 2021-12-14 13:02:31.455 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab [I 2021-12-14 13:02:31.464 ServerApp] jupyterlab | extension was successfully loaded. [I 2021-12-14 13:02:31.591 ServerApp] nbclassic | extension was successfully loaded. [I 2021-12-14 13:02:31.592 ServerApp] Serving notebooks from local directory: / [I 2021-12-14 13:02:31.592 ServerApp] Jupyter Server 1.4.1 is running at: [I 2021-12-14 13:02:31.592 ServerApp] http://localhost:9999/lab?token=d56ed5d84f4a58d80eccfc44527559c44840ce3fd540c1b2 [I 2021-12-14 13:02:31.592 ServerApp] or http://127.0.0.1:9999/lab?token=d56ed5d84f4a58d80eccfc44527559c44840ce3fd540c1b2 [I 2021-12-14 13:02:31.592 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 2021-12-14 13:02:31.625 ServerApp] To access the server, open this file in a browser: file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-92394-open.html Or copy and paste one of these URLs: http://localhost:9999/lab?token=d56ed5d84f4a58d80eccfc44527559c44840ce3fd540c1b2 or http://127.0.0.1:9999/lab?token=d56ed5d84f4a58d80eccfc44527559c44840ce3fd540c1b2
- Create SSH Tunnel for jupyter lab to the local computer (e.g.
#+CALL: ssh-tunnel(port="9999", node="node152")
)sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: ye53nis@node144’s password: Last login: Tue Dec 14 22:39:42 2021 from login01.ara - I started a Python3 kernel using
jupyter-server-list-kernels
. Then I added the kernel ID to the:PROPERTIES:
drawer of this (and following) subtrees.python3 c4f3acce-60c4-489d-922c-407da110fd6a a few seconds ago idle 1
- Test (
#+CALL: jp-metadata(_long='True)
):No of CPUs in system: 72 No of CPUs the current process can use: 24 load average: (17.06, 17.03, 18.02) os.uname(): posix.uname_result(sysname='Linux', nodename='node162', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64') PID of process: 40969 RAM total: 199G, RAM used: 13G, RAM free: 164G the current directory: / My disk usage: Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 3.8G 47G 8% / devtmpfs 94G 0 94G 0% /dev tmpfs 94G 8.6M 94G 1% /dev/shm tmpfs 94G 115M 94G 1% /run tmpfs 94G 0 94G 0% /sys/fs/cgroup nfs01-ib:/home 80T 67T 14T 83% /home nfs03-ib:/pool/work 100T 78T 22T 79% /nfsdata nfs02-ib:/data01 88T 71T 17T 82% /data01 nfs01-ib:/cluster 2.0T 464G 1.6T 23% /cluster /dev/sda5 2.0G 34M 2.0G 2% /tmp /dev/sda3 6.0G 428M 5.6G 7% /var /dev/sda6 169G 33M 169G 1% /local beegfs_nodev 524T 484T 41T 93% /beegfs tmpfs 19G 0 19G 0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 4.5 1_gnu absl-py 0.13.0 pypi_0 pypi alembic 1.4.1 pypi_0 pypi anyio 2.2.0 py39h06a4308_1 argon2-cffi 20.1.0 py39h27cfd23_1 asteval 0.9.25 pypi_0 pypi astunparse 1.6.3 pypi_0 pypi async_generator 1.10 pyhd3eb1b0_0 attrs 21.2.0 pyhd3eb1b0_0 babel 2.9.1 pyhd3eb1b0_0 backcall 0.2.0 pyhd3eb1b0_0 bleach 3.3.1 pyhd3eb1b0_0 brotlipy 0.7.0 py39h27cfd23_1003 ca-certificates 2021.7.5 h06a4308_1 cachetools 4.2.2 pypi_0 pypi certifi 2021.5.30 py39h06a4308_0 cffi 1.14.6 py39h400218f_0 chardet 4.0.0 py39h06a4308_1003 click 8.0.1 pypi_0 pypi cloudpickle 1.6.0 pypi_0 pypi cryptography 3.4.7 py39hd23ed53_0 cycler 0.10.0 pypi_0 pypi databricks-cli 0.14.3 pypi_0 pypi decorator 5.0.9 pyhd3eb1b0_0 defusedxml 0.7.1 pyhd3eb1b0_0 docker 5.0.0 pypi_0 pypi entrypoints 0.3 py39h06a4308_0 fcsfiles 2021.6.6 pypi_0 pypi flask 2.0.1 pypi_0 pypi flatbuffers 1.12 pypi_0 pypi future 0.18.2 pypi_0 pypi gast 0.4.0 pypi_0 pypi gitdb 4.0.7 pypi_0 pypi gitpython 3.1.18 pypi_0 pypi google-auth 1.34.0 pypi_0 pypi google-auth-oauthlib 0.4.5 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi greenlet 1.1.0 pypi_0 pypi grpcio 1.34.1 pypi_0 pypi gunicorn 20.1.0 pypi_0 pypi h5py 3.1.0 pypi_0 pypi idna 2.10 pyhd3eb1b0_0 importlib-metadata 3.10.0 py39h06a4308_0 importlib_metadata 3.10.0 hd3eb1b0_0 ipykernel 5.3.4 py39hb070fc8_0 ipython 7.22.0 py39hb070fc8_0 ipython_genutils 0.2.0 pyhd3eb1b0_1 itsdangerous 2.0.1 pypi_0 pypi jedi 0.17.2 py39h06a4308_1 jinja2 3.0.1 pyhd3eb1b0_0 joblib 1.0.1 pypi_0 pypi json5 0.9.6 pyhd3eb1b0_0 jsonschema 3.2.0 py_2 jupyter-packaging 0.7.12 pyhd3eb1b0_0 jupyter_client 6.1.12 pyhd3eb1b0_0 jupyter_core 4.7.1 py39h06a4308_0 jupyter_server 1.4.1 py39h06a4308_0 jupyterlab 3.0.14 pyhd3eb1b0_1 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 2.6.1 pyhd3eb1b0_0 keras-nightly 2.5.0.dev2021032900 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.1 pypi_0 pypi ld_impl_linux-64 2.35.1 h7274673_9 libffi 3.3 he6710b0_2 libgcc-ng 9.3.0 h5101ec6_17 libgomp 9.3.0 h5101ec6_17 libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.3.0 hd4cf53a_17 lmfit 1.0.2 pypi_0 pypi mako 1.1.4 pypi_0 pypi markdown 3.3.4 pypi_0 pypi markupsafe 2.0.1 py39h27cfd23_0 matplotlib 3.4.2 pypi_0 pypi mistune 0.8.4 py39h27cfd23_1000 mlflow 1.19.0 pypi_0 pypi multipletau 0.3.3 pypi_0 pypi nbclassic 0.2.6 pyhd3eb1b0_0 nbclient 0.5.3 pyhd3eb1b0_0 nbconvert 6.1.0 py39h06a4308_0 nbformat 5.1.3 pyhd3eb1b0_0 ncurses 6.2 he6710b0_1 nest-asyncio 1.5.1 pyhd3eb1b0_0 notebook 6.4.0 py39h06a4308_0 numpy 1.19.5 pypi_0 pypi oauthlib 3.1.1 pypi_0 pypi openssl 1.1.1k h27cfd23_0 opt-einsum 3.3.0 pypi_0 pypi packaging 21.0 pyhd3eb1b0_0 pandas 1.3.1 pypi_0 pypi pandocfilters 1.4.3 py39h06a4308_1 parso 0.7.0 py_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 8.3.1 pypi_0 pypi pip 21.1.3 py39h06a4308_0 prometheus-flask-exporter 0.18.2 pypi_0 pypi prometheus_client 0.11.0 pyhd3eb1b0_0 prompt-toolkit 3.0.17 pyh06a4308_0 protobuf 3.17.3 pypi_0 pypi ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.20 py_2 pygments 2.9.0 pyhd3eb1b0_0 pyopenssl 20.0.1 pyhd3eb1b0_1 pyparsing 2.4.7 pyhd3eb1b0_0 pyrsistent 0.18.0 py39h7f8727e_0 pysocks 1.7.1 py39h06a4308_0 python 3.9.5 h12debd9_4 python-dateutil 2.8.2 pyhd3eb1b0_0 python-editor 1.0.4 pypi_0 pypi pytz 2021.1 pyhd3eb1b0_0 pyyaml 5.4.1 pypi_0 pypi pyzmq 20.0.0 py39h2531618_1 querystring-parser 1.2.4 pypi_0 pypi readline 8.1 h27cfd23_0 requests 2.25.1 pyhd3eb1b0_0 requests-oauthlib 1.3.0 pypi_0 pypi rsa 4.7.2 pypi_0 pypi scikit-learn 0.24.2 pypi_0 pypi scipy 1.7.0 pypi_0 pypi seaborn 0.11.1 pypi_0 pypi send2trash 1.5.0 pyhd3eb1b0_1 setuptools 52.0.0 py39h06a4308_0 six 1.15.0 pypi_0 pypi smmap 4.0.0 pypi_0 pypi sniffio 1.2.0 py39h06a4308_1 sqlalchemy 1.4.22 pypi_0 pypi sqlite 3.36.0 hc218d9a_0 sqlparse 0.4.1 pypi_0 pypi tabulate 0.8.9 pypi_0 pypi tensorboard 2.5.0 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.0 pypi_0 pypi tensorflow 2.5.0 pypi_0 pypi tensorflow-estimator 2.5.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.4 py39h06a4308_0 testpath 0.5.0 pyhd3eb1b0_0 threadpoolctl 2.2.0 pypi_0 pypi tifffile 2021.7.30 pypi_0 pypi tk 8.6.10 hbc83047_0 tornado 6.1 py39h27cfd23_0 traitlets 5.0.5 pyhd3eb1b0_0 typing-extensions 3.7.4.3 pypi_0 pypi tzdata 2021a h52ac0ba_0 uncertainties 3.1.6 pypi_0 pypi urllib3 1.26.6 pyhd3eb1b0_1 wcwidth 0.2.5 py_0 webencodings 0.5.1 py39h06a4308_1 websocket-client 1.1.0 pypi_0 pypi werkzeug 2.0.1 pypi_0 pypi wheel 0.36.2 pyhd3eb1b0_0 wrapt 1.12.1 pypi_0 pypi xz 5.2.5 h7b6447c_0 zeromq 4.3.4 h2531618_0 zipp 3.5.0 pyhd3eb1b0_0 zlib 1.2.11 h7b6447c_3 Note: you may need to restart the kernel to use updated packages. {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint', 'SLURM_NODELIST': 'node162', 'SLURM_JOB_NAME': 'bash', 'XDG_SESSION_ID': '44301', 'SLURMD_NODENAME': 'node162', 'SLURM_TOPOLOGY_ADDR': 'node162', 'SLURM_NTASKS_PER_NODE': '24', 'HOSTNAME': 'login01', 'SLURM_PRIO_PROCESS': '0', 'SLURM_SRUN_COMM_PORT': '34890', 'SHELL': '/bin/bash', 'TERM': 'xterm-color', 'SLURM_JOB_QOS': 'qstand', 'SLURM_PTY_WIN_ROW': '32', 'HISTSIZE': '1000', 'TMPDIR': '/tmp', 'SLURM_TOPOLOGY_ADDR_PATTERN': 'node', 'SSH_CLIENT': '10.231.181.128 49370 22', 'CONDA_SHLVL': '2', 'CONDA_PROMPT_MODIFIER': '(tf) ', 'QTDIR': '/usr/lib64/qt-3.3', 'QTINC': '/usr/lib64/qt-3.3/include', 'SSH_TTY': '/dev/pts/79', 'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'QT_GRAPHICSSYSTEM_CHECKED': '1', 'SLURM_NNODES': '1', 'USER': 'ye53nis', 'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:', 'CONDA_EXE': '/cluster/miniconda3/bin/conda', 'SLURM_STEP_NUM_NODES': '1', 'SLURM_JOBID': '1547254', 'SRUN_DEBUG': '3', 'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_NTASKS': '24', 'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5', 'SLURM_STEP_ID': '0', 'TMUX': '/tmp/tmux-67339/default,20557,4', '_CE_CONDA': '', 'CONDA_PREFIX_1': '/cluster/miniconda3', 'SLURM_STEP_LAUNCHER_PORT': '34890', 'SLURM_TASKS_PER_NODE': '24', 'MAIL': '/var/spool/mail/ye53nis', 'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin', 'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448', 'SLURM_JOB_ID': '1547254', 'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf', 'SLURM_JOB_USER': 'ye53nis', 'SLURM_STEPID': '0', 'PWD': '/', 'SLURM_SRUN_COMM_HOST': '192.168.192.5', 'LANG': 'en_US.UTF-8', 'SLURM_PTY_WIN_COL': '235', 'SLURM_UMASK': '0022', 'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles', 'SLURM_JOB_UID': '67339', 'LOADEDMODULES': '', 'SLURM_NODEID': '0', 'TMUX_PANE': '%4', 'SLURM_SUBMIT_DIR': '/', 'SLURM_TASK_PID': '37261', 'SLURM_NPROCS': '24', 'SLURM_CPUS_ON_NODE': '24', 'SLURM_DISTRIBUTION': 'block', 'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_PROCID': '0', 'HISTCONTROL': 'ignoredups', '_CE_M': '', 'SLURM_JOB_NODELIST': 'node162', 'SLURM_PTY_PORT': '39060', 'HOME': '/home/ye53nis', 'SHLVL': '3', 'SLURM_LOCALID': '0', 'SLURM_JOB_GID': '13280', 'SLURM_JOB_CPUS_PER_NODE': '24', 'SLURM_CLUSTER_NAME': 'hpc', 'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23', 'SLURM_SUBMIT_HOST': 'login01', 'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_JOB_PARTITION': 's_standard', 'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3', 'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python', 'LOGNAME': 'ye53nis', 'SLURM_STEP_NUM_TASKS': '24', 'QTLIB': '/usr/lib64/qt-3.3/lib', 'SLURM_JOB_ACCOUNT': 'iaob', 'SLURM_JOB_NUM_NODES': '1', 'MODULESHOME': '/usr/share/Modules', 'CONDA_DEFAULT_ENV': 'tf', 'LESSOPEN': '||/usr/bin/lesspipe.sh %s', 'SLURM_STEP_TASKS_PER_NODE': '24', 'PORT': '9999', 'SLURM_STEP_NODELIST': 'node162', 'DISPLAY': ':0', 'XDG_RUNTIME_DIR': '', 'XAUTHORITY': '/home/lex/.Xauthority', 'BASH_FUNC_module()': '() { eval `/usr/bin/modulecmd bash $*`\n}', '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter', 'JPY_PARENT_PID': '38132', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
2.4.1.3 Node for running Mlflow UI
- Create mlflow tmux session and start mlflow ui
conda activate tf mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns -p 5001
(tf) [ye53nis@login01 ~]$ mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns -p 5001 [2021-08-08 14:47:33 +0200] [5106] [INFO] Starting gunicorn 20.1.0 [2021-08-08 14:47:33 +0200] [5106] [INFO] Listening at: http://127.0.0.1:5001 (5106) [2021-08-08 14:47:33 +0200] [5106] [INFO] Using worker: sync [2021-08-08 14:47:33 +0200] [5115] [INFO] Booting worker with pid: 5115
- SHH tunnel the mflow session to the local computer (#+CALL:
ssh-tunnel[:session local3](port=“5001”, node=“login01”))
sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: ye53nis@login01’s password: bind: Address already in use Last login: Tue Aug 17 18:03:52 2021 from 10.231.188.20
2.4.2 Run 1 - hparams
2.4.2.1 Record metadata
- Current directory, last 5 git commits
pwd git log -5
(tf) [ye53nis@node130 drmed-git]$ pwd /beegfs/ye53nis/drmed-git (tf) [ye53nis@node130 drmed-git]$ git log -5 commit aa5b9bc35c53c4fd1525c6b812b2a28532ae7afb Author: Apoplex <oligolex@vivaldi.net> Date: Sat Aug 7 22:15:02 2021 +0200 Add hparams combi restriction; add metadata problems arise, if in the random combination of hparams, 2*pool_size**n_levels is bigger than the input_size. That's why these cases are skipped now. commit 36bfdd79e78f84fe2f05a11d791c33b9c724b71f Author: Apoplex <oligolex@vivaldi.net> Date: Sat Aug 7 14:28:28 2021 +0200 add drop_remainder, add hparams, remove steps commit f3f5310a32a110793d016c2c788b1058bbc5439e Author: Apoplex <oligolex@vivaldi.net> Date: Sat Aug 7 14:02:57 2021 +0200 Change conda environment commit fcc80acbc07dcc92b207b034f4b4133f2800d0f3 Author: Apoplex <oligolex@vivaldi.net> Date: Thu Aug 5 22:16:18 2021 +0200 Rename master to main commit 8edc3c254d26b5c18fb262e73c1fd26406b97573 Author: Apoplex <oligolex@vivaldi.net> Date: Wed Aug 4 22:36:06 2021 +0200 Fix mlflow best run logging (tf) [ye53nis@node130 drmed-git]$
- GPU, CPU, RAM, file system, env variables, top info
nvcc -V echo -------------------- lscpu echo -------------------- nproc echo -------------------- free -h echo -------------------- df -h echo -------------------- printenv echo -------------------- top -bcn1 -w512 | head -n 15
(tf) [ye53nis@node130 drmed-git]$ nvcc -V nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2020 NVIDIA Corporation Built on Mon_Nov_30_19:08:53_PST_2020 Cuda compilation tools, release 11.2, V11.2.67 Build cuda_11.2.r11.2/compiler.29373293_0 -------------------- (tf) [ye53nis@node130 drmed-git]$ lscpu Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 48 On-line CPU(s) list: 0-47 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 2 NUMA node(s): 4 Vendor ID: GenuineIntel CPU family: 6 Model: 79 Model name: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz Stepping: 1 CPU MHz: 1200.439 CPU max MHz: 2900.0000 CPU min MHz: 1200.0000 BogoMIPS: 4399.92 Virtualization: VT-x L1d cache: 32K L1i cache: 32K L2 cache: 256K L3 cache: 15360K NUMA node0 CPU(s): 0-5,24-29 NUMA node1 CPU(s): 6-11,30-35 NUMA node2 CPU(s): 12-17,36-41 NUMA node3 CPU(s): 18-23,42-47 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arc h_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic m ovbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 cdp_l3 intel_ppin intel_pt ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_ adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a rdseed adx smap xsaveopt cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts spec_ctrl intel_stibp -------------------- (tf) [ye53nis@node130 drmed-git]$ nproc 12 -------------------- (tf) [ye53nis@node130 drmed-git]$ free -h total used free shared buff/cache available Mem: 125G 1.2G 78G 229M 45G 122G Swap: 11G 2.2M 11G -------------------- (tf) [ye53nis@node130 drmed-git]$ df -h Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 6.2G 44G 13% / devtmpfs 63G 0 63G 0% /dev tmpfs 63G 180M 63G 1% /dev/shm tmpfs 63G 51M 63G 1% /run tmpfs 63G 0 63G 0% /sys/fs/cgroup nfs03-ib:/pool/work 100T 78T 23T 78% /nfsdata nfs01-ib:/home 80T 62T 19T 77% /home nfs01-ib:/cluster 2.0T 435G 1.6T 22% /cluster /dev/sda6 169G 122M 169G 1% /local /dev/sda5 2.0G 35M 2.0G 2% /tmp /dev/sda3 6.0G 666M 5.4G 11% /var beegfs_nodev 524T 432T 92T 83% /beegfs -------------------- (tf) [ye53nis@node130 drmed-git]$ printenv SLURM_CHECKPOINT_IMAGE_DIR=/var/slurm/checkpoint SLURM_NODELIST=node130 CUDA_PATH=/cluster/nvidia/cuda/11.2 SLURM_JOB_NAME=bash CUDA_INC_PATH=/cluster/nvidia/cuda/11.2/include XDG_SESSION_ID=44301 SLURMD_NODENAME=node130 SLURM_TOPOLOGY_ADDR=node130 SLURM_NTASKS_PER_NODE=12 HOSTNAME=login01 SLURM_PRIO_PROCESS=0 SLURM_SRUN_COMM_PORT=37107 SHELL=/bin/bash TERM=screen MLFLOW_EXPERIMENT_NAME=exp-210807-hparams SLURM_JOB_QOS=qstand SLURM_PTY_WIN_ROW=24 HISTSIZE=1000 TMPDIR=/tmp SLURM_TOPOLOGY_ADDR_PATTERN=node SSH_CLIENT=10.231.181.128 49370 22 INCLUDEDIR=/cluster/nvidia/cuda/11.2/include CONDA_SHLVL=2 CONDA_PROMPT_MODIFIER=(tf) OLDPWD=/beegfs/ye53nis/drmed-git/data QTDIR=/usr/lib64/qt-3.3 QTINC=/usr/lib64/qt-3.3/include SSH_TTY=/dev/pts/79 NO_PROXY=localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001 QT_GRAPHICSSYSTEM_CHECKED=1 SLURM_NNODES=1 USER=ye53nis http_proxy=http://internet4nzm.rz.uni-jena.de:3128 LD_LIBRARY_PATH=/cluster/nvidia/cuda/11.2/lib64:/cluster/nvidia/cuda/11.2/nvvm/lib64:/cluster/nvidia/cudnn/8.1//lib64 LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01 ;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01 ;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01 ;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tg a=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01 ;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl =01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:* .mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36: CONDA_EXE=/cluster/miniconda3/bin/conda SLURM_STEP_NUM_NODES=1 SLURM_JOBID=1461501 SRUN_DEBUG=3 FTP_PROXY=http://internet4nzm.rz.uni-jena.de:3128 ftp_proxy=http://internet4nzm.rz.uni-jena.de:3128 SLURM_NTASKS=12 SLURM_LAUNCH_NODE_IPADDR=192.168.192.5 SLURM_STEP_ID=0 TMUX=/tmp/tmux-67339/default,20557,6 _CE_CONDA= CONDA_PREFIX_1=/cluster/miniconda3 MODCUDA=YES SLURM_STEP_LAUNCHER_PORT=37107 SLURM_TASKS_PER_NODE=12 MAIL=/var/spool/mail/ye53nis PATH=/cluster/nvidia/cuda/11.2/bin:/cluster/nvidia/cuda/11.2/nvvm:/cluster/nvidia/cuda/11.2/open64/bin:/cluster/nvidia/cuda/11.2/libnvvp:/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programm e/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/ usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin SLURM_WORKING_CLUSTER=hpc:192.168.192.1:6817:8448 SLURM_JOB_ID=1461501 LD_RUN_PATH=/cluster/nvidia/cuda/11.2/lib64 SLURM_STEP_GPUS=0 CONDA_PREFIX=/home/ye53nis/.conda/envs/tf CUDA_LIB_PATH=/cluster/nvidia/cuda/11.2/lib64 SLURM_JOB_USER=ye53nis SLURM_STEPID=0 PWD=/beegfs/ye53nis/drmed-git _LMFILES_=/cluster/modulefiles/nvidia/cuda/11.2:/cluster/modulefiles/nvidia/cudnn/8.1 CUDA_VISIBLE_DEVICES=0 SLURM_SRUN_COMM_HOST=192.168.192.5 LANG=en_US.UTF-8 SLURM_PTY_WIN_COL=80 SLURM_UMASK=0022 MODULEPATH=/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles SLURM_JOB_UID=67339 LOADEDMODULES=nvidia/cuda/11.2:nvidia/cudnn/8.1 SLURM_NODEID=0 TMUX_PANE=%6 SLURM_SUBMIT_DIR=/ SLURM_TASK_PID=11596 SLURM_NPROCS=12 SLURM_CPUS_ON_NODE=12 SLURM_DISTRIBUTION=block HTTPS_PROXY=http://internet4nzm.rz.uni-jena.de:3128 https_proxy=http://internet4nzm.rz.uni-jena.de:3128 SLURM_PROCID=0 HISTCONTROL=ignoredups _CE_M= SLURM_JOB_NODELIST=node130 SLURM_PTY_PORT=41921 HOME=/home/ye53nis SHLVL=3 SLURM_LOCALID=0 SLURM_JOB_GID=13280 SLURM_JOB_CPUS_PER_NODE=12 SLURM_CLUSTER_NAME=hpc no_proxy=localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001 SLURM_GTIDS=0,1,2,3,4,5,6,7,8,9,10,11 SLURM_SUBMIT_HOST=login01 HTTP_PROXY=http://internet4nzm.rz.uni-jena.de:3128 SLURM_JOB_PARTITION=gpu_v100 MATHEMATICA_HOME=/cluster/apps/mathematica/11.3 CONDA_PYTHON_EXE=/cluster/miniconda3/bin/python LOGNAME=ye53nis SLURM_STEP_NUM_TASKS=12 QTLIB=/usr/lib64/qt-3.3/lib GPU_DEVICE_ORDINAL=0 SLURM_JOB_ACCOUNT=iaob MLFLOW_TRACKING_URI=file:/beegfs/ye53nis/drmed-git/data/mlruns SLURM_JOB_NUM_NODES=1 MODULESHOME=/usr/share/Modules CONDA_DEFAULT_ENV=tf LESSOPEN=||/usr/bin/lesspipe.sh %s SLURM_STEP_TASKS_PER_NODE=12 SLURM_STEP_NODELIST=node130 DISPLAY=:0 XDG_RUNTIME_DIR=/run/user/67339 INCLUDE=/cluster/nvidia/cudnn/8.1//include XAUTHORITY=/home/lex/.Xauthority BASH_FUNC_module()=() { eval `/usr/bin/modulecmd bash $*` } _=/bin/printenv -------------------- (tf) [ye53nis@node130 drmed-git]$ top -bcn1 -w512 | head -n 15 top - 15:07:22 up 89 days, 23:51, 0 users, load average: 0.00, 0.01, 0.05 Tasks: 513 total, 2 running, 511 sleeping, 0 stopped, 0 zombie %Cpu(s): 0.2 us, 0.2 sy, 0.0 ni, 99.6 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st KiB Mem : 13191629+total, 82832160 free, 1227056 used, 47857076 buff/cache KiB Swap: 12582908 total, 12580604 free, 2304 used. 12863139+avail Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 9574 ye53nis 20 0 172600 2616 1668 R 11.8 0.0 0:00.03 top -bcn1 -w512 1 root 20 0 71816 7552 2584 S 0.0 0.0 38:23.65 /usr/lib/systemd/systemd --switched-root --system --deserialize 22 2 root 20 0 0 0 0 S 0.0 0.0 0:05.31 [kthreadd] 3 root 20 0 0 0 0 S 0.0 0.0 2:30.24 [ksoftirqd/0] 5 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 [kworker/0:0H] 8 root rt 0 0 0 0 S 0.0 0.0 0:43.26 [migration/0] 9 root 20 0 0 0 0 S 0.0 0.0 0:00.00 [rcu_bh] 10 root 20 0 0 0 0 R 0.0 0.0 275:37.95 [rcu_sched] (tf) [ye53nis@node130 drmed-git]$
- print conda list
conda list
(tf) [ye53nis@node130 drmed-git]$ conda list # packages in environment at /home/ye53nis/.conda/envs/tf: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 4.5 1_gnu absl-py 0.13.0 pypi_0 pypi alembic 1.4.1 pypi_0 pypi anyio 2.2.0 py39h06a4308_1 argon2-cffi 20.1.0 py39h27cfd23_1 asteval 0.9.25 pypi_0 pypi astunparse 1.6.3 pypi_0 pypi async_generator 1.10 pyhd3eb1b0_0 attrs 21.2.0 pyhd3eb1b0_0 babel 2.9.1 pyhd3eb1b0_0 backcall 0.2.0 pyhd3eb1b0_0 bleach 3.3.1 pyhd3eb1b0_0 brotlipy 0.7.0 py39h27cfd23_1003 ca-certificates 2021.7.5 h06a4308_1 cachetools 4.2.2 pypi_0 pypi certifi 2021.5.30 py39h06a4308_0 cffi 1.14.6 py39h400218f_0 chardet 4.0.0 py39h06a4308_1003 click 8.0.1 pypi_0 pypi cloudpickle 1.6.0 pypi_0 pypi cryptography 3.4.7 py39hd23ed53_0 cycler 0.10.0 pypi_0 pypi databricks-cli 0.14.3 pypi_0 pypi decorator 5.0.9 pyhd3eb1b0_0 defusedxml 0.7.1 pyhd3eb1b0_0 docker 5.0.0 pypi_0 pypi entrypoints 0.3 py39h06a4308_0 fcsfiles 2021.6.6 pypi_0 pypi flask 2.0.1 pypi_0 pypi flatbuffers 1.12 pypi_0 pypi future 0.18.2 pypi_0 pypi gast 0.4.0 pypi_0 pypi gitdb 4.0.7 pypi_0 pypi gitpython 3.1.18 pypi_0 pypi google-auth 1.34.0 pypi_0 pypi google-auth-oauthlib 0.4.5 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi greenlet 1.1.0 pypi_0 pypi grpcio 1.34.1 pypi_0 pypi gunicorn 20.1.0 pypi_0 pypi h5py 3.1.0 pypi_0 pypi idna 2.10 pyhd3eb1b0_0 importlib-metadata 3.10.0 py39h06a4308_0 importlib_metadata 3.10.0 hd3eb1b0_0 ipykernel 5.3.4 py39hb070fc8_0 ipython 7.22.0 py39hb070fc8_0 ipython_genutils 0.2.0 pyhd3eb1b0_1 itsdangerous 2.0.1 pypi_0 pypi jedi 0.17.2 py39h06a4308_1 jinja2 3.0.1 pyhd3eb1b0_0 joblib 1.0.1 pypi_0 pypi json5 0.9.6 pyhd3eb1b0_0 jsonschema 3.2.0 py_2 jupyter-packaging 0.7.12 pyhd3eb1b0_0 jupyter_client 6.1.12 pyhd3eb1b0_0 jupyter_core 4.7.1 py39h06a4308_0 jupyter_server 1.4.1 py39h06a4308_0 jupyterlab 3.0.14 pyhd3eb1b0_1 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 2.6.1 pyhd3eb1b0_0 keras-nightly 2.5.0.dev2021032900 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.1 pypi_0 pypi ld_impl_linux-64 2.35.1 h7274673_9 libffi 3.3 he6710b0_2 libgcc-ng 9.3.0 h5101ec6_17 libgomp 9.3.0 h5101ec6_17 libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.3.0 hd4cf53a_17 lmfit 1.0.2 pypi_0 pypi mako 1.1.4 pypi_0 pypi markdown 3.3.4 pypi_0 pypi markupsafe 2.0.1 py39h27cfd23_0 matplotlib 3.4.2 pypi_0 pypi mistune 0.8.4 py39h27cfd23_1000 mlflow 1.19.0 pypi_0 pypi multipletau 0.3.3 pypi_0 pypi nbclassic 0.2.6 pyhd3eb1b0_0 nbclient 0.5.3 pyhd3eb1b0_0 nbconvert 6.1.0 py39h06a4308_0 nbformat 5.1.3 pyhd3eb1b0_0 ncurses 6.2 he6710b0_1 nest-asyncio 1.5.1 pyhd3eb1b0_0 notebook 6.4.0 py39h06a4308_0 numpy 1.19.5 pypi_0 pypi oauthlib 3.1.1 pypi_0 pypi openssl 1.1.1k h27cfd23_0 opt-einsum 3.3.0 pypi_0 pypi packaging 21.0 pyhd3eb1b0_0 pandas 1.3.1 pypi_0 pypi pandocfilters 1.4.3 py39h06a4308_1 parso 0.7.0 py_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 8.3.1 pypi_0 pypi pip 21.1.3 py39h06a4308_0 prometheus-flask-exporter 0.18.2 pypi_0 pypi prometheus_client 0.11.0 pyhd3eb1b0_0 prompt-toolkit 3.0.17 pyh06a4308_0 protobuf 3.17.3 pypi_0 pypi ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.20 py_2 pygments 2.9.0 pyhd3eb1b0_0 pyopenssl 20.0.1 pyhd3eb1b0_1 pyparsing 2.4.7 pyhd3eb1b0_0 pyrsistent 0.18.0 py39h7f8727e_0 pysocks 1.7.1 py39h06a4308_0 python 3.9.5 h12debd9_4 python-dateutil 2.8.2 pyhd3eb1b0_0 python-editor 1.0.4 pypi_0 pypi pytz 2021.1 pyhd3eb1b0_0 pyyaml 5.4.1 pypi_0 pypi pyzmq 20.0.0 py39h2531618_1 querystring-parser 1.2.4 pypi_0 pypi readline 8.1 h27cfd23_0 requests 2.25.1 pyhd3eb1b0_0 requests-oauthlib 1.3.0 pypi_0 pypi rsa 4.7.2 pypi_0 pypi scikit-learn 0.24.2 pypi_0 pypi scipy 1.7.0 pypi_0 pypi seaborn 0.11.1 pypi_0 pypi send2trash 1.5.0 pyhd3eb1b0_1 setuptools 52.0.0 py39h06a4308_0 six 1.15.0 pypi_0 pypi smmap 4.0.0 pypi_0 pypi sniffio 1.2.0 py39h06a4308_1 sqlalchemy 1.4.22 pypi_0 pypi sqlite 3.36.0 hc218d9a_0 sqlparse 0.4.1 pypi_0 pypi tabulate 0.8.9 pypi_0 pypi tensorboard 2.5.0 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.0 pypi_0 pypi tensorflow 2.5.0 pypi_0 pypi tensorflow-estimator 2.5.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.4 py39h06a4308_0 testpath 0.5.0 pyhd3eb1b0_0 threadpoolctl 2.2.0 pypi_0 pypi tifffile 2021.7.30 pypi_0 pypi tk 8.6.10 hbc83047_0 tornado 6.1 py39h27cfd23_0 traitlets 5.0.5 pyhd3eb1b0_0 typing-extensions 3.7.4.3 pypi_0 pypi tzdata 2021a h52ac0ba_0 uncertainties 3.1.6 pypi_0 pypi urllib3 1.26.6 pyhd3eb1b0_1 wcwidth 0.2.5 py_0 webencodings 0.5.1 py39h06a4308_1 websocket-client 1.1.0 pypi_0 pypi werkzeug 2.0.1 pypi_0 pypi wheel 0.36.2 pyhd3eb1b0_0 wrapt 1.12.1 pypi_0 pypi xz 5.2.5 h7b6447c_0 zeromq 4.3.4 h2531618_0 zipp 3.5.0 pyhd3eb1b0_0 zlib 1.2.11 h7b6447c_3 (tf) [ye53nis@node130 drmed-git]$
- Show tree of input files used. I made a design choice in simulating
these files, which I now regret: I simulated 10 files for each speed of
molecules (0.069, 0.08, 0.1, …), but I randomly chose the clusters.
In hindsight, the cluster speed creates vastly different artifact
shapes, which may have implications for the training. Thats why I
manually created different splits of train and val data.
tree ../saves/firstartifact_Nov2020_train_max3sets echo -------------------- tree ../saves/firstartifact_Nov2020_val_max3sets echo -------------------- tree ../saves/firstartifact_Nov2020_train_max2sets echo -------------------- tree ../saves/firstartifact_Nov2020_val_max2sets_SORTEDIN echo -------------------- tree ../saves/firstartifact_Nov2020_train_max1set echo -------------------- tree ../saves/firstartifact_Nov2020_test
../saves/firstartifact_Nov2020_train_max3sets ├── 0.069 │ ├── 0.01 │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.069_set002.csv │ │ ├── traces_brightclust_Nov2020_D0.069_set003.csv │ │ └── traces_brightclust_Nov2020_D0.069_set006.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.069_set009.csv ├── 0.08 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.08_set007.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.08_set002.csv │ │ ├── traces_brightclust_Nov2020_D0.08_set006.csv │ │ └── traces_brightclust_Nov2020_D0.08_set008.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D0.08_set004.csv │ └── traces_brightclust_Nov2020_D0.08_set009.csv ├── 0.1 │ ├── 0.01 │ │ ├── traces_brightclust_Nov2020_D0.1_set004.csv │ │ ├── traces_brightclust_Nov2020_D0.1_set006.csv │ │ └── traces_brightclust_Nov2020_D0.1_set008.csv │ ├── 0.1 │ └── 1.0 │ ├── traces_brightclust_Nov2020_D0.1_set003.csv │ └── traces_brightclust_Nov2020_D0.1_set007.csv ├── 0.2 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.2_set003.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.2_set001.csv │ │ ├── traces_brightclust_Nov2020_D0.2_set004.csv │ │ └── traces_brightclust_Nov2020_D0.2_set006.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D0.2_set009.csv │ └── traces_brightclust_Nov2020_D0.2_set010.csv ├── 0.4 │ ├── 0.01 │ │ ├── traces_brightclust_Nov2020_D0.4_set004.csv │ │ └── traces_brightclust_Nov2020_D0.4_set010.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.4_set002.csv │ │ ├── traces_brightclust_Nov2020_D0.4_set003.csv │ │ └── traces_brightclust_Nov2020_D0.4_set009.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D0.4_set006.csv │ └── traces_brightclust_Nov2020_D0.4_set007.csv ├── 0.6 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.6_set010.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.6_set004.csv │ │ ├── traces_brightclust_Nov2020_D0.6_set005.csv │ │ └── traces_brightclust_Nov2020_D0.6_set006.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D0.6_set001.csv │ └── traces_brightclust_Nov2020_D0.6_set002.csv ├── 10 │ ├── 0.01 │ │ ├── traces_brightclust_Nov2020_D10_set003.csv │ │ ├── traces_brightclust_Nov2020_D10_set004.csv │ │ └── traces_brightclust_Nov2020_D10_set008.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D10_set006.csv │ │ └── traces_brightclust_Nov2020_D10_set007.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D10_set010.csv ├── 1.0 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D1.0_set010.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D1.0_set004.csv │ │ ├── traces_brightclust_Nov2020_D1.0_set007.csv │ │ └── traces_brightclust_Nov2020_D1.0_set009.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D1.0_set001.csv │ ├── traces_brightclust_Nov2020_D1.0_set002.csv │ └── traces_brightclust_Nov2020_D1.0_set008.csv ├── 3.0 │ ├── 0.01 │ │ ├── traces_brightclust_Nov2020_D3.0_set005.csv │ │ ├── traces_brightclust_Nov2020_D3.0_set006.csv │ │ └── traces_brightclust_Nov2020_D3.0_set008.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D3.0_set010.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D3.0_set001.csv │ ├── traces_brightclust_Nov2020_D3.0_set003.csv │ └── traces_brightclust_Nov2020_D3.0_set009.csv └── 50 ├── 0.01 │ └── traces_brightclust_Nov2020_D50_set006.csv ├── 0.1 │ ├── traces_brightclust_Nov2020_D50_set009.csv │ └── traces_brightclust_Nov2020_D50_set010.csv └── 1.0 ├── traces_brightclust_Nov2020_D50_set004.csv ├── traces_brightclust_Nov2020_D50_set005.csv └── traces_brightclust_Nov2020_D50_set007.csv 40 directories, 60 files -------------------- ../saves/firstartifact_Nov2020_val_max3sets ├── 0.069 │ ├── 0.01 │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.069_set007.csv │ │ └── traces_brightclust_Nov2020_D0.069_set008.csv │ └── 1.0 ├── 0.08 │ ├── 0.01 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.08_set010.csv │ └── 1.0 ├── 0.1 │ ├── 0.01 │ │ ├── traces_brightclust_Nov2020_D0.1_set009.csv │ │ └── traces_brightclust_Nov2020_D0.1_set010.csv │ ├── 0.1 │ └── 1.0 ├── 0.2 │ ├── 0.01 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.2_set008.csv │ └── 1.0 ├── 0.4 │ ├── 0.01 │ ├── 0.1 │ └── 1.0 ├── 0.6 │ ├── 0.01 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.6_set007.csv │ └── 1.0 ├── 10 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D10_set009.csv │ ├── 0.1 │ └── 1.0 ├── 1.0 │ ├── 0.01 │ ├── 0.1 │ └── 1.0 ├── 3.0 │ ├── 0.01 │ ├── 0.1 │ └── 1.0 └── 50 ├── 0.01 ├── 0.1 └── 1.0 └── traces_brightclust_Nov2020_D50_set008.csv 40 directories, 9 files -------------------- ../saves/firstartifact_Nov2020_train_max2sets ├── 0.069 │ ├── 0.01 │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.069_set002.csv │ │ └── traces_brightclust_Nov2020_D0.069_set003.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.069_set009.csv ├── 0.08 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.08_set007.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.08_set002.csv │ │ └── traces_brightclust_Nov2020_D0.08_set006.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D0.08_set004.csv │ └── traces_brightclust_Nov2020_D0.08_set009.csv ├── 0.1 │ ├── 0.01 │ │ ├── traces_brightclust_Nov2020_D0.1_set004.csv │ │ └── traces_brightclust_Nov2020_D0.1_set006.csv │ ├── 0.1 │ └── 1.0 │ ├── traces_brightclust_Nov2020_D0.1_set003.csv │ └── traces_brightclust_Nov2020_D0.1_set007.csv ├── 0.2 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.2_set003.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.2_set001.csv │ │ └── traces_brightclust_Nov2020_D0.2_set004.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D0.2_set009.csv │ └── traces_brightclust_Nov2020_D0.2_set010.csv ├── 0.4 │ ├── 0.01 │ │ ├── traces_brightclust_Nov2020_D0.4_set004.csv │ │ └── traces_brightclust_Nov2020_D0.4_set010.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.4_set002.csv │ │ └── traces_brightclust_Nov2020_D0.4_set003.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D0.4_set006.csv │ └── traces_brightclust_Nov2020_D0.4_set007.csv ├── 0.6 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.6_set010.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.6_set004.csv │ │ └── traces_brightclust_Nov2020_D0.6_set005.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D0.6_set001.csv │ └── traces_brightclust_Nov2020_D0.6_set002.csv ├── 10 │ ├── 0.01 │ │ ├── traces_brightclust_Nov2020_D10_set003.csv │ │ └── traces_brightclust_Nov2020_D10_set004.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D10_set006.csv │ │ └── traces_brightclust_Nov2020_D10_set007.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D10_set010.csv ├── 1.0 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D1.0_set010.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D1.0_set004.csv │ │ └── traces_brightclust_Nov2020_D1.0_set007.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D1.0_set001.csv │ └── traces_brightclust_Nov2020_D1.0_set002.csv ├── 3.0 │ ├── 0.01 │ │ ├── traces_brightclust_Nov2020_D3.0_set005.csv │ │ └── traces_brightclust_Nov2020_D3.0_set006.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D3.0_set010.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D3.0_set001.csv │ └── traces_brightclust_Nov2020_D3.0_set003.csv └── 50 ├── 0.01 │ └── traces_brightclust_Nov2020_D50_set006.csv ├── 0.1 │ ├── traces_brightclust_Nov2020_D50_set009.csv │ └── traces_brightclust_Nov2020_D50_set010.csv └── 1.0 ├── traces_brightclust_Nov2020_D50_set004.csv └── traces_brightclust_Nov2020_D50_set005.csv 40 directories, 48 files -------------------- ../saves/firstartifact_Nov2020_val_max2sets_SORTEDIN ├── 0.069 │ ├── 0.01 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.069_set006.csv │ └── 1.0 ├── 0.08 │ ├── 0.01 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.08_set008.csv │ └── 1.0 ├── 0.1 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.1_set008.csv │ ├── 0.1 │ └── 1.0 ├── 0.2 │ ├── 0.01 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.2_set006.csv │ └── 1.0 ├── 0.4 │ ├── 0.01 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.4_set009.csv │ └── 1.0 ├── 0.6 │ ├── 0.01 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.6_set006.csv │ └── 1.0 ├── 10 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D10_set008.csv │ ├── 0.1 │ └── 1.0 ├── 1.0 │ ├── 0.01 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D1.0_set009.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D1.0_set008.csv ├── 3.0 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D3.0_set008.csv │ ├── 0.1 │ └── 1.0 │ └── traces_brightclust_Nov2020_D3.0_set009.csv └── 50 ├── 0.01 ├── 0.1 └── 1.0 └── traces_brightclust_Nov2020_D50_set007.csv 40 directories, 12 files -------------------- ../saves/firstartifact_Nov2020_train_max1set ├── 0.069 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.069_set002.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.069_set009.csv ├── 0.08 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.08_set007.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.08_set002.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.08_set004.csv ├── 0.1 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.1_set004.csv │ ├── 0.1 │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.1_set003.csv ├── 0.2 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.2_set003.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.2_set001.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.2_set009.csv ├── 0.4 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.4_set004.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.4_set002.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.4_set006.csv ├── 0.6 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.6_set010.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.6_set004.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.6_set001.csv ├── 10 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D10_set003.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D10_set006.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D10_set010.csv ├── 1.0 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D1.0_set010.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D1.0_set004.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D1.0_set001.csv ├── 3.0 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D3.0_set005.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D3.0_set010.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D3.0_set001.csv └── 50 ├── 0.01 │ └── traces_brightclust_Nov2020_D50_set006.csv ├── 0.1 │ └── traces_brightclust_Nov2020_D50_set009.csv └── 1.0 └── traces_brightclust_Nov2020_D50_set004.csv 39 directories, 28 files -------------------- ../saves/firstartifact_Nov2020_test ├── 0.069 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.069_set005.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.069_set001.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.069_set010.csv ├── 0.08 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.08_set005.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.08_set003.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.08_set001.csv ├── 0.1 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.1_set002.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.1_set005.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.1_set001.csv ├── 0.2 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.2_set002.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.2_set007.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.2_set005.csv ├── 0.4 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.4_set008.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.4_set001.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.4_set005.csv ├── 0.6 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.6_set008.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.6_set003.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.6_set009.csv ├── 10 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D10_set002.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D10_set001.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D10_set005.csv ├── 1.0 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D1.0_set006.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D1.0_set003.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D1.0_set005.csv ├── 3.0 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D3.0_set004.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D3.0_set007.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D3.0_set002.csv └── 50 ├── 0.01 │ └── traces_brightclust_Nov2020_D50_set002.csv ├── 0.1 │ └── traces_brightclust_Nov2020_D50_set003.csv └── 1.0 └── traces_brightclust_Nov2020_D50_set001.csv 40 directories, 30 files
2.4.2.2 Mlflow run 1 (failed mid run)
- Use
firstartifact_Nov2020_train_max2sets
andfirstartifact_Nov2020_val_max2sets_SORTEDIN
to get a good equilibrium between amount of training data (max1set would maybe be not enough) and equal distribution of artifacts (max3sets might give too much weight to slow clusters with 0.1 speed, because a lot of them were simulated). Note that the #+RESULTS section was too long, that’s why not everything is printed (but logged in MLFLOW of course)mlflow run . -e search_hparams -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN -P num_session_groups=70
0000 - val_precision0.7: 0.1635 - val_recall0.7: 0.9999 - val_tp0.9: 803718.0000 - val_fp0.9: 4111163.0000 - val_tn0.9: 180.0000 - val_fn0.9: 139.0000 - val_precision0.9: 0.1635 - val_reca ll0.9: 0.9998 - val_accuracy: 0.1635 - val_auc: 0.5000 - val_f1: 0.2811 Epoch 6/20 2400/2400 [==============================] - 63s 26ms/step - loss: 0.5782 - tp0.1: 2622910.0000 - fp0.1: 2505997.0000 - tn0.1: 14176971.0000 - fn0.1: 354922.0000 - precision0.1: 0.5114 - r ecall0.1: 0.8808 - tp0.3: 2342499.0000 - fp0.3: 1169993.0000 - tn0.3: 15512975.0000 - fn0.3: 635333.0000 - precision0.3: 0.6669 - recall0.3: 0.7866 - tp0.5: 2053203.0000 - fp0.5: 564864.00 00 - tn0.5: 16118104.0000 - fn0.5: 924629.0000 - precision0.5: 0.7842 - recall0.5: 0.6895 - tp0.7: 1755923.0000 - fp0.7: 242889.0000 - tn0.7: 16440079.0000 - fn0.7: 1221909.0000 - precisio n0.7: 0.8785 - recall0.7: 0.5897 - tp0.9: 1327740.0000 - fp0.9: 66010.0000 - tn0.9: 16616958.0000 - fn0.9: 1650092.0000 - precision0.9: 0.9526 - recall0.9: 0.4459 - accuracy: 0.9242 - auc: 0.9204 - f1: 0.2631 - val_loss: 13.4848 - val_tp0.1: 750399.0000 - val_fp0.1: 3679523.0000 - val_tn0.1: 431820.0000 - val_fn0.1: 53458.0000 - val_precision0.1: 0.1694 - val_recall0.1: 0.9 335 - val_tp0.3: 743640.0000 - val_fp0.3: 3633172.0000 - val_tn0.3: 478171.0000 - val_fn0.3: 60217.0000 - val_precision0.3: 0.1699 - val_recall0.3: 0.9251 - val_tp0.5: 739322.0000 - val_fp 0.5: 3600015.0000 - val_tn0.5: 511328.0000 - val_fn0.5: 64535.0000 - val_precision0.5: 0.1704 - val_recall0.5: 0.9197 - val_tp0.7: 734726.0000 - val_fp0.7: 3563811.0000 - val_tn0.7: 547532 .0000 - val_fn0.7: 69131.0000 - val_precision0.7: 0.1709 - val_recall0.7: 0.9140 - val_tp0.9: 727004.0000 - val_fp0.9: 3500250.0000 - val_tn0.9: 611093.0000 - val_fn0.9: 76853.0000 - val_p recision0.9: 0.1720 - val_recall0.9: 0.9044 - val_accuracy: 0.2544 - val_auc: 0.5331 - val_f1: 0.2811 Epoch 7/20 2400/2400 [==============================] - 63s 26ms/step - loss: 0.5493 - tp0.1: 2634892.0000 - fp0.1: 2322719.0000 - tn0.1: 14360249.0000 - fn0.1: 342940.0000 - precision0.1: 0.5315 - r ecall0.1: 0.8848 - tp0.3: 2368274.0000 - fp0.3: 1081444.0000 - tn0.3: 15601524.0000 - fn0.3: 609558.0000 - precision0.3: 0.6865 - recall0.3: 0.7953 - tp0.5: 2112193.0000 - fp0.5: 526093.00 00 - tn0.5: 16156875.0000 - fn0.5: 865639.0000 - precision0.5: 0.8006 - recall0.5: 0.7093 - tp0.7: 1831510.0000 - fp0.7: 239952.0000 - tn0.7: 16443016.0000 - fn0.7: 1146322.0000 - precisio n0.7: 0.8842 - recall0.7: 0.6150 - tp0.9: 1405225.0000 - fp0.9: 69139.0000 - tn0.9: 16613829.0000 - fn0.9: 1572607.0000 - precision0.9: 0.9531 - recall0.9: 0.4719 - accuracy: 0.9292 - auc: 0.9254 - f1: 0.2631 - val_loss: 7.7748 - val_tp0.1: 803044.0000 - val_fp0.1: 4110345.0000 - val_tn0.1: 998.0000 - val_fn0.1: 813.0000 - val_precision0.1: 0.1634 - val_recall0.1: 0.9990 - val_tp0.3: 800982.0000 - val_fp0.3: 4110344.0000 - val_tn0.3: 999.0000 - val_fn0.3: 2875.0000 - val_precision0.3: 0.1631 - val_recall0.3: 0.9964 - val_tp0.5: 797547.0000 - val_fp0.5: 41103 41.0000 - val_tn0.5: 1002.0000 - val_fn0.5: 6310.0000 - val_precision0.5: 0.1625 - val_recall0.5: 0.9922 - val_tp0.7: 790114.0000 - val_fp0.7: 4110336.0000 - val_tn0.7: 1007.0000 - val_fn0 .7: 13743.0000 - val_precision0.7: 0.1612 - val_recall0.7: 0.9829 - val_tp0.9: 762283.0000 - val_fp0.9: 4110237.0000 - val_tn0.9: 1106.0000 - val_fn0.9: 41574.0000 - val_precision0.9: 0.15 64 - val_recall0.9: 0.9483 - val_accuracy: 0.1625 - val_auc: 0.4107 - val_f1: 0.2811 Epoch 8/20 2400/2400 [==============================] - 63s 26ms/step - loss: 0.5317 - tp0.1: 2659295.0000 - fp0.1: 2333208.0000 - tn0.1: 14349760.0000 - fn0.1: 318537.0000 - precision0.1: 0.5327 - r ecall0.1: 0.8930 - tp0.3: 2408124.0000 - fp0.3: 1118900.0000 - tn0.3: 15564068.0000 - fn0.3: 569708.0000 - precision0.3: 0.6828 - recall0.3: 0.8087 - tp0.5: 2142570.0000 - fp0.5: 537358.00 00 - tn0.5: 16145610.0000 - fn0.5: 835262.0000 - precision0.5: 0.7995 - recall0.5: 0.7195 - tp0.7: 1851259.0000 - fp0.7: 238215.0000 - tn0.7: 16444753.0000 - fn0.7: 1126573.0000 - precisio n0.7: 0.8860 - recall0.7: 0.6217 - tp0.9: 1401657.0000 - fp0.9: 63157.0000 - tn0.9: 16619811.0000 - fn0.9: 1576175.0000 - precision0.9: 0.9569 - recall0.9: 0.4707 - accuracy: 0.9302 - auc: 0.9298 - f1: 0.2631 - val_loss: 3.0251 - val_tp0.1: 49509.0000 - val_fp0.1: 176370.0000 - val_tn0.1: 3934973.0000 - val_fn0.1: 754348.0000 - val_precision0.1: 0.2192 - val_recall0.1: 0.06 16 - val_tp0.3: 41217.0000 - val_fp0.3: 153934.0000 - val_tn0.3: 3957409.0000 - val_fn0.3: 762640.0000 - val_precision0.3: 0.2112 - val_recall0.3: 0.0513 - val_tp0.5: 36870.0000 - val_fp0. 5: 140528.0000 - val_tn0.5: 3970815.0000 - val_fn0.5: 766987.0000 - val_precision0.5: 0.2078 - val_recall0.5: 0.0459 - val_tp0.7: 32949.0000 - val_fp0.7: 127605.0000 - val_tn0.7: 3983738.0 000 - val_fn0.7: 770908.0000 - val_precision0.7: 0.2052 - val_recall0.7: 0.0410 - val_tp0.9: 27690.0000 - val_fp0.9: 108151.0000 - val_tn0.9: 4003192.0000 - val_fn0.9: 776167.0000 - val_pr ecision0.9: 0.2038 - val_recall0.9: 0.0344 - val_accuracy: 0.8154 - val_auc: 0.5157 - val_f1: 0.2811 Epoch 9/20 2400/2400 [==============================] - 63s 26ms/step - loss: 0.5086 - tp0.1: 2674117.0000 - fp0.1: 2256419.0000 - tn0.1: 14426549.0000 - fn0.1: 303715.0000 - precision0.1: 0.5424 - r ecall0.1: 0.8980 - tp0.3: 2438091.0000 - fp0.3: 1100372.0000 - tn0.3: 15582596.0000 - fn0.3: 539741.0000 - precision0.3: 0.6890 - recall0.3: 0.8187 - tp0.5: 2186313.0000 - fp0.5: 529438.00 00 - tn0.5: 16153530.0000 - fn0.5: 791519.0000 - precision0.5: 0.8050 - recall0.5: 0.7342 - tp0.7: 1892609.0000 - fp0.7: 231011.0000 - tn0.7: 16451957.0000 - fn0.7: 1085223.0000 - precisio n0.7: 0.8912 - recall0.7: 0.6356 - tp0.9: 1451523.0000 - fp0.9: 61651.0000 - tn0.9: 16621317.0000 - fn0.9: 1526309.0000 - precision0.9: 0.9593 - recall0.9: 0.4874 - accuracy: 0.9328 - auc: 0.9337 - f1: 0.2631 - val_loss: 2.5628 - val_tp0.1: 369859.0000 - val_fp0.1: 118128.0000 - val_tn0.1: 3993215.0000 - val_fn0.1: 433998.0000 - val_precision0.1: 0.7579 - val_recall0.1: 0.4 601 - val_tp0.3: 356259.0000 - val_fp0.3: 94845.0000 - val_tn0.3: 4016498.0000 - val_fn0.3: 447598.0000 - val_precision0.3: 0.7897 - val_recall0.3: 0.4432 - val_tp0.5: 347560.0000 - val_fp 0.5: 82338.0000 - val_tn0.5: 4029005.0000 - val_fn0.5: 456297.0000 - val_precision0.5: 0.8085 - val_recall0.5: 0.4324 - val_tp0.7: 338552.0000 - val_fp0.7: 70840.0000 - val_tn0.7: 4040503. 0000 - val_fn0.7: 465305.0000 - val_precision0.7: 0.8270 - val_recall0.7: 0.4212 - val_tp0.9: 317996.0000 - val_fp0.9: 52787.0000 - val_tn0.9: 4058556.0000 - val_fn0.9: 485861.0000 - val_p recision0.9: 0.8576 - val_recall0.9: 0.3956 - val_accuracy: 0.8904 - val_auc: 0.7315 - val_f1: 0.2812 Epoch 10/20 2400/2400 [==============================] - 63s 26ms/step - loss: 0.4747 - tp0.1: 2701201.0000 - fp0.1: 2158402.0000 - tn0.1: 14524566.0000 - fn0.1: 276631.0000 - precision0.1: 0.5558 - r ecall0.1: 0.9071 - tp0.3: 2471097.0000 - fp0.3: 1011755.0000 - tn0.3: 15671213.0000 - fn0.3: 506735.0000 - precision0.3: 0.7095 - recall0.3: 0.8298 - tp0.5: 2234639.0000 - fp0.5: 500413.00 00 - tn0.5: 16182555.0000 - fn0.5: 743193.0000 - precision0.5: 0.8170 - recall0.5: 0.7504 - tp0.7: 1960526.0000 - fp0.7: 224293.0000 - tn0.7: 16458675.0000 - fn0.7: 1017306.0000 - precisio n0.7: 0.8973 - recall0.7: 0.6584 - tp0.9: 1515400.0000 - fp0.9: 58089.0000 - tn0.9: 16624879.0000 - fn0.9: 1462432.0000 - precision0.9: 0.9631 - recall0.9: 0.5089 - accuracy: 0.9367 - auc: 0.9403 - f1: 0.2631 - val_loss: 2.7288 - val_tp0.1: 770447.0000 - val_fp0.1: 3861936.0000 - val_tn0.1: 249407.0000 - val_fn0.1: 33410.0000 - val_precision0.1: 0.1663 - val_recall0.1: 0.95 84 - val_tp0.3: 749545.0000 - val_fp0.3: 3747496.0000 - val_tn0.3: 363847.0000 - val_fn0.3: 54312.0000 - val_precision0.3: 0.1667 - val_recall0.3: 0.9324 - val_tp0.5: 720064.0000 - val_fp0 .5: 3582604.0000 - val_tn0.5: 528739.0000 - val_fn0.5: 83793.0000 - val_precision0.5: 0.1674 - val_recall0.5: 0.8958 - val_tp0.7: 648811.0000 - val_fp0.7: 3077696.0000 - val_tn0.7: 1033647 .0000 - val_fn0.7: 155046.0000 - val_precision0.7: 0.1741 - val_recall0.7: 0.8071 - val_tp0.9: 426993.0000 - val_fp0.9: 1072419.0000 - val_tn0.9: 3038924.0000 - val_fn0.9: 376864.0000 - va l_precision0.9: 0.2848 - val_recall0.9: 0.5312 - val_accuracy: 0.2541 - val_auc: 0.6440 - val_f1: 0.2811 Epoch 11/20 2400/2400 [==============================] - 63s 26ms/step - loss: 0.4648 - tp0.1: 2705161.0000 - fp0.1: 2061104.0000 - tn0.1: 14621864.0000 - fn0.1: 272671.0000 - precision0.1: 0.5676 - r ecall0.1: 0.9084 - tp0.3: 2495871.0000 - fp0.3: 1013446.0000 - tn0.3: 15669522.0000 - fn0.3: 481961.0000 - precision0.3: 0.7112 - recall0.3: 0.8382 - tp0.5: 2264736.0000 - fp0.5: 501786.00 00 - tn0.5: 16181182.0000 - fn0.5: 713096.0000 - precision0.5: 0.8186 - recall0.5: 0.7605 - tp0.7: 1995279.0000 - fp0.7: 225179.0000 - tn0.7: 16457789.0000 - fn0.7: 982553.0000 - precision 0.7: 0.8986 - recall0.7: 0.6700 - tp0.9: 1553742.0000 - fp0.9: 58202.0000 - tn0.9: 16624766.0000 - fn0.9: 1424090.0000 - precision0.9: 0.9639 - recall0.9: 0.5218 - accuracy: 0.9382 - auc: 0.9416 - f1: 0.2631 - val_loss: 2.5613 - val_tp0.1: 412390.0000 - val_fp0.1: 2079926.0000 - val_tn0.1: 2031417.0000 - val_fn0.1: 391467.0000 - val_precision0.1: 0.1655 - val_recall0.1: 0.5 130 - val_tp0.3: 404704.0000 - val_fp0.3: 2059044.0000 - val_tn0.3: 2052299.0000 - val_fn0.3: 399153.0000 - val_precision0.3: 0.1643 - val_recall0.3: 0.5035 - val_tp0.5: 396367.0000 - val_ fp0.5: 2012051.0000 - val_tn0.5: 2099292.0000 - val_fn0.5: 407490.0000 - val_precision0.5: 0.1646 - val_recall0.5: 0.4931 - val_tp0.7: 362322.0000 - val_fp0.7: 1698034.0000 - val_tn0.7: 24 13309.0000 - val_fn0.7: 441535.0000 - val_precision0.7: 0.1759 - val_recall0.7: 0.4507 - val_tp0.9: 186125.0000 - val_fp0.9: 532408.0000 - val_tn0.9: 3578935.0000 - val_fn0.9: 617732.0000 - val_precision0.9: 0.2590 - val_recall0.9: 0.2315 - val_accuracy: 0.5077 - val_auc: 0.5355 - val_f1: 0.2811 Epoch 12/20 2400/2400 [==============================] - 64s 26ms/step - loss: 0.4441 - tp0.1: 2719890.0000 - fp0.1: 2017765.0000 - tn0.1: 14665203.0000 - fn0.1: 257942.0000 - precision0.1: 0.5741 - r ecall0.1: 0.9134 - tp0.3: 2513777.0000 - fp0.3: 998230.0000 - tn0.3: 15684738.0000 - fn0.3: 464055.0000 - precision0.3: 0.7158 - recall0.3: 0.8442 - tp0.5: 2283999.0000 - fp0.5: 506817.000 0 - tn0.5: 16176151.0000 - fn0.5: 693833.0000 - precision0.5: 0.8184 - recall0.5: 0.7670 - tp0.7: 2013621.0000 - fp0.7: 228901.0000 - tn0.7: 16454067.0000 - fn0.7: 964211.0000 - precision0 .7: 0.8979 - recall0.7: 0.6762 - tp0.9: 1553339.0000 - fp0.9: 58704.0000 - tn0.9: 16624264.0000 - fn0.9: 1424493.0000 - precision0.9: 0.9636 - recall0.9: 0.5216 - accuracy: 0.9389 - auc: 0 .9450 - f1: 0.2631 - val_loss: 7.1302 - val_tp0.1: 605571.0000 - val_fp0.1: 2024528.0000 - val_tn0.1: 2086815.0000 - val_fn0.1: 198286.0000 - val_precision0.1: 0.2302 - val_recall0.1: 0.75 33 - val_tp0.3: 600395.0000 - val_fp0.3: 1954684.0000 - val_tn0.3: 2156659.0000 - val_fn0.3: 203462.0000 - val_precision0.3: 0.2350 - val_recall0.3: 0.7469 - val_tp0.5: 597139.0000 - val_f p0.5: 1912183.0000 - val_tn0.5: 2199160.0000 - val_fn0.5: 206718.0000 - val_precision0.5: 0.2380 - val_recall0.5: 0.7428 - val_tp0.7: 594024.0000 - val_fp0.7: 1870774.0000 - val_tn0.7: 224 0569.0000 - val_fn0.7: 209833.0000 - val_precision0.7: 0.2410 - val_recall0.7: 0.7390 - val_tp0.9: 589086.0000 - val_fp0.9: 1806611.0000 - val_tn0.9: 2304732.0000 - val_fn0.9: 214771.0000 - val_precision0.9: 0.2459 - val_recall0.9: 0.7328 - val_accuracy: 0.5689 - val_auc: 0.6516 - val_f1: 0.2811 Epoch 13/20 2400/2400 [==============================] - 63s 26ms/step - loss: 0.4185 - tp0.1: 2737060.0000 - fp0.1: 1927283.0000 - tn0.1: 14755685.0000 - fn0.1: 240772.0000 - precision0.1: 0.5868 - r ecall0.1: 0.9191 - tp0.3: 2543087.0000 - fp0.3: 952973.0000 - tn0.3: 15729995.0000 - fn0.3: 434745.0000 - precision0.3: 0.7274 - recall0.3: 0.8540 - tp0.5: 2330175.0000 - fp0.5: 482868.000 0 - tn0.5: 16200100.0000 - fn0.5: 647657.0000 - precision0.5: 0.8283 - recall0.5: 0.7825 - tp0.7: 2076869.0000 - fp0.7: 221622.0000 - tn0.7: 16461346.0000 - fn0.7: 900963.0000 - precision0 .7: 0.9036 - recall0.7: 0.6974 - tp0.9: 1634082.0000 - fp0.9: 57693.0000 - tn0.9: 16625275.0000 - fn0.9: 1343750.0000 - precision0.9: 0.9659 - recall0.9: 0.5487 - accuracy: 0.9425 - auc: 0 .9493 - f1: 0.2631 - val_loss: 1.8139 - val_tp0.1: 239760.0000 - val_fp0.1: 4548.0000 - val_tn0.1: 4106795.0000 - val_fn0.1: 564097.0000 - val_precision0.1: 0.9814 - val_recall0.1: 0.2983 - val_tp0.3: 233628.0000 - val_fp0.3: 3848.0000 - val_tn0.3: 4107495.0000 - val_fn0.3: 570229.0000 - val_precision0.3: 0.9838 - val_recall0.3: 0.2906 - val_tp0.5: 227509.0000 - val_fp0.5: 3252.0000 - val_tn0.5: 4108091.0000 - val_fn0.5: 576348.0000 - val_precision0.5: 0.9859 - val_recall0.5: 0.2830 - val_tp0.7: 217711.0000 - val_fp0.7: 2455.0000 - val_tn0.7: 4108888.0000 - val_fn0.7: 586146.0000 - val_precision0.7: 0.9888 - val_recall0.7: 0.2708 - val_tp0.9: 195925.0000 - val_fp0.9: 1407.0000 - val_tn0.9: 4109936.0000 - val_fn0.9: 607932.0000 - val_precision 0.9: 0.9929 - val_recall0.9: 0.2437 - val_accuracy: 0.8821 - val_auc: 0.6547 - val_f1: 0.2811 Epoch 14/20 2400/2400 [==============================] - 63s 26ms/step - loss: 0.4189 - tp0.1: 2744214.0000 - fp0.1: 1995913.0000 - tn0.1: 14687055.0000 - fn0.1: 233618.0000 - precision0.1: 0.5789 - r ecall0.1: 0.9215 - tp0.3: 2544539.0000 - fp0.3: 941608.0000 - tn0.3: 15741360.0000 - fn0.3: 433293.0000 - precision0.3: 0.7299 - recall0.3: 0.8545 - tp0.5: 2330855.0000 - fp0.5: 475880.000 0 - tn0.5: 16207088.0000 - fn0.5: 646977.0000 - precision0.5: 0.8305 - recall0.5: 0.7827 - tp0.7: 2079586.0000 - fp0.7: 222500.0000 - tn0.7: 16460468.0000 - fn0.7: 898246.0000 - precision0 .7: 0.9033 - recall0.7: 0.6984 - tp0.9: 1628422.0000 - fp0.9: 55899.0000 - tn0.9: 16627069.0000 - fn0.9: 1349410.0000 - precision0.9: 0.9668 - recall0.9: 0.5468 - accuracy: 0.9429 - auc: 0 .9503 - f1: 0.2631 - val_loss: 1.6218 - val_tp0.1: 510355.0000 - val_fp0.1: 1689260.0000 - val_tn0.1: 2422083.0000 - val_fn0.1: 293502.0000 - val_precision0.1: 0.2320 - val_recall0.1: 0.63 49 - val_tp0.3: 421290.0000 - val_fp0.3: 1170939.0000 - val_tn0.3: 2940404.0000 - val_fn0.3: 382567.0000 - val_precision0.3: 0.2646 - val_recall0.3: 0.5241 - val_tp0.5: 358225.0000 - val_f p0.5: 571750.0000 - val_tn0.5: 3539593.0000 - val_fn0.5: 445632.0000 - val_precision0.5: 0.3852 - val_recall0.5: 0.4456 - val_tp0.7: 323677.0000 - val_fp0.7: 214942.0000 - val_tn0.7: 38964 01.0000 - val_fn0.7: 480180.0000 - val_precision0.7: 0.6009 - val_recall0.7: 0.4027 - val_tp0.9: 290885.0000 - val_fp0.9: 143266.0000 - val_tn0.9: 3968077.0000 - val_fn0.9: 512972.0000 - v al_precision0.9: 0.6700 - val_recall0.9: 0.3619 - val_accuracy: 0.7930 - val_auc: 0.6785 - val_f1: 0.2811 Epoch 15/20 2400/2400 [==============================] - 63s 26ms/step - loss: 0.4039 - tp0.1: 2751584.0000 - fp0.1: 1904870.0000 - tn0.1: 14778098.0000 - fn0.1: 226248.0000 - precision0.1: 0.5909 - r ecall0.1: 0.9240 - tp0.3: 2559610.0000 - fp0.3: 920199.0000 - tn0.3: 15762769.0000 - fn0.3: 418222.0000 - precision0.3: 0.7356 - recall0.3: 0.8596 - tp0.5: 2358628.0000 - fp0.5: 480866.000 0 - tn0.5: 16202102.0000 - fn0.5: 619204.0000 - precision0.5: 0.8307 - recall0.5: 0.7921 - tp0.7: 2108242.0000 - fp0.7: 222942.0000 - tn0.7: 16460026.0000 - fn0.7: 869590.0000 - precision0 .7: 0.9044 - recall0.7: 0.7080 - tp0.9: 1658131.0000 - fp0.9: 56354.0000 - tn0.9: 16626614.0000 - fn0.9: 1319701.0000 - precision0.9: 0.9671 - recall0.9: 0.5568 - accuracy: 0.9440 - auc: 0 .9516 - f1: 0.2631 - val_loss: 1.4853 - val_tp0.1: 516528.0000 - val_fp0.1: 1043680.0000 - val_tn0.1: 3067663.0000 - val_fn0.1: 287329.0000 - val_precision0.1: 0.3311 - val_recall0.1: 0.64 26 - val_tp0.3: 418011.0000 - val_fp0.3: 456854.0000 - val_tn0.3: 3654489.0000 - val_fn0.3: 385846.0000 - val_precision0.3: 0.4778 - val_recall0.3: 0.5200 - val_tp0.5: 350573.0000 - val_fp 0.5: 253208.0000 - val_tn0.5: 3858135.0000 - val_fn0.5: 453284.0000 - val_precision0.5: 0.5806 - val_recall0.5: 0.4361 - val_tp0.7: 302626.0000 - val_fp0.7: 145263.0000 - val_tn0.7: 396608 0.0000 - val_fn0.7: 501231.0000 - val_precision0.7: 0.6757 - val_recall0.7: 0.3765 - val_tp0.9: 245404.0000 - val_fp0.9: 47550.0000 - val_tn0.9: 4063793.0000 - val_fn0.9: 558453.0000 - val _precision0.9: 0.8377 - val_recall0.9: 0.3053 - val_accuracy: 0.8563 - val_auc: 0.7430 - val_f1: 0.2811 Epoch 16/20 2400/2400 [==============================] - 63s 26ms/step - loss: 0.3733 - tp0.1: 2769563.0000 - fp0.1: 1728895.0000 - tn0.1: 14954073.0000 - fn0.1: 208269.0000 - precision0.1: 0.6157 - r ecall0.1: 0.9301 - tp0.3: 2599312.0000 - fp0.3: 855827.0000 - tn0.3: 15827141.0000 - fn0.3: 378520.0000 - precision0.3: 0.7523 - recall0.3: 0.8729 - tp0.5: 2413813.0000 - fp0.5: 450780.000 0 - tn0.5: 16232188.0000 - fn0.5: 564019.0000 - precision0.5: 0.8426 - recall0.5: 0.8106 - tp0.7: 2181800.0000 - fp0.7: 210158.0000 - tn0.7: 16472810.0000 - fn0.7: 796032.0000 - precision0 .7: 0.9121 - recall0.7: 0.7327 - tp0.9: 1723463.0000 - fp0.9: 51642.0000 - tn0.9: 16631326.0000 - fn0.9: 1254369.0000 - precision0.9: 0.9709 - recall0.9: 0.5788 - accuracy: 0.9484 - auc: 0 .9564 - f1: 0.2631 - val_loss: 9.3258 - val_tp0.1: 803646.0000 - val_fp0.1: 4110058.0000 - val_tn0.1: 1285.0000 - val_fn0.1: 211.0000 - val_precision0.1: 0.1636 - val_recall0.1: 0.9997 - v al_tp0.3: 803193.0000 - val_fp0.3: 4106394.0000 - val_tn0.3: 4949.0000 - val_fn0.3: 664.0000 - val_precision0.3: 0.1636 - val_recall0.3: 0.9992 - val_tp0.5: 802499.0000 - val_fp0.5: 410051 0.0000 - val_tn0.5: 10833.0000 - val_fn0.5: 1358.0000 - val_precision0.5: 0.1637 - val_recall0.5: 0.9983 - val_tp0.7: 800907.0000 - val_fp0.7: 4088834.0000 - val_tn0.7: 22509.0000 - val_fn 0.7: 2950.0000 - val_precision0.7: 0.1638 - val_recall0.7: 0.9963 - val_tp0.9: 794980.0000 - val_fp0.9: 4040625.0000 - val_tn0.9: 70718.0000 - val_fn0.9: 8877.0000 - val_precision0.9: 0.16 44 - val_recall0.9: 0.9890 - val_accuracy: 0.1655 - val_auc: 0.5230 - val_f1: 0.2811 Epoch 17/20 2400/2400 [==============================] - 63s 26ms/step - loss: 0.3676 - tp0.1: 2769181.0000 - fp0.1: 1659194.0000 - tn0.1: 15023774.0000 - fn0.1: 208651.0000 - precision0.1: 0.6253 - r ecall0.1: 0.9299 - tp0.3: 2610951.0000 - fp0.3: 858713.0000 - tn0.3: 15824255.0000 - fn0.3: 366881.0000 - precision0.3: 0.7525 - recall0.3: 0.8768 - tp0.5: 2429189.0000 - fp0.5: 452947.000 0 - tn0.5: 16230021.0000 - fn0.5: 548643.0000 - precision0.5: 0.8428 - recall0.5: 0.8158 - tp0.7: 2189579.0000 - fp0.7: 210955.0000 - tn0.7: 16472013.0000 - fn0.7: 788253.0000 - precision0 .7: 0.9121 - recall0.7: 0.7353 - tp0.9: 1747880.0000 - fp0.9: 50128.0000 - tn0.9: 16632840.0000 - fn0.9: 1229952.0000 - precision0.9: 0.9721 - recall0.9: 0.5870 - accuracy: 0.9491 - auc: 0 .9570 - f1: 0.2631 - val_loss: 5.5868 - val_tp0.1: 802997.0000 - val_fp0.1: 4076916.0000 - val_tn0.1: 34427.0000 - val_fn0.1: 860.0000 - val_precision0.1: 0.1646 - val_recall0.1: 0.9989 - val_tp0.3: 802425.0000 - val_fp0.3: 4060844.0000 - val_tn0.3: 50499.0000 - val_fn0.3: 1432.0000 - val_precision0.3: 0.1650 - val_recall0.3: 0.9982 - val_tp0.5: 801861.0000 - val_fp0.5: 404 2504.0000 - val_tn0.5: 68839.0000 - val_fn0.5: 1996.0000 - val_precision0.5: 0.1655 - val_recall0.5: 0.9975 - val_tp0.7: 800923.0000 - val_fp0.7: 4011295.0000 - val_tn0.7: 100048.0000 - va l_fn0.7: 2934.0000 - val_precision0.7: 0.1664 - val_recall0.7: 0.9964 - val_tp0.9: 795379.0000 - val_fp0.9: 3913030.0000 - val_tn0.9: 198313.0000 - val_fn0.9: 8478.0000 - val_precision0.9: 0.1689 - val_recall0.9: 0.9895 - val_accuracy: 0.1771 - val_auc: 0.5462 - val_f1: 0.2811 Epoch 18/20 2400/2400 [==============================] - 63s 26ms/step - loss: 0.3717 - tp0.1: 2768914.0000 - fp0.1: 1725165.0000 - tn0.1: 14957803.0000 - fn0.1: 208918.0000 - precision0.1: 0.6161 - r ecall0.1: 0.9298 - tp0.3: 2598193.0000 - fp0.3: 861638.0000 - tn0.3: 15821330.0000 - fn0.3: 379639.0000 - precision0.3: 0.7510 - recall0.3: 0.8725 - tp0.5: 2411640.0000 - fp0.5: 445576.000 0 - tn0.5: 16237392.0000 - fn0.5: 566192.0000 - precision0.5: 0.8441 - recall0.5: 0.8099 - tp0.7: 2177668.0000 - fp0.7: 207154.0000 - tn0.7: 16475814.0000 - fn0.7: 800164.0000 - precision0 .7: 0.9131 - recall0.7: 0.7313 - tp0.9: 1736637.0000 - fp0.9: 49527.0000 - tn0.9: 16633441.0000 - fn0.9: 1241195.0000 - precision0.9: 0.9723 - recall0.9: 0.5832 - accuracy: 0.9485 - auc: 0 .9563 - f1: 0.2631 - val_loss: 1.5014 - val_tp0.1: 559528.0000 - val_fp0.1: 1842714.0000 - val_tn0.1: 2268629.0000 - val_fn0.1: 244329.0000 - val_precision0.1: 0.2329 - val_recall0.1: 0.69 61 - val_tp0.3: 502697.0000 - val_fp0.3: 1389421.0000 - val_tn0.3: 2721922.0000 - val_fn0.3: 301160.0000 - val_precision0.3: 0.2657 - val_recall0.3: 0.6254 - val_tp0.5: 413701.0000 - val_f p0.5: 665286.0000 - val_tn0.5: 3446057.0000 - val_fn0.5: 390156.0000 - val_precision0.5: 0.3834 - val_recall0.5: 0.5146 - val_tp0.7: 345100.0000 - val_fp0.7: 322127.0000 - val_tn0.7: 37892 16.0000 - val_fn0.7: 458757.0000 - val_precision0.7: 0.5172 - val_recall0.7: 0.4293 - val_tp0.9: 274540.0000 - val_fp0.9: 106793.0000 - val_tn0.9: 4004550.0000 - val_fn0.9: 529317.0000 - v al_precision0.9: 0.7199 - val_recall0.9: 0.3415 - val_accuracy: 0.7853 - val_auc: 0.7127 - val_f1: 0.2811 Epoch 19/20 2400/2400 [==============================] - 63s 26ms/step - loss: 0.3547 - tp0.1: 2782451.0000 - fp0.1: 1665578.0000 - tn0.1: 15017390.0000 - fn0.1: 195381.0000 - precision0.1: 0.6255 - r ecall0.1: 0.9344 - tp0.3: 2619177.0000 - fp0.3: 850031.0000 - tn0.3: 15832937.0000 - fn0.3: 358655.0000 - precision0.3: 0.7550 - recall0.3: 0.8796 - tp0.5: 2432227.0000 - fp0.5: 440386.000 0 - tn0.5: 16242582.0000 - fn0.5: 545605.0000 - precision0.5: 0.8467 - recall0.5: 0.8168 - tp0.7: 2203211.0000 - fp0.7: 207630.0000 - tn0.7: 16475338.0000 - fn0.7: 774621.0000 - precision0 .7: 0.9139 - recall0.7: 0.7399 - tp0.9: 1758972.0000 - fp0.9: 48353.0000 - tn0.9: 16634615.0000 - fn0.9: 1218860.0000 - precision0.9: 0.9732 - recall0.9: 0.5907 - accuracy: 0.9499 - auc: 0 .9594 - f1: 0.2631 - val_loss: 1.6122 - val_tp0.1: 364867.0000 - val_fp0.1: 80402.0000 - val_tn0.1: 4030941.0000 - val_fn0.1: 438990.0000 - val_precision0.1: 0.8194 - val_recall0.1: 0.4539 - val_tp0.3: 338563.0000 - val_fp0.3: 52446.0000 - val_tn0.3: 4058897.0000 - val_fn0.3: 465294.0000 - val_precision0.3: 0.8659 - val_recall0.3: 0.4212 - val_tp0.5: 303084.0000 - val_fp0.5 : 26254.0000 - val_tn0.5: 4085089.0000 - val_fn0.5: 500773.0000 - val_precision0.5: 0.9203 - val_recall0.5: 0.3770 - val_tp0.7: 268991.0000 - val_fp0.7: 12371.0000 - val_tn0.7: 4098972.000 0 - val_fn0.7: 534866.0000 - val_precision0.7: 0.9560 - val_recall0.7: 0.3346 - val_tp0.9: 228930.0000 - val_fp0.9: 4729.0000 - val_tn0.9: 4106614.0000 - val_fn0.9: 574927.0000 - val_preci sion0.9: 0.9798 - val_recall0.9: 0.2848 - val_accuracy: 0.8928 - val_auc: 0.7252 - val_f1: 0.2811 Epoch 20/20 2400/2400 [==============================] - 63s 26ms/step - loss: 0.3465 - tp0.1: 2789105.0000 - fp0.1: 1630391.0000 - tn0.1: 15052577.0000 - fn0.1: 188727.0000 - precision0.1: 0.6311 - r ecall0.1: 0.9366 - tp0.3: 2634590.0000 - fp0.3: 826424.0000 - tn0.3: 15856544.0000 - fn0.3: 343242.0000 - precision0.3: 0.7612 - recall0.3: 0.8847 - tp0.5: 2453024.0000 - fp0.5: 430471.000 0 - tn0.5: 16252497.0000 - fn0.5: 524808.0000 - precision0.5: 0.8507 - recall0.5: 0.8238 - tp0.7: 2228295.0000 - fp0.7: 203336.0000 - tn0.7: 16479632.0000 - fn0.7: 749537.0000 - precision0 .7: 0.9164 - recall0.7: 0.7483 - tp0.9: 1795290.0000 - fp0.9: 47888.0000 - tn0.9: 16635080.0000 - fn0.9: 1182542.0000 - precision0.9: 0.9740 - recall0.9: 0.6029 - accuracy: 0.9514 - auc: 0 .9610 - f1: 0.2631 - val_loss: 1.6856 - val_tp0.1: 306188.0000 - val_fp0.1: 33472.0000 - val_tn0.1: 4077871.0000 - val_fn0.1: 497669.0000 - val_precision0.1: 0.9015 - val_recall0.1: 0.3809 - val_tp0.3: 252310.0000 - val_fp0.3: 16537.0000 - val_tn0.3: 4094806.0000 - val_fn0.3: 551547.0000 - val_precision0.3: 0.9385 - val_recall0.3: 0.3139 - val_tp0.5: 216053.0000 - val_fp0.5 : 9308.0000 - val_tn0.5: 4102035.0000 - val_fn0.5: 587804.0000 - val_precision0.5: 0.9587 - val_recall0.5: 0.2688 - val_tp0.7: 183648.0000 - val_fp0.7: 4739.0000 - val_tn0.7: 4106604.0000 - val_fn0.7: 620209.0000 - val_precision0.7: 0.9748 - val_recall0.7: 0.2285 - val_tp0.9: 141556.0000 - val_fp0.9: 1421.0000 - val_tn0.9: 4109922.0000 - val_fn0.9: 662301.0000 - val_precisi on0.9: 0.9901 - val_recall0.9: 0.1761 - val_accuracy: 0.8785 - val_auc: 0.7019 - val_f1: 0.2811 --- Running training session 55/140 {'hp_epochs': 20, 'hp_batch_size': 10, 'hp_scaler': 'robust', 'hp_n_levels': 5, 'hp_first_filters': 16, 'hp_pool_size': 4, 'hp_input_size': 8192, 'hp_lr_start': 0.06276763366515732, 'hp_lr _power': 1.0} --- repeat #: 1 input - shape: (None, 8192, 1) output - shape: (None, 8192, 1) Epoch 1/20 480/480 [==============================] - 45s 53ms/step - loss: 0.7092 - tp0.1: 5321969.0000 - fp0.1: 6687422.0000 - tn0.1: 26697388.0000 - fn0.1: 614807.0000 - precision0.1: 0.4432 - rec all0.1: 0.8964 - tp0.3: 4646941.0000 - fp0.3: 2819314.0000 - tn0.3: 30565520.0000 - fn0.3: 1289835.0000 - precision0.3: 0.6224 - recall0.3: 0.7827 - tp0.5: 3895656.0000 - fp0.5: 1079912.00 00 - tn0.5: 32304924.0000 - fn0.5: 2041120.0000 - precision0.5: 0.7830 - recall0.5: 0.6562 - tp0.7: 3225404.0000 - fp0.7: 417241.0000 - tn0.7: 32967584.0000 - fn0.7: 2711372.0000 - precisi on0.7: 0.8855 - recall0.7: 0.5433 - tp0.9: 2363272.0000 - fp0.9: 80854.0000 - tn0.9: 33303980.0000 - fn0.9: 3573504.0000 - precision0.9: 0.9669 - recall0.9: 0.3981 - accuracy: 0.9206 - auc : 0.9209 - f1: 0.2624 - val_loss: 1.7392 - val_tp0.1: 675173.0000 - val_fp0.1: 51103.0000 - val_tn0.1: 8196692.0000 - val_fn0.1: 907432.0000 - val_precision0.1: 0.9296 - val_recall0.1: 0.4 266 - val_tp0.3: 629304.0000 - val_fp0.3: 27265.0000 - val_tn0.3: 8220530.0000 - val_fn0.3: 953301.0000 - val_precision0.3: 0.9585 - val_recall0.3: 0.3976 - val_tp0.5: 554968.0000 - val_fp 0.5: 8081.0000 - val_tn0.5: 8239714.0000 - val_fn0.5: 1027637.0000 - val_precision0.5: 0.9856 - val_recall0.5: 0.3507 - val_tp0.7: 482396.0000 - val_fp0.7: 1352.0000 - val_tn0.7: 8246443.0 000 - val_fn0.7: 1100209.0000 - val_precision0.7: 0.9972 - val_recall0.7: 0.3048 - val_tp0.9: 365703.0000 - val_fp0.9: 93.0000 - val_tn0.9: 8247702.0000 - val_fn0.9: 1216902.0000 - val_pre cision0.9: 0.9997 - val_recall0.9: 0.2311 - val_accuracy: 0.8946 - val_auc: 0.7140 - val_f1: 0.2773 Epoch 2/20 480/480 [==============================] - 21s 44ms/step - loss: 0.5057 - tp0.1: 5497302.0000 - fp0.1: 6092525.0000 - tn0.1: 27292284.0000 - fn0.1: 439474.0000 - precision0.1: 0.4743 - rec all0.1: 0.9260 - tp0.3: 4832858.0000 - fp0.3: 2368876.0000 - tn0.3: 31015944.0000 - fn0.3: 1103918.0000 - precision0.3: 0.6711 - recall0.3: 0.8141 - tp0.5: 4194498.0000 - fp0.5: 1025948.00 00 - tn0.5: 32358848.0000 - fn0.5: 1742278.0000 - precision0.5: 0.8035 - recall0.5: 0.7065 - tp0.7: 3542699.0000 - fp0.7: 455958.0000 - tn0.7: 32928884.0000 - fn0.7: 2394077.0000 - precisi on0.7: 0.8860 - recall0.7: 0.5967 - tp0.9: 2649175.0000 - fp0.9: 121325.0000 - tn0.9: 33263512.0000 - fn0.9: 3287601.0000 - precision0.9: 0.9562 - recall0.9: 0.4462 - accuracy: 0.9296 - au c: 0.9389 - f1: 0.2624 - val_loss: 1.7645 - val_tp0.1: 734127.0000 - val_fp0.1: 22185.0000 - val_tn0.1: 8225610.0000 - val_fn0.1: 848478.0000 - val_precision0.1: 0.9707 - val_recall0.1: 0. 4639 - val_tp0.3: 692477.0000 - val_fp0.3: 8041.0000 - val_tn0.3: 8239754.0000 - val_fn0.3: 890128.0000 - val_precision0.3: 0.9885 - val_recall0.3: 0.4376 - val_tp0.5: 645446.0000 - val_fp 0.5: 3920.0000 - val_tn0.5: 8243875.0000 - val_fn0.5: 937159.0000 - val_precision0.5: 0.9940 - val_recall0.5: 0.4078 - val_tp0.7: 574282.0000 - val_fp0.7: 1352.0000 - val_tn0.7: 8246443.00 00 - val_fn0.7: 1008323.0000 - val_precision0.7: 0.9977 - val_recall0.7: 0.3629 - val_tp0.9: 453034.0000 - val_fp0.9: 218.0000 - val_tn0.9: 8247577.0000 - val_fn0.9: 1129571.0000 - val_pre cision0.9: 0.9995 - val_recall0.9: 0.2863 - val_accuracy: 0.9043 - val_auc: 0.7331 - val_f1: 0.2773 Epoch 3/20 480/480 [==============================] - 21s 44ms/step - loss: 0.4505 - tp0.1: 5568258.0000 - fp0.1: 5463889.0000 - tn0.1: 27920928.0000 - fn0.1: 368518.0000 - precision0.1: 0.5047 - rec all0.1: 0.9379 - tp0.3: 4929910.0000 - fp0.3: 2020777.0000 - tn0.3: 31364036.0000 - fn0.3: 1006866.0000 - precision0.3: 0.7093 - recall0.3: 0.8304 - tp0.5: 4449095.0000 - fp0.5: 1041240.00 00 - tn0.5: 32343572.0000 - fn0.5: 1487681.0000 - precision0.5: 0.8104 - recall0.5: 0.7494 - tp0.7: 3823844.0000 - fp0.7: 479840.0000 - tn0.7: 32904986.0000 - fn0.7: 2112932.0000 - precisi on0.7: 0.8885 - recall0.7: 0.6441 - tp0.9: 2882785.0000 - fp0.9: 126351.0000 - tn0.9: 33258496.0000 - fn0.9: 3053991.0000 - precision0.9: 0.9580 - recall0.9: 0.4856 - accuracy: 0.9357 - au c: 0.9475 - f1: 0.2624 - val_loss: 0.6952 - val_tp0.1: 1307421.0000 - val_fp0.1: 509799.0000 - val_tn0.1: 7737996.0000 - val_fn0.1: 275184.0000 - val_precision0.1: 0.7195 - val_recall0.1: 0.8261 - val_tp0.3: 1160591.0000 - val_fp0.3: 197075.0000 - val_tn0.3: 8050720.0000 - val_fn0.3: 422014.0000 - val_precision0.3: 0.8548 - val_recall0.3: 0.7333 - val_tp0.5: 946439.0000 - v al_fp0.5: 19008.0000 - val_tn0.5: 8228787.0000 - val_fn0.5: 636166.0000 - val_precision0.5: 0.9803 - val_recall0.5: 0.5980 - val_tp0.7: 695971.0000 - val_fp0.7: 2696.0000 - val_tn0.7: 8245 099.0000 - val_fn0.7: 886634.0000 - val_precision0.7: 0.9961 - val_recall0.7: 0.4398 - val_tp0.9: 409103.0000 - val_fp0.9: 135.0000 - val_tn0.9: 8247660.0000 - val_fn0.9: 1173502.0000 - va l_precision0.9: 0.9997 - val_recall0.9: 0.2585 - val_accuracy: 0.9334 - val_auc: 0.9043 - val_f1: 0.2773 Epoch 4/20 480/480 [==============================] - 21s 44ms/step - loss: 0.4147 - tp0.1: 5582837.0000 - fp0.1: 4800957.0000 - tn0.1: 28583876.0000 - fn0.1: 353939.0000 - precision0.1: 0.5376 - rec all0.1: 0.9404 - tp0.3: 5025077.0000 - fp0.3: 1931724.0000 - tn0.3: 31453094.0000 - fn0.3: 911699.0000 - precision0.3: 0.7223 - recall0.3: 0.8464 - tp0.5: 4590126.0000 - fp0.5: 953938.0000 - tn0.5: 32430896.0000 - fn0.5: 1346650.0000 - precision0.5: 0.8279 - recall0.5: 0.7732 - tp0.7: 4038584.0000 - fp0.7: 465004.0000 - tn0.7: 32919816.0000 - fn0.7: 1898192.0000 - precision 0.7: 0.8967 - recall0.7: 0.6803 - tp0.9: 3025476.0000 - fp0.9: 119273.0000 - tn0.9: 33265544.0000 - fn0.9: 2911300.0000 - precision0.9: 0.9621 - recall0.9: 0.5096 - accuracy: 0.9415 - auc: 0.9527 - f1: 0.2624 - val_loss: 0.5201 - val_tp0.1: 1399126.0000 - val_fp0.1: 622073.0000 - val_tn0.1: 7625722.0000 - val_fn0.1: 183479.0000 - val_precision0.1: 0.6922 - val_recall0.1: 0. 8841 - val_tp0.3: 1113548.0000 - val_fp0.3: 36502.0000 - val_tn0.3: 8211293.0000 - val_fn0.3: 469057.0000 - val_precision0.3: 0.9683 - val_recall0.3: 0.7036 - val_tp0.5: 884202.0000 - val_ fp0.5: 4823.0000 - val_tn0.5: 8242972.0000 - val_fn0.5: 698403.0000 - val_precision0.5: 0.9946 - val_recall0.5: 0.5587 - val_tp0.7: 569297.0000 - val_fp0.7: 628.0000 - val_tn0.7: 8247167.0 000 - val_fn0.7: 1013308.0000 - val_precision0.7: 0.9989 - val_recall0.7: 0.3597 - val_tp0.9: 374108.0000 - val_fp0.9: 50.0000 - val_tn0.9: 8247745.0000 - val_fn0.9: 1208497.0000 - val_pre cision0.9: 0.9999 - val_recall0.9: 0.2364 - val_accuracy: 0.9285 - val_auc: 0.9333 - val_f1: 0.2773 Epoch 5/20 480/480 [==============================] - 21s 44ms/step - loss: 0.3754 - tp0.1: 5634883.0000 - fp0.1: 4427128.0000 - tn0.1: 28957694.0000 - fn0.1: 301893.0000 - precision0.1: 0.5600 - rec all0.1: 0.9491 - tp0.3: 5093958.0000 - fp0.3: 1784747.0000 - tn0.3: 31600080.0000 - fn0.3: 842818.0000 - precision0.3: 0.7405 - recall0.3: 0.8580 - tp0.5: 4689585.0000 - fp0.5: 889979.0000 - tn0.5: 32494848.0000 - fn0.5: 1247191.0000 - precision0.5: 0.8405 - recall0.5: 0.7899 - tp0.7: 4192223.0000 - fp0.7: 451284.0000 - tn0.7: 32933542.0000 - fn0.7: 1744553.0000 - precision 0.7: 0.9028 - recall0.7: 0.7061 - tp0.9: 3191877.0000 - fp0.9: 120760.0000 - tn0.9: 33264048.0000 - fn0.9: 2744899.0000 - precision0.9: 0.9635 - recall0.9: 0.5376 - accuracy: 0.9456 - auc: 0.9584 - f1: 0.2624 - val_loss: 0.4916 - val_tp0.1: 1492248.0000 - val_fp0.1: 1196998.0000 - val_tn0.1: 7050797.0000 - val_fn0.1: 90357.0000 - val_precision0.1: 0.5549 - val_recall0.1: 0. 9429 - val_tp0.3: 948440.0000 - val_fp0.3: 76049.0000 - val_tn0.3: 8171746.0000 - val_fn0.3: 634165.0000 - val_precision0.3: 0.9258 - val_recall0.3: 0.5993 - val_tp0.5: 790703.0000 - val_f p0.5: 18060.0000 - val_tn0.5: 8229735.0000 - val_fn0.5: 791902.0000 - val_precision0.5: 0.9777 - val_recall0.5: 0.4996 - val_tp0.7: 644735.0000 - val_fp0.7: 3337.0000 - val_tn0.7: 8244458. 0000 - val_fn0.7: 937870.0000 - val_precision0.7: 0.9949 - val_recall0.7: 0.4074 - val_tp0.9: 446636.0000 - val_fp0.9: 194.0000 - val_tn0.9: 8247601.0000 - val_fn0.9: 1135969.0000 - val_pr ecision0.9: 0.9996 - val_recall0.9: 0.2822 - val_accuracy: 0.9176 - val_auc: 0.9509 - val_f1: 0.2773 Epoch 6/20 480/480 [==============================] - 21s 44ms/step - loss: 0.3576 - tp0.1: 5650782.0000 - fp0.1: 4214930.0000 - tn0.1: 29169904.0000 - fn0.1: 285994.0000 - precision0.1: 0.5728 - rec all0.1: 0.9518 - tp0.3: 5157731.0000 - fp0.3: 1802746.0000 - tn0.3: 31582076.0000 - fn0.3: 779045.0000 - precision0.3: 0.7410 - recall0.3: 0.8688 - tp0.5: 4706560.0000 - fp0.5: 815239.0000 - tn0.5: 32569602.0000 - fn0.5: 1230216.0000 - precision0.5: 0.8524 - recall0.5: 0.7928 - tp0.7: 4257269.0000 - fp0.7: 416618.0000 - tn0.7: 32968196.0000 - fn0.7: 1679507.0000 - precision 0.7: 0.9109 - recall0.7: 0.7171 - tp0.9: 3338555.0000 - fp0.9: 117993.0000 - tn0.9: 33266826.0000 - fn0.9: 2598221.0000 - precision0.9: 0.9659 - recall0.9: 0.5624 - accuracy: 0.9480 - auc: 0.9615 - f1: 0.2624 - val_loss: 0.5022 - val_tp0.1: 1476921.0000 - val_fp0.1: 1294149.0000 - val_tn0.1: 6953646.0000 - val_fn0.1: 105684.0000 - val_precision0.1: 0.5330 - val_recall0.1: 0 .9332 - val_tp0.3: 1409625.0000 - val_fp0.3: 897663.0000 - val_tn0.3: 7350132.0000 - val_fn0.3: 172980.0000 - val_precision0.3: 0.6109 - val_recall0.3: 0.8907 - val_tp0.5: 1288431.0000 - v al_fp0.5: 516719.0000 - val_tn0.5: 7731076.0000 - val_fn0.5: 294174.0000 - val_precision0.5: 0.7138 - val_recall0.5: 0.8141 - val_tp0.7: 1184168.0000 - val_fp0.7: 362179.0000 - val_tn0.7: 7885616.0000 - val_fn0.7: 398437.0000 - val_precision0.7: 0.7658 - val_recall0.7: 0.7482 - val_tp0.9: 982390.0000 - val_fp0.9: 193676.0000 - val_tn0.9: 8054119.0000 - val_fn0.9: 600215.000 0 - val_precision0.9: 0.8353 - val_recall0.9: 0.6207 - val_accuracy: 0.9175 - val_auc: 0.9394 - val_f1: 0.2773 Epoch 7/20 480/480 [==============================] - 21s 44ms/step - loss: 0.3384 - tp0.1: 5645527.0000 - fp0.1: 3726823.0000 - tn0.1: 29657992.0000 - fn0.1: 291249.0000 - precision0.1: 0.6024 - rec all0.1: 0.9509 - tp0.3: 5236539.0000 - fp0.3: 1794315.0000 - tn0.3: 31590506.0000 - fn0.3: 700237.0000 - precision0.3: 0.7448 - recall0.3: 0.8821 - tp0.5: 4787739.0000 - fp0.5: 779171.0000 - tn0.5: 32605672.0000 - fn0.5: 1149037.0000 - precision0.5: 0.8600 - recall0.5: 0.8065 - tp0.7: 4390618.0000 - fp0.7: 404832.0000 - tn0.7: 32980006.0000 - fn0.7: 1546158.0000 - precision 0.7: 0.9156 - recall0.7: 0.7396 - tp0.9: 3468567.0000 - fp0.9: 102570.0000 - tn0.9: 33282264.0000 - fn0.9: 2468209.0000 - precision0.9: 0.9713 - recall0.9: 0.5843 - accuracy: 0.9510 - auc: 0.9638 - f1: 0.2624 - val_loss: 0.3821 - val_tp0.1: 1458280.0000 - val_fp0.1: 507037.0000 - val_tn0.1: 7740758.0000 - val_fn0.1: 124325.0000 - val_precision0.1: 0.7420 - val_recall0.1: 0. 9214 - val_tp0.3: 1138703.0000 - val_fp0.3: 109160.0000 - val_tn0.3: 8138635.0000 - val_fn0.3: 443902.0000 - val_precision0.3: 0.9125 - val_recall0.3: 0.7195 - val_tp0.5: 963399.0000 - val _fp0.5: 44369.0000 - val_tn0.5: 8203426.0000 - val_fn0.5: 619206.0000 - val_precision0.5: 0.9560 - val_recall0.5: 0.6087 - val_tp0.7: 768098.0000 - val_fp0.7: 13185.0000 - val_tn0.7: 82346 10.0000 - val_fn0.7: 814507.0000 - val_precision0.7: 0.9831 - val_recall0.7: 0.4853 - val_tp0.9: 549365.0000 - val_fp0.9: 1330.0000 - val_tn0.9: 8246465.0000 - val_fn0.9: 1033240.0000 - va l_precision0.9: 0.9976 - val_recall0.9: 0.3471 - val_accuracy: 0.9325 - val_auc: 0.9604 - val_f1: 0.2773 Epoch 8/20 480/480 [==============================] - 21s 44ms/step - loss: 0.3065 - tp0.1: 5676575.0000 - fp0.1: 3449099.0000 - tn0.1: 29935738.0000 - fn0.1: 260201.0000 - precision0.1: 0.6220 - rec all0.1: 0.9562 - tp0.3: 5325689.0000 - fp0.3: 1652021.0000 - tn0.3: 31732808.0000 - fn0.3: 611087.0000 - precision0.3: 0.7632 - recall0.3: 0.8971 - tp0.5: 4859260.0000 - fp0.5: 655135.0000 - tn0.5: 32729690.0000 - fn0.5: 1077516.0000 - precision0.5: 0.8812 - recall0.5: 0.8185 - tp0.7: 4528001.0000 - fp0.7: 355303.0000 - tn0.7: 33029518.0000 - fn0.7: 1408775.0000 - precision 0.7: 0.9272 - recall0.7: 0.7627 - tp0.9: 3797501.0000 - fp0.9: 104696.0000 - tn0.9: 33280128.0000 - fn0.9: 2139275.0000 - precision0.9: 0.9732 - recall0.9: 0.6397 - accuracy: 0.9559 - auc: 0.9683 - f1: 0.2624 - val_loss: 0.4780 - val_tp0.1: 1324114.0000 - val_fp0.1: 275210.0000 - val_tn0.1: 7972585.0000 - val_fn0.1: 258491.0000 - val_precision0.1: 0.8279 - val_recall0.1: 0. 8367 - val_tp0.3: 1141828.0000 - val_fp0.3: 54316.0000 - val_tn0.3: 8193479.0000 - val_fn0.3: 440777.0000 - val_precision0.3: 0.9546 - val_recall0.3: 0.7215 - val_tp0.5: 1048254.0000 - val _fp0.5: 27301.0000 - val_tn0.5: 8220494.0000 - val_fn0.5: 534351.0000 - val_precision0.5: 0.9746 - val_recall0.5: 0.6624 - val_tp0.7: 938136.0000 - val_fp0.7: 13368.0000 - val_tn0.7: 82344 27.0000 - val_fn0.7: 644469.0000 - val_precision0.7: 0.9860 - val_recall0.7: 0.5928 - val_tp0.9: 734879.0000 - val_fp0.9: 3835.0000 - val_tn0.9: 8243960.0000 - val_fn0.9: 847726.0000 - val _precision0.9: 0.9948 - val_recall0.9: 0.4643 - val_accuracy: 0.9429 - val_auc: 0.9295 - val_f1: 0.2773 Epoch 9/20 480/480 [==============================] - 21s 44ms/step - loss: 0.3010 - tp0.1: 5676976.0000 - fp0.1: 3336526.0000 - tn0.1: 30048290.0000 - fn0.1: 259800.0000 - precision0.1: 0.6298 - rec all0.1: 0.9562 - tp0.3: 5326144.0000 - fp0.3: 1579793.0000 - tn0.3: 31805038.0000 - fn0.3: 610632.0000 - precision0.3: 0.7712 - recall0.3: 0.8971 - tp0.5: 4898244.0000 - fp0.5: 689875.0000 - tn0.5: 32694952.0000 - fn0.5: 1038532.0000 - precision0.5: 0.8765 - recall0.5: 0.8251 - tp0.7: 4562202.0000 - fp0.7: 365675.0000 - tn0.7: 33019140.0000 - fn0.7: 1374574.0000 - precision 0.7: 0.9258 - recall0.7: 0.7685 - tp0.9: 3784831.0000 - fp0.9: 104828.0000 - tn0.9: 33280008.0000 - fn0.9: 2151945.0000 - precision0.9: 0.9730 - recall0.9: 0.6375 - accuracy: 0.9560 - auc: 0.9694 - f1: 0.2624 - val_loss: 0.4138 - val_tp0.1: 1542379.0000 - val_fp0.1: 1309329.0000 - val_tn0.1: 6938466.0000 - val_fn0.1: 40226.0000 - val_precision0.1: 0.5409 - val_recall0.1: 0. 9746 - val_tp0.3: 1522585.0000 - val_fp0.3: 940842.0000 - val_tn0.3: 7306953.0000 - val_fn0.3: 60020.0000 - val_precision0.3: 0.6181 - val_recall0.3: 0.9621 - val_tp0.5: 1471806.0000 - val _fp0.5: 673062.0000 - val_tn0.5: 7574733.0000 - val_fn0.5: 110799.0000 - val_precision0.5: 0.6862 - val_recall0.5: 0.9300 - val_tp0.7: 1439073.0000 - val_fp0.7: 504700.0000 - val_tn0.7: 77 43095.0000 - val_fn0.7: 143532.0000 - val_precision0.7: 0.7404 - val_recall0.7: 0.9093 - val_tp0.9: 1349827.0000 - val_fp0.9: 275289.0000 - val_tn0.9: 7972506.0000 - val_fn0.9: 232778.0000 - val_precision0.9: 0.8306 - val_recall0.9: 0.8529 - val_accuracy: 0.9203 - val_auc: 0.9720 - val_f1: 0.2773 Epoch 10/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2783 - tp0.1: 5687717.0000 - fp0.1: 2979751.0000 - tn0.1: 30405060.0000 - fn0.1: 249059.0000 - precision0.1: 0.6562 - rec all0.1: 0.9580 - tp0.3: 5401647.0000 - fp0.3: 1520293.0000 - tn0.3: 31864510.0000 - fn0.3: 535129.0000 - precision0.3: 0.7804 - recall0.3: 0.9099 - tp0.5: 4984841.0000 - fp0.5: 648600.0000 - tn0.5: 32736208.0000 - fn0.5: 951935.0000 - precision0.5: 0.8849 - recall0.5: 0.8397 - tp0.7: 4668237.0000 - fp0.7: 338935.0000 - tn0.7: 33045886.0000 - fn0.7: 1268539.0000 - precision0 .7: 0.9323 - recall0.7: 0.7863 - tp0.9: 3974497.0000 - fp0.9: 95618.0000 - tn0.9: 33289212.0000 - fn0.9: 1962279.0000 - precision0.9: 0.9765 - recall0.9: 0.6695 - accuracy: 0.9593 - auc: 0 .9717 - f1: 0.2624 - val_loss: 0.3033 - val_tp0.1: 1528072.0000 - val_fp0.1: 891324.0000 - val_tn0.1: 7356471.0000 - val_fn0.1: 54533.0000 - val_precision0.1: 0.6316 - val_recall0.1: 0.965 5 - val_tp0.3: 1410892.0000 - val_fp0.3: 321988.0000 - val_tn0.3: 7925807.0000 - val_fn0.3: 171713.0000 - val_precision0.3: 0.8142 - val_recall0.3: 0.8915 - val_tp0.5: 1288259.0000 - val_f p0.5: 124605.0000 - val_tn0.5: 8123190.0000 - val_fn0.5: 294346.0000 - val_precision0.5: 0.9118 - val_recall0.5: 0.8140 - val_tp0.7: 1162405.0000 - val_fp0.7: 53667.0000 - val_tn0.7: 81941 28.0000 - val_fn0.7: 420200.0000 - val_precision0.7: 0.9559 - val_recall0.7: 0.7345 - val_tp0.9: 912340.0000 - val_fp0.9: 11304.0000 - val_tn0.9: 8236491.0000 - val_fn0.9: 670265.0000 - va l_precision0.9: 0.9878 - val_recall0.9: 0.5765 - val_accuracy: 0.9574 - val_auc: 0.9736 - val_f1: 0.2773 Epoch 11/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2692 - tp0.1: 5698307.0000 - fp0.1: 2926299.0000 - tn0.1: 30458524.0000 - fn0.1: 238469.0000 - precision0.1: 0.6607 - rec all0.1: 0.9598 - tp0.3: 5414811.0000 - fp0.3: 1480385.0000 - tn0.3: 31904448.0000 - fn0.3: 521965.0000 - precision0.3: 0.7853 - recall0.3: 0.9121 - tp0.5: 4973314.0000 - fp0.5: 587269.0000 - tn0.5: 32797544.0000 - fn0.5: 963462.0000 - precision0.5: 0.8944 - recall0.5: 0.8377 - tp0.7: 4687698.0000 - fp0.7: 318968.0000 - tn0.7: 33065868.0000 - fn0.7: 1249078.0000 - precision0 .7: 0.9363 - recall0.7: 0.7896 - tp0.9: 4069138.0000 - fp0.9: 90368.0000 - tn0.9: 33294464.0000 - fn0.9: 1867638.0000 - precision0.9: 0.9783 - recall0.9: 0.6854 - accuracy: 0.9606 - auc: 0 .9727 - f1: 0.2624 - val_loss: 0.2832 - val_tp0.1: 1495971.0000 - val_fp0.1: 516145.0000 - val_tn0.1: 7731650.0000 - val_fn0.1: 86634.0000 - val_precision0.1: 0.7435 - val_recall0.1: 0.945 3 - val_tp0.3: 1379197.0000 - val_fp0.3: 185244.0000 - val_tn0.3: 8062551.0000 - val_fn0.3: 203408.0000 - val_precision0.3: 0.8816 - val_recall0.3: 0.8715 - val_tp0.5: 1284245.0000 - val_f p0.5: 85898.0000 - val_tn0.5: 8161897.0000 - val_fn0.5: 298360.0000 - val_precision0.5: 0.9373 - val_recall0.5: 0.8115 - val_tp0.7: 1199963.0000 - val_fp0.7: 43094.0000 - val_tn0.7: 820470 1.0000 - val_fn0.7: 382642.0000 - val_precision0.7: 0.9653 - val_recall0.7: 0.7582 - val_tp0.9: 968381.0000 - val_fp0.9: 8568.0000 - val_tn0.9: 8239227.0000 - val_fn0.9: 614224.0000 - val_ precision0.9: 0.9912 - val_recall0.9: 0.6119 - val_accuracy: 0.9609 - val_auc: 0.9676 - val_f1: 0.2773 Epoch 12/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2531 - tp0.1: 5703005.0000 - fp0.1: 2614169.0000 - tn0.1: 30770672.0000 - fn0.1: 233771.0000 - precision0.1: 0.6857 - rec all0.1: 0.9606 - tp0.3: 5460500.0000 - fp0.3: 1362191.0000 - tn0.3: 32022638.0000 - fn0.3: 476276.0000 - precision0.3: 0.8003 - recall0.3: 0.9198 - tp0.5: 5066536.0000 - fp0.5: 594270.0000 - tn0.5: 32790576.0000 - fn0.5: 870240.0000 - precision0.5: 0.8950 - recall0.5: 0.8534 - tp0.7: 4782731.0000 - fp0.7: 324884.0000 - tn0.7: 33059918.0000 - fn0.7: 1154045.0000 - precision0 .7: 0.9364 - recall0.7: 0.8056 - tp0.9: 4134257.0000 - fp0.9: 91592.0000 - tn0.9: 33293228.0000 - fn0.9: 1802519.0000 - precision0.9: 0.9783 - recall0.9: 0.6964 - accuracy: 0.9628 - auc: 0 .9742 - f1: 0.2624 - val_loss: 0.2880 - val_tp0.1: 1541566.0000 - val_fp0.1: 930091.0000 - val_tn0.1: 7317704.0000 - val_fn0.1: 41039.0000 - val_precision0.1: 0.6237 - val_recall0.1: 0.974 1 - val_tp0.3: 1476199.0000 - val_fp0.3: 465005.0000 - val_tn0.3: 7782790.0000 - val_fn0.3: 106406.0000 - val_precision0.3: 0.7605 - val_recall0.3: 0.9328 - val_tp0.5: 1399471.0000 - val_f p0.5: 255679.0000 - val_tn0.5: 7992116.0000 - val_fn0.5: 183134.0000 - val_precision0.5: 0.8455 - val_recall0.5: 0.8843 - val_tp0.7: 1343272.0000 - val_fp0.7: 156828.0000 - val_tn0.7: 8090 967.0000 - val_fn0.7: 239333.0000 - val_precision0.7: 0.8955 - val_recall0.7: 0.8488 - val_tp0.9: 1199567.0000 - val_fp0.9: 59158.0000 - val_tn0.9: 8188637.0000 - val_fn0.9: 383038.0000 - val_precision0.9: 0.9530 - val_recall0.9: 0.7580 - val_accuracy: 0.9554 - val_auc: 0.9778 - val_f1: 0.2773 Epoch 13/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2610 - tp0.1: 5692281.0000 - fp0.1: 2715173.0000 - tn0.1: 30669648.0000 - fn0.1: 244495.0000 - precision0.1: 0.6771 - rec all0.1: 0.9588 - tp0.3: 5444152.0000 - fp0.3: 1405545.0000 - tn0.3: 31979284.0000 - fn0.3: 492624.0000 - precision0.3: 0.7948 - recall0.3: 0.9170 - tp0.5: 5067232.0000 - fp0.5: 645126.0000 - tn0.5: 32739708.0000 - fn0.5: 869544.0000 - precision0.5: 0.8871 - recall0.5: 0.8535 - tp0.7: 4741815.0000 - fp0.7: 326101.0000 - tn0.7: 33058726.0000 - fn0.7: 1194961.0000 - precision0 .7: 0.9357 - recall0.7: 0.7987 - tp0.9: 4095017.0000 - fp0.9: 90536.0000 - tn0.9: 33294300.0000 - fn0.9: 1841759.0000 - precision0.9: 0.9784 - recall0.9: 0.6898 - accuracy: 0.9615 - auc: 0 .9733 - f1: 0.2624 - val_loss: 0.3264 - val_tp0.1: 1552497.0000 - val_fp0.1: 1332139.0000 - val_tn0.1: 6915656.0000 - val_fn0.1: 30108.0000 - val_precision0.1: 0.5382 - val_recall0.1: 0.98 10 - val_tp0.3: 1491410.0000 - val_fp0.3: 604265.0000 - val_tn0.3: 7643530.0000 - val_fn0.3: 91195.0000 - val_precision0.3: 0.7117 - val_recall0.3: 0.9424 - val_tp0.5: 1423905.0000 - val_f p0.5: 336821.0000 - val_tn0.5: 7910974.0000 - val_fn0.5: 158700.0000 - val_precision0.5: 0.8087 - val_recall0.5: 0.8997 - val_tp0.7: 1364436.0000 - val_fp0.7: 196850.0000 - val_tn0.7: 8050 945.0000 - val_fn0.7: 218169.0000 - val_precision0.7: 0.8739 - val_recall0.7: 0.8621 - val_tp0.9: 1214453.0000 - val_fp0.9: 61872.0000 - val_tn0.9: 8185923.0000 - val_fn0.9: 368152.0000 - val_precision0.9: 0.9515 - val_recall0.9: 0.7674 - val_accuracy: 0.9496 - val_auc: 0.9794 - val_f1: 0.2773 Epoch 14/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2416 - tp0.1: 5720003.0000 - fp0.1: 2566509.0000 - tn0.1: 30818316.0000 - fn0.1: 216773.0000 - precision0.1: 0.6903 - rec all0.1: 0.9635 - tp0.3: 5480611.0000 - fp0.3: 1304768.0000 - tn0.3: 32080068.0000 - fn0.3: 456165.0000 - precision0.3: 0.8077 - recall0.3: 0.9232 - tp0.5: 5185408.0000 - fp0.5: 690719.0000 - tn0.5: 32694086.0000 - fn0.5: 751368.0000 - precision0.5: 0.8825 - recall0.5: 0.8734 - tp0.7: 4822441.0000 - fp0.7: 319155.0000 - tn0.7: 33065634.0000 - fn0.7: 1114335.0000 - precision0 .7: 0.9379 - recall0.7: 0.8123 - tp0.9: 4172445.0000 - fp0.9: 86620.0000 - tn0.9: 33298202.0000 - fn0.9: 1764331.0000 - precision0.9: 0.9797 - recall0.9: 0.7028 - accuracy: 0.9633 - auc: 0 .9762 - f1: 0.2624 - val_loss: 0.3018 - val_tp0.1: 1466734.0000 - val_fp0.1: 405231.0000 - val_tn0.1: 7842564.0000 - val_fn0.1: 115871.0000 - val_precision0.1: 0.7835 - val_recall0.1: 0.92 68 - val_tp0.3: 1381330.0000 - val_fp0.3: 201920.0000 - val_tn0.3: 8045875.0000 - val_fn0.3: 201275.0000 - val_precision0.3: 0.8725 - val_recall0.3: 0.8728 - val_tp0.5: 1281231.0000 - val_ fp0.5: 78305.0000 - val_tn0.5: 8169490.0000 - val_fn0.5: 301374.0000 - val_precision0.5: 0.9424 - val_recall0.5: 0.8096 - val_tp0.7: 1204999.0000 - val_fp0.7: 38474.0000 - val_tn0.7: 82093 21.0000 - val_fn0.7: 377606.0000 - val_precision0.7: 0.9691 - val_recall0.7: 0.7614 - val_tp0.9: 1069398.0000 - val_fp0.9: 12845.0000 - val_tn0.9: 8234950.0000 - val_fn0.9: 513207.0000 - v al_precision0.9: 0.9881 - val_recall0.9: 0.6757 - val_accuracy: 0.9614 - val_auc: 0.9591 - val_f1: 0.2773 Epoch 15/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2295 - tp0.1: 5722432.0000 - fp0.1: 2370696.0000 - tn0.1: 31014116.0000 - fn0.1: 214344.0000 - precision0.1: 0.7071 - rec all0.1: 0.9639 - tp0.3: 5503430.0000 - fp0.3: 1205741.0000 - tn0.3: 32179086.0000 - fn0.3: 433346.0000 - precision0.3: 0.8203 - recall0.3: 0.9270 - tp0.5: 5226789.0000 - fp0.5: 622292.0000 - tn0.5: 32762524.0000 - fn0.5: 709987.0000 - precision0.5: 0.8936 - recall0.5: 0.8804 - tp0.7: 4882199.0000 - fp0.7: 299113.0000 - tn0.7: 33085700.0000 - fn0.7: 1054577.0000 - precision0 .7: 0.9423 - recall0.7: 0.8224 - tp0.9: 4261326.0000 - fp0.9: 78340.0000 - tn0.9: 33306484.0000 - fn0.9: 1675450.0000 - precision0.9: 0.9819 - recall0.9: 0.7178 - accuracy: 0.9661 - auc: 0 .9771 - f1: 0.2624 - val_loss: 0.2662 - val_tp0.1: 1543285.0000 - val_fp0.1: 895817.0000 - val_tn0.1: 7351978.0000 - val_fn0.1: 39320.0000 - val_precision0.1: 0.6327 - val_recall0.1: 0.975 2 - val_tp0.3: 1493466.0000 - val_fp0.3: 427226.0000 - val_tn0.3: 7820569.0000 - val_fn0.3: 89139.0000 - val_precision0.3: 0.7776 - val_recall0.3: 0.9437 - val_tp0.5: 1429946.0000 - val_fp 0.5: 249890.0000 - val_tn0.5: 7997905.0000 - val_fn0.5: 152659.0000 - val_precision0.5: 0.8512 - val_recall0.5: 0.9035 - val_tp0.7: 1335056.0000 - val_fp0.7: 132081.0000 - val_tn0.7: 81157 14.0000 - val_fn0.7: 247549.0000 - val_precision0.7: 0.9100 - val_recall0.7: 0.8436 - val_tp0.9: 1178764.0000 - val_fp0.9: 50269.0000 - val_tn0.9: 8197526.0000 - val_fn0.9: 403841.0000 - v al_precision0.9: 0.9591 - val_recall0.9: 0.7448 - val_accuracy: 0.9591 - val_auc: 0.9796 - val_f1: 0.2773 Epoch 16/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2200 - tp0.1: 5727744.0000 - fp0.1: 2233811.0000 - tn0.1: 31151016.0000 - fn0.1: 209032.0000 - precision0.1: 0.7194 - rec all0.1: 0.9648 - tp0.3: 5535079.0000 - fp0.3: 1172465.0000 - tn0.3: 32212368.0000 - fn0.3: 401697.0000 - precision0.3: 0.8252 - recall0.3: 0.9323 - tp0.5: 5279991.0000 - fp0.5: 630115.0000 - tn0.5: 32754706.0000 - fn0.5: 656785.0000 - precision0.5: 0.8934 - recall0.5: 0.8894 - tp0.7: 4922795.0000 - fp0.7: 289713.0000 - tn0.7: 33095104.0000 - fn0.7: 1013981.0000 - precision0 .7: 0.9444 - recall0.7: 0.8292 - tp0.9: 4339994.0000 - fp0.9: 81950.0000 - tn0.9: 33302856.0000 - fn0.9: 1596782.0000 - precision0.9: 0.9815 - recall0.9: 0.7310 - accuracy: 0.9673 - auc: 0 .9780 - f1: 0.2624 - val_loss: 0.3052 - val_tp0.1: 1502027.0000 - val_fp0.1: 713668.0000 - val_tn0.1: 7534127.0000 - val_fn0.1: 80578.0000 - val_precision0.1: 0.6779 - val_recall0.1: 0.949 1 - val_tp0.3: 1373186.0000 - val_fp0.3: 249430.0000 - val_tn0.3: 7998365.0000 - val_fn0.3: 209419.0000 - val_precision0.3: 0.8463 - val_recall0.3: 0.8677 - val_tp0.5: 1287724.0000 - val_f p0.5: 120697.0000 - val_tn0.5: 8127098.0000 - val_fn0.5: 294881.0000 - val_precision0.5: 0.9143 - val_recall0.5: 0.8137 - val_tp0.7: 1203991.0000 - val_fp0.7: 63408.0000 - val_tn0.7: 81843 87.0000 - val_fn0.7: 378614.0000 - val_precision0.7: 0.9500 - val_recall0.7: 0.7608 - val_tp0.9: 994204.0000 - val_fp0.9: 14550.0000 - val_tn0.9: 8233245.0000 - val_fn0.9: 588401.0000 - va l_precision0.9: 0.9856 - val_recall0.9: 0.6282 - val_accuracy: 0.9577 - val_auc: 0.9681 - val_f1: 0.2773 Epoch 17/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2132 - tp0.1: 5740894.0000 - fp0.1: 2232275.0000 - tn0.1: 31152552.0000 - fn0.1: 195882.0000 - precision0.1: 0.7200 - rec all0.1: 0.9670 - tp0.3: 5532271.0000 - fp0.3: 1168226.0000 - tn0.3: 32216606.0000 - fn0.3: 404505.0000 - precision0.3: 0.8257 - recall0.3: 0.9319 - tp0.5: 5273881.0000 - fp0.5: 609565.0000 - tn0.5: 32775244.0000 - fn0.5: 662895.0000 - precision0.5: 0.8964 - recall0.5: 0.8883 - tp0.7: 4954897.0000 - fp0.7: 286255.0000 - tn0.7: 33098576.0000 - fn0.7: 981879.0000 - precision0. 7: 0.9454 - recall0.7: 0.8346 - tp0.9: 4392174.0000 - fp0.9: 78566.0000 - tn0.9: 33306278.0000 - fn0.9: 1544602.0000 - precision0.9: 0.9824 - recall0.9: 0.7398 - accuracy: 0.9676 - auc: 0. 9792 - f1: 0.2624 - val_loss: 0.2674 - val_tp0.1: 1542015.0000 - val_fp0.1: 886833.0000 - val_tn0.1: 7360962.0000 - val_fn0.1: 40590.0000 - val_precision0.1: 0.6349 - val_recall0.1: 0.9744 - val_tp0.3: 1513414.0000 - val_fp0.3: 533995.0000 - val_tn0.3: 7713800.0000 - val_fn0.3: 69191.0000 - val_precision0.3: 0.7392 - val_recall0.3: 0.9563 - val_tp0.5: 1469868.0000 - val_fp0 .5: 320357.0000 - val_tn0.5: 7927438.0000 - val_fn0.5: 112737.0000 - val_precision0.5: 0.8211 - val_recall0.5: 0.9288 - val_tp0.7: 1389256.0000 - val_fp0.7: 180638.0000 - val_tn0.7: 806715 7.0000 - val_fn0.7: 193349.0000 - val_precision0.7: 0.8849 - val_recall0.7: 0.8778 - val_tp0.9: 1265894.0000 - val_fp0.9: 72673.0000 - val_tn0.9: 8175122.0000 - val_fn0.9: 316711.0000 - va l_precision0.9: 0.9457 - val_recall0.9: 0.7999 - val_accuracy: 0.9559 - val_auc: 0.9797 - val_f1: 0.2773 Epoch 18/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2127 - tp0.1: 5744925.0000 - fp0.1: 2262684.0000 - tn0.1: 31122132.0000 - fn0.1: 191851.0000 - precision0.1: 0.7174 - rec all0.1: 0.9677 - tp0.3: 5540864.0000 - fp0.3: 1151165.0000 - tn0.3: 32233664.0000 - fn0.3: 395912.0000 - precision0.3: 0.8280 - recall0.3: 0.9333 - tp0.5: 5275650.0000 - fp0.5: 595986.0000 - tn0.5: 32788824.0000 - fn0.5: 661126.0000 - precision0.5: 0.8985 - recall0.5: 0.8886 - tp0.7: 4961721.0000 - fp0.7: 298376.0000 - tn0.7: 33086462.0000 - fn0.7: 975055.0000 - precision0. 7: 0.9433 - recall0.7: 0.8358 - tp0.9: 4369101.0000 - fp0.9: 83285.0000 - tn0.9: 33301528.0000 - fn0.9: 1567675.0000 - precision0.9: 0.9813 - recall0.9: 0.7359 - accuracy: 0.9680 - auc: 0. 9797 - f1: 0.2624 - val_loss: 0.2642 - val_tp0.1: 1498157.0000 - val_fp0.1: 419273.0000 - val_tn0.1: 7828522.0000 - val_fn0.1: 84448.0000 - val_precision0.1: 0.7813 - val_recall0.1: 0.9466 - val_tp0.3: 1376765.0000 - val_fp0.3: 147925.0000 - val_tn0.3: 8099870.0000 - val_fn0.3: 205840.0000 - val_precision0.3: 0.9030 - val_recall0.3: 0.8699 - val_tp0.5: 1282934.0000 - val_fp 0.5: 68148.0000 - val_tn0.5: 8179647.0000 - val_fn0.5: 299671.0000 - val_precision0.5: 0.9496 - val_recall0.5: 0.8106 - val_tp0.7: 1192758.0000 - val_fp0.7: 34480.0000 - val_tn0.7: 8213315 .0000 - val_fn0.7: 389847.0000 - val_precision0.7: 0.9719 - val_recall0.7: 0.7537 - val_tp0.9: 940508.0000 - val_fp0.9: 5969.0000 - val_tn0.9: 8241826.0000 - val_fn0.9: 642097.0000 - val_p recision0.9: 0.9937 - val_recall0.9: 0.5943 - val_accuracy: 0.9626 - val_auc: 0.9698 - val_f1: 0.2773 Epoch 19/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2024 - tp0.1: 5743078.0000 - fp0.1: 2054017.0000 - tn0.1: 31330796.0000 - fn0.1: 193698.0000 - precision0.1: 0.7366 - rec all0.1: 0.9674 - tp0.3: 5562740.0000 - fp0.3: 1087818.0000 - tn0.3: 32297020.0000 - fn0.3: 374036.0000 - precision0.3: 0.8364 - recall0.3: 0.9370 - tp0.5: 5320915.0000 - fp0.5: 581625.0000 - tn0.5: 32803212.0000 - fn0.5: 615861.0000 - precision0.5: 0.9015 - recall0.5: 0.8963 - tp0.7: 5014211.0000 - fp0.7: 278329.0000 - tn0.7: 33106496.0000 - fn0.7: 922565.0000 - precision0. 7: 0.9474 - recall0.7: 0.8446 - tp0.9: 4439455.0000 - fp0.9: 69924.0000 - tn0.9: 33314888.0000 - fn0.9: 1497321.0000 - precision0.9: 0.9845 - recall0.9: 0.7478 - accuracy: 0.9695 - auc: 0. 9800 - f1: 0.2624 - val_loss: 0.2474 - val_tp0.1: 1500397.0000 - val_fp0.1: 388201.0000 - val_tn0.1: 7859594.0000 - val_fn0.1: 82208.0000 - val_precision0.1: 0.7945 - val_recall0.1: 0.9481 - val_tp0.3: 1417832.0000 - val_fp0.3: 177501.0000 - val_tn0.3: 8070294.0000 - val_fn0.3: 164773.0000 - val_precision0.3: 0.8887 - val_recall0.3: 0.8959 - val_tp0.5: 1324841.0000 - val_fp 0.5: 83172.0000 - val_tn0.5: 8164623.0000 - val_fn0.5: 257764.0000 - val_precision0.5: 0.9409 - val_recall0.5: 0.8371 - val_tp0.7: 1241641.0000 - val_fp0.7: 44194.0000 - val_tn0.7: 8203601 .0000 - val_fn0.7: 340964.0000 - val_precision0.7: 0.9656 - val_recall0.7: 0.7846 - val_tp0.9: 1008204.0000 - val_fp0.9: 8267.0000 - val_tn0.9: 8239528.0000 - val_fn0.9: 574401.0000 - val_ precision0.9: 0.9919 - val_recall0.9: 0.6371 - val_accuracy: 0.9653 - val_auc: 0.9703 - val_f1: 0.2773 Epoch 20/20 480/480 [==============================] - 21s 44ms/step - loss: 0.1967 - tp0.1: 5751226.0000 - fp0.1: 2003963.0000 - tn0.1: 31380856.0000 - fn0.1: 185550.0000 - precision0.1: 0.7416 - rec all0.1: 0.9687 - tp0.3: 5579827.0000 - fp0.3: 1068977.0000 - tn0.3: 32315852.0000 - fn0.3: 356949.0000 - precision0.3: 0.8392 - recall0.3: 0.9399 - tp0.5: 5349645.0000 - fp0.5: 581039.0000 - tn0.5: 32803788.0000 - fn0.5: 587131.0000 - precision0.5: 0.9020 - recall0.5: 0.9011 - tp0.7: 5051728.0000 - fp0.7: 282220.0000 - tn0.7: 33102590.0000 - fn0.7: 885048.0000 - precision0. 7: 0.9471 - recall0.7: 0.8509 - tp0.9: 4482265.0000 - fp0.9: 74224.0000 - tn0.9: 33310598.0000 - fn0.9: 1454511.0000 - precision0.9: 0.9837 - recall0.9: 0.7550 - accuracy: 0.9703 - auc: 0. 9808 - f1: 0.2624 - val_loss: 0.2503 - val_tp0.1: 1534044.0000 - val_fp0.1: 725110.0000 - val_tn0.1: 7522685.0000 - val_fn0.1: 48561.0000 - val_precision0.1: 0.6790 - val_recall0.1: 0.9693 - val_tp0.3: 1480024.0000 - val_fp0.3: 353833.0000 - val_tn0.3: 7893962.0000 - val_fn0.3: 102581.0000 - val_precision0.3: 0.8071 - val_recall0.3: 0.9352 - val_tp0.5: 1407828.0000 - val_fp 0.5: 193567.0000 - val_tn0.5: 8054228.0000 - val_fn0.5: 174777.0000 - val_precision0.5: 0.8791 - val_recall0.5: 0.8896 - val_tp0.7: 1340054.0000 - val_fp0.7: 119720.0000 - val_tn0.7: 81280 75.0000 - val_fn0.7: 242551.0000 - val_precision0.7: 0.9180 - val_recall0.7: 0.8467 - val_tp0.9: 1179562.0000 - val_fp0.9: 41420.0000 - val_tn0.9: 8206375.0000 - val_fn0.9: 403043.0000 - v al_precision0.9: 0.9661 - val_recall0.9: 0.7453 - val_accuracy: 0.9625 - val_auc: 0.9780 - val_f1: 0.2773 --- Running training session 56/140 {'hp_epochs': 20, 'hp_batch_size': 10, 'hp_scaler': 'robust', 'hp_n_levels': 5, 'hp_first_filters': 16, 'hp_pool_size': 4, 'hp_input_size': 8192, 'hp_lr_start': 0.06276763366515732, 'hp_lr _power': 1.0} --- repeat #: 2 input - shape: (None, 8192, 1) output - shape: (None, 8192, 1) Epoch 1/20 480/480 [==============================] - 44s 52ms/step - loss: 0.6448 - tp0.1: 5265662.0000 - fp0.1: 6246252.0000 - tn0.1: 27138564.0000 - fn0.1: 671114.0000 - precision0.1: 0.4574 - rec all0.1: 0.8870 - tp0.3: 4710949.0000 - fp0.3: 3395106.0000 - tn0.3: 29989722.0000 - fn0.3: 1225827.0000 - precision0.3: 0.5812 - recall0.3: 0.7935 - tp0.5: 3693283.0000 - fp0.5: 1049113.00 00 - tn0.5: 32335700.0000 - fn0.5: 2243493.0000 - precision0.5: 0.7788 - recall0.5: 0.6221 - tp0.7: 3063860.0000 - fp0.7: 405953.0000 - tn0.7: 32978848.0000 - fn0.7: 2872916.0000 - precisi on0.7: 0.8830 - recall0.7: 0.5161 - tp0.9: 2353054.0000 - fp0.9: 100482.0000 - tn0.9: 33284332.0000 - fn0.9: 3583722.0000 - precision0.9: 0.9590 - recall0.9: 0.3964 - accuracy: 0.9163 - au c: 0.9133 - f1: 0.2624 - val_loss: 1.3199 - val_tp0.1: 1131372.0000 - val_fp0.1: 737035.0000 - val_tn0.1: 7510760.0000 - val_fn0.1: 451233.0000 - val_precision0.1: 0.6055 - val_recall0.1: 0.7149 - val_tp0.3: 1034683.0000 - val_fp0.3: 330216.0000 - val_tn0.3: 7917579.0000 - val_fn0.3: 547922.0000 - val_precision0.3: 0.7581 - val_recall0.3: 0.6538 - val_tp0.5: 928465.0000 - v al_fp0.5: 121376.0000 - val_tn0.5: 8126419.0000 - val_fn0.5: 654140.0000 - val_precision0.5: 0.8844 - val_recall0.5: 0.5867 - val_tp0.7: 829955.0000 - val_fp0.7: 60010.0000 - val_tn0.7: 81 87785.0000 - val_fn0.7: 752650.0000 - val_precision0.7: 0.9326 - val_recall0.7: 0.5244 - val_tp0.9: 673776.0000 - val_fp0.9: 11090.0000 - val_tn0.9: 8236705.0000 - val_fn0.9: 908829.0000 - val_precision0.9: 0.9838 - val_recall0.9: 0.4257 - val_accuracy: 0.9211 - val_auc: 0.8400 - val_f1: 0.2773 Epoch 2/20 480/480 [==============================] - 21s 44ms/step - loss: 0.5271 - tp0.1: 5418063.0000 - fp0.1: 5526907.0000 - tn0.1: 27857926.0000 - fn0.1: 518713.0000 - precision0.1: 0.4950 - rec all0.1: 0.9126 - tp0.3: 4862070.0000 - fp0.3: 2474103.0000 - tn0.3: 30910734.0000 - fn0.3: 1074706.0000 - precision0.3: 0.6628 - recall0.3: 0.8190 - tp0.5: 4124120.0000 - fp0.5: 1036855.00 00 - tn0.5: 32347980.0000 - fn0.5: 1812656.0000 - precision0.5: 0.7991 - recall0.5: 0.6947 - tp0.7: 3446425.0000 - fp0.7: 437082.0000 - tn0.7: 32947768.0000 - fn0.7: 2490351.0000 - precisi on0.7: 0.8875 - recall0.7: 0.5805 - tp0.9: 2633706.0000 - fp0.9: 118948.0000 - tn0.9: 33265864.0000 - fn0.9: 3303070.0000 - precision0.9: 0.9568 - recall0.9: 0.4436 - accuracy: 0.9275 - au c: 0.9331 - f1: 0.2624 - val_loss: 1.1481 - val_tp0.1: 991975.0000 - val_fp0.1: 327918.0000 - val_tn0.1: 7919877.0000 - val_fn0.1: 590630.0000 - val_precision0.1: 0.7516 - val_recall0.1: 0 .6268 - val_tp0.3: 921560.0000 - val_fp0.3: 203493.0000 - val_tn0.3: 8044302.0000 - val_fn0.3: 661045.0000 - val_precision0.3: 0.8191 - val_recall0.3: 0.5823 - val_tp0.5: 816746.0000 - val _fp0.5: 96370.0000 - val_tn0.5: 8151425.0000 - val_fn0.5: 765859.0000 - val_precision0.5: 0.8945 - val_recall0.5: 0.5161 - val_tp0.7: 638180.0000 - val_fp0.7: 16690.0000 - val_tn0.7: 82311 05.0000 - val_fn0.7: 944425.0000 - val_precision0.7: 0.9745 - val_recall0.7: 0.4032 - val_tp0.9: 454222.0000 - val_fp0.9: 1300.0000 - val_tn0.9: 8246495.0000 - val_fn0.9: 1128383.0000 - va l_precision0.9: 0.9971 - val_recall0.9: 0.2870 - val_accuracy: 0.9123 - val_auc: 0.8046 - val_f1: 0.2773 Epoch 3/20 480/480 [==============================] - 21s 44ms/step - loss: 0.4694 - tp0.1: 5506389.0000 - fp0.1: 5279352.0000 - tn0.1: 28105468.0000 - fn0.1: 430387.0000 - precision0.1: 0.5105 - rec all0.1: 0.9275 - tp0.3: 4935930.0000 - fp0.3: 2185008.0000 - tn0.3: 31199836.0000 - fn0.3: 1000846.0000 - precision0.3: 0.6932 - recall0.3: 0.8314 - tp0.5: 4402685.0000 - fp0.5: 1013988.00 00 - tn0.5: 32370838.0000 - fn0.5: 1534091.0000 - precision0.5: 0.8128 - recall0.5: 0.7416 - tp0.7: 3775055.0000 - fp0.7: 446059.0000 - tn0.7: 32938768.0000 - fn0.7: 2161721.0000 - precisi on0.7: 0.8943 - recall0.7: 0.6359 - tp0.9: 2837543.0000 - fp0.9: 112976.0000 - tn0.9: 33271836.0000 - fn0.9: 3099233.0000 - precision0.9: 0.9617 - recall0.9: 0.4780 - accuracy: 0.9352 - au c: 0.9432 - f1: 0.2624 - val_loss: 1.1726 - val_tp0.1: 958675.0000 - val_fp0.1: 396142.0000 - val_tn0.1: 7851653.0000 - val_fn0.1: 623930.0000 - val_precision0.1: 0.7076 - val_recall0.1: 0 .6058 - val_tp0.3: 888712.0000 - val_fp0.3: 224696.0000 - val_tn0.3: 8023099.0000 - val_fn0.3: 693893.0000 - val_precision0.3: 0.7982 - val_recall0.3: 0.5616 - val_tp0.5: 821633.0000 - val _fp0.5: 102326.0000 - val_tn0.5: 8145469.0000 - val_fn0.5: 760972.0000 - val_precision0.5: 0.8893 - val_recall0.5: 0.5192 - val_tp0.7: 735292.0000 - val_fp0.7: 39372.0000 - val_tn0.7: 8208 423.0000 - val_fn0.7: 847313.0000 - val_precision0.7: 0.9492 - val_recall0.7: 0.4646 - val_tp0.9: 572482.0000 - val_fp0.9: 1157.0000 - val_tn0.9: 8246638.0000 - val_fn0.9: 1010123.0000 - v al_precision0.9: 0.9980 - val_recall0.9: 0.3617 - val_accuracy: 0.9122 - val_auc: 0.7943 - val_f1: 0.2773 Epoch 4/20 480/480 [==============================] - 21s 43ms/step - loss: 0.4326 - tp0.1: 5560029.0000 - fp0.1: 4926737.0000 - tn0.1: 28458088.0000 - fn0.1: 376747.0000 - precision0.1: 0.5302 - rec all0.1: 0.9365 - tp0.3: 5043034.0000 - fp0.3: 2165200.0000 - tn0.3: 31219610.0000 - fn0.3: 893742.0000 - precision0.3: 0.6996 - recall0.3: 0.8495 - tp0.5: 4510820.0000 - fp0.5: 990813.0000 - tn0.5: 32394014.0000 - fn0.5: 1425956.0000 - precision0.5: 0.8199 - recall0.5: 0.7598 - tp0.7: 3929915.0000 - fp0.7: 460992.0000 - tn0.7: 32923836.0000 - fn0.7: 2006861.0000 - precision 0.7: 0.8950 - recall0.7: 0.6620 - tp0.9: 2983151.0000 - fp0.9: 124501.0000 - tn0.9: 33260320.0000 - fn0.9: 2953625.0000 - precision0.9: 0.9599 - recall0.9: 0.5025 - accuracy: 0.9385 - auc: 0.9491 - f1: 0.2624 - val_loss: 0.4556 - val_tp0.1: 1447920.0000 - val_fp0.1: 910577.0000 - val_tn0.1: 7337218.0000 - val_fn0.1: 134685.0000 - val_precision0.1: 0.6139 - val_recall0.1: 0. 9149 - val_tp0.3: 1348323.0000 - val_fp0.3: 526913.0000 - val_tn0.3: 7720882.0000 - val_fn0.3: 234282.0000 - val_precision0.3: 0.7190 - val_recall0.3: 0.8520 - val_tp0.5: 1171829.0000 - va l_fp0.5: 254087.0000 - val_tn0.5: 7993708.0000 - val_fn0.5: 410776.0000 - val_precision0.5: 0.8218 - val_recall0.5: 0.7404 - val_tp0.7: 1027826.0000 - val_fp0.7: 124376.0000 - val_tn0.7: 8 123419.0000 - val_fn0.7: 554779.0000 - val_precision0.7: 0.8921 - val_recall0.7: 0.6495 - val_tp0.9: 747344.0000 - val_fp0.9: 3170.0000 - val_tn0.9: 8244625.0000 - val_fn0.9: 835261.0000 - val_precision0.9: 0.9958 - val_recall0.9: 0.4722 - val_accuracy: 0.9324 - val_auc: 0.9418 - val_f1: 0.2773 Epoch 5/20 480/480 [==============================] - 21s 44ms/step - loss: 0.4141 - tp0.1: 5574699.0000 - fp0.1: 4604743.0000 - tn0.1: 28780080.0000 - fn0.1: 362077.0000 - precision0.1: 0.5476 - rec all0.1: 0.9390 - tp0.3: 5097801.0000 - fp0.3: 2138526.0000 - tn0.3: 31246316.0000 - fn0.3: 838975.0000 - precision0.3: 0.7045 - recall0.3: 0.8587 - tp0.5: 4556087.0000 - fp0.5: 942923.0000 - tn0.5: 32441904.0000 - fn0.5: 1380689.0000 - precision0.5: 0.8285 - recall0.5: 0.7674 - tp0.7: 3978370.0000 - fp0.7: 450803.0000 - tn0.7: 32934030.0000 - fn0.7: 1958406.0000 - precision 0.7: 0.8982 - recall0.7: 0.6701 - tp0.9: 3000212.0000 - fp0.9: 125980.0000 - tn0.9: 33258844.0000 - fn0.9: 2936564.0000 - precision0.9: 0.9597 - recall0.9: 0.5054 - accuracy: 0.9409 - auc: 0.9524 - f1: 0.2624 - val_loss: 0.4822 - val_tp0.1: 1476924.0000 - val_fp0.1: 1123072.0000 - val_tn0.1: 7124723.0000 - val_fn0.1: 105681.0000 - val_precision0.1: 0.5680 - val_recall0.1: 0 .9332 - val_tp0.3: 1253583.0000 - val_fp0.3: 295322.0000 - val_tn0.3: 7952473.0000 - val_fn0.3: 329022.0000 - val_precision0.3: 0.8093 - val_recall0.3: 0.7921 - val_tp0.5: 1023581.0000 - v al_fp0.5: 50787.0000 - val_tn0.5: 8197008.0000 - val_fn0.5: 559024.0000 - val_precision0.5: 0.9527 - val_recall0.5: 0.6468 - val_tp0.7: 804131.0000 - val_fp0.7: 19006.0000 - val_tn0.7: 822 8789.0000 - val_fn0.7: 778474.0000 - val_precision0.7: 0.9769 - val_recall0.7: 0.5081 - val_tp0.9: 623158.0000 - val_fp0.9: 3898.0000 - val_tn0.9: 8243897.0000 - val_fn0.9: 959447.0000 - v al_precision0.9: 0.9938 - val_recall0.9: 0.3938 - val_accuracy: 0.9380 - val_auc: 0.9508 - val_f1: 0.2773 Epoch 6/20 480/480 [==============================] - 21s 44ms/step - loss: 0.3607 - tp0.1: 5623701.0000 - fp0.1: 3956775.0000 - tn0.1: 29428044.0000 - fn0.1: 313075.0000 - precision0.1: 0.5870 - rec all0.1: 0.9473 - tp0.3: 5201616.0000 - fp0.3: 1881599.0000 - tn0.3: 31503236.0000 - fn0.3: 735160.0000 - precision0.3: 0.7344 - recall0.3: 0.8762 - tp0.5: 4749347.0000 - fp0.5: 857493.0000 - tn0.5: 32527328.0000 - fn0.5: 1187429.0000 - precision0.5: 0.8471 - recall0.5: 0.8000 - tp0.7: 4289257.0000 - fp0.7: 431585.0000 - tn0.7: 32953252.0000 - fn0.7: 1647519.0000 - precision 0.7: 0.9086 - recall0.7: 0.7225 - tp0.9: 3310664.0000 - fp0.9: 120910.0000 - tn0.9: 33263930.0000 - fn0.9: 2626112.0000 - precision0.9: 0.9648 - recall0.9: 0.5577 - accuracy: 0.9480 - auc: 0.9600 - f1: 0.2624 - val_loss: 0.3199 - val_tp0.1: 1487331.0000 - val_fp0.1: 694274.0000 - val_tn0.1: 7553521.0000 - val_fn0.1: 95274.0000 - val_precision0.1: 0.6818 - val_recall0.1: 0.9 398 - val_tp0.3: 1386296.0000 - val_fp0.3: 286146.0000 - val_tn0.3: 7961649.0000 - val_fn0.3: 196309.0000 - val_precision0.3: 0.8289 - val_recall0.3: 0.8760 - val_tp0.5: 1304018.0000 - val _fp0.5: 139220.0000 - val_tn0.5: 8108575.0000 - val_fn0.5: 278587.0000 - val_precision0.5: 0.9035 - val_recall0.5: 0.8240 - val_tp0.7: 1235725.0000 - val_fp0.7: 76207.0000 - val_tn0.7: 817 1588.0000 - val_fn0.7: 346880.0000 - val_precision0.7: 0.9419 - val_recall0.7: 0.7808 - val_tp0.9: 1080668.0000 - val_fp0.9: 23195.0000 - val_tn0.9: 8224600.0000 - val_fn0.9: 501937.0000 - val_precision0.9: 0.9790 - val_recall0.9: 0.6828 - val_accuracy: 0.9575 - val_auc: 0.9627 - val_f1: 0.2773 Epoch 7/20 480/480 [==============================] - 21s 43ms/step - loss: 0.3314 - tp0.1: 5646234.0000 - fp0.1: 3554455.0000 - tn0.1: 29830372.0000 - fn0.1: 290542.0000 - precision0.1: 0.6137 - rec all0.1: 0.9511 - tp0.3: 5227655.0000 - fp0.3: 1614171.0000 - tn0.3: 31770668.0000 - fn0.3: 709121.0000 - precision0.3: 0.7641 - recall0.3: 0.8806 - tp0.5: 4830553.0000 - fp0.5: 751013.0000 - tn0.5: 32633820.0000 - fn0.5: 1106223.0000 - precision0.5: 0.8654 - recall0.5: 0.8137 - tp0.7: 4458898.0000 - fp0.7: 401272.0000 - tn0.7: 32983556.0000 - fn0.7: 1477878.0000 - precision 0.7: 0.9174 - recall0.7: 0.7511 - tp0.9: 3589678.0000 - fp0.9: 117919.0000 - tn0.9: 33266924.0000 - fn0.9: 2347098.0000 - precision0.9: 0.9682 - recall0.9: 0.6047 - accuracy: 0.9528 - auc: 0.9641 - f1: 0.2624 - val_loss: 0.3516 - val_tp0.1: 1443246.0000 - val_fp0.1: 388491.0000 - val_tn0.1: 7859304.0000 - val_fn0.1: 139359.0000 - val_precision0.1: 0.7879 - val_recall0.1: 0. 9119 - val_tp0.3: 1363949.0000 - val_fp0.3: 220386.0000 - val_tn0.3: 8027409.0000 - val_fn0.3: 218656.0000 - val_precision0.3: 0.8609 - val_recall0.3: 0.8618 - val_tp0.5: 1277387.0000 - va l_fp0.5: 127462.0000 - val_tn0.5: 8120333.0000 - val_fn0.5: 305218.0000 - val_precision0.5: 0.9093 - val_recall0.5: 0.8071 - val_tp0.7: 1201550.0000 - val_fp0.7: 76391.0000 - val_tn0.7: 81 71404.0000 - val_fn0.7: 381055.0000 - val_precision0.7: 0.9402 - val_recall0.7: 0.7592 - val_tp0.9: 1034837.0000 - val_fp0.9: 29131.0000 - val_tn0.9: 8218664.0000 - val_fn0.9: 547768.0000 - val_precision0.9: 0.9726 - val_recall0.9: 0.6539 - val_accuracy: 0.9560 - val_auc: 0.9517 - val_f1: 0.2773 Epoch 8/20 480/480 [==============================] - 21s 43ms/step - loss: 0.3124 - tp0.1: 5661924.0000 - fp0.1: 3284244.0000 - tn0.1: 30100560.0000 - fn0.1: 274852.0000 - precision0.1: 0.6329 - rec all0.1: 0.9537 - tp0.3: 5341190.0000 - fp0.3: 1750123.0000 - tn0.3: 31634684.0000 - fn0.3: 595586.0000 - precision0.3: 0.7532 - recall0.3: 0.8997 - tp0.5: 4855283.0000 - fp0.5: 738314.0000 - tn0.5: 32646522.0000 - fn0.5: 1081493.0000 - precision0.5: 0.8680 - recall0.5: 0.8178 - tp0.7: 4484249.0000 - fp0.7: 391982.0000 - tn0.7: 32992836.0000 - fn0.7: 1452527.0000 - precision 0.7: 0.9196 - recall0.7: 0.7553 - tp0.9: 3662123.0000 - fp0.9: 116143.0000 - tn0.9: 33268688.0000 - fn0.9: 2274653.0000 - precision0.9: 0.9693 - recall0.9: 0.6169 - accuracy: 0.9537 - auc: 0.9668 - f1: 0.2624 - val_loss: 0.3804 - val_tp0.1: 1538470.0000 - val_fp0.1: 1344786.0000 - val_tn0.1: 6903009.0000 - val_fn0.1: 44135.0000 - val_precision0.1: 0.5336 - val_recall0.1: 0. 9721 - val_tp0.3: 1492276.0000 - val_fp0.3: 750571.0000 - val_tn0.3: 7497224.0000 - val_fn0.3: 90329.0000 - val_precision0.3: 0.6653 - val_recall0.3: 0.9429 - val_tp0.5: 1415057.0000 - val _fp0.5: 403390.0000 - val_tn0.5: 7844405.0000 - val_fn0.5: 167548.0000 - val_precision0.5: 0.7782 - val_recall0.5: 0.8941 - val_tp0.7: 1355676.0000 - val_fp0.7: 251522.0000 - val_tn0.7: 79 96273.0000 - val_fn0.7: 226929.0000 - val_precision0.7: 0.8435 - val_recall0.7: 0.8566 - val_tp0.9: 1239605.0000 - val_fp0.9: 115484.0000 - val_tn0.9: 8132311.0000 - val_fn0.9: 343000.0000 - val_precision0.9: 0.9148 - val_recall0.9: 0.7833 - val_accuracy: 0.9419 - val_auc: 0.9731 - val_f1: 0.2773 Epoch 9/20 480/480 [==============================] - 21s 43ms/step - loss: 0.3173 - tp0.1: 5659382.0000 - fp0.1: 3425500.0000 - tn0.1: 29959316.0000 - fn0.1: 277394.0000 - precision0.1: 0.6229 - rec all0.1: 0.9533 - tp0.3: 5292646.0000 - fp0.3: 1671784.0000 - tn0.3: 31713034.0000 - fn0.3: 644130.0000 - precision0.3: 0.7600 - recall0.3: 0.8915 - tp0.5: 4877061.0000 - fp0.5: 747610.0000 - tn0.5: 32637216.0000 - fn0.5: 1059715.0000 - precision0.5: 0.8671 - recall0.5: 0.8215 - tp0.7: 4496117.0000 - fp0.7: 402814.0000 - tn0.7: 32982008.0000 - fn0.7: 1440659.0000 - precision 0.7: 0.9178 - recall0.7: 0.7573 - tp0.9: 3666370.0000 - fp0.9: 116952.0000 - tn0.9: 33267872.0000 - fn0.9: 2270406.0000 - precision0.9: 0.9691 - recall0.9: 0.6176 - accuracy: 0.9540 - auc: 0.9663 - f1: 0.2624 - val_loss: 0.4111 - val_tp0.1: 1461116.0000 - val_fp0.1: 755222.0000 - val_tn0.1: 7492573.0000 - val_fn0.1: 121489.0000 - val_precision0.1: 0.6592 - val_recall0.1: 0. 9232 - val_tp0.3: 1223139.0000 - val_fp0.3: 230361.0000 - val_tn0.3: 8017434.0000 - val_fn0.3: 359466.0000 - val_precision0.3: 0.8415 - val_recall0.3: 0.7729 - val_tp0.5: 1066667.0000 - va l_fp0.5: 102255.0000 - val_tn0.5: 8145540.0000 - val_fn0.5: 515938.0000 - val_precision0.5: 0.9125 - val_recall0.5: 0.6740 - val_tp0.7: 886969.0000 - val_fp0.7: 41575.0000 - val_tn0.7: 820 6220.0000 - val_fn0.7: 695636.0000 - val_precision0.7: 0.9552 - val_recall0.7: 0.5604 - val_tp0.9: 665393.0000 - val_fp0.9: 8132.0000 - val_tn0.9: 8239663.0000 - val_fn0.9: 917212.0000 - v al_precision0.9: 0.9879 - val_recall0.9: 0.4204 - val_accuracy: 0.9371 - val_auc: 0.9500 - val_f1: 0.2773 Epoch 10/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2749 - tp0.1: 5674290.0000 - fp0.1: 2738682.0000 - tn0.1: 30646168.0000 - fn0.1: 262486.0000 - precision0.1: 0.6745 - rec all0.1: 0.9558 - tp0.3: 5383213.0000 - fp0.3: 1364871.0000 - tn0.3: 32019970.0000 - fn0.3: 553563.0000 - precision0.3: 0.7977 - recall0.3: 0.9068 - tp0.5: 4998441.0000 - fp0.5: 611762.0000 - tn0.5: 32773056.0000 - fn0.5: 938335.0000 - precision0.5: 0.8910 - recall0.5: 0.8419 - tp0.7: 4697294.0000 - fp0.7: 334198.0000 - tn0.7: 33050624.0000 - fn0.7: 1239482.0000 - precision0 .7: 0.9336 - recall0.7: 0.7912 - tp0.9: 4025561.0000 - fp0.9: 94510.0000 - tn0.9: 33290300.0000 - fn0.9: 1911215.0000 - precision0.9: 0.9771 - recall0.9: 0.6781 - accuracy: 0.9606 - auc: 0 .9710 - f1: 0.2624 - val_loss: 0.3147 - val_tp0.1: 1502641.0000 - val_fp0.1: 644566.0000 - val_tn0.1: 7603229.0000 - val_fn0.1: 79964.0000 - val_precision0.1: 0.6998 - val_recall0.1: 0.949 5 - val_tp0.3: 1470125.0000 - val_fp0.3: 446059.0000 - val_tn0.3: 7801736.0000 - val_fn0.3: 112480.0000 - val_precision0.3: 0.7672 - val_recall0.3: 0.9289 - val_tp0.5: 1426341.0000 - val_f p0.5: 321683.0000 - val_tn0.5: 7926112.0000 - val_fn0.5: 156264.0000 - val_precision0.5: 0.8160 - val_recall0.5: 0.9013 - val_tp0.7: 1390033.0000 - val_fp0.7: 241453.0000 - val_tn0.7: 8006 342.0000 - val_fn0.7: 192572.0000 - val_precision0.7: 0.8520 - val_recall0.7: 0.8783 - val_tp0.9: 1306070.0000 - val_fp0.9: 125298.0000 - val_tn0.9: 8122497.0000 - val_fn0.9: 276535.0000 - val_precision0.9: 0.9125 - val_recall0.9: 0.8253 - val_accuracy: 0.9514 - val_auc: 0.9668 - val_f1: 0.2773 Epoch 11/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2571 - tp0.1: 5701636.0000 - fp0.1: 2654470.0000 - tn0.1: 30730342.0000 - fn0.1: 235140.0000 - precision0.1: 0.6823 - rec all0.1: 0.9604 - tp0.3: 5431401.0000 - fp0.3: 1345161.0000 - tn0.3: 32039650.0000 - fn0.3: 505375.0000 - precision0.3: 0.8015 - recall0.3: 0.9149 - tp0.5: 5052982.0000 - fp0.5: 600086.0000 - tn0.5: 32784728.0000 - fn0.5: 883794.0000 - precision0.5: 0.8938 - recall0.5: 0.8511 - tp0.7: 4767820.0000 - fp0.7: 330196.0000 - tn0.7: 33054604.0000 - fn0.7: 1168956.0000 - precision0 .7: 0.9352 - recall0.7: 0.8031 - tp0.9: 4129243.0000 - fp0.9: 91729.0000 - tn0.9: 33293112.0000 - fn0.9: 1807533.0000 - precision0.9: 0.9783 - recall0.9: 0.6955 - accuracy: 0.9623 - auc: 0 .9739 - f1: 0.2624 - val_loss: 0.2934 - val_tp0.1: 1497012.0000 - val_fp0.1: 580336.0000 - val_tn0.1: 7667459.0000 - val_fn0.1: 85593.0000 - val_precision0.1: 0.7206 - val_recall0.1: 0.945 9 - val_tp0.3: 1418177.0000 - val_fp0.3: 304844.0000 - val_tn0.3: 7942951.0000 - val_fn0.3: 164428.0000 - val_precision0.3: 0.8231 - val_recall0.3: 0.8961 - val_tp0.5: 1344607.0000 - val_f p0.5: 177499.0000 - val_tn0.5: 8070296.0000 - val_fn0.5: 237998.0000 - val_precision0.5: 0.8834 - val_recall0.5: 0.8496 - val_tp0.7: 1277773.0000 - val_fp0.7: 107504.0000 - val_tn0.7: 8140 291.0000 - val_fn0.7: 304832.0000 - val_precision0.7: 0.9224 - val_recall0.7: 0.8074 - val_tp0.9: 1107705.0000 - val_fp0.9: 32564.0000 - val_tn0.9: 8215231.0000 - val_fn0.9: 474900.0000 - val_precision0.9: 0.9714 - val_recall0.9: 0.6999 - val_accuracy: 0.9577 - val_auc: 0.9663 - val_f1: 0.2773 Epoch 12/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2581 - tp0.1: 5693123.0000 - fp0.1: 2595417.0000 - tn0.1: 30789420.0000 - fn0.1: 243653.0000 - precision0.1: 0.6869 - rec all0.1: 0.9590 - tp0.3: 5446545.0000 - fp0.3: 1373916.0000 - tn0.3: 32010920.0000 - fn0.3: 490231.0000 - precision0.3: 0.7986 - recall0.3: 0.9174 - tp0.5: 5065870.0000 - fp0.5: 607551.0000 - tn0.5: 32777282.0000 - fn0.5: 870906.0000 - precision0.5: 0.8929 - recall0.5: 0.8533 - tp0.7: 4775092.0000 - fp0.7: 334512.0000 - tn0.7: 33050316.0000 - fn0.7: 1161684.0000 - precision0 .7: 0.9345 - recall0.7: 0.8043 - tp0.9: 4147063.0000 - fp0.9: 95688.0000 - tn0.9: 33289134.0000 - fn0.9: 1789713.0000 - precision0.9: 0.9774 - recall0.9: 0.6985 - accuracy: 0.9624 - auc: 0 .9732 - f1: 0.2624 - val_loss: 0.3343 - val_tp0.1: 1442029.0000 - val_fp0.1: 269201.0000 - val_tn0.1: 7978594.0000 - val_fn0.1: 140576.0000 - val_precision0.1: 0.8427 - val_recall0.1: 0.91 12 - val_tp0.3: 1407074.0000 - val_fp0.3: 174843.0000 - val_tn0.3: 8072952.0000 - val_fn0.3: 175531.0000 - val_precision0.3: 0.8895 - val_recall0.3: 0.8891 - val_tp0.5: 1303677.0000 - val_ fp0.5: 75577.0000 - val_tn0.5: 8172218.0000 - val_fn0.5: 278928.0000 - val_precision0.5: 0.9452 - val_recall0.5: 0.8238 - val_tp0.7: 1215800.0000 - val_fp0.7: 37337.0000 - val_tn0.7: 82104 58.0000 - val_fn0.7: 366805.0000 - val_precision0.7: 0.9702 - val_recall0.7: 0.7682 - val_tp0.9: 998956.0000 - val_fp0.9: 6587.0000 - val_tn0.9: 8241208.0000 - val_fn0.9: 583649.0000 - val _precision0.9: 0.9934 - val_recall0.9: 0.6312 - val_accuracy: 0.9639 - val_auc: 0.9540 - val_f1: 0.2773 Epoch 13/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2406 - tp0.1: 5706933.0000 - fp0.1: 2415054.0000 - tn0.1: 30969764.0000 - fn0.1: 229843.0000 - precision0.1: 0.7027 - rec all0.1: 0.9613 - tp0.3: 5471726.0000 - fp0.3: 1216004.0000 - tn0.3: 32168800.0000 - fn0.3: 465050.0000 - precision0.3: 0.8182 - recall0.3: 0.9217 - tp0.5: 5159436.0000 - fp0.5: 606629.0000 - tn0.5: 32778208.0000 - fn0.5: 777340.0000 - precision0.5: 0.8948 - recall0.5: 0.8691 - tp0.7: 4865465.0000 - fp0.7: 318865.0000 - tn0.7: 33065960.0000 - fn0.7: 1071311.0000 - precision0 .7: 0.9385 - recall0.7: 0.8195 - tp0.9: 4237026.0000 - fp0.9: 90188.0000 - tn0.9: 33294624.0000 - fn0.9: 1699750.0000 - precision0.9: 0.9792 - recall0.9: 0.7137 - accuracy: 0.9648 - auc: 0 .9754 - f1: 0.2624 - val_loss: 0.2832 - val_tp0.1: 1508198.0000 - val_fp0.1: 679566.0000 - val_tn0.1: 7568229.0000 - val_fn0.1: 74407.0000 - val_precision0.1: 0.6894 - val_recall0.1: 0.953 0 - val_tp0.3: 1446107.0000 - val_fp0.3: 334069.0000 - val_tn0.3: 7913726.0000 - val_fn0.3: 136498.0000 - val_precision0.3: 0.8123 - val_recall0.3: 0.9138 - val_tp0.5: 1377613.0000 - val_f p0.5: 188915.0000 - val_tn0.5: 8058880.0000 - val_fn0.5: 204992.0000 - val_precision0.5: 0.8794 - val_recall0.5: 0.8705 - val_tp0.7: 1285384.0000 - val_fp0.7: 100950.0000 - val_tn0.7: 8146 845.0000 - val_fn0.7: 297221.0000 - val_precision0.7: 0.9272 - val_recall0.7: 0.8122 - val_tp0.9: 1070502.0000 - val_fp0.9: 23679.0000 - val_tn0.9: 8224116.0000 - val_fn0.9: 512103.0000 - val_precision0.9: 0.9784 - val_recall0.9: 0.6764 - val_accuracy: 0.9599 - val_auc: 0.9699 - val_f1: 0.2773 Epoch 14/20 480/480 [==============================] - 21s 43ms/step - loss: 0.2360 - tp0.1: 5707005.0000 - fp0.1: 2311718.0000 - tn0.1: 31073108.0000 - fn0.1: 229771.0000 - precision0.1: 0.7117 - rec all0.1: 0.9613 - tp0.3: 5487802.0000 - fp0.3: 1178541.0000 - tn0.3: 32206284.0000 - fn0.3: 448974.0000 - precision0.3: 0.8232 - recall0.3: 0.9244 - tp0.5: 5194613.0000 - fp0.5: 583262.0000 - tn0.5: 32801574.0000 - fn0.5: 742163.0000 - precision0.5: 0.8991 - recall0.5: 0.8750 - tp0.7: 4910863.0000 - fp0.7: 316507.0000 - tn0.7: 33068318.0000 - fn0.7: 1025913.0000 - precision0 .7: 0.9395 - recall0.7: 0.8272 - tp0.9: 4295202.0000 - fp0.9: 88374.0000 - tn0.9: 33296440.0000 - fn0.9: 1641574.0000 - precision0.9: 0.9798 - recall0.9: 0.7235 - accuracy: 0.9663 - auc: 0 .9761 - f1: 0.2624 - val_loss: 0.2611 - val_tp0.1: 1505124.0000 - val_fp0.1: 555660.0000 - val_tn0.1: 7692135.0000 - val_fn0.1: 77481.0000 - val_precision0.1: 0.7304 - val_recall0.1: 0.951 0 - val_tp0.3: 1441677.0000 - val_fp0.3: 299314.0000 - val_tn0.3: 7948481.0000 - val_fn0.3: 140928.0000 - val_precision0.3: 0.8281 - val_recall0.3: 0.9110 - val_tp0.5: 1368785.0000 - val_f p0.5: 147030.0000 - val_tn0.5: 8100765.0000 - val_fn0.5: 213820.0000 - val_precision0.5: 0.9030 - val_recall0.5: 0.8649 - val_tp0.7: 1283194.0000 - val_fp0.7: 69148.0000 - val_tn0.7: 81786 47.0000 - val_fn0.7: 299411.0000 - val_precision0.7: 0.9489 - val_recall0.7: 0.8108 - val_tp0.9: 1099339.0000 - val_fp0.9: 14278.0000 - val_tn0.9: 8233517.0000 - val_fn0.9: 483266.0000 - v al_precision0.9: 0.9872 - val_recall0.9: 0.6946 - val_accuracy: 0.9633 - val_auc: 0.9706 - val_f1: 0.2773 Epoch 15/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2284 - tp0.1: 5723340.0000 - fp0.1: 2332080.0000 - tn0.1: 31052740.0000 - fn0.1: 213436.0000 - precision0.1: 0.7105 - rec all0.1: 0.9640 - tp0.3: 5500588.0000 - fp0.3: 1197957.0000 - tn0.3: 32186864.0000 - fn0.3: 436188.0000 - precision0.3: 0.8212 - recall0.3: 0.9265 - tp0.5: 5193950.0000 - fp0.5: 592030.0000 - tn0.5: 32792800.0000 - fn0.5: 742826.0000 - precision0.5: 0.8977 - recall0.5: 0.8749 - tp0.7: 4891648.0000 - fp0.7: 303851.0000 - tn0.7: 33080976.0000 - fn0.7: 1045128.0000 - precision0 .7: 0.9415 - recall0.7: 0.8240 - tp0.9: 4289986.0000 - fp0.9: 85261.0000 - tn0.9: 33299542.0000 - fn0.9: 1646790.0000 - precision0.9: 0.9805 - recall0.9: 0.7226 - accuracy: 0.9661 - auc: 0 .9772 - f1: 0.2624 - val_loss: 0.2553 - val_tp0.1: 1513456.0000 - val_fp0.1: 572837.0000 - val_tn0.1: 7674958.0000 - val_fn0.1: 69149.0000 - val_precision0.1: 0.7254 - val_recall0.1: 0.956 3 - val_tp0.3: 1455197.0000 - val_fp0.3: 304127.0000 - val_tn0.3: 7943668.0000 - val_fn0.3: 127408.0000 - val_precision0.3: 0.8271 - val_recall0.3: 0.9195 - val_tp0.5: 1393774.0000 - val_f p0.5: 176303.0000 - val_tn0.5: 8071492.0000 - val_fn0.5: 188831.0000 - val_precision0.5: 0.8877 - val_recall0.5: 0.8807 - val_tp0.7: 1315535.0000 - val_fp0.7: 92255.0000 - val_tn0.7: 81555 40.0000 - val_fn0.7: 267070.0000 - val_precision0.7: 0.9345 - val_recall0.7: 0.8312 - val_tp0.9: 1145098.0000 - val_fp0.9: 24287.0000 - val_tn0.9: 8223508.0000 - val_fn0.9: 437507.0000 - v al_precision0.9: 0.9792 - val_recall0.9: 0.7236 - val_accuracy: 0.9629 - val_auc: 0.9728 - val_f1: 0.2773 Epoch 16/20 480/480 [==============================] - 21s 43ms/step - loss: 0.2187 - tp0.1: 5730057.0000 - fp0.1: 2238043.0000 - tn0.1: 31146768.0000 - fn0.1: 206719.0000 - precision0.1: 0.7191 - rec all0.1: 0.9652 - tp0.3: 5526887.0000 - fp0.3: 1168477.0000 - tn0.3: 32216352.0000 - fn0.3: 409889.0000 - precision0.3: 0.8255 - recall0.3: 0.9310 - tp0.5: 5240624.0000 - fp0.5: 596087.0000 - tn0.5: 32788744.0000 - fn0.5: 696152.0000 - precision0.5: 0.8979 - recall0.5: 0.8827 - tp0.7: 4938991.0000 - fp0.7: 293175.0000 - tn0.7: 33091644.0000 - fn0.7: 997785.0000 - precision0. 7: 0.9440 - recall0.7: 0.8319 - tp0.9: 4369873.0000 - fp0.9: 82397.0000 - tn0.9: 33302432.0000 - fn0.9: 1566903.0000 - precision0.9: 0.9815 - recall0.9: 0.7361 - accuracy: 0.9671 - auc: 0. 9784 - f1: 0.2624 - val_loss: 0.2767 - val_tp0.1: 1523233.0000 - val_fp0.1: 780683.0000 - val_tn0.1: 7467112.0000 - val_fn0.1: 59372.0000 - val_precision0.1: 0.6611 - val_recall0.1: 0.9625 - val_tp0.3: 1444414.0000 - val_fp0.3: 310339.0000 - val_tn0.3: 7937456.0000 - val_fn0.3: 138191.0000 - val_precision0.3: 0.8231 - val_recall0.3: 0.9127 - val_tp0.5: 1372018.0000 - val_fp 0.5: 162131.0000 - val_tn0.5: 8085664.0000 - val_fn0.5: 210587.0000 - val_precision0.5: 0.8943 - val_recall0.5: 0.8669 - val_tp0.7: 1293148.0000 - val_fp0.7: 87275.0000 - val_tn0.7: 816052 0.0000 - val_fn0.7: 289457.0000 - val_precision0.7: 0.9368 - val_recall0.7: 0.8171 - val_tp0.9: 1123318.0000 - val_fp0.9: 21366.0000 - val_tn0.9: 8226429.0000 - val_fn0.9: 459287.0000 - va l_precision0.9: 0.9813 - val_recall0.9: 0.7098 - val_accuracy: 0.9621 - val_auc: 0.9750 - val_f1: 0.2773 Epoch 17/20 480/480 [==============================] - 21s 43ms/step - loss: 0.2057 - tp0.1: 5743364.0000 - fp0.1: 2092169.0000 - tn0.1: 31292644.0000 - fn0.1: 193412.0000 - precision0.1: 0.7330 - rec all0.1: 0.9674 - tp0.3: 5554900.0000 - fp0.3: 1112642.0000 - tn0.3: 32272176.0000 - fn0.3: 381876.0000 - precision0.3: 0.8331 - recall0.3: 0.9357 - tp0.5: 5313778.0000 - fp0.5: 596612.0000 - tn0.5: 32788216.0000 - fn0.5: 622998.0000 - precision0.5: 0.8991 - recall0.5: 0.8951 - tp0.7: 4988960.0000 - fp0.7: 279744.0000 - tn0.7: 33105068.0000 - fn0.7: 947816.0000 - precision0. 7: 0.9469 - recall0.7: 0.8403 - tp0.9: 4440493.0000 - fp0.9: 78516.0000 - tn0.9: 33306316.0000 - fn0.9: 1496283.0000 - precision0.9: 0.9826 - recall0.9: 0.7480 - accuracy: 0.9690 - auc: 0. 9798 - f1: 0.2624 - val_loss: 0.2385 - val_tp0.1: 1523932.0000 - val_fp0.1: 579099.0000 - val_tn0.1: 7668696.0000 - val_fn0.1: 58673.0000 - val_precision0.1: 0.7246 - val_recall0.1: 0.9629 - val_tp0.3: 1459850.0000 - val_fp0.3: 271056.0000 - val_tn0.3: 7976739.0000 - val_fn0.3: 122755.0000 - val_precision0.3: 0.8434 - val_recall0.3: 0.9224 - val_tp0.5: 1390400.0000 - val_fp 0.5: 143841.0000 - val_tn0.5: 8103954.0000 - val_fn0.5: 192205.0000 - val_precision0.5: 0.9062 - val_recall0.5: 0.8786 - val_tp0.7: 1305162.0000 - val_fp0.7: 75449.0000 - val_tn0.7: 817234 6.0000 - val_fn0.7: 277443.0000 - val_precision0.7: 0.9454 - val_recall0.7: 0.8247 - val_tp0.9: 1149169.0000 - val_fp0.9: 23232.0000 - val_tn0.9: 8224563.0000 - val_fn0.9: 433436.0000 - va l_precision0.9: 0.9802 - val_recall0.9: 0.7261 - val_accuracy: 0.9658 - val_auc: 0.9764 - val_f1: 0.2773 Epoch 18/20 480/480 [==============================] - 21s 44ms/step - loss: 0.2093 - tp0.1: 5739105.0000 - fp0.1: 2145054.0000 - tn0.1: 31239784.0000 - fn0.1: 197671.0000 - precision0.1: 0.7279 - rec all0.1: 0.9667 - tp0.3: 5545657.0000 - fp0.3: 1100602.0000 - tn0.3: 32284224.0000 - fn0.3: 391119.0000 - precision0.3: 0.8344 - recall0.3: 0.9341 - tp0.5: 5306649.0000 - fp0.5: 593735.0000 - tn0.5: 32791100.0000 - fn0.5: 630127.0000 - precision0.5: 0.8994 - recall0.5: 0.8939 - tp0.7: 4982136.0000 - fp0.7: 287791.0000 - tn0.7: 33097036.0000 - fn0.7: 954640.0000 - precision0. 7: 0.9454 - recall0.7: 0.8392 - tp0.9: 4415070.0000 - fp0.9: 79761.0000 - tn0.9: 33305060.0000 - fn0.9: 1521706.0000 - precision0.9: 0.9823 - recall0.9: 0.7437 - accuracy: 0.9689 - auc: 0. 9796 - f1: 0.2624 - val_loss: 0.2350 - val_tp0.1: 1525598.0000 - val_fp0.1: 568429.0000 - val_tn0.1: 7679366.0000 - val_fn0.1: 57007.0000 - val_precision0.1: 0.7285 - val_recall0.1: 0.9640 - val_tp0.3: 1474346.0000 - val_fp0.3: 295141.0000 - val_tn0.3: 7952654.0000 - val_fn0.3: 108259.0000 - val_precision0.3: 0.8332 - val_recall0.3: 0.9316 - val_tp0.5: 1424497.0000 - val_fp 0.5: 190561.0000 - val_tn0.5: 8057234.0000 - val_fn0.5: 158108.0000 - val_precision0.5: 0.8820 - val_recall0.5: 0.9001 - val_tp0.7: 1359738.0000 - val_fp0.7: 110514.0000 - val_tn0.7: 81372 81.0000 - val_fn0.7: 222867.0000 - val_precision0.7: 0.9248 - val_recall0.7: 0.8592 - val_tp0.9: 1242403.0000 - val_fp0.9: 43687.0000 - val_tn0.9: 8204108.0000 - val_fn0.9: 340202.0000 - v al_precision0.9: 0.9660 - val_recall0.9: 0.7850 - val_accuracy: 0.9645 - val_auc: 0.9772 - val_f1: 0.2773 Epoch 19/20 480/480 [==============================] - 21s 43ms/step - loss: 0.1984 - tp0.1: 5744440.0000 - fp0.1: 1989366.0000 - tn0.1: 31395464.0000 - fn0.1: 192336.0000 - precision0.1: 0.7428 - rec all0.1: 0.9676 - tp0.3: 5566674.0000 - fp0.3: 1040758.0000 - tn0.3: 32344072.0000 - fn0.3: 370102.0000 - precision0.3: 0.8425 - recall0.3: 0.9377 - tp0.5: 5348217.0000 - fp0.5: 577516.0000 - tn0.5: 32807312.0000 - fn0.5: 588559.0000 - precision0.5: 0.9025 - recall0.5: 0.9009 - tp0.7: 5052821.0000 - fp0.7: 276996.0000 - tn0.7: 33107824.0000 - fn0.7: 883955.0000 - precision0. 7: 0.9480 - recall0.7: 0.8511 - tp0.9: 4492968.0000 - fp0.9: 72302.0000 - tn0.9: 33312520.0000 - fn0.9: 1443808.0000 - precision0.9: 0.9842 - recall0.9: 0.7568 - accuracy: 0.9703 - auc: 0. 9805 - f1: 0.2624 - val_loss: 0.2484 - val_tp0.1: 1501131.0000 - val_fp0.1: 393771.0000 - val_tn0.1: 7854024.0000 - val_fn0.1: 81474.0000 - val_precision0.1: 0.7922 - val_recall0.1: 0.9485 - val_tp0.3: 1409758.0000 - val_fp0.3: 163787.0000 - val_tn0.3: 8084008.0000 - val_fn0.3: 172847.0000 - val_precision0.3: 0.8959 - val_recall0.3: 0.8908 - val_tp0.5: 1322183.0000 - val_fp 0.5: 84259.0000 - val_tn0.5: 8163536.0000 - val_fn0.5: 260422.0000 - val_precision0.5: 0.9401 - val_recall0.5: 0.8354 - val_tp0.7: 1216424.0000 - val_fp0.7: 42192.0000 - val_tn0.7: 8205603 .0000 - val_fn0.7: 366181.0000 - val_precision0.7: 0.9665 - val_recall0.7: 0.7686 - val_tp0.9: 1024424.0000 - val_fp0.9: 10587.0000 - val_tn0.9: 8237208.0000 - val_fn0.9: 558181.0000 - val _precision0.9: 0.9898 - val_recall0.9: 0.6473 - val_accuracy: 0.9649 - val_auc: 0.9712 - val_f1: 0.2773 Epoch 20/20 480/480 [==============================] - 21s 44ms/step - loss: 0.1942 - tp0.1: 5753146.0000 - fp0.1: 1975562.0000 - tn0.1: 31409254.0000 - fn0.1: 183630.0000 - precision0.1: 0.7444 - rec all0.1: 0.9691 - tp0.3: 5571490.0000 - fp0.3: 1010543.0000 - tn0.3: 32374284.0000 - fn0.3: 365286.0000 - precision0.3: 0.8465 - recall0.3: 0.9385 - tp0.5: 5341643.0000 - fp0.5: 549462.0000 - tn0.5: 32835368.0000 - fn0.5: 595133.0000 - precision0.5: 0.9067 - recall0.5: 0.8998 - tp0.7: 5040559.0000 - fp0.7: 265388.0000 - tn0.7: 33119436.0000 - fn0.7: 896217.0000 - precision0. 7: 0.9500 - recall0.7: 0.8490 - tp0.9: 4493527.0000 - fp0.9: 71308.0000 - tn0.9: 33313516.0000 - fn0.9: 1443249.0000 - precision0.9: 0.9844 - recall0.9: 0.7569 - accuracy: 0.9709 - auc: 0. 9814 - f1: 0.2624 - val_loss: 0.2216 - val_tp0.1: 1527498.0000 - val_fp0.1: 536072.0000 - val_tn0.1: 7711723.0000 - val_fn0.1: 55107.0000 - val_precision0.1: 0.7402 - val_recall0.1: 0.9652 - val_tp0.3: 1473395.0000 - val_fp0.3: 266651.0000 - val_tn0.3: 7981144.0000 - val_fn0.3: 109210.0000 - val_precision0.3: 0.8468 - val_recall0.3: 0.9310 - val_tp0.5: 1410224.0000 - val_fp 0.5: 150868.0000 - val_tn0.5: 8096927.0000 - val_fn0.5: 172381.0000 - val_precision0.5: 0.9034 - val_recall0.5: 0.8911 - val_tp0.7: 1334322.0000 - val_fp0.7: 77751.0000 - val_tn0.7: 817004 4.0000 - val_fn0.7: 248283.0000 - val_precision0.7: 0.9449 - val_recall0.7: 0.8431 - val_tp0.9: 1186212.0000 - val_fp0.9: 22796.0000 - val_tn0.9: 8224999.0000 - val_fn0.9: 396393.0000 - va l_precision0.9: 0.9811 - val_recall0.9: 0.7495 - val_accuracy: 0.9671 - val_auc: 0.9782 - val_f1: 0.2773 --- Running training session 57/140 {'hp_epochs': 20, 'hp_batch_size': 16, 'hp_scaler': 'standard', 'hp_n_levels': 3, 'hp_first_filters': 64, 'hp_pool_size': 2, 'hp_input_size': 16384, 'hp_lr_start': 0.05209134418613575, 'hp _lr_power': 5.0} --- repeat #: 1 input - shape: (None, 16384, 1) output - shape: (None, 16384, 1) Epoch 1/20 300/300 [==============================] - 131s 378ms/step - loss: 1.1698 - tp0.1: 9792293.0000 - fp0.1: 16380066.0000 - tn0.1: 50293360.0000 - fn0.1: 2177474.0000 - precision0.1: 0.3741 - recall0.1: 0.8181 - tp0.3: 8106203.0000 - fp0.3: 5386658.0000 - tn0.3: 61286792.0000 - fn0.3: 3863564.0000 - precision0.3: 0.6008 - recall0.3: 0.6772 - tp0.5: 6816180.0000 - fp0.5: 244709 8.0000 - tn0.5: 64226336.0000 - fn0.5: 5153587.0000 - precision0.5: 0.7358 - recall0.5: 0.5694 - tp0.7: 5263785.0000 - fp0.7: 811449.0000 - tn0.7: 65861992.0000 - fn0.7: 6705982.0000 - pre cision0.7: 0.8664 - recall0.7: 0.4398 - tp0.9: 3484091.0000 - fp0.9: 160303.0000 - tn0.9: 66513160.0000 - fn0.9: 8485676.0000 - precision0.9: 0.9560 - recall0.9: 0.2911 - accuracy: 0.9034 - auc: 0.8642 - f1: 0.2642 - val_loss: 2.1107 - val_tp0.1: 3108339.0000 - val_fp0.1: 15105390.0000 - val_tn0.1: 1392556.0000 - val_fn0.1: 54515.0000 - val_precision0.1: 0.1707 - val_recall 0.1: 0.9828 - val_tp0.3: 2913184.0000 - val_fp0.3: 8671661.0000 - val_tn0.3: 7826285.0000 - val_fn0.3: 249670.0000 - val_precision0.3: 0.2515 - val_recall0.3: 0.9211 - val_tp0.5: 2807049.0 000 - val_fp0.5: 6353778.0000 - val_tn0.5: 10144168.0000 - val_fn0.5: 355805.0000 - val_precision0.5: 0.3064 - val_recall0.5: 0.8875 - val_tp0.7: 2699435.0000 - val_fp0.7: 4581266.0000 - v al_tn0.7: 11916680.0000 - val_fn0.7: 463419.0000 - val_precision0.7: 0.3708 - val_recall0.7: 0.8535 - val_tp0.9: 2536045.0000 - val_fp0.9: 2954857.0000 - val_tn0.9: 13543089.0000 - val_fn0 .9: 626809.0000 - val_precision0.9: 0.4619 - val_recall0.9: 0.8018 - val_accuracy: 0.6587 - val_auc: 0.8551 - val_f1: 0.2772 Epoch 2/20 300/300 [==============================] - 110s 367ms/step - loss: 1.1426 - tp0.1: 9916409.0000 - fp0.1: 13548468.0000 - tn0.1: 53124976.0000 - fn0.1: 2053358.0000 - precision0.1: 0.4226 - recall0.1: 0.8285 - tp0.3: 8478833.0000 - fp0.3: 4638495.0000 - tn0.3: 62034944.0000 - fn0.3: 3490934.0000 - precision0.3: 0.6464 - recall0.3: 0.7084 - tp0.5: 7332170.0000 - fp0.5: 218002 8.0000 - tn0.5: 64493416.0000 - fn0.5: 4637597.0000 - precision0.5: 0.7708 - recall0.5: 0.6126 - tp0.7: 5950349.0000 - fp0.7: 846977.0000 - tn0.7: 65826468.0000 - fn0.7: 6019418.0000 - pre cision0.7: 0.8754 - recall0.7: 0.4971 - tp0.9: 4092626.0000 - fp0.9: 183109.0000 - tn0.9: 66490320.0000 - fn0.9: 7877141.0000 - precision0.9: 0.9572 - recall0.9: 0.3419 - accuracy: 0.9133 - auc: 0.8817 - f1: 0.2642 - val_loss: 1.3552 - val_tp0.1: 3018867.0000 - val_fp0.1: 9642342.0000 - val_tn0.1: 6855604.0000 - val_fn0.1: 143987.0000 - val_precision0.1: 0.2384 - val_recall 0.1: 0.9545 - val_tp0.3: 2882930.0000 - val_fp0.3: 5948958.0000 - val_tn0.3: 10548988.0000 - val_fn0.3: 279924.0000 - val_precision0.3: 0.3264 - val_recall0.3: 0.9115 - val_tp0.5: 2710540. 0000 - val_fp0.5: 3482144.0000 - val_tn0.5: 13015802.0000 - val_fn0.5: 452314.0000 - val_precision0.5: 0.4377 - val_recall0.5: 0.8570 - val_tp0.7: 2470093.0000 - val_fp0.7: 1883006.0000 - val_tn0.7: 14614940.0000 - val_fn0.7: 692761.0000 - val_precision0.7: 0.5674 - val_recall0.7: 0.7810 - val_tp0.9: 2057360.0000 - val_fp0.9: 785358.0000 - val_tn0.9: 15712588.0000 - val_fn0 .9: 1105494.0000 - val_precision0.9: 0.7237 - val_recall0.9: 0.6505 - val_accuracy: 0.7999 - val_auc: 0.8997 - val_f1: 0.2772 Epoch 3/20 300/300 [==============================] - 110s 367ms/step - loss: 1.1129 - tp0.1: 10053816.0000 - fp0.1: 11055564.0000 - tn0.1: 55617880.0000 - fn0.1: 1915951.0000 - precision0.1: 0.4763 - recall0.1: 0.8399 - tp0.3: 8934470.0000 - fp0.3: 4064684.0000 - tn0.3: 62608744.0000 - fn0.3: 3035297.0000 - precision0.3: 0.6873 - recall0.3: 0.7464 - tp0.5: 8010627.0000 - fp0.5: 21114 72.0000 - tn0.5: 64561976.0000 - fn0.5: 3959140.0000 - precision0.5: 0.7914 - recall0.5: 0.6692 - tp0.7: 6744537.0000 - fp0.7: 920340.0000 - tn0.7: 65753096.0000 - fn0.7: 5225230.0000 - pr ecision0.7: 0.8799 - recall0.7: 0.5635 - tp0.9: 4739266.0000 - fp0.9: 210718.0000 - tn0.9: 66462700.0000 - fn0.9: 7230501.0000 - precision0.9: 0.9574 - recall0.9: 0.3959 - accuracy: 0.9228 - auc: 0.9043 - f1: 0.2642 - val_loss: 1.1474 - val_tp0.1: 2967564.0000 - val_fp0.1: 6983406.0000 - val_tn0.1: 9514540.0000 - val_fn0.1: 195290.0000 - val_precision0.1: 0.2982 - val_recal l0.1: 0.9383 - val_tp0.3: 2788083.0000 - val_fp0.3: 2981666.0000 - val_tn0.3: 13516280.0000 - val_fn0.3: 374771.0000 - val_precision0.3: 0.4832 - val_recall0.3: 0.8815 - val_tp0.5: 2559864 .0000 - val_fp0.5: 1470225.0000 - val_tn0.5: 15027721.0000 - val_fn0.5: 602990.0000 - val_precision0.5: 0.6352 - val_recall0.5: 0.8094 - val_tp0.7: 2204980.0000 - val_fp0.7: 672610.0000 - val_tn0.7: 15825336.0000 - val_fn0.7: 957874.0000 - val_precision0.7: 0.7663 - val_recall0.7: 0.6971 - val_tp0.9: 1441024.0000 - val_fp0.9: 161378.0000 - val_tn0.9: 16336568.0000 - val_fn0 .9: 1721830.0000 - val_precision0.9: 0.8993 - val_recall0.9: 0.4556 - val_accuracy: 0.8946 - val_auc: 0.9228 - val_f1: 0.2772 Epoch 4/20 300/300 [==============================] - 110s 367ms/step - loss: 0.9937 - tp0.1: 10107575.0000 - fp0.1: 10632681.0000 - tn0.1: 56040784.0000 - fn0.1: 1862192.0000 - precision0.1: 0.4873 - recall0.1: 0.8444 - tp0.3: 9018636.0000 - fp0.3: 3861193.0000 - tn0.3: 62812244.0000 - fn0.3: 2951131.0000 - precision0.3: 0.7002 - recall0.3: 0.7535 - tp0.5: 8145541.0000 - fp0.5: 20363 45.0000 - tn0.5: 64637076.0000 - fn0.5: 3824226.0000 - precision0.5: 0.8000 - recall0.5: 0.6805 - tp0.7: 6999441.0000 - fp0.7: 948132.0000 - tn0.7: 65725288.0000 - fn0.7: 4970326.0000 - pr ecision0.7: 0.8807 - recall0.7: 0.5848 - tp0.9: 4926381.0000 - fp0.9: 215719.0000 - tn0.9: 66457736.0000 - fn0.9: 7043386.0000 - precision0.9: 0.9580 - recall0.9: 0.4116 - accuracy: 0.9255 - auc: 0.9063 - f1: 0.2642 - val_loss: 0.8383 - val_tp0.1: 2770907.0000 - val_fp0.1: 3233641.0000 - val_tn0.1: 13264305.0000 - val_fn0.1: 391947.0000 - val_precision0.1: 0.4615 - val_reca ll0.1: 0.8761 - val_tp0.3: 2695153.0000 - val_fp0.3: 2457686.0000 - val_tn0.3: 14040260.0000 - val_fn0.3: 467701.0000 - val_precision0.3: 0.5230 - val_recall0.3: 0.8521 - val_tp0.5: 262682 4.0000 - val_fp0.5: 1996722.0000 - val_tn0.5: 14501224.0000 - val_fn0.5: 536030.0000 - val_precision0.5: 0.5681 - val_recall0.5: 0.8305 - val_tp0.7: 2543169.0000 - val_fp0.7: 1571034.0000 - val_tn0.7: 14926912.0000 - val_fn0.7: 619685.0000 - val_precision0.7: 0.6181 - val_recall0.7: 0.8041 - val_tp0.9: 2364543.0000 - val_fp0.9: 988221.0000 - val_tn0.9: 15509725.0000 - val_f n0.9: 798311.0000 - val_precision0.9: 0.7053 - val_recall0.9: 0.7476 - val_accuracy: 0.8712 - val_auc: 0.9011 - val_f1: 0.2772 Epoch 5/20 300/300 [==============================] - 110s 366ms/step - loss: 0.6515 - tp0.1: 10120253.0000 - fp0.1: 9513561.0000 - tn0.1: 57159892.0000 - fn0.1: 1849514.0000 - precision0.1: 0.5155 - recall0.1: 0.8455 - tp0.3: 9146172.0000 - fp0.3: 3874592.0000 - tn0.3: 62798872.0000 - fn0.3: 2823595.0000 - precision0.3: 0.7024 - recall0.3: 0.7641 - tp0.5: 8285447.0000 - fp0.5: 203234 9.0000 - tn0.5: 64641116.0000 - fn0.5: 3684320.0000 - precision0.5: 0.8030 - recall0.5: 0.6922 - tp0.7: 7115867.0000 - fp0.7: 936057.0000 - tn0.7: 65737360.0000 - fn0.7: 4853900.0000 - pre cision0.7: 0.8837 - recall0.7: 0.5945 - tp0.9: 5021875.0000 - fp0.9: 210954.0000 - tn0.9: 66462488.0000 - fn0.9: 6947892.0000 - precision0.9: 0.9597 - recall0.9: 0.4195 - accuracy: 0.9273 - auc: 0.9005 - f1: 0.2642 - val_loss: 0.5790 - val_tp0.1: 2786753.0000 - val_fp0.1: 2338059.0000 - val_tn0.1: 14159887.0000 - val_fn0.1: 376101.0000 - val_precision0.1: 0.5438 - val_recal l0.1: 0.8811 - val_tp0.3: 2442329.0000 - val_fp0.3: 767449.0000 - val_tn0.3: 15730497.0000 - val_fn0.3: 720525.0000 - val_precision0.3: 0.7609 - val_recall0.3: 0.7722 - val_tp0.5: 2227274. 0000 - val_fp0.5: 432048.0000 - val_tn0.5: 16065898.0000 - val_fn0.5: 935580.0000 - val_precision0.5: 0.8375 - val_recall0.5: 0.7042 - val_tp0.7: 1917679.0000 - val_fp0.7: 203533.0000 - va l_tn0.7: 16294413.0000 - val_fn0.7: 1245175.0000 - val_precision0.7: 0.9040 - val_recall0.7: 0.6063 - val_tp0.9: 1380335.0000 - val_fp0.9: 47607.0000 - val_tn0.9: 16450339.0000 - val_fn0.9 : 1782519.0000 - val_precision0.9: 0.9667 - val_recall0.9: 0.4364 - val_accuracy: 0.9304 - val_auc: 0.9216 - val_f1: 0.2772 Epoch 6/20 300/300 [==============================] - 110s 367ms/step - loss: 0.6145 - tp0.1: 10221226.0000 - fp0.1: 9054753.0000 - tn0.1: 57618652.0000 - fn0.1: 1748541.0000 - precision0.1: 0.5303 - recall0.1: 0.8539 - tp0.3: 9253443.0000 - fp0.3: 3526719.0000 - tn0.3: 63146724.0000 - fn0.3: 2716324.0000 - precision0.3: 0.7240 - recall0.3: 0.7731 - tp0.5: 8544655.0000 - fp0.5: 198031 7.0000 - tn0.5: 64693120.0000 - fn0.5: 3425112.0000 - precision0.5: 0.8118 - recall0.5: 0.7139 - tp0.7: 7486882.0000 - fp0.7: 931061.0000 - tn0.7: 65742384.0000 - fn0.7: 4482885.0000 - pre cision0.7: 0.8894 - recall0.7: 0.6255 - tp0.9: 5438772.0000 - fp0.9: 216030.0000 - tn0.9: 66457408.0000 - fn0.9: 6530995.0000 - precision0.9: 0.9618 - recall0.9: 0.4544 - accuracy: 0.9313 - auc: 0.9073 - f1: 0.2642 - val_loss: 0.5665 - val_tp0.1: 2863152.0000 - val_fp0.1: 2970240.0000 - val_tn0.1: 13527706.0000 - val_fn0.1: 299702.0000 - val_precision0.1: 0.4908 - val_recal l0.1: 0.9052 - val_tp0.3: 2546439.0000 - val_fp0.3: 915799.0000 - val_tn0.3: 15582147.0000 - val_fn0.3: 616415.0000 - val_precision0.3: 0.7355 - val_recall0.3: 0.8051 - val_tp0.5: 2318053. 0000 - val_fp0.5: 477192.0000 - val_tn0.5: 16020754.0000 - val_fn0.5: 844801.0000 - val_precision0.5: 0.8293 - val_recall0.5: 0.7329 - val_tp0.7: 1952977.0000 - val_fp0.7: 192829.0000 - va l_tn0.7: 16305117.0000 - val_fn0.7: 1209877.0000 - val_precision0.7: 0.9101 - val_recall0.7: 0.6175 - val_tp0.9: 1328714.0000 - val_fp0.9: 31660.0000 - val_tn0.9: 16466286.0000 - val_fn0.9 : 1834140.0000 - val_precision0.9: 0.9767 - val_recall0.9: 0.4201 - val_accuracy: 0.9328 - val_auc: 0.9303 - val_f1: 0.2772 Epoch 7/20 300/300 [==============================] - 110s 367ms/step - loss: 0.6010 - tp0.1: 10240926.0000 - fp0.1: 8765134.0000 - tn0.1: 57908304.0000 - fn0.1: 1728841.0000 - precision0.1: 0.5388 - recall0.1: 0.8556 - tp0.3: 9298657.0000 - fp0.3: 3414297.0000 - tn0.3: 63259112.0000 - fn0.3: 2671110.0000 - precision0.3: 0.7314 - recall0.3: 0.7768 - tp0.5: 8600118.0000 - fp0.5: 190447 1.0000 - tn0.5: 64768972.0000 - fn0.5: 3369649.0000 - precision0.5: 0.8187 - recall0.5: 0.7185 - tp0.7: 7578223.0000 - fp0.7: 896266.0000 - tn0.7: 65777152.0000 - fn0.7: 4391544.0000 - pre cision0.7: 0.8942 - recall0.7: 0.6331 - tp0.9: 5575318.0000 - fp0.9: 206423.0000 - tn0.9: 66467012.0000 - fn0.9: 6394449.0000 - precision0.9: 0.9643 - recall0.9: 0.4658 - accuracy: 0.9329 - auc: 0.9091 - f1: 0.2642 - val_loss: 0.6136 - val_tp0.1: 2833227.0000 - val_fp0.1: 2966233.0000 - val_tn0.1: 13531713.0000 - val_fn0.1: 329627.0000 - val_precision0.1: 0.4885 - val_recal l0.1: 0.8958 - val_tp0.3: 2657099.0000 - val_fp0.3: 1503941.0000 - val_tn0.3: 14994005.0000 - val_fn0.3: 505755.0000 - val_precision0.3: 0.6386 - val_recall0.3: 0.8401 - val_tp0.5: 2521378 .0000 - val_fp0.5: 979303.0000 - val_tn0.5: 15518643.0000 - val_fn0.5: 641476.0000 - val_precision0.5: 0.7203 - val_recall0.5: 0.7972 - val_tp0.7: 2355434.0000 - val_fp0.7: 617852.0000 - v al_tn0.7: 15880094.0000 - val_fn0.7: 807420.0000 - val_precision0.7: 0.7922 - val_recall0.7: 0.7447 - val_tp0.9: 2044932.0000 - val_fp0.9: 285145.0000 - val_tn0.9: 16212801.0000 - val_fn0. 9: 1117922.0000 - val_precision0.9: 0.8776 - val_recall0.9: 0.6465 - val_accuracy: 0.9176 - val_auc: 0.9226 - val_f1: 0.2772 Epoch 8/20 300/300 [==============================] - 110s 367ms/step - loss: 0.5874 - tp0.1: 10313883.0000 - fp0.1: 8946511.0000 - tn0.1: 57726912.0000 - fn0.1: 1655884.0000 - precision0.1: 0.5355 - recall0.1: 0.8617 - tp0.3: 9372263.0000 - fp0.3: 3402993.0000 - tn0.3: 63270404.0000 - fn0.3: 2597504.0000 - precision0.3: 0.7336 - recall0.3: 0.7830 - tp0.5: 8691543.0000 - fp0.5: 189512 5.0000 - tn0.5: 64778312.0000 - fn0.5: 3278224.0000 - precision0.5: 0.8210 - recall0.5: 0.7261 - tp0.7: 7678420.0000 - fp0.7: 891412.0000 - tn0.7: 65782052.0000 - fn0.7: 4291347.0000 - pre cision0.7: 0.8960 - recall0.7: 0.6415 - tp0.9: 5663701.0000 - fp0.9: 205730.0000 - tn0.9: 66467716.0000 - fn0.9: 6306066.0000 - precision0.9: 0.9649 - recall0.9: 0.4732 - accuracy: 0.9342 - auc: 0.9123 - f1: 0.2642 - val_loss: 0.5994 - val_tp0.1: 2655699.0000 - val_fp0.1: 1220112.0000 - val_tn0.1: 15277834.0000 - val_fn0.1: 507155.0000 - val_precision0.1: 0.6852 - val_recal l0.1: 0.8397 - val_tp0.3: 2195697.0000 - val_fp0.3: 383330.0000 - val_tn0.3: 16114616.0000 - val_fn0.3: 967157.0000 - val_precision0.3: 0.8514 - val_recall0.3: 0.6942 - val_tp0.5: 1922446. 0000 - val_fp0.5: 203083.0000 - val_tn0.5: 16294863.0000 - val_fn0.5: 1240408.0000 - val_precision0.5: 0.9045 - val_recall0.5: 0.6078 - val_tp0.7: 1577371.0000 - val_fp0.7: 87819.0000 - va l_tn0.7: 16410127.0000 - val_fn0.7: 1585483.0000 - val_precision0.7: 0.9473 - val_recall0.7: 0.4987 - val_tp0.9: 1033785.0000 - val_fp0.9: 15309.0000 - val_tn0.9: 16482637.0000 - val_fn0.9 : 2129069.0000 - val_precision0.9: 0.9854 - val_recall0.9: 0.3269 - val_accuracy: 0.9266 - val_auc: 0.9095 - val_f1: 0.2772 Epoch 9/20 300/300 [==============================] - 110s 366ms/step - loss: 0.5779 - tp0.1: 10317324.0000 - fp0.1: 8680261.0000 - tn0.1: 57993180.0000 - fn0.1: 1652443.0000 - precision0.1: 0.5431 - recall0.1: 0.8619 - tp0.3: 9391398.0000 - fp0.3: 3311151.0000 - tn0.3: 63362284.0000 - fn0.3: 2578369.0000 - precision0.3: 0.7393 - recall0.3: 0.7846 - tp0.5: 8705608.0000 - fp0.5: 181412 3.0000 - tn0.5: 64859340.0000 - fn0.5: 3264159.0000 - precision0.5: 0.8276 - recall0.5: 0.7273 - tp0.7: 7731054.0000 - fp0.7: 858059.0000 - tn0.7: 65815376.0000 - fn0.7: 4238713.0000 - pre cision0.7: 0.9001 - recall0.7: 0.6459 - tp0.9: 5763101.0000 - fp0.9: 200933.0000 - tn0.9: 66472512.0000 - fn0.9: 6206666.0000 - precision0.9: 0.9663 - recall0.9: 0.4815 - accuracy: 0.9354 - auc: 0.9133 - f1: 0.2642 - val_loss: 0.5336 - val_tp0.1: 2783751.0000 - val_fp0.1: 1864654.0000 - val_tn0.1: 14633292.0000 - val_fn0.1: 379103.0000 - val_precision0.1: 0.5989 - val_recal l0.1: 0.8801 - val_tp0.3: 2518451.0000 - val_fp0.3: 718668.0000 - val_tn0.3: 15779278.0000 - val_fn0.3: 644403.0000 - val_precision0.3: 0.7780 - val_recall0.3: 0.7963 - val_tp0.5: 2312604. 0000 - val_fp0.5: 409725.0000 - val_tn0.5: 16088221.0000 - val_fn0.5: 850250.0000 - val_precision0.5: 0.8495 - val_recall0.5: 0.7312 - val_tp0.7: 2020053.0000 - val_fp0.7: 204600.0000 - va l_tn0.7: 16293346.0000 - val_fn0.7: 1142801.0000 - val_precision0.7: 0.9080 - val_recall0.7: 0.6387 - val_tp0.9: 1443951.0000 - val_fp0.9: 46830.0000 - val_tn0.9: 16451116.0000 - val_fn0.9 : 1718903.0000 - val_precision0.9: 0.9686 - val_recall0.9: 0.4565 - val_accuracy: 0.9359 - val_auc: 0.9250 - val_f1: 0.2772 Epoch 10/20 300/300 [==============================] - 110s 367ms/step - loss: 0.5662 - tp0.1: 10352395.0000 - fp0.1: 8545400.0000 - tn0.1: 58128032.0000 - fn0.1: 1617372.0000 - precision0.1: 0.5478 - recall0.1: 0.8649 - tp0.3: 9453462.0000 - fp0.3: 3297727.0000 - tn0.3: 63375704.0000 - fn0.3: 2516305.0000 - precision0.3: 0.7414 - recall0.3: 0.7898 - tp0.5: 8780933.0000 - fp0.5: 180115 0.0000 - tn0.5: 64872296.0000 - fn0.5: 3188834.0000 - precision0.5: 0.8298 - recall0.5: 0.7336 - tp0.7: 7844065.0000 - fp0.7: 860857.0000 - tn0.7: 65812548.0000 - fn0.7: 4125702.0000 - pre cision0.7: 0.9011 - recall0.7: 0.6553 - tp0.9: 5892491.0000 - fp0.9: 202051.0000 - tn0.9: 66471364.0000 - fn0.9: 6077276.0000 - precision0.9: 0.9668 - recall0.9: 0.4923 - accuracy: 0.9365 - auc: 0.9156 - f1: 0.2642 - val_loss: 0.5278 - val_tp0.1: 2876358.0000 - val_fp0.1: 2715037.0000 - val_tn0.1: 13782909.0000 - val_fn0.1: 286496.0000 - val_precision0.1: 0.5144 - val_recal l0.1: 0.9094 - val_tp0.3: 2636089.0000 - val_fp0.3: 1014420.0000 - val_tn0.3: 15483526.0000 - val_fn0.3: 526765.0000 - val_precision0.3: 0.7221 - val_recall0.3: 0.8335 - val_tp0.5: 2435712 .0000 - val_fp0.5: 548278.0000 - val_tn0.5: 15949668.0000 - val_fn0.5: 727142.0000 - val_precision0.5: 0.8163 - val_recall0.5: 0.7701 - val_tp0.7: 2160433.0000 - val_fp0.7: 261165.0000 - v al_tn0.7: 16236781.0000 - val_fn0.7: 1002421.0000 - val_precision0.7: 0.8922 - val_recall0.7: 0.6831 - val_tp0.9: 1556420.0000 - val_fp0.9: 50492.0000 - val_tn0.9: 16447454.0000 - val_fn0. 9: 1606434.0000 - val_precision0.9: 0.9686 - val_recall0.9: 0.4921 - val_accuracy: 0.9351 - val_auc: 0.9348 - val_f1: 0.2772 Epoch 11/20 300/300 [==============================] - 110s 367ms/step - loss: 0.5610 - tp0.1: 10373608.0000 - fp0.1: 8572388.0000 - tn0.1: 58101040.0000 - fn0.1: 1596159.0000 - precision0.1: 0.5475 - recall0.1: 0.8667 - tp0.3: 9468020.0000 - fp0.3: 3221384.0000 - tn0.3: 63452048.0000 - fn0.3: 2501747.0000 - precision0.3: 0.7461 - recall0.3: 0.7910 - tp0.5: 8789688.0000 - fp0.5: 173793 5.0000 - tn0.5: 64935508.0000 - fn0.5: 3180079.0000 - precision0.5: 0.8349 - recall0.5: 0.7343 - tp0.7: 7882409.0000 - fp0.7: 841710.0000 - tn0.7: 65831744.0000 - fn0.7: 4087358.0000 - pre cision0.7: 0.9035 - recall0.7: 0.6585 - tp0.9: 5966113.0000 - fp0.9: 196483.0000 - tn0.9: 66476952.0000 - fn0.9: 6003654.0000 - precision0.9: 0.9681 - recall0.9: 0.4984 - accuracy: 0.9375 - auc: 0.9166 - f1: 0.2642 - val_loss: 0.5227 - val_tp0.1: 2833580.0000 - val_fp0.1: 2220007.0000 - val_tn0.1: 14277939.0000 - val_fn0.1: 329274.0000 - val_precision0.1: 0.5607 - val_recal l0.1: 0.8959 - val_tp0.3: 2545954.0000 - val_fp0.3: 744480.0000 - val_tn0.3: 15753466.0000 - val_fn0.3: 616900.0000 - val_precision0.3: 0.7737 - val_recall0.3: 0.8050 - val_tp0.5: 2303452. 0000 - val_fp0.5: 376141.0000 - val_tn0.5: 16121805.0000 - val_fn0.5: 859402.0000 - val_precision0.5: 0.8596 - val_recall0.5: 0.7283 - val_tp0.7: 1971041.0000 - val_fp0.7: 160456.0000 - va l_tn0.7: 16337490.0000 - val_fn0.7: 1191813.0000 - val_precision0.7: 0.9247 - val_recall0.7: 0.6232 - val_tp0.9: 1375228.0000 - val_fp0.9: 28055.0000 - val_tn0.9: 16469891.0000 - val_fn0.9 : 1787626.0000 - val_precision0.9: 0.9800 - val_recall0.9: 0.4348 - val_accuracy: 0.9372 - val_auc: 0.9312 - val_f1: 0.2772 Epoch 12/20 300/300 [==============================] - 110s 366ms/step - loss: 0.5516 - tp0.1: 10421559.0000 - fp0.1: 8658554.0000 - tn0.1: 58014880.0000 - fn0.1: 1548208.0000 - precision0.1: 0.5462 - recall0.1: 0.8707 - tp0.3: 9509353.0000 - fp0.3: 3240736.0000 - tn0.3: 63432728.0000 - fn0.3: 2460414.0000 - precision0.3: 0.7458 - recall0.3: 0.7944 - tp0.5: 8835728.0000 - fp0.5: 174437 1.0000 - tn0.5: 64929060.0000 - fn0.5: 3134039.0000 - precision0.5: 0.8351 - recall0.5: 0.7382 - tp0.7: 7935785.0000 - fp0.7: 836444.0000 - tn0.7: 65836992.0000 - fn0.7: 4033982.0000 - pre cision0.7: 0.9046 - recall0.7: 0.6630 - tp0.9: 6021972.0000 - fp0.9: 194282.0000 - tn0.9: 66479164.0000 - fn0.9: 5947795.0000 - precision0.9: 0.9687 - recall0.9: 0.5031 - accuracy: 0.9380 - auc: 0.9190 - f1: 0.2642 - val_loss: 0.5259 - val_tp0.1: 2813028.0000 - val_fp0.1: 2078752.0000 - val_tn0.1: 14419194.0000 - val_fn0.1: 349826.0000 - val_precision0.1: 0.5751 - val_recal l0.1: 0.8894 - val_tp0.3: 2528314.0000 - val_fp0.3: 706366.0000 - val_tn0.3: 15791580.0000 - val_fn0.3: 634540.0000 - val_precision0.3: 0.7816 - val_recall0.3: 0.7994 - val_tp0.5: 2316024. 0000 - val_fp0.5: 388662.0000 - val_tn0.5: 16109284.0000 - val_fn0.5: 846830.0000 - val_precision0.5: 0.8563 - val_recall0.5: 0.7323 - val_tp0.7: 2044271.0000 - val_fp0.7: 193248.0000 - va l_tn0.7: 16304698.0000 - val_fn0.7: 1118583.0000 - val_precision0.7: 0.9136 - val_recall0.7: 0.6463 - val_tp0.9: 1538039.0000 - val_fp0.9: 48557.0000 - val_tn0.9: 16449389.0000 - val_fn0.9 : 1624815.0000 - val_precision0.9: 0.9694 - val_recall0.9: 0.4863 - val_accuracy: 0.9372 - val_auc: 0.9290 - val_f1: 0.2772 Epoch 13/20 300/300 [==============================] - 110s 366ms/step - loss: 0.5454 - tp0.1: 10439462.0000 - fp0.1: 8578643.0000 - tn0.1: 58094796.0000 - fn0.1: 1530305.0000 - precision0.1: 0.5489 - recall0.1: 0.8722 - tp0.3: 9511162.0000 - fp0.3: 3179906.0000 - tn0.3: 63493568.0000 - fn0.3: 2458605.0000 - precision0.3: 0.7494 - recall0.3: 0.7946 - tp0.5: 8819389.0000 - fp0.5: 168064 2.0000 - tn0.5: 64992792.0000 - fn0.5: 3150378.0000 - precision0.5: 0.8399 - recall0.5: 0.7368 - tp0.7: 7930729.0000 - fp0.7: 810316.0000 - tn0.7: 65863144.0000 - fn0.7: 4039038.0000 - pre cision0.7: 0.9073 - recall0.7: 0.6626 - tp0.9: 6037837.0000 - fp0.9: 190230.0000 - tn0.9: 66483196.0000 - fn0.9: 5931930.0000 - precision0.9: 0.9695 - recall0.9: 0.5044 - accuracy: 0.9386 - auc: 0.9201 - f1: 0.2642 - val_loss: 0.5152 - val_tp0.1: 2825402.0000 - val_fp0.1: 2086657.0000 - val_tn0.1: 14411289.0000 - val_fn0.1: 337452.0000 - val_precision0.1: 0.5752 - val_recal l0.1: 0.8933 - val_tp0.3: 2573708.0000 - val_fp0.3: 777952.0000 - val_tn0.3: 15719994.0000 - val_fn0.3: 589146.0000 - val_precision0.3: 0.7679 - val_recall0.3: 0.8137 - val_tp0.5: 2360881. 0000 - val_fp0.5: 416427.0000 - val_tn0.5: 16081519.0000 - val_fn0.5: 801973.0000 - val_precision0.5: 0.8501 - val_recall0.5: 0.7464 - val_tp0.7: 2074036.0000 - val_fp0.7: 196402.0000 - va l_tn0.7: 16301544.0000 - val_fn0.7: 1088818.0000 - val_precision0.7: 0.9135 - val_recall0.7: 0.6557 - val_tp0.9: 1511886.0000 - val_fp0.9: 41512.0000 - val_tn0.9: 16456434.0000 - val_fn0.9 : 1650968.0000 - val_precision0.9: 0.9733 - val_recall0.9: 0.4780 - val_accuracy: 0.9380 - val_auc: 0.9310 - val_f1: 0.2772 Epoch 14/20 300/300 [==============================] - 110s 366ms/step - loss: 0.5443 - tp0.1: 10444511.0000 - fp0.1: 8600961.0000 - tn0.1: 58072476.0000 - fn0.1: 1525256.0000 - precision0.1: 0.5484 - recall0.1: 0.8726 - tp0.3: 9538913.0000 - fp0.3: 3252925.0000 - tn0.3: 63420496.0000 - fn0.3: 2430854.0000 - precision0.3: 0.7457 - recall0.3: 0.7969 - tp0.5: 8849106.0000 - fp0.5: 171047 5.0000 - tn0.5: 64962976.0000 - fn0.5: 3120661.0000 - precision0.5: 0.8380 - recall0.5: 0.7393 - tp0.7: 7973420.0000 - fp0.7: 827235.0000 - tn0.7: 65846200.0000 - fn0.7: 3996347.0000 - pre cision0.7: 0.9060 - recall0.7: 0.6661 - tp0.9: 6091812.0000 - fp0.9: 195928.0000 - tn0.9: 66477488.0000 - fn0.9: 5877955.0000 - precision0.9: 0.9688 - recall0.9: 0.5089 - accuracy: 0.9386 - auc: 0.9203 - f1: 0.2642 - val_loss: 0.5191 - val_tp0.1: 2826998.0000 - val_fp0.1: 2155571.0000 - val_tn0.1: 14342375.0000 - val_fn0.1: 335856.0000 - val_precision0.1: 0.5674 - val_recal l0.1: 0.8938 - val_tp0.3: 2586837.0000 - val_fp0.3: 829620.0000 - val_tn0.3: 15668326.0000 - val_fn0.3: 576017.0000 - val_precision0.3: 0.7572 - val_recall0.3: 0.8179 - val_tp0.5: 2383398. 0000 - val_fp0.5: 453397.0000 - val_tn0.5: 16044549.0000 - val_fn0.5: 779456.0000 - val_precision0.5: 0.8402 - val_recall0.5: 0.7536 - val_tp0.7: 2122357.0000 - val_fp0.7: 227187.0000 - va l_tn0.7: 16270759.0000 - val_fn0.7: 1040497.0000 - val_precision0.7: 0.9033 - val_recall0.7: 0.6710 - val_tp0.9: 1608918.0000 - val_fp0.9: 56008.0000 - val_tn0.9: 16441938.0000 - val_fn0.9 : 1553936.0000 - val_precision0.9: 0.9664 - val_recall0.9: 0.5087 - val_accuracy: 0.9373 - val_auc: 0.9305 - val_f1: 0.2772 Epoch 15/20 300/300 [==============================] - 110s 367ms/step - loss: 0.5447 - tp0.1: 10433601.0000 - fp0.1: 8522557.0000 - tn0.1: 58150872.0000 - fn0.1: 1536166.0000 - precision0.1: 0.5504 - recall0.1: 0.8717 - tp0.3: 9526040.0000 - fp0.3: 3191360.0000 - tn0.3: 63482064.0000 - fn0.3: 2443727.0000 - precision0.3: 0.7491 - recall0.3: 0.7958 - tp0.5: 8837031.0000 - fp0.5: 167970 9.0000 - tn0.5: 64993724.0000 - fn0.5: 3132736.0000 - precision0.5: 0.8403 - recall0.5: 0.7383 - tp0.7: 7952386.0000 - fp0.7: 812351.0000 - tn0.7: 65861096.0000 - fn0.7: 4017381.0000 - pre cision0.7: 0.9073 - recall0.7: 0.6644 - tp0.9: 6066606.0000 - fp0.9: 190872.0000 - tn0.9: 66482528.0000 - fn0.9: 5903161.0000 - precision0.9: 0.9695 - recall0.9: 0.5068 - accuracy: 0.9388 - auc: 0.9200 - f1: 0.2642 - val_loss: 0.5173 - val_tp0.1: 2837321.0000 - val_fp0.1: 2234345.0000 - val_tn0.1: 14263601.0000 - val_fn0.1: 325533.0000 - val_precision0.1: 0.5594 - val_recal l0.1: 0.8971 - val_tp0.3: 2592118.0000 - val_fp0.3: 832258.0000 - val_tn0.3: 15665688.0000 - val_fn0.3: 570736.0000 - val_precision0.3: 0.7570 - val_recall0.3: 0.8196 - val_tp0.5: 2384808. 0000 - val_fp0.5: 447800.0000 - val_tn0.5: 16050146.0000 - val_fn0.5: 778046.0000 - val_precision0.5: 0.8419 - val_recall0.5: 0.7540 - val_tp0.7: 2112938.0000 - val_fp0.7: 217396.0000 - va l_tn0.7: 16280550.0000 - val_fn0.7: 1049916.0000 - val_precision0.7: 0.9067 - val_recall0.7: 0.6680 - val_tp0.9: 1562455.0000 - val_fp0.9: 48138.0000 - val_tn0.9: 16449808.0000 - val_fn0.9 : 1600399.0000 - val_precision0.9: 0.9701 - val_recall0.9: 0.4940 - val_accuracy: 0.9377 - val_auc: 0.9318 - val_f1: 0.2772 Epoch 16/20 300/300 [==============================] - 110s 367ms/step - loss: 0.5470 - tp0.1: 10446770.0000 - fp0.1: 8763433.0000 - tn0.1: 57909992.0000 - fn0.1: 1522997.0000 - precision0.1: 0.5438 - recall0.1: 0.8728 - tp0.3: 9531541.0000 - fp0.3: 3286354.0000 - tn0.3: 63387068.0000 - fn0.3: 2438226.0000 - precision0.3: 0.7436 - recall0.3: 0.7963 - tp0.5: 8849773.0000 - fp0.5: 174540 6.0000 - tn0.5: 64928032.0000 - fn0.5: 3119994.0000 - precision0.5: 0.8353 - recall0.5: 0.7393 - tp0.7: 7984098.0000 - fp0.7: 851547.0000 - tn0.7: 65821888.0000 - fn0.7: 3985669.0000 - pre cision0.7: 0.9036 - recall0.7: 0.6670 - tp0.9: 6119565.0000 - fp0.9: 198791.0000 - tn0.9: 66474608.0000 - fn0.9: 5850202.0000 - precision0.9: 0.9685 - recall0.9: 0.5113 - accuracy: 0.9381 - auc: 0.9200 - f1: 0.2642 - val_loss: 0.5199 - val_tp0.1: 2830415.0000 - val_fp0.1: 2198213.0000 - val_tn0.1: 14299733.0000 - val_fn0.1: 332439.0000 - val_precision0.1: 0.5629 - val_recal l0.1: 0.8949 - val_tp0.3: 2585794.0000 - val_fp0.3: 826003.0000 - val_tn0.3: 15671943.0000 - val_fn0.3: 577060.0000 - val_precision0.3: 0.7579 - val_recall0.3: 0.8176 - val_tp0.5: 2380750. 0000 - val_fp0.5: 448412.0000 - val_tn0.5: 16049534.0000 - val_fn0.5: 782104.0000 - val_precision0.5: 0.8415 - val_recall0.5: 0.7527 - val_tp0.7: 2117268.0000 - val_fp0.7: 222683.0000 - va l_tn0.7: 16275263.0000 - val_fn0.7: 1045586.0000 - val_precision0.7: 0.9048 - val_recall0.7: 0.6694 - val_tp0.9: 1600774.0000 - val_fp0.9: 54219.0000 - val_tn0.9: 16443727.0000 - val_fn0.9 : 1562080.0000 - val_precision0.9: 0.9672 - val_recall0.9: 0.5061 - val_accuracy: 0.9374 - val_auc: 0.9309 - val_f1: 0.2772 Epoch 17/20 300/300 [==============================] - 110s 366ms/step - loss: 0.5479 - tp0.1: 10435195.0000 - fp0.1: 8675069.0000 - tn0.1: 57998372.0000 - fn0.1: 1534572.0000 - precision0.1: 0.5461 - recall0.1: 0.8718 - tp0.3: 9510450.0000 - fp0.3: 3192019.0000 - tn0.3: 63481376.0000 - fn0.3: 2459317.0000 - precision0.3: 0.7487 - recall0.3: 0.7945 - tp0.5: 8815376.0000 - fp0.5: 168445 9.0000 - tn0.5: 64988968.0000 - fn0.5: 3154391.0000 - precision0.5: 0.8396 - recall0.5: 0.7365 - tp0.7: 7941450.0000 - fp0.7: 818142.0000 - tn0.7: 65855296.0000 - fn0.7: 4028317.0000 - pre cision0.7: 0.9066 - recall0.7: 0.6635 - tp0.9: 6071147.0000 - fp0.9: 191455.0000 - tn0.9: 66481988.0000 - fn0.9: 5898620.0000 - precision0.9: 0.9694 - recall0.9: 0.5072 - accuracy: 0.9385 - auc: 0.9197 - f1: 0.2642 - val_loss: 0.5189 - val_tp0.1: 2828825.0000 - val_fp0.1: 2176033.0000 - val_tn0.1: 14321913.0000 - val_fn0.1: 334029.0000 - val_precision0.1: 0.5652 - val_recal l0.1: 0.8944 - val_tp0.3: 2585975.0000 - val_fp0.3: 823670.0000 - val_tn0.3: 15674276.0000 - val_fn0.3: 576879.0000 - val_precision0.3: 0.7584 - val_recall0.3: 0.8176 - val_tp0.5: 2383653. 0000 - val_fp0.5: 450199.0000 - val_tn0.5: 16047747.0000 - val_fn0.5: 779201.0000 - val_precision0.5: 0.8411 - val_recall0.5: 0.7536 - val_tp0.7: 2121977.0000 - val_fp0.7: 224378.0000 - va l_tn0.7: 16273568.0000 - val_fn0.7: 1040877.0000 - val_precision0.7: 0.9044 - val_recall0.7: 0.6709 - val_tp0.9: 1604835.0000 - val_fp0.9: 54571.0000 - val_tn0.9: 16443375.0000 - val_fn0.9 : 1558019.0000 - val_precision0.9: 0.9671 - val_recall0.9: 0.5074 - val_accuracy: 0.9375 - val_auc: 0.9309 - val_f1: 0.2772 Epoch 18/20 300/300 [==============================] - 110s 367ms/step - loss: 0.5454 - tp0.1: 10442547.0000 - fp0.1: 8683315.0000 - tn0.1: 57990116.0000 - fn0.1: 1527220.0000 - precision0.1: 0.5460 - recall0.1: 0.8724 - tp0.3: 9524521.0000 - fp0.3: 3195203.0000 - tn0.3: 63478232.0000 - fn0.3: 2445246.0000 - precision0.3: 0.7488 - recall0.3: 0.7957 - tp0.5: 8838166.0000 - fp0.5: 167403 0.0000 - tn0.5: 64999392.0000 - fn0.5: 3131601.0000 - precision0.5: 0.8408 - recall0.5: 0.7384 - tp0.7: 7963121.0000 - fp0.7: 806164.0000 - tn0.7: 65867296.0000 - fn0.7: 4006646.0000 - pre cision0.7: 0.9081 - recall0.7: 0.6653 - tp0.9: 6093558.0000 - fp0.9: 189519.0000 - tn0.9: 66483896.0000 - fn0.9: 5876209.0000 - precision0.9: 0.9698 - recall0.9: 0.5091 - accuracy: 0.9389 - auc: 0.9202 - f1: 0.2642 - val_loss: 0.5184 - val_tp0.1: 2832372.0000 - val_fp0.1: 2204134.0000 - val_tn0.1: 14293812.0000 - val_fn0.1: 330482.0000 - val_precision0.1: 0.5624 - val_recal l0.1: 0.8955 - val_tp0.3: 2594182.0000 - val_fp0.3: 844891.0000 - val_tn0.3: 15653055.0000 - val_fn0.3: 568672.0000 - val_precision0.3: 0.7543 - val_recall0.3: 0.8202 - val_tp0.5: 2395380. 0000 - val_fp0.5: 464502.0000 - val_tn0.5: 16033444.0000 - val_fn0.5: 767474.0000 - val_precision0.5: 0.8376 - val_recall0.5: 0.7573 - val_tp0.7: 2138310.0000 - val_fp0.7: 234231.0000 - va l_tn0.7: 16263715.0000 - val_fn0.7: 1024544.0000 - val_precision0.7: 0.9013 - val_recall0.7: 0.6761 - val_tp0.9: 1623105.0000 - val_fp0.9: 57407.0000 - val_tn0.9: 16440539.0000 - val_fn0.9 : 1539749.0000 - val_precision0.9: 0.9658 - val_recall0.9: 0.5132 - val_accuracy: 0.9373 - val_auc: 0.9313 - val_f1: 0.2772 Epoch 19/20 300/300 [==============================] - 110s 366ms/step - loss: 0.5418 - tp0.1: 10456777.0000 - fp0.1: 8641725.0000 - tn0.1: 58031732.0000 - fn0.1: 1512990.0000 - precision0.1: 0.5475 - recall0.1: 0.8736 - tp0.3: 9535623.0000 - fp0.3: 3181102.0000 - tn0.3: 63492344.0000 - fn0.3: 2434144.0000 - precision0.3: 0.7498 - recall0.3: 0.7966 - tp0.5: 8844625.0000 - fp0.5: 167217 5.0000 - tn0.5: 65001264.0000 - fn0.5: 3125142.0000 - precision0.5: 0.8410 - recall0.5: 0.7389 - tp0.7: 7965635.0000 - fp0.7: 804103.0000 - tn0.7: 65869328.0000 - fn0.7: 4004132.0000 - pre cision0.7: 0.9083 - recall0.7: 0.6655 - tp0.9: 6091897.0000 - fp0.9: 189993.0000 - tn0.9: 66483440.0000 - fn0.9: 5877870.0000 - precision0.9: 0.9698 - recall0.9: 0.5089 - accuracy: 0.9390 - auc: 0.9210 - f1: 0.2642 - val_loss: 0.5190 - val_tp0.1: 2831559.0000 - val_fp0.1: 2201859.0000 - val_tn0.1: 14296087.0000 - val_fn0.1: 331295.0000 - val_precision0.1: 0.5626 - val_recal l0.1: 0.8953 - val_tp0.3: 2592759.0000 - val_fp0.3: 841402.0000 - val_tn0.3: 15656544.0000 - val_fn0.3: 570095.0000 - val_precision0.3: 0.7550 - val_recall0.3: 0.8198 - val_tp0.5: 2393128. 0000 - val_fp0.5: 461852.0000 - val_tn0.5: 16036094.0000 - val_fn0.5: 769726.0000 - val_precision0.5: 0.8382 - val_recall0.5: 0.7566 - val_tp0.7: 2135701.0000 - val_fp0.7: 232684.0000 - va l_tn0.7: 16265262.0000 - val_fn0.7: 1027153.0000 - val_precision0.7: 0.9018 - val_recall0.7: 0.6752 - val_tp0.9: 1622963.0000 - val_fp0.9: 57421.0000 - val_tn0.9: 16440525.0000 - val_fn0.9 : 1539891.0000 - val_precision0.9: 0.9658 - val_recall0.9: 0.5131 - val_accuracy: 0.9374 - val_auc: 0.9311 - val_f1: 0.2772 Epoch 20/20 300/300 [==============================] - 110s 366ms/step - loss: 0.5454 - tp0.1: 10445310.0000 - fp0.1: 8664704.0000 - tn0.1: 58008732.0000 - fn0.1: 1524457.0000 - precision0.1: 0.5466 - recall0.1: 0.8726 - tp0.3: 9522539.0000 - fp0.3: 3185766.0000 - tn0.3: 63487664.0000 - fn0.3: 2447228.0000 - precision0.3: 0.7493 - recall0.3: 0.7955 - tp0.5: 8829214.0000 - fp0.5: 167729 6.0000 - tn0.5: 64996140.0000 - fn0.5: 3140553.0000 - precision0.5: 0.8404 - recall0.5: 0.7376 - tp0.7: 7945247.0000 - fp0.7: 812426.0000 - tn0.7: 65861008.0000 - fn0.7: 4024520.0000 - pre cision0.7: 0.9072 - recall0.7: 0.6638 - tp0.9: 6065229.0000 - fp0.9: 190972.0000 - tn0.9: 66482444.0000 - fn0.9: 5904538.0000 - precision0.9: 0.9695 - recall0.9: 0.5067 - accuracy: 0.9387 - auc: 0.9203 - f1: 0.2642 - val_loss: 0.5199 - val_tp0.1: 2827480.0000 - val_fp0.1: 2173312.0000 - val_tn0.1: 14324634.0000 - val_fn0.1: 335374.0000 - val_precision0.1: 0.5654 - val_recal l0.1: 0.8940 - val_tp0.3: 2584623.0000 - val_fp0.3: 824555.0000 - val_tn0.3: 15673391.0000 - val_fn0.3: 578231.0000 - val_precision0.3: 0.7581 - val_recall0.3: 0.8172 - val_tp0.5: 2381163. 0000 - val_fp0.5: 449934.0000 - val_tn0.5: 16048012.0000 - val_fn0.5: 781691.0000 - val_precision0.5: 0.8411 - val_recall0.5: 0.7529 - val_tp0.7: 2119470.0000 - val_fp0.7: 224462.0000 - va l_tn0.7: 16273484.0000 - val_fn0.7: 1043384.0000 - val_precision0.7: 0.9042 - val_recall0.7: 0.6701 - val_tp0.9: 1605312.0000 - val_fp0.9: 55121.0000 - val_tn0.9: 16442825.0000 - val_fn0.9 : 1557542.0000 - val_precision0.9: 0.9668 - val_recall0.9: 0.5076 - val_accuracy: 0.9374 - val_auc: 0.9306 - val_f1: 0.2772 --- Running training session 58/140 {'hp_epochs': 20, 'hp_batch_size': 16, 'hp_scaler': 'standard', 'hp_n_levels': 3, 'hp_first_filters': 64, 'hp_pool_size': 2, 'hp_input_size': 16384, 'hp_lr_start': 0.05209134418613575, 'hp _lr_power': 5.0} --- repeat #: 2 input - shape: (None, 16384, 1) output - shape: (None, 16384, 1) Epoch 1/20 300/300 [==============================] - 129s 378ms/step - loss: 1.1658 - tp0.1: 9830604.0000 - fp0.1: 16232549.0000 - tn0.1: 50440888.0000 - fn0.1: 2139163.0000 - precision0.1: 0.3772 - recall0.1: 0.8213 - tp0.3: 8228708.0000 - fp0.3: 5302541.0000 - tn0.3: 61370904.0000 - fn0.3: 3741059.0000 - precision0.3: 0.6081 - recall0.3: 0.6875 - tp0.5: 6775084.0000 - fp0.5: 211648 8.0000 - tn0.5: 64556952.0000 - fn0.5: 5194683.0000 - precision0.5: 0.7620 - recall0.5: 0.5660 - tp0.7: 5350792.0000 - fp0.7: 805898.0000 - tn0.7: 65867540.0000 - fn0.7: 6618975.0000 - pre cision0.7: 0.8691 - recall0.7: 0.4470 - tp0.9: 3697858.0000 - fp0.9: 194591.0000 - tn0.9: 66478832.0000 - fn0.9: 8271909.0000 - precision0.9: 0.9500 - recall0.9: 0.3089 - accuracy: 0.9070 - auc: 0.8672 - f1: 0.2642 - val_loss: 1.3447 - val_tp0.1: 3029789.0000 - val_fp0.1: 10720478.0000 - val_tn0.1: 5777468.0000 - val_fn0.1: 133065.0000 - val_precision0.1: 0.2203 - val_recal l0.1: 0.9579 - val_tp0.3: 2725924.0000 - val_fp0.3: 5062932.0000 - val_tn0.3: 11435014.0000 - val_fn0.3: 436930.0000 - val_precision0.3: 0.3500 - val_recall0.3: 0.8619 - val_tp0.5: 2519324 .0000 - val_fp0.5: 3056247.0000 - val_tn0.5: 13441699.0000 - val_fn0.5: 643530.0000 - val_precision0.5: 0.4519 - val_recall0.5: 0.7965 - val_tp0.7: 2295185.0000 - val_fp0.7: 1804933.0000 - val_tn0.7: 14693013.0000 - val_fn0.7: 867669.0000 - val_precision0.7: 0.5598 - val_recall0.7: 0.7257 - val_tp0.9: 1906967.0000 - val_fp0.9: 746282.0000 - val_tn0.9: 15751664.0000 - val_fn 0.9: 1255887.0000 - val_precision0.9: 0.7187 - val_recall0.9: 0.6029 - val_accuracy: 0.8118 - val_auc: 0.8811 - val_f1: 0.2772 Epoch 2/20 300/300 [==============================] - 109s 364ms/step - loss: 1.1355 - tp0.1: 9957479.0000 - fp0.1: 13357487.0000 - tn0.1: 53315960.0000 - fn0.1: 2012288.0000 - precision0.1: 0.4271 - recall0.1: 0.8319 - tp0.3: 8569227.0000 - fp0.3: 4466847.0000 - tn0.3: 62206584.0000 - fn0.3: 3400540.0000 - precision0.3: 0.6573 - recall0.3: 0.7159 - tp0.5: 7483729.0000 - fp0.5: 216675 6.0000 - tn0.5: 64506688.0000 - fn0.5: 4486038.0000 - precision0.5: 0.7755 - recall0.5: 0.6252 - tp0.7: 6133208.0000 - fp0.7: 879463.0000 - tn0.7: 65793980.0000 - fn0.7: 5836559.0000 - pre cision0.7: 0.8746 - recall0.7: 0.5124 - tp0.9: 4221172.0000 - fp0.9: 179821.0000 - tn0.9: 66493600.0000 - fn0.9: 7748595.0000 - precision0.9: 0.9591 - recall0.9: 0.3527 - accuracy: 0.9154 - auc: 0.8904 - f1: 0.2642 - val_loss: 1.1731 - val_tp0.1: 3054894.0000 - val_fp0.1: 9937096.0000 - val_tn0.1: 6560850.0000 - val_fn0.1: 107960.0000 - val_precision0.1: 0.2351 - val_recall 0.1: 0.9659 - val_tp0.3: 2783981.0000 - val_fp0.3: 3337977.0000 - val_tn0.3: 13159969.0000 - val_fn0.3: 378873.0000 - val_precision0.3: 0.4548 - val_recall0.3: 0.8802 - val_tp0.5: 2388364. 0000 - val_fp0.5: 1174330.0000 - val_tn0.5: 15323616.0000 - val_fn0.5: 774490.0000 - val_precision0.5: 0.6704 - val_recall0.5: 0.7551 - val_tp0.7: 1964516.0000 - val_fp0.7: 504808.0000 - v al_tn0.7: 15993138.0000 - val_fn0.7: 1198338.0000 - val_precision0.7: 0.7956 - val_recall0.7: 0.6211 - val_tp0.9: 1396619.0000 - val_fp0.9: 139367.0000 - val_tn0.9: 16358579.0000 - val_fn0 .9: 1766235.0000 - val_precision0.9: 0.9093 - val_recall0.9: 0.4416 - val_accuracy: 0.9009 - val_auc: 0.9170 - val_f1: 0.2772 Epoch 3/20 300/300 [==============================] - 109s 365ms/step - loss: 1.1191 - tp0.1: 9992425.0000 - fp0.1: 11721660.0000 - tn0.1: 54951760.0000 - fn0.1: 1977342.0000 - precision0.1: 0.4602 - recall0.1: 0.8348 - tp0.3: 8827502.0000 - fp0.3: 4156590.0000 - tn0.3: 62516832.0000 - fn0.3: 3142265.0000 - precision0.3: 0.6799 - recall0.3: 0.7375 - tp0.5: 7896775.0000 - fp0.5: 216438 4.0000 - tn0.5: 64509016.0000 - fn0.5: 4072992.0000 - precision0.5: 0.7849 - recall0.5: 0.6597 - tp0.7: 6592308.0000 - fp0.7: 940147.0000 - tn0.7: 65733296.0000 - fn0.7: 5377459.0000 - pre cision0.7: 0.8752 - recall0.7: 0.5507 - tp0.9: 4505055.0000 - fp0.9: 193708.0000 - tn0.9: 66479780.0000 - fn0.9: 7464712.0000 - precision0.9: 0.9588 - recall0.9: 0.3764 - accuracy: 0.9207 - auc: 0.9016 - f1: 0.2642 - val_loss: 1.1653 - val_tp0.1: 2999133.0000 - val_fp0.1: 7651011.0000 - val_tn0.1: 8846935.0000 - val_fn0.1: 163721.0000 - val_precision0.1: 0.2816 - val_recall 0.1: 0.9482 - val_tp0.3: 2753881.0000 - val_fp0.3: 2809322.0000 - val_tn0.3: 13688624.0000 - val_fn0.3: 408973.0000 - val_precision0.3: 0.4950 - val_recall0.3: 0.8707 - val_tp0.5: 2575607. 0000 - val_fp0.5: 1604092.0000 - val_tn0.5: 14893854.0000 - val_fn0.5: 587247.0000 - val_precision0.5: 0.6162 - val_recall0.5: 0.8143 - val_tp0.7: 2325512.0000 - val_fp0.7: 840619.0000 - v al_tn0.7: 15657327.0000 - val_fn0.7: 837342.0000 - val_precision0.7: 0.7345 - val_recall0.7: 0.7353 - val_tp0.9: 1883413.0000 - val_fp0.9: 305362.0000 - val_tn0.9: 16192584.0000 - val_fn0. 9: 1279441.0000 - val_precision0.9: 0.8605 - val_recall0.9: 0.5955 - val_accuracy: 0.8885 - val_auc: 0.9234 - val_f1: 0.2772 Epoch 4/20 300/300 [==============================] - 109s 364ms/step - loss: 0.7296 - tp0.1: 9976082.0000 - fp0.1: 10739149.0000 - tn0.1: 55934272.0000 - fn0.1: 1993685.0000 - precision0.1: 0.4816 - recall0.1: 0.8334 - tp0.3: 8926198.0000 - fp0.3: 4393527.0000 - tn0.3: 62279884.0000 - fn0.3: 3043569.0000 - precision0.3: 0.6701 - recall0.3: 0.7457 - tp0.5: 7905026.0000 - fp0.5: 217465 0.0000 - tn0.5: 64498764.0000 - fn0.5: 4064741.0000 - precision0.5: 0.7843 - recall0.5: 0.6604 - tp0.7: 6608527.0000 - fp0.7: 943676.0000 - tn0.7: 65729772.0000 - fn0.7: 5361240.0000 - pre cision0.7: 0.8750 - recall0.7: 0.5521 - tp0.9: 4494816.0000 - fp0.9: 193397.0000 - tn0.9: 66480032.0000 - fn0.9: 7474951.0000 - precision0.9: 0.9587 - recall0.9: 0.3755 - accuracy: 0.9207 - auc: 0.8902 - f1: 0.2642 - val_loss: 0.9724 - val_tp0.1: 2946822.0000 - val_fp0.1: 7011140.0000 - val_tn0.1: 9486806.0000 - val_fn0.1: 216032.0000 - val_precision0.1: 0.2959 - val_recall 0.1: 0.9317 - val_tp0.3: 2828230.0000 - val_fp0.3: 4270134.0000 - val_tn0.3: 12227812.0000 - val_fn0.3: 334624.0000 - val_precision0.3: 0.3984 - val_recall0.3: 0.8942 - val_tp0.5: 2748329. 0000 - val_fp0.5: 3138657.0000 - val_tn0.5: 13359289.0000 - val_fn0.5: 414525.0000 - val_precision0.5: 0.4668 - val_recall0.5: 0.8689 - val_tp0.7: 2589983.0000 - val_fp0.7: 1878374.0000 - val_tn0.7: 14619572.0000 - val_fn0.7: 572871.0000 - val_precision0.7: 0.5796 - val_recall0.7: 0.8189 - val_tp0.9: 2101517.0000 - val_fp0.9: 517482.0000 - val_tn0.9: 15980464.0000 - val_fn0 .9: 1061337.0000 - val_precision0.9: 0.8024 - val_recall0.9: 0.6644 - val_accuracy: 0.8193 - val_auc: 0.9128 - val_f1: 0.2772 Epoch 5/20 300/300 [==============================] - 109s 363ms/step - loss: 0.6529 - tp0.1: 10122261.0000 - fp0.1: 9591155.0000 - tn0.1: 57082268.0000 - fn0.1: 1847506.0000 - precision0.1: 0.5135 - recall0.1: 0.8457 - tp0.3: 9144708.0000 - fp0.3: 3989412.0000 - tn0.3: 62684028.0000 - fn0.3: 2825059.0000 - precision0.3: 0.6963 - recall0.3: 0.7640 - tp0.5: 8259383.0000 - fp0.5: 210977 9.0000 - tn0.5: 64563668.0000 - fn0.5: 3710384.0000 - precision0.5: 0.7965 - recall0.5: 0.6900 - tp0.7: 7094469.0000 - fp0.7: 988158.0000 - tn0.7: 65685280.0000 - fn0.7: 4875298.0000 - pre cision0.7: 0.8777 - recall0.7: 0.5927 - tp0.9: 4946279.0000 - fp0.9: 215942.0000 - tn0.9: 66457496.0000 - fn0.9: 7023488.0000 - precision0.9: 0.9582 - recall0.9: 0.4132 - accuracy: 0.9260 - auc: 0.8999 - f1: 0.2642 - val_loss: 0.9432 - val_tp0.1: 3012100.0000 - val_fp0.1: 7946515.0000 - val_tn0.1: 8551431.0000 - val_fn0.1: 150754.0000 - val_precision0.1: 0.2749 - val_recall 0.1: 0.9523 - val_tp0.3: 2894544.0000 - val_fp0.3: 4511247.0000 - val_tn0.3: 11986699.0000 - val_fn0.3: 268310.0000 - val_precision0.3: 0.3908 - val_recall0.3: 0.9152 - val_tp0.5: 2779750. 0000 - val_fp0.5: 2798125.0000 - val_tn0.5: 13699821.0000 - val_fn0.5: 383104.0000 - val_precision0.5: 0.4984 - val_recall0.5: 0.8789 - val_tp0.7: 2629141.0000 - val_fp0.7: 1703471.0000 - val_tn0.7: 14794475.0000 - val_fn0.7: 533713.0000 - val_precision0.7: 0.6068 - val_recall0.7: 0.8313 - val_tp0.9: 2267860.0000 - val_fp0.9: 655578.0000 - val_tn0.9: 15842368.0000 - val_fn0 .9: 894994.0000 - val_precision0.9: 0.7758 - val_recall0.9: 0.7170 - val_accuracy: 0.8382 - val_auc: 0.9243 - val_f1: 0.2772 Epoch 6/20 300/300 [==============================] - 109s 363ms/step - loss: 0.6248 - tp0.1: 10165542.0000 - fp0.1: 8993953.0000 - tn0.1: 57679492.0000 - fn0.1: 1804225.0000 - precision0.1: 0.5306 - recall0.1: 0.8493 - tp0.3: 9220264.0000 - fp0.3: 3729094.0000 - tn0.3: 62944360.0000 - fn0.3: 2749503.0000 - precision0.3: 0.7120 - recall0.3: 0.7703 - tp0.5: 8427138.0000 - fp0.5: 202054 3.0000 - tn0.5: 64652888.0000 - fn0.5: 3542629.0000 - precision0.5: 0.8066 - recall0.5: 0.7040 - tp0.7: 7328827.0000 - fp0.7: 939211.0000 - tn0.7: 65734200.0000 - fn0.7: 4640940.0000 - pre cision0.7: 0.8864 - recall0.7: 0.6123 - tp0.9: 5167941.0000 - fp0.9: 189519.0000 - tn0.9: 66483928.0000 - fn0.9: 6801826.0000 - precision0.9: 0.9646 - recall0.9: 0.4317 - accuracy: 0.9293 - auc: 0.9044 - f1: 0.2642 - val_loss: 0.5511 - val_tp0.1: 2844793.0000 - val_fp0.1: 2570394.0000 - val_tn0.1: 13927552.0000 - val_fn0.1: 318061.0000 - val_precision0.1: 0.5253 - val_recal l0.1: 0.8994 - val_tp0.3: 2684206.0000 - val_fp0.3: 1367923.0000 - val_tn0.3: 15130023.0000 - val_fn0.3: 478648.0000 - val_precision0.3: 0.6624 - val_recall0.3: 0.8487 - val_tp0.5: 2475186 .0000 - val_fp0.5: 730745.0000 - val_tn0.5: 15767201.0000 - val_fn0.5: 687668.0000 - val_precision0.5: 0.7721 - val_recall0.5: 0.7826 - val_tp0.7: 2218398.0000 - val_fp0.7: 388178.0000 - v al_tn0.7: 16109768.0000 - val_fn0.7: 944456.0000 - val_precision0.7: 0.8511 - val_recall0.7: 0.7014 - val_tp0.9: 1713349.0000 - val_fp0.9: 114270.0000 - val_tn0.9: 16383676.0000 - val_fn0. 9: 1449505.0000 - val_precision0.9: 0.9375 - val_recall0.9: 0.5417 - val_accuracy: 0.9279 - val_auc: 0.9285 - val_f1: 0.2772 Epoch 7/20 300/300 [==============================] - 109s 364ms/step - loss: 0.6064 - tp0.1: 10229897.0000 - fp0.1: 8897750.0000 - tn0.1: 57775700.0000 - fn0.1: 1739870.0000 - precision0.1: 0.5348 - recall0.1: 0.8546 - tp0.3: 9283055.0000 - fp0.3: 3514175.0000 - tn0.3: 63159248.0000 - fn0.3: 2686712.0000 - precision0.3: 0.7254 - recall0.3: 0.7755 - tp0.5: 8533348.0000 - fp0.5: 192231 9.0000 - tn0.5: 64751124.0000 - fn0.5: 3436419.0000 - precision0.5: 0.8161 - recall0.5: 0.7129 - tp0.7: 7491425.0000 - fp0.7: 917374.0000 - tn0.7: 65756056.0000 - fn0.7: 4478342.0000 - pre cision0.7: 0.8909 - recall0.7: 0.6259 - tp0.9: 5439611.0000 - fp0.9: 210848.0000 - tn0.9: 66462588.0000 - fn0.9: 6530156.0000 - precision0.9: 0.9627 - recall0.9: 0.4544 - accuracy: 0.9319 - auc: 0.9082 - f1: 0.2642 - val_loss: 0.6010 - val_tp0.1: 2934541.0000 - val_fp0.1: 3995941.0000 - val_tn0.1: 12502005.0000 - val_fn0.1: 228313.0000 - val_precision0.1: 0.4234 - val_recal l0.1: 0.9278 - val_tp0.3: 2764037.0000 - val_fp0.3: 1908942.0000 - val_tn0.3: 14589004.0000 - val_fn0.3: 398817.0000 - val_precision0.3: 0.5915 - val_recall0.3: 0.8739 - val_tp0.5: 2611207 .0000 - val_fp0.5: 1127029.0000 - val_tn0.5: 15370917.0000 - val_fn0.5: 551647.0000 - val_precision0.5: 0.6985 - val_recall0.5: 0.8256 - val_tp0.7: 2388708.0000 - val_fp0.7: 602484.0000 - val_tn0.7: 15895462.0000 - val_fn0.7: 774146.0000 - val_precision0.7: 0.7986 - val_recall0.7: 0.7552 - val_tp0.9: 1910700.0000 - val_fp0.9: 183899.0000 - val_tn0.9: 16314047.0000 - val_fn0 .9: 1252154.0000 - val_precision0.9: 0.9122 - val_recall0.9: 0.6041 - val_accuracy: 0.9146 - val_auc: 0.9353 - val_f1: 0.2772 Epoch 8/20 300/300 [==============================] - 109s 364ms/step - loss: 0.5966 - tp0.1: 10258117.0000 - fp0.1: 8820090.0000 - tn0.1: 57853336.0000 - fn0.1: 1711650.0000 - precision0.1: 0.5377 - recall0.1: 0.8570 - tp0.3: 9332270.0000 - fp0.3: 3494563.0000 - tn0.3: 63178884.0000 - fn0.3: 2637497.0000 - precision0.3: 0.7276 - recall0.3: 0.7797 - tp0.5: 8607177.0000 - fp0.5: 193241 9.0000 - tn0.5: 64741044.0000 - fn0.5: 3362590.0000 - precision0.5: 0.8167 - recall0.5: 0.7191 - tp0.7: 7560035.0000 - fp0.7: 907227.0000 - tn0.7: 65766188.0000 - fn0.7: 4409732.0000 - pre cision0.7: 0.8929 - recall0.7: 0.6316 - tp0.9: 5489005.0000 - fp0.9: 193323.0000 - tn0.9: 66480128.0000 - fn0.9: 6480762.0000 - precision0.9: 0.9660 - recall0.9: 0.4586 - accuracy: 0.9327 - auc: 0.9098 - f1: 0.2642 - val_loss: 0.5360 - val_tp0.1: 2840705.0000 - val_fp0.1: 2432393.0000 - val_tn0.1: 14065553.0000 - val_fn0.1: 322149.0000 - val_precision0.1: 0.5387 - val_recal l0.1: 0.8981 - val_tp0.3: 2541562.0000 - val_fp0.3: 814687.0000 - val_tn0.3: 15683259.0000 - val_fn0.3: 621292.0000 - val_precision0.3: 0.7573 - val_recall0.3: 0.8036 - val_tp0.5: 2332487. 0000 - val_fp0.5: 450050.0000 - val_tn0.5: 16047896.0000 - val_fn0.5: 830367.0000 - val_precision0.5: 0.8383 - val_recall0.5: 0.7375 - val_tp0.7: 2027801.0000 - val_fp0.7: 205102.0000 - va l_tn0.7: 16292844.0000 - val_fn0.7: 1135053.0000 - val_precision0.7: 0.9081 - val_recall0.7: 0.6411 - val_tp0.9: 1478341.0000 - val_fp0.9: 39136.0000 - val_tn0.9: 16458810.0000 - val_fn0.9 : 1684513.0000 - val_precision0.9: 0.9742 - val_recall0.9: 0.4674 - val_accuracy: 0.9349 - val_auc: 0.9309 - val_f1: 0.2772 Epoch 9/20 300/300 [==============================] - 109s 363ms/step - loss: 0.5815 - tp0.1: 10317877.0000 - fp0.1: 8787663.0000 - tn0.1: 57885784.0000 - fn0.1: 1651890.0000 - precision0.1: 0.5400 - recall0.1: 0.8620 - tp0.3: 9391866.0000 - fp0.3: 3385982.0000 - tn0.3: 63287432.0000 - fn0.3: 2577901.0000 - precision0.3: 0.7350 - recall0.3: 0.7846 - tp0.5: 8683886.0000 - fp0.5: 185537 9.0000 - tn0.5: 64818064.0000 - fn0.5: 3285881.0000 - precision0.5: 0.8240 - recall0.5: 0.7255 - tp0.7: 7664640.0000 - fp0.7: 872040.0000 - tn0.7: 65801404.0000 - fn0.7: 4305127.0000 - pre cision0.7: 0.8978 - recall0.7: 0.6403 - tp0.9: 5645583.0000 - fp0.9: 192263.0000 - tn0.9: 66481188.0000 - fn0.9: 6324184.0000 - precision0.9: 0.9671 - recall0.9: 0.4717 - accuracy: 0.9346 - auc: 0.9130 - f1: 0.2642 - val_loss: 0.5508 - val_tp0.1: 2890310.0000 - val_fp0.1: 3133203.0000 - val_tn0.1: 13364743.0000 - val_fn0.1: 272544.0000 - val_precision0.1: 0.4798 - val_recal l0.1: 0.9138 - val_tp0.3: 2582821.0000 - val_fp0.3: 941605.0000 - val_tn0.3: 15556341.0000 - val_fn0.3: 580033.0000 - val_precision0.3: 0.7328 - val_recall0.3: 0.8166 - val_tp0.5: 2342586. 0000 - val_fp0.5: 468856.0000 - val_tn0.5: 16029090.0000 - val_fn0.5: 820268.0000 - val_precision0.5: 0.8332 - val_recall0.5: 0.7407 - val_tp0.7: 2000631.0000 - val_fp0.7: 196312.0000 - va l_tn0.7: 16301634.0000 - val_fn0.7: 1162223.0000 - val_precision0.7: 0.9106 - val_recall0.7: 0.6325 - val_tp0.9: 1393863.0000 - val_fp0.9: 35445.0000 - val_tn0.9: 16462501.0000 - val_fn0.9 : 1768991.0000 - val_precision0.9: 0.9752 - val_recall0.9: 0.4407 - val_accuracy: 0.9344 - val_auc: 0.9339 - val_f1: 0.2772 Epoch 10/20 300/300 [==============================] - 109s 363ms/step - loss: 0.5742 - tp0.1: 10342521.0000 - fp0.1: 8755470.0000 - tn0.1: 57917940.0000 - fn0.1: 1627246.0000 - precision0.1: 0.5416 - recall0.1: 0.8641 - tp0.3: 9412910.0000 - fp0.3: 3294713.0000 - tn0.3: 63378728.0000 - fn0.3: 2556857.0000 - precision0.3: 0.7407 - recall0.3: 0.7864 - tp0.5: 8709465.0000 - fp0.5: 179218 3.0000 - tn0.5: 64881220.0000 - fn0.5: 3260302.0000 - precision0.5: 0.8293 - recall0.5: 0.7276 - tp0.7: 7716001.0000 - fp0.7: 846147.0000 - tn0.7: 65827296.0000 - fn0.7: 4253766.0000 - pre cision0.7: 0.9012 - recall0.7: 0.6446 - tp0.9: 5786134.0000 - fp0.9: 193748.0000 - tn0.9: 66479688.0000 - fn0.9: 6183633.0000 - precision0.9: 0.9676 - recall0.9: 0.4834 - accuracy: 0.9358 - auc: 0.9142 - f1: 0.2642 - val_loss: 0.5714 - val_tp0.1: 2695380.0000 - val_fp0.1: 1362499.0000 - val_tn0.1: 15135447.0000 - val_fn0.1: 467474.0000 - val_precision0.1: 0.6642 - val_recal l0.1: 0.8522 - val_tp0.3: 2331121.0000 - val_fp0.3: 439292.0000 - val_tn0.3: 16058654.0000 - val_fn0.3: 831733.0000 - val_precision0.3: 0.8414 - val_recall0.3: 0.7370 - val_tp0.5: 2008752. 0000 - val_fp0.5: 188756.0000 - val_tn0.5: 16309190.0000 - val_fn0.5: 1154102.0000 - val_precision0.5: 0.9141 - val_recall0.5: 0.6351 - val_tp0.7: 1582146.0000 - val_fp0.7: 59586.0000 - va l_tn0.7: 16438360.0000 - val_fn0.7: 1580708.0000 - val_precision0.7: 0.9637 - val_recall0.7: 0.5002 - val_tp0.9: 896176.0000 - val_fp0.9: 4415.0000 - val_tn0.9: 16493531.0000 - val_fn0.9: 2266678.0000 - val_precision0.9: 0.9951 - val_recall0.9: 0.2833 - val_accuracy: 0.9317 - val_auc: 0.9152 - val_f1: 0.2772 Epoch 11/20 300/300 [==============================] - 109s 364ms/step - loss: 0.5695 - tp0.1: 10353763.0000 - fp0.1: 8713907.0000 - tn0.1: 57959528.0000 - fn0.1: 1616004.0000 - precision0.1: 0.5430 - recall0.1: 0.8650 - tp0.3: 9444896.0000 - fp0.3: 3321969.0000 - tn0.3: 63351480.0000 - fn0.3: 2524871.0000 - precision0.3: 0.7398 - recall0.3: 0.7891 - tp0.5: 8747813.0000 - fp0.5: 180398 4.0000 - tn0.5: 64869452.0000 - fn0.5: 3221954.0000 - precision0.5: 0.8290 - recall0.5: 0.7308 - tp0.7: 7782574.0000 - fp0.7: 853915.0000 - tn0.7: 65819536.0000 - fn0.7: 4187193.0000 - pre cision0.7: 0.9011 - recall0.7: 0.6502 - tp0.9: 5870371.0000 - fp0.9: 194465.0000 - tn0.9: 66479000.0000 - fn0.9: 6099396.0000 - precision0.9: 0.9679 - recall0.9: 0.4904 - accuracy: 0.9361 - auc: 0.9151 - f1: 0.2642 - val_loss: 0.5577 - val_tp0.1: 2892745.0000 - val_fp0.1: 3143327.0000 - val_tn0.1: 13354619.0000 - val_fn0.1: 270109.0000 - val_precision0.1: 0.4792 - val_recal l0.1: 0.9146 - val_tp0.3: 2706166.0000 - val_fp0.3: 1385967.0000 - val_tn0.3: 15111979.0000 - val_fn0.3: 456688.0000 - val_precision0.3: 0.6613 - val_recall0.3: 0.8556 - val_tp0.5: 2567444 .0000 - val_fp0.5: 857066.0000 - val_tn0.5: 15640880.0000 - val_fn0.5: 595410.0000 - val_precision0.5: 0.7497 - val_recall0.5: 0.8117 - val_tp0.7: 2361482.0000 - val_fp0.7: 478495.0000 - v al_tn0.7: 16019451.0000 - val_fn0.7: 801372.0000 - val_precision0.7: 0.8315 - val_recall0.7: 0.7466 - val_tp0.9: 1980797.0000 - val_fp0.9: 176419.0000 - val_tn0.9: 16321527.0000 - val_fn0. 9: 1182057.0000 - val_precision0.9: 0.9182 - val_recall0.9: 0.6263 - val_accuracy: 0.9261 - val_auc: 0.9342 - val_f1: 0.2772 Epoch 12/20 300/300 [==============================] - 109s 364ms/step - loss: 0.5631 - tp0.1: 10359789.0000 - fp0.1: 8488876.0000 - tn0.1: 58184560.0000 - fn0.1: 1609978.0000 - precision0.1: 0.5496 - recall0.1: 0.8655 - tp0.3: 9469292.0000 - fp0.3: 3249710.0000 - tn0.3: 63423736.0000 - fn0.3: 2500475.0000 - precision0.3: 0.7445 - recall0.3: 0.7911 - tp0.5: 8773908.0000 - fp0.5: 173654 4.0000 - tn0.5: 64936880.0000 - fn0.5: 3195859.0000 - precision0.5: 0.8348 - recall0.5: 0.7330 - tp0.7: 7799121.0000 - fp0.7: 807785.0000 - tn0.7: 65865644.0000 - fn0.7: 4170646.0000 - pre cision0.7: 0.9061 - recall0.7: 0.6516 - tp0.9: 5889535.0000 - fp0.9: 186306.0000 - tn0.9: 66487124.0000 - fn0.9: 6080232.0000 - precision0.9: 0.9693 - recall0.9: 0.4920 - accuracy: 0.9373 - auc: 0.9159 - f1: 0.2642 - val_loss: 0.5163 - val_tp0.1: 2823752.0000 - val_fp0.1: 2094434.0000 - val_tn0.1: 14403512.0000 - val_fn0.1: 339102.0000 - val_precision0.1: 0.5741 - val_recal l0.1: 0.8928 - val_tp0.3: 2583025.0000 - val_fp0.3: 825425.0000 - val_tn0.3: 15672521.0000 - val_fn0.3: 579829.0000 - val_precision0.3: 0.7578 - val_recall0.3: 0.8167 - val_tp0.5: 2379325. 0000 - val_fp0.5: 447908.0000 - val_tn0.5: 16050038.0000 - val_fn0.5: 783529.0000 - val_precision0.5: 0.8416 - val_recall0.5: 0.7523 - val_tp0.7: 2087728.0000 - val_fp0.7: 207419.0000 - va l_tn0.7: 16290527.0000 - val_fn0.7: 1075126.0000 - val_precision0.7: 0.9096 - val_recall0.7: 0.6601 - val_tp0.9: 1527766.0000 - val_fp0.9: 40879.0000 - val_tn0.9: 16457067.0000 - val_fn0.9 : 1635088.0000 - val_precision0.9: 0.9739 - val_recall0.9: 0.4830 - val_accuracy: 0.9374 - val_auc: 0.9303 - val_f1: 0.2772 Epoch 13/20 300/300 [==============================] - 109s 364ms/step - loss: 0.5583 - tp0.1: 10369243.0000 - fp0.1: 8417163.0000 - tn0.1: 58256252.0000 - fn0.1: 1600524.0000 - precision0.1: 0.5520 - recall0.1: 0.8663 - tp0.3: 9495979.0000 - fp0.3: 3288261.0000 - tn0.3: 63385168.0000 - fn0.3: 2473788.0000 - precision0.3: 0.7428 - recall0.3: 0.7933 - tp0.5: 8802292.0000 - fp0.5: 176251 9.0000 - tn0.5: 64910900.0000 - fn0.5: 3167475.0000 - precision0.5: 0.8332 - recall0.5: 0.7354 - tp0.7: 7853085.0000 - fp0.7: 831023.0000 - tn0.7: 65842424.0000 - fn0.7: 4116682.0000 - pre cision0.7: 0.9043 - recall0.7: 0.6561 - tp0.9: 5967523.0000 - fp0.9: 191510.0000 - tn0.9: 66481912.0000 - fn0.9: 6002244.0000 - precision0.9: 0.9689 - recall0.9: 0.4985 - accuracy: 0.9373 - auc: 0.9166 - f1: 0.2642 - val_loss: 0.5155 - val_tp0.1: 2810372.0000 - val_fp0.1: 1944105.0000 - val_tn0.1: 14553841.0000 - val_fn0.1: 352482.0000 - val_precision0.1: 0.5911 - val_recal l0.1: 0.8886 - val_tp0.3: 2550568.0000 - val_fp0.3: 737116.0000 - val_tn0.3: 15760830.0000 - val_fn0.3: 612286.0000 - val_precision0.3: 0.7758 - val_recall0.3: 0.8064 - val_tp0.5: 2338331. 0000 - val_fp0.5: 398618.0000 - val_tn0.5: 16099328.0000 - val_fn0.5: 824523.0000 - val_precision0.5: 0.8544 - val_recall0.5: 0.7393 - val_tp0.7: 2056023.0000 - val_fp0.7: 191281.0000 - va l_tn0.7: 16306665.0000 - val_fn0.7: 1106831.0000 - val_precision0.7: 0.9149 - val_recall0.7: 0.6501 - val_tp0.9: 1536052.0000 - val_fp0.9: 42617.0000 - val_tn0.9: 16455329.0000 - val_fn0.9 : 1626802.0000 - val_precision0.9: 0.9730 - val_recall0.9: 0.4857 - val_accuracy: 0.9378 - val_auc: 0.9292 - val_f1: 0.2772 Epoch 14/20 300/300 [==============================] - 109s 364ms/step - loss: 0.5545 - tp0.1: 10404673.0000 - fp0.1: 8594836.0000 - tn0.1: 58078576.0000 - fn0.1: 1565094.0000 - precision0.1: 0.5476 - recall0.1: 0.8692 - tp0.3: 9502698.0000 - fp0.3: 3265228.0000 - tn0.3: 63408216.0000 - fn0.3: 2467069.0000 - precision0.3: 0.7443 - recall0.3: 0.7939 - tp0.5: 8806002.0000 - fp0.5: 173452 7.0000 - tn0.5: 64938912.0000 - fn0.5: 3163765.0000 - precision0.5: 0.8354 - recall0.5: 0.7357 - tp0.7: 7871330.0000 - fp0.7: 811976.0000 - tn0.7: 65861468.0000 - fn0.7: 4098437.0000 - pre cision0.7: 0.9065 - recall0.7: 0.6576 - tp0.9: 5995175.0000 - fp0.9: 182094.0000 - tn0.9: 66491348.0000 - fn0.9: 5974592.0000 - precision0.9: 0.9705 - recall0.9: 0.5009 - accuracy: 0.9377 - auc: 0.9180 - f1: 0.2642 - val_loss: 0.5147 - val_tp0.1: 2829492.0000 - val_fp0.1: 2130176.0000 - val_tn0.1: 14367770.0000 - val_fn0.1: 333362.0000 - val_precision0.1: 0.5705 - val_recal l0.1: 0.8946 - val_tp0.3: 2583127.0000 - val_fp0.3: 813224.0000 - val_tn0.3: 15684722.0000 - val_fn0.3: 579727.0000 - val_precision0.3: 0.7606 - val_recall0.3: 0.8167 - val_tp0.5: 2383747. 0000 - val_fp0.5: 446660.0000 - val_tn0.5: 16051286.0000 - val_fn0.5: 779107.0000 - val_precision0.5: 0.8422 - val_recall0.5: 0.7537 - val_tp0.7: 2116906.0000 - val_fp0.7: 219992.0000 - va l_tn0.7: 16277954.0000 - val_fn0.7: 1045948.0000 - val_precision0.7: 0.9059 - val_recall0.7: 0.6693 - val_tp0.9: 1607900.0000 - val_fp0.9: 51317.0000 - val_tn0.9: 16446629.0000 - val_fn0.9 : 1554954.0000 - val_precision0.9: 0.9691 - val_recall0.9: 0.5084 - val_accuracy: 0.9377 - val_auc: 0.9312 - val_f1: 0.2772 Epoch 15/20 300/300 [==============================] - 109s 364ms/step - loss: 0.5536 - tp0.1: 10410305.0000 - fp0.1: 8632096.0000 - tn0.1: 58041320.0000 - fn0.1: 1559462.0000 - precision0.1: 0.5467 - recall0.1: 0.8697 - tp0.3: 9510984.0000 - fp0.3: 3242903.0000 - tn0.3: 63430520.0000 - fn0.3: 2458783.0000 - precision0.3: 0.7457 - recall0.3: 0.7946 - tp0.5: 8812511.0000 - fp0.5: 170138 1.0000 - tn0.5: 64972056.0000 - fn0.5: 3157256.0000 - precision0.5: 0.8382 - recall0.5: 0.7362 - tp0.7: 7877931.0000 - fp0.7: 793039.0000 - tn0.7: 65880400.0000 - fn0.7: 4091836.0000 - pre cision0.7: 0.9085 - recall0.7: 0.6582 - tp0.9: 5978990.0000 - fp0.9: 174678.0000 - tn0.9: 66498776.0000 - fn0.9: 5990777.0000 - precision0.9: 0.9716 - recall0.9: 0.4995 - accuracy: 0.9382 - auc: 0.9183 - f1: 0.2642 - val_loss: 0.5193 - val_tp0.1: 2813989.0000 - val_fp0.1: 2032257.0000 - val_tn0.1: 14465689.0000 - val_fn0.1: 348865.0000 - val_precision0.1: 0.5807 - val_recal l0.1: 0.8897 - val_tp0.3: 2577154.0000 - val_fp0.3: 819794.0000 - val_tn0.3: 15678152.0000 - val_fn0.3: 585700.0000 - val_precision0.3: 0.7587 - val_recall0.3: 0.8148 - val_tp0.5: 2385705. 0000 - val_fp0.5: 459176.0000 - val_tn0.5: 16038770.0000 - val_fn0.5: 777149.0000 - val_precision0.5: 0.8386 - val_recall0.5: 0.7543 - val_tp0.7: 2130654.0000 - val_fp0.7: 230334.0000 - va l_tn0.7: 16267612.0000 - val_fn0.7: 1032200.0000 - val_precision0.7: 0.9024 - val_recall0.7: 0.6736 - val_tp0.9: 1640662.0000 - val_fp0.9: 55692.0000 - val_tn0.9: 16442254.0000 - val_fn0.9 : 1522192.0000 - val_precision0.9: 0.9672 - val_recall0.9: 0.5187 - val_accuracy: 0.9371 - val_auc: 0.9291 - val_f1: 0.2772 Epoch 16/20 300/300 [==============================] - 109s 364ms/step - loss: 0.5574 - tp0.1: 10366848.0000 - fp0.1: 8351245.0000 - tn0.1: 58322184.0000 - fn0.1: 1602919.0000 - precision0.1: 0.5538 - recall0.1: 0.8661 - tp0.3: 9482187.0000 - fp0.3: 3195743.0000 - tn0.3: 63477668.0000 - fn0.3: 2487580.0000 - precision0.3: 0.7479 - recall0.3: 0.7922 - tp0.5: 8790251.0000 - fp0.5: 169760 0.0000 - tn0.5: 64975828.0000 - fn0.5: 3179516.0000 - precision0.5: 0.8381 - recall0.5: 0.7344 - tp0.7: 7865829.0000 - fp0.7: 803359.0000 - tn0.7: 65870080.0000 - fn0.7: 4103938.0000 - pre cision0.7: 0.9073 - recall0.7: 0.6571 - tp0.9: 6012200.0000 - fp0.9: 181018.0000 - tn0.9: 66492408.0000 - fn0.9: 5957567.0000 - precision0.9: 0.9708 - recall0.9: 0.5023 - accuracy: 0.9380 - auc: 0.9168 - f1: 0.2642 - val_loss: 0.5190 - val_tp0.1: 2815670.0000 - val_fp0.1: 2047710.0000 - val_tn0.1: 14450236.0000 - val_fn0.1: 347184.0000 - val_precision0.1: 0.5790 - val_recal l0.1: 0.8902 - val_tp0.3: 2576965.0000 - val_fp0.3: 816090.0000 - val_tn0.3: 15681856.0000 - val_fn0.3: 585889.0000 - val_precision0.3: 0.7595 - val_recall0.3: 0.8148 - val_tp0.5: 2382191. 0000 - val_fp0.5: 452866.0000 - val_tn0.5: 16045080.0000 - val_fn0.5: 780663.0000 - val_precision0.5: 0.8403 - val_recall0.5: 0.7532 - val_tp0.7: 2122711.0000 - val_fp0.7: 224345.0000 - va l_tn0.7: 16273601.0000 - val_fn0.7: 1040143.0000 - val_precision0.7: 0.9044 - val_recall0.7: 0.6711 - val_tp0.9: 1623419.0000 - val_fp0.9: 52719.0000 - val_tn0.9: 16445227.0000 - val_fn0.9 : 1539435.0000 - val_precision0.9: 0.9685 - val_recall0.9: 0.5133 - val_accuracy: 0.9373 - val_auc: 0.9293 - val_f1: 0.2772 Epoch 17/20 300/300 [==============================] - 109s 364ms/step - loss: 0.5518 - tp0.1: 10385606.0000 - fp0.1: 8322065.0000 - tn0.1: 58351360.0000 - fn0.1: 1584161.0000 - precision0.1: 0.5552 - recall0.1: 0.8677 - tp0.3: 9501942.0000 - fp0.3: 3183126.0000 - tn0.3: 63490304.0000 - fn0.3: 2467825.0000 - precision0.3: 0.7491 - recall0.3: 0.7938 - tp0.5: 8803116.0000 - fp0.5: 167708 6.0000 - tn0.5: 64996332.0000 - fn0.5: 3166651.0000 - precision0.5: 0.8400 - recall0.5: 0.7354 - tp0.7: 7870926.0000 - fp0.7: 783130.0000 - tn0.7: 65890296.0000 - fn0.7: 4098841.0000 - pre cision0.7: 0.9095 - recall0.7: 0.6576 - tp0.9: 5981676.0000 - fp0.9: 175979.0000 - tn0.9: 66497456.0000 - fn0.9: 5988091.0000 - precision0.9: 0.9714 - recall0.9: 0.4997 - accuracy: 0.9384 - auc: 0.9178 - f1: 0.2642 - val_loss: 0.5176 - val_tp0.1: 2814391.0000 - val_fp0.1: 2019842.0000 - val_tn0.1: 14478104.0000 - val_fn0.1: 348463.0000 - val_precision0.1: 0.5822 - val_recal l0.1: 0.8898 - val_tp0.3: 2575426.0000 - val_fp0.3: 804457.0000 - val_tn0.3: 15693489.0000 - val_fn0.3: 587428.0000 - val_precision0.3: 0.7620 - val_recall0.3: 0.8143 - val_tp0.5: 2377184. 0000 - val_fp0.5: 443147.0000 - val_tn0.5: 16054799.0000 - val_fn0.5: 785670.0000 - val_precision0.5: 0.8429 - val_recall0.5: 0.7516 - val_tp0.7: 2111101.0000 - val_fp0.7: 215747.0000 - va l_tn0.7: 16282199.0000 - val_fn0.7: 1051753.0000 - val_precision0.7: 0.9073 - val_recall0.7: 0.6675 - val_tp0.9: 1598659.0000 - val_fp0.9: 48117.0000 - val_tn0.9: 16449829.0000 - val_fn0.9 : 1564195.0000 - val_precision0.9: 0.9708 - val_recall0.9: 0.5054 - val_accuracy: 0.9375 - val_auc: 0.9293 - val_f1: 0.2772 Epoch 18/20 300/300 [==============================] - 109s 365ms/step - loss: 0.5527 - tp0.1: 10394599.0000 - fp0.1: 8422625.0000 - tn0.1: 58250828.0000 - fn0.1: 1575168.0000 - precision0.1: 0.5524 - recall0.1: 0.8684 - tp0.3: 9515719.0000 - fp0.3: 3245634.0000 - tn0.3: 63427764.0000 - fn0.3: 2454048.0000 - precision0.3: 0.7457 - recall0.3: 0.7950 - tp0.5: 8829115.0000 - fp0.5: 172580 7.0000 - tn0.5: 64947624.0000 - fn0.5: 3140652.0000 - precision0.5: 0.8365 - recall0.5: 0.7376 - tp0.7: 7902699.0000 - fp0.7: 815002.0000 - tn0.7: 65858428.0000 - fn0.7: 4067068.0000 - pre cision0.7: 0.9065 - recall0.7: 0.6602 - tp0.9: 5992723.0000 - fp0.9: 181617.0000 - tn0.9: 66491804.0000 - fn0.9: 5977044.0000 - precision0.9: 0.9706 - recall0.9: 0.5007 - accuracy: 0.9381 - auc: 0.9180 - f1: 0.2642 - val_loss: 0.5170 - val_tp0.1: 2818280.0000 - val_fp0.1: 2051127.0000 - val_tn0.1: 14446819.0000 - val_fn0.1: 344574.0000 - val_precision0.1: 0.5788 - val_recal l0.1: 0.8911 - val_tp0.3: 2582361.0000 - val_fp0.3: 822058.0000 - val_tn0.3: 15675888.0000 - val_fn0.3: 580493.0000 - val_precision0.3: 0.7585 - val_recall0.3: 0.8165 - val_tp0.5: 2386572. 0000 - val_fp0.5: 453718.0000 - val_tn0.5: 16044228.0000 - val_fn0.5: 776282.0000 - val_precision0.5: 0.8403 - val_recall0.5: 0.7546 - val_tp0.7: 2123293.0000 - val_fp0.7: 221964.0000 - va l_tn0.7: 16275982.0000 - val_fn0.7: 1039561.0000 - val_precision0.7: 0.9054 - val_recall0.7: 0.6713 - val_tp0.9: 1613816.0000 - val_fp0.9: 50399.0000 - val_tn0.9: 16447547.0000 - val_fn0.9 : 1549038.0000 - val_precision0.9: 0.9697 - val_recall0.9: 0.5102 - val_accuracy: 0.9374 - val_auc: 0.9297 - val_f1: 0.2772 Epoch 19/20 300/300 [==============================] - 109s 364ms/step - loss: 0.5502 - tp0.1: 10400846.0000 - fp0.1: 8405890.0000 - tn0.1: 58267520.0000 - fn0.1: 1568921.0000 - precision0.1: 0.5530 - recall0.1: 0.8689 - tp0.3: 9521394.0000 - fp0.3: 3231081.0000 - tn0.3: 63442368.0000 - fn0.3: 2448373.0000 - precision0.3: 0.7466 - recall0.3: 0.7955 - tp0.5: 8830551.0000 - fp0.5: 170937 1.0000 - tn0.5: 64964080.0000 - fn0.5: 3139216.0000 - precision0.5: 0.8378 - recall0.5: 0.7377 - tp0.7: 7900201.0000 - fp0.7: 803691.0000 - tn0.7: 65869728.0000 - fn0.7: 4069566.0000 - pre cision0.7: 0.9077 - recall0.7: 0.6600 - tp0.9: 5995260.0000 - fp0.9: 181599.0000 - tn0.9: 66491848.0000 - fn0.9: 5974507.0000 - precision0.9: 0.9706 - recall0.9: 0.5009 - accuracy: 0.9383 - auc: 0.9184 - f1: 0.2642 - val_loss: 0.5175 - val_tp0.1: 2819063.0000 - val_fp0.1: 2064294.0000 - val_tn0.1: 14433652.0000 - val_fn0.1: 343791.0000 - val_precision0.1: 0.5773 - val_recal l0.1: 0.8913 - val_tp0.3: 2584585.0000 - val_fp0.3: 828069.0000 - val_tn0.3: 15669877.0000 - val_fn0.3: 578269.0000 - val_precision0.3: 0.7574 - val_recall0.3: 0.8172 - val_tp0.5: 2390134. 0000 - val_fp0.5: 458519.0000 - val_tn0.5: 16039427.0000 - val_fn0.5: 772720.0000 - val_precision0.5: 0.8390 - val_recall0.5: 0.7557 - val_tp0.7: 2128769.0000 - val_fp0.7: 225470.0000 - va l_tn0.7: 16272476.0000 - val_fn0.7: 1034085.0000 - val_precision0.7: 0.9042 - val_recall0.7: 0.6731 - val_tp0.9: 1617794.0000 - val_fp0.9: 50968.0000 - val_tn0.9: 16446978.0000 - val_fn0.9 : 1545060.0000 - val_precision0.9: 0.9695 - val_recall0.9: 0.5115 - val_accuracy: 0.9374 - val_auc: 0.9298 - val_f1: 0.2772 Epoch 20/20 300/300 [==============================] - 109s 364ms/step - loss: 0.5540 - tp0.1: 10388304.0000 - fp0.1: 8427637.0000 - tn0.1: 58245784.0000 - fn0.1: 1581463.0000 - precision0.1: 0.5521 - recall0.1: 0.8679 - tp0.3: 9510729.0000 - fp0.3: 3244455.0000 - tn0.3: 63429016.0000 - fn0.3: 2459038.0000 - precision0.3: 0.7456 - recall0.3: 0.7946 - tp0.5: 8826300.0000 - fp0.5: 173006 6.0000 - tn0.5: 64943372.0000 - fn0.5: 3143467.0000 - precision0.5: 0.8361 - recall0.5: 0.7374 - tp0.7: 7907765.0000 - fp0.7: 815687.0000 - tn0.7: 65857736.0000 - fn0.7: 4062002.0000 - pre cision0.7: 0.9065 - recall0.7: 0.6606 - tp0.9: 6007828.0000 - fp0.9: 181663.0000 - tn0.9: 66491748.0000 - fn0.9: 5961939.0000 - precision0.9: 0.9706 - recall0.9: 0.5019 - accuracy: 0.9380 - auc: 0.9177 - f1: 0.2642 - val_loss: 0.5180 - val_tp0.1: 2817068.0000 - val_fp0.1: 2045853.0000 - val_tn0.1: 14452093.0000 - val_fn0.1: 345786.0000 - val_precision0.1: 0.5793 - val_recal l0.1: 0.8907 - val_tp0.3: 2578834.0000 - val_fp0.3: 815796.0000 - val_tn0.3: 15682150.0000 - val_fn0.3: 584020.0000 - val_precision0.3: 0.7597 - val_recall0.3: 0.8154 - val_tp0.5: 2382089. 0000 - val_fp0.5: 450657.0000 - val_tn0.5: 16047289.0000 - val_fn0.5: 780765.0000 - val_precision0.5: 0.8409 - val_recall0.5: 0.7531 - val_tp0.7: 2118583.0000 - val_fp0.7: 220753.0000 - va l_tn0.7: 16277193.0000 - val_fn0.7: 1044271.0000 - val_precision0.7: 0.9056 - val_recall0.7: 0.6698 - val_tp0.9: 1609924.0000 - val_fp0.9: 50267.0000 - val_tn0.9: 16447679.0000 - val_fn0.9 : 1552930.0000 - val_precision0.9: 0.9697 - val_recall0.9: 0.5090 - val_accuracy: 0.9374 - val_auc: 0.9295 - val_f1: 0.2772 --- Running training session 59/140 {'hp_epochs': 20, 'hp_batch_size': 6, 'hp_scaler': 'maxabs', 'hp_n_levels': 3, 'hp_first_filters': 16, 'hp_pool_size': 2, 'hp_input_size': 4096, 'hp_lr_start': 0.06810286704342322, 'hp_lr_ power': 5.0} --- repeat #: 1 input - shape: (None, 4096, 1) output - shape: (None, 4096, 1) Epoch 1/20 800/800 [==============================] - 40s 33ms/step - loss: 1.2638 - tp0.1: 2568942.0000 - fp0.1: 8167222.0000 - tn0.1: 8515746.0000 - fn0.1: 408890.0000 - precision0.1: 0.2393 - reca ll0.1: 0.8627 - tp0.3: 1525563.0000 - fp0.3: 1857776.0000 - tn0.3: 14825192.0000 - fn0.3: 1452269.0000 - precision0.3: 0.4509 - recall0.3: 0.5123 - tp0.5: 952545.0000 - fp0.5: 543268.0000 - tn0.5: 16139700.0000 - fn0.5: 2025287.0000 - precision0.5: 0.6368 - recall0.5: 0.3199 - tp0.7: 600606.0000 - fp0.7: 171741.0000 - tn0.7: 16511227.0000 - fn0.7: 2377226.0000 - precision0. 7: 0.7776 - recall0.7: 0.2017 - tp0.9: 266111.0000 - fp0.9: 28495.0000 - tn0.9: 16654473.0000 - fn0.9: 2711721.0000 - precision0.9: 0.9033 - recall0.9: 0.0894 - accuracy: 0.8694 - auc: 0.7 995 - f1: 0.2631 - val_loss: 3.2184 - val_tp0.1: 785569.0000 - val_fp0.1: 3481300.0000 - val_tn0.1: 630043.0000 - val_fn0.1: 18288.0000 - val_precision0.1: 0.1841 - val_recall0.1: 0.9772 - val_tp0.3: 774801.0000 - val_fp0.3: 3330916.0000 - val_tn0.3: 780427.0000 - val_fn0.3: 29056.0000 - val_precision0.3: 0.1887 - val_recall0.3: 0.9639 - val_tp0.5: 766485.0000 - val_fp0.5: 3233476.0000 - val_tn0.5: 877867.0000 - val_fn0.5: 37372.0000 - val_precision0.5: 0.1916 - val_recall0.5: 0.9535 - val_tp0.7: 754282.0000 - val_fp0.7: 3093977.0000 - val_tn0.7: 1017366.000 0 - val_fn0.7: 49575.0000 - val_precision0.7: 0.1960 - val_recall0.7: 0.9383 - val_tp0.9: 704600.0000 - val_fp0.9: 2525773.0000 - val_tn0.9: 1585570.0000 - val_fn0.9: 99257.0000 - val_prec ision0.9: 0.2181 - val_recall0.9: 0.8765 - val_accuracy: 0.3345 - val_auc: 0.7196 - val_f1: 0.2811 Epoch 2/20 800/800 [==============================] - 23s 28ms/step - loss: 1.0608 - tp0.1: 2627985.0000 - fp0.1: 7509687.0000 - tn0.1: 9173281.0000 - fn0.1: 349847.0000 - precision0.1: 0.2592 - reca ll0.1: 0.8825 - tp0.3: 1657396.0000 - fp0.3: 1642042.0000 - tn0.3: 15040926.0000 - fn0.3: 1320436.0000 - precision0.3: 0.5023 - recall0.3: 0.5566 - tp0.5: 1186375.0000 - fp0.5: 597404.0000 - tn0.5: 16085564.0000 - fn0.5: 1791457.0000 - precision0.5: 0.6651 - recall0.5: 0.3984 - tp0.7: 796587.0000 - fp0.7: 190824.0000 - tn0.7: 16492144.0000 - fn0.7: 2181245.0000 - precision0 .7: 0.8067 - recall0.7: 0.2675 - tp0.9: 382973.0000 - fp0.9: 30617.0000 - tn0.9: 16652351.0000 - fn0.9: 2594859.0000 - precision0.9: 0.9260 - recall0.9: 0.1286 - accuracy: 0.8785 - auc: 0. 8268 - f1: 0.2631 - val_loss: 2.8384 - val_tp0.1: 770043.0000 - val_fp0.1: 3359592.0000 - val_tn0.1: 751751.0000 - val_fn0.1: 33814.0000 - val_precision0.1: 0.1865 - val_recall0.1: 0.9579 - val_tp0.3: 728149.0000 - val_fp0.3: 3009354.0000 - val_tn0.3: 1101989.0000 - val_fn0.3: 75708.0000 - val_precision0.3: 0.1948 - val_recall0.3: 0.9058 - val_tp0.5: 698943.0000 - val_fp0.5 : 2825281.0000 - val_tn0.5: 1286062.0000 - val_fn0.5: 104914.0000 - val_precision0.5: 0.1983 - val_recall0.5: 0.8695 - val_tp0.7: 650069.0000 - val_fp0.7: 2558191.0000 - val_tn0.7: 1553152 .0000 - val_fn0.7: 153788.0000 - val_precision0.7: 0.2026 - val_recall0.7: 0.8087 - val_tp0.9: 523649.0000 - val_fp0.9: 1973892.0000 - val_tn0.9: 2137451.0000 - val_fn0.9: 280208.0000 - va l_precision0.9: 0.2097 - val_recall0.9: 0.6514 - val_accuracy: 0.4039 - val_auc: 0.6320 - val_f1: 0.2811 Epoch 3/20 800/800 [==============================] - 22s 28ms/step - loss: 0.9210 - tp0.1: 2627224.0000 - fp0.1: 6591219.0000 - tn0.1: 10091749.0000 - fn0.1: 350608.0000 - precision0.1: 0.2850 - rec all0.1: 0.8823 - tp0.3: 1806105.0000 - fp0.3: 1745398.0000 - tn0.3: 14937570.0000 - fn0.3: 1171727.0000 - precision0.3: 0.5085 - recall0.3: 0.6065 - tp0.5: 1334712.0000 - fp0.5: 661778.000 0 - tn0.5: 16021190.0000 - fn0.5: 1643120.0000 - precision0.5: 0.6685 - recall0.5: 0.4482 - tp0.7: 898005.0000 - fp0.7: 202721.0000 - tn0.7: 16480247.0000 - fn0.7: 2079827.0000 - precision 0.7: 0.8158 - recall0.7: 0.3016 - tp0.9: 425030.0000 - fp0.9: 26905.0000 - tn0.9: 16656063.0000 - fn0.9: 2552802.0000 - precision0.9: 0.9405 - recall0.9: 0.1427 - accuracy: 0.8828 - auc: 0 .8423 - f1: 0.2631 - val_loss: 1.2386 - val_tp0.1: 748635.0000 - val_fp0.1: 2823638.0000 - val_tn0.1: 1287705.0000 - val_fn0.1: 55222.0000 - val_precision0.1: 0.2096 - val_recall0.1: 0.931 3 - val_tp0.3: 581617.0000 - val_fp0.3: 1541416.0000 - val_tn0.3: 2569927.0000 - val_fn0.3: 222240.0000 - val_precision0.3: 0.2740 - val_recall0.3: 0.7235 - val_tp0.5: 438469.0000 - val_fp 0.5: 838651.0000 - val_tn0.5: 3272692.0000 - val_fn0.5: 365388.0000 - val_precision0.5: 0.3433 - val_recall0.5: 0.5455 - val_tp0.7: 283136.0000 - val_fp0.7: 250330.0000 - val_tn0.7: 386101 3.0000 - val_fn0.7: 520721.0000 - val_precision0.7: 0.5307 - val_recall0.7: 0.3522 - val_tp0.9: 100313.0000 - val_fp0.9: 12675.0000 - val_tn0.9: 4098668.0000 - val_fn0.9: 703544.0000 - val _precision0.9: 0.8878 - val_recall0.9: 0.1248 - val_accuracy: 0.7550 - val_auc: 0.7546 - val_f1: 0.2811 Epoch 4/20 800/800 [==============================] - 23s 28ms/step - loss: 0.8790 - tp0.1: 2622979.0000 - fp0.1: 6082638.0000 - tn0.1: 10600330.0000 - fn0.1: 354853.0000 - precision0.1: 0.3013 - rec all0.1: 0.8808 - tp0.3: 1907681.0000 - fp0.3: 1754807.0000 - tn0.3: 14928161.0000 - fn0.3: 1070151.0000 - precision0.3: 0.5209 - recall0.3: 0.6406 - tp0.5: 1430397.0000 - fp0.5: 638842.000 0 - tn0.5: 16044126.0000 - fn0.5: 1547435.0000 - precision0.5: 0.6913 - recall0.5: 0.4803 - tp0.7: 1005392.0000 - fp0.7: 200266.0000 - tn0.7: 16482702.0000 - fn0.7: 1972440.0000 - precisio n0.7: 0.8339 - recall0.7: 0.3376 - tp0.9: 537695.0000 - fp0.9: 32470.0000 - tn0.9: 16650498.0000 - fn0.9: 2440137.0000 - precision0.9: 0.9431 - recall0.9: 0.1806 - accuracy: 0.8888 - auc: 0.8539 - f1: 0.2631 - val_loss: 1.4382 - val_tp0.1: 759788.0000 - val_fp0.1: 3033777.0000 - val_tn0.1: 1077566.0000 - val_fn0.1: 44069.0000 - val_precision0.1: 0.2003 - val_recall0.1: 0.94 52 - val_tp0.3: 676790.0000 - val_fp0.3: 2190828.0000 - val_tn0.3: 1920515.0000 - val_fn0.3: 127067.0000 - val_precision0.3: 0.2360 - val_recall0.3: 0.8419 - val_tp0.5: 587381.0000 - val_f p0.5: 1457790.0000 - val_tn0.5: 2653553.0000 - val_fn0.5: 216476.0000 - val_precision0.5: 0.2872 - val_recall0.5: 0.7307 - val_tp0.7: 467177.0000 - val_fp0.7: 733730.0000 - val_tn0.7: 3377 613.0000 - val_fn0.7: 336680.0000 - val_precision0.7: 0.3890 - val_recall0.7: 0.5812 - val_tp0.9: 265920.0000 - val_fp0.9: 128059.0000 - val_tn0.9: 3983284.0000 - val_fn0.9: 537937.0000 - val_precision0.9: 0.6750 - val_recall0.9: 0.3308 - val_accuracy: 0.6594 - val_auc: 0.7741 - val_f1: 0.2811 Epoch 5/20 800/800 [==============================] - 23s 29ms/step - loss: 0.8323 - tp0.1: 2632941.0000 - fp0.1: 5640241.0000 - tn0.1: 11042727.0000 - fn0.1: 344891.0000 - precision0.1: 0.3183 - rec all0.1: 0.8842 - tp0.3: 1987373.0000 - fp0.3: 1723448.0000 - tn0.3: 14959520.0000 - fn0.3: 990459.0000 - precision0.3: 0.5356 - recall0.3: 0.6674 - tp0.5: 1504902.0000 - fp0.5: 660742.0000 - tn0.5: 16022226.0000 - fn0.5: 1472930.0000 - precision0.5: 0.6949 - recall0.5: 0.5054 - tp0.7: 1062651.0000 - fp0.7: 214795.0000 - tn0.7: 16468173.0000 - fn0.7: 1915181.0000 - precision 0.7: 0.8319 - recall0.7: 0.3569 - tp0.9: 582194.0000 - fp0.9: 33645.0000 - tn0.9: 16649323.0000 - fn0.9: 2395638.0000 - precision0.9: 0.9454 - recall0.9: 0.1955 - accuracy: 0.8915 - auc: 0 .8647 - f1: 0.2631 - val_loss: 1.0148 - val_tp0.1: 708531.0000 - val_fp0.1: 1723364.0000 - val_tn0.1: 2387979.0000 - val_fn0.1: 95326.0000 - val_precision0.1: 0.2913 - val_recall0.1: 0.881 4 - val_tp0.3: 592243.0000 - val_fp0.3: 884014.0000 - val_tn0.3: 3227329.0000 - val_fn0.3: 211614.0000 - val_precision0.3: 0.4012 - val_recall0.3: 0.7368 - val_tp0.5: 463295.0000 - val_fp0 .5: 407207.0000 - val_tn0.5: 3704136.0000 - val_fn0.5: 340562.0000 - val_precision0.5: 0.5322 - val_recall0.5: 0.5763 - val_tp0.7: 324633.0000 - val_fp0.7: 153907.0000 - val_tn0.7: 3957436 .0000 - val_fn0.7: 479224.0000 - val_precision0.7: 0.6784 - val_recall0.7: 0.4038 - val_tp0.9: 171994.0000 - val_fp0.9: 27494.0000 - val_tn0.9: 4083849.0000 - val_fn0.9: 631863.0000 - val_ precision0.9: 0.8622 - val_recall0.9: 0.2140 - val_accuracy: 0.8479 - val_auc: 0.8326 - val_f1: 0.2811 Epoch 6/20 800/800 [==============================] - 23s 29ms/step - loss: 0.8051 - tp0.1: 2656801.0000 - fp0.1: 5609482.0000 - tn0.1: 11073486.0000 - fn0.1: 321031.0000 - precision0.1: 0.3214 - rec all0.1: 0.8922 - tp0.3: 2004568.0000 - fp0.3: 1721622.0000 - tn0.3: 14961346.0000 - fn0.3: 973264.0000 - precision0.3: 0.5380 - recall0.3: 0.6732 - tp0.5: 1535081.0000 - fp0.5: 636708.0000 - tn0.5: 16046260.0000 - fn0.5: 1442751.0000 - precision0.5: 0.7068 - recall0.5: 0.5155 - tp0.7: 1104868.0000 - fp0.7: 195727.0000 - tn0.7: 16487241.0000 - fn0.7: 1872964.0000 - precision 0.7: 0.8495 - recall0.7: 0.3710 - tp0.9: 638669.0000 - fp0.9: 30016.0000 - tn0.9: 16652952.0000 - fn0.9: 2339163.0000 - precision0.9: 0.9551 - recall0.9: 0.2145 - accuracy: 0.8942 - auc: 0 .8708 - f1: 0.2631 - val_loss: 1.1897 - val_tp0.1: 687813.0000 - val_fp0.1: 1965439.0000 - val_tn0.1: 2145904.0000 - val_fn0.1: 116044.0000 - val_precision0.1: 0.2592 - val_recall0.1: 0.85 56 - val_tp0.3: 589213.0000 - val_fp0.3: 1346718.0000 - val_tn0.3: 2764625.0000 - val_fn0.3: 214644.0000 - val_precision0.3: 0.3044 - val_recall0.3: 0.7330 - val_tp0.5: 480400.0000 - val_f p0.5: 797605.0000 - val_tn0.5: 3313738.0000 - val_fn0.5: 323457.0000 - val_precision0.5: 0.3759 - val_recall0.5: 0.5976 - val_tp0.7: 356338.0000 - val_fp0.7: 349313.0000 - val_tn0.7: 37620 30.0000 - val_fn0.7: 447519.0000 - val_precision0.7: 0.5050 - val_recall0.7: 0.4433 - val_tp0.9: 203593.0000 - val_fp0.9: 63510.0000 - val_tn0.9: 4047833.0000 - val_fn0.9: 600264.0000 - va l_precision0.9: 0.7622 - val_recall0.9: 0.2533 - val_accuracy: 0.7719 - val_auc: 0.7799 - val_f1: 0.2811 Epoch 7/20 800/800 [==============================] - 23s 29ms/step - loss: 0.7730 - tp0.1: 2661167.0000 - fp0.1: 5252891.0000 - tn0.1: 11430077.0000 - fn0.1: 316665.0000 - precision0.1: 0.3363 - rec all0.1: 0.8937 - tp0.3: 2045078.0000 - fp0.3: 1661108.0000 - tn0.3: 15021860.0000 - fn0.3: 932754.0000 - precision0.3: 0.5518 - recall0.3: 0.6868 - tp0.5: 1572828.0000 - fp0.5: 627634.0000 - tn0.5: 16055334.0000 - fn0.5: 1405004.0000 - precision0.5: 0.7148 - recall0.5: 0.5282 - tp0.7: 1148247.0000 - fp0.7: 206720.0000 - tn0.7: 16476248.0000 - fn0.7: 1829585.0000 - precision 0.7: 0.8474 - recall0.7: 0.3856 - tp0.9: 702777.0000 - fp0.9: 37332.0000 - tn0.9: 16645636.0000 - fn0.9: 2275055.0000 - precision0.9: 0.9496 - recall0.9: 0.2360 - accuracy: 0.8966 - auc: 0 .8779 - f1: 0.2631 - val_loss: 0.9848 - val_tp0.1: 705842.0000 - val_fp0.1: 1730539.0000 - val_tn0.1: 2380804.0000 - val_fn0.1: 98015.0000 - val_precision0.1: 0.2897 - val_recall0.1: 0.878 1 - val_tp0.3: 495957.0000 - val_fp0.3: 601184.0000 - val_tn0.3: 3510159.0000 - val_fn0.3: 307900.0000 - val_precision0.3: 0.4520 - val_recall0.3: 0.6170 - val_tp0.5: 353962.0000 - val_fp0 .5: 226006.0000 - val_tn0.5: 3885337.0000 - val_fn0.5: 449895.0000 - val_precision0.5: 0.6103 - val_recall0.5: 0.4403 - val_tp0.7: 232086.0000 - val_fp0.7: 57808.0000 - val_tn0.7: 4053535. 0000 - val_fn0.7: 571771.0000 - val_precision0.7: 0.8006 - val_recall0.7: 0.2887 - val_tp0.9: 109899.0000 - val_fp0.9: 4377.0000 - val_tn0.9: 4106966.0000 - val_fn0.9: 693958.0000 - val_pr ecision0.9: 0.9617 - val_recall0.9: 0.1367 - val_accuracy: 0.8625 - val_auc: 0.8220 - val_f1: 0.2811 Epoch 8/20 800/800 [==============================] - 23s 29ms/step - loss: 0.7537 - tp0.1: 2668427.0000 - fp0.1: 5092328.0000 - tn0.1: 11590640.0000 - fn0.1: 309405.0000 - precision0.1: 0.3438 - rec all0.1: 0.8961 - tp0.3: 2091292.0000 - fp0.3: 1655195.0000 - tn0.3: 15027773.0000 - fn0.3: 886540.0000 - precision0.3: 0.5582 - recall0.3: 0.7023 - tp0.5: 1591876.0000 - fp0.5: 604215.0000 - tn0.5: 16078753.0000 - fn0.5: 1385956.0000 - precision0.5: 0.7249 - recall0.5: 0.5346 - tp0.7: 1154686.0000 - fp0.7: 198461.0000 - tn0.7: 16484507.0000 - fn0.7: 1823146.0000 - precision 0.7: 0.8533 - recall0.7: 0.3878 - tp0.9: 706986.0000 - fp0.9: 36859.0000 - tn0.9: 16646109.0000 - fn0.9: 2270846.0000 - precision0.9: 0.9504 - recall0.9: 0.2374 - accuracy: 0.8988 - auc: 0 .8827 - f1: 0.2631 - val_loss: 1.0536 - val_tp0.1: 717248.0000 - val_fp0.1: 2127277.0000 - val_tn0.1: 1984066.0000 - val_fn0.1: 86609.0000 - val_precision0.1: 0.2522 - val_recall0.1: 0.892 3 - val_tp0.3: 516820.0000 - val_fp0.3: 718092.0000 - val_tn0.3: 3393251.0000 - val_fn0.3: 287037.0000 - val_precision0.3: 0.4185 - val_recall0.3: 0.6429 - val_tp0.5: 349749.0000 - val_fp0 .5: 209234.0000 - val_tn0.5: 3902109.0000 - val_fn0.5: 454108.0000 - val_precision0.5: 0.6257 - val_recall0.5: 0.4351 - val_tp0.7: 217539.0000 - val_fp0.7: 55114.0000 - val_tn0.7: 4056229. 0000 - val_fn0.7: 586318.0000 - val_precision0.7: 0.7979 - val_recall0.7: 0.2706 - val_tp0.9: 108545.0000 - val_fp0.9: 6637.0000 - val_tn0.9: 4104706.0000 - val_fn0.9: 695312.0000 - val_pr ecision0.9: 0.9424 - val_recall0.9: 0.1350 - val_accuracy: 0.8650 - val_auc: 0.8110 - val_f1: 0.2811 Epoch 9/20 800/800 [==============================] - 23s 29ms/step - loss: 0.7245 - tp0.1: 2670184.0000 - fp0.1: 4736653.0000 - tn0.1: 11946315.0000 - fn0.1: 307648.0000 - precision0.1: 0.3605 - rec all0.1: 0.8967 - tp0.3: 2138051.0000 - fp0.3: 1655069.0000 - tn0.3: 15027899.0000 - fn0.3: 839781.0000 - precision0.3: 0.5637 - recall0.3: 0.7180 - tp0.5: 1658889.0000 - fp0.5: 602716.0000 - tn0.5: 16080252.0000 - fn0.5: 1318943.0000 - precision0.5: 0.7335 - recall0.5: 0.5571 - tp0.7: 1231743.0000 - fp0.7: 199604.0000 - tn0.7: 16483364.0000 - fn0.7: 1746089.0000 - precision 0.7: 0.8605 - recall0.7: 0.4136 - tp0.9: 770284.0000 - fp0.9: 38798.0000 - tn0.9: 16644170.0000 - fn0.9: 2207548.0000 - precision0.9: 0.9520 - recall0.9: 0.2587 - accuracy: 0.9023 - auc: 0 .8890 - f1: 0.2631 - val_loss: 0.9833 - val_tp0.1: 684923.0000 - val_fp0.1: 1482632.0000 - val_tn0.1: 2628711.0000 - val_fn0.1: 118934.0000 - val_precision0.1: 0.3160 - val_recall0.1: 0.85 20 - val_tp0.3: 378339.0000 - val_fp0.3: 205771.0000 - val_tn0.3: 3905572.0000 - val_fn0.3: 425518.0000 - val_precision0.3: 0.6477 - val_recall0.3: 0.4707 - val_tp0.5: 214088.0000 - val_fp 0.5: 39231.0000 - val_tn0.5: 4072112.0000 - val_fn0.5: 589769.0000 - val_precision0.5: 0.8451 - val_recall0.5: 0.2663 - val_tp0.7: 124578.0000 - val_fp0.7: 7623.0000 - val_tn0.7: 4103720.0 000 - val_fn0.7: 679279.0000 - val_precision0.7: 0.9423 - val_recall0.7: 0.1550 - val_tp0.9: 59851.0000 - val_fp0.9: 608.0000 - val_tn0.9: 4110735.0000 - val_fn0.9: 744006.0000 - val_preci sion0.9: 0.9899 - val_recall0.9: 0.0745 - val_accuracy: 0.8720 - val_auc: 0.8270 - val_f1: 0.2811 Epoch 10/20 800/800 [==============================] - 23s 29ms/step - loss: 0.7278 - tp0.1: 2665983.0000 - fp0.1: 4770602.0000 - tn0.1: 11912366.0000 - fn0.1: 311849.0000 - precision0.1: 0.3585 - rec all0.1: 0.8953 - tp0.3: 2137054.0000 - fp0.3: 1618394.0000 - tn0.3: 15064574.0000 - fn0.3: 840778.0000 - precision0.3: 0.5691 - recall0.3: 0.7177 - tp0.5: 1657865.0000 - fp0.5: 592475.0000 - tn0.5: 16090493.0000 - fn0.5: 1319967.0000 - precision0.5: 0.7367 - recall0.5: 0.5567 - tp0.7: 1234306.0000 - fp0.7: 193079.0000 - tn0.7: 16489889.0000 - fn0.7: 1743526.0000 - precision 0.7: 0.8647 - recall0.7: 0.4145 - tp0.9: 773361.0000 - fp0.9: 37289.0000 - tn0.9: 16645679.0000 - fn0.9: 2204471.0000 - precision0.9: 0.9540 - recall0.9: 0.2597 - accuracy: 0.9027 - auc: 0 .8886 - f1: 0.2631 - val_loss: 0.9507 - val_tp0.1: 693260.0000 - val_fp0.1: 1463538.0000 - val_tn0.1: 2647805.0000 - val_fn0.1: 110597.0000 - val_precision0.1: 0.3214 - val_recall0.1: 0.86 24 - val_tp0.3: 398366.0000 - val_fp0.3: 212804.0000 - val_tn0.3: 3898539.0000 - val_fn0.3: 405491.0000 - val_precision0.3: 0.6518 - val_recall0.3: 0.4956 - val_tp0.5: 241139.0000 - val_fp 0.5: 41379.0000 - val_tn0.5: 4069964.0000 - val_fn0.5: 562718.0000 - val_precision0.5: 0.8535 - val_recall0.5: 0.3000 - val_tp0.7: 143798.0000 - val_fp0.7: 8441.0000 - val_tn0.7: 4102902.0 000 - val_fn0.7: 660059.0000 - val_precision0.7: 0.9446 - val_recall0.7: 0.1789 - val_tp0.9: 73993.0000 - val_fp0.9: 945.0000 - val_tn0.9: 4110398.0000 - val_fn0.9: 729864.0000 - val_preci sion0.9: 0.9874 - val_recall0.9: 0.0920 - val_accuracy: 0.8771 - val_auc: 0.8421 - val_f1: 0.2811 Epoch 11/20 800/800 [==============================] - 23s 29ms/step - loss: 0.7098 - tp0.1: 2671173.0000 - fp0.1: 4583226.0000 - tn0.1: 12099742.0000 - fn0.1: 306659.0000 - precision0.1: 0.3682 - rec all0.1: 0.8970 - tp0.3: 2161831.0000 - fp0.3: 1611405.0000 - tn0.3: 15071563.0000 - fn0.3: 816001.0000 - precision0.3: 0.5729 - recall0.3: 0.7260 - tp0.5: 1683781.0000 - fp0.5: 593951.0000 - tn0.5: 16089017.0000 - fn0.5: 1294051.0000 - precision0.5: 0.7392 - recall0.5: 0.5654 - tp0.7: 1246509.0000 - fp0.7: 197501.0000 - tn0.7: 16485467.0000 - fn0.7: 1731323.0000 - precision 0.7: 0.8632 - recall0.7: 0.4186 - tp0.9: 780021.0000 - fp0.9: 37187.0000 - tn0.9: 16645781.0000 - fn0.9: 2197811.0000 - precision0.9: 0.9545 - recall0.9: 0.2619 - accuracy: 0.9040 - auc: 0 .8921 - f1: 0.2631 - val_loss: 0.9881 - val_tp0.1: 684864.0000 - val_fp0.1: 1514096.0000 - val_tn0.1: 2597247.0000 - val_fn0.1: 118993.0000 - val_precision0.1: 0.3114 - val_recall0.1: 0.85 20 - val_tp0.3: 448578.0000 - val_fp0.3: 437347.0000 - val_tn0.3: 3673996.0000 - val_fn0.3: 355279.0000 - val_precision0.3: 0.5063 - val_recall0.3: 0.5580 - val_tp0.5: 306480.0000 - val_fp 0.5: 142586.0000 - val_tn0.5: 3968757.0000 - val_fn0.5: 497377.0000 - val_precision0.5: 0.6825 - val_recall0.5: 0.3813 - val_tp0.7: 196534.0000 - val_fp0.7: 34758.0000 - val_tn0.7: 4076585 .0000 - val_fn0.7: 607323.0000 - val_precision0.7: 0.8497 - val_recall0.7: 0.2445 - val_tp0.9: 93543.0000 - val_fp0.9: 2618.0000 - val_tn0.9: 4108725.0000 - val_fn0.9: 710314.0000 - val_pr ecision0.9: 0.9728 - val_recall0.9: 0.1164 - val_accuracy: 0.8698 - val_auc: 0.8226 - val_f1: 0.2811 Epoch 12/20 800/800 [==============================] - 23s 29ms/step - loss: 0.7115 - tp0.1: 2672752.0000 - fp0.1: 4630371.0000 - tn0.1: 12052597.0000 - fn0.1: 305080.0000 - precision0.1: 0.3660 - rec all0.1: 0.8975 - tp0.3: 2159193.0000 - fp0.3: 1616151.0000 - tn0.3: 15066817.0000 - fn0.3: 818639.0000 - precision0.3: 0.5719 - recall0.3: 0.7251 - tp0.5: 1689796.0000 - fp0.5: 588788.0000 - tn0.5: 16094180.0000 - fn0.5: 1288036.0000 - precision0.5: 0.7416 - recall0.5: 0.5675 - tp0.7: 1257203.0000 - fp0.7: 187802.0000 - tn0.7: 16495166.0000 - fn0.7: 1720629.0000 - precision 0.7: 0.8700 - recall0.7: 0.4222 - tp0.9: 781350.0000 - fp0.9: 35537.0000 - tn0.9: 16647431.0000 - fn0.9: 2196482.0000 - precision0.9: 0.9565 - recall0.9: 0.2624 - accuracy: 0.9045 - auc: 0 .8920 - f1: 0.2631 - val_loss: 0.9426 - val_tp0.1: 694538.0000 - val_fp0.1: 1496227.0000 - val_tn0.1: 2615116.0000 - val_fn0.1: 109319.0000 - val_precision0.1: 0.3170 - val_recall0.1: 0.86 40 - val_tp0.3: 506023.0000 - val_fp0.3: 520642.0000 - val_tn0.3: 3590701.0000 - val_fn0.3: 297834.0000 - val_precision0.3: 0.4929 - val_recall0.3: 0.6295 - val_tp0.5: 346422.0000 - val_fp 0.5: 153015.0000 - val_tn0.5: 3958328.0000 - val_fn0.5: 457435.0000 - val_precision0.5: 0.6936 - val_recall0.5: 0.4309 - val_tp0.7: 221842.0000 - val_fp0.7: 37879.0000 - val_tn0.7: 4073464 .0000 - val_fn0.7: 582015.0000 - val_precision0.7: 0.8542 - val_recall0.7: 0.2760 - val_tp0.9: 104244.0000 - val_fp0.9: 3502.0000 - val_tn0.9: 4107841.0000 - val_fn0.9: 699613.0000 - val_p recision0.9: 0.9675 - val_recall0.9: 0.1297 - val_accuracy: 0.8758 - val_auc: 0.8365 - val_f1: 0.2811 Epoch 13/20 800/800 [==============================] - 23s 29ms/step - loss: 0.7049 - tp0.1: 2669030.0000 - fp0.1: 4503237.0000 - tn0.1: 12179731.0000 - fn0.1: 308802.0000 - precision0.1: 0.3721 - rec all0.1: 0.8963 - tp0.3: 2190933.0000 - fp0.3: 1671712.0000 - tn0.3: 15011256.0000 - fn0.3: 786899.0000 - precision0.3: 0.5672 - recall0.3: 0.7357 - tp0.5: 1721545.0000 - fp0.5: 613878.0000 - tn0.5: 16069090.0000 - fn0.5: 1256287.0000 - precision0.5: 0.7371 - recall0.5: 0.5781 - tp0.7: 1280739.0000 - fp0.7: 198223.0000 - tn0.7: 16484745.0000 - fn0.7: 1697093.0000 - precision 0.7: 0.8660 - recall0.7: 0.4301 - tp0.9: 795579.0000 - fp0.9: 35764.0000 - tn0.9: 16647204.0000 - fn0.9: 2182253.0000 - precision0.9: 0.9570 - recall0.9: 0.2672 - accuracy: 0.9049 - auc: 0 .8932 - f1: 0.2631 - val_loss: 0.9456 - val_tp0.1: 699033.0000 - val_fp0.1: 1563859.0000 - val_tn0.1: 2547484.0000 - val_fn0.1: 104824.0000 - val_precision0.1: 0.3089 - val_recall0.1: 0.86 96 - val_tp0.3: 540655.0000 - val_fp0.3: 610467.0000 - val_tn0.3: 3500876.0000 - val_fn0.3: 263202.0000 - val_precision0.3: 0.4697 - val_recall0.3: 0.6726 - val_tp0.5: 379380.0000 - val_fp 0.5: 190187.0000 - val_tn0.5: 3921156.0000 - val_fn0.5: 424477.0000 - val_precision0.5: 0.6661 - val_recall0.5: 0.4719 - val_tp0.7: 250875.0000 - val_fp0.7: 56341.0000 - val_tn0.7: 4055002 .0000 - val_fn0.7: 552982.0000 - val_precision0.7: 0.8166 - val_recall0.7: 0.3121 - val_tp0.9: 123390.0000 - val_fp0.9: 6935.0000 - val_tn0.9: 4104408.0000 - val_fn0.9: 680467.0000 - val_p recision0.9: 0.9468 - val_recall0.9: 0.1535 - val_accuracy: 0.8749 - val_auc: 0.8387 - val_f1: 0.2811 Epoch 14/20 800/800 [==============================] - 23s 29ms/step - loss: 0.7025 - tp0.1: 2675299.0000 - fp0.1: 4563270.0000 - tn0.1: 12119698.0000 - fn0.1: 302533.0000 - precision0.1: 0.3696 - rec all0.1: 0.8984 - tp0.3: 2177828.0000 - fp0.3: 1603216.0000 - tn0.3: 15079752.0000 - fn0.3: 800004.0000 - precision0.3: 0.5760 - recall0.3: 0.7313 - tp0.5: 1706323.0000 - fp0.5: 592574.0000 - tn0.5: 16090394.0000 - fn0.5: 1271509.0000 - precision0.5: 0.7422 - recall0.5: 0.5730 - tp0.7: 1267052.0000 - fp0.7: 191517.0000 - tn0.7: 16491451.0000 - fn0.7: 1710780.0000 - precision 0.7: 0.8687 - recall0.7: 0.4255 - tp0.9: 779803.0000 - fp0.9: 33525.0000 - tn0.9: 16649443.0000 - fn0.9: 2198029.0000 - precision0.9: 0.9588 - recall0.9: 0.2619 - accuracy: 0.9052 - auc: 0 .8942 - f1: 0.2631 - val_loss: 0.9513 - val_tp0.1: 685976.0000 - val_fp0.1: 1445496.0000 - val_tn0.1: 2665847.0000 - val_fn0.1: 117881.0000 - val_precision0.1: 0.3218 - val_recall0.1: 0.85 34 - val_tp0.3: 502057.0000 - val_fp0.3: 484827.0000 - val_tn0.3: 3626516.0000 - val_fn0.3: 301800.0000 - val_precision0.3: 0.5087 - val_recall0.3: 0.6246 - val_tp0.5: 350620.0000 - val_fp 0.5: 151636.0000 - val_tn0.5: 3959707.0000 - val_fn0.5: 453237.0000 - val_precision0.5: 0.6981 - val_recall0.5: 0.4362 - val_tp0.7: 231119.0000 - val_fp0.7: 44841.0000 - val_tn0.7: 4066502 .0000 - val_fn0.7: 572738.0000 - val_precision0.7: 0.8375 - val_recall0.7: 0.2875 - val_tp0.9: 117775.0000 - val_fp0.9: 6325.0000 - val_tn0.9: 4105018.0000 - val_fn0.9: 686082.0000 - val_p recision0.9: 0.9490 - val_recall0.9: 0.1465 - val_accuracy: 0.8769 - val_auc: 0.8355 - val_f1: 0.2811 Epoch 15/20 800/800 [==============================] - 23s 29ms/step - loss: 0.6970 - tp0.1: 2674241.0000 - fp0.1: 4479713.0000 - tn0.1: 12203255.0000 - fn0.1: 303591.0000 - precision0.1: 0.3738 - rec all0.1: 0.8980 - tp0.3: 2170500.0000 - fp0.3: 1588775.0000 - tn0.3: 15094193.0000 - fn0.3: 807332.0000 - precision0.3: 0.5774 - recall0.3: 0.7289 - tp0.5: 1716769.0000 - fp0.5: 596411.0000 - tn0.5: 16086557.0000 - fn0.5: 1261063.0000 - precision0.5: 0.7422 - recall0.5: 0.5765 - tp0.7: 1295621.0000 - fp0.7: 194669.0000 - tn0.7: 16488299.0000 - fn0.7: 1682211.0000 - precision 0.7: 0.8694 - recall0.7: 0.4351 - tp0.9: 814054.0000 - fp0.9: 35899.0000 - tn0.9: 16647069.0000 - fn0.9: 2163778.0000 - precision0.9: 0.9578 - recall0.9: 0.2734 - accuracy: 0.9055 - auc: 0 .8945 - f1: 0.2631 - val_loss: 0.9517 - val_tp0.1: 688515.0000 - val_fp0.1: 1481139.0000 - val_tn0.1: 2630204.0000 - val_fn0.1: 115342.0000 - val_precision0.1: 0.3173 - val_recall0.1: 0.85 65 - val_tp0.3: 506409.0000 - val_fp0.3: 477938.0000 - val_tn0.3: 3633405.0000 - val_fn0.3: 297448.0000 - val_precision0.3: 0.5145 - val_recall0.3: 0.6300 - val_tp0.5: 352279.0000 - val_fp 0.5: 150937.0000 - val_tn0.5: 3960406.0000 - val_fn0.5: 451578.0000 - val_precision0.5: 0.7001 - val_recall0.5: 0.4382 - val_tp0.7: 231093.0000 - val_fp0.7: 45551.0000 - val_tn0.7: 4065792 .0000 - val_fn0.7: 572764.0000 - val_precision0.7: 0.8353 - val_recall0.7: 0.2875 - val_tp0.9: 118279.0000 - val_fp0.9: 6604.0000 - val_tn0.9: 4104739.0000 - val_fn0.9: 685578.0000 - val_p recision0.9: 0.9471 - val_recall0.9: 0.1471 - val_accuracy: 0.8774 - val_auc: 0.8370 - val_f1: 0.2811 Epoch 16/20 800/800 [==============================] - 23s 29ms/step - loss: 0.6972 - tp0.1: 2674892.0000 - fp0.1: 4478986.0000 - tn0.1: 12203982.0000 - fn0.1: 302940.0000 - precision0.1: 0.3739 - rec all0.1: 0.8983 - tp0.3: 2177848.0000 - fp0.3: 1577462.0000 - tn0.3: 15105506.0000 - fn0.3: 799984.0000 - precision0.3: 0.5799 - recall0.3: 0.7314 - tp0.5: 1710580.0000 - fp0.5: 588844.0000 - tn0.5: 16094124.0000 - fn0.5: 1267252.0000 - precision0.5: 0.7439 - recall0.5: 0.5744 - tp0.7: 1276251.0000 - fp0.7: 191455.0000 - tn0.7: 16491513.0000 - fn0.7: 1701581.0000 - precision 0.7: 0.8696 - recall0.7: 0.4286 - tp0.9: 794990.0000 - fp0.9: 33049.0000 - tn0.9: 16649919.0000 - fn0.9: 2182842.0000 - precision0.9: 0.9601 - recall0.9: 0.2670 - accuracy: 0.9056 - auc: 0 .8951 - f1: 0.2631 - val_loss: 0.9505 - val_tp0.1: 684484.0000 - val_fp0.1: 1423827.0000 - val_tn0.1: 2687516.0000 - val_fn0.1: 119373.0000 - val_precision0.1: 0.3247 - val_recall0.1: 0.85 15 - val_tp0.3: 507858.0000 - val_fp0.3: 511252.0000 - val_tn0.3: 3600091.0000 - val_fn0.3: 295999.0000 - val_precision0.3: 0.4983 - val_recall0.3: 0.6318 - val_tp0.5: 356641.0000 - val_fp 0.5: 160219.0000 - val_tn0.5: 3951124.0000 - val_fn0.5: 447216.0000 - val_precision0.5: 0.6900 - val_recall0.5: 0.4437 - val_tp0.7: 236723.0000 - val_fp0.7: 47470.0000 - val_tn0.7: 4063873 .0000 - val_fn0.7: 567134.0000 - val_precision0.7: 0.8330 - val_recall0.7: 0.2945 - val_tp0.9: 119706.0000 - val_fp0.9: 6487.0000 - val_tn0.9: 4104856.0000 - val_fn0.9: 684151.0000 - val_p recision0.9: 0.9486 - val_recall0.9: 0.1489 - val_accuracy: 0.8764 - val_auc: 0.8350 - val_f1: 0.2811 Epoch 17/20 800/800 [==============================] - 23s 29ms/step - loss: 0.6981 - tp0.1: 2674601.0000 - fp0.1: 4489171.0000 - tn0.1: 12193797.0000 - fn0.1: 303231.0000 - precision0.1: 0.3734 - rec all0.1: 0.8982 - tp0.3: 2183675.0000 - fp0.3: 1573762.0000 - tn0.3: 15109206.0000 - fn0.3: 794157.0000 - precision0.3: 0.5812 - recall0.3: 0.7333 - tp0.5: 1713199.0000 - fp0.5: 586718.0000 - tn0.5: 16096250.0000 - fn0.5: 1264633.0000 - precision0.5: 0.7449 - recall0.5: 0.5753 - tp0.7: 1283634.0000 - fp0.7: 195576.0000 - tn0.7: 16487392.0000 - fn0.7: 1694198.0000 - precision 0.7: 0.8678 - recall0.7: 0.4311 - tp0.9: 805115.0000 - fp0.9: 36004.0000 - tn0.9: 16646964.0000 - fn0.9: 2172717.0000 - precision0.9: 0.9572 - recall0.9: 0.2704 - accuracy: 0.9058 - auc: 0 .8950 - f1: 0.2631 - val_loss: 0.9465 - val_tp0.1: 687031.0000 - val_fp0.1: 1439264.0000 - val_tn0.1: 2672079.0000 - val_fn0.1: 116826.0000 - val_precision0.1: 0.3231 - val_recall0.1: 0.85 47 - val_tp0.3: 508441.0000 - val_fp0.3: 510821.0000 - val_tn0.3: 3600522.0000 - val_fn0.3: 295416.0000 - val_precision0.3: 0.4988 - val_recall0.3: 0.6325 - val_tp0.5: 352823.0000 - val_fp 0.5: 152954.0000 - val_tn0.5: 3958389.0000 - val_fn0.5: 451034.0000 - val_precision0.5: 0.6976 - val_recall0.5: 0.4389 - val_tp0.7: 231208.0000 - val_fp0.7: 43355.0000 - val_tn0.7: 4067988 .0000 - val_fn0.7: 572649.0000 - val_precision0.7: 0.8421 - val_recall0.7: 0.2876 - val_tp0.9: 114713.0000 - val_fp0.9: 5450.0000 - val_tn0.9: 4105893.0000 - val_fn0.9: 689144.0000 - val_p recision0.9: 0.9546 - val_recall0.9: 0.1427 - val_accuracy: 0.8771 - val_auc: 0.8361 - val_f1: 0.2811 Epoch 18/20 800/800 [==============================] - 23s 29ms/step - loss: 0.6969 - tp0.1: 2676617.0000 - fp0.1: 4470158.0000 - tn0.1: 12212810.0000 - fn0.1: 301215.0000 - precision0.1: 0.3745 - rec all0.1: 0.8988 - tp0.3: 2177086.0000 - fp0.3: 1601828.0000 - tn0.3: 15081140.0000 - fn0.3: 800746.0000 - precision0.3: 0.5761 - recall0.3: 0.7311 - tp0.5: 1715470.0000 - fp0.5: 611086.0000 - tn0.5: 16071882.0000 - fn0.5: 1262362.0000 - precision0.5: 0.7373 - recall0.5: 0.5761 - tp0.7: 1288609.0000 - fp0.7: 198192.0000 - tn0.7: 16484776.0000 - fn0.7: 1689223.0000 - precision 0.7: 0.8667 - recall0.7: 0.4327 - tp0.9: 807642.0000 - fp0.9: 37272.0000 - tn0.9: 16645696.0000 - fn0.9: 2170190.0000 - precision0.9: 0.9559 - recall0.9: 0.2712 - accuracy: 0.9047 - auc: 0 .8948 - f1: 0.2631 - val_loss: 0.9503 - val_tp0.1: 684845.0000 - val_fp0.1: 1434583.0000 - val_tn0.1: 2676760.0000 - val_fn0.1: 119012.0000 - val_precision0.1: 0.3231 - val_recall0.1: 0.85 19 - val_tp0.3: 501142.0000 - val_fp0.3: 471764.0000 - val_tn0.3: 3639579.0000 - val_fn0.3: 302715.0000 - val_precision0.3: 0.5151 - val_recall0.3: 0.6234 - val_tp0.5: 347005.0000 - val_fp 0.5: 143102.0000 - val_tn0.5: 3968241.0000 - val_fn0.5: 456852.0000 - val_precision0.5: 0.7080 - val_recall0.5: 0.4317 - val_tp0.7: 226199.0000 - val_fp0.7: 40947.0000 - val_tn0.7: 4070396 .0000 - val_fn0.7: 577658.0000 - val_precision0.7: 0.8467 - val_recall0.7: 0.2814 - val_tp0.9: 113524.0000 - val_fp0.9: 5443.0000 - val_tn0.9: 4105900.0000 - val_fn0.9: 690333.0000 - val_p recision0.9: 0.9542 - val_recall0.9: 0.1412 - val_accuracy: 0.8779 - val_auc: 0.8363 - val_f1: 0.2811 Epoch 19/20 800/800 [==============================] - 23s 28ms/step - loss: 0.6974 - tp0.1: 2678075.0000 - fp0.1: 4501081.0000 - tn0.1: 12181887.0000 - fn0.1: 299757.0000 - precision0.1: 0.3730 - rec all0.1: 0.8993 - tp0.3: 2193569.0000 - fp0.3: 1620047.0000 - tn0.3: 15062921.0000 - fn0.3: 784263.0000 - precision0.3: 0.5752 - recall0.3: 0.7366 - tp0.5: 1721203.0000 - fp0.5: 604162.0000 - tn0.5: 16078806.0000 - fn0.5: 1256629.0000 - precision0.5: 0.7402 - recall0.5: 0.5780 - tp0.7: 1284180.0000 - fp0.7: 199088.0000 - tn0.7: 16483880.0000 - fn0.7: 1693652.0000 - precision 0.7: 0.8658 - recall0.7: 0.4312 - tp0.9: 797069.0000 - fp0.9: 36223.0000 - tn0.9: 16646745.0000 - fn0.9: 2180763.0000 - precision0.9: 0.9565 - recall0.9: 0.2677 - accuracy: 0.9054 - auc: 0 .8954 - f1: 0.2631 - val_loss: 0.9439 - val_tp0.1: 694044.0000 - val_fp0.1: 1504048.0000 - val_tn0.1: 2607295.0000 - val_fn0.1: 109813.0000 - val_precision0.1: 0.3157 - val_recall0.1: 0.86 34 - val_tp0.3: 523881.0000 - val_fp0.3: 545389.0000 - val_tn0.3: 3565954.0000 - val_fn0.3: 279976.0000 - val_precision0.3: 0.4899 - val_recall0.3: 0.6517 - val_tp0.5: 369154.0000 - val_fp 0.5: 174373.0000 - val_tn0.5: 3936970.0000 - val_fn0.5: 434703.0000 - val_precision0.5: 0.6792 - val_recall0.5: 0.4592 - val_tp0.7: 245997.0000 - val_fp0.7: 52312.0000 - val_tn0.7: 4059031 .0000 - val_fn0.7: 557860.0000 - val_precision0.7: 0.8246 - val_recall0.7: 0.3060 - val_tp0.9: 124029.0000 - val_fp0.9: 7043.0000 - val_tn0.9: 4104300.0000 - val_fn0.9: 679828.0000 - val_p recision0.9: 0.9463 - val_recall0.9: 0.1543 - val_accuracy: 0.8761 - val_auc: 0.8387 - val_f1: 0.2811 Epoch 20/20 800/800 [==============================] - 23s 29ms/step - loss: 0.7034 - tp0.1: 2668995.0000 - fp0.1: 4472643.0000 - tn0.1: 12210325.0000 - fn0.1: 308837.0000 - precision0.1: 0.3737 - rec all0.1: 0.8963 - tp0.3: 2164194.0000 - fp0.3: 1572121.0000 - tn0.3: 15110847.0000 - fn0.3: 813638.0000 - precision0.3: 0.5792 - recall0.3: 0.7268 - tp0.5: 1680381.0000 - fp0.5: 579083.0000 - tn0.5: 16103885.0000 - fn0.5: 1297451.0000 - precision0.5: 0.7437 - recall0.5: 0.5643 - tp0.7: 1241011.0000 - fp0.7: 190475.0000 - tn0.7: 16492493.0000 - fn0.7: 1736821.0000 - precision 0.7: 0.8669 - recall0.7: 0.4167 - tp0.9: 785981.0000 - fp0.9: 34923.0000 - tn0.9: 16648045.0000 - fn0.9: 2191851.0000 - precision0.9: 0.9575 - recall0.9: 0.2639 - accuracy: 0.9046 - auc: 0 .8932 - f1: 0.2631 - val_loss: 0.9520 - val_tp0.1: 682980.0000 - val_fp0.1: 1413218.0000 - val_tn0.1: 2698125.0000 - val_fn0.1: 120877.0000 - val_precision0.1: 0.3258 - val_recall0.1: 0.84 96 - val_tp0.3: 500974.0000 - val_fp0.3: 498780.0000 - val_tn0.3: 3612563.0000 - val_fn0.3: 302883.0000 - val_precision0.3: 0.5011 - val_recall0.3: 0.6232 - val_tp0.5: 348018.0000 - val_fp 0.5: 150788.0000 - val_tn0.5: 3960555.0000 - val_fn0.5: 455839.0000 - val_precision0.5: 0.6977 - val_recall0.5: 0.4329 - val_tp0.7: 228527.0000 - val_fp0.7: 42760.0000 - val_tn0.7: 4068583 .0000 - val_fn0.7: 575330.0000 - val_precision0.7: 0.8424 - val_recall0.7: 0.2843 - val_tp0.9: 113851.0000 - val_fp0.9: 5410.0000 - val_tn0.9: 4105933.0000 - val_fn0.9: 690006.0000 - val_p recision0.9: 0.9546 - val_recall0.9: 0.1416 - val_accuracy: 0.8766 - val_auc: 0.8340 - val_f1: 0.2811 --- Running training session 60/140 {'hp_epochs': 20, 'hp_batch_size': 6, 'hp_scaler': 'maxabs', 'hp_n_levels': 3, 'hp_first_filters': 16, 'hp_pool_size': 2, 'hp_input_size': 4096, 'hp_lr_start': 0.06810286704342322, 'hp_lr_ power': 5.0} --- repeat #: 2 input - shape: (None, 4096, 1) output - shape: (None, 4096, 1) Epoch 1/20 800/800 [==============================] - 41s 33ms/step - loss: 1.1728 - tp0.1: 2643619.0000 - fp0.1: 9398198.0000 - tn0.1: 7284770.0000 - fn0.1: 334213.0000 - precision0.1: 0.2195 - reca ll0.1: 0.8878 - tp0.3: 1267730.0000 - fp0.3: 3106478.0000 - tn0.3: 13576490.0000 - fn0.3: 1710102.0000 - precision0.3: 0.2898 - recall0.3: 0.4257 - tp0.5: 110715.0000 - fp0.5: 152305.0000 - tn0.5: 16530663.0000 - fn0.5: 2867117.0000 - precision0.5: 0.4209 - recall0.5: 0.0372 - tp0.7: 22534.0000 - fp0.7: 27016.0000 - tn0.7: 16655952.0000 - fn0.7: 2955298.0000 - precision0.7: 0.4548 - recall0.7: 0.0076 - tp0.9: 5370.0000 - fp0.9: 4276.0000 - tn0.9: 16678692.0000 - fn0.9: 2972462.0000 - precision0.9: 0.5567 - recall0.9: 0.0018 - accuracy: 0.8464 - auc: 0.7210 - f1: 0.2631 - val_loss: 1.3911 - val_tp0.1: 803682.0000 - val_fp0.1: 4109861.0000 - val_tn0.1: 1482.0000 - val_fn0.1: 175.0000 - val_precision0.1: 0.1636 - val_recall0.1: 0.9998 - val_tp0. 3: 481990.0000 - val_fp0.3: 1381226.0000 - val_tn0.3: 2730117.0000 - val_fn0.3: 321867.0000 - val_precision0.3: 0.2587 - val_recall0.3: 0.5996 - val_tp0.5: 173457.0000 - val_fp0.5: 387503. 0000 - val_tn0.5: 3723840.0000 - val_fn0.5: 630400.0000 - val_precision0.5: 0.3092 - val_recall0.5: 0.2158 - val_tp0.7: 62452.0000 - val_fp0.7: 51611.0000 - val_tn0.7: 4059732.0000 - val_f n0.7: 741405.0000 - val_precision0.7: 0.5475 - val_recall0.7: 0.0777 - val_tp0.9: 36.0000 - val_fp0.9: 0.0000e+00 - val_tn0.9: 4111343.0000 - val_fn0.9: 803821.0000 - val_precision0.9: 1.0 000 - val_recall0.9: 4.4784e-05 - val_accuracy: 0.7929 - val_auc: 0.6622 - val_f1: 0.2811 Epoch 2/20 800/800 [==============================] - 23s 28ms/step - loss: 1.0815 - tp0.1: 2577878.0000 - fp0.1: 8005433.0000 - tn0.1: 8677535.0000 - fn0.1: 399954.0000 - precision0.1: 0.2436 - reca ll0.1: 0.8657 - tp0.3: 1447126.0000 - fp0.3: 2241046.0000 - tn0.3: 14441922.0000 - fn0.3: 1530706.0000 - precision0.3: 0.3924 - recall0.3: 0.4860 - tp0.5: 687354.0000 - fp0.5: 398807.0000 - tn0.5: 16284161.0000 - fn0.5: 2290478.0000 - precision0.5: 0.6328 - recall0.5: 0.2308 - tp0.7: 413817.0000 - fp0.7: 98920.0000 - tn0.7: 16584048.0000 - fn0.7: 2564015.0000 - precision0.7 : 0.8071 - recall0.7: 0.1390 - tp0.9: 186771.0000 - fp0.9: 14141.0000 - tn0.9: 16668827.0000 - fn0.9: 2791061.0000 - precision0.9: 0.9296 - recall0.9: 0.0627 - accuracy: 0.8632 - auc: 0.77 95 - f1: 0.2631 - val_loss: 2.8986 - val_tp0.1: 803131.0000 - val_fp0.1: 4099762.0000 - val_tn0.1: 11581.0000 - val_fn0.1: 726.0000 - val_precision0.1: 0.1638 - val_recall0.1: 0.9991 - val _tp0.3: 802096.0000 - val_fp0.3: 4084853.0000 - val_tn0.3: 26490.0000 - val_fn0.3: 1761.0000 - val_precision0.3: 0.1641 - val_recall0.3: 0.9978 - val_tp0.5: 651539.0000 - val_fp0.5: 192398 5.0000 - val_tn0.5: 2187358.0000 - val_fn0.5: 152318.0000 - val_precision0.5: 0.2530 - val_recall0.5: 0.8105 - val_tp0.7: 625381.0000 - val_fp0.7: 1805820.0000 - val_tn0.7: 2305523.0000 - val_fn0.7: 178476.0000 - val_precision0.7: 0.2572 - val_recall0.7: 0.7780 - val_tp0.9: 585910.0000 - val_fp0.9: 1628567.0000 - val_tn0.9: 2482776.0000 - val_fn0.9: 217947.0000 - val_precis ion0.9: 0.2646 - val_recall0.9: 0.7289 - val_accuracy: 0.5776 - val_auc: 0.7124 - val_f1: 0.2811 Epoch 3/20 800/800 [==============================] - 23s 28ms/step - loss: 1.0116 - tp0.1: 2624849.0000 - fp0.1: 7645828.0000 - tn0.1: 9037140.0000 - fn0.1: 352983.0000 - precision0.1: 0.2556 - reca ll0.1: 0.8815 - tp0.3: 1498713.0000 - fp0.3: 1695358.0000 - tn0.3: 14987610.0000 - fn0.3: 1479119.0000 - precision0.3: 0.4692 - recall0.3: 0.5033 - tp0.5: 975584.0000 - fp0.5: 420254.0000 - tn0.5: 16262714.0000 - fn0.5: 2002248.0000 - precision0.5: 0.6989 - recall0.5: 0.3276 - tp0.7: 709358.0000 - fp0.7: 149271.0000 - tn0.7: 16533697.0000 - fn0.7: 2268474.0000 - precision0. 7: 0.8262 - recall0.7: 0.2382 - tp0.9: 389012.0000 - fp0.9: 27027.0000 - tn0.9: 16655941.0000 - fn0.9: 2588820.0000 - precision0.9: 0.9350 - recall0.9: 0.1306 - accuracy: 0.8768 - auc: 0.8 104 - f1: 0.2631 - val_loss: 1.5866 - val_tp0.1: 541567.0000 - val_fp0.1: 1371385.0000 - val_tn0.1: 2739958.0000 - val_fn0.1: 262290.0000 - val_precision0.1: 0.2831 - val_recall0.1: 0.6737 - val_tp0.3: 350430.0000 - val_fp0.3: 695890.0000 - val_tn0.3: 3415453.0000 - val_fn0.3: 453427.0000 - val_precision0.3: 0.3349 - val_recall0.3: 0.4359 - val_tp0.5: 277275.0000 - val_fp0. 5: 441168.0000 - val_tn0.5: 3670175.0000 - val_fn0.5: 526582.0000 - val_precision0.5: 0.3859 - val_recall0.5: 0.3449 - val_tp0.7: 207293.0000 - val_fp0.7: 222426.0000 - val_tn0.7: 3888917. 0000 - val_fn0.7: 596564.0000 - val_precision0.7: 0.4824 - val_recall0.7: 0.2579 - val_tp0.9: 90589.0000 - val_fp0.9: 35047.0000 - val_tn0.9: 4076296.0000 - val_fn0.9: 713268.0000 - val_pr ecision0.9: 0.7210 - val_recall0.9: 0.1127 - val_accuracy: 0.8031 - val_auc: 0.7058 - val_f1: 0.2811 Epoch 4/20 800/800 [==============================] - 23s 28ms/step - loss: 0.9534 - tp0.1: 2630735.0000 - fp0.1: 7252035.0000 - tn0.1: 9430933.0000 - fn0.1: 347097.0000 - precision0.1: 0.2662 - reca ll0.1: 0.8834 - tp0.3: 1613584.0000 - fp0.3: 1430388.0000 - tn0.3: 15252580.0000 - fn0.3: 1364248.0000 - precision0.3: 0.5301 - recall0.3: 0.5419 - tp0.5: 1188917.0000 - fp0.5: 484302.0000 - tn0.5: 16198666.0000 - fn0.5: 1788915.0000 - precision0.5: 0.7106 - recall0.5: 0.3993 - tp0.7: 896123.0000 - fp0.7: 181140.0000 - tn0.7: 16501828.0000 - fn0.7: 2081709.0000 - precision0 .7: 0.8319 - recall0.7: 0.3009 - tp0.9: 494120.0000 - fp0.9: 27734.0000 - tn0.9: 16655234.0000 - fn0.9: 2483712.0000 - precision0.9: 0.9469 - recall0.9: 0.1659 - accuracy: 0.8844 - auc: 0. 8330 - f1: 0.2631 - val_loss: 1.2238 - val_tp0.1: 762287.0000 - val_fp0.1: 2841918.0000 - val_tn0.1: 1269425.0000 - val_fn0.1: 41570.0000 - val_precision0.1: 0.2115 - val_recall0.1: 0.9483 - val_tp0.3: 473341.0000 - val_fp0.3: 934680.0000 - val_tn0.3: 3176663.0000 - val_fn0.3: 330516.0000 - val_precision0.3: 0.3362 - val_recall0.3: 0.5888 - val_tp0.5: 284941.0000 - val_fp0. 5: 382747.0000 - val_tn0.5: 3728596.0000 - val_fn0.5: 518916.0000 - val_precision0.5: 0.4268 - val_recall0.5: 0.3545 - val_tp0.7: 199426.0000 - val_fp0.7: 215679.0000 - val_tn0.7: 3895664. 0000 - val_fn0.7: 604431.0000 - val_precision0.7: 0.4804 - val_recall0.7: 0.2481 - val_tp0.9: 80714.0000 - val_fp0.9: 40538.0000 - val_tn0.9: 4070805.0000 - val_fn0.9: 723143.0000 - val_pr ecision0.9: 0.6657 - val_recall0.9: 0.1004 - val_accuracy: 0.8166 - val_auc: 0.7536 - val_f1: 0.2811 Epoch 5/20 800/800 [==============================] - 105s 132ms/step - loss: 0.9031 - tp0.1: 2615817.0000 - fp0.1: 6473866.0000 - tn0.1: 10209102.0000 - fn0.1: 362015.0000 - precision0.1: 0.2878 - r ecall0.1: 0.8784 - tp0.3: 1760338.0000 - fp0.3: 1552636.0000 - tn0.3: 15130332.0000 - fn0.3: 1217494.0000 - precision0.3: 0.5313 - recall0.3: 0.5911 - tp0.5: 1305140.0000 - fp0.5: 538907.0 000 - tn0.5: 16144061.0000 - fn0.5: 1672692.0000 - precision0.5: 0.7078 - recall0.5: 0.4383 - tp0.7: 972649.0000 - fp0.7: 195218.0000 - tn0.7: 16487750.0000 - fn0.7: 2005183.0000 - precisi on0.7: 0.8328 - recall0.7: 0.3266 - tp0.9: 541205.0000 - fp0.9: 31289.0000 - tn0.9: 16651679.0000 - fn0.9: 2436627.0000 - precision0.9: 0.9453 - recall0.9: 0.1817 - accuracy: 0.8875 - auc: 0.8476 - f1: 0.2631 - val_loss: 1.0983 - val_tp0.1: 685124.0000 - val_fp0.1: 1862694.0000 - val_tn0.1: 2248649.0000 - val_fn0.1: 118733.0000 - val_precision0.1: 0.2689 - val_recall0.1: 0. 8523 - val_tp0.3: 408907.0000 - val_fp0.3: 510069.0000 - val_tn0.3: 3601274.0000 - val_fn0.3: 394950.0000 - val_precision0.3: 0.4450 - val_recall0.3: 0.5087 - val_tp0.5: 249171.0000 - val_ fp0.5: 222225.0000 - val_tn0.5: 3889118.0000 - val_fn0.5: 554686.0000 - val_precision0.5: 0.5286 - val_recall0.5: 0.3100 - val_tp0.7: 157112.0000 - val_fp0.7: 77659.0000 - val_tn0.7: 40336 84.0000 - val_fn0.7: 646745.0000 - val_precision0.7: 0.6692 - val_recall0.7: 0.1954 - val_tp0.9: 31306.0000 - val_fp0.9: 406.0000 - val_tn0.9: 4110937.0000 - val_fn0.9: 772551.0000 - val_p recision0.9: 0.9872 - val_recall0.9: 0.0389 - val_accuracy: 0.8419 - val_auc: 0.7829 - val_f1: 0.2811 Epoch 6/20 800/800 [==============================] - 23s 28ms/step - loss: 0.8664 - tp0.1: 2613105.0000 - fp0.1: 5967389.0000 - tn0.1: 10715579.0000 - fn0.1: 364727.0000 - precision0.1: 0.3045 - rec all0.1: 0.8775 - tp0.3: 1833388.0000 - fp0.3: 1537464.0000 - tn0.3: 15145504.0000 - fn0.3: 1144444.0000 - precision0.3: 0.5439 - recall0.3: 0.6157 - tp0.5: 1388900.0000 - fp0.5: 539537.000 0 - tn0.5: 16143431.0000 - fn0.5: 1588932.0000 - precision0.5: 0.7202 - recall0.5: 0.4664 - tp0.7: 1047260.0000 - fp0.7: 195978.0000 - tn0.7: 16486990.0000 - fn0.7: 1930572.0000 - precisio n0.7: 0.8424 - recall0.7: 0.3517 - tp0.9: 612618.0000 - fp0.9: 34165.0000 - tn0.9: 16648803.0000 - fn0.9: 2365214.0000 - precision0.9: 0.9472 - recall0.9: 0.2057 - accuracy: 0.8917 - auc: 0.8558 - f1: 0.2631 - val_loss: 1.1906 - val_tp0.1: 589351.0000 - val_fp0.1: 1203883.0000 - val_tn0.1: 2907460.0000 - val_fn0.1: 214506.0000 - val_precision0.1: 0.3287 - val_recall0.1: 0.7 332 - val_tp0.3: 396327.0000 - val_fp0.3: 557062.0000 - val_tn0.3: 3554281.0000 - val_fn0.3: 407530.0000 - val_precision0.3: 0.4157 - val_recall0.3: 0.4930 - val_tp0.5: 335193.0000 - val_f p0.5: 411860.0000 - val_tn0.5: 3699483.0000 - val_fn0.5: 468664.0000 - val_precision0.5: 0.4487 - val_recall0.5: 0.4170 - val_tp0.7: 273790.0000 - val_fp0.7: 273418.0000 - val_tn0.7: 38379 25.0000 - val_fn0.7: 530067.0000 - val_precision0.7: 0.5003 - val_recall0.7: 0.3406 - val_tp0.9: 147281.0000 - val_fp0.9: 47498.0000 - val_tn0.9: 4063845.0000 - val_fn0.9: 656576.0000 - va l_precision0.9: 0.7561 - val_recall0.9: 0.1832 - val_accuracy: 0.8209 - val_auc: 0.7717 - val_f1: 0.2811 Epoch 7/20 800/800 [==============================] - 23s 29ms/step - loss: 0.8261 - tp0.1: 2610067.0000 - fp0.1: 5441450.0000 - tn0.1: 11241518.0000 - fn0.1: 367765.0000 - precision0.1: 0.3242 - rec all0.1: 0.8765 - tp0.3: 1926083.0000 - fp0.3: 1638761.0000 - tn0.3: 15044207.0000 - fn0.3: 1051749.0000 - precision0.3: 0.5403 - recall0.3: 0.6468 - tp0.5: 1451422.0000 - fp0.5: 566878.000 0 - tn0.5: 16116090.0000 - fn0.5: 1526410.0000 - precision0.5: 0.7191 - recall0.5: 0.4874 - tp0.7: 1084565.0000 - fp0.7: 195437.0000 - tn0.7: 16487531.0000 - fn0.7: 1893267.0000 - precisio n0.7: 0.8473 - recall0.7: 0.3642 - tp0.9: 629952.0000 - fp0.9: 32457.0000 - tn0.9: 16650511.0000 - fn0.9: 2347880.0000 - precision0.9: 0.9510 - recall0.9: 0.2115 - accuracy: 0.8935 - auc: 0.8646 - f1: 0.2631 - val_loss: 0.9781 - val_tp0.1: 706790.0000 - val_fp0.1: 1645956.0000 - val_tn0.1: 2465387.0000 - val_fn0.1: 97067.0000 - val_precision0.1: 0.3004 - val_recall0.1: 0.87 92 - val_tp0.3: 517245.0000 - val_fp0.3: 647485.0000 - val_tn0.3: 3463858.0000 - val_fn0.3: 286612.0000 - val_precision0.3: 0.4441 - val_recall0.3: 0.6435 - val_tp0.5: 373721.0000 - val_fp 0.5: 255513.0000 - val_tn0.5: 3855830.0000 - val_fn0.5: 430136.0000 - val_precision0.5: 0.5939 - val_recall0.5: 0.4649 - val_tp0.7: 242514.0000 - val_fp0.7: 84275.0000 - val_tn0.7: 4027068 .0000 - val_fn0.7: 561343.0000 - val_precision0.7: 0.7421 - val_recall0.7: 0.3017 - val_tp0.9: 127788.0000 - val_fp0.9: 15373.0000 - val_tn0.9: 4095970.0000 - val_fn0.9: 676069.0000 - val_ precision0.9: 0.8926 - val_recall0.9: 0.1590 - val_accuracy: 0.8605 - val_auc: 0.8289 - val_f1: 0.2811 Epoch 8/20 800/800 [==============================] - 23s 28ms/step - loss: 0.7968 - tp0.1: 2628693.0000 - fp0.1: 5237949.0000 - tn0.1: 11445019.0000 - fn0.1: 349139.0000 - precision0.1: 0.3342 - rec all0.1: 0.8828 - tp0.3: 1990774.0000 - fp0.3: 1601561.0000 - tn0.3: 15081407.0000 - fn0.3: 987058.0000 - precision0.3: 0.5542 - recall0.3: 0.6685 - tp0.5: 1512649.0000 - fp0.5: 585437.0000 - tn0.5: 16097531.0000 - fn0.5: 1465183.0000 - precision0.5: 0.7210 - recall0.5: 0.5080 - tp0.7: 1113359.0000 - fp0.7: 192219.0000 - tn0.7: 16490749.0000 - fn0.7: 1864473.0000 - precision 0.7: 0.8528 - recall0.7: 0.3739 - tp0.9: 662809.0000 - fp0.9: 30877.0000 - tn0.9: 16652091.0000 - fn0.9: 2315023.0000 - precision0.9: 0.9555 - recall0.9: 0.2226 - accuracy: 0.8957 - auc: 0 .8732 - f1: 0.2631 - val_loss: 1.0262 - val_tp0.1: 703581.0000 - val_fp0.1: 1905662.0000 - val_tn0.1: 2205681.0000 - val_fn0.1: 100276.0000 - val_precision0.1: 0.2696 - val_recall0.1: 0.87 53 - val_tp0.3: 447413.0000 - val_fp0.3: 447251.0000 - val_tn0.3: 3664092.0000 - val_fn0.3: 356444.0000 - val_precision0.3: 0.5001 - val_recall0.3: 0.5566 - val_tp0.5: 293285.0000 - val_fp 0.5: 134465.0000 - val_tn0.5: 3976878.0000 - val_fn0.5: 510572.0000 - val_precision0.5: 0.6856 - val_recall0.5: 0.3648 - val_tp0.7: 180739.0000 - val_fp0.7: 40494.0000 - val_tn0.7: 4070849 .0000 - val_fn0.7: 623118.0000 - val_precision0.7: 0.8170 - val_recall0.7: 0.2248 - val_tp0.9: 86388.0000 - val_fp0.9: 5793.0000 - val_tn0.9: 4105550.0000 - val_fn0.9: 717469.0000 - val_pr ecision0.9: 0.9372 - val_recall0.9: 0.1075 - val_accuracy: 0.8688 - val_auc: 0.8159 - val_f1: 0.2811 Epoch 9/20 800/800 [==============================] - 23s 28ms/step - loss: 0.7819 - tp0.1: 2640898.0000 - fp0.1: 5239761.0000 - tn0.1: 11443207.0000 - fn0.1: 336934.0000 - precision0.1: 0.3351 - rec all0.1: 0.8869 - tp0.3: 2019563.0000 - fp0.3: 1566552.0000 - tn0.3: 15116416.0000 - fn0.3: 958269.0000 - precision0.3: 0.5632 - recall0.3: 0.6782 - tp0.5: 1571033.0000 - fp0.5: 592615.0000 - tn0.5: 16090353.0000 - fn0.5: 1406799.0000 - precision0.5: 0.7261 - recall0.5: 0.5276 - tp0.7: 1175144.0000 - fp0.7: 194680.0000 - tn0.7: 16488288.0000 - fn0.7: 1802688.0000 - precision 0.7: 0.8579 - recall0.7: 0.3946 - tp0.9: 742669.0000 - fp0.9: 35986.0000 - tn0.9: 16646982.0000 - fn0.9: 2235163.0000 - precision0.9: 0.9538 - recall0.9: 0.2494 - accuracy: 0.8983 - auc: 0 .8780 - f1: 0.2631 - val_loss: 1.0157 - val_tp0.1: 652637.0000 - val_fp0.1: 1329883.0000 - val_tn0.1: 2781460.0000 - val_fn0.1: 151220.0000 - val_precision0.1: 0.3292 - val_recall0.1: 0.81 19 - val_tp0.3: 420948.0000 - val_fp0.3: 353053.0000 - val_tn0.3: 3758290.0000 - val_fn0.3: 382909.0000 - val_precision0.3: 0.5439 - val_recall0.3: 0.5237 - val_tp0.5: 281081.0000 - val_fp 0.5: 123121.0000 - val_tn0.5: 3988222.0000 - val_fn0.5: 522776.0000 - val_precision0.5: 0.6954 - val_recall0.5: 0.3497 - val_tp0.7: 173940.0000 - val_fp0.7: 36200.0000 - val_tn0.7: 4075143 .0000 - val_fn0.7: 629917.0000 - val_precision0.7: 0.8277 - val_recall0.7: 0.2164 - val_tp0.9: 89015.0000 - val_fp0.9: 6773.0000 - val_tn0.9: 4104570.0000 - val_fn0.9: 714842.0000 - val_pr ecision0.9: 0.9293 - val_recall0.9: 0.1107 - val_accuracy: 0.8686 - val_auc: 0.8166 - val_f1: 0.2811 Epoch 10/20 800/800 [==============================] - 23s 28ms/step - loss: 0.7672 - tp0.1: 2635701.0000 - fp0.1: 4919057.0000 - tn0.1: 11763911.0000 - fn0.1: 342131.0000 - precision0.1: 0.3489 - rec all0.1: 0.8851 - tp0.3: 2036938.0000 - fp0.3: 1575677.0000 - tn0.3: 15107291.0000 - fn0.3: 940894.0000 - precision0.3: 0.5638 - recall0.3: 0.6840 - tp0.5: 1588676.0000 - fp0.5: 624407.0000 - tn0.5: 16058561.0000 - fn0.5: 1389156.0000 - precision0.5: 0.7179 - recall0.5: 0.5335 - tp0.7: 1150076.0000 - fp0.7: 189388.0000 - tn0.7: 16493580.0000 - fn0.7: 1827756.0000 - precision 0.7: 0.8586 - recall0.7: 0.3862 - tp0.9: 694637.0000 - fp0.9: 31558.0000 - tn0.9: 16651410.0000 - fn0.9: 2283195.0000 - precision0.9: 0.9565 - recall0.9: 0.2333 - accuracy: 0.8976 - auc: 0 .8799 - f1: 0.2631 - val_loss: 0.9685 - val_tp0.1: 719258.0000 - val_fp0.1: 1852284.0000 - val_tn0.1: 2259059.0000 - val_fn0.1: 84599.0000 - val_precision0.1: 0.2797 - val_recall0.1: 0.894 8 - val_tp0.3: 495938.0000 - val_fp0.3: 497006.0000 - val_tn0.3: 3614337.0000 - val_fn0.3: 307919.0000 - val_precision0.3: 0.4995 - val_recall0.3: 0.6169 - val_tp0.5: 339199.0000 - val_fp0 .5: 177289.0000 - val_tn0.5: 3934054.0000 - val_fn0.5: 464658.0000 - val_precision0.5: 0.6567 - val_recall0.5: 0.4220 - val_tp0.7: 196231.0000 - val_fp0.7: 44292.0000 - val_tn0.7: 4067051. 0000 - val_fn0.7: 607626.0000 - val_precision0.7: 0.8159 - val_recall0.7: 0.2441 - val_tp0.9: 84223.0000 - val_fp0.9: 4726.0000 - val_tn0.9: 4106617.0000 - val_fn0.9: 719634.0000 - val_pre cision0.9: 0.9469 - val_recall0.9: 0.1048 - val_accuracy: 0.8694 - val_auc: 0.8365 - val_f1: 0.2811 Epoch 11/20 800/800 [==============================] - 23s 28ms/step - loss: 0.7657 - tp0.1: 2620304.0000 - fp0.1: 4756693.0000 - tn0.1: 11926275.0000 - fn0.1: 357528.0000 - precision0.1: 0.3552 - rec all0.1: 0.8799 - tp0.3: 2057463.0000 - fp0.3: 1595402.0000 - tn0.3: 15087566.0000 - fn0.3: 920369.0000 - precision0.3: 0.5632 - recall0.3: 0.6909 - tp0.5: 1629457.0000 - fp0.5: 652845.0000 - tn0.5: 16030123.0000 - fn0.5: 1348375.0000 - precision0.5: 0.7140 - recall0.5: 0.5472 - tp0.7: 1159302.0000 - fp0.7: 181594.0000 - tn0.7: 16501374.0000 - fn0.7: 1818530.0000 - precision 0.7: 0.8646 - recall0.7: 0.3893 - tp0.9: 691411.0000 - fp0.9: 29139.0000 - tn0.9: 16653829.0000 - fn0.9: 2286421.0000 - precision0.9: 0.9596 - recall0.9: 0.2322 - accuracy: 0.8982 - auc: 0 .8794 - f1: 0.2631 - val_loss: 0.9798 - val_tp0.1: 650390.0000 - val_fp0.1: 1145138.0000 - val_tn0.1: 2966205.0000 - val_fn0.1: 153467.0000 - val_precision0.1: 0.3622 - val_recall0.1: 0.80 91 - val_tp0.3: 416815.0000 - val_fp0.3: 345286.0000 - val_tn0.3: 3766057.0000 - val_fn0.3: 387042.0000 - val_precision0.3: 0.5469 - val_recall0.3: 0.5185 - val_tp0.5: 303813.0000 - val_fp 0.5: 119881.0000 - val_tn0.5: 3991462.0000 - val_fn0.5: 500044.0000 - val_precision0.5: 0.7171 - val_recall0.5: 0.3779 - val_tp0.7: 186405.0000 - val_fp0.7: 34348.0000 - val_tn0.7: 4076995 .0000 - val_fn0.7: 617452.0000 - val_precision0.7: 0.8444 - val_recall0.7: 0.2319 - val_tp0.9: 88035.0000 - val_fp0.9: 4840.0000 - val_tn0.9: 4106503.0000 - val_fn0.9: 715822.0000 - val_pr ecision0.9: 0.9479 - val_recall0.9: 0.1095 - val_accuracy: 0.8739 - val_auc: 0.8236 - val_f1: 0.2811 Epoch 12/20 800/800 [==============================] - 23s 28ms/step - loss: 0.7483 - tp0.1: 2643606.0000 - fp0.1: 4772914.0000 - tn0.1: 11910054.0000 - fn0.1: 334226.0000 - precision0.1: 0.3564 - rec all0.1: 0.8878 - tp0.3: 2076874.0000 - fp0.3: 1529573.0000 - tn0.3: 15153395.0000 - fn0.3: 900958.0000 - precision0.3: 0.5759 - recall0.3: 0.6974 - tp0.5: 1673377.0000 - fp0.5: 652544.0000 - tn0.5: 16030424.0000 - fn0.5: 1304455.0000 - precision0.5: 0.7194 - recall0.5: 0.5619 - tp0.7: 1197669.0000 - fp0.7: 195301.0000 - tn0.7: 16487667.0000 - fn0.7: 1780163.0000 - precision 0.7: 0.8598 - recall0.7: 0.4022 - tp0.9: 723663.0000 - fp0.9: 34095.0000 - tn0.9: 16648873.0000 - fn0.9: 2254169.0000 - precision0.9: 0.9550 - recall0.9: 0.2430 - accuracy: 0.9005 - auc: 0 .8854 - f1: 0.2631 - val_loss: 0.9661 - val_tp0.1: 682417.0000 - val_fp0.1: 1411604.0000 - val_tn0.1: 2699739.0000 - val_fn0.1: 121440.0000 - val_precision0.1: 0.3259 - val_recall0.1: 0.84 89 - val_tp0.3: 393462.0000 - val_fp0.3: 248966.0000 - val_tn0.3: 3862377.0000 - val_fn0.3: 410395.0000 - val_precision0.3: 0.6125 - val_recall0.3: 0.4895 - val_tp0.5: 264605.0000 - val_fp 0.5: 75544.0000 - val_tn0.5: 4035799.0000 - val_fn0.5: 539252.0000 - val_precision0.5: 0.7779 - val_recall0.5: 0.3292 - val_tp0.7: 151048.0000 - val_fp0.7: 18110.0000 - val_tn0.7: 4093233. 0000 - val_fn0.7: 652809.0000 - val_precision0.7: 0.8929 - val_recall0.7: 0.1879 - val_tp0.9: 73096.0000 - val_fp0.9: 2503.0000 - val_tn0.9: 4108840.0000 - val_fn0.9: 730761.0000 - val_pre cision0.9: 0.9669 - val_recall0.9: 0.0909 - val_accuracy: 0.8749 - val_auc: 0.8348 - val_f1: 0.2811 Epoch 13/20 800/800 [==============================] - 23s 28ms/step - loss: 0.7469 - tp0.1: 2638319.0000 - fp0.1: 4684335.0000 - tn0.1: 11998633.0000 - fn0.1: 339513.0000 - precision0.1: 0.3603 - rec all0.1: 0.8860 - tp0.3: 2075631.0000 - fp0.3: 1533614.0000 - tn0.3: 15149354.0000 - fn0.3: 902201.0000 - precision0.3: 0.5751 - recall0.3: 0.6970 - tp0.5: 1654093.0000 - fp0.5: 657052.0000 - tn0.5: 16025916.0000 - fn0.5: 1323739.0000 - precision0.5: 0.7157 - recall0.5: 0.5555 - tp0.7: 1159144.0000 - fp0.7: 187558.0000 - tn0.7: 16495410.0000 - fn0.7: 1818688.0000 - precision 0.7: 0.8607 - recall0.7: 0.3893 - tp0.9: 691098.0000 - fp0.9: 30329.0000 - tn0.9: 16652639.0000 - fn0.9: 2286734.0000 - precision0.9: 0.9580 - recall0.9: 0.2321 - accuracy: 0.8993 - auc: 0 .8851 - f1: 0.2631 - val_loss: 0.9511 - val_tp0.1: 676012.0000 - val_fp0.1: 1300131.0000 - val_tn0.1: 2811212.0000 - val_fn0.1: 127845.0000 - val_precision0.1: 0.3421 - val_recall0.1: 0.84 10 - val_tp0.3: 435613.0000 - val_fp0.3: 369776.0000 - val_tn0.3: 3741567.0000 - val_fn0.3: 368244.0000 - val_precision0.3: 0.5409 - val_recall0.3: 0.5419 - val_tp0.5: 315382.0000 - val_fp 0.5: 126324.0000 - val_tn0.5: 3985019.0000 - val_fn0.5: 488475.0000 - val_precision0.5: 0.7140 - val_recall0.5: 0.3923 - val_tp0.7: 186834.0000 - val_fp0.7: 33643.0000 - val_tn0.7: 4077700 .0000 - val_fn0.7: 617023.0000 - val_precision0.7: 0.8474 - val_recall0.7: 0.2324 - val_tp0.9: 86226.0000 - val_fp0.9: 4347.0000 - val_tn0.9: 4106996.0000 - val_fn0.9: 717631.0000 - val_pr ecision0.9: 0.9520 - val_recall0.9: 0.1073 - val_accuracy: 0.8749 - val_auc: 0.8317 - val_f1: 0.2811 Epoch 14/20 800/800 [==============================] - 23s 28ms/step - loss: 0.7472 - tp0.1: 2640336.0000 - fp0.1: 4682320.0000 - tn0.1: 12000648.0000 - fn0.1: 337496.0000 - precision0.1: 0.3606 - rec all0.1: 0.8867 - tp0.3: 2072009.0000 - fp0.3: 1595973.0000 - tn0.3: 15086995.0000 - fn0.3: 905823.0000 - precision0.3: 0.5649 - recall0.3: 0.6958 - tp0.5: 1664556.0000 - fp0.5: 686406.0000 - tn0.5: 15996562.0000 - fn0.5: 1313276.0000 - precision0.5: 0.7080 - recall0.5: 0.5590 - tp0.7: 1168681.0000 - fp0.7: 190677.0000 - tn0.7: 16492291.0000 - fn0.7: 1809151.0000 - precision 0.7: 0.8597 - recall0.7: 0.3925 - tp0.9: 706963.0000 - fp0.9: 30254.0000 - tn0.9: 16652714.0000 - fn0.9: 2270869.0000 - precision0.9: 0.9590 - recall0.9: 0.2374 - accuracy: 0.8983 - auc: 0 .8838 - f1: 0.2631 - val_loss: 0.9537 - val_tp0.1: 687713.0000 - val_fp0.1: 1442587.0000 - val_tn0.1: 2668756.0000 - val_fn0.1: 116144.0000 - val_precision0.1: 0.3228 - val_recall0.1: 0.85 55 - val_tp0.3: 448956.0000 - val_fp0.3: 376999.0000 - val_tn0.3: 3734344.0000 - val_fn0.3: 354901.0000 - val_precision0.3: 0.5436 - val_recall0.3: 0.5585 - val_tp0.5: 322122.0000 - val_fp 0.5: 133228.0000 - val_tn0.5: 3978115.0000 - val_fn0.5: 481735.0000 - val_precision0.5: 0.7074 - val_recall0.5: 0.4007 - val_tp0.7: 189079.0000 - val_fp0.7: 36378.0000 - val_tn0.7: 4074965 .0000 - val_fn0.7: 614778.0000 - val_precision0.7: 0.8386 - val_recall0.7: 0.2352 - val_tp0.9: 87530.0000 - val_fp0.9: 4845.0000 - val_tn0.9: 4106498.0000 - val_fn0.9: 716327.0000 - val_pr ecision0.9: 0.9476 - val_recall0.9: 0.1089 - val_accuracy: 0.8749 - val_auc: 0.8339 - val_f1: 0.2811 Epoch 15/20 800/800 [==============================] - 23s 28ms/step - loss: 0.7436 - tp0.1: 2645410.0000 - fp0.1: 4733153.0000 - tn0.1: 11949815.0000 - fn0.1: 332422.0000 - precision0.1: 0.3585 - rec all0.1: 0.8884 - tp0.3: 2099091.0000 - fp0.3: 1622697.0000 - tn0.3: 15060271.0000 - fn0.3: 878741.0000 - precision0.3: 0.5640 - recall0.3: 0.7049 - tp0.5: 1689821.0000 - fp0.5: 706002.0000 - tn0.5: 15976966.0000 - fn0.5: 1288011.0000 - precision0.5: 0.7053 - recall0.5: 0.5675 - tp0.7: 1187271.0000 - fp0.7: 194662.0000 - tn0.7: 16488306.0000 - fn0.7: 1790561.0000 - precision 0.7: 0.8591 - recall0.7: 0.3987 - tp0.9: 719432.0000 - fp0.9: 31350.0000 - tn0.9: 16651618.0000 - fn0.9: 2258400.0000 - precision0.9: 0.9582 - recall0.9: 0.2416 - accuracy: 0.8986 - auc: 0 .8855 - f1: 0.2631 - val_loss: 0.9517 - val_tp0.1: 686003.0000 - val_fp0.1: 1413980.0000 - val_tn0.1: 2697363.0000 - val_fn0.1: 117854.0000 - val_precision0.1: 0.3267 - val_recall0.1: 0.85 34 - val_tp0.3: 449760.0000 - val_fp0.3: 382567.0000 - val_tn0.3: 3728776.0000 - val_fn0.3: 354097.0000 - val_precision0.3: 0.5404 - val_recall0.3: 0.5595 - val_tp0.5: 324012.0000 - val_fp 0.5: 130173.0000 - val_tn0.5: 3981170.0000 - val_fn0.5: 479845.0000 - val_precision0.5: 0.7134 - val_recall0.5: 0.4031 - val_tp0.7: 189632.0000 - val_fp0.7: 34603.0000 - val_tn0.7: 4076740 .0000 - val_fn0.7: 614225.0000 - val_precision0.7: 0.8457 - val_recall0.7: 0.2359 - val_tp0.9: 86754.0000 - val_fp0.9: 4383.0000 - val_tn0.9: 4106960.0000 - val_fn0.9: 717103.0000 - val_pr ecision0.9: 0.9519 - val_recall0.9: 0.1079 - val_accuracy: 0.8759 - val_auc: 0.8345 - val_f1: 0.2811 Epoch 16/20 800/800 [==============================] - 23s 28ms/step - loss: 0.7458 - tp0.1: 2641645.0000 - fp0.1: 4695396.0000 - tn0.1: 11987572.0000 - fn0.1: 336187.0000 - precision0.1: 0.3600 - rec all0.1: 0.8871 - tp0.3: 2084584.0000 - fp0.3: 1588554.0000 - tn0.3: 15094414.0000 - fn0.3: 893248.0000 - precision0.3: 0.5675 - recall0.3: 0.7000 - tp0.5: 1683391.0000 - fp0.5: 686943.0000 - tn0.5: 15996025.0000 - fn0.5: 1294441.0000 - precision0.5: 0.7102 - recall0.5: 0.5653 - tp0.7: 1187166.0000 - fp0.7: 191714.0000 - tn0.7: 16491254.0000 - fn0.7: 1790666.0000 - precision 0.7: 0.8610 - recall0.7: 0.3987 - tp0.9: 713157.0000 - fp0.9: 30164.0000 - tn0.9: 16652804.0000 - fn0.9: 2264675.0000 - precision0.9: 0.9594 - recall0.9: 0.2395 - accuracy: 0.8992 - auc: 0 .8851 - f1: 0.2631 - val_loss: 0.9480 - val_tp0.1: 687202.0000 - val_fp0.1: 1416765.0000 - val_tn0.1: 2694578.0000 - val_fn0.1: 116655.0000 - val_precision0.1: 0.3266 - val_recall0.1: 0.85 49 - val_tp0.3: 435185.0000 - val_fp0.3: 324375.0000 - val_tn0.3: 3786968.0000 - val_fn0.3: 368672.0000 - val_precision0.3: 0.5729 - val_recall0.3: 0.5414 - val_tp0.5: 310697.0000 - val_fp 0.5: 114008.0000 - val_tn0.5: 3997335.0000 - val_fn0.5: 493160.0000 - val_precision0.5: 0.7316 - val_recall0.5: 0.3865 - val_tp0.7: 180896.0000 - val_fp0.7: 30514.0000 - val_tn0.7: 4080829 .0000 - val_fn0.7: 622961.0000 - val_precision0.7: 0.8557 - val_recall0.7: 0.2250 - val_tp0.9: 85121.0000 - val_fp0.9: 4248.0000 - val_tn0.9: 4107095.0000 - val_fn0.9: 718736.0000 - val_pr ecision0.9: 0.9525 - val_recall0.9: 0.1059 - val_accuracy: 0.8765 - val_auc: 0.8372 - val_f1: 0.2811 Epoch 17/20 800/800 [==============================] - 23s 28ms/step - loss: 0.7489 - tp0.1: 2637863.0000 - fp0.1: 4686124.0000 - tn0.1: 11996844.0000 - fn0.1: 339969.0000 - precision0.1: 0.3602 - rec all0.1: 0.8858 - tp0.3: 2075559.0000 - fp0.3: 1564588.0000 - tn0.3: 15118380.0000 - fn0.3: 902273.0000 - precision0.3: 0.5702 - recall0.3: 0.6970 - tp0.5: 1674724.0000 - fp0.5: 689631.0000 - tn0.5: 15993337.0000 - fn0.5: 1303108.0000 - precision0.5: 0.7083 - recall0.5: 0.5624 - tp0.7: 1179885.0000 - fp0.7: 191863.0000 - tn0.7: 16491105.0000 - fn0.7: 1797947.0000 - precision 0.7: 0.8601 - recall0.7: 0.3962 - tp0.9: 710902.0000 - fp0.9: 31154.0000 - tn0.9: 16651814.0000 - fn0.9: 2266930.0000 - precision0.9: 0.9580 - recall0.9: 0.2387 - accuracy: 0.8986 - auc: 0 .8842 - f1: 0.2631 - val_loss: 0.9526 - val_tp0.1: 685383.0000 - val_fp0.1: 1407315.0000 - val_tn0.1: 2704028.0000 - val_fn0.1: 118474.0000 - val_precision0.1: 0.3275 - val_recall0.1: 0.85 26 - val_tp0.3: 434253.0000 - val_fp0.3: 334816.0000 - val_tn0.3: 3776527.0000 - val_fn0.3: 369604.0000 - val_precision0.3: 0.5646 - val_recall0.3: 0.5402 - val_tp0.5: 309436.0000 - val_fp 0.5: 113860.0000 - val_tn0.5: 3997483.0000 - val_fn0.5: 494421.0000 - val_precision0.5: 0.7310 - val_recall0.5: 0.3849 - val_tp0.7: 180756.0000 - val_fp0.7: 30132.0000 - val_tn0.7: 4081211 .0000 - val_fn0.7: 623101.0000 - val_precision0.7: 0.8571 - val_recall0.7: 0.2249 - val_tp0.9: 85627.0000 - val_fp0.9: 4210.0000 - val_tn0.9: 4107133.0000 - val_fn0.9: 718230.0000 - val_pr ecision0.9: 0.9531 - val_recall0.9: 0.1065 - val_accuracy: 0.8762 - val_auc: 0.8351 - val_f1: 0.2811 Epoch 18/20 800/800 [==============================] - 23s 28ms/step - loss: 0.7393 - tp0.1: 2648936.0000 - fp0.1: 4669640.0000 - tn0.1: 12013328.0000 - fn0.1: 328896.0000 - precision0.1: 0.3619 - rec all0.1: 0.8896 - tp0.3: 2088022.0000 - fp0.3: 1535327.0000 - tn0.3: 15147641.0000 - fn0.3: 889810.0000 - precision0.3: 0.5763 - recall0.3: 0.7012 - tp0.5: 1675010.0000 - fp0.5: 662872.0000 - tn0.5: 16020096.0000 - fn0.5: 1302822.0000 - precision0.5: 0.7165 - recall0.5: 0.5625 - tp0.7: 1182736.0000 - fp0.7: 184372.0000 - tn0.7: 16498596.0000 - fn0.7: 1795096.0000 - precision 0.7: 0.8651 - recall0.7: 0.3972 - tp0.9: 719695.0000 - fp0.9: 31350.0000 - tn0.9: 16651618.0000 - fn0.9: 2258137.0000 - precision0.9: 0.9583 - recall0.9: 0.2417 - accuracy: 0.9000 - auc: 0 .8873 - f1: 0.2631 - val_loss: 0.9553 - val_tp0.1: 682153.0000 - val_fp0.1: 1382728.0000 - val_tn0.1: 2728615.0000 - val_fn0.1: 121704.0000 - val_precision0.1: 0.3304 - val_recall0.1: 0.84 86 - val_tp0.3: 433097.0000 - val_fp0.3: 334545.0000 - val_tn0.3: 3776798.0000 - val_fn0.3: 370760.0000 - val_precision0.3: 0.5642 - val_recall0.3: 0.5388 - val_tp0.5: 307911.0000 - val_fp 0.5: 113008.0000 - val_tn0.5: 3998335.0000 - val_fn0.5: 495946.0000 - val_precision0.5: 0.7315 - val_recall0.5: 0.3830 - val_tp0.7: 178664.0000 - val_fp0.7: 29733.0000 - val_tn0.7: 4081610 .0000 - val_fn0.7: 625193.0000 - val_precision0.7: 0.8573 - val_recall0.7: 0.2223 - val_tp0.9: 83772.0000 - val_fp0.9: 4111.0000 - val_tn0.9: 4107232.0000 - val_fn0.9: 720085.0000 - val_pr ecision0.9: 0.9532 - val_recall0.9: 0.1042 - val_accuracy: 0.8761 - val_auc: 0.8340 - val_f1: 0.2811 Epoch 19/20 800/800 [==============================] - 23s 28ms/step - loss: 0.7452 - tp0.1: 2646665.0000 - fp0.1: 4698587.0000 - tn0.1: 11984381.0000 - fn0.1: 331167.0000 - precision0.1: 0.3603 - rec all0.1: 0.8888 - tp0.3: 2062641.0000 - fp0.3: 1557707.0000 - tn0.3: 15125261.0000 - fn0.3: 915191.0000 - precision0.3: 0.5697 - recall0.3: 0.6927 - tp0.5: 1648838.0000 - fp0.5: 680800.0000 - tn0.5: 16002168.0000 - fn0.5: 1328994.0000 - precision0.5: 0.7078 - recall0.5: 0.5537 - tp0.7: 1164585.0000 - fp0.7: 186942.0000 - tn0.7: 16496026.0000 - fn0.7: 1813247.0000 - precision 0.7: 0.8617 - recall0.7: 0.3911 - tp0.9: 705028.0000 - fp0.9: 30241.0000 - tn0.9: 16652727.0000 - fn0.9: 2272804.0000 - precision0.9: 0.9589 - recall0.9: 0.2368 - accuracy: 0.8978 - auc: 0 .8850 - f1: 0.2631 - val_loss: 0.9544 - val_tp0.1: 689367.0000 - val_fp0.1: 1469991.0000 - val_tn0.1: 2641352.0000 - val_fn0.1: 114490.0000 - val_precision0.1: 0.3192 - val_recall0.1: 0.85 76 - val_tp0.3: 451534.0000 - val_fp0.3: 363328.0000 - val_tn0.3: 3748015.0000 - val_fn0.3: 352323.0000 - val_precision0.3: 0.5541 - val_recall0.3: 0.5617 - val_tp0.5: 324284.0000 - val_fp 0.5: 128372.0000 - val_tn0.5: 3982971.0000 - val_fn0.5: 479573.0000 - val_precision0.5: 0.7164 - val_recall0.5: 0.4034 - val_tp0.7: 190210.0000 - val_fp0.7: 35390.0000 - val_tn0.7: 4075953 .0000 - val_fn0.7: 613647.0000 - val_precision0.7: 0.8431 - val_recall0.7: 0.2366 - val_tp0.9: 88933.0000 - val_fp0.9: 4874.0000 - val_tn0.9: 4106469.0000 - val_fn0.9: 714924.0000 - val_pr ecision0.9: 0.9480 - val_recall0.9: 0.1106 - val_accuracy: 0.8763 - val_auc: 0.8353 - val_f1: 0.2811 Epoch 20/20 800/800 [==============================] - 22s 28ms/step - loss: 0.7364 - tp0.1: 2654787.0000 - fp0.1: 4675725.0000 - tn0.1: 12007243.0000 - fn0.1: 323045.0000 - precision0.1: 0.3622 - rec all0.1: 0.8915 - tp0.3: 2081760.0000 - fp0.3: 1548676.0000 - tn0.3: 15134292.0000 - fn0.3: 896072.0000 - precision0.3: 0.5734 - recall0.3: 0.6991 - tp0.5: 1666321.0000 - fp0.5: 674703.0000 - tn0.5: 16008265.0000 - fn0.5: 1311511.0000 - precision0.5: 0.7118 - recall0.5: 0.5596 - tp0.7: 1164069.0000 - fp0.7: 189776.0000 - tn0.7: 16493192.0000 - fn0.7: 1813763.0000 - precision 0.7: 0.8598 - recall0.7: 0.3909 - tp0.9: 699952.0000 - fp0.9: 31138.0000 - tn0.9: 16651830.0000 - fn0.9: 2277880.0000 - precision0.9: 0.9574 - recall0.9: 0.2351 - accuracy: 0.8990 - auc: 0 .8875 - f1: 0.2631 - val_loss: 0.9490 - val_tp0.1: 690953.0000 - val_fp0.1: 1466947.0000 - val_tn0.1: 2644396.0000 - val_fn0.1: 112904.0000 - val_precision0.1: 0.3202 - val_recall0.1: 0.85 95 - val_tp0.3: 446418.0000 - val_fp0.3: 345263.0000 - val_tn0.3: 3766080.0000 - val_fn0.3: 357439.0000 - val_precision0.3: 0.5639 - val_recall0.3: 0.5553 - val_tp0.5: 321059.0000 - val_fp 0.5: 123555.0000 - val_tn0.5: 3987788.0000 - val_fn0.5: 482798.0000 - val_precision0.5: 0.7221 - val_recall0.5: 0.3994 - val_tp0.7: 189576.0000 - val_fp0.7: 35232.0000 - val_tn0.7: 4076111 .0000 - val_fn0.7: 614281.0000 - val_precision0.7: 0.8433 - val_recall0.7: 0.2358 - val_tp0.9: 90962.0000 - val_fp0.9: 5426.0000 - val_tn0.9: 4105917.0000 - val_fn0.9: 712895.0000 - val_pr ecision0.9: 0.9437 - val_recall0.9: 0.1132 - val_accuracy: 0.8766 - val_auc: 0.8372 - val_f1: 0.2811 --- Running training session 61/140 {'hp_epochs': 20, 'hp_batch_size': 20, 'hp_scaler': 'standard', 'hp_n_levels': 3, 'hp_first_filters': 128, 'hp_pool_size': 4, 'hp_input_size': 16384, 'hp_lr_start': 0.04354970735327304, 'h p_lr_power': 1.0} --- repeat #: 1 input - shape: (None, 16384, 1) output - shape: (None, 16384, 1) Epoch 1/20 240/240 [==============================] - 145s 530ms/step - loss: 0.7930 - tp0.1: 9902012.0000 - fp0.1: 12359941.0000 - tn0.1: 54313476.0000 - fn0.1: 2067755.0000 - precision0.1: 0.4448 - recall0.1: 0.8273 - tp0.3: 8813463.0000 - fp0.3: 7147978.0000 - tn0.3: 59525464.0000 - fn0.3: 3156304.0000 - precision0.3: 0.5522 - recall0.3: 0.7363 - tp0.5: 6775614.0000 - fp0.5: 236477 6.0000 - tn0.5: 64308628.0000 - fn0.5: 5194153.0000 - precision0.5: 0.7413 - recall0.5: 0.5661 - tp0.7: 5269669.0000 - fp0.7: 804460.0000 - tn0.7: 65868980.0000 - fn0.7: 6700098.0000 - pre cision0.7: 0.8676 - recall0.7: 0.4402 - tp0.9: 3642391.0000 - fp0.9: 181910.0000 - tn0.9: 66491528.0000 - fn0.9: 8327376.0000 - precision0.9: 0.9524 - recall0.9: 0.3043 - accuracy: 0.9039 - auc: 0.8736 - f1: 0.2642 - val_loss: 1.3831 - val_tp0.1: 1860092.0000 - val_fp0.1: 529606.0000 - val_tn0.1: 15968340.0000 - val_fn0.1: 1302762.0000 - val_precision0.1: 0.7784 - val_recal l0.1: 0.5881 - val_tp0.3: 1805849.0000 - val_fp0.3: 437765.0000 - val_tn0.3: 16060181.0000 - val_fn0.3: 1357005.0000 - val_precision0.3: 0.8049 - val_recall0.3: 0.5710 - val_tp0.5: 1737224 .0000 - val_fp0.5: 360788.0000 - val_tn0.5: 16137158.0000 - val_fn0.5: 1425630.0000 - val_precision0.5: 0.8280 - val_recall0.5: 0.5493 - val_tp0.7: 1675344.0000 - val_fp0.7: 306812.0000 - val_tn0.7: 16191134.0000 - val_fn0.7: 1487510.0000 - val_precision0.7: 0.8452 - val_recall0.7: 0.5297 - val_tp0.9: 1555952.0000 - val_fp0.9: 227670.0000 - val_tn0.9: 16270276.0000 - val_fn 0.9: 1606902.0000 - val_precision0.9: 0.8724 - val_recall0.9: 0.4919 - val_accuracy: 0.9091 - val_auc: 0.7866 - val_f1: 0.2772 Epoch 2/20 240/240 [==============================] - 123s 514ms/step - loss: 0.6145 - tp0.1: 10414504.0000 - fp0.1: 10347179.0000 - tn0.1: 56326272.0000 - fn0.1: 1555263.0000 - precision0.1: 0.5016 - recall0.1: 0.8701 - tp0.3: 9433694.0000 - fp0.3: 4804465.0000 - tn0.3: 61868972.0000 - fn0.3: 2536073.0000 - precision0.3: 0.6626 - recall0.3: 0.7881 - tp0.5: 8253529.0000 - fp0.5: 21841 43.0000 - tn0.5: 64489292.0000 - fn0.5: 3716238.0000 - precision0.5: 0.7907 - recall0.5: 0.6895 - tp0.7: 6893438.0000 - fp0.7: 964306.0000 - tn0.7: 65709120.0000 - fn0.7: 5076329.0000 - pr ecision0.7: 0.8773 - recall0.7: 0.5759 - tp0.9: 4825582.0000 - fp0.9: 253763.0000 - tn0.9: 66419652.0000 - fn0.9: 7144185.0000 - precision0.9: 0.9500 - recall0.9: 0.4031 - accuracy: 0.9250 - auc: 0.9112 - f1: 0.2642 - val_loss: 0.7660 - val_tp0.1: 2600896.0000 - val_fp0.1: 1563848.0000 - val_tn0.1: 14934098.0000 - val_fn0.1: 561958.0000 - val_precision0.1: 0.6245 - val_reca ll0.1: 0.8223 - val_tp0.3: 2498170.0000 - val_fp0.3: 1105437.0000 - val_tn0.3: 15392509.0000 - val_fn0.3: 664684.0000 - val_precision0.3: 0.6932 - val_recall0.3: 0.7898 - val_tp0.5: 236736 0.0000 - val_fp0.5: 720936.0000 - val_tn0.5: 15777010.0000 - val_fn0.5: 795494.0000 - val_precision0.5: 0.7666 - val_recall0.5: 0.7485 - val_tp0.7: 2247425.0000 - val_fp0.7: 512282.0000 - val_tn0.7: 15985664.0000 - val_fn0.7: 915429.0000 - val_precision0.7: 0.8144 - val_recall0.7: 0.7106 - val_tp0.9: 2064899.0000 - val_fp0.9: 341222.0000 - val_tn0.9: 16156724.0000 - val_fn0 .9: 1097955.0000 - val_precision0.9: 0.8582 - val_recall0.9: 0.6529 - val_accuracy: 0.9229 - val_auc: 0.8919 - val_f1: 0.2772 Epoch 3/20 240/240 [==============================] - 123s 514ms/step - loss: 0.5296 - tp0.1: 10710507.0000 - fp0.1: 9627528.0000 - tn0.1: 57045904.0000 - fn0.1: 1259260.0000 - precision0.1: 0.5266 - recall0.1: 0.8948 - tp0.3: 9708967.0000 - fp0.3: 3890062.0000 - tn0.3: 62783372.0000 - fn0.3: 2260800.0000 - precision0.3: 0.7139 - recall0.3: 0.8111 - tp0.5: 8800137.0000 - fp0.5: 193587 4.0000 - tn0.5: 64737520.0000 - fn0.5: 3169630.0000 - precision0.5: 0.8197 - recall0.5: 0.7352 - tp0.7: 7616621.0000 - fp0.7: 897975.0000 - tn0.7: 65775424.0000 - fn0.7: 4353146.0000 - pre cision0.7: 0.8945 - recall0.7: 0.6363 - tp0.9: 5653966.0000 - fp0.9: 272229.0000 - tn0.9: 66401216.0000 - fn0.9: 6315801.0000 - precision0.9: 0.9541 - recall0.9: 0.4724 - accuracy: 0.9351 - auc: 0.9281 - f1: 0.2642 - val_loss: 0.6681 - val_tp0.1: 2593120.0000 - val_fp0.1: 1019904.0000 - val_tn0.1: 15478042.0000 - val_fn0.1: 569734.0000 - val_precision0.1: 0.7177 - val_recal l0.1: 0.8199 - val_tp0.3: 2244784.0000 - val_fp0.3: 338835.0000 - val_tn0.3: 16159111.0000 - val_fn0.3: 918070.0000 - val_precision0.3: 0.8689 - val_recall0.3: 0.7097 - val_tp0.5: 2014697. 0000 - val_fp0.5: 180709.0000 - val_tn0.5: 16317237.0000 - val_fn0.5: 1148157.0000 - val_precision0.5: 0.9177 - val_recall0.5: 0.6370 - val_tp0.7: 1651445.0000 - val_fp0.7: 66392.0000 - va l_tn0.7: 16431554.0000 - val_fn0.7: 1511409.0000 - val_precision0.7: 0.9614 - val_recall0.7: 0.5221 - val_tp0.9: 1122584.0000 - val_fp0.9: 10626.0000 - val_tn0.9: 16487320.0000 - val_fn0.9 : 2040270.0000 - val_precision0.9: 0.9906 - val_recall0.9: 0.3549 - val_accuracy: 0.9324 - val_auc: 0.9151 - val_f1: 0.2772 Epoch 4/20 240/240 [==============================] - 123s 514ms/step - loss: 0.4720 - tp0.1: 10877075.0000 - fp0.1: 8671019.0000 - tn0.1: 58002392.0000 - fn0.1: 1092692.0000 - precision0.1: 0.5564 - recall0.1: 0.9087 - tp0.3: 9936344.0000 - fp0.3: 3411676.0000 - tn0.3: 63261736.0000 - fn0.3: 2033423.0000 - precision0.3: 0.7444 - recall0.3: 0.8301 - tp0.5: 9211814.0000 - fp0.5: 187395 8.0000 - tn0.5: 64799456.0000 - fn0.5: 2757953.0000 - precision0.5: 0.8310 - recall0.5: 0.7696 - tp0.7: 8139780.0000 - fp0.7: 898839.0000 - tn0.7: 65774596.0000 - fn0.7: 3829987.0000 - pre cision0.7: 0.9006 - recall0.7: 0.6800 - tp0.9: 6238056.0000 - fp0.9: 255726.0000 - tn0.9: 66417696.0000 - fn0.9: 5731711.0000 - precision0.9: 0.9606 - recall0.9: 0.5212 - accuracy: 0.9411 - auc: 0.9384 - f1: 0.2642 - val_loss: 0.4134 - val_tp0.1: 3012908.0000 - val_fp0.1: 2692890.0000 - val_tn0.1: 13805056.0000 - val_fn0.1: 149946.0000 - val_precision0.1: 0.5280 - val_recal l0.1: 0.9526 - val_tp0.3: 2844859.0000 - val_fp0.3: 1085275.0000 - val_tn0.3: 15412671.0000 - val_fn0.3: 317995.0000 - val_precision0.3: 0.7239 - val_recall0.3: 0.8995 - val_tp0.5: 2702953 .0000 - val_fp0.5: 596686.0000 - val_tn0.5: 15901260.0000 - val_fn0.5: 459901.0000 - val_precision0.5: 0.8192 - val_recall0.5: 0.8546 - val_tp0.7: 2523224.0000 - val_fp0.7: 328369.0000 - v al_tn0.7: 16169577.0000 - val_fn0.7: 639630.0000 - val_precision0.7: 0.8848 - val_recall0.7: 0.7978 - val_tp0.9: 2192428.0000 - val_fp0.9: 138765.0000 - val_tn0.9: 16359181.0000 - val_fn0. 9: 970426.0000 - val_precision0.9: 0.9405 - val_recall0.9: 0.6932 - val_accuracy: 0.9463 - val_auc: 0.9625 - val_f1: 0.2772 Epoch 5/20 240/240 [==============================] - 124s 515ms/step - loss: 0.4310 - tp0.1: 10975989.0000 - fp0.1: 7934457.0000 - tn0.1: 58738992.0000 - fn0.1: 993778.0000 - precision0.1: 0.5804 - recall0.1: 0.9170 - tp0.3: 10114842.0000 - fp0.3: 3195737.0000 - tn0.3: 63477704.0000 - fn0.3: 1854925.0000 - precision0.3: 0.7599 - recall0.3: 0.8450 - tp0.5: 9339053.0000 - fp0.5: 161448 5.0000 - tn0.5: 65058948.0000 - fn0.5: 2630714.0000 - precision0.5: 0.8526 - recall0.5: 0.7802 - tp0.7: 8449558.0000 - fp0.7: 805407.0000 - tn0.7: 65868032.0000 - fn0.7: 3520209.0000 - pre cision0.7: 0.9130 - recall0.7: 0.7059 - tp0.9: 6730077.0000 - fp0.9: 232993.0000 - tn0.9: 66440428.0000 - fn0.9: 5239690.0000 - precision0.9: 0.9665 - recall0.9: 0.5623 - accuracy: 0.9460 - auc: 0.9454 - f1: 0.2642 - val_loss: 0.4139 - val_tp0.1: 3048945.0000 - val_fp0.1: 2758234.0000 - val_tn0.1: 13739712.0000 - val_fn0.1: 113909.0000 - val_precision0.1: 0.5250 - val_recal l0.1: 0.9640 - val_tp0.3: 2947363.0000 - val_fp0.3: 1444749.0000 - val_tn0.3: 15053197.0000 - val_fn0.3: 215491.0000 - val_precision0.3: 0.6711 - val_recall0.3: 0.9319 - val_tp0.5: 2843052 .0000 - val_fp0.5: 901333.0000 - val_tn0.5: 15596613.0000 - val_fn0.5: 319802.0000 - val_precision0.5: 0.7593 - val_recall0.5: 0.8989 - val_tp0.7: 2732073.0000 - val_fp0.7: 569323.0000 - v al_tn0.7: 15928623.0000 - val_fn0.7: 430781.0000 - val_precision0.7: 0.8276 - val_recall0.7: 0.8638 - val_tp0.9: 2540735.0000 - val_fp0.9: 283228.0000 - val_tn0.9: 16214718.0000 - val_fn0. 9: 622119.0000 - val_precision0.9: 0.8997 - val_recall0.9: 0.8033 - val_accuracy: 0.9379 - val_auc: 0.9680 - val_f1: 0.2772 Epoch 6/20 240/240 [==============================] - 123s 514ms/step - loss: 0.4055 - tp0.1: 11005938.0000 - fp0.1: 7117253.0000 - tn0.1: 59556168.0000 - fn0.1: 963829.0000 - precision0.1: 0.6073 - recall0.1: 0.9195 - tp0.3: 10252977.0000 - fp0.3: 2993472.0000 - tn0.3: 63679960.0000 - fn0.3: 1716790.0000 - precision0.3: 0.7740 - recall0.3: 0.8566 - tp0.5: 9600067.0000 - fp0.5: 159785 2.0000 - tn0.5: 65075568.0000 - fn0.5: 2369700.0000 - precision0.5: 0.8573 - recall0.5: 0.8020 - tp0.7: 8735547.0000 - fp0.7: 775018.0000 - tn0.7: 65898436.0000 - fn0.7: 3234220.0000 - pre cision0.7: 0.9185 - recall0.7: 0.7298 - tp0.9: 7088496.0000 - fp0.9: 233616.0000 - tn0.9: 66439832.0000 - fn0.9: 4881271.0000 - precision0.9: 0.9681 - recall0.9: 0.5922 - accuracy: 0.9496 - auc: 0.9484 - f1: 0.2642 - val_loss: 0.3925 - val_tp0.1: 3016157.0000 - val_fp0.1: 2494175.0000 - val_tn0.1: 14003771.0000 - val_fn0.1: 146697.0000 - val_precision0.1: 0.5474 - val_recal l0.1: 0.9536 - val_tp0.3: 2913629.0000 - val_fp0.3: 1206347.0000 - val_tn0.3: 15291599.0000 - val_fn0.3: 249225.0000 - val_precision0.3: 0.7072 - val_recall0.3: 0.9212 - val_tp0.5: 2794468 .0000 - val_fp0.5: 707843.0000 - val_tn0.5: 15790103.0000 - val_fn0.5: 368386.0000 - val_precision0.5: 0.7979 - val_recall0.5: 0.8835 - val_tp0.7: 2631745.0000 - val_fp0.7: 409739.0000 - v al_tn0.7: 16088207.0000 - val_fn0.7: 531109.0000 - val_precision0.7: 0.8653 - val_recall0.7: 0.8321 - val_tp0.9: 2298554.0000 - val_fp0.9: 168326.0000 - val_tn0.9: 16329620.0000 - val_fn0. 9: 864300.0000 - val_precision0.9: 0.9318 - val_recall0.9: 0.7267 - val_accuracy: 0.9453 - val_auc: 0.9633 - val_f1: 0.2772 Epoch 7/20 240/240 [==============================] - 123s 515ms/step - loss: 0.3854 - tp0.1: 11113311.0000 - fp0.1: 7284589.0000 - tn0.1: 59388840.0000 - fn0.1: 856456.0000 - precision0.1: 0.6041 - recall0.1: 0.9284 - tp0.3: 10356441.0000 - fp0.3: 3026811.0000 - tn0.3: 63646640.0000 - fn0.3: 1613326.0000 - precision0.3: 0.7738 - recall0.3: 0.8652 - tp0.5: 9718595.0000 - fp0.5: 163300 4.0000 - tn0.5: 65040420.0000 - fn0.5: 2251172.0000 - precision0.5: 0.8561 - recall0.5: 0.8119 - tp0.7: 8835263.0000 - fp0.7: 784778.0000 - tn0.7: 65888660.0000 - fn0.7: 3134504.0000 - pre cision0.7: 0.9184 - recall0.7: 0.7381 - tp0.9: 7228050.0000 - fp0.9: 242511.0000 - tn0.9: 66430912.0000 - fn0.9: 4741717.0000 - precision0.9: 0.9675 - recall0.9: 0.6039 - accuracy: 0.9506 - auc: 0.9535 - f1: 0.2642 - val_loss: 0.4443 - val_tp0.1: 2906183.0000 - val_fp0.1: 1626644.0000 - val_tn0.1: 14871302.0000 - val_fn0.1: 256671.0000 - val_precision0.1: 0.6411 - val_recal l0.1: 0.9188 - val_tp0.3: 2816271.0000 - val_fp0.3: 1160666.0000 - val_tn0.3: 15337280.0000 - val_fn0.3: 346583.0000 - val_precision0.3: 0.7082 - val_recall0.3: 0.8904 - val_tp0.5: 2689144 .0000 - val_fp0.5: 809812.0000 - val_tn0.5: 15688134.0000 - val_fn0.5: 473710.0000 - val_precision0.5: 0.7686 - val_recall0.5: 0.8502 - val_tp0.7: 2488156.0000 - val_fp0.7: 481300.0000 - v al_tn0.7: 16016646.0000 - val_fn0.7: 674698.0000 - val_precision0.7: 0.8379 - val_recall0.7: 0.7867 - val_tp0.9: 2127831.0000 - val_fp0.9: 230399.0000 - val_tn0.9: 16267547.0000 - val_fn0. 9: 1035023.0000 - val_precision0.9: 0.9023 - val_recall0.9: 0.6728 - val_accuracy: 0.9347 - val_auc: 0.9452 - val_f1: 0.2772 Epoch 8/20 240/240 [==============================] - 124s 515ms/step - loss: 0.3596 - tp0.1: 11147835.0000 - fp0.1: 6521359.0000 - tn0.1: 60152048.0000 - fn0.1: 821932.0000 - precision0.1: 0.6309 - recall0.1: 0.9313 - tp0.3: 10458403.0000 - fp0.3: 2774423.0000 - tn0.3: 63899012.0000 - fn0.3: 1511364.0000 - precision0.3: 0.7903 - recall0.3: 0.8737 - tp0.5: 9862220.0000 - fp0.5: 151598 7.0000 - tn0.5: 65157436.0000 - fn0.5: 2107547.0000 - precision0.5: 0.8668 - recall0.5: 0.8239 - tp0.7: 9063431.0000 - fp0.7: 749399.0000 - tn0.7: 65924016.0000 - fn0.7: 2906336.0000 - pre cision0.7: 0.9236 - recall0.7: 0.7572 - tp0.9: 7504772.0000 - fp0.9: 226379.0000 - tn0.9: 66447060.0000 - fn0.9: 4464995.0000 - precision0.9: 0.9707 - recall0.9: 0.6270 - accuracy: 0.9539 - auc: 0.9563 - f1: 0.2642 - val_loss: 0.5498 - val_tp0.1: 3055124.0000 - val_fp0.1: 4118468.0000 - val_tn0.1: 12379478.0000 - val_fn0.1: 107730.0000 - val_precision0.1: 0.4259 - val_recal l0.1: 0.9659 - val_tp0.3: 2939354.0000 - val_fp0.3: 2257326.0000 - val_tn0.3: 14240620.0000 - val_fn0.3: 223500.0000 - val_precision0.3: 0.5656 - val_recall0.3: 0.9293 - val_tp0.5: 2829932 .0000 - val_fp0.5: 1526939.0000 - val_tn0.5: 14971007.0000 - val_fn0.5: 332922.0000 - val_precision0.5: 0.6495 - val_recall0.5: 0.8947 - val_tp0.7: 2642371.0000 - val_fp0.7: 901220.0000 - val_tn0.7: 15596726.0000 - val_fn0.7: 520483.0000 - val_precision0.7: 0.7457 - val_recall0.7: 0.8354 - val_tp0.9: 2236370.0000 - val_fp0.9: 400953.0000 - val_tn0.9: 16096993.0000 - val_fn0 .9: 926484.0000 - val_precision0.9: 0.8480 - val_recall0.9: 0.7071 - val_accuracy: 0.9054 - val_auc: 0.9561 - val_f1: 0.2772 Epoch 9/20 240/240 [==============================] - 123s 514ms/step - loss: 0.3587 - tp0.1: 11154292.0000 - fp0.1: 6547650.0000 - tn0.1: 60125796.0000 - fn0.1: 815475.0000 - precision0.1: 0.6301 - recall0.1: 0.9319 - tp0.3: 10488369.0000 - fp0.3: 2868809.0000 - tn0.3: 63804604.0000 - fn0.3: 1481398.0000 - precision0.3: 0.7852 - recall0.3: 0.8762 - tp0.5: 9875989.0000 - fp0.5: 153301 6.0000 - tn0.5: 65140432.0000 - fn0.5: 2093778.0000 - precision0.5: 0.8656 - recall0.5: 0.8251 - tp0.7: 9098782.0000 - fp0.7: 781237.0000 - tn0.7: 65892200.0000 - fn0.7: 2870985.0000 - pre cision0.7: 0.9209 - recall0.7: 0.7601 - tp0.9: 7462273.0000 - fp0.9: 220634.0000 - tn0.9: 66452784.0000 - fn0.9: 4507494.0000 - precision0.9: 0.9713 - recall0.9: 0.6234 - accuracy: 0.9539 - auc: 0.9568 - f1: 0.2642 - val_loss: 0.3098 - val_tp0.1: 3044237.0000 - val_fp0.1: 1845158.0000 - val_tn0.1: 14652788.0000 - val_fn0.1: 118617.0000 - val_precision0.1: 0.6226 - val_recal l0.1: 0.9625 - val_tp0.3: 2952931.0000 - val_fp0.3: 1010870.0000 - val_tn0.3: 15487076.0000 - val_fn0.3: 209923.0000 - val_precision0.3: 0.7450 - val_recall0.3: 0.9336 - val_tp0.5: 2818007 .0000 - val_fp0.5: 560464.0000 - val_tn0.5: 15937482.0000 - val_fn0.5: 344847.0000 - val_precision0.5: 0.8341 - val_recall0.5: 0.8910 - val_tp0.7: 2675497.0000 - val_fp0.7: 330511.0000 - v al_tn0.7: 16167435.0000 - val_fn0.7: 487357.0000 - val_precision0.7: 0.8900 - val_recall0.7: 0.8459 - val_tp0.9: 2356811.0000 - val_fp0.9: 121488.0000 - val_tn0.9: 16376458.0000 - val_fn0. 9: 806043.0000 - val_precision0.9: 0.9510 - val_recall0.9: 0.7452 - val_accuracy: 0.9540 - val_auc: 0.9720 - val_f1: 0.2772 Epoch 10/20 240/240 [==============================] - 123s 514ms/step - loss: 0.3310 - tp0.1: 11220800.0000 - fp0.1: 6024418.0000 - tn0.1: 60649028.0000 - fn0.1: 748967.0000 - precision0.1: 0.6507 - recall0.1: 0.9374 - tp0.3: 10602011.0000 - fp0.3: 2619415.0000 - tn0.3: 64054032.0000 - fn0.3: 1367756.0000 - precision0.3: 0.8019 - recall0.3: 0.8857 - tp0.5: 10035760.0000 - fp0.5: 14108 57.0000 - tn0.5: 65262568.0000 - fn0.5: 1934007.0000 - precision0.5: 0.8767 - recall0.5: 0.8384 - tp0.7: 9310399.0000 - fp0.7: 714073.0000 - tn0.7: 65959376.0000 - fn0.7: 2659368.0000 - pr ecision0.7: 0.9288 - recall0.7: 0.7778 - tp0.9: 7802441.0000 - fp0.9: 197965.0000 - tn0.9: 66475472.0000 - fn0.9: 4167326.0000 - precision0.9: 0.9753 - recall0.9: 0.6518 - accuracy: 0.9575 - auc: 0.9608 - f1: 0.2642 - val_loss: 0.3701 - val_tp0.1: 3063278.0000 - val_fp0.1: 2656513.0000 - val_tn0.1: 13841433.0000 - val_fn0.1: 99576.0000 - val_precision0.1: 0.5356 - val_recal l0.1: 0.9685 - val_tp0.3: 2959133.0000 - val_fp0.3: 1261902.0000 - val_tn0.3: 15236044.0000 - val_fn0.3: 203721.0000 - val_precision0.3: 0.7010 - val_recall0.3: 0.9356 - val_tp0.5: 2866997 .0000 - val_fp0.5: 802391.0000 - val_tn0.5: 15695555.0000 - val_fn0.5: 295857.0000 - val_precision0.5: 0.7813 - val_recall0.5: 0.9065 - val_tp0.7: 2730525.0000 - val_fp0.7: 462170.0000 - v al_tn0.7: 16035776.0000 - val_fn0.7: 432329.0000 - val_precision0.7: 0.8552 - val_recall0.7: 0.8633 - val_tp0.9: 2464570.0000 - val_fp0.9: 189700.0000 - val_tn0.9: 16308246.0000 - val_fn0. 9: 698284.0000 - val_precision0.9: 0.9285 - val_recall0.9: 0.7792 - val_accuracy: 0.9441 - val_auc: 0.9728 - val_f1: 0.2772 Epoch 11/20 240/240 [==============================] - 123s 514ms/step - loss: 0.3233 - tp0.1: 11231645.0000 - fp0.1: 5931503.0000 - tn0.1: 60741932.0000 - fn0.1: 738122.0000 - precision0.1: 0.6544 - recall0.1: 0.9383 - tp0.3: 10598514.0000 - fp0.3: 2444604.0000 - tn0.3: 64228848.0000 - fn0.3: 1371253.0000 - precision0.3: 0.8126 - recall0.3: 0.8854 - tp0.5: 10075292.0000 - fp0.5: 13321 40.0000 - tn0.5: 65341256.0000 - fn0.5: 1894475.0000 - precision0.5: 0.8832 - recall0.5: 0.8417 - tp0.7: 9378243.0000 - fp0.7: 674133.0000 - tn0.7: 65999280.0000 - fn0.7: 2591524.0000 - pr ecision0.7: 0.9329 - recall0.7: 0.7835 - tp0.9: 7966249.0000 - fp0.9: 193209.0000 - tn0.9: 66480236.0000 - fn0.9: 4003518.0000 - precision0.9: 0.9763 - recall0.9: 0.6655 - accuracy: 0.9590 - auc: 0.9619 - f1: 0.2642 - val_loss: 0.2986 - val_tp0.1: 3049223.0000 - val_fp0.1: 1879104.0000 - val_tn0.1: 14618842.0000 - val_fn0.1: 113631.0000 - val_precision0.1: 0.6187 - val_reca ll0.1: 0.9641 - val_tp0.3: 2957119.0000 - val_fp0.3: 970547.0000 - val_tn0.3: 15527399.0000 - val_fn0.3: 205735.0000 - val_precision0.3: 0.7529 - val_recall0.3: 0.9350 - val_tp0.5: 2848369 .0000 - val_fp0.5: 566365.0000 - val_tn0.5: 15931581.0000 - val_fn0.5: 314485.0000 - val_precision0.5: 0.8341 - val_recall0.5: 0.9006 - val_tp0.7: 2684500.0000 - val_fp0.7: 298668.0000 - v al_tn0.7: 16199278.0000 - val_fn0.7: 478354.0000 - val_precision0.7: 0.8999 - val_recall0.7: 0.8488 - val_tp0.9: 2264810.0000 - val_fp0.9: 80756.0000 - val_tn0.9: 16417190.0000 - val_fn0.9 : 898044.0000 - val_precision0.9: 0.9656 - val_recall0.9: 0.7161 - val_accuracy: 0.9552 - val_auc: 0.9738 - val_f1: 0.2772 Epoch 12/20 240/240 [==============================] - 123s 514ms/step - loss: 0.3085 - tp0.1: 11270470.0000 - fp0.1: 5619369.0000 - tn0.1: 61054068.0000 - fn0.1: 699297.0000 - precision0.1: 0.6673 - recall0.1: 0.9416 - tp0.3: 10714167.0000 - fp0.3: 2487268.0000 - tn0.3: 64186176.0000 - fn0.3: 1255600.0000 - precision0.3: 0.8116 - recall0.3: 0.8951 - tp0.5: 10175108.0000 - fp0.5: 13504 36.0000 - tn0.5: 65323020.0000 - fn0.5: 1794659.0000 - precision0.5: 0.8828 - recall0.5: 0.8501 - tp0.7: 9471869.0000 - fp0.7: 668828.0000 - tn0.7: 66004600.0000 - fn0.7: 2497898.0000 - pr ecision0.7: 0.9340 - recall0.7: 0.7913 - tp0.9: 8087818.0000 - fp0.9: 195376.0000 - tn0.9: 66478052.0000 - fn0.9: 3881949.0000 - precision0.9: 0.9764 - recall0.9: 0.6757 - accuracy: 0.9600 - auc: 0.9640 - f1: 0.2642 - val_loss: 0.3350 - val_tp0.1: 3080571.0000 - val_fp0.1: 2712529.0000 - val_tn0.1: 13785417.0000 - val_fn0.1: 82283.0000 - val_precision0.1: 0.5318 - val_recal l0.1: 0.9740 - val_tp0.3: 2997438.0000 - val_fp0.3: 1233176.0000 - val_tn0.3: 15264770.0000 - val_fn0.3: 165416.0000 - val_precision0.3: 0.7085 - val_recall0.3: 0.9477 - val_tp0.5: 2901164 .0000 - val_fp0.5: 678226.0000 - val_tn0.5: 15819720.0000 - val_fn0.5: 261690.0000 - val_precision0.5: 0.8105 - val_recall0.5: 0.9173 - val_tp0.7: 2761496.0000 - val_fp0.7: 360082.0000 - v al_tn0.7: 16137864.0000 - val_fn0.7: 401358.0000 - val_precision0.7: 0.8846 - val_recall0.7: 0.8731 - val_tp0.9: 2425682.0000 - val_fp0.9: 106600.0000 - val_tn0.9: 16391346.0000 - val_fn0. 9: 737172.0000 - val_precision0.9: 0.9579 - val_recall0.9: 0.7669 - val_accuracy: 0.9522 - val_auc: 0.9775 - val_f1: 0.2772 Epoch 13/20 240/240 [==============================] - 123s 513ms/step - loss: 0.2998 - tp0.1: 11289427.0000 - fp0.1: 5435141.0000 - tn0.1: 61238288.0000 - fn0.1: 680340.0000 - precision0.1: 0.6750 - recall0.1: 0.9432 - tp0.3: 10775991.0000 - fp0.3: 2541120.0000 - tn0.3: 64132324.0000 - fn0.3: 1193776.0000 - precision0.3: 0.8092 - recall0.3: 0.9003 - tp0.5: 10236179.0000 - fp0.5: 13511 65.0000 - tn0.5: 65322272.0000 - fn0.5: 1733588.0000 - precision0.5: 0.8834 - recall0.5: 0.8552 - tp0.7: 9552300.0000 - fp0.7: 667311.0000 - tn0.7: 66006116.0000 - fn0.7: 2417467.0000 - pr ecision0.7: 0.9347 - recall0.7: 0.7980 - tp0.9: 8197249.0000 - fp0.9: 192011.0000 - tn0.9: 66481424.0000 - fn0.9: 3772518.0000 - precision0.9: 0.9771 - recall0.9: 0.6848 - accuracy: 0.9608 - auc: 0.9652 - f1: 0.2642 - val_loss: 0.2859 - val_tp0.1: 2992948.0000 - val_fp0.1: 1104053.0000 - val_tn0.1: 15393893.0000 - val_fn0.1: 169906.0000 - val_precision0.1: 0.7305 - val_reca ll0.1: 0.9463 - val_tp0.3: 2859768.0000 - val_fp0.3: 511820.0000 - val_tn0.3: 15986126.0000 - val_fn0.3: 303086.0000 - val_precision0.3: 0.8482 - val_recall0.3: 0.9042 - val_tp0.5: 2679052 .0000 - val_fp0.5: 241764.0000 - val_tn0.5: 16256182.0000 - val_fn0.5: 483802.0000 - val_precision0.5: 0.9172 - val_recall0.5: 0.8470 - val_tp0.7: 2445930.0000 - val_fp0.7: 113353.0000 - v al_tn0.7: 16384593.0000 - val_fn0.7: 716924.0000 - val_precision0.7: 0.9557 - val_recall0.7: 0.7733 - val_tp0.9: 2024394.0000 - val_fp0.9: 30607.0000 - val_tn0.9: 16467339.0000 - val_fn0.9 : 1138460.0000 - val_precision0.9: 0.9851 - val_recall0.9: 0.6401 - val_accuracy: 0.9631 - val_auc: 0.9677 - val_f1: 0.2772 Epoch 14/20 240/240 [==============================] - 123s 513ms/step - loss: 0.2873 - tp0.1: 11325492.0000 - fp0.1: 5158653.0000 - tn0.1: 61514784.0000 - fn0.1: 644275.0000 - precision0.1: 0.6871 - recall0.1: 0.9462 - tp0.3: 10839018.0000 - fp0.3: 2435459.0000 - tn0.3: 64237968.0000 - fn0.3: 1130749.0000 - precision0.3: 0.8165 - recall0.3: 0.9055 - tp0.5: 10316818.0000 - fp0.5: 13405 37.0000 - tn0.5: 65332924.0000 - fn0.5: 1652949.0000 - precision0.5: 0.8850 - recall0.5: 0.8619 - tp0.7: 9615679.0000 - fp0.7: 663572.0000 - tn0.7: 66009872.0000 - fn0.7: 2354088.0000 - pr ecision0.7: 0.9354 - recall0.7: 0.8033 - tp0.9: 8226896.0000 - fp0.9: 190675.0000 - tn0.9: 66482748.0000 - fn0.9: 3742871.0000 - precision0.9: 0.9773 - recall0.9: 0.6873 - accuracy: 0.9619 - auc: 0.9668 - f1: 0.2642 - val_loss: 0.2843 - val_tp0.1: 3018528.0000 - val_fp0.1: 1341368.0000 - val_tn0.1: 15156578.0000 - val_fn0.1: 144326.0000 - val_precision0.1: 0.6923 - val_reca ll0.1: 0.9544 - val_tp0.3: 2884535.0000 - val_fp0.3: 604165.0000 - val_tn0.3: 15893781.0000 - val_fn0.3: 278319.0000 - val_precision0.3: 0.8268 - val_recall0.3: 0.9120 - val_tp0.5: 2750904 .0000 - val_fp0.5: 350090.0000 - val_tn0.5: 16147856.0000 - val_fn0.5: 411950.0000 - val_precision0.5: 0.8871 - val_recall0.5: 0.8698 - val_tp0.7: 2579988.0000 - val_fp0.7: 191060.0000 - v al_tn0.7: 16306886.0000 - val_fn0.7: 582866.0000 - val_precision0.7: 0.9311 - val_recall0.7: 0.8157 - val_tp0.9: 2263427.0000 - val_fp0.9: 74463.0000 - val_tn0.9: 16423483.0000 - val_fn0.9 : 899427.0000 - val_precision0.9: 0.9681 - val_recall0.9: 0.7156 - val_accuracy: 0.9612 - val_auc: 0.9707 - val_f1: 0.2772 Epoch 15/20 240/240 [==============================] - 123s 513ms/step - loss: 0.2841 - tp0.1: 11339440.0000 - fp0.1: 5281029.0000 - tn0.1: 61392416.0000 - fn0.1: 630327.0000 - precision0.1: 0.6823 - recall0.1: 0.9473 - tp0.3: 10822522.0000 - fp0.3: 2360182.0000 - tn0.3: 64313252.0000 - fn0.3: 1147245.0000 - precision0.3: 0.8210 - recall0.3: 0.9042 - tp0.5: 10312399.0000 - fp0.5: 12761 78.0000 - tn0.5: 65397248.0000 - fn0.5: 1657368.0000 - precision0.5: 0.8899 - recall0.5: 0.8615 - tp0.7: 9644338.0000 - fp0.7: 625693.0000 - tn0.7: 66047756.0000 - fn0.7: 2325429.0000 - pr ecision0.7: 0.9391 - recall0.7: 0.8057 - tp0.9: 8361871.0000 - fp0.9: 174964.0000 - tn0.9: 66498432.0000 - fn0.9: 3607896.0000 - precision0.9: 0.9795 - recall0.9: 0.6986 - accuracy: 0.9627 - auc: 0.9678 - f1: 0.2642 - val_loss: 0.2785 - val_tp0.1: 3071530.0000 - val_fp0.1: 1940363.0000 - val_tn0.1: 14557583.0000 - val_fn0.1: 91324.0000 - val_precision0.1: 0.6128 - val_recal l0.1: 0.9711 - val_tp0.3: 2963120.0000 - val_fp0.3: 829784.0000 - val_tn0.3: 15668162.0000 - val_fn0.3: 199734.0000 - val_precision0.3: 0.7812 - val_recall0.3: 0.9369 - val_tp0.5: 2835343. 0000 - val_fp0.5: 408144.0000 - val_tn0.5: 16089802.0000 - val_fn0.5: 327511.0000 - val_precision0.5: 0.8742 - val_recall0.5: 0.8965 - val_tp0.7: 2617565.0000 - val_fp0.7: 178411.0000 - va l_tn0.7: 16319535.0000 - val_fn0.7: 545289.0000 - val_precision0.7: 0.9362 - val_recall0.7: 0.8276 - val_tp0.9: 2212166.0000 - val_fp0.9: 48362.0000 - val_tn0.9: 16449584.0000 - val_fn0.9: 950688.0000 - val_precision0.9: 0.9786 - val_recall0.9: 0.6994 - val_accuracy: 0.9626 - val_auc: 0.9783 - val_f1: 0.2772 Epoch 16/20 240/240 [==============================] - 123s 513ms/step - loss: 0.2733 - tp0.1: 11349878.0000 - fp0.1: 4939772.0000 - tn0.1: 61733644.0000 - fn0.1: 619889.0000 - precision0.1: 0.6968 - recall0.1: 0.9482 - tp0.3: 10872946.0000 - fp0.3: 2277823.0000 - tn0.3: 64395616.0000 - fn0.3: 1096821.0000 - precision0.3: 0.8268 - recall0.3: 0.9084 - tp0.5: 10390972.0000 - fp0.5: 12472 64.0000 - tn0.5: 65426192.0000 - fn0.5: 1578795.0000 - precision0.5: 0.8928 - recall0.5: 0.8681 - tp0.7: 9736581.0000 - fp0.7: 597016.0000 - tn0.7: 66076408.0000 - fn0.7: 2233186.0000 - pr ecision0.7: 0.9422 - recall0.7: 0.8134 - tp0.9: 8491483.0000 - fp0.9: 164275.0000 - tn0.9: 66509160.0000 - fn0.9: 3478284.0000 - precision0.9: 0.9810 - recall0.9: 0.7094 - accuracy: 0.9641 - auc: 0.9686 - f1: 0.2642 - val_loss: 0.2719 - val_tp0.1: 3021839.0000 - val_fp0.1: 1339815.0000 - val_tn0.1: 15158131.0000 - val_fn0.1: 141015.0000 - val_precision0.1: 0.6928 - val_reca ll0.1: 0.9554 - val_tp0.3: 2908072.0000 - val_fp0.3: 621879.0000 - val_tn0.3: 15876067.0000 - val_fn0.3: 254782.0000 - val_precision0.3: 0.8238 - val_recall0.3: 0.9194 - val_tp0.5: 2802958 .0000 - val_fp0.5: 363679.0000 - val_tn0.5: 16134267.0000 - val_fn0.5: 359896.0000 - val_precision0.5: 0.8852 - val_recall0.5: 0.8862 - val_tp0.7: 2647510.0000 - val_fp0.7: 188747.0000 - v al_tn0.7: 16309199.0000 - val_fn0.7: 515344.0000 - val_precision0.7: 0.9335 - val_recall0.7: 0.8371 - val_tp0.9: 2292567.0000 - val_fp0.9: 53401.0000 - val_tn0.9: 16444545.0000 - val_fn0.9 : 870287.0000 - val_precision0.9: 0.9772 - val_recall0.9: 0.7248 - val_accuracy: 0.9632 - val_auc: 0.9717 - val_f1: 0.2772 Epoch 17/20 240/240 [==============================] - 123s 512ms/step - loss: 0.2657 - tp0.1: 11376204.0000 - fp0.1: 4892198.0000 - tn0.1: 61781224.0000 - fn0.1: 593563.0000 - precision0.1: 0.6993 - recall0.1: 0.9504 - tp0.3: 10908750.0000 - fp0.3: 2245727.0000 - tn0.3: 64427696.0000 - fn0.3: 1061017.0000 - precision0.3: 0.8293 - recall0.3: 0.9114 - tp0.5: 10433698.0000 - fp0.5: 12316 34.0000 - tn0.5: 65441800.0000 - fn0.5: 1536069.0000 - precision0.5: 0.8944 - recall0.5: 0.8717 - tp0.7: 9778950.0000 - fp0.7: 598659.0000 - tn0.7: 66074788.0000 - fn0.7: 2190817.0000 - pr ecision0.7: 0.9423 - recall0.7: 0.8170 - tp0.9: 8517790.0000 - fp0.9: 162128.0000 - tn0.9: 66511320.0000 - fn0.9: 3451977.0000 - precision0.9: 0.9813 - recall0.9: 0.7116 - accuracy: 0.9648 - auc: 0.9699 - f1: 0.2642 - val_loss: 0.2613 - val_tp0.1: 3051492.0000 - val_fp0.1: 1505492.0000 - val_tn0.1: 14992454.0000 - val_fn0.1: 111362.0000 - val_precision0.1: 0.6696 - val_reca ll0.1: 0.9648 - val_tp0.3: 2939774.0000 - val_fp0.3: 659951.0000 - val_tn0.3: 15837995.0000 - val_fn0.3: 223080.0000 - val_precision0.3: 0.8167 - val_recall0.3: 0.9295 - val_tp0.5: 2833524 .0000 - val_fp0.5: 395235.0000 - val_tn0.5: 16102711.0000 - val_fn0.5: 329330.0000 - val_precision0.5: 0.8776 - val_recall0.5: 0.8959 - val_tp0.7: 2680855.0000 - val_fp0.7: 215919.0000 - v al_tn0.7: 16282027.0000 - val_fn0.7: 481999.0000 - val_precision0.7: 0.9255 - val_recall0.7: 0.8476 - val_tp0.9: 2359116.0000 - val_fp0.9: 75353.0000 - val_tn0.9: 16422593.0000 - val_fn0.9 : 803738.0000 - val_precision0.9: 0.9690 - val_recall0.9: 0.7459 - val_accuracy: 0.9631 - val_auc: 0.9765 - val_f1: 0.2772 Epoch 18/20 240/240 [==============================] - 123s 513ms/step - loss: 0.2598 - tp0.1: 11386263.0000 - fp0.1: 4766580.0000 - tn0.1: 61906832.0000 - fn0.1: 583504.0000 - precision0.1: 0.7049 - recall0.1: 0.9513 - tp0.3: 10931522.0000 - fp0.3: 2185962.0000 - tn0.3: 64487472.0000 - fn0.3: 1038245.0000 - precision0.3: 0.8334 - recall0.3: 0.9133 - tp0.5: 10479377.0000 - fp0.5: 12310 07.0000 - tn0.5: 65442416.0000 - fn0.5: 1490390.0000 - precision0.5: 0.8949 - recall0.5: 0.8755 - tp0.7: 9829899.0000 - fp0.7: 592904.0000 - tn0.7: 66080536.0000 - fn0.7: 2139868.0000 - pr ecision0.7: 0.9431 - recall0.7: 0.8212 - tp0.9: 8602261.0000 - fp0.9: 161222.0000 - tn0.9: 66512188.0000 - fn0.9: 3367506.0000 - precision0.9: 0.9816 - recall0.9: 0.7187 - accuracy: 0.9654 - auc: 0.9706 - f1: 0.2642 - val_loss: 0.2608 - val_tp0.1: 3020760.0000 - val_fp0.1: 1219927.0000 - val_tn0.1: 15278019.0000 - val_fn0.1: 142094.0000 - val_precision0.1: 0.7123 - val_reca ll0.1: 0.9551 - val_tp0.3: 2909302.0000 - val_fp0.3: 580392.0000 - val_tn0.3: 15917554.0000 - val_fn0.3: 253552.0000 - val_precision0.3: 0.8337 - val_recall0.3: 0.9198 - val_tp0.5: 2799018 .0000 - val_fp0.5: 344609.0000 - val_tn0.5: 16153337.0000 - val_fn0.5: 363836.0000 - val_precision0.5: 0.8904 - val_recall0.5: 0.8850 - val_tp0.7: 2633849.0000 - val_fp0.7: 176599.0000 - v al_tn0.7: 16321347.0000 - val_fn0.7: 529005.0000 - val_precision0.7: 0.9372 - val_recall0.7: 0.8327 - val_tp0.9: 2302923.0000 - val_fp0.9: 54090.0000 - val_tn0.9: 16443856.0000 - val_fn0.9 : 859931.0000 - val_precision0.9: 0.9771 - val_recall0.9: 0.7281 - val_accuracy: 0.9640 - val_auc: 0.9722 - val_f1: 0.2772 Epoch 19/20 240/240 [==============================] - 123s 514ms/step - loss: 0.2516 - tp0.1: 11404546.0000 - fp0.1: 4602276.0000 - tn0.1: 62071184.0000 - fn0.1: 565221.0000 - precision0.1: 0.7125 - recall0.1: 0.9528 - tp0.3: 10964712.0000 - fp0.3: 2131443.0000 - tn0.3: 64541984.0000 - fn0.3: 1005055.0000 - precision0.3: 0.8372 - recall0.3: 0.9160 - tp0.5: 10530069.0000 - fp0.5: 11977 48.0000 - tn0.5: 65475676.0000 - fn0.5: 1439698.0000 - precision0.5: 0.8979 - recall0.5: 0.8797 - tp0.7: 9887845.0000 - fp0.7: 573172.0000 - tn0.7: 66100272.0000 - fn0.7: 2081922.0000 - pr ecision0.7: 0.9452 - recall0.7: 0.8261 - tp0.9: 8654050.0000 - fp0.9: 150095.0000 - tn0.9: 66523328.0000 - fn0.9: 3315717.0000 - precision0.9: 0.9830 - recall0.9: 0.7230 - accuracy: 0.9665 - auc: 0.9717 - f1: 0.2642 - val_loss: 0.2481 - val_tp0.1: 3008011.0000 - val_fp0.1: 953689.0000 - val_tn0.1: 15544257.0000 - val_fn0.1: 154843.0000 - val_precision0.1: 0.7593 - val_recal l0.1: 0.9510 - val_tp0.3: 2881653.0000 - val_fp0.3: 443165.0000 - val_tn0.3: 16054781.0000 - val_fn0.3: 281201.0000 - val_precision0.3: 0.8667 - val_recall0.3: 0.9111 - val_tp0.5: 2768505. 0000 - val_fp0.5: 264471.0000 - val_tn0.5: 16233475.0000 - val_fn0.5: 394349.0000 - val_precision0.5: 0.9128 - val_recall0.5: 0.8753 - val_tp0.7: 2606170.0000 - val_fp0.7: 136595.0000 - va l_tn0.7: 16361351.0000 - val_fn0.7: 556684.0000 - val_precision0.7: 0.9502 - val_recall0.7: 0.8240 - val_tp0.9: 2281582.0000 - val_fp0.9: 42534.0000 - val_tn0.9: 16455412.0000 - val_fn0.9: 881272.0000 - val_precision0.9: 0.9817 - val_recall0.9: 0.7214 - val_accuracy: 0.9665 - val_auc: 0.9714 - val_f1: 0.2772 Epoch 20/20 240/240 [==============================] - 123s 513ms/step - loss: 0.2463 - tp0.1: 11418792.0000 - fp0.1: 4532019.0000 - tn0.1: 62141424.0000 - fn0.1: 550975.0000 - precision0.1: 0.7159 - recall0.1: 0.9540 - tp0.3: 10983398.0000 - fp0.3: 2088662.0000 - tn0.3: 64584768.0000 - fn0.3: 986369.0000 - precision0.3: 0.8402 - recall0.3: 0.9176 - tp0.5: 10555722.0000 - fp0.5: 118115 9.0000 - tn0.5: 65492296.0000 - fn0.5: 1414045.0000 - precision0.5: 0.8994 - recall0.5: 0.8819 - tp0.7: 9935653.0000 - fp0.7: 569774.0000 - tn0.7: 66103648.0000 - fn0.7: 2034114.0000 - pre cision0.7: 0.9458 - recall0.7: 0.8301 - tp0.9: 8727770.0000 - fp0.9: 149122.0000 - tn0.9: 66524300.0000 - fn0.9: 3241997.0000 - precision0.9: 0.9832 - recall0.9: 0.7292 - accuracy: 0.9670 - auc: 0.9724 - f1: 0.2642 - val_loss: 0.2428 - val_tp0.1: 3043089.0000 - val_fp0.1: 1254723.0000 - val_tn0.1: 15243223.0000 - val_fn0.1: 119765.0000 - val_precision0.1: 0.7081 - val_recal l0.1: 0.9621 - val_tp0.3: 2938943.0000 - val_fp0.3: 582622.0000 - val_tn0.3: 15915324.0000 - val_fn0.3: 223911.0000 - val_precision0.3: 0.8346 - val_recall0.3: 0.9292 - val_tp0.5: 2838207. 0000 - val_fp0.5: 352144.0000 - val_tn0.5: 16145802.0000 - val_fn0.5: 324647.0000 - val_precision0.5: 0.8896 - val_recall0.5: 0.8974 - val_tp0.7: 2688032.0000 - val_fp0.7: 185761.0000 - va l_tn0.7: 16312185.0000 - val_fn0.7: 474822.0000 - val_precision0.7: 0.9354 - val_recall0.7: 0.8499 - val_tp0.9: 2371174.0000 - val_fp0.9: 57559.0000 - val_tn0.9: 16440387.0000 - val_fn0.9: 791680.0000 - val_precision0.9: 0.9763 - val_recall0.9: 0.7497 - val_accuracy: 0.9656 - val_auc: 0.9761 - val_f1: 0.2772 --- Running training session 62/140 {'hp_epochs': 20, 'hp_batch_size': 20, 'hp_scaler': 'standard', 'hp_n_levels': 3, 'hp_first_filters': 128, 'hp_pool_size': 4, 'hp_input_size': 16384, 'hp_lr_start': 0.04354970735327304, 'h p_lr_power': 1.0} --- repeat #: 2 input - shape: (None, 16384, 1) output - shape: (None, 16384, 1) Epoch 1/20 240/240 [==============================] - 144s 534ms/step - loss: 1.1479 - tp0.1: 9906728.0000 - fp0.1: 13187183.0000 - tn0.1: 53486260.0000 - fn0.1: 2063039.0000 - precision0.1: 0.4290 - recall0.1: 0.8276 - tp0.3: 8671992.0000 - fp0.3: 5127913.0000 - tn0.3: 61545512.0000 - fn0.3: 3297775.0000 - precision0.3: 0.6284 - recall0.3: 0.7245 - tp0.5: 7568431.0000 - fp0.5: 253412 2.0000 - tn0.5: 64139300.0000 - fn0.5: 4401336.0000 - precision0.5: 0.7492 - recall0.5: 0.6323 - tp0.7: 6054670.0000 - fp0.7: 1016029.0000 - tn0.7: 65657384.0000 - fn0.7: 5915097.0000 - pr ecision0.7: 0.8563 - recall0.7: 0.5058 - tp0.9: 3696361.0000 - fp0.9: 210116.0000 - tn0.9: 66463280.0000 - fn0.9: 8273406.0000 - precision0.9: 0.9462 - recall0.9: 0.3088 - accuracy: 0.9118 - auc: 0.8839 - f1: 0.2642 - val_loss: 1.3309 - val_tp0.1: 1733257.0000 - val_fp0.1: 2884942.0000 - val_tn0.1: 13613004.0000 - val_fn0.1: 1429597.0000 - val_precision0.1: 0.3753 - val_rec all0.1: 0.5480 - val_tp0.3: 1371992.0000 - val_fp0.3: 689902.0000 - val_tn0.3: 15808044.0000 - val_fn0.3: 1790862.0000 - val_precision0.3: 0.6654 - val_recall0.3: 0.4338 - val_tp0.5: 12399 93.0000 - val_fp0.5: 314549.0000 - val_tn0.5: 16183397.0000 - val_fn0.5: 1922861.0000 - val_precision0.5: 0.7977 - val_recall0.5: 0.3920 - val_tp0.7: 1088844.0000 - val_fp0.7: 172991.0000 - val_tn0.7: 16324955.0000 - val_fn0.7: 2074010.0000 - val_precision0.7: 0.8629 - val_recall0.7: 0.3443 - val_tp0.9: 854487.0000 - val_fp0.9: 85499.0000 - val_tn0.9: 16412447.0000 - val_fn 0.9: 2308367.0000 - val_precision0.9: 0.9090 - val_recall0.9: 0.2702 - val_accuracy: 0.8862 - val_auc: 0.7423 - val_f1: 0.2772 Epoch 2/20 240/240 [==============================] - 124s 516ms/step - loss: 0.8128 - tp0.1: 10386764.0000 - fp0.1: 10662276.0000 - tn0.1: 56011152.0000 - fn0.1: 1583003.0000 - precision0.1: 0.4935 - recall0.1: 0.8677 - tp0.3: 9374552.0000 - fp0.3: 4301798.0000 - tn0.3: 62371648.0000 - fn0.3: 2595215.0000 - precision0.3: 0.6855 - recall0.3: 0.7832 - tp0.5: 8455753.0000 - fp0.5: 22081 36.0000 - tn0.5: 64465300.0000 - fn0.5: 3514014.0000 - precision0.5: 0.7929 - recall0.5: 0.7064 - tp0.7: 7249754.0000 - fp0.7: 1037037.0000 - tn0.7: 65636376.0000 - fn0.7: 4720013.0000 - p recision0.7: 0.8749 - recall0.7: 0.6057 - tp0.9: 4971364.0000 - fp0.9: 253682.0000 - tn0.9: 66419772.0000 - fn0.9: 6998403.0000 - precision0.9: 0.9514 - recall0.9: 0.4153 - accuracy: 0.927 2 - auc: 0.9156 - f1: 0.2642 - val_loss: 1.7318 - val_tp0.1: 1429651.0000 - val_fp0.1: 93149.0000 - val_tn0.1: 16404797.0000 - val_fn0.1: 1733203.0000 - val_precision0.1: 0.9388 - val_reca ll0.1: 0.4520 - val_tp0.3: 1260333.0000 - val_fp0.3: 61973.0000 - val_tn0.3: 16435973.0000 - val_fn0.3: 1902521.0000 - val_precision0.3: 0.9531 - val_recall0.3: 0.3985 - val_tp0.5: 1164560 .0000 - val_fp0.5: 49155.0000 - val_tn0.5: 16448791.0000 - val_fn0.5: 1998294.0000 - val_precision0.5: 0.9595 - val_recall0.5: 0.3682 - val_tp0.7: 1052319.0000 - val_fp0.7: 36199.0000 - va l_tn0.7: 16461747.0000 - val_fn0.7: 2110535.0000 - val_precision0.7: 0.9667 - val_recall0.7: 0.3327 - val_tp0.9: 812871.0000 - val_fp0.9: 16636.0000 - val_tn0.9: 16481310.0000 - val_fn0.9: 2349983.0000 - val_precision0.9: 0.9799 - val_recall0.9: 0.2570 - val_accuracy: 0.8959 - val_auc: 0.7346 - val_f1: 0.2772 Epoch 3/20 240/240 [==============================] - 124s 516ms/step - loss: 0.5249 - tp0.1: 10650727.0000 - fp0.1: 8971663.0000 - tn0.1: 57701744.0000 - fn0.1: 1319040.0000 - precision0.1: 0.5428 - recall0.1: 0.8898 - tp0.3: 9707938.0000 - fp0.3: 3584621.0000 - tn0.3: 63088792.0000 - fn0.3: 2261829.0000 - precision0.3: 0.7303 - recall0.3: 0.8110 - tp0.5: 8947919.0000 - fp0.5: 196644 3.0000 - tn0.5: 64706976.0000 - fn0.5: 3021848.0000 - precision0.5: 0.8198 - recall0.5: 0.7475 - tp0.7: 7846298.0000 - fp0.7: 941117.0000 - tn0.7: 65732308.0000 - fn0.7: 4123469.0000 - pre cision0.7: 0.8929 - recall0.7: 0.6555 - tp0.9: 5813133.0000 - fp0.9: 247129.0000 - tn0.9: 66426308.0000 - fn0.9: 6156634.0000 - precision0.9: 0.9592 - recall0.9: 0.4857 - accuracy: 0.9366 - auc: 0.9272 - f1: 0.2642 - val_loss: 0.6610 - val_tp0.1: 2455351.0000 - val_fp0.1: 660521.0000 - val_tn0.1: 15837425.0000 - val_fn0.1: 707503.0000 - val_precision0.1: 0.7880 - val_recall 0.1: 0.7763 - val_tp0.3: 2077241.0000 - val_fp0.3: 245933.0000 - val_tn0.3: 16252013.0000 - val_fn0.3: 1085613.0000 - val_precision0.3: 0.8941 - val_recall0.3: 0.6568 - val_tp0.5: 1903683. 0000 - val_fp0.5: 169535.0000 - val_tn0.5: 16328411.0000 - val_fn0.5: 1259171.0000 - val_precision0.5: 0.9182 - val_recall0.5: 0.6019 - val_tp0.7: 1686781.0000 - val_fp0.7: 108097.0000 - v al_tn0.7: 16389849.0000 - val_fn0.7: 1476073.0000 - val_precision0.7: 0.9398 - val_recall0.7: 0.5333 - val_tp0.9: 1239931.0000 - val_fp0.9: 39608.0000 - val_tn0.9: 16458338.0000 - val_fn0. 9: 1922923.0000 - val_precision0.9: 0.9690 - val_recall0.9: 0.3920 - val_accuracy: 0.9273 - val_auc: 0.8923 - val_f1: 0.2772 Epoch 4/20 240/240 [==============================] - 124s 517ms/step - loss: 0.4701 - tp0.1: 10831550.0000 - fp0.1: 8197166.0000 - tn0.1: 58476288.0000 - fn0.1: 1138217.0000 - precision0.1: 0.5692 - recall0.1: 0.9049 - tp0.3: 10003164.0000 - fp0.3: 3493324.0000 - tn0.3: 63180092.0000 - fn0.3: 1966603.0000 - precision0.3: 0.7412 - recall0.3: 0.8357 - tp0.5: 9170982.0000 - fp0.5: 17747 67.0000 - tn0.5: 64898668.0000 - fn0.5: 2798785.0000 - precision0.5: 0.8379 - recall0.5: 0.7662 - tp0.7: 8179901.0000 - fp0.7: 877946.0000 - tn0.7: 65795468.0000 - fn0.7: 3789866.0000 - pr ecision0.7: 0.9031 - recall0.7: 0.6834 - tp0.9: 6375174.0000 - fp0.9: 261023.0000 - tn0.9: 66412392.0000 - fn0.9: 5594593.0000 - precision0.9: 0.9607 - recall0.9: 0.5326 - accuracy: 0.9418 - auc: 0.9378 - f1: 0.2642 - val_loss: 1.3899 - val_tp0.1: 3117692.0000 - val_fp0.1: 9912153.0000 - val_tn0.1: 6585793.0000 - val_fn0.1: 45162.0000 - val_precision0.1: 0.2393 - val_recall 0.1: 0.9857 - val_tp0.3: 3079025.0000 - val_fp0.3: 7898193.0000 - val_tn0.3: 8599753.0000 - val_fn0.3: 83829.0000 - val_precision0.3: 0.2805 - val_recall0.3: 0.9735 - val_tp0.5: 3048909.00 00 - val_fp0.5: 6769491.0000 - val_tn0.5: 9728455.0000 - val_fn0.5: 113945.0000 - val_precision0.5: 0.3105 - val_recall0.5: 0.9640 - val_tp0.7: 2994971.0000 - val_fp0.7: 5019595.0000 - val _tn0.7: 11478351.0000 - val_fn0.7: 167883.0000 - val_precision0.7: 0.3737 - val_recall0.7: 0.9469 - val_tp0.9: 2874370.0000 - val_fp0.9: 2531864.0000 - val_tn0.9: 13966082.0000 - val_fn0.9 : 288484.0000 - val_precision0.9: 0.5317 - val_recall0.9: 0.9088 - val_accuracy: 0.6499 - val_auc: 0.9447 - val_f1: 0.2772 Epoch 5/20 240/240 [==============================] - 124s 517ms/step - loss: 0.4466 - tp0.1: 10915404.0000 - fp0.1: 7994592.0000 - tn0.1: 58678848.0000 - fn0.1: 1054363.0000 - precision0.1: 0.5772 - recall0.1: 0.9119 - tp0.3: 10101214.0000 - fp0.3: 3354053.0000 - tn0.3: 63319376.0000 - fn0.3: 1868553.0000 - precision0.3: 0.7507 - recall0.3: 0.8439 - tp0.5: 9363723.0000 - fp0.5: 17904 83.0000 - tn0.5: 64882964.0000 - fn0.5: 2606044.0000 - precision0.5: 0.8395 - recall0.5: 0.7823 - tp0.7: 8326836.0000 - fp0.7: 857418.0000 - tn0.7: 65816000.0000 - fn0.7: 3642931.0000 - pr ecision0.7: 0.9066 - recall0.7: 0.6957 - tp0.9: 6486870.0000 - fp0.9: 255970.0000 - tn0.9: 66417480.0000 - fn0.9: 5482897.0000 - precision0.9: 0.9620 - recall0.9: 0.5419 - accuracy: 0.9441 - auc: 0.9425 - f1: 0.2642 - val_loss: 0.9230 - val_tp0.1: 3093810.0000 - val_fp0.1: 6728709.0000 - val_tn0.1: 9769237.0000 - val_fn0.1: 69044.0000 - val_precision0.1: 0.3150 - val_recall 0.1: 0.9782 - val_tp0.3: 2983445.0000 - val_fp0.3: 3338469.0000 - val_tn0.3: 13159477.0000 - val_fn0.3: 179409.0000 - val_precision0.3: 0.4719 - val_recall0.3: 0.9433 - val_tp0.5: 2913456. 0000 - val_fp0.5: 2448590.0000 - val_tn0.5: 14049356.0000 - val_fn0.5: 249398.0000 - val_precision0.5: 0.5433 - val_recall0.5: 0.9211 - val_tp0.7: 2826495.0000 - val_fp0.7: 1728169.0000 - val_tn0.7: 14769777.0000 - val_fn0.7: 336359.0000 - val_precision0.7: 0.6206 - val_recall0.7: 0.8937 - val_tp0.9: 2684311.0000 - val_fp0.9: 1097331.0000 - val_tn0.9: 15400615.0000 - val_fn 0.9: 478543.0000 - val_precision0.9: 0.7098 - val_recall0.9: 0.8487 - val_accuracy: 0.8628 - val_auc: 0.9474 - val_f1: 0.2772 Epoch 6/20 240/240 [==============================] - 124s 516ms/step - loss: 0.4071 - tp0.1: 11022248.0000 - fp0.1: 7374717.0000 - tn0.1: 59298728.0000 - fn0.1: 947519.0000 - precision0.1: 0.5991 - recall0.1: 0.9208 - tp0.3: 10241896.0000 - fp0.3: 3036735.0000 - tn0.3: 63636704.0000 - fn0.3: 1727871.0000 - precision0.3: 0.7713 - recall0.3: 0.8556 - tp0.5: 9584629.0000 - fp0.5: 165806 9.0000 - tn0.5: 65015368.0000 - fn0.5: 2385138.0000 - precision0.5: 0.8525 - recall0.5: 0.8007 - tp0.7: 8694782.0000 - fp0.7: 820555.0000 - tn0.7: 65852888.0000 - fn0.7: 3274985.0000 - pre cision0.7: 0.9138 - recall0.7: 0.7264 - tp0.9: 6966857.0000 - fp0.9: 241359.0000 - tn0.9: 66432068.0000 - fn0.9: 5002910.0000 - precision0.9: 0.9665 - recall0.9: 0.5820 - accuracy: 0.9486 - auc: 0.9486 - f1: 0.2642 - val_loss: 0.4390 - val_tp0.1: 2785859.0000 - val_fp0.1: 688884.0000 - val_tn0.1: 15809062.0000 - val_fn0.1: 376995.0000 - val_precision0.1: 0.8017 - val_recall 0.1: 0.8808 - val_tp0.3: 2458538.0000 - val_fp0.3: 247679.0000 - val_tn0.3: 16250267.0000 - val_fn0.3: 704316.0000 - val_precision0.3: 0.9085 - val_recall0.3: 0.7773 - val_tp0.5: 2155525.0 000 - val_fp0.5: 109573.0000 - val_tn0.5: 16388373.0000 - val_fn0.5: 1007329.0000 - val_precision0.5: 0.9516 - val_recall0.5: 0.6815 - val_tp0.7: 1802828.0000 - val_fp0.7: 45112.0000 - val _tn0.7: 16452834.0000 - val_fn0.7: 1360026.0000 - val_precision0.7: 0.9756 - val_recall0.7: 0.5700 - val_tp0.9: 1314546.0000 - val_fp0.9: 12049.0000 - val_tn0.9: 16485897.0000 - val_fn0.9: 1848308.0000 - val_precision0.9: 0.9909 - val_recall0.9: 0.4156 - val_accuracy: 0.9432 - val_auc: 0.9435 - val_f1: 0.2772 Epoch 7/20 240/240 [==============================] - 124s 516ms/step - loss: 0.3853 - tp0.1: 11079386.0000 - fp0.1: 6940988.0000 - tn0.1: 59732460.0000 - fn0.1: 890381.0000 - precision0.1: 0.6148 - recall0.1: 0.9256 - tp0.3: 10346458.0000 - fp0.3: 3000615.0000 - tn0.3: 63672804.0000 - fn0.3: 1623309.0000 - precision0.3: 0.7752 - recall0.3: 0.8644 - tp0.5: 9690133.0000 - fp0.5: 161636 9.0000 - tn0.5: 65057072.0000 - fn0.5: 2279634.0000 - precision0.5: 0.8570 - recall0.5: 0.8096 - tp0.7: 8843112.0000 - fp0.7: 822086.0000 - tn0.7: 65851372.0000 - fn0.7: 3126655.0000 - pre cision0.7: 0.9149 - recall0.7: 0.7388 - tp0.9: 7135245.0000 - fp0.9: 238695.0000 - tn0.9: 66434744.0000 - fn0.9: 4834522.0000 - precision0.9: 0.9676 - recall0.9: 0.5961 - accuracy: 0.9505 - auc: 0.9518 - f1: 0.2642 - val_loss: 0.4072 - val_tp0.1: 3071232.0000 - val_fp0.1: 3190431.0000 - val_tn0.1: 13307515.0000 - val_fn0.1: 91622.0000 - val_precision0.1: 0.4905 - val_recall 0.1: 0.9710 - val_tp0.3: 2969302.0000 - val_fp0.3: 1516252.0000 - val_tn0.3: 14981694.0000 - val_fn0.3: 193552.0000 - val_precision0.3: 0.6620 - val_recall0.3: 0.9388 - val_tp0.5: 2813331. 0000 - val_fp0.5: 766580.0000 - val_tn0.5: 15731366.0000 - val_fn0.5: 349523.0000 - val_precision0.5: 0.7859 - val_recall0.5: 0.8895 - val_tp0.7: 2565842.0000 - val_fp0.7: 340498.0000 - va l_tn0.7: 16157448.0000 - val_fn0.7: 597012.0000 - val_precision0.7: 0.8828 - val_recall0.7: 0.8112 - val_tp0.9: 2014990.0000 - val_fp0.9: 79766.0000 - val_tn0.9: 16418180.0000 - val_fn0.9: 1147864.0000 - val_precision0.9: 0.9619 - val_recall0.9: 0.6371 - val_accuracy: 0.9432 - val_auc: 0.9709 - val_f1: 0.2772 Epoch 8/20 240/240 [==============================] - 124s 517ms/step - loss: 0.3633 - tp0.1: 11135897.0000 - fp0.1: 6660915.0000 - tn0.1: 60012532.0000 - fn0.1: 833870.0000 - precision0.1: 0.6257 - recall0.1: 0.9303 - tp0.3: 10437033.0000 - fp0.3: 2736926.0000 - tn0.3: 63936496.0000 - fn0.3: 1532734.0000 - precision0.3: 0.7922 - recall0.3: 0.8719 - tp0.5: 9858968.0000 - fp0.5: 152258 9.0000 - tn0.5: 65150856.0000 - fn0.5: 2110799.0000 - precision0.5: 0.8662 - recall0.5: 0.8237 - tp0.7: 9048624.0000 - fp0.7: 753519.0000 - tn0.7: 65919908.0000 - fn0.7: 2921143.0000 - pre cision0.7: 0.9231 - recall0.7: 0.7560 - tp0.9: 7412042.0000 - fp0.9: 213551.0000 - tn0.9: 66459872.0000 - fn0.9: 4557725.0000 - precision0.9: 0.9720 - recall0.9: 0.6192 - accuracy: 0.9538 - auc: 0.9558 - f1: 0.2642 - val_loss: 0.4570 - val_tp0.1: 3014123.0000 - val_fp0.1: 2699685.0000 - val_tn0.1: 13798261.0000 - val_fn0.1: 148731.0000 - val_precision0.1: 0.5275 - val_recal l0.1: 0.9530 - val_tp0.3: 2936029.0000 - val_fp0.3: 1673840.0000 - val_tn0.3: 14824106.0000 - val_fn0.3: 226825.0000 - val_precision0.3: 0.6369 - val_recall0.3: 0.9283 - val_tp0.5: 2861446 .0000 - val_fp0.5: 1230626.0000 - val_tn0.5: 15267320.0000 - val_fn0.5: 301408.0000 - val_precision0.5: 0.6993 - val_recall0.5: 0.9047 - val_tp0.7: 2733900.0000 - val_fp0.7: 781063.0000 - val_tn0.7: 15716883.0000 - val_fn0.7: 428954.0000 - val_precision0.7: 0.7778 - val_recall0.7: 0.8644 - val_tp0.9: 2482216.0000 - val_fp0.9: 390029.0000 - val_tn0.9: 16107917.0000 - val_fn0 .9: 680638.0000 - val_precision0.9: 0.8642 - val_recall0.9: 0.7848 - val_accuracy: 0.9221 - val_auc: 0.9600 - val_f1: 0.2772 Epoch 9/20 240/240 [==============================] - 124s 518ms/step - loss: 0.3559 - tp0.1: 11134313.0000 - fp0.1: 6236820.0000 - tn0.1: 60436612.0000 - fn0.1: 835454.0000 - precision0.1: 0.6410 - recall0.1: 0.9302 - tp0.3: 10469952.0000 - fp0.3: 2640391.0000 - tn0.3: 64033040.0000 - fn0.3: 1499815.0000 - precision0.3: 0.7986 - recall0.3: 0.8747 - tp0.5: 9934376.0000 - fp0.5: 152988 9.0000 - tn0.5: 65143560.0000 - fn0.5: 2035391.0000 - precision0.5: 0.8666 - recall0.5: 0.8300 - tp0.7: 9136907.0000 - fp0.7: 753965.0000 - tn0.7: 65919460.0000 - fn0.7: 2832860.0000 - pre cision0.7: 0.9238 - recall0.7: 0.7633 - tp0.9: 7562687.0000 - fp0.9: 213280.0000 - tn0.9: 66460156.0000 - fn0.9: 4407080.0000 - precision0.9: 0.9726 - recall0.9: 0.6318 - accuracy: 0.9547 - auc: 0.9561 - f1: 0.2642 - val_loss: 0.3791 - val_tp0.1: 2856464.0000 - val_fp0.1: 956306.0000 - val_tn0.1: 15541640.0000 - val_fn0.1: 306390.0000 - val_precision0.1: 0.7492 - val_recall 0.1: 0.9031 - val_tp0.3: 2644444.0000 - val_fp0.3: 392043.0000 - val_tn0.3: 16105903.0000 - val_fn0.3: 518410.0000 - val_precision0.3: 0.8709 - val_recall0.3: 0.8361 - val_tp0.5: 2503008.0 000 - val_fp0.5: 246935.0000 - val_tn0.5: 16251011.0000 - val_fn0.5: 659846.0000 - val_precision0.5: 0.9102 - val_recall0.5: 0.7914 - val_tp0.7: 2293518.0000 - val_fp0.7: 135876.0000 - val _tn0.7: 16362070.0000 - val_fn0.7: 869336.0000 - val_precision0.7: 0.9441 - val_recall0.7: 0.7251 - val_tp0.9: 1878107.0000 - val_fp0.9: 37476.0000 - val_tn0.9: 16460470.0000 - val_fn0.9: 1284747.0000 - val_precision0.9: 0.9804 - val_recall0.9: 0.5938 - val_accuracy: 0.9539 - val_auc: 0.9458 - val_f1: 0.2772 Epoch 10/20 240/240 [==============================] - 124s 517ms/step - loss: 0.3399 - tp0.1: 11192783.0000 - fp0.1: 6148473.0000 - tn0.1: 60524940.0000 - fn0.1: 776984.0000 - precision0.1: 0.6454 - recall0.1: 0.9351 - tp0.3: 10562088.0000 - fp0.3: 2647342.0000 - tn0.3: 64026076.0000 - fn0.3: 1407679.0000 - precision0.3: 0.7996 - recall0.3: 0.8824 - tp0.5: 10019446.0000 - fp0.5: 14919 46.0000 - tn0.5: 65181488.0000 - fn0.5: 1950321.0000 - precision0.5: 0.8704 - recall0.5: 0.8371 - tp0.7: 9263641.0000 - fp0.7: 747160.0000 - tn0.7: 65926272.0000 - fn0.7: 2706126.0000 - pr ecision0.7: 0.9254 - recall0.7: 0.7739 - tp0.9: 7720186.0000 - fp0.9: 209487.0000 - tn0.9: 66463960.0000 - fn0.9: 4249581.0000 - precision0.9: 0.9736 - recall0.9: 0.6450 - accuracy: 0.9562 - auc: 0.9595 - f1: 0.2642 - val_loss: 0.3522 - val_tp0.1: 3064550.0000 - val_fp0.1: 2487874.0000 - val_tn0.1: 14010072.0000 - val_fn0.1: 98304.0000 - val_precision0.1: 0.5519 - val_recal l0.1: 0.9689 - val_tp0.3: 2948761.0000 - val_fp0.3: 1064135.0000 - val_tn0.3: 15433811.0000 - val_fn0.3: 214093.0000 - val_precision0.3: 0.7348 - val_recall0.3: 0.9323 - val_tp0.5: 2865468 .0000 - val_fp0.5: 718289.0000 - val_tn0.5: 15779657.0000 - val_fn0.5: 297386.0000 - val_precision0.5: 0.7996 - val_recall0.5: 0.9060 - val_tp0.7: 2741942.0000 - val_fp0.7: 426555.0000 - v al_tn0.7: 16071391.0000 - val_fn0.7: 420912.0000 - val_precision0.7: 0.8654 - val_recall0.7: 0.8669 - val_tp0.9: 2476605.0000 - val_fp0.9: 171677.0000 - val_tn0.9: 16326269.0000 - val_fn0. 9: 686249.0000 - val_precision0.9: 0.9352 - val_recall0.9: 0.7830 - val_accuracy: 0.9483 - val_auc: 0.9739 - val_f1: 0.2772 Epoch 11/20 240/240 [==============================] - 124s 517ms/step - loss: 0.3283 - tp0.1: 11237515.0000 - fp0.1: 6025317.0000 - tn0.1: 60648124.0000 - fn0.1: 732252.0000 - precision0.1: 0.6510 - recall0.1: 0.9388 - tp0.3: 10617524.0000 - fp0.3: 2587448.0000 - tn0.3: 64085984.0000 - fn0.3: 1352243.0000 - precision0.3: 0.8041 - recall0.3: 0.8870 - tp0.5: 10090900.0000 - fp0.5: 14806 86.0000 - tn0.5: 65192740.0000 - fn0.5: 1878867.0000 - precision0.5: 0.8720 - recall0.5: 0.8430 - tp0.7: 9347944.0000 - fp0.7: 746924.0000 - tn0.7: 65926508.0000 - fn0.7: 2621823.0000 - pr ecision0.7: 0.9260 - recall0.7: 0.7810 - tp0.9: 7842670.0000 - fp0.9: 222008.0000 - tn0.9: 66451408.0000 - fn0.9: 4127097.0000 - precision0.9: 0.9725 - recall0.9: 0.6552 - accuracy: 0.9573 - auc: 0.9614 - f1: 0.2642 - val_loss: 0.3862 - val_tp0.1: 3085105.0000 - val_fp0.1: 3480345.0000 - val_tn0.1: 13017601.0000 - val_fn0.1: 77749.0000 - val_precision0.1: 0.4699 - val_recal l0.1: 0.9754 - val_tp0.3: 2931914.0000 - val_fp0.3: 986226.0000 - val_tn0.3: 15511720.0000 - val_fn0.3: 230940.0000 - val_precision0.3: 0.7483 - val_recall0.3: 0.9270 - val_tp0.5: 2759869. 0000 - val_fp0.5: 439560.0000 - val_tn0.5: 16058386.0000 - val_fn0.5: 402985.0000 - val_precision0.5: 0.8626 - val_recall0.5: 0.8726 - val_tp0.7: 2487808.0000 - val_fp0.7: 172315.0000 - va l_tn0.7: 16325631.0000 - val_fn0.7: 675046.0000 - val_precision0.7: 0.9352 - val_recall0.7: 0.7866 - val_tp0.9: 1923553.0000 - val_fp0.9: 34623.0000 - val_tn0.9: 16463323.0000 - val_fn0.9: 1239301.0000 - val_precision0.9: 0.9823 - val_recall0.9: 0.6082 - val_accuracy: 0.9571 - val_auc: 0.9755 - val_f1: 0.2772 Epoch 12/20 240/240 [==============================] - 124s 517ms/step - loss: 0.3149 - tp0.1: 11244552.0000 - fp0.1: 5636478.0000 - tn0.1: 61036940.0000 - fn0.1: 725215.0000 - precision0.1: 0.6661 - recall0.1: 0.9394 - tp0.3: 10645433.0000 - fp0.3: 2370845.0000 - tn0.3: 64302560.0000 - fn0.3: 1324334.0000 - precision0.3: 0.8179 - recall0.3: 0.8894 - tp0.5: 10139252.0000 - fp0.5: 13412 79.0000 - tn0.5: 65332156.0000 - fn0.5: 1830515.0000 - precision0.5: 0.8832 - recall0.5: 0.8471 - tp0.7: 9434975.0000 - fp0.7: 668796.0000 - tn0.7: 66004652.0000 - fn0.7: 2534792.0000 - pr ecision0.7: 0.9338 - recall0.7: 0.7882 - tp0.9: 8010285.0000 - fp0.9: 191192.0000 - tn0.9: 66482252.0000 - fn0.9: 3959482.0000 - precision0.9: 0.9767 - recall0.9: 0.6692 - accuracy: 0.9597 - auc: 0.9629 - f1: 0.2642 - val_loss: 0.3954 - val_tp0.1: 3008877.0000 - val_fp0.1: 2662719.0000 - val_tn0.1: 13835227.0000 - val_fn0.1: 153977.0000 - val_precision0.1: 0.5305 - val_reca ll0.1: 0.9513 - val_tp0.3: 2890670.0000 - val_fp0.3: 1167312.0000 - val_tn0.3: 15330634.0000 - val_fn0.3: 272184.0000 - val_precision0.3: 0.7123 - val_recall0.3: 0.9139 - val_tp0.5: 279631 0.0000 - val_fp0.5: 773358.0000 - val_tn0.5: 15724588.0000 - val_fn0.5: 366544.0000 - val_precision0.5: 0.7834 - val_recall0.5: 0.8841 - val_tp0.7: 2635367.0000 - val_fp0.7: 412051.0000 - val_tn0.7: 16085895.0000 - val_fn0.7: 527487.0000 - val_precision0.7: 0.8648 - val_recall0.7: 0.8332 - val_tp0.9: 2302238.0000 - val_fp0.9: 140209.0000 - val_tn0.9: 16357737.0000 - val_fn0 .9: 860616.0000 - val_precision0.9: 0.9426 - val_recall0.9: 0.7279 - val_accuracy: 0.9420 - val_auc: 0.9629 - val_f1: 0.2772 Epoch 13/20 240/240 [==============================] - 124s 516ms/step - loss: 0.3001 - tp0.1: 11285735.0000 - fp0.1: 5401576.0000 - tn0.1: 61271836.0000 - fn0.1: 684032.0000 - precision0.1: 0.6763 - recall0.1: 0.9429 - tp0.3: 10728442.0000 - fp0.3: 2362125.0000 - tn0.3: 64311320.0000 - fn0.3: 1241325.0000 - precision0.3: 0.8196 - recall0.3: 0.8963 - tp0.5: 10253499.0000 - fp0.5: 13693 34.0000 - tn0.5: 65304092.0000 - fn0.5: 1716268.0000 - precision0.5: 0.8822 - recall0.5: 0.8566 - tp0.7: 9558014.0000 - fp0.7: 688333.0000 - tn0.7: 65985076.0000 - fn0.7: 2411753.0000 - pr ecision0.7: 0.9328 - recall0.7: 0.7985 - tp0.9: 8134971.0000 - fp0.9: 193269.0000 - tn0.9: 66480164.0000 - fn0.9: 3834796.0000 - precision0.9: 0.9768 - recall0.9: 0.6796 - accuracy: 0.9608 - auc: 0.9650 - f1: 0.2642 - val_loss: 0.3591 - val_tp0.1: 2894724.0000 - val_fp0.1: 841367.0000 - val_tn0.1: 15656579.0000 - val_fn0.1: 268130.0000 - val_precision0.1: 0.7748 - val_recal l0.1: 0.9152 - val_tp0.3: 2569647.0000 - val_fp0.3: 243687.0000 - val_tn0.3: 16254259.0000 - val_fn0.3: 593207.0000 - val_precision0.3: 0.9134 - val_recall0.3: 0.8124 - val_tp0.5: 2323874. 0000 - val_fp0.5: 112189.0000 - val_tn0.5: 16385757.0000 - val_fn0.5: 838980.0000 - val_precision0.5: 0.9539 - val_recall0.5: 0.7347 - val_tp0.7: 1996399.0000 - val_fp0.7: 37554.0000 - val _tn0.7: 16460392.0000 - val_fn0.7: 1166455.0000 - val_precision0.7: 0.9815 - val_recall0.7: 0.6312 - val_tp0.9: 1499767.0000 - val_fp0.9: 5568.0000 - val_tn0.9: 16492378.0000 - val_fn0.9: 1663087.0000 - val_precision0.9: 0.9963 - val_recall0.9: 0.4742 - val_accuracy: 0.9516 - val_auc: 0.9540 - val_f1: 0.2772 Epoch 14/20 240/240 [==============================] - 124s 516ms/step - loss: 0.2927 - tp0.1: 11303319.0000 - fp0.1: 5310555.0000 - tn0.1: 61362872.0000 - fn0.1: 666448.0000 - precision0.1: 0.6804 - recall0.1: 0.9443 - tp0.3: 10769572.0000 - fp0.3: 2338920.0000 - tn0.3: 64334512.0000 - fn0.3: 1200195.0000 - precision0.3: 0.8216 - recall0.3: 0.8997 - tp0.5: 10293662.0000 - fp0.5: 13284 81.0000 - tn0.5: 65344964.0000 - fn0.5: 1676105.0000 - precision0.5: 0.8857 - recall0.5: 0.8600 - tp0.7: 9608679.0000 - fp0.7: 652337.0000 - tn0.7: 66021108.0000 - fn0.7: 2361088.0000 - pr ecision0.7: 0.9364 - recall0.7: 0.8027 - tp0.9: 8281304.0000 - fp0.9: 189171.0000 - tn0.9: 66484272.0000 - fn0.9: 3688463.0000 - precision0.9: 0.9777 - recall0.9: 0.6919 - accuracy: 0.9618 - auc: 0.9660 - f1: 0.2642 - val_loss: 0.3489 - val_tp0.1: 3071912.0000 - val_fp0.1: 2477377.0000 - val_tn0.1: 14020569.0000 - val_fn0.1: 90942.0000 - val_precision0.1: 0.5536 - val_recal l0.1: 0.9712 - val_tp0.3: 2983731.0000 - val_fp0.3: 1182747.0000 - val_tn0.3: 15315199.0000 - val_fn0.3: 179123.0000 - val_precision0.3: 0.7161 - val_recall0.3: 0.9434 - val_tp0.5: 2894503 .0000 - val_fp0.5: 758141.0000 - val_tn0.5: 15739805.0000 - val_fn0.5: 268351.0000 - val_precision0.5: 0.7924 - val_recall0.5: 0.9152 - val_tp0.7: 2765944.0000 - val_fp0.7: 443418.0000 - v al_tn0.7: 16054528.0000 - val_fn0.7: 396910.0000 - val_precision0.7: 0.8618 - val_recall0.7: 0.8745 - val_tp0.9: 2524618.0000 - val_fp0.9: 206040.0000 - val_tn0.9: 16291906.0000 - val_fn0. 9: 638236.0000 - val_precision0.9: 0.9245 - val_recall0.9: 0.7982 - val_accuracy: 0.9478 - val_auc: 0.9752 - val_f1: 0.2772 Epoch 15/20 240/240 [==============================] - 124s 516ms/step - loss: 0.2859 - tp0.1: 11302324.0000 - fp0.1: 4990158.0000 - tn0.1: 61683280.0000 - fn0.1: 667443.0000 - precision0.1: 0.6937 - recall0.1: 0.9442 - tp0.3: 10801269.0000 - fp0.3: 2296897.0000 - tn0.3: 64376528.0000 - fn0.3: 1168498.0000 - precision0.3: 0.8246 - recall0.3: 0.9024 - tp0.5: 10322016.0000 - fp0.5: 12928 01.0000 - tn0.5: 65380632.0000 - fn0.5: 1647751.0000 - precision0.5: 0.8887 - recall0.5: 0.8623 - tp0.7: 9638120.0000 - fp0.7: 622814.0000 - tn0.7: 66050612.0000 - fn0.7: 2331647.0000 - pr ecision0.7: 0.9393 - recall0.7: 0.8052 - tp0.9: 8333108.0000 - fp0.9: 176077.0000 - tn0.9: 66497368.0000 - fn0.9: 3636659.0000 - precision0.9: 0.9793 - recall0.9: 0.6962 - accuracy: 0.9626 - auc: 0.9664 - f1: 0.2642 - val_loss: 0.2609 - val_tp0.1: 3046775.0000 - val_fp0.1: 1468094.0000 - val_tn0.1: 15029852.0000 - val_fn0.1: 116079.0000 - val_precision0.1: 0.6748 - val_reca ll0.1: 0.9633 - val_tp0.3: 2926133.0000 - val_fp0.3: 616330.0000 - val_tn0.3: 15881616.0000 - val_fn0.3: 236721.0000 - val_precision0.3: 0.8260 - val_recall0.3: 0.9252 - val_tp0.5: 2805534 .0000 - val_fp0.5: 344220.0000 - val_tn0.5: 16153726.0000 - val_fn0.5: 357320.0000 - val_precision0.5: 0.8907 - val_recall0.5: 0.8870 - val_tp0.7: 2613829.0000 - val_fp0.7: 161631.0000 - v al_tn0.7: 16336315.0000 - val_fn0.7: 549025.0000 - val_precision0.7: 0.9418 - val_recall0.7: 0.8264 - val_tp0.9: 2262420.0000 - val_fp0.9: 50786.0000 - val_tn0.9: 16447160.0000 - val_fn0.9 : 900434.0000 - val_precision0.9: 0.9780 - val_recall0.9: 0.7153 - val_accuracy: 0.9643 - val_auc: 0.9756 - val_f1: 0.2772 Epoch 16/20 240/240 [==============================] - 124s 518ms/step - loss: 0.2760 - tp0.1: 11343439.0000 - fp0.1: 5034724.0000 - tn0.1: 61638692.0000 - fn0.1: 626328.0000 - precision0.1: 0.6926 - recall0.1: 0.9477 - tp0.3: 10839346.0000 - fp0.3: 2204383.0000 - tn0.3: 64469040.0000 - fn0.3: 1130421.0000 - precision0.3: 0.8310 - recall0.3: 0.9056 - tp0.5: 10384981.0000 - fp0.5: 12476 08.0000 - tn0.5: 65425836.0000 - fn0.5: 1584786.0000 - precision0.5: 0.8927 - recall0.5: 0.8676 - tp0.7: 9712329.0000 - fp0.7: 596551.0000 - tn0.7: 66076892.0000 - fn0.7: 2257438.0000 - pr ecision0.7: 0.9421 - recall0.7: 0.8114 - tp0.9: 8432551.0000 - fp0.9: 162062.0000 - tn0.9: 66511360.0000 - fn0.9: 3537216.0000 - precision0.9: 0.9811 - recall0.9: 0.7045 - accuracy: 0.9640 - auc: 0.9683 - f1: 0.2642 - val_loss: 0.2563 - val_tp0.1: 3029508.0000 - val_fp0.1: 1192309.0000 - val_tn0.1: 15305637.0000 - val_fn0.1: 133346.0000 - val_precision0.1: 0.7176 - val_reca ll0.1: 0.9578 - val_tp0.3: 2908219.0000 - val_fp0.3: 564874.0000 - val_tn0.3: 15933072.0000 - val_fn0.3: 254635.0000 - val_precision0.3: 0.8374 - val_recall0.3: 0.9195 - val_tp0.5: 2799190 .0000 - val_fp0.5: 352643.0000 - val_tn0.5: 16145303.0000 - val_fn0.5: 363664.0000 - val_precision0.5: 0.8881 - val_recall0.5: 0.8850 - val_tp0.7: 2636887.0000 - val_fp0.7: 194123.0000 - v al_tn0.7: 16303823.0000 - val_fn0.7: 525967.0000 - val_precision0.7: 0.9314 - val_recall0.7: 0.8337 - val_tp0.9: 2320546.0000 - val_fp0.9: 72127.0000 - val_tn0.9: 16425819.0000 - val_fn0.9 : 842308.0000 - val_precision0.9: 0.9699 - val_recall0.9: 0.7337 - val_accuracy: 0.9636 - val_auc: 0.9731 - val_f1: 0.2772 Epoch 17/20 240/240 [==============================] - 124s 518ms/step - loss: 0.2703 - tp0.1: 11357057.0000 - fp0.1: 4893464.0000 - tn0.1: 61779992.0000 - fn0.1: 612710.0000 - precision0.1: 0.6989 - recall0.1: 0.9488 - tp0.3: 10875567.0000 - fp0.3: 2221183.0000 - tn0.3: 64452244.0000 - fn0.3: 1094200.0000 - precision0.3: 0.8304 - recall0.3: 0.9086 - tp0.5: 10410193.0000 - fp0.5: 12391 75.0000 - tn0.5: 65434264.0000 - fn0.5: 1559574.0000 - precision0.5: 0.8936 - recall0.5: 0.8697 - tp0.7: 9743863.0000 - fp0.7: 592187.0000 - tn0.7: 66081244.0000 - fn0.7: 2225904.0000 - pr ecision0.7: 0.9427 - recall0.7: 0.8140 - tp0.9: 8521739.0000 - fp0.9: 167850.0000 - tn0.9: 66505612.0000 - fn0.9: 3448028.0000 - precision0.9: 0.9807 - recall0.9: 0.7119 - accuracy: 0.9644 - auc: 0.9690 - f1: 0.2642 - val_loss: 0.2701 - val_tp0.1: 3061862.0000 - val_fp0.1: 1755743.0000 - val_tn0.1: 14742203.0000 - val_fn0.1: 100992.0000 - val_precision0.1: 0.6356 - val_reca ll0.1: 0.9681 - val_tp0.3: 2945795.0000 - val_fp0.3: 710061.0000 - val_tn0.3: 15787885.0000 - val_fn0.3: 217059.0000 - val_precision0.3: 0.8058 - val_recall0.3: 0.9314 - val_tp0.5: 2833502 .0000 - val_fp0.5: 394281.0000 - val_tn0.5: 16103665.0000 - val_fn0.5: 329352.0000 - val_precision0.5: 0.8778 - val_recall0.5: 0.8959 - val_tp0.7: 2650030.0000 - val_fp0.7: 181493.0000 - v al_tn0.7: 16316453.0000 - val_fn0.7: 512824.0000 - val_precision0.7: 0.9359 - val_recall0.7: 0.8379 - val_tp0.9: 2293107.0000 - val_fp0.9: 49911.0000 - val_tn0.9: 16448035.0000 - val_fn0.9 : 869747.0000 - val_precision0.9: 0.9787 - val_recall0.9: 0.7250 - val_accuracy: 0.9632 - val_auc: 0.9773 - val_f1: 0.2772 Epoch 18/20 240/240 [==============================] - 124s 518ms/step - loss: 0.2628 - tp0.1: 11372952.0000 - fp0.1: 4780985.0000 - tn0.1: 61892464.0000 - fn0.1: 596815.0000 - precision0.1: 0.7040 - recall0.1: 0.9501 - tp0.3: 10899958.0000 - fp0.3: 2139815.0000 - tn0.3: 64533632.0000 - fn0.3: 1069809.0000 - precision0.3: 0.8359 - recall0.3: 0.9106 - tp0.5: 10471625.0000 - fp0.5: 12249 84.0000 - tn0.5: 65448432.0000 - fn0.5: 1498142.0000 - precision0.5: 0.8953 - recall0.5: 0.8748 - tp0.7: 9815694.0000 - fp0.7: 581437.0000 - tn0.7: 66091992.0000 - fn0.7: 2154073.0000 - pr ecision0.7: 0.9441 - recall0.7: 0.8200 - tp0.9: 8590979.0000 - fp0.9: 158690.0000 - tn0.9: 66514760.0000 - fn0.9: 3378788.0000 - precision0.9: 0.9819 - recall0.9: 0.7177 - accuracy: 0.9654 - auc: 0.9700 - f1: 0.2642 - val_loss: 0.2858 - val_tp0.1: 3079296.0000 - val_fp0.1: 2141364.0000 - val_tn0.1: 14356582.0000 - val_fn0.1: 83558.0000 - val_precision0.1: 0.5898 - val_recal l0.1: 0.9736 - val_tp0.3: 2982065.0000 - val_fp0.3: 935179.0000 - val_tn0.3: 15562767.0000 - val_fn0.3: 180789.0000 - val_precision0.3: 0.7613 - val_recall0.3: 0.9428 - val_tp0.5: 2881468. 0000 - val_fp0.5: 536262.0000 - val_tn0.5: 15961684.0000 - val_fn0.5: 281386.0000 - val_precision0.5: 0.8431 - val_recall0.5: 0.9110 - val_tp0.7: 2708837.0000 - val_fp0.7: 237110.0000 - va l_tn0.7: 16260836.0000 - val_fn0.7: 454017.0000 - val_precision0.7: 0.9195 - val_recall0.7: 0.8565 - val_tp0.9: 2296651.0000 - val_fp0.9: 53102.0000 - val_tn0.9: 16444844.0000 - val_fn0.9: 866203.0000 - val_precision0.9: 0.9774 - val_recall0.9: 0.7261 - val_accuracy: 0.9584 - val_auc: 0.9793 - val_f1: 0.2772 Epoch 19/20 240/240 [==============================] - 124s 516ms/step - loss: 0.2557 - tp0.1: 11390165.0000 - fp0.1: 4618150.0000 - tn0.1: 62055280.0000 - fn0.1: 579602.0000 - precision0.1: 0.7115 - recall0.1: 0.9516 - tp0.3: 10925273.0000 - fp0.3: 2091134.0000 - tn0.3: 64582276.0000 - fn0.3: 1044494.0000 - precision0.3: 0.8393 - recall0.3: 0.9127 - tp0.5: 10488558.0000 - fp0.5: 11931 41.0000 - tn0.5: 65480284.0000 - fn0.5: 1481209.0000 - precision0.5: 0.8979 - recall0.5: 0.8763 - tp0.7: 9830525.0000 - fp0.7: 561047.0000 - tn0.7: 66112360.0000 - fn0.7: 2139242.0000 - pr ecision0.7: 0.9460 - recall0.7: 0.8213 - tp0.9: 8625871.0000 - fp0.9: 152724.0000 - tn0.9: 66520724.0000 - fn0.9: 3343896.0000 - precision0.9: 0.9826 - recall0.9: 0.7206 - accuracy: 0.9660 - auc: 0.9711 - f1: 0.2642 - val_loss: 0.2528 - val_tp0.1: 3043668.0000 - val_fp0.1: 1335624.0000 - val_tn0.1: 15162322.0000 - val_fn0.1: 119186.0000 - val_precision0.1: 0.6950 - val_reca ll0.1: 0.9623 - val_tp0.3: 2935979.0000 - val_fp0.3: 619716.0000 - val_tn0.3: 15878230.0000 - val_fn0.3: 226875.0000 - val_precision0.3: 0.8257 - val_recall0.3: 0.9283 - val_tp0.5: 2834409 .0000 - val_fp0.5: 367871.0000 - val_tn0.5: 16130075.0000 - val_fn0.5: 328445.0000 - val_precision0.5: 0.8851 - val_recall0.5: 0.8962 - val_tp0.7: 2670269.0000 - val_fp0.7: 182097.0000 - v al_tn0.7: 16315849.0000 - val_fn0.7: 492585.0000 - val_precision0.7: 0.9362 - val_recall0.7: 0.8443 - val_tp0.9: 2324993.0000 - val_fp0.9: 54375.0000 - val_tn0.9: 16443571.0000 - val_fn0.9 : 837861.0000 - val_precision0.9: 0.9771 - val_recall0.9: 0.7351 - val_accuracy: 0.9646 - val_auc: 0.9758 - val_f1: 0.2772 Epoch 20/20 240/240 [==============================] - 124s 518ms/step - loss: 0.2510 - tp0.1: 11400658.0000 - fp0.1: 4532014.0000 - tn0.1: 62141432.0000 - fn0.1: 569109.0000 - precision0.1: 0.7156 - recall0.1: 0.9525 - tp0.3: 10961511.0000 - fp0.3: 2108269.0000 - tn0.3: 64565152.0000 - fn0.3: 1008256.0000 - precision0.3: 0.8387 - recall0.3: 0.9158 - tp0.5: 10542090.0000 - fp0.5: 12141 91.0000 - tn0.5: 65459224.0000 - fn0.5: 1427677.0000 - precision0.5: 0.8967 - recall0.5: 0.8807 - tp0.7: 9900824.0000 - fp0.7: 577656.0000 - tn0.7: 66095784.0000 - fn0.7: 2068943.0000 - pr ecision0.7: 0.9449 - recall0.7: 0.8272 - tp0.9: 8716202.0000 - fp0.9: 157381.0000 - tn0.9: 66516056.0000 - fn0.9: 3253565.0000 - precision0.9: 0.9823 - recall0.9: 0.7282 - accuracy: 0.9664 - auc: 0.9716 - f1: 0.2642 - val_loss: 0.2602 - val_tp0.1: 3022436.0000 - val_fp0.1: 1215092.0000 - val_tn0.1: 15282854.0000 - val_fn0.1: 140418.0000 - val_precision0.1: 0.7133 - val_reca ll0.1: 0.9556 - val_tp0.3: 2889313.0000 - val_fp0.3: 511507.0000 - val_tn0.3: 15986439.0000 - val_fn0.3: 273541.0000 - val_precision0.3: 0.8496 - val_recall0.3: 0.9135 - val_tp0.5: 2761628 .0000 - val_fp0.5: 283172.0000 - val_tn0.5: 16214774.0000 - val_fn0.5: 401226.0000 - val_precision0.5: 0.9070 - val_recall0.5: 0.8731 - val_tp0.7: 2568361.0000 - val_fp0.7: 130133.0000 - v al_tn0.7: 16367813.0000 - val_fn0.7: 594493.0000 - val_precision0.7: 0.9518 - val_recall0.7: 0.8120 - val_tp0.9: 2202966.0000 - val_fp0.9: 36402.0000 - val_tn0.9: 16461544.0000 - val_fn0.9 : 959888.0000 - val_precision0.9: 0.9837 - val_recall0.9: 0.6965 - val_accuracy: 0.9652 - val_auc: 0.9728 - val_f1: 0.2772 --- Running training session 63/140 {'hp_epochs': 20, 'hp_batch_size': 14, 'hp_scaler': 'quant_g', 'hp_n_levels': 7, 'hp_first_filters': 16, 'hp_pool_size': 2, 'hp_input_size': 4096, 'hp_lr_start': 0.027144629354532844, 'hp_ lr_power': 5.0} --- repeat #: 1 input - shape: (None, 4096, 1) output - shape: (None, 4096, 1) Epoch 1/20 2021-08-08 13:46:55.765737: I tensorflow/core/kernels/data/shuffle_dataset_op.cc:177] Filling up shuffle buffer (this may take a while): 3624 of 4800 2021-08-08 13:46:58.998412: I tensorflow/core/kernels/data/shuffle_dataset_op.cc:230] Shuffle buffer filled. 342/342 [==============================] - 60s 96ms/step - loss: 0.9388 - tp0.1: 2551056.0000 - fp0.1: 5602226.0000 - tn0.1: 11036673.0000 - fn0.1: 421693.0000 - precision0.1: 0.3129 - rec all0.1: 0.8581 - tp0.3: 1927079.0000 - fp0.3: 2492968.0000 - tn0.3: 14145931.0000 - fn0.3: 1045670.0000 - precision0.3: 0.4360 - recall0.3: 0.6482 - tp0.5: 1246353.0000 - fp0.5: 839125.000 0 - tn0.5: 15799774.0000 - fn0.5: 1726396.0000 - precision0.5: 0.5976 - recall0.5: 0.4193 - tp0.7: 687790.0000 - fp0.7: 234530.0000 - tn0.7: 16404369.0000 - fn0.7: 2284959.0000 - precision 0.7: 0.7457 - recall0.7: 0.2314 - tp0.9: 115373.0000 - fp0.9: 19205.0000 - tn0.9: 16619694.0000 - fn0.9: 2857376.0000 - precision0.9: 0.8573 - recall0.9: 0.0388 - accuracy: 0.8692 - auc: 0 .8319 - f1: 0.2633 - val_loss: 1.2163 - val_tp0.1: 649575.0000 - val_fp0.1: 1129986.0000 - val_tn0.1: 2947304.0000 - val_fn0.1: 147375.0000 - val_precision0.1: 0.3650 - val_recall0.1: 0.81 51 - val_tp0.3: 600297.0000 - val_fp0.3: 897583.0000 - val_tn0.3: 3179707.0000 - val_fn0.3: 196653.0000 - val_precision0.3: 0.4008 - val_recall0.3: 0.7532 - val_tp0.5: 562997.0000 - val_fp 0.5: 731818.0000 - val_tn0.5: 3345472.0000 - val_fn0.5: 233953.0000 - val_precision0.5: 0.4348 - val_recall0.5: 0.7064 - val_tp0.7: 521584.0000 - val_fp0.7: 583432.0000 - val_tn0.7: 349385 8.0000 - val_fn0.7: 275366.0000 - val_precision0.7: 0.4720 - val_recall0.7: 0.6545 - val_tp0.9: 432196.0000 - val_fp0.9: 357157.0000 - val_tn0.9: 3720133.0000 - val_fn0.9: 364754.0000 - va l_precision0.9: 0.5475 - val_recall0.9: 0.5423 - val_accuracy: 0.8019 - val_auc: 0.8254 - val_f1: 0.2811 Epoch 2/20 342/342 [==============================] - 27s 79ms/step - loss: 0.8637 - tp0.1: 2563159.0000 - fp0.1: 5123938.0000 - tn0.1: 11520950.0000 - fn0.1: 403601.0000 - precision0.1: 0.3334 - rec all0.1: 0.8640 - tp0.3: 2082014.0000 - fp0.3: 2404817.0000 - tn0.3: 14240071.0000 - fn0.3: 884746.0000 - precision0.3: 0.4640 - recall0.3: 0.7018 - tp0.5: 1378923.0000 - fp0.5: 865967.0000 - tn0.5: 15778921.0000 - fn0.5: 1587837.0000 - precision0.5: 0.6142 - recall0.5: 0.4648 - tp0.7: 747621.0000 - fp0.7: 249304.0000 - tn0.7: 16395584.0000 - fn0.7: 2219139.0000 - precision0 .7: 0.7499 - recall0.7: 0.2520 - tp0.9: 156922.0000 - fp0.9: 25309.0000 - tn0.9: 16619579.0000 - fn0.9: 2809838.0000 - precision0.9: 0.8611 - recall0.9: 0.0529 - accuracy: 0.8749 - auc: 0. 8499 - f1: 0.2628 - val_loss: 6.7415 - val_tp0.1: 794760.0000 - val_fp0.1: 3364179.0000 - val_tn0.1: 712620.0000 - val_fn0.1: 2681.0000 - val_precision0.1: 0.1911 - val_recall0.1: 0.9966 - val_tp0.3: 790967.0000 - val_fp0.3: 2758328.0000 - val_tn0.3: 1318471.0000 - val_fn0.3: 6474.0000 - val_precision0.3: 0.2229 - val_recall0.3: 0.9919 - val_tp0.5: 786264.0000 - val_fp0.5: 2520461.0000 - val_tn0.5: 1556338.0000 - val_fn0.5: 11177.0000 - val_precision0.5: 0.2378 - val_recall0.5: 0.9860 - val_tp0.7: 779634.0000 - val_fp0.7: 2343349.0000 - val_tn0.7: 1733450.00 00 - val_fn0.7: 17807.0000 - val_precision0.7: 0.2496 - val_recall0.7: 0.9777 - val_tp0.9: 763809.0000 - val_fp0.9: 2124191.0000 - val_tn0.9: 1952608.0000 - val_fn0.9: 33632.0000 - val_pre cision0.9: 0.2645 - val_recall0.9: 0.9578 - val_accuracy: 0.4806 - val_auc: 0.7467 - val_f1: 0.2812 Epoch 3/20 342/342 [==============================] - 30s 88ms/step - loss: 0.7536 - tp0.1: 2653716.0000 - fp0.1: 4711992.0000 - tn0.1: 11929767.0000 - fn0.1: 316173.0000 - precision0.1: 0.3603 - rec all0.1: 0.8935 - tp0.3: 2203201.0000 - fp0.3: 2044395.0000 - tn0.3: 14597364.0000 - fn0.3: 766688.0000 - precision0.3: 0.5187 - recall0.3: 0.7418 - tp0.5: 1692995.0000 - fp0.5: 943961.0000 - tn0.5: 15697798.0000 - fn0.5: 1276894.0000 - precision0.5: 0.6420 - recall0.5: 0.5701 - tp0.7: 1039318.0000 - fp0.7: 338210.0000 - tn0.7: 16303549.0000 - fn0.7: 1930571.0000 - precision 0.7: 0.7545 - recall0.7: 0.3500 - tp0.9: 234516.0000 - fp0.9: 36668.0000 - tn0.9: 16605091.0000 - fn0.9: 2735373.0000 - precision0.9: 0.8648 - recall0.9: 0.0790 - accuracy: 0.8868 - auc: 0 .8820 - f1: 0.2630 - val_loss: 1.5030 - val_tp0.1: 736916.0000 - val_fp0.1: 1516908.0000 - val_tn0.1: 2557738.0000 - val_fn0.1: 62678.0000 - val_precision0.1: 0.3270 - val_recall0.1: 0.921 6 - val_tp0.3: 720401.0000 - val_fp0.3: 1289822.0000 - val_tn0.3: 2784824.0000 - val_fn0.3: 79193.0000 - val_precision0.3: 0.3584 - val_recall0.3: 0.9010 - val_tp0.5: 705808.0000 - val_fp0 .5: 1149637.0000 - val_tn0.5: 2925009.0000 - val_fn0.5: 93786.0000 - val_precision0.5: 0.3804 - val_recall0.5: 0.8827 - val_tp0.7: 685398.0000 - val_fp0.7: 986538.0000 - val_tn0.7: 3088108 .0000 - val_fn0.7: 114196.0000 - val_precision0.7: 0.4099 - val_recall0.7: 0.8572 - val_tp0.9: 644148.0000 - val_fp0.9: 756371.0000 - val_tn0.9: 3318275.0000 - val_fn0.9: 155446.0000 - val _precision0.9: 0.4599 - val_recall0.9: 0.8056 - val_accuracy: 0.7449 - val_auc: 0.8651 - val_f1: 0.2819 Epoch 4/20 342/342 [==============================] - 30s 88ms/step - loss: 0.6853 - tp0.1: 2703897.0000 - fp0.1: 4342508.0000 - tn0.1: 12288832.0000 - fn0.1: 276411.0000 - precision0.1: 0.3837 - rec all0.1: 0.9073 - tp0.3: 2293716.0000 - fp0.3: 1900715.0000 - tn0.3: 14730625.0000 - fn0.3: 686592.0000 - precision0.3: 0.5468 - recall0.3: 0.7696 - tp0.5: 1860758.0000 - fp0.5: 965942.0000 - tn0.5: 15665398.0000 - fn0.5: 1119550.0000 - precision0.5: 0.6583 - recall0.5: 0.6244 - tp0.7: 1232630.0000 - fp0.7: 369641.0000 - tn0.7: 16261699.0000 - fn0.7: 1747678.0000 - precision 0.7: 0.7693 - recall0.7: 0.4136 - tp0.9: 331288.0000 - fp0.9: 50757.0000 - tn0.9: 16580583.0000 - fn0.9: 2649020.0000 - precision0.9: 0.8671 - recall0.9: 0.1112 - accuracy: 0.8937 - auc: 0 .8982 - f1: 0.2638 - val_loss: 0.9547 - val_tp0.1: 735656.0000 - val_fp0.1: 1474945.0000 - val_tn0.1: 2608195.0000 - val_fn0.1: 55444.0000 - val_precision0.1: 0.3328 - val_recall0.1: 0.929 9 - val_tp0.3: 692992.0000 - val_fp0.3: 1096764.0000 - val_tn0.3: 2986376.0000 - val_fn0.3: 98108.0000 - val_precision0.3: 0.3872 - val_recall0.3: 0.8760 - val_tp0.5: 651741.0000 - val_fp0 .5: 858021.0000 - val_tn0.5: 3225119.0000 - val_fn0.5: 139359.0000 - val_precision0.5: 0.4317 - val_recall0.5: 0.8238 - val_tp0.7: 578859.0000 - val_fp0.7: 602934.0000 - val_tn0.7: 3480206 .0000 - val_fn0.7: 212241.0000 - val_precision0.7: 0.4898 - val_recall0.7: 0.7317 - val_tp0.9: 421648.0000 - val_fp0.9: 292420.0000 - val_tn0.9: 3790720.0000 - val_fn0.9: 369452.0000 - val _precision0.9: 0.5905 - val_recall0.9: 0.5330 - val_accuracy: 0.7954 - val_auc: 0.8742 - val_f1: 0.2793 Epoch 5/20 342/342 [==============================] - 30s 89ms/step - loss: 0.6168 - tp0.1: 2714795.0000 - fp0.1: 3825827.0000 - tn0.1: 12828162.0000 - fn0.1: 242864.0000 - precision0.1: 0.4151 - rec all0.1: 0.9179 - tp0.3: 2360594.0000 - fp0.3: 1759953.0000 - tn0.3: 14894036.0000 - fn0.3: 597065.0000 - precision0.3: 0.5729 - recall0.3: 0.7981 - tp0.5: 1993009.0000 - fp0.5: 943846.0000 - tn0.5: 15710143.0000 - fn0.5: 964650.0000 - precision0.5: 0.6786 - recall0.5: 0.6738 - tp0.7: 1426514.0000 - fp0.7: 393147.0000 - tn0.7: 16260842.0000 - fn0.7: 1531145.0000 - precision0 .7: 0.7839 - recall0.7: 0.4823 - tp0.9: 433784.0000 - fp0.9: 59911.0000 - tn0.9: 16594078.0000 - fn0.9: 2523875.0000 - precision0.9: 0.8786 - recall0.9: 0.1467 - accuracy: 0.9027 - auc: 0. 9117 - f1: 0.2621 - val_loss: 0.6248 - val_tp0.1: 740961.0000 - val_fp0.1: 952224.0000 - val_tn0.1: 3122967.0000 - val_fn0.1: 58088.0000 - val_precision0.1: 0.4376 - val_recall0.1: 0.9273 - val_tp0.3: 664317.0000 - val_fp0.3: 488340.0000 - val_tn0.3: 3586851.0000 - val_fn0.3: 134732.0000 - val_precision0.3: 0.5763 - val_recall0.3: 0.8314 - val_tp0.5: 563011.0000 - val_fp0.5 : 245735.0000 - val_tn0.5: 3829456.0000 - val_fn0.5: 236038.0000 - val_precision0.5: 0.6962 - val_recall0.5: 0.7046 - val_tp0.7: 395949.0000 - val_fp0.7: 88632.0000 - val_tn0.7: 3986559.00 00 - val_fn0.7: 403100.0000 - val_precision0.7: 0.8171 - val_recall0.7: 0.4955 - val_tp0.9: 112039.0000 - val_fp0.9: 5626.0000 - val_tn0.9: 4069565.0000 - val_fn0.9: 687010.0000 - val_prec ision0.9: 0.9522 - val_recall0.9: 0.1402 - val_accuracy: 0.9012 - val_auc: 0.9231 - val_f1: 0.2817 Epoch 6/20 342/342 [==============================] - 29s 84ms/step - loss: 0.5810 - tp0.1: 2723990.0000 - fp0.1: 3427161.0000 - tn0.1: 13216327.0000 - fn0.1: 244170.0000 - precision0.1: 0.4428 - rec all0.1: 0.9177 - tp0.3: 2397859.0000 - fp0.3: 1591770.0000 - tn0.3: 15051718.0000 - fn0.3: 570301.0000 - precision0.3: 0.6010 - recall0.3: 0.8079 - tp0.5: 2062821.0000 - fp0.5: 894260.0000 - tn0.5: 15749228.0000 - fn0.5: 905339.0000 - precision0.5: 0.6976 - recall0.5: 0.6950 - tp0.7: 1513878.0000 - fp0.7: 385604.0000 - tn0.7: 16257884.0000 - fn0.7: 1454282.0000 - precision0 .7: 0.7970 - recall0.7: 0.5100 - tp0.9: 521178.0000 - fp0.9: 63769.0000 - tn0.9: 16579719.0000 - fn0.9: 2446982.0000 - precision0.9: 0.8910 - recall0.9: 0.1756 - accuracy: 0.9082 - auc: 0. 9187 - f1: 0.2629 - val_loss: 0.5978 - val_tp0.1: 736458.0000 - val_fp0.1: 812942.0000 - val_tn0.1: 3258937.0000 - val_fn0.1: 65903.0000 - val_precision0.1: 0.4753 - val_recall0.1: 0.9179 - val_tp0.3: 673047.0000 - val_fp0.3: 451203.0000 - val_tn0.3: 3620676.0000 - val_fn0.3: 129314.0000 - val_precision0.3: 0.5987 - val_recall0.3: 0.8388 - val_tp0.5: 622273.0000 - val_fp0.5 : 311162.0000 - val_tn0.5: 3760717.0000 - val_fn0.5: 180088.0000 - val_precision0.5: 0.6666 - val_recall0.5: 0.7756 - val_tp0.7: 543103.0000 - val_fp0.7: 183256.0000 - val_tn0.7: 3888623.0 000 - val_fn0.7: 259258.0000 - val_precision0.7: 0.7477 - val_recall0.7: 0.6769 - val_tp0.9: 367886.0000 - val_fp0.9: 60748.0000 - val_tn0.9: 4011131.0000 - val_fn0.9: 434475.0000 - val_pr ecision0.9: 0.8583 - val_recall0.9: 0.4585 - val_accuracy: 0.8992 - val_auc: 0.9218 - val_f1: 0.2827 Epoch 7/20 342/342 [==============================] - 30s 87ms/step - loss: 0.5618 - tp0.1: 2753144.0000 - fp0.1: 3391488.0000 - tn0.1: 13244099.0000 - fn0.1: 222917.0000 - precision0.1: 0.4481 - rec all0.1: 0.9251 - tp0.3: 2430470.0000 - fp0.3: 1601144.0000 - tn0.3: 15034443.0000 - fn0.3: 545591.0000 - precision0.3: 0.6029 - recall0.3: 0.8167 - tp0.5: 2105059.0000 - fp0.5: 906072.0000 - tn0.5: 15729515.0000 - fn0.5: 871002.0000 - precision0.5: 0.6991 - recall0.5: 0.7073 - tp0.7: 1566971.0000 - fp0.7: 391164.0000 - tn0.7: 16244423.0000 - fn0.7: 1409090.0000 - precision0 .7: 0.8002 - recall0.7: 0.5265 - tp0.9: 568695.0000 - fp0.9: 65221.0000 - tn0.9: 16570366.0000 - fn0.9: 2407366.0000 - precision0.9: 0.8971 - recall0.9: 0.1911 - accuracy: 0.9094 - auc: 0. 9229 - f1: 0.2635 - val_loss: 0.5711 - val_tp0.1: 744203.0000 - val_fp0.1: 929725.0000 - val_tn0.1: 3153721.0000 - val_fn0.1: 46591.0000 - val_precision0.1: 0.4446 - val_recall0.1: 0.9411 - val_tp0.3: 640265.0000 - val_fp0.3: 353301.0000 - val_tn0.3: 3730145.0000 - val_fn0.3: 150529.0000 - val_precision0.3: 0.6444 - val_recall0.3: 0.8096 - val_tp0.5: 490709.0000 - val_fp0.5 : 135186.0000 - val_tn0.5: 3948260.0000 - val_fn0.5: 300085.0000 - val_precision0.5: 0.7840 - val_recall0.5: 0.6205 - val_tp0.7: 277364.0000 - val_fp0.7: 34487.0000 - val_tn0.7: 4048959.00 00 - val_fn0.7: 513430.0000 - val_precision0.7: 0.8894 - val_recall0.7: 0.3507 - val_tp0.9: 24614.0000 - val_fp0.9: 1054.0000 - val_tn0.9: 4082392.0000 - val_fn0.9: 766180.0000 - val_preci sion0.9: 0.9589 - val_recall0.9: 0.0311 - val_accuracy: 0.9107 - val_auc: 0.9298 - val_f1: 0.2792 Epoch 8/20 342/342 [==============================] - 28s 81ms/step - loss: 0.5408 - tp0.1: 2752489.0000 - fp0.1: 3321723.0000 - tn0.1: 13326977.0000 - fn0.1: 210459.0000 - precision0.1: 0.4531 - rec all0.1: 0.9290 - tp0.3: 2438347.0000 - fp0.3: 1518540.0000 - tn0.3: 15130160.0000 - fn0.3: 524601.0000 - precision0.3: 0.6162 - recall0.3: 0.8229 - tp0.5: 2124376.0000 - fp0.5: 851682.0000 - tn0.5: 15797018.0000 - fn0.5: 838572.0000 - precision0.5: 0.7138 - recall0.5: 0.7170 - tp0.7: 1623433.0000 - fp0.7: 378788.0000 - tn0.7: 16269912.0000 - fn0.7: 1339515.0000 - precision0 .7: 0.8108 - recall0.7: 0.5479 - tp0.9: 664330.0000 - fp0.9: 71506.0000 - tn0.9: 16577194.0000 - fn0.9: 2298618.0000 - precision0.9: 0.9028 - recall0.9: 0.2242 - accuracy: 0.9138 - auc: 0. 9275 - f1: 0.2625 - val_loss: 0.5804 - val_tp0.1: 719809.0000 - val_fp0.1: 677691.0000 - val_tn0.1: 3399808.0000 - val_fn0.1: 76932.0000 - val_precision0.1: 0.5151 - val_recall0.1: 0.9034 - val_tp0.3: 629328.0000 - val_fp0.3: 315236.0000 - val_tn0.3: 3762263.0000 - val_fn0.3: 167413.0000 - val_precision0.3: 0.6663 - val_recall0.3: 0.7899 - val_tp0.5: 549596.0000 - val_fp0.5 : 183412.0000 - val_tn0.5: 3894087.0000 - val_fn0.5: 247145.0000 - val_precision0.5: 0.7498 - val_recall0.5: 0.6898 - val_tp0.7: 420608.0000 - val_fp0.7: 82009.0000 - val_tn0.7: 3995490.00 00 - val_fn0.7: 376133.0000 - val_precision0.7: 0.8368 - val_recall0.7: 0.5279 - val_tp0.9: 188872.0000 - val_fp0.9: 12738.0000 - val_tn0.9: 4064761.0000 - val_fn0.9: 607869.0000 - val_pre cision0.9: 0.9368 - val_recall0.9: 0.2371 - val_accuracy: 0.9117 - val_auc: 0.9182 - val_f1: 0.2810 Epoch 9/20 342/342 [==============================] - 31s 90ms/step - loss: 0.5325 - tp0.1: 2770579.0000 - fp0.1: 3319105.0000 - tn0.1: 13319456.0000 - fn0.1: 202508.0000 - precision0.1: 0.4550 - rec all0.1: 0.9319 - tp0.3: 2466041.0000 - fp0.3: 1533716.0000 - tn0.3: 15104845.0000 - fn0.3: 507046.0000 - precision0.3: 0.6165 - recall0.3: 0.8295 - tp0.5: 2177107.0000 - fp0.5: 886546.0000 - tn0.5: 15752015.0000 - fn0.5: 795980.0000 - precision0.5: 0.7106 - recall0.5: 0.7323 - tp0.7: 1685024.0000 - fp0.7: 402104.0000 - tn0.7: 16236457.0000 - fn0.7: 1288063.0000 - precision0 .7: 0.8073 - recall0.7: 0.5668 - tp0.9: 684970.0000 - fp0.9: 71002.0000 - tn0.9: 16567559.0000 - fn0.9: 2288117.0000 - precision0.9: 0.9061 - recall0.9: 0.2304 - accuracy: 0.9142 - auc: 0. 9299 - f1: 0.2633 - val_loss: 0.6069 - val_tp0.1: 776068.0000 - val_fp0.1: 1351519.0000 - val_tn0.1: 2726452.0000 - val_fn0.1: 20201.0000 - val_precision0.1: 0.3648 - val_recall0.1: 0.9746 - val_tp0.3: 720731.0000 - val_fp0.3: 628859.0000 - val_tn0.3: 3449112.0000 - val_fn0.3: 75538.0000 - val_precision0.3: 0.5340 - val_recall0.3: 0.9051 - val_tp0.5: 648641.0000 - val_fp0.5 : 344147.0000 - val_tn0.5: 3733824.0000 - val_fn0.5: 147628.0000 - val_precision0.5: 0.6534 - val_recall0.5: 0.8146 - val_tp0.7: 538210.0000 - val_fp0.7: 168258.0000 - val_tn0.7: 3909713.0 000 - val_fn0.7: 258059.0000 - val_precision0.7: 0.7618 - val_recall0.7: 0.6759 - val_tp0.9: 289556.0000 - val_fp0.9: 34074.0000 - val_tn0.9: 4043897.0000 - val_fn0.9: 506713.0000 - val_pr ecision0.9: 0.8947 - val_recall0.9: 0.3636 - val_accuracy: 0.8991 - val_auc: 0.9424 - val_f1: 0.2808 Epoch 10/20 342/342 [==============================] - 29s 86ms/step - loss: 0.5031 - tp0.1: 2780826.0000 - fp0.1: 3016769.0000 - tn0.1: 13618075.0000 - fn0.1: 195978.0000 - precision0.1: 0.4797 - rec all0.1: 0.9342 - tp0.3: 2488133.0000 - fp0.3: 1399371.0000 - tn0.3: 15235473.0000 - fn0.3: 488671.0000 - precision0.3: 0.6400 - recall0.3: 0.8358 - tp0.5: 2202797.0000 - fp0.5: 811436.0000 - tn0.5: 15823408.0000 - fn0.5: 774007.0000 - precision0.5: 0.7308 - recall0.5: 0.7400 - tp0.7: 1728965.0000 - fp0.7: 377368.0000 - tn0.7: 16257476.0000 - fn0.7: 1247839.0000 - precision0 .7: 0.8208 - recall0.7: 0.5808 - tp0.9: 720528.0000 - fp0.9: 68075.0000 - tn0.9: 16566769.0000 - fn0.9: 2256276.0000 - precision0.9: 0.9137 - recall0.9: 0.2420 - accuracy: 0.9192 - auc: 0. 9351 - f1: 0.2636 - val_loss: 0.5387 - val_tp0.1: 760105.0000 - val_fp0.1: 938438.0000 - val_tn0.1: 3135229.0000 - val_fn0.1: 40468.0000 - val_precision0.1: 0.4475 - val_recall0.1: 0.9495 - val_tp0.3: 691484.0000 - val_fp0.3: 448766.0000 - val_tn0.3: 3624901.0000 - val_fn0.3: 109089.0000 - val_precision0.3: 0.6064 - val_recall0.3: 0.8637 - val_tp0.5: 628663.0000 - val_fp0.5 : 268056.0000 - val_tn0.5: 3805611.0000 - val_fn0.5: 171910.0000 - val_precision0.5: 0.7011 - val_recall0.5: 0.7853 - val_tp0.7: 517637.0000 - val_fp0.7: 128039.0000 - val_tn0.7: 3945628.0 000 - val_fn0.7: 282936.0000 - val_precision0.7: 0.8017 - val_recall0.7: 0.6466 - val_tp0.9: 267423.0000 - val_fp0.9: 24096.0000 - val_tn0.9: 4049571.0000 - val_fn0.9: 533150.0000 - val_pr ecision0.9: 0.9173 - val_recall0.9: 0.3340 - val_accuracy: 0.9097 - val_auc: 0.9378 - val_f1: 0.2821 Epoch 11/20 342/342 [==============================] - 30s 88ms/step - loss: 0.5001 - tp0.1: 2760834.0000 - fp0.1: 2989115.0000 - tn0.1: 13662862.0000 - fn0.1: 198837.0000 - precision0.1: 0.4801 - rec all0.1: 0.9328 - tp0.3: 2478896.0000 - fp0.3: 1396965.0000 - tn0.3: 15255012.0000 - fn0.3: 480775.0000 - precision0.3: 0.6396 - recall0.3: 0.8376 - tp0.5: 2214110.0000 - fp0.5: 817049.0000 - tn0.5: 15834928.0000 - fn0.5: 745561.0000 - precision0.5: 0.7304 - recall0.5: 0.7481 - tp0.7: 1770056.0000 - fp0.7: 384025.0000 - tn0.7: 16267952.0000 - fn0.7: 1189615.0000 - precision0 .7: 0.8217 - recall0.7: 0.5981 - tp0.9: 798931.0000 - fp0.9: 75031.0000 - tn0.9: 16576946.0000 - fn0.9: 2160740.0000 - precision0.9: 0.9141 - recall0.9: 0.2699 - accuracy: 0.9203 - auc: 0. 9351 - f1: 0.2623 - val_loss: 0.5461 - val_tp0.1: 730695.0000 - val_fp0.1: 658715.0000 - val_tn0.1: 3417454.0000 - val_fn0.1: 67376.0000 - val_precision0.1: 0.5259 - val_recall0.1: 0.9156 - val_tp0.3: 621793.0000 - val_fp0.3: 261105.0000 - val_tn0.3: 3815064.0000 - val_fn0.3: 176278.0000 - val_precision0.3: 0.7043 - val_recall0.3: 0.7791 - val_tp0.5: 521488.0000 - val_fp0.5 : 133143.0000 - val_tn0.5: 3943026.0000 - val_fn0.5: 276583.0000 - val_precision0.5: 0.7966 - val_recall0.5: 0.6534 - val_tp0.7: 362988.0000 - val_fp0.7: 49452.0000 - val_tn0.7: 4026717.00 00 - val_fn0.7: 435083.0000 - val_precision0.7: 0.8801 - val_recall0.7: 0.4548 - val_tp0.9: 99821.0000 - val_fp0.9: 3904.0000 - val_tn0.9: 4072265.0000 - val_fn0.9: 698250.0000 - val_preci sion0.9: 0.9624 - val_recall0.9: 0.1251 - val_accuracy: 0.9159 - val_auc: 0.9274 - val_f1: 0.2814 Epoch 12/20 342/342 [==============================] - 30s 87ms/step - loss: 0.4965 - tp0.1: 2780843.0000 - fp0.1: 3042674.0000 - tn0.1: 13597784.0000 - fn0.1: 190347.0000 - precision0.1: 0.4775 - rec all0.1: 0.9359 - tp0.3: 2483369.0000 - fp0.3: 1382732.0000 - tn0.3: 15257726.0000 - fn0.3: 487821.0000 - precision0.3: 0.6423 - recall0.3: 0.8358 - tp0.5: 2206966.0000 - fp0.5: 794121.0000 - tn0.5: 15846337.0000 - fn0.5: 764224.0000 - precision0.5: 0.7354 - recall0.5: 0.7428 - tp0.7: 1750172.0000 - fp0.7: 362712.0000 - tn0.7: 16277746.0000 - fn0.7: 1221018.0000 - precision0 .7: 0.8283 - recall0.7: 0.5890 - tp0.9: 762690.0000 - fp0.9: 68788.0000 - tn0.9: 16571670.0000 - fn0.9: 2208500.0000 - precision0.9: 0.9173 - recall0.9: 0.2567 - accuracy: 0.9205 - auc: 0. 9366 - f1: 0.2631 - val_loss: 0.5341 - val_tp0.1: 758000.0000 - val_fp0.1: 932695.0000 - val_tn0.1: 3144776.0000 - val_fn0.1: 38769.0000 - val_precision0.1: 0.4483 - val_recall0.1: 0.9513 - val_tp0.3: 691823.0000 - val_fp0.3: 454271.0000 - val_tn0.3: 3623200.0000 - val_fn0.3: 104946.0000 - val_precision0.3: 0.6036 - val_recall0.3: 0.8683 - val_tp0.5: 633340.0000 - val_fp0.5 : 278624.0000 - val_tn0.5: 3798847.0000 - val_fn0.5: 163429.0000 - val_precision0.5: 0.6945 - val_recall0.5: 0.7949 - val_tp0.7: 534109.0000 - val_fp0.7: 146703.0000 - val_tn0.7: 3930768.0 000 - val_fn0.7: 262660.0000 - val_precision0.7: 0.7845 - val_recall0.7: 0.6703 - val_tp0.9: 318438.0000 - val_fp0.9: 38771.0000 - val_tn0.9: 4038700.0000 - val_fn0.9: 478331.0000 - val_pr ecision0.9: 0.8915 - val_recall0.9: 0.3997 - val_accuracy: 0.9093 - val_auc: 0.9388 - val_f1: 0.2810 Epoch 13/20 342/342 [==============================] - 29s 84ms/step - loss: 0.4892 - tp0.1: 2779063.0000 - fp0.1: 2979477.0000 - tn0.1: 13665550.0000 - fn0.1: 187558.0000 - precision0.1: 0.4826 - rec all0.1: 0.9368 - tp0.3: 2496191.0000 - fp0.3: 1375175.0000 - tn0.3: 15269852.0000 - fn0.3: 470430.0000 - precision0.3: 0.6448 - recall0.3: 0.8414 - tp0.5: 2236501.0000 - fp0.5: 810489.0000 - tn0.5: 15834538.0000 - fn0.5: 730120.0000 - precision0.5: 0.7340 - recall0.5: 0.7539 - tp0.7: 1787849.0000 - fp0.7: 380585.0000 - tn0.7: 16264442.0000 - fn0.7: 1178772.0000 - precision0 .7: 0.8245 - recall0.7: 0.6027 - tp0.9: 798725.0000 - fp0.9: 77694.0000 - tn0.9: 16567333.0000 - fn0.9: 2167896.0000 - precision0.9: 0.9114 - recall0.9: 0.2692 - accuracy: 0.9214 - auc: 0. 9378 - f1: 0.2628 - val_loss: 0.5294 - val_tp0.1: 755023.0000 - val_fp0.1: 867873.0000 - val_tn0.1: 3206834.0000 - val_fn0.1: 44510.0000 - val_precision0.1: 0.4652 - val_recall0.1: 0.9443 - val_tp0.3: 673836.0000 - val_fp0.3: 383349.0000 - val_tn0.3: 3691358.0000 - val_fn0.3: 125697.0000 - val_precision0.3: 0.6374 - val_recall0.3: 0.8428 - val_tp0.5: 597569.0000 - val_fp0.5 : 210770.0000 - val_tn0.5: 3863937.0000 - val_fn0.5: 201964.0000 - val_precision0.5: 0.7393 - val_recall0.5: 0.7474 - val_tp0.7: 457652.0000 - val_fp0.7: 91160.0000 - val_tn0.7: 3983547.00 00 - val_fn0.7: 341881.0000 - val_precision0.7: 0.8339 - val_recall0.7: 0.5724 - val_tp0.9: 170366.0000 - val_fp0.9: 11587.0000 - val_tn0.9: 4063120.0000 - val_fn0.9: 629167.0000 - val_pre cision0.9: 0.9363 - val_recall0.9: 0.2131 - val_accuracy: 0.9153 - val_auc: 0.9368 - val_f1: 0.2818 Epoch 14/20 342/342 [==============================] - 30s 87ms/step - loss: 0.4909 - tp0.1: 2796281.0000 - fp0.1: 2993242.0000 - tn0.1: 13633299.0000 - fn0.1: 188826.0000 - precision0.1: 0.4830 - rec all0.1: 0.9367 - tp0.3: 2509770.0000 - fp0.3: 1365834.0000 - tn0.3: 15260707.0000 - fn0.3: 475337.0000 - precision0.3: 0.6476 - recall0.3: 0.8408 - tp0.5: 2246662.0000 - fp0.5: 798278.0000 - tn0.5: 15828263.0000 - fn0.5: 738445.0000 - precision0.5: 0.7378 - recall0.5: 0.7526 - tp0.7: 1791881.0000 - fp0.7: 369480.0000 - tn0.7: 16257061.0000 - fn0.7: 1193226.0000 - precision0 .7: 0.8291 - recall0.7: 0.6003 - tp0.9: 775898.0000 - fp0.9: 73458.0000 - tn0.9: 16553083.0000 - fn0.9: 2209209.0000 - precision0.9: 0.9135 - recall0.9: 0.2599 - accuracy: 0.9216 - auc: 0. 9379 - f1: 0.2642 - val_loss: 0.5282 - val_tp0.1: 755947.0000 - val_fp0.1: 899285.0000 - val_tn0.1: 3177862.0000 - val_fn0.1: 41146.0000 - val_precision0.1: 0.4567 - val_recall0.1: 0.9484 - val_tp0.3: 680024.0000 - val_fp0.3: 410533.0000 - val_tn0.3: 3666614.0000 - val_fn0.3: 117069.0000 - val_precision0.3: 0.6236 - val_recall0.3: 0.8531 - val_tp0.5: 611482.0000 - val_fp0.5 : 236410.0000 - val_tn0.5: 3840737.0000 - val_fn0.5: 185611.0000 - val_precision0.5: 0.7212 - val_recall0.5: 0.7671 - val_tp0.7: 485673.0000 - val_fp0.7: 108280.0000 - val_tn0.7: 3968867.0 000 - val_fn0.7: 311420.0000 - val_precision0.7: 0.8177 - val_recall0.7: 0.6093 - val_tp0.9: 216751.0000 - val_fp0.9: 17398.0000 - val_tn0.9: 4059749.0000 - val_fn0.9: 580342.0000 - val_pr ecision0.9: 0.9257 - val_recall0.9: 0.2719 - val_accuracy: 0.9134 - val_auc: 0.9380 - val_f1: 0.2811 Epoch 15/20 342/342 [==============================] - 27s 80ms/step - loss: 0.4895 - tp0.1: 2778517.0000 - fp0.1: 2946222.0000 - tn0.1: 13695622.0000 - fn0.1: 191287.0000 - precision0.1: 0.4854 - rec all0.1: 0.9356 - tp0.3: 2488194.0000 - fp0.3: 1341585.0000 - tn0.3: 15300259.0000 - fn0.3: 481610.0000 - precision0.3: 0.6497 - recall0.3: 0.8378 - tp0.5: 2226779.0000 - fp0.5: 783374.0000 - tn0.5: 15858470.0000 - fn0.5: 743025.0000 - precision0.5: 0.7398 - recall0.5: 0.7498 - tp0.7: 1768572.0000 - fp0.7: 363199.0000 - tn0.7: 16278645.0000 - fn0.7: 1201232.0000 - precision0 .7: 0.8296 - recall0.7: 0.5955 - tp0.9: 771789.0000 - fp0.9: 70077.0000 - tn0.9: 16571767.0000 - fn0.9: 2198015.0000 - precision0.9: 0.9168 - recall0.9: 0.2599 - accuracy: 0.9222 - auc: 0. 9375 - f1: 0.2630 - val_loss: 0.5272 - val_tp0.1: 756550.0000 - val_fp0.1: 886258.0000 - val_tn0.1: 3189329.0000 - val_fn0.1: 42103.0000 - val_precision0.1: 0.4605 - val_recall0.1: 0.9473 - val_tp0.3: 683180.0000 - val_fp0.3: 415168.0000 - val_tn0.3: 3660419.0000 - val_fn0.3: 115473.0000 - val_precision0.3: 0.6220 - val_recall0.3: 0.8554 - val_tp0.5: 618115.0000 - val_fp0.5 : 244352.0000 - val_tn0.5: 3831235.0000 - val_fn0.5: 180538.0000 - val_precision0.5: 0.7167 - val_recall0.5: 0.7739 - val_tp0.7: 498018.0000 - val_fp0.7: 115297.0000 - val_tn0.7: 3960290.0 000 - val_fn0.7: 300635.0000 - val_precision0.7: 0.8120 - val_recall0.7: 0.6236 - val_tp0.9: 233878.0000 - val_fp0.9: 19740.0000 - val_tn0.9: 4055847.0000 - val_fn0.9: 564775.0000 - val_pr ecision0.9: 0.9222 - val_recall0.9: 0.2928 - val_accuracy: 0.9128 - val_auc: 0.9378 - val_f1: 0.2816 Epoch 16/20 342/342 [==============================] - 29s 86ms/step - loss: 0.4848 - tp0.1: 2781482.0000 - fp0.1: 2957469.0000 - tn0.1: 13686899.0000 - fn0.1: 185798.0000 - precision0.1: 0.4847 - rec all0.1: 0.9374 - tp0.3: 2494189.0000 - fp0.3: 1353502.0000 - tn0.3: 15290866.0000 - fn0.3: 473091.0000 - precision0.3: 0.6482 - recall0.3: 0.8406 - tp0.5: 2230152.0000 - fp0.5: 792220.0000 - tn0.5: 15852148.0000 - fn0.5: 737128.0000 - precision0.5: 0.7379 - recall0.5: 0.7516 - tp0.7: 1783255.0000 - fp0.7: 363318.0000 - tn0.7: 16281050.0000 - fn0.7: 1184025.0000 - precision0 .7: 0.8307 - recall0.7: 0.6010 - tp0.9: 789040.0000 - fp0.9: 65516.0000 - tn0.9: 16578852.0000 - fn0.9: 2178240.0000 - precision0.9: 0.9233 - recall0.9: 0.2659 - accuracy: 0.9220 - auc: 0. 9387 - f1: 0.2628 - val_loss: 0.5289 - val_tp0.1: 757278.0000 - val_fp0.1: 905312.0000 - val_tn0.1: 3170851.0000 - val_fn0.1: 40799.0000 - val_precision0.1: 0.4555 - val_recall0.1: 0.9489 - val_tp0.3: 686534.0000 - val_fp0.3: 428363.0000 - val_tn0.3: 3647800.0000 - val_fn0.3: 111543.0000 - val_precision0.3: 0.6158 - val_recall0.3: 0.8602 - val_tp0.5: 623130.0000 - val_fp0.5 : 254259.0000 - val_tn0.5: 3821904.0000 - val_fn0.5: 174947.0000 - val_precision0.5: 0.7102 - val_recall0.5: 0.7808 - val_tp0.7: 505552.0000 - val_fp0.7: 121120.0000 - val_tn0.7: 3955043.0 000 - val_fn0.7: 292525.0000 - val_precision0.7: 0.8067 - val_recall0.7: 0.6335 - val_tp0.9: 244234.0000 - val_fp0.9: 21695.0000 - val_tn0.9: 4054468.0000 - val_fn0.9: 553843.0000 - val_pr ecision0.9: 0.9184 - val_recall0.9: 0.3060 - val_accuracy: 0.9119 - val_auc: 0.9382 - val_f1: 0.2814 Epoch 17/20 342/342 [==============================] - 30s 86ms/step - loss: 0.4849 - tp0.1: 2790598.0000 - fp0.1: 2957998.0000 - tn0.1: 13679248.0000 - fn0.1: 183804.0000 - precision0.1: 0.4854 - rec all0.1: 0.9382 - tp0.3: 2505785.0000 - fp0.3: 1360823.0000 - tn0.3: 15276423.0000 - fn0.3: 468617.0000 - precision0.3: 0.6481 - recall0.3: 0.8425 - tp0.5: 2243181.0000 - fp0.5: 797599.0000 - tn0.5: 15839647.0000 - fn0.5: 731221.0000 - precision0.5: 0.7377 - recall0.5: 0.7542 - tp0.7: 1792202.0000 - fp0.7: 377983.0000 - tn0.7: 16259263.0000 - fn0.7: 1182200.0000 - precision0 .7: 0.8258 - recall0.7: 0.6025 - tp0.9: 784914.0000 - fp0.9: 75124.0000 - tn0.9: 16562122.0000 - fn0.9: 2189488.0000 - precision0.9: 0.9127 - recall0.9: 0.2639 - accuracy: 0.9220 - auc: 0. 9387 - f1: 0.2634 - val_loss: 0.5301 - val_tp0.1: 751131.0000 - val_fp0.1: 924609.0000 - val_tn0.1: 3159383.0000 - val_fn0.1: 39117.0000 - val_precision0.1: 0.4482 - val_recall0.1: 0.9505 - val_tp0.3: 682847.0000 - val_fp0.3: 443618.0000 - val_tn0.3: 3640374.0000 - val_fn0.3: 107401.0000 - val_precision0.3: 0.6062 - val_recall0.3: 0.8641 - val_tp0.5: 620126.0000 - val_fp0.5 : 265041.0000 - val_tn0.5: 3818951.0000 - val_fn0.5: 170122.0000 - val_precision0.5: 0.7006 - val_recall0.5: 0.7847 - val_tp0.7: 505243.0000 - val_fp0.7: 127349.0000 - val_tn0.7: 3956643.0 000 - val_fn0.7: 285005.0000 - val_precision0.7: 0.7987 - val_recall0.7: 0.6393 - val_tp0.9: 248302.0000 - val_fp0.9: 23740.0000 - val_tn0.9: 4060252.0000 - val_fn0.9: 541946.0000 - val_pr ecision0.9: 0.9127 - val_recall0.9: 0.3142 - val_accuracy: 0.9107 - val_auc: 0.9382 - val_f1: 0.2790 Epoch 18/20 342/342 [==============================] - 30s 88ms/step - loss: 0.4853 - tp0.1: 2805900.0000 - fp0.1: 2941444.0000 - tn0.1: 13677897.0000 - fn0.1: 186407.0000 - precision0.1: 0.4882 - rec all0.1: 0.9377 - tp0.3: 2517150.0000 - fp0.3: 1335602.0000 - tn0.3: 15283739.0000 - fn0.3: 475157.0000 - precision0.3: 0.6533 - recall0.3: 0.8412 - tp0.5: 2248387.0000 - fp0.5: 781307.0000 - tn0.5: 15838034.0000 - fn0.5: 743920.0000 - precision0.5: 0.7421 - recall0.5: 0.7514 - tp0.7: 1790819.0000 - fp0.7: 356494.0000 - tn0.7: 16262847.0000 - fn0.7: 1201488.0000 - precision0 .7: 0.8340 - recall0.7: 0.5985 - tp0.9: 783564.0000 - fp0.9: 70623.0000 - tn0.9: 16548718.0000 - fn0.9: 2208743.0000 - precision0.9: 0.9173 - recall0.9: 0.2619 - accuracy: 0.9222 - auc: 0. 9390 - f1: 0.2648 - val_loss: 0.5309 - val_tp0.1: 759007.0000 - val_fp0.1: 906199.0000 - val_tn0.1: 3168039.0000 - val_fn0.1: 40995.0000 - val_precision0.1: 0.4558 - val_recall0.1: 0.9488 - val_tp0.3: 688612.0000 - val_fp0.3: 432765.0000 - val_tn0.3: 3641473.0000 - val_fn0.3: 111390.0000 - val_precision0.3: 0.6141 - val_recall0.3: 0.8608 - val_tp0.5: 625381.0000 - val_fp0.5 : 258408.0000 - val_tn0.5: 3815830.0000 - val_fn0.5: 174621.0000 - val_precision0.5: 0.7076 - val_recall0.5: 0.7817 - val_tp0.7: 508544.0000 - val_fp0.7: 124098.0000 - val_tn0.7: 3950140.0 000 - val_fn0.7: 291458.0000 - val_precision0.7: 0.8038 - val_recall0.7: 0.6357 - val_tp0.9: 247680.0000 - val_fp0.9: 22653.0000 - val_tn0.9: 4051585.0000 - val_fn0.9: 552322.0000 - val_pr ecision0.9: 0.9162 - val_recall0.9: 0.3096 - val_accuracy: 0.9112 - val_auc: 0.9378 - val_f1: 0.2820 Epoch 19/20 342/342 [==============================] - 30s 87ms/step - loss: 0.4853 - tp0.1: 2765154.0000 - fp0.1: 2965014.0000 - tn0.1: 13695648.0000 - fn0.1: 185832.0000 - precision0.1: 0.4826 - rec all0.1: 0.9370 - tp0.3: 2489223.0000 - fp0.3: 1363429.0000 - tn0.3: 15297233.0000 - fn0.3: 461763.0000 - precision0.3: 0.6461 - recall0.3: 0.8435 - tp0.5: 2236269.0000 - fp0.5: 805108.0000 - tn0.5: 15855554.0000 - fn0.5: 714717.0000 - precision0.5: 0.7353 - recall0.5: 0.7578 - tp0.7: 1791573.0000 - fp0.7: 372427.0000 - tn0.7: 16288235.0000 - fn0.7: 1159413.0000 - precision0 .7: 0.8279 - recall0.7: 0.6071 - tp0.9: 777165.0000 - fp0.9: 72719.0000 - tn0.9: 16587943.0000 - fn0.9: 2173821.0000 - precision0.9: 0.9144 - recall0.9: 0.2634 - accuracy: 0.9225 - auc: 0. 9385 - f1: 0.2616 - val_loss: 0.5302 - val_tp0.1: 757018.0000 - val_fp0.1: 914987.0000 - val_tn0.1: 3162308.0000 - val_fn0.1: 39927.0000 - val_precision0.1: 0.4528 - val_recall0.1: 0.9499 - val_tp0.3: 687887.0000 - val_fp0.3: 439024.0000 - val_tn0.3: 3638271.0000 - val_fn0.3: 109058.0000 - val_precision0.3: 0.6104 - val_recall0.3: 0.8632 - val_tp0.5: 624960.0000 - val_fp0.5 : 262546.0000 - val_tn0.5: 3814749.0000 - val_fn0.5: 171985.0000 - val_precision0.5: 0.7042 - val_recall0.5: 0.7842 - val_tp0.7: 509687.0000 - val_fp0.7: 126771.0000 - val_tn0.7: 3950524.0 000 - val_fn0.7: 287258.0000 - val_precision0.7: 0.8008 - val_recall0.7: 0.6396 - val_tp0.9: 251547.0000 - val_fp0.9: 23931.0000 - val_tn0.9: 4053364.0000 - val_fn0.9: 545398.0000 - val_pr ecision0.9: 0.9131 - val_recall0.9: 0.3156 - val_accuracy: 0.9109 - val_auc: 0.9382 - val_f1: 0.2811 Epoch 20/20 342/342 [==============================] - 29s 84ms/step - loss: 0.4987 - tp0.1: 2765147.0000 - fp0.1: 2972400.0000 - tn0.1: 13672870.0000 - fn0.1: 201231.0000 - precision0.1: 0.4819 - rec all0.1: 0.9322 - tp0.3: 2475699.0000 - fp0.3: 1368612.0000 - tn0.3: 15276658.0000 - fn0.3: 490679.0000 - precision0.3: 0.6440 - recall0.3: 0.8346 - tp0.5: 2217066.0000 - fp0.5: 801284.0000 - tn0.5: 15843986.0000 - fn0.5: 749312.0000 - precision0.5: 0.7345 - recall0.5: 0.7474 - tp0.7: 1769267.0000 - fp0.7: 376020.0000 - tn0.7: 16269250.0000 - fn0.7: 1197111.0000 - precision0 .7: 0.8247 - recall0.7: 0.5964 - tp0.9: 778944.0000 - fp0.9: 72985.0000 - tn0.9: 16572285.0000 - fn0.9: 2187434.0000 - precision0.9: 0.9143 - recall0.9: 0.2626 - accuracy: 0.9209 - auc: 0. 9352 - f1: 0.2628 - val_loss: 0.5304 - val_tp0.1: 756740.0000 - val_fp0.1: 911039.0000 - val_tn0.1: 3166007.0000 - val_fn0.1: 40454.0000 - val_precision0.1: 0.4537 - val_recall0.1: 0.9493 - val_tp0.3: 686440.0000 - val_fp0.3: 434245.0000 - val_tn0.3: 3642801.0000 - val_fn0.3: 110754.0000 - val_precision0.3: 0.6125 - val_recall0.3: 0.8611 - val_tp0.5: 622523.0000 - val_fp0.5 : 258158.0000 - val_tn0.5: 3818888.0000 - val_fn0.5: 174671.0000 - val_precision0.5: 0.7069 - val_recall0.5: 0.7809 - val_tp0.7: 505054.0000 - val_fp0.7: 122534.0000 - val_tn0.7: 3954512.0 000 - val_fn0.7: 292140.0000 - val_precision0.7: 0.8048 - val_recall0.7: 0.6335 - val_tp0.9: 241926.0000 - val_fp0.9: 21836.0000 - val_tn0.9: 4055210.0000 - val_fn0.9: 555268.0000 - val_pr ecision0.9: 0.9172 - val_recall0.9: 0.3035 - val_accuracy: 0.9112 - val_auc: 0.9379 - val_f1: 0.2811 --- Running training session 64/140 {'hp_epochs': 20, 'hp_batch_size': 14, 'hp_scaler': 'quant_g', 'hp_n_levels': 7, 'hp_first_filters': 16, 'hp_pool_size': 2, 'hp_input_size': 4096, 'hp_lr_start': 0.027144629354532844, 'hp_ lr_power': 5.0} --- repeat #: 2 input - shape: (None, 4096, 1) output - shape: (None, 4096, 1) bash: line 1: 36008 Segmentation fault python src/fluotracify/training/search_hparams.py --num_session_groups 70 --fluotracify_path /beegfs/ye53nis/drmed-git/src --csv_path_train /bee gfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_path_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 2021/08/08 13:58:32 ERROR mlflow.cli: === Run (ID '0a91e997b0884a00bd6c932104f84722') failed === (tf) [ye53nis@node130 drmed-git]$
2.4.3 Run 2 - new hparams
2.4.3.1 Record metadata
- Current directory, last 5 git commits
pwd git log -5
(tf) [ye53nis@node130 drmed-git]$ pwd /beegfs/ye53nis/drmed-git (tf) [ye53nis@node130 drmed-git]$ git log -5 commit 150ad647300f3306635fa7f5d75fa0d66165df25 Author: Apoplex <oligolex@vivaldi.net> Date: Sun Aug 8 17:28:49 2021 +0200 Fix missing brackets commit 6cef8d3f9166fe6cb19b6ec064573907a0ca50a6 Author: Apoplex <oligolex@vivaldi.net> Date: Sun Aug 8 17:26:06 2021 +0200 Adjust batch size hparam to upper limit 30 commit 609a75bccfd08fa36b2d55861ec5d7954e1adbe7 Author: Apoplex <oligolex@vivaldi.net> Date: Sun Aug 8 17:05:12 2021 +0200 Adjust hyperparameters commit 739b18bf64ef886d7ae0468b4fc3d5b9b4ccf12c Author: Apoplex <oligolex@vivaldi.net> Date: Sun Aug 8 16:42:16 2021 +0200 Change random seed to enable different 2nd run commit aa5b9bc35c53c4fd1525c6b812b2a28532ae7afb Author: Apoplex <oligolex@vivaldi.net> Date: Sat Aug 7 22:15:02 2021 +0200 Add hparams combi restriction; add metadata problems arise, if in the random combination of hparams, 2*pool_size**n_levels is bigger than the input_size. That's why these cases are skipped now. (tf) [ye53nis@node130 drmed-git]$
- system and conda env didn’t change, see above.
2.4.3.2 Mlflow run 2 (failed mid run)
- The last parent run failed to an unkown error (
bash: line 1: 36008 Segmentation fault
). That means only 63/140 sessions could be run, while also only 45 sessions were eligible (for the rest, the hparams were not compatible with each other). Still, these first 45 runs delivered a lot of interesting information, so I decided to skim through MLflow to look for improvements in the hparam space and I came up with the following:- leave out smallest batch sizes and go from 4 to 30
- make number of levels an integer interval from 1 to 9
- make first filters an integer interval from 1 to 128
- add poolsize (+ stride + kernel size) 8
- adjust starting learning rate real interval to 1e-6 to 0.06
- make learning rate power integer interval from 1 to 7
- now the run:
mlflow run . -e search_hparams -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN -P num_session_groups=60
2021-08-09 03:52:38.082134: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba5fe00 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_f/_843 action_count 94195455584406 step 0 next 151 2021-08-09 03:52:38.082152: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba5ff00 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_t/_844 action_count 94195455584407 step 0 next 2585 2021-08-09 03:52:38.082174: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60000 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_f/_853 action_count 94195455584408 step 0 next 2261 2021-08-09 03:52:38.082198: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60100 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_t/_854 action_count 94195455584409 step 0 next 1893 2021-08-09 03:52:38.082216: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60200 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_f/_871 action_count 94195455584410 step 0 next 2158 2021-08-09 03:52:38.082234: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60300 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_t/_872 action_count 94195455584411 step 0 next 2224 2021-08-09 03:52:38.082258: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60400 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_f/_881 action_count 94195455584412 step 0 next 172 2021-08-09 03:52:38.082277: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60500 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_t/_882 action_count 94195455584413 step 0 next 2654 2021-08-09 03:52:38.082295: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60600 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_f/_899 action_count 94195455584414 step 0 next 1354 2021-08-09 03:52:38.082316: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60700 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_t/_900 action_count 94195455584415 step 0 next 2250 2021-08-09 03:52:38.082338: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60800 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_f/_909 action_count 94195455584416 step 0 next 2458 2021-08-09 03:52:38.082359: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60900 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_t/_910 action_count 94195455584417 step 0 next 1032 2021-08-09 03:52:38.082380: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60a00 of size 256 by op Sub action_count 94195480110816 step 0 next 970 2021-08-09 03:52:38.082401: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60b00 of size 256 by op AssignAddVariableOp_2 action_count 94195467561410 step 17436438550591945738 next 1371 2021-08-09 03:52:38.082422: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60c00 of size 512 by op Fill action_count 94195467562918 step 0 next 2415 2021-08-09 03:52:38.082443: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba60e00 of size 512 by op Fill action_count 94195467562919 step 0 next 2029 2021-08-09 03:52:38.082466: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61000 of size 256 by op AssignAddVariableOp_52 action_count 94195467505890 step 11647544380785529683 next 2491 2021-08-09 03:52:38.082487: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61100 of size 768 by op Fill action_count 94195467562905 step 0 next 1453 2021-08-09 03:52:38.082508: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61400 of size 256 by op AssignAddVariableOp_20 action_count 94195467561512 step 17436438550591945738 next 1396 2021-08-09 03:52:38.082538: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61500 of size 256 by op AssignAddVariableOp_18 action_count 94195467561452 step 17436438550591945738 next 2965 2021-08-09 03:52:38.082558: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61600 of size 256 by op Sub action_count 94195480110817 step 0 next 1920 2021-08-09 03:52:38.082575: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61700 of size 256 by op AssignAddVariableOp_28 action_count 94195467561516 step 17436438550591945738 next 730 2021-08-09 03:52:38.082593: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61800 of size 256 by op AssignAddVariableOp_26 action_count 94195467561464 step 17436438550591945738 next 3037 2021-08-09 03:52:38.082616: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61900 of size 256 by op AssignAddVariableOp_36 action_count 94195467561520 step 17436438550591945738 next 1876 2021-08-09 03:52:38.082636: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61a00 of size 256 by op AssignAddVariableOp_34 action_count 94195467561476 step 17436438550591945738 next 1958 2021-08-09 03:52:38.082657: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba61b00 of size 1536 by op Fill action_count 94195467562929 step 0 next 1889 2021-08-09 03:52:38.082678: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba62100 of size 256 by op Sub action_count 94195299053113 step 0 next 1087 2021-08-09 03:52:38.082698: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba62200 of size 256 by op Sub action_count 94195299053114 step 0 next 680 2021-08-09 03:52:38.082718: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba62300 of size 2048 by op Fill action_count 94195455013702 step 0 next 2691 2021-08-09 03:52:38.082738: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba62b00 of size 2048 by op Fill action_count 94195455013703 step 0 next 3049 2021-08-09 03:52:38.082759: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba63300 of size 2048 by op Fill action_count 94195455013704 step 0 next 2707 2021-08-09 03:52:38.082780: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba63b00 of size 2048 by op Fill action_count 94195455013706 step 0 next 1505 2021-08-09 03:52:38.082801: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64300 of size 256 by op Sub action_count 94195365012693 step 0 next 2311 2021-08-09 03:52:38.082821: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64400 of size 256 by op Sub action_count 94195365012694 step 0 next 638 2021-08-09 03:52:38.082843: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64500 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_f/_787 action_count 94195455013959 step 0 next 2355 2021-08-09 03:52:38.082866: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64600 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_t/_788 action_count 94195455013960 step 0 next 2332 2021-08-09 03:52:38.082890: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64700 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_f/_797 action_count 94195455013961 step 0 next 2330 2021-08-09 03:52:38.082910: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64800 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_t/_798 action_count 94195455013962 step 0 next 2402 2021-08-09 03:52:38.082933: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64900 of size 256 by op gradient_tape/unet_depth3/encode0/batch_normalization_546/moments/scalar action_count 94195455013963 step 0 nex t 114 2021-08-09 03:52:38.082952: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64a00 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_f/_815 action_count 94195455013964 step 0 next 2297 2021-08-09 03:52:38.082974: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64b00 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_t/_816 action_count 94195455013965 step 0 next 2106 2021-08-09 03:52:38.082997: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64c00 of size 256 by op Adam/Adam/Const action_count 94195455013966 step 0 next 2308 2021-08-09 03:52:38.083015: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64d00 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_f/_825 action_count 94195455013967 step 0 next 2318 2021-08-09 03:52:38.083036: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64e00 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_t/_826 action_count 94195455013968 step 0 next 2323 2021-08-09 03:52:38.083059: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba64f00 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_f/_843 action_count 94195455013969 step 0 next 2391 2021-08-09 03:52:38.083079: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65000 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_t/_844 action_count 94195455013970 step 0 next 1074 2021-08-09 03:52:38.083097: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65100 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_f/_853 action_count 94195455013971 step 0 next 2382 2021-08-09 03:52:38.083118: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65200 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_t/_854 action_count 94195455013972 step 0 next 2272 2021-08-09 03:52:38.083140: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65300 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_f/_871 action_count 94195455013973 step 0 next 1355 2021-08-09 03:52:38.083158: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65400 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_t/_872 action_count 94195455013974 step 0 next 2378 2021-08-09 03:52:38.083178: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65500 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_f/_881 action_count 94195455013975 step 0 next 2306 2021-08-09 03:52:38.083201: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65600 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_t/_882 action_count 94195455013976 step 0 next 2294 2021-08-09 03:52:38.083220: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65700 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_f/_899 action_count 94195455013977 step 0 next 2331 2021-08-09 03:52:38.083243: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65800 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_t/_900 action_count 94195455013978 step 0 next 2322 2021-08-09 03:52:38.083263: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65900 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_f/_909 action_count 94195455013979 step 0 next 2221 2021-08-09 03:52:38.083283: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65a00 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_t/_910 action_count 94195455013980 step 0 next 2336 2021-08-09 03:52:38.083306: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65b00 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_f/_423 action_count 94195455584346 step 0 next 2019 2021-08-09 03:52:38.083324: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65c00 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_t/_424 action_count 94195455584347 step 0 next 2376 2021-08-09 03:52:38.083346: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65d00 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_f/_433 action_count 94195455584348 step 0 next 1688 2021-08-09 03:52:38.083369: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65e00 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_t/_434 action_count 94195455584349 step 0 next 2620 2021-08-09 03:52:38.083391: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba65f00 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_f/_451 action_count 94195455584350 step 0 next 391 2021-08-09 03:52:38.083414: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66000 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_t/_452 action_count 94195455584351 step 0 next 1462 2021-08-09 03:52:38.083435: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66100 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_f/_461 action_count 94195455584352 step 0 next 985 2021-08-09 03:52:38.083453: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66200 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_t/_462 action_count 94195455584353 step 0 next 2287 2021-08-09 03:52:38.083475: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66300 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_f/_479 action_count 94195455584354 step 0 next 2292 2021-08-09 03:52:38.083495: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66400 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_t/_480 action_count 94195455584355 step 0 next 2350 2021-08-09 03:52:38.083522: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66500 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_f/_489 action_count 94195455584356 step 0 next 2256 2021-08-09 03:52:38.083546: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66600 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_t/_490 action_count 94195455584357 step 0 next 2310 2021-08-09 03:52:38.083566: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66700 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_f/_507 action_count 94195455584358 step 0 next 60 2021-08-09 03:52:38.083587: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66800 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_t/_508 action_count 94195455584359 step 0 next 1380 2021-08-09 03:52:38.083608: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66900 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_f/_517 action_count 94195455584360 step 0 next 2375 2021-08-09 03:52:38.083628: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66a00 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_t/_518 action_count 94195455584361 step 0 next 2497 2021-08-09 03:52:38.083646: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66b00 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_f/_535 action_count 94195455584362 step 0 next 677 2021-08-09 03:52:38.083663: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66c00 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_t/_536 action_count 94195455584363 step 0 next 2326 2021-08-09 03:52:38.083687: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66d00 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_f/_545 action_count 94195455584364 step 0 next 2928 2021-08-09 03:52:38.083707: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66e00 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_t/_546 action_count 94195455584365 step 0 next 2116 2021-08-09 03:52:38.083728: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba66f00 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_f/_563 action_count 94195455584366 step 0 next 411 2021-08-09 03:52:38.083751: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67000 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_t/_564 action_count 94195455584367 step 0 next 1778 2021-08-09 03:52:38.083770: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67100 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_f/_573 action_count 94195455584368 step 0 next 2345 2021-08-09 03:52:38.083791: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67200 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_t/_574 action_count 94195455584369 step 0 next 315 2021-08-09 03:52:38.083810: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67300 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_f/_591 action_count 94195455584370 step 0 next 373 2021-08-09 03:52:38.083831: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67400 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_t/_592 action_count 94195455584371 step 0 next 1535 2021-08-09 03:52:38.083854: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67500 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_f/_601 action_count 94195455584372 step 0 next 1914 2021-08-09 03:52:38.083872: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67600 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_t/_602 action_count 94195455584373 step 0 next 2521 2021-08-09 03:52:38.083894: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67700 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_f/_619 action_count 94195455584374 step 0 next 2110 2021-08-09 03:52:38.083915: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67800 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_t/_620 action_count 94195455584375 step 0 next 968 2021-08-09 03:52:38.083932: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67900 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_f/_629 action_count 94195455584376 step 0 next 2437 2021-08-09 03:52:38.083954: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67a00 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_t/_630 action_count 94195455584377 step 0 next 218 2021-08-09 03:52:38.083975: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67b00 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_f/_647 action_count 94195455584378 step 0 next 1581 2021-08-09 03:52:38.083992: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67c00 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_t/_648 action_count 94195455584379 step 0 next 2337 2021-08-09 03:52:38.084013: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67d00 of size 256 by op Sub action_count 94195299053151 step 0 next 976 2021-08-09 03:52:38.084034: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67e00 of size 256 by op Sub action_count 94195299053152 step 0 next 1112 2021-08-09 03:52:38.084055: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba67f00 of size 2048 by op Fill action_count 94195455013774 step 0 next 1401 2021-08-09 03:52:38.084076: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba68700 of size 2048 by op Fill action_count 94195455013776 step 0 next 1101 2021-08-09 03:52:38.084097: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba68f00 of size 2048 by op Fill action_count 94195455013777 step 0 next 519 2021-08-09 03:52:38.084114: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba69700 of size 2048 by op Fill action_count 94195455013778 step 0 next 799 2021-08-09 03:52:38.084135: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba69f00 of size 3072 by op Fill action_count 94195455013780 step 0 next 607 2021-08-09 03:52:38.084156: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba6ab00 of size 256 by op Sub action_count 94195299053177 step 0 next 2325 2021-08-09 03:52:38.084173: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba6ac00 of size 256 by op Sub action_count 94195299053178 step 0 next 1838 2021-08-09 03:52:38.084194: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abba6ad00 of size 995328 by op Fill action_count 94195455013725 step 0 next 335 2021-08-09 03:52:38.084211: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5dd00 of size 256 by op Sub action_count 94195129464776 step 0 next 1993 2021-08-09 03:52:38.084230: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5de00 of size 4352 by op Fill action_count 94195455013478 step 0 next 1049 2021-08-09 03:52:38.084251: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5ef00 of size 256 by op Sub action_count 94195299052776 step 0 next 2327 2021-08-09 03:52:38.084268: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f000 of size 512 by op Fill action_count 94195455013382 step 0 next 444 2021-08-09 03:52:38.084291: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f200 of size 256 by op AssignAddVariableOp_12 action_count 94195455011283 step 18076379956407770847 next 3070 2021-08-09 03:52:38.084333: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f300 of size 256 by op AssignAddVariableOp_10 action_count 94195455011215 step 18076379956407770847 next 1540 2021-08-09 03:52:38.084353: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f400 of size 256 by op Sub action_count 94195299052789 step 0 next 1949 2021-08-09 03:52:38.084374: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f500 of size 256 by op Sub action_count 94195129464761 step 0 next 988 2021-08-09 03:52:38.084394: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f600 of size 256 by op Sub action_count 94195152301775 step 0 next 1907 2021-08-09 03:52:38.084414: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f700 of size 256 by op Sub action_count 94195152301788 step 0 next 1591 2021-08-09 03:52:38.084430: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f800 of size 256 by op Sub action_count 94195129464762 step 0 next 2090 2021-08-09 03:52:38.084448: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbb5f900 of size 4673536 by op Fill action_count 94195455013689 step 0 next 59 2021-08-09 03:52:38.084468: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd4900 of size 256 by op Sub action_count 94195065726202 step 0 next 659 2021-08-09 03:52:38.084490: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd4a00 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_f/_461 action_count 94195455013907 step 0 next 2217 2021-08-09 03:52:38.084508: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd4b00 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_t/_462 action_count 94195455013908 step 0 next 1616 2021-08-09 03:52:38.084539: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd4c00 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_f/_479 action_count 94195455013909 step 0 next 2204 2021-08-09 03:52:38.084577: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd4d00 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_t/_480 action_count 94195455013910 step 0 next 339 2021-08-09 03:52:38.084611: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd4e00 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_f/_489 action_count 94195455013911 step 0 next 701 2021-08-09 03:52:38.084635: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd4f00 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_t/_490 action_count 94195455013912 step 0 next 1708 2021-08-09 03:52:38.084657: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5000 of size 256 by op gradient_tape/unet_depth3/two_conv_center/batch_normalization_552/moments/scalar action_count 94195455013913 st ep 0 next 903 2021-08-09 03:52:38.084675: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5100 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_f/_507 action_count 94195455013914 step 0 next 2371 2021-08-09 03:52:38.084698: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5200 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_t/_508 action_count 94195455013915 step 0 next 263 2021-08-09 03:52:38.084721: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5300 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_f/_517 action_count 94195455013916 step 0 next 154 2021-08-09 03:52:38.084744: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5400 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_t/_518 action_count 94195455013917 step 0 next 2321 2021-08-09 03:52:38.084765: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5500 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_f/_535 action_count 94195455013918 step 0 next 2253 2021-08-09 03:52:38.084783: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5600 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_t/_536 action_count 94195455013919 step 0 next 2236 2021-08-09 03:52:38.084802: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5700 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_f/_545 action_count 94195455013920 step 0 next 2222 2021-08-09 03:52:38.084823: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5800 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_t/_546 action_count 94195455013921 step 0 next 1262 2021-08-09 03:52:38.084847: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5900 of size 256 by op gradient_tape/unet_depth3/encode2/batch_normalization_551/moments/scalar action_count 94195455013922 step 0 nex t 2443 2021-08-09 03:52:38.084868: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5a00 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_f/_563 action_count 94195455013923 step 0 next 2313 2021-08-09 03:52:38.084889: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5b00 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_t/_564 action_count 94195455013924 step 0 next 2293 2021-08-09 03:52:38.084912: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5c00 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_f/_573 action_count 94195455013925 step 0 next 2387 2021-08-09 03:52:38.084934: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5d00 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_t/_574 action_count 94195455013926 step 0 next 2328 2021-08-09 03:52:38.084956: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5e00 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_f/_591 action_count 94195455013927 step 0 next 2270 2021-08-09 03:52:38.084977: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd5f00 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_t/_592 action_count 94195455013928 step 0 next 2252 2021-08-09 03:52:38.085000: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6000 of size 256 by op gradient_tape/unet_depth3/encode2/batch_normalization_550/moments/scalar action_count 94195455013929 step 0 nex t 2392 2021-08-09 03:52:38.085023: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6100 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_f/_601 action_count 94195455013930 step 0 next 2368 2021-08-09 03:52:38.085044: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6200 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_t/_602 action_count 94195455013931 step 0 next 2385 2021-08-09 03:52:38.085067: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6300 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_f/_619 action_count 94195455013932 step 0 next 1296 2021-08-09 03:52:38.085088: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6400 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_t/_620 action_count 94195455013933 step 0 next 2303 2021-08-09 03:52:38.085105: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6500 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_f/_629 action_count 94195455013934 step 0 next 2357 2021-08-09 03:52:38.085124: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6600 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_t/_630 action_count 94195455013935 step 0 next 2273 2021-08-09 03:52:38.085148: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6700 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_f/_647 action_count 94195455013936 step 0 next 2365 2021-08-09 03:52:38.085170: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6800 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_t/_648 action_count 94195455013937 step 0 next 517 2021-08-09 03:52:38.085191: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6900 of size 256 by op gradient_tape/unet_depth3/encode1/batch_normalization_549/moments/scalar action_count 94195455013938 step 0 nex t 2242 2021-08-09 03:52:38.085214: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6a00 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_f/_657 action_count 94195455013939 step 0 next 1406 2021-08-09 03:52:38.085234: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6b00 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_t/_658 action_count 94195455013940 step 0 next 1781 2021-08-09 03:52:38.085257: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6c00 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_f/_675 action_count 94195455013941 step 0 next 1698 2021-08-09 03:52:38.085277: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6d00 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_t/_676 action_count 94195455013942 step 0 next 2302 2021-08-09 03:52:38.085296: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6e00 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_f/_685 action_count 94195455013943 step 0 next 468 2021-08-09 03:52:38.085317: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd6f00 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_t/_686 action_count 94195455013944 step 0 next 2380 2021-08-09 03:52:38.085338: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7000 of size 256 by op gradient_tape/unet_depth3/encode1/batch_normalization_548/moments/scalar action_count 94195455013945 step 0 nex t 2277 2021-08-09 03:52:38.085357: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7100 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_f/_703 action_count 94195455013946 step 0 next 1686 2021-08-09 03:52:38.085379: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7200 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_t/_704 action_count 94195455013947 step 0 next 2362 2021-08-09 03:52:38.085397: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7300 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_f/_713 action_count 94195455013948 step 0 next 2245 2021-08-09 03:52:38.085420: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7400 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_t/_714 action_count 94195455013949 step 0 next 2309 2021-08-09 03:52:38.085444: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7500 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_f/_731 action_count 94195455013950 step 0 next 2461 2021-08-09 03:52:38.085465: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7600 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_t/_732 action_count 94195455013951 step 0 next 2377 2021-08-09 03:52:38.085486: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7700 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_f/_741 action_count 94195455013952 step 0 next 2298 2021-08-09 03:52:38.085509: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7800 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_t/_742 action_count 94195455013953 step 0 next 2219 2021-08-09 03:52:38.085535: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7900 of size 256 by op gradient_tape/unet_depth3/encode0/batch_normalization_547/moments/scalar action_count 94195455013954 step 0 nex t 1821 2021-08-09 03:52:38.085555: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7a00 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_f/_759 action_count 94195455013955 step 0 next 1829 2021-08-09 03:52:38.085577: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7b00 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_t/_760 action_count 94195455013956 step 0 next 2396 2021-08-09 03:52:38.085598: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7c00 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_f/_769 action_count 94195455013957 step 0 next 2255 2021-08-09 03:52:38.085620: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7d00 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_t/_770 action_count 94195455013958 step 0 next 573 2021-08-09 03:52:38.085641: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7e00 of size 256 by op Sub action_count 94195065726203 step 0 next 63 2021-08-09 03:52:38.085658: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd7f00 of size 256 by op Sub action_count 94195085385179 step 0 next 1215 2021-08-09 03:52:38.085675: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8000 of size 256 by op Sub action_count 94195085385180 step 0 next 631 2021-08-09 03:52:38.085696: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8100 of size 256 by op Sub action_count 94195094149558 step 0 next 1733 2021-08-09 03:52:38.085716: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8200 of size 256 by op Sub action_count 94195094149559 step 0 next 1648 2021-08-09 03:52:38.085736: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8300 of size 1792 by op Fill action_count 94195455013451 step 0 next 430 2021-08-09 03:52:38.085753: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8a00 of size 256 by op Sub action_count 94195065726216 step 0 next 425 2021-08-09 03:52:38.085770: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8b00 of size 512 by op Fill action_count 94195455013383 step 0 next 446 2021-08-09 03:52:38.085790: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8d00 of size 256 by op Sub action_count 94195065726217 step 0 next 1124 2021-08-09 03:52:38.085810: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8e00 of size 256 by op Sub action_count 94195085385138 step 0 next 1065 2021-08-09 03:52:38.085830: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd8f00 of size 256 by op Sub action_count 94195065726230 step 0 next 921 2021-08-09 03:52:38.085847: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9000 of size 256 by op Sub action_count 94195094149517 step 0 next 1149 2021-08-09 03:52:38.085868: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9100 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_f/_489 action_count 94195467563408 step 0 next 2477 2021-08-09 03:52:38.085889: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9200 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_t/_490 action_count 94195467563409 step 0 next 2456 2021-08-09 03:52:38.085909: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9300 of size 256 by op gradient_tape/unet_depth3/two_conv_center/batch_normalization_569/moments/scalar action_count 94195467563410 st ep 0 next 1570 2021-08-09 03:52:38.085930: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9400 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_f/_507 action_count 94195467563411 step 0 next 2063 2021-08-09 03:52:38.085950: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9500 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_t/_508 action_count 94195467563412 step 0 next 2061 2021-08-09 03:52:38.085968: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9600 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_f/_517 action_count 94195467563413 step 0 next 244 2021-08-09 03:52:38.085989: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9700 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_t/_518 action_count 94195467563414 step 0 next 305 2021-08-09 03:52:38.086010: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9800 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_f/_535 action_count 94195467563415 step 0 next 317 2021-08-09 03:52:38.086027: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9900 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_t/_536 action_count 94195467563416 step 0 next 1228 2021-08-09 03:52:38.086045: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9a00 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_f/_545 action_count 94195467563417 step 0 next 746 2021-08-09 03:52:38.086063: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9b00 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_t/_546 action_count 94195467563418 step 0 next 979 2021-08-09 03:52:38.086084: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9c00 of size 256 by op gradient_tape/unet_depth3/encode2/batch_normalization_568/moments/scalar action_count 94195467563419 step 0 nex t 1375 2021-08-09 03:52:38.086104: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9d00 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_f/_563 action_count 94195467563420 step 0 next 1207 2021-08-09 03:52:38.086125: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9e00 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_t/_564 action_count 94195467563421 step 0 next 1117 2021-08-09 03:52:38.086148: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfd9f00 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_f/_573 action_count 94195467563422 step 0 next 959 2021-08-09 03:52:38.086170: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda000 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_t/_574 action_count 94195467563423 step 0 next 1059 2021-08-09 03:52:38.086191: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda100 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_f/_591 action_count 94195467563424 step 0 next 246 2021-08-09 03:52:38.086213: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda200 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_t/_592 action_count 94195467563425 step 0 next 2589 2021-08-09 03:52:38.086235: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda300 of size 256 by op gradient_tape/unet_depth3/encode2/batch_normalization_567/moments/scalar action_count 94195467563426 step 0 nex t 2465 2021-08-09 03:52:38.086257: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda400 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_f/_601 action_count 94195467563427 step 0 next 175 2021-08-09 03:52:38.086274: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda500 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_t/_602 action_count 94195467563428 step 0 next 1502 2021-08-09 03:52:38.086295: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda600 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_f/_619 action_count 94195467563429 step 0 next 1057 2021-08-09 03:52:38.086314: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda700 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_t/_620 action_count 94195467563430 step 0 next 173 2021-08-09 03:52:38.086338: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda800 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_f/_629 action_count 94195467563431 step 0 next 148 2021-08-09 03:52:38.086360: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfda900 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_t/_630 action_count 94195467563432 step 0 next 532 2021-08-09 03:52:38.086380: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdaa00 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_f/_647 action_count 94195467563433 step 0 next 2431 2021-08-09 03:52:38.086401: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdab00 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_t/_648 action_count 94195467563434 step 0 next 288 2021-08-09 03:52:38.086424: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdac00 of size 256 by op gradient_tape/unet_depth3/encode1/batch_normalization_566/moments/scalar action_count 94195467563435 step 0 nex t 1144 2021-08-09 03:52:38.086444: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdad00 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_f/_657 action_count 94195467563436 step 0 next 1242 2021-08-09 03:52:38.086467: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdae00 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_t/_658 action_count 94195467563437 step 0 next 774 2021-08-09 03:52:38.086489: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdaf00 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_f/_675 action_count 94195467563438 step 0 next 593 2021-08-09 03:52:38.086507: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb000 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_t/_676 action_count 94195467563439 step 0 next 1856 2021-08-09 03:52:38.086533: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb100 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_f/_685 action_count 94195467563440 step 0 next 1759 2021-08-09 03:52:38.086551: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb200 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_t/_686 action_count 94195467563441 step 0 next 86 2021-08-09 03:52:38.086574: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb300 of size 256 by op gradient_tape/unet_depth3/encode1/batch_normalization_565/moments/scalar action_count 94195467563442 step 0 nex t 295 2021-08-09 03:52:38.086595: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb400 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_f/_703 action_count 94195467563443 step 0 next 2052 2021-08-09 03:52:38.086615: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb500 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_t/_704 action_count 94195467563444 step 0 next 1063 2021-08-09 03:52:38.086633: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb600 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_f/_713 action_count 94195467563445 step 0 next 2449 2021-08-09 03:52:38.086653: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb700 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_t/_714 action_count 94195467563446 step 0 next 2414 2021-08-09 03:52:38.086671: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb800 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_f/_731 action_count 94195467563447 step 0 next 1213 2021-08-09 03:52:38.086691: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdb900 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_t/_732 action_count 94195467563448 step 0 next 2266 2021-08-09 03:52:38.086712: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdba00 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_f/_741 action_count 94195467563449 step 0 next 866 2021-08-09 03:52:38.086732: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdbb00 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_t/_742 action_count 94195467563450 step 0 next 42 2021-08-09 03:52:38.086753: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdbc00 of size 256 by op gradient_tape/unet_depth3/encode0/batch_normalization_564/moments/scalar action_count 94195467563451 step 0 nex t 935 2021-08-09 03:52:38.086775: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdbd00 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_f/_759 action_count 94195467563452 step 0 next 929 2021-08-09 03:52:38.086792: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdbe00 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_t/_760 action_count 94195467563453 step 0 next 533 2021-08-09 03:52:38.086814: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdbf00 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_f/_769 action_count 94195467563454 step 0 next 763 2021-08-09 03:52:38.086838: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc000 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_t/_770 action_count 94195467563455 step 0 next 1804 2021-08-09 03:52:38.086859: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc100 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_f/_787 action_count 94195467563456 step 0 next 1857 2021-08-09 03:52:38.086880: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc200 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_t/_788 action_count 94195467563457 step 0 next 1084 2021-08-09 03:52:38.086902: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc300 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_f/_797 action_count 94195467563458 step 0 next 1122 2021-08-09 03:52:38.086920: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc400 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_t/_798 action_count 94195467563459 step 0 next 2180 2021-08-09 03:52:38.086941: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc500 of size 256 by op gradient_tape/unet_depth3/encode0/batch_normalization_563/moments/scalar action_count 94195467563460 step 0 nex t 1080 2021-08-09 03:52:38.086962: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc600 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_f/_815 action_count 94195467563461 step 0 next 89 2021-08-09 03:52:38.086979: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc700 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_t/_816 action_count 94195467563462 step 0 next 2442 2021-08-09 03:52:38.087001: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc800 of size 256 by op Adam/Adam/Const action_count 94195467563463 step 0 next 1158 2021-08-09 03:52:38.087023: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdc900 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_f/_825 action_count 94195467563464 step 0 next 580 2021-08-09 03:52:38.087041: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdca00 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_t/_826 action_count 94195467563465 step 0 next 71 2021-08-09 03:52:38.087058: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdcb00 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_f/_843 action_count 94195467563466 step 0 next 993 2021-08-09 03:52:38.087076: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdcc00 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_t/_844 action_count 94195467563467 step 0 next 1831 2021-08-09 03:52:38.087098: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdcd00 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_f/_853 action_count 94195467563468 step 0 next 1884 2021-08-09 03:52:38.087118: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdce00 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_t/_854 action_count 94195467563469 step 0 next 1294 2021-08-09 03:52:38.087139: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdcf00 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_f/_871 action_count 94195467563470 step 0 next 1901 2021-08-09 03:52:38.087159: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd000 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_t/_872 action_count 94195467563471 step 0 next 331 2021-08-09 03:52:38.087178: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd100 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_f/_881 action_count 94195467563472 step 0 next 1340 2021-08-09 03:52:38.087199: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd200 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_t/_882 action_count 94195467563473 step 0 next 208 2021-08-09 03:52:38.087217: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd300 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_f/_899 action_count 94195467563474 step 0 next 2434 2021-08-09 03:52:38.087234: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd400 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_t/_900 action_count 94195467563475 step 0 next 287 2021-08-09 03:52:38.087251: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd500 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_f/_909 action_count 94195467563476 step 0 next 745 2021-08-09 03:52:38.087273: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd600 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_t/_910 action_count 94195467563477 step 0 next 206 2021-08-09 03:52:38.087297: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd700 of size 256 by op assert_greater_equal_5/Assert/AssertGuard/pivot_f/_143 action_count 94195468133277 step 0 next 455 2021-08-09 03:52:38.087314: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd800 of size 256 by op assert_greater_equal_5/Assert/AssertGuard/pivot_t/_144 action_count 94195468133278 step 0 next 400 2021-08-09 03:52:38.087336: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdd900 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_f/_153 action_count 94195468133279 step 0 next 1081 2021-08-09 03:52:38.087357: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdda00 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_t/_154 action_count 94195468133280 step 0 next 2184 2021-08-09 03:52:38.087380: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfddb00 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_f/_171 action_count 94195468133281 step 0 next 2247 2021-08-09 03:52:38.087401: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfddc00 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_t/_172 action_count 94195468133282 step 0 next 1551 2021-08-09 03:52:38.087422: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfddd00 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_f/_181 action_count 94195468133283 step 0 next 2030 2021-08-09 03:52:38.087443: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdde00 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_t/_182 action_count 94195468133284 step 0 next 1665 2021-08-09 03:52:38.087460: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfddf00 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_f/_199 action_count 94195468133285 step 0 next 1352 2021-08-09 03:52:38.087483: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde000 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_t/_200 action_count 94195468133286 step 0 next 714 2021-08-09 03:52:38.087506: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde100 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_f/_209 action_count 94195468133287 step 0 next 149 2021-08-09 03:52:38.087528: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde200 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_t/_210 action_count 94195468133288 step 0 next 2132 2021-08-09 03:52:38.087546: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde300 of size 256 by op assert_greater_equal_8/Assert/AssertGuard/pivot_f/_227 action_count 94195468133289 step 0 next 374 2021-08-09 03:52:38.087564: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde400 of size 256 by op assert_greater_equal_8/Assert/AssertGuard/pivot_t/_228 action_count 94195468133290 step 0 next 1025 2021-08-09 03:52:38.087588: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde500 of size 256 by op assert_less_equal_8/Assert/AssertGuard/pivot_f/_237 action_count 94195468133291 step 0 next 2645 2021-08-09 03:52:38.087609: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde600 of size 256 by op assert_less_equal_8/Assert/AssertGuard/pivot_t/_238 action_count 94195468133292 step 0 next 2179 2021-08-09 03:52:38.087630: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde700 of size 256 by op assert_greater_equal_9/Assert/AssertGuard/pivot_f/_255 action_count 94195468133293 step 0 next 800 2021-08-09 03:52:38.087649: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde800 of size 256 by op assert_greater_equal_9/Assert/AssertGuard/pivot_t/_256 action_count 94195468133294 step 0 next 2136 2021-08-09 03:52:38.087672: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfde900 of size 256 by op assert_less_equal_9/Assert/AssertGuard/pivot_f/_265 action_count 94195468133295 step 0 next 1320 2021-08-09 03:52:38.087695: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdea00 of size 256 by op assert_less_equal_9/Assert/AssertGuard/pivot_t/_266 action_count 94195468133296 step 0 next 1892 2021-08-09 03:52:38.087717: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdeb00 of size 256 by op assert_greater_equal_10/Assert/AssertGuard/pivot_f/_283 action_count 94195468133297 step 0 next 1601 2021-08-09 03:52:38.087736: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdec00 of size 256 by op assert_greater_equal_10/Assert/AssertGuard/pivot_t/_284 action_count 94195468133298 step 0 next 196 2021-08-09 03:52:38.087754: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfded00 of size 256 by op assert_less_equal_10/Assert/AssertGuard/pivot_f/_293 action_count 94195468133299 step 0 next 591 2021-08-09 03:52:38.087776: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdee00 of size 256 by op assert_less_equal_10/Assert/AssertGuard/pivot_t/_294 action_count 94195468133300 step 0 next 396 2021-08-09 03:52:38.087799: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdef00 of size 256 by op assert_greater_equal_11/Assert/AssertGuard/pivot_f/_311 action_count 94195468133301 step 0 next 1814 2021-08-09 03:52:38.087820: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf000 of size 256 by op assert_greater_equal_11/Assert/AssertGuard/pivot_t/_312 action_count 94195468133302 step 0 next 1236 2021-08-09 03:52:38.087843: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf100 of size 256 by op assert_less_equal_11/Assert/AssertGuard/pivot_f/_321 action_count 94195468133303 step 0 next 2579 2021-08-09 03:52:38.087863: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf200 of size 256 by op assert_less_equal_11/Assert/AssertGuard/pivot_t/_322 action_count 94195468133304 step 0 next 2426 2021-08-09 03:52:38.087884: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf300 of size 256 by op assert_greater_equal_12/Assert/AssertGuard/pivot_f/_339 action_count 94195468133305 step 0 next 1668 2021-08-09 03:52:38.087904: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf400 of size 256 by op assert_greater_equal_12/Assert/AssertGuard/pivot_t/_340 action_count 94195468133306 step 0 next 1310 2021-08-09 03:52:38.087928: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf500 of size 256 by op assert_less_equal_12/Assert/AssertGuard/pivot_f/_349 action_count 94195468133307 step 0 next 479 2021-08-09 03:52:38.087945: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf600 of size 256 by op assert_less_equal_12/Assert/AssertGuard/pivot_t/_350 action_count 94195468133308 step 0 next 19 2021-08-09 03:52:38.087968: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf700 of size 256 by op assert_greater_equal_13/Assert/AssertGuard/pivot_f/_367 action_count 94195468133309 step 0 next 2079 2021-08-09 03:52:38.087988: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf800 of size 256 by op assert_greater_equal_13/Assert/AssertGuard/pivot_t/_368 action_count 94195468133310 step 0 next 585 2021-08-09 03:52:38.088011: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdf900 of size 256 by op assert_less_equal_13/Assert/AssertGuard/pivot_f/_377 action_count 94195468133311 step 0 next 1988 2021-08-09 03:52:38.088032: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdfa00 of size 256 by op assert_less_equal_13/Assert/AssertGuard/pivot_t/_378 action_count 94195468133312 step 0 next 1580 2021-08-09 03:52:38.088054: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdfb00 of size 256 by op assert_greater_equal_14/Assert/AssertGuard/pivot_f/_395 action_count 94195468133313 step 0 next 277 2021-08-09 03:52:38.088072: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdfc00 of size 256 by op assert_greater_equal_14/Assert/AssertGuard/pivot_t/_396 action_count 94195468133314 step 0 next 2467 2021-08-09 03:52:38.088089: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdfd00 of size 256 by op assert_less_equal_14/Assert/AssertGuard/pivot_f/_405 action_count 94195468133315 step 0 next 870 2021-08-09 03:52:38.088109: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdfe00 of size 256 by op assert_less_equal_14/Assert/AssertGuard/pivot_t/_406 action_count 94195468133316 step 0 next 702 2021-08-09 03:52:38.088130: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfdff00 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_f/_423 action_count 94195468133317 step 0 next 2279 2021-08-09 03:52:38.088152: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0000 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_t/_424 action_count 94195468133318 step 0 next 452 2021-08-09 03:52:38.088173: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0100 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_f/_433 action_count 94195468133319 step 0 next 1777 2021-08-09 03:52:38.088194: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0200 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_t/_434 action_count 94195468133320 step 0 next 974 2021-08-09 03:52:38.088213: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0300 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_f/_451 action_count 94195468133321 step 0 next 831 2021-08-09 03:52:38.088235: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0400 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_t/_452 action_count 94195468133322 step 0 next 302 2021-08-09 03:52:38.088252: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0500 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_f/_461 action_count 94195468133323 step 0 next 1034 2021-08-09 03:52:38.088270: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0600 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_t/_462 action_count 94195468133324 step 0 next 1976 2021-08-09 03:52:38.088293: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0700 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_f/_479 action_count 94195468133325 step 0 next 660 2021-08-09 03:52:38.088314: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0800 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_t/_480 action_count 94195468133326 step 0 next 618 2021-08-09 03:52:38.088337: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0900 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_f/_489 action_count 94195468133327 step 0 next 1226 2021-08-09 03:52:38.088360: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0a00 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_t/_490 action_count 94195468133328 step 0 next 688 2021-08-09 03:52:38.088383: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0b00 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_f/_507 action_count 94195468133329 step 0 next 1711 2021-08-09 03:52:38.088405: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0c00 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_t/_508 action_count 94195468133330 step 0 next 1005 2021-08-09 03:52:38.088425: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0d00 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_f/_517 action_count 94195468133331 step 0 next 77 2021-08-09 03:52:38.088445: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0e00 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_t/_518 action_count 94195468133332 step 0 next 639 2021-08-09 03:52:38.088466: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe0f00 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_f/_535 action_count 94195468133333 step 0 next 1977 2021-08-09 03:52:38.088484: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1000 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_t/_536 action_count 94195468133334 step 0 next 190 2021-08-09 03:52:38.088505: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1100 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_f/_545 action_count 94195468133335 step 0 next 476 2021-08-09 03:52:38.088539: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1200 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_t/_546 action_count 94195468133336 step 0 next 923 2021-08-09 03:52:38.088580: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1300 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_f/_563 action_count 94195468133337 step 0 next 624 2021-08-09 03:52:38.088613: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1400 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_t/_564 action_count 94195468133338 step 0 next 1916 2021-08-09 03:52:38.088638: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1500 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_f/_573 action_count 94195468133339 step 0 next 1308 2021-08-09 03:52:38.088661: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1600 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_t/_574 action_count 94195468133340 step 0 next 251 2021-08-09 03:52:38.088682: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1700 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_f/_591 action_count 94195468133341 step 0 next 2471 2021-08-09 03:52:38.088703: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1800 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_t/_592 action_count 94195468133342 step 0 next 35 2021-08-09 03:52:38.088725: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1900 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_f/_601 action_count 94195468133343 step 0 next 2394 2021-08-09 03:52:38.088743: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1a00 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_t/_602 action_count 94195468133344 step 0 next 880 2021-08-09 03:52:38.088765: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1b00 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_f/_619 action_count 94195468133345 step 0 next 977 2021-08-09 03:52:38.088787: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1c00 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_t/_620 action_count 94195468133346 step 0 next 682 2021-08-09 03:52:38.088809: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1d00 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_f/_629 action_count 94195468133347 step 0 next 1531 2021-08-09 03:52:38.088827: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1e00 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_t/_630 action_count 94195468133348 step 0 next 904 2021-08-09 03:52:38.088850: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe1f00 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_f/_647 action_count 94195468133349 step 0 next 1524 2021-08-09 03:52:38.088872: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2000 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_t/_648 action_count 94195468133350 step 0 next 1713 2021-08-09 03:52:38.088893: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2100 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_f/_657 action_count 94195468133351 step 0 next 829 2021-08-09 03:52:38.088913: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2200 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_t/_658 action_count 94195468133352 step 0 next 1533 2021-08-09 03:52:38.088932: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2300 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_f/_675 action_count 94195468133353 step 0 next 1279 2021-08-09 03:52:38.088954: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2400 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_t/_676 action_count 94195468133354 step 0 next 1639 2021-08-09 03:52:38.088977: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2500 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_f/_685 action_count 94195468133355 step 0 next 179 2021-08-09 03:52:38.088998: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2600 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_t/_686 action_count 94195468133356 step 0 next 1984 2021-08-09 03:52:38.089019: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2700 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_f/_703 action_count 94195468133357 step 0 next 1918 2021-08-09 03:52:38.089040: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2800 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_t/_704 action_count 94195468133358 step 0 next 329 2021-08-09 03:52:38.089059: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2900 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_f/_713 action_count 94195468133359 step 0 next 2060 2021-08-09 03:52:38.089083: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2a00 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_t/_714 action_count 94195468133360 step 0 next 1820 2021-08-09 03:52:38.089100: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2b00 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_f/_731 action_count 94195468133361 step 0 next 1874 2021-08-09 03:52:38.089122: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2c00 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_t/_732 action_count 94195468133362 step 0 next 1408 2021-08-09 03:52:38.089154: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2d00 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_f/_741 action_count 94195468133363 step 0 next 584 2021-08-09 03:52:38.089170: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2e00 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_t/_742 action_count 94195468133364 step 0 next 1372 2021-08-09 03:52:38.089192: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe2f00 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_f/_759 action_count 94195468133365 step 0 next 43 2021-08-09 03:52:38.089213: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3000 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_t/_760 action_count 94195468133366 step 0 next 1041 2021-08-09 03:52:38.089233: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3100 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_f/_769 action_count 94195468133367 step 0 next 1261 2021-08-09 03:52:38.089254: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3200 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_t/_770 action_count 94195468133368 step 0 next 1939 2021-08-09 03:52:38.089275: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3300 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_f/_787 action_count 94195468133369 step 0 next 576 2021-08-09 03:52:38.089295: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3400 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_t/_788 action_count 94195468133370 step 0 next 1836 2021-08-09 03:52:38.089315: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3500 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_f/_797 action_count 94195468133371 step 0 next 1749 2021-08-09 03:52:38.089335: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3600 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_t/_798 action_count 94195468133372 step 0 next 36 2021-08-09 03:52:38.089356: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3700 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_f/_815 action_count 94195468133373 step 0 next 1938 2021-08-09 03:52:38.089377: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3800 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_t/_816 action_count 94195468133374 step 0 next 2130 2021-08-09 03:52:38.089396: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3900 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_f/_825 action_count 94195468133375 step 0 next 2473 2021-08-09 03:52:38.089416: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3a00 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_t/_826 action_count 94195468133376 step 0 next 348 2021-08-09 03:52:38.089436: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3b00 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_f/_843 action_count 94195468133377 step 0 next 1911 2021-08-09 03:52:38.089455: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3c00 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_t/_844 action_count 94195468133378 step 0 next 555 2021-08-09 03:52:38.089476: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3d00 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_f/_853 action_count 94195468133379 step 0 next 2120 2021-08-09 03:52:38.089497: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3e00 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_t/_854 action_count 94195468133380 step 0 next 543 2021-08-09 03:52:38.089523: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe3f00 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_f/_871 action_count 94195468133381 step 0 next 2594 2021-08-09 03:52:38.089546: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4000 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_t/_872 action_count 94195468133382 step 0 next 625 2021-08-09 03:52:38.089565: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4100 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_f/_881 action_count 94195468133383 step 0 next 2083 2021-08-09 03:52:38.089585: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4200 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_t/_882 action_count 94195468133384 step 0 next 239 2021-08-09 03:52:38.089604: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4300 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_f/_899 action_count 94195468133385 step 0 next 319 2021-08-09 03:52:38.089624: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4400 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_t/_900 action_count 94195468133386 step 0 next 327 2021-08-09 03:52:38.089646: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4500 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_f/_909 action_count 94195468133387 step 0 next 93 2021-08-09 03:52:38.089666: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4600 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_t/_910 action_count 94195468133388 step 0 next 1947 2021-08-09 03:52:38.089685: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4700 of size 256 by op Sub action_count 94195480110842 step 0 next 540 2021-08-09 03:52:38.089704: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4800 of size 256 by op AssignVariableOp action_count 94195480053210 step 0 next 316 2021-08-09 03:52:38.089724: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4900 of size 256 by op AssignVariableOp action_count 94195480053212 step 0 next 2347 2021-08-09 03:52:38.089743: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4a00 of size 512 by op Fill action_count 94195480110824 step 0 next 2410 2021-08-09 03:52:38.089762: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4c00 of size 256 by op AssignVariableOp action_count 94195480053246 step 0 next 1466 2021-08-09 03:52:38.089782: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4d00 of size 256 by op AssignVariableOp action_count 94195480053250 step 0 next 2149 2021-08-09 03:52:38.089802: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4e00 of size 256 by op AssignVariableOp action_count 94195480053252 step 0 next 356 2021-08-09 03:52:38.089821: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe4f00 of size 256 by op AssignVariableOp action_count 94195480053254 step 0 next 2000 2021-08-09 03:52:38.089840: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5000 of size 256 by op AssignVariableOp action_count 94195480053256 step 0 next 2212 2021-08-09 03:52:38.089859: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5100 of size 512 by op AssignVariableOp action_count 94195480053258 step 0 next 872 2021-08-09 03:52:38.089879: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5300 of size 512 by op AssignVariableOp action_count 94195480053262 step 0 next 23 2021-08-09 03:52:38.089899: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5500 of size 256 by op AssignVariableOp action_count 94195480053266 step 0 next 518 2021-08-09 03:52:38.089918: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5600 of size 256 by op AssignVariableOp action_count 94195480053268 step 0 next 1096 2021-08-09 03:52:38.089937: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5700 of size 256 by op AssignVariableOp action_count 94195480053270 step 0 next 2493 2021-08-09 03:52:38.089956: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5800 of size 256 by op AssignVariableOp action_count 94195480053272 step 0 next 2173 2021-08-09 03:52:38.089975: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5900 of size 512 by op AssignVariableOp action_count 94195480053260 step 0 next 1908 2021-08-09 03:52:38.089995: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5b00 of size 512 by op AssignVariableOp action_count 94195480053264 step 0 next 1606 2021-08-09 03:52:38.090013: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5d00 of size 512 by op Fill action_count 94195480110825 step 0 next 1046 2021-08-09 03:52:38.090031: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe5f00 of size 256 by op AssignAddVariableOp_3 action_count 94195480109333 step 17368542405085625385 next 811 2021-08-09 03:52:38.090050: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6000 of size 256 by op Sub action_count 94195480110843 step 0 next 854 2021-08-09 03:52:38.090070: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6100 of size 256 by op AssignAddVariableOp_13 action_count 94195480109431 step 17368542405085625385 next 2268 2021-08-09 03:52:38.090091: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6200 of size 256 by op AssignAddVariableOp_19 action_count 94195480109375 step 17368542405085625385 next 1085 2021-08-09 03:52:38.090112: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6300 of size 256 by op AssignAddVariableOp_21 action_count 94195480109435 step 17368542405085625385 next 1013 2021-08-09 03:52:38.090131: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6400 of size 256 by op Sub action_count 94195094149710 step 0 next 1794 2021-08-09 03:52:38.090150: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6500 of size 256 by op Sub action_count 94195094149711 step 0 next 1075 2021-08-09 03:52:38.090169: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6600 of size 1792 by op Fill action_count 94195455013684 step 0 next 1463 2021-08-09 03:52:38.090188: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe6d00 of size 1792 by op Fill action_count 94195455013686 step 0 next 401 2021-08-09 03:52:38.090207: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe7400 of size 1792 by op Fill action_count 94195455013687 step 0 next 1373 2021-08-09 03:52:38.090226: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe7b00 of size 2304 by op Fill action_count 94195455013688 step 0 next 1595 2021-08-09 03:52:38.090244: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe8400 of size 256 by op Sub action_count 94195094149724 step 0 next 1589 2021-08-09 03:52:38.090263: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe8500 of size 256 by op Sub action_count 94195094149725 step 0 next 1735 2021-08-09 03:52:38.090282: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe8600 of size 2048 by op Fill action_count 94195467563205 step 0 next 1792 2021-08-09 03:52:38.090302: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe8e00 of size 1792 by op Fill action_count 94195467563207 step 0 next 528 2021-08-09 03:52:38.090323: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe9500 of size 1792 by op Fill action_count 94195467563208 step 0 next 711 2021-08-09 03:52:38.090341: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfe9c00 of size 1792 by op Fill action_count 94195467563209 step 0 next 437 2021-08-09 03:52:38.090362: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfea300 of size 1792 by op Fill action_count 94195467563211 step 0 next 2070 2021-08-09 03:52:38.090381: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfeaa00 of size 1792 by op Fill action_count 94195467563212 step 0 next 2169 2021-08-09 03:52:38.090400: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfeb100 of size 1792 by op Fill action_count 94195467563213 step 0 next 1646 2021-08-09 03:52:38.090419: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfeb800 of size 1792 by op Fill action_count 94195467563215 step 0 next 1692 2021-08-09 03:52:38.090438: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfebf00 of size 1792 by op Fill action_count 94195467563216 step 0 next 1654 2021-08-09 03:52:38.090457: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfec600 of size 1792 by op Fill action_count 94195467563217 step 0 next 87 2021-08-09 03:52:38.090476: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfecd00 of size 1024 by op Fill action_count 94195467563219 step 0 next 2186 2021-08-09 03:52:38.090495: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfed100 of size 1024 by op Fill action_count 94195467563220 step 0 next 1407 2021-08-09 03:52:38.090513: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfed500 of size 1024 by op Fill action_count 94195467563221 step 0 next 937 2021-08-09 03:52:38.090544: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfed900 of size 1024 by op Fill action_count 94195467563223 step 0 next 1812 2021-08-09 03:52:38.090561: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfedd00 of size 1024 by op Fill action_count 94195467563224 step 0 next 2446 2021-08-09 03:52:38.090576: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfee100 of size 1024 by op Fill action_count 94195467563225 step 0 next 1989 2021-08-09 03:52:38.090595: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfee500 of size 1024 by op Fill action_count 94195467563227 step 0 next 2192 2021-08-09 03:52:38.090614: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfee900 of size 1024 by op Fill action_count 94195467563228 step 0 next 473 2021-08-09 03:52:38.090635: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfeed00 of size 1024 by op Fill action_count 94195467563229 step 0 next 1201 2021-08-09 03:52:38.090653: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfef100 of size 1024 by op Fill action_count 94195467563230 step 0 next 2573 2021-08-09 03:52:38.090672: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfef500 of size 256 by op Fill action_count 94195467563231 step 0 next 508 2021-08-09 03:52:38.090691: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfef600 of size 1536 by op Fill action_count 94195467563232 step 0 next 684 2021-08-09 03:52:38.090710: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfefc00 of size 512 by op Fill action_count 94195467563233 step 0 next 579 2021-08-09 03:52:38.090730: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfefe00 of size 512 by op Fill action_count 94195467563234 step 0 next 1756 2021-08-09 03:52:38.090749: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff0000 of size 512 by op Fill action_count 94195467563235 step 0 next 1766 2021-08-09 03:52:38.090768: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff0200 of size 512 by op Fill action_count 94195467563237 step 0 next 648 2021-08-09 03:52:38.090787: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff0400 of size 512 by op Fill action_count 94195467563238 step 0 next 2663 2021-08-09 03:52:38.090806: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff0600 of size 512 by op Fill action_count 94195467563239 step 0 next 527 2021-08-09 03:52:38.090825: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff0800 of size 1024 by op Fill action_count 94195467563241 step 0 next 267 2021-08-09 03:52:38.090844: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff0c00 of size 1024 by op Fill action_count 94195467563242 step 0 next 553 2021-08-09 03:52:38.090860: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff1000 of size 1024 by op Fill action_count 94195467563243 step 0 next 1850 2021-08-09 03:52:38.090880: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff1400 of size 1024 by op Fill action_count 94195467563245 step 0 next 235 2021-08-09 03:52:38.090899: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff1800 of size 1024 by op Fill action_count 94195467563246 step 0 next 550 2021-08-09 03:52:38.090918: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff1c00 of size 1024 by op Fill action_count 94195467563247 step 0 next 323 2021-08-09 03:52:38.090937: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff2000 of size 1792 by op Fill action_count 94195467563249 step 0 next 723 2021-08-09 03:52:38.090956: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff2700 of size 1792 by op Fill action_count 94195467563250 step 0 next 152 2021-08-09 03:52:38.090975: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff2e00 of size 2304 by op Fill action_count 94195467563251 step 0 next 1742 2021-08-09 03:52:38.090992: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff3700 of size 256 by op Sub action_count 94195094149762 step 0 next 1696 2021-08-09 03:52:38.091008: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff3800 of size 256 by op Sub action_count 94195094149763 step 0 next 1624 2021-08-09 03:52:38.091027: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff3900 of size 3584 by op Fill action_count 94195455013762 step 0 next 495 2021-08-09 03:52:38.091047: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff4700 of size 6656 by op Fill action_count 94195455013764 step 0 next 464 2021-08-09 03:52:38.091063: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6100 of size 256 by op Sub action_count 94195094149800 step 0 next 1592 2021-08-09 03:52:38.091079: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6200 of size 256 by op Sub action_count 94195094149801 step 0 next 1619 2021-08-09 03:52:38.091095: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6300 of size 1024 by op Fill action_count 94195455013599 step 0 next 1110 2021-08-09 03:52:38.091115: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6700 of size 1024 by op Fill action_count 94195455013600 step 0 next 1927 2021-08-09 03:52:38.091134: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6b00 of size 256 by op Fill action_count 94195455013610 step 0 next 2528 2021-08-09 03:52:38.091153: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6c00 of size 256 by op Sub action_count 94195480110856 step 0 next 842 2021-08-09 03:52:38.091175: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6d00 of size 256 by op AssignAddVariableOp_10 action_count 94195467561440 step 17436438550591945738 next 2050 2021-08-09 03:52:38.091192: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6e00 of size 256 by op Sub action_count 94195480110857 step 0 next 1259 2021-08-09 03:52:38.091208: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff6f00 of size 256 by op Sub action_count 94195455013602 step 0 next 2800 2021-08-09 03:52:38.091224: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7000 of size 256 by op Sub action_count 94195455013603 step 0 next 2780 2021-08-09 03:52:38.091239: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7100 of size 256 by op AssignVariableOp action_count 94195467505275 step 0 next 44 2021-08-09 03:52:38.091260: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7200 of size 256 by op AssignVariableOp action_count 94195467505273 step 0 next 823 2021-08-09 03:52:38.091279: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7300 of size 256 by op AssignVariableOp action_count 94195467505277 step 0 next 819 2021-08-09 03:52:38.091298: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7400 of size 256 by op Sub action_count 94195480110870 step 0 next 2018 2021-08-09 03:52:38.091318: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7500 of size 256 by op Const action_count 94195455640678 step 0 next 3047 2021-08-09 03:52:38.091339: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7600 of size 1536 by op Add action_count 94195455013607 step 0 next 1651 2021-08-09 03:52:38.091355: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7c00 of size 256 by op Sub action_count 94195094149838 step 0 next 1743 2021-08-09 03:52:38.091371: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7d00 of size 256 by op Sub action_count 94195094149839 step 0 next 1559 2021-08-09 03:52:38.091387: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7e00 of size 256 by op Sub action_count 94195299052790 step 0 next 409 2021-08-09 03:52:38.091403: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff7f00 of size 2560 by op Fill action_count 94195455013495 step 0 next 2405 2021-08-09 03:52:38.091419: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff8900 of size 256 by op Sub action_count 94195299052803 step 0 next 343 2021-08-09 03:52:38.091435: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff8a00 of size 256 by op Sub action_count 94195455013498 step 0 next 2753 2021-08-09 03:52:38.091454: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff8b00 of size 256 by op Sub action_count 94195455013499 step 0 next 2925 2021-08-09 03:52:38.091470: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff8c00 of size 2304 by op Fill action_count 94195455013506 step 0 next 1906 2021-08-09 03:52:38.091487: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff9500 of size 256 by op Sub action_count 94195299052804 step 0 next 264 2021-08-09 03:52:38.091503: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff9600 of size 256 by op Sub action_count 94195273335761 step 0 next 2479 2021-08-09 03:52:38.091527: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff9700 of size 1536 by op Fill action_count 94195455013424 step 0 next 2409 2021-08-09 03:52:38.091563: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff9d00 of size 256 by op Sub action_count 94195273335762 step 0 next 213 2021-08-09 03:52:38.091596: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbff9e00 of size 1536 by op Fill action_count 94195455013665 step 0 next 1614 2021-08-09 03:52:38.091630: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffa400 of size 512 by op Fill action_count 94195455013667 step 0 next 2799 2021-08-09 03:52:38.091652: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffa600 of size 512 by op Fill action_count 94195455013668 step 0 next 3076 2021-08-09 03:52:38.091671: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffa800 of size 512 by op Fill action_count 94195455013670 step 0 next 1341 2021-08-09 03:52:38.091690: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffaa00 of size 512 by op Fill action_count 94195455013671 step 0 next 2899 2021-08-09 03:52:38.091709: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffac00 of size 512 by op Fill action_count 94195455013672 step 0 next 2602 2021-08-09 03:52:38.091728: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffae00 of size 1024 by op Fill action_count 94195455013674 step 0 next 2624 2021-08-09 03:52:38.091747: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffb200 of size 1024 by op Fill action_count 94195455013675 step 0 next 3042 2021-08-09 03:52:38.091766: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffb600 of size 1280 by op Fill action_count 94195455013676 step 0 next 1868 2021-08-09 03:52:38.091785: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffbb00 of size 256 by op Sub action_count 94195273335803 step 0 next 536 2021-08-09 03:52:38.091804: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffbc00 of size 256 by op Sub action_count 94195273335804 step 0 next 1269 2021-08-09 03:52:38.091823: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffbd00 of size 3840 by op Fill action_count 94195455013467 step 0 next 332 2021-08-09 03:52:38.091841: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffcc00 of size 256 by op Sub action_count 94195273335775 step 0 next 403 2021-08-09 03:52:38.091858: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffcd00 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_f/_153 action_count 94195455013856 step 0 next 1672 2021-08-09 03:52:38.091876: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffce00 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_t/_154 action_count 94195455013857 step 0 next 2153 2021-08-09 03:52:38.091896: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffcf00 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_f/_171 action_count 94195455013858 step 0 next 2223 2021-08-09 03:52:38.091916: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd000 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_t/_172 action_count 94195455013859 step 0 next 978 2021-08-09 03:52:38.091933: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd100 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_f/_181 action_count 94195455013860 step 0 next 2072 2021-08-09 03:52:38.091950: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd200 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_t/_182 action_count 94195455013861 step 0 next 1554 2021-08-09 03:52:38.091968: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd300 of size 256 by op gradient_tape/unet_depth3/two_conv_decoder1/batch_normalization_559/moments/scalar action_count 94195455013862 step 0 next 2185 2021-08-09 03:52:38.091989: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd400 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_f/_199 action_count 94195455013863 step 0 next 2208 2021-08-09 03:52:38.092011: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd500 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_t/_200 action_count 94195455013864 step 0 next 1883 2021-08-09 03:52:38.092032: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd600 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_f/_209 action_count 94195455013865 step 0 next 2040 2021-08-09 03:52:38.092052: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd700 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_t/_210 action_count 94195455013866 step 0 next 2211 2021-08-09 03:52:38.092071: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd800 of size 256 by op assert_greater_equal_8/Assert/AssertGuard/pivot_f/_227 action_count 94195455013867 step 0 next 924 2021-08-09 03:52:38.092091: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffd900 of size 256 by op assert_greater_equal_8/Assert/AssertGuard/pivot_t/_228 action_count 94195455013868 step 0 next 24 2021-08-09 03:52:38.092109: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffda00 of size 256 by op gradient_tape/unet_depth3/two_conv_decoder1/batch_normalization_558/moments/scalar action_count 94195455013869 step 0 next 2162 2021-08-09 03:52:38.092131: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffdb00 of size 256 by op assert_less_equal_8/Assert/AssertGuard/pivot_f/_237 action_count 94195455013870 step 0 next 2206 2021-08-09 03:52:38.092148: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffdc00 of size 256 by op assert_less_equal_8/Assert/AssertGuard/pivot_t/_238 action_count 94195455013871 step 0 next 2085 2021-08-09 03:52:38.092166: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffdd00 of size 256 by op assert_greater_equal_9/Assert/AssertGuard/pivot_f/_255 action_count 94195455013872 step 0 next 1053 2021-08-09 03:52:38.092188: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffde00 of size 256 by op assert_greater_equal_9/Assert/AssertGuard/pivot_t/_256 action_count 94195455013873 step 0 next 2159 2021-08-09 03:52:38.092205: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffdf00 of size 256 by op assert_less_equal_9/Assert/AssertGuard/pivot_f/_265 action_count 94195455013874 step 0 next 891 2021-08-09 03:52:38.092226: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe000 of size 256 by op assert_less_equal_9/Assert/AssertGuard/pivot_t/_266 action_count 94195455013875 step 0 next 728 2021-08-09 03:52:38.092245: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe100 of size 256 by op gradient_tape/unet_depth3/conv_transpose_decoder1/batch_normalization_557/moments/scalar action_count 941954550 13876 step 0 next 2077 2021-08-09 03:52:38.092265: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe200 of size 256 by op assert_greater_equal_10/Assert/AssertGuard/pivot_f/_283 action_count 94195455013877 step 0 next 2230 2021-08-09 03:52:38.092285: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe300 of size 256 by op assert_greater_equal_10/Assert/AssertGuard/pivot_t/_284 action_count 94195455013878 step 0 next 2237 2021-08-09 03:52:38.092307: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe400 of size 256 by op assert_less_equal_10/Assert/AssertGuard/pivot_f/_293 action_count 94195455013879 step 0 next 2207 2021-08-09 03:52:38.092329: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe500 of size 256 by op assert_less_equal_10/Assert/AssertGuard/pivot_t/_294 action_count 94195455013880 step 0 next 1983 2021-08-09 03:52:38.092346: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe600 of size 256 by op assert_greater_equal_11/Assert/AssertGuard/pivot_f/_311 action_count 94195455013881 step 0 next 712 2021-08-09 03:52:38.092364: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe700 of size 256 by op assert_greater_equal_11/Assert/AssertGuard/pivot_t/_312 action_count 94195455013882 step 0 next 1848 2021-08-09 03:52:38.092381: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe800 of size 256 by op gradient_tape/unet_depth3/two_conv_decoder2/batch_normalization_556/moments/scalar action_count 94195455013883 step 0 next 2205 2021-08-09 03:52:38.092399: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffe900 of size 256 by op assert_less_equal_11/Assert/AssertGuard/pivot_f/_321 action_count 94195455013884 step 0 next 1795 2021-08-09 03:52:38.092419: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffea00 of size 256 by op assert_less_equal_11/Assert/AssertGuard/pivot_t/_322 action_count 94195455013885 step 0 next 2227 2021-08-09 03:52:38.092441: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffeb00 of size 256 by op assert_greater_equal_12/Assert/AssertGuard/pivot_f/_339 action_count 94195455013886 step 0 next 2231 2021-08-09 03:52:38.092462: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffec00 of size 256 by op assert_greater_equal_12/Assert/AssertGuard/pivot_t/_340 action_count 94195455013887 step 0 next 1767 2021-08-09 03:52:38.092483: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffed00 of size 256 by op assert_less_equal_12/Assert/AssertGuard/pivot_f/_349 action_count 94195455013888 step 0 next 1785 2021-08-09 03:52:38.092501: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffee00 of size 256 by op assert_less_equal_12/Assert/AssertGuard/pivot_t/_350 action_count 94195455013889 step 0 next 1151 2021-08-09 03:52:38.092528: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffef00 of size 256 by op gradient_tape/unet_depth3/two_conv_decoder2/batch_normalization_555/moments/scalar action_count 94195455013890 step 0 next 2139 2021-08-09 03:52:38.092562: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff000 of size 256 by op assert_greater_equal_13/Assert/AssertGuard/pivot_f/_367 action_count 94195455013891 step 0 next 192 2021-08-09 03:52:38.092595: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff100 of size 256 by op assert_greater_equal_13/Assert/AssertGuard/pivot_t/_368 action_count 94195455013892 step 0 next 2203 2021-08-09 03:52:38.092618: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff200 of size 256 by op assert_less_equal_13/Assert/AssertGuard/pivot_f/_377 action_count 94195455013893 step 0 next 2020 2021-08-09 03:52:38.092635: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff300 of size 256 by op assert_less_equal_13/Assert/AssertGuard/pivot_t/_378 action_count 94195455013894 step 0 next 2234 2021-08-09 03:52:38.092652: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff400 of size 256 by op assert_greater_equal_14/Assert/AssertGuard/pivot_f/_395 action_count 94195455013895 step 0 next 2428 2021-08-09 03:52:38.092672: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff500 of size 256 by op assert_greater_equal_14/Assert/AssertGuard/pivot_t/_396 action_count 94195455013896 step 0 next 2429 2021-08-09 03:52:38.092692: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff600 of size 256 by op assert_less_equal_14/Assert/AssertGuard/pivot_f/_405 action_count 94195455013897 step 0 next 2167 2021-08-09 03:52:38.092712: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff700 of size 256 by op assert_less_equal_14/Assert/AssertGuard/pivot_t/_406 action_count 94195455013898 step 0 next 186 2021-08-09 03:52:38.092732: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff800 of size 256 by op gradient_tape/unet_depth3/conv_transpose_decoder2/batch_normalization_554/moments/scalar action_count 941954550 13899 step 0 next 1800 2021-08-09 03:52:38.092752: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfff900 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_f/_423 action_count 94195455013900 step 0 next 650 2021-08-09 03:52:38.092772: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfffa00 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_t/_424 action_count 94195455013901 step 0 next 2488 2021-08-09 03:52:38.092793: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfffb00 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_f/_433 action_count 94195455013902 step 0 next 2124 2021-08-09 03:52:38.092815: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfffc00 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_t/_434 action_count 94195455013903 step 0 next 82 2021-08-09 03:52:38.092838: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfffd00 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_f/_451 action_count 94195455013904 step 0 next 2047 2021-08-09 03:52:38.092856: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbfffe00 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_t/_452 action_count 94195455013905 step 0 next 2183 2021-08-09 03:52:38.092876: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3abbffff00 of size 256 by op gradient_tape/unet_depth3/two_conv_center/batch_normalization_553/moments/scalar action_count 94195455013906 st ep 0 next 18446744073709551615 2021-08-09 03:52:38.092894: I tensorflow/core/common_runtime/bfc_allocator.cc:1027] Next region of size 1073741824 2021-08-09 03:52:38.092914: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8000000 of size 3328 by op Fill action_count 94195455013519 step 0 next 2009 2021-08-09 03:52:38.092931: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8000d00 of size 256 by op Sub action_count 94195162895941 step 0 next 934 2021-08-09 03:52:38.092948: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8000e00 of size 13459968 by op Add action_count 94195455013475 step 0 next 1093 2021-08-09 03:52:38.092968: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7000 of size 512 by op Fill action_count 94195410012592 step 0 next 2129 2021-08-09 03:52:38.092987: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7200 of size 512 by op Fill action_count 94195410012593 step 0 next 2577 2021-08-09 03:52:38.093010: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7400 of size 256 by op AssignAddVariableOp_28 action_count 94195455011291 step 18076379956407770847 next 340 2021-08-09 03:52:38.093028: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7500 of size 256 by op AssignAddVariableOp_26 action_count 94195455011239 step 18076379956407770847 next 1402 2021-08-09 03:52:38.093051: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7600 of size 256 by op AssignAddVariableOp_36 action_count 94195455011295 step 18076379956407770847 next 2803 2021-08-09 03:52:38.093069: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7700 of size 256 by op AssignAddVariableOp_34 action_count 94195455011251 step 18076379956407770847 next 183 2021-08-09 03:52:38.093089: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7800 of size 256 by op Fill action_count 94195410012556 step 0 next 758 2021-08-09 03:52:38.093110: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7900 of size 256 by op AssignVariableOp action_count 94195454831374 step 0 next 810 2021-08-09 03:52:38.093130: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7a00 of size 256 by op Fill action_count 94195410012572 step 0 next 253 2021-08-09 03:52:38.093149: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7b00 of size 256 by op Fill action_count 94195410012880 step 0 next 2035 2021-08-09 03:52:38.093168: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7c00 of size 256 by op AssignVariableOp action_count 94195454831376 step 0 next 621 2021-08-09 03:52:38.093188: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7d00 of size 512 by op Fill action_count 94195410012594 step 0 next 809 2021-08-09 03:52:38.093207: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd7f00 of size 512 by op Fill action_count 94195410012595 step 0 next 840 2021-08-09 03:52:38.093226: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd8100 of size 512 by op Fill action_count 94195410012596 step 0 next 1291 2021-08-09 03:52:38.093242: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd8300 of size 256 by op Sub action_count 94195455013457 step 0 next 1971 2021-08-09 03:52:38.093258: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd8400 of size 768 by op Fill action_count 94195410012607 step 0 next 1035 2021-08-09 03:52:38.093274: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd8700 of size 768 by op Fill action_count 94195410012608 step 0 next 2087 2021-08-09 03:52:38.093290: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd8a00 of size 1024 by op Fill action_count 94195410012616 step 0 next 1381 2021-08-09 03:52:38.093306: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd8e00 of size 2048 by op Fill action_count 94195467563027 step 0 next 1329 2021-08-09 03:52:38.093322: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd9600 of size 1792 by op Fill action_count 94195467563035 step 0 next 266 2021-08-09 03:52:38.093342: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cd9d00 of size 1792 by op Fill action_count 94195467563036 step 0 next 2370 2021-08-09 03:52:38.093362: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cda400 of size 1792 by op Fill action_count 94195467563037 step 0 next 2210 2021-08-09 03:52:38.093382: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdab00 of size 1792 by op Fill action_count 94195467563038 step 0 next 3059 2021-08-09 03:52:38.093401: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdb200 of size 1792 by op Fill action_count 94195467563039 step 0 next 595 2021-08-09 03:52:38.093420: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdb900 of size 1792 by op Fill action_count 94195467563047 step 0 next 2412 2021-08-09 03:52:38.093439: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdc000 of size 1792 by op Fill action_count 94195467563048 step 0 next 2597 2021-08-09 03:52:38.093459: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdc700 of size 1792 by op Fill action_count 94195467563049 step 0 next 2039 2021-08-09 03:52:38.093483: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdce00 of size 1792 by op Fill action_count 94195467563050 step 0 next 2016 2021-08-09 03:52:38.093503: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdd500 of size 1792 by op Fill action_count 94195467563051 step 0 next 2422 2021-08-09 03:52:38.093526: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cddc00 of size 1792 by op Fill action_count 94195467563059 step 0 next 789 2021-08-09 03:52:38.093546: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cde300 of size 1792 by op Fill action_count 94195467563060 step 0 next 1337 2021-08-09 03:52:38.093567: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdea00 of size 1792 by op Fill action_count 94195467563061 step 0 next 2351 2021-08-09 03:52:38.093583: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdf100 of size 1792 by op Fill action_count 94195467563062 step 0 next 1763 2021-08-09 03:52:38.093603: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdf800 of size 1792 by op Fill action_count 94195467563063 step 0 next 732 2021-08-09 03:52:38.093619: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8cdff00 of size 1024 by op Fill action_count 94195467563071 step 0 next 2430 2021-08-09 03:52:38.093635: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce0300 of size 1024 by op Fill action_count 94195467563072 step 0 next 1969 2021-08-09 03:52:38.093651: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce0700 of size 1024 by op Fill action_count 94195467563073 step 0 next 1127 2021-08-09 03:52:38.093671: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce0b00 of size 1024 by op Fill action_count 94195467563074 step 0 next 1752 2021-08-09 03:52:38.093690: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce0f00 of size 1024 by op Fill action_count 94195467563075 step 0 next 1139 2021-08-09 03:52:38.093707: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1300 of size 1024 by op Fill action_count 94195467563083 step 0 next 1652 2021-08-09 03:52:38.093726: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1700 of size 768 by op Fill action_count 94195410012582 step 0 next 1429 2021-08-09 03:52:38.093748: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1a00 of size 256 by op AssignAddVariableOp_11 action_count 94195455011217 step 18076379956407770847 next 2936 2021-08-09 03:52:38.093769: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1b00 of size 256 by op AssignAddVariableOp_20 action_count 94195455011287 step 18076379956407770847 next 1330 2021-08-09 03:52:38.093787: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1c00 of size 256 by op AssignAddVariableOp_18 action_count 94195455011227 step 18076379956407770847 next 2503 2021-08-09 03:52:38.093807: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1d00 of size 256 by op Fill action_count 94195410012557 step 0 next 1716 2021-08-09 03:52:38.093827: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1e00 of size 256 by op AssignVariableOp action_count 94195454831386 step 0 next 1521 2021-08-09 03:52:38.093843: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce1f00 of size 256 by op Fill action_count 94195410012558 step 0 next 2619 2021-08-09 03:52:38.093863: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce2000 of size 512 by op Fill action_count 94195455013397 step 0 next 1784 2021-08-09 03:52:38.093882: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce2200 of size 512 by op Fill action_count 94195455013398 step 0 next 1957 2021-08-09 03:52:38.093898: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce2400 of size 512 by op Fill action_count 94195410012580 step 0 next 1687 2021-08-09 03:52:38.093914: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce2600 of size 1536 by op Fill action_count 94195455013425 step 0 next 864 2021-08-09 03:52:38.093930: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce2c00 of size 768 by op Fill action_count 94195410012617 step 0 next 1205 2021-08-09 03:52:38.093946: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce2f00 of size 768 by op Fill action_count 94195410012618 step 0 next 2439 2021-08-09 03:52:38.093962: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce3200 of size 768 by op Fill action_count 94195410012619 step 0 next 328 2021-08-09 03:52:38.093982: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce3500 of size 768 by op Fill action_count 94195410012620 step 0 next 1959 2021-08-09 03:52:38.093998: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce3800 of size 2304 by op Fill action_count 94195410012628 step 0 next 806 2021-08-09 03:52:38.094017: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce4100 of size 256 by op Sub action_count 94195455013470 step 0 next 807 2021-08-09 03:52:38.094037: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac8ce4200 of size 6291456 by op Add action_count 94195410012673 step 0 next 285 2021-08-09 03:52:38.094056: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac92e4200 of size 6291456 by op Fill action_count 94195410012975 step 0 next 2275 2021-08-09 03:52:38.094073: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ac98e4200 of size 18874368 by op Fill action_count 94195410012979 step 0 next 766 2021-08-09 03:52:38.094092: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acaae4200 of size 12582912 by op Add action_count 94195410012685 step 0 next 2480 2021-08-09 03:52:38.094109: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acb6e4200 of size 3145728 by op Add action_count 94195410012757 step 0 next 1350 2021-08-09 03:52:38.094128: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acb9e4200 of size 3145728 by op Fill action_count 94195410012971 step 0 next 1449 2021-08-09 03:52:38.094148: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acbce4200 of size 6291456 by op Add action_count 94195410012709 step 0 next 1797 2021-08-09 03:52:38.094164: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acc2e4200 of size 4767744 by op Fill action_count 94195410012983 step 0 next 1516 2021-08-09 03:52:38.094184: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acc770200 of size 7193600 by op Add action_count 94195410012745 step 0 next 1899 2021-08-09 03:52:38.094200: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acce4c600 of size 3072 by op Fill action_count 94195455013509 step 0 next 140 2021-08-09 03:52:38.094217: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acce4d200 of size 256 by op Sub action_count 94195347535784 step 0 next 80 2021-08-09 03:52:38.094236: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acce4d300 of size 256 by op Sub action_count 94195347535785 step 0 next 2606 2021-08-09 03:52:38.094252: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acce4d400 of size 256 by op Sub action_count 94195347535798 step 0 next 174 2021-08-09 03:52:38.094272: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acce4d500 of size 256 by op Sub action_count 94195347535799 step 0 next 1629 2021-08-09 03:52:38.094291: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acce4d600 of size 256 by op Sub action_count 94195347535824 step 0 next 2022 2021-08-09 03:52:38.094310: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acce4d700 of size 2198272 by op Add action_count 94195455013555 step 0 next 3068 2021-08-09 03:52:38.094327: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd066200 of size 824576 by op Add action_count 94195455013593 step 0 next 2543 2021-08-09 03:52:38.094346: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd12f700 of size 1532928 by op Add action_count 94195455013581 step 0 next 237 2021-08-09 03:52:38.094366: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd2a5b00 of size 256 by op Sub action_count 94195347535825 step 0 next 342 2021-08-09 03:52:38.094382: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd2a5c00 of size 2048 by op Fill action_count 94195455013522 step 0 next 2807 2021-08-09 03:52:38.094401: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd2a6400 of size 256 by op Sub action_count 94195455013524 step 0 next 2157 2021-08-09 03:52:38.094420: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd2a6500 of size 256 by op Sub action_count 94195455013525 step 0 next 2992 2021-08-09 03:52:38.094440: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd2a6600 of size 2304 by op Fill action_count 94195455013532 step 0 next 1806 2021-08-09 03:52:38.094459: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd2a6f00 of size 256 by op Sub action_count 94195365012495 step 0 next 2064 2021-08-09 03:52:38.094480: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd2a7000 of size 4046080 by op Add action_count 94195455013447 step 0 next 364 2021-08-09 03:52:38.094497: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd682d00 of size 256 by op Sub action_count 94195347535729 step 0 next 385 2021-08-09 03:52:38.094512: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd682e00 of size 256 by op Sub action_count 94195347535742 step 0 next 2240 2021-08-09 03:52:38.094542: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd682f00 of size 1024 by op Fill action_count 94195455013572 step 0 next 3089 2021-08-09 03:52:38.094563: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd683300 of size 1024 by op Fill action_count 94195455013573 step 0 next 613 2021-08-09 03:52:38.094582: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd683700 of size 1024 by op Fill action_count 94195455013574 step 0 next 1338 2021-08-09 03:52:38.094602: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd683b00 of size 256 by op Sub action_count 94195455013576 step 0 next 1873 2021-08-09 03:52:38.094618: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd683c00 of size 256 by op Sub action_count 94195455013577 step 0 next 792 2021-08-09 03:52:38.094638: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd683d00 of size 1024 by op Fill action_count 94195455013584 step 0 next 2937 2021-08-09 03:52:38.094657: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd684100 of size 1280 by op Fill action_count 94195455013585 step 0 next 1544 2021-08-09 03:52:38.094677: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd684600 of size 256 by op Sub action_count 94195347535743 step 0 next 604 2021-08-09 03:52:38.094697: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd684700 of size 256 by op Sub action_count 94195347535756 step 0 next 1271 2021-08-09 03:52:38.094716: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acd684800 of size 14024704 by op Add action_count 94195455013489 step 0 next 2985 2021-08-09 03:52:38.094733: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ace3e4800 of size 5775360 by op Fill action_count 94195455013701 step 0 next 1295 2021-08-09 03:52:38.094752: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ace966800 of size 7012352 by op Fill action_count 94195455013709 step 0 next 1346 2021-08-09 03:52:38.094771: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acf016800 of size 3297536 by op Fill action_count 94195455013713 step 0 next 2856 2021-08-09 03:52:38.094788: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acf33b900 of size 2198272 by op Fill action_count 94195455013717 step 0 next 1339 2021-08-09 03:52:38.094806: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acf554400 of size 2930944 by op Fill action_count 94195455013721 step 0 next 3051 2021-08-09 03:52:38.094825: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acf81fd00 of size 1099264 by op Fill action_count 94195455013751 step 0 next 1099 2021-08-09 03:52:38.094844: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acf92c300 of size 2198272 by op Fill action_count 94195455013755 step 0 next 2264 2021-08-09 03:52:38.094864: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acfb44e00 of size 4396544 by op Fill action_count 94195455013759 step 0 next 1717 2021-08-09 03:52:38.094881: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3acff76400 of size 8792832 by op Fill action_count 94195455013763 step 0 next 1770 2021-08-09 03:52:38.094901: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad07d8f00 of size 10772736 by op Fill action_count 94195455013771 step 0 next 1790 2021-08-09 03:52:38.094921: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad121f000 of size 256 by op Sub action_count 94195273335776 step 0 next 825 2021-08-09 03:52:38.094941: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad121f100 of size 256 by op Sub action_count 94195455013538 step 0 next 566 2021-08-09 03:52:38.094960: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad121f200 of size 256 by op Sub action_count 94195455013539 step 0 next 3050 2021-08-09 03:52:38.094979: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad121f300 of size 1792 by op Fill action_count 94195455013546 step 0 next 197 2021-08-09 03:52:38.094995: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad121fa00 of size 3072 by op Fill action_count 94195455013547 step 0 next 1496 2021-08-09 03:52:38.095015: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1220600 of size 256 by op Sub action_count 94195273335789 step 0 next 908 2021-08-09 03:52:38.095035: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1220700 of size 256 by op Sub action_count 94195273335790 step 0 next 744 2021-08-09 03:52:38.095055: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1220800 of size 256 by op Adam/Pow action_count 94195480111529 step 13755587135625806913 next 3045 2021-08-09 03:52:38.095094: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1220900 of size 256 by op Adam/Cast action_count 94195480111527 step 13755587135625806913 next 2731 2021-08-09 03:52:38.095116: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1220a00 of size 1441792 by op SameWorkerRecvDone action_count 94195480111530 step 0 next 3056 2021-08-09 03:52:38.095136: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1380a00 of size 1441792 by op SameWorkerRecvDone action_count 94195480111531 step 0 next 2916 2021-08-09 03:52:38.095153: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad14e0a00 of size 1441792 by op binary_ce_dice/mul action_count 94195480111532 step 13755587135625806913 next 2802 2021-08-09 03:52:38.095174: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1640a00 of size 360448 by op Cast_4 action_count 94195480111533 step 13755587135625806913 next 2990 2021-08-09 03:52:38.095191: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad1698a00 of size 360448 by op LogicalNot action_count 94195480111534 step 13755587135625806913 next 2876 2021-08-09 03:52:38.095209: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad16f0a00 of size 36044800 by op Tile_92 action_count 94195480111535 step 13755587135625806913 next 3077 2021-08-09 03:52:38.095230: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad3950a00 of size 36044800 by op LogicalNot_31 action_count 94195480111536 step 13755587135625806913 next 2974 2021-08-09 03:52:38.095247: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad5bb0a00 of size 1441792 by op gradient_tape/binary_ce_dice/logistic_loss/mul/Mul action_count 94195480111537 step 13755587135625806913 ne xt 2846 2021-08-09 03:52:38.095267: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad5d10a00 of size 512 by op unet_depth4/encode0/batch_normalization_580/moments/mean action_count 94195480111555 step 13755587135625806913 next 3067 2021-08-09 03:52:38.095288: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad5d10c00 of size 512 by op unet_depth4/encode0/batch_normalization_580/batchnorm/mul action_count 94195480111567 step 13755587135625806913 next 3027 2021-08-09 03:52:38.095305: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ad5d10e00 of size 245764096 by op unet_depth4/encode0/batch_normalization_580/batchnorm/mul_1 action_count 94195480111568 step 137555871356 25806913 next 1011 2021-08-09 03:52:38.095322: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4771e00 of size 256 by op Sub action_count 94195129464801 step 0 next 1921 2021-08-09 03:52:38.095340: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4771f00 of size 256 by op Sub action_count 94195129464802 step 0 next 2051 2021-08-09 03:52:38.095360: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4772000 of size 1024 by op Fill action_count 94195455013678 step 0 next 2527 2021-08-09 03:52:38.095379: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4772400 of size 1024 by op Fill action_count 94195455013679 step 0 next 2929 2021-08-09 03:52:38.095398: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4772800 of size 1024 by op Fill action_count 94195455013680 step 0 next 2596 2021-08-09 03:52:38.095414: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4772c00 of size 1792 by op Fill action_count 94195455013682 step 0 next 1426 2021-08-09 03:52:38.095434: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4773300 of size 2560 by op Fill action_count 94195455013683 step 0 next 2441 2021-08-09 03:52:38.095453: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4773d00 of size 256 by op Sub action_count 94195299052817 step 0 next 906 2021-08-09 03:52:38.095473: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4773e00 of size 256 by op AssignVariableOp action_count 94195454831358 step 0 next 1573 2021-08-09 03:52:38.095492: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4773f00 of size 256 by op Sub action_count 94195299052818 step 0 next 2171 2021-08-09 03:52:38.095508: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4774000 of size 2816 by op Fill action_count 94195455013507 step 0 next 2490 2021-08-09 03:52:38.095531: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4774b00 of size 256 by op Sub action_count 94195299052831 step 0 next 399 2021-08-09 03:52:38.095550: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4774c00 of size 1280 by op Fill action_count 94195455013411 step 0 next 748 2021-08-09 03:52:38.095569: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4775100 of size 256 by op Sub action_count 94195299052832 step 0 next 1298 2021-08-09 03:52:38.095588: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4775200 of size 2304 by op Fill action_count 94195455013493 step 0 next 1658 2021-08-09 03:52:38.095604: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4775b00 of size 256 by op Sub action_count 94195365012481 step 0 next 505 2021-08-09 03:52:38.095624: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4775c00 of size 2816 by op Fill action_count 94195455013508 step 0 next 1954 2021-08-09 03:52:38.095643: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4776700 of size 256 by op Sub action_count 94195129464851 step 0 next 2154 2021-08-09 03:52:38.095662: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4776800 of size 256 by op Sub action_count 94195129464852 step 0 next 1941 2021-08-09 03:52:38.095681: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4776900 of size 3584 by op Fill action_count 94195455013690 step 0 next 2822 2021-08-09 03:52:38.095697: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4777700 of size 4096 by op Fill action_count 94195455013691 step 0 next 2004 2021-08-09 03:52:38.095717: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4778700 of size 256 by op Sub action_count 94195129464865 step 0 next 2138 2021-08-09 03:52:38.095735: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4778800 of size 256 by op Sub action_count 94195129464866 step 0 next 1897 2021-08-09 03:52:38.095755: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4778900 of size 205568 by op Fill action_count 94195467563236 step 0 next 1042 2021-08-09 03:52:38.095771: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47aac00 of size 256 by op Sub action_count 94195129464999 step 0 next 2123 2021-08-09 03:52:38.095791: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47aad00 of size 256 by op Sub action_count 94195129465000 step 0 next 1919 2021-08-09 03:52:38.095810: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47aae00 of size 768 by op Fill action_count 94195480110828 step 0 next 2305 2021-08-09 03:52:38.095830: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab100 of size 256 by op AssignAddVariableOp_27 action_count 94195480109387 step 17368542405085625385 next 2028 2021-08-09 03:52:38.095852: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab200 of size 256 by op AssignAddVariableOp_29 action_count 94195480109439 step 17368542405085625385 next 740 2021-08-09 03:52:38.095873: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab300 of size 256 by op AssignAddVariableOp_35 action_count 94195480109399 step 17368542405085625385 next 324 2021-08-09 03:52:38.095890: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab400 of size 512 by op Fill action_count 94195480110826 step 0 next 2241 2021-08-09 03:52:38.095911: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab600 of size 256 by op AssignAddVariableOp_37 action_count 94195480109443 step 17368542405085625385 next 892 2021-08-09 03:52:38.095928: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab700 of size 256 by op AssignAddVariableOp_4 action_count 94195480109414 step 17368542405085625385 next 413 2021-08-09 03:52:38.095950: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab800 of size 256 by op AssignAddVariableOp_2 action_count 94195480109331 step 17368542405085625385 next 1324 2021-08-09 03:52:38.095966: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ab900 of size 512 by op Fill action_count 94195480110827 step 0 next 957 2021-08-09 03:52:38.095990: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47abb00 of size 256 by op AssignAddVariableOp_5 action_count 94195480109416 step 17368542405085625385 next 1237 2021-08-09 03:52:38.096009: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47abc00 of size 256 by op Sub action_count 94195480110871 step 0 next 917 2021-08-09 03:52:38.096029: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47abd00 of size 256 by op AssignAddVariableOp_26 action_count 94195480109385 step 17368542405085625385 next 2161 2021-08-09 03:52:38.096045: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47abe00 of size 256 by op AssignAddVariableOp_36 action_count 94195480109441 step 17368542405085625385 next 1557 2021-08-09 03:52:38.096066: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47abf00 of size 256 by op AssignAddVariableOp_34 action_count 94195480109397 step 17368542405085625385 next 2251 2021-08-09 03:52:38.096083: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ac000 of size 1024 by op Fill action_count 94195480110865 step 0 next 181 2021-08-09 03:52:38.096099: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ac400 of size 1024 by op Fill action_count 94195480110866 step 0 next 1358 2021-08-09 03:52:38.096119: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ac800 of size 1024 by op Fill action_count 94195480110867 step 0 next 1461 2021-08-09 03:52:38.096138: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47acc00 of size 1024 by op Fill action_count 94195480110868 step 0 next 2290 2021-08-09 03:52:38.096154: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ad000 of size 2048 by op Fill action_count 94195480110878 step 0 next 68 2021-08-09 03:52:38.096170: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ad800 of size 2048 by op Fill action_count 94195480110879 step 0 next 314 2021-08-09 03:52:38.096189: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ae000 of size 2048 by op Fill action_count 94195480110880 step 0 next 1031 2021-08-09 03:52:38.096207: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ae800 of size 3072 by op Fill action_count 94195480110881 step 0 next 2388 2021-08-09 03:52:38.096227: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47af400 of size 256 by op AssignVariableOp action_count 94195480053214 step 0 next 256 2021-08-09 03:52:38.096243: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47af500 of size 512 by op Fill action_count 94195480110838 step 0 next 1188 2021-08-09 03:52:38.096262: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47af700 of size 512 by op Fill action_count 94195480110839 step 0 next 123 2021-08-09 03:52:38.096282: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47af900 of size 512 by op Fill action_count 94195480110840 step 0 next 1211 2021-08-09 03:52:38.096301: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47afb00 of size 1536 by op Add action_count 94195480110821 step 0 next 848 2021-08-09 03:52:38.096320: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b0100 of size 1024 by op Fill action_count 94195480110852 step 0 next 414 2021-08-09 03:52:38.096339: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b0500 of size 1024 by op Fill action_count 94195480110853 step 0 next 2495 2021-08-09 03:52:38.096355: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b0900 of size 1024 by op Fill action_count 94195480110854 step 0 next 1517 2021-08-09 03:52:38.096374: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b0d00 of size 1024 by op Fill action_count 94195480110864 step 0 next 1878 2021-08-09 03:52:38.096393: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b1100 of size 256 by op AssignVariableOp action_count 94195480053222 step 0 next 743 2021-08-09 03:52:38.096409: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b1200 of size 256 by op AssignVariableOp action_count 94195480053224 step 0 next 637 2021-08-09 03:52:38.096428: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b1300 of size 256 by op AssignVariableOp action_count 94195480053228 step 0 next 261 2021-08-09 03:52:38.096445: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b1400 of size 2048 by op Fill action_count 94195480110882 step 0 next 667 2021-08-09 03:52:38.096464: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b1c00 of size 2048 by op Fill action_count 94195480110890 step 0 next 796 2021-08-09 03:52:38.096483: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b2400 of size 2048 by op Fill action_count 94195480110891 step 0 next 262 2021-08-09 03:52:38.096499: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b2c00 of size 2048 by op Fill action_count 94195480110892 step 0 next 383 2021-08-09 03:52:38.096525: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b3400 of size 2048 by op Fill action_count 94195480110893 step 0 next 1383 2021-08-09 03:52:38.096560: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b3c00 of size 2048 by op Fill action_count 94195480110894 step 0 next 249 2021-08-09 03:52:38.096592: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b4400 of size 2048 by op Fill action_count 94195480110904 step 0 next 26 2021-08-09 03:52:38.096612: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b4c00 of size 2048 by op Fill action_count 94195480110905 step 0 next 421 2021-08-09 03:52:38.096632: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b5400 of size 2048 by op Fill action_count 94195480110906 step 0 next 1905 2021-08-09 03:52:38.096648: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b5c00 of size 2816 by op Fill action_count 94195480110907 step 0 next 568 2021-08-09 03:52:38.096671: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6700 of size 256 by op binary_ce_dice/weighted_loss/num_elements/Cast action_count 94195468133245 step 0 next 896 2021-08-09 03:52:38.096690: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6800 of size 512 by op Reshape_92 action_count 94195468133247 step 0 next 1389 2021-08-09 03:52:38.096709: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6a00 of size 256 by op Cast_181/x action_count 94195468133253 step 0 next 2512 2021-08-09 03:52:38.096726: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6b00 of size 256 by op unet_depth3/encode0/batch_normalization_563/batchnorm/add/y action_count 94195468133254 step 0 next 1801 2021-08-09 03:52:38.096748: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6c00 of size 256 by op Cast_180/x action_count 94195468133255 step 0 next 1841 2021-08-09 03:52:38.096770: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6d00 of size 256 by op assert_greater_equal/Assert/AssertGuard/pivot_f/_3 action_count 94195468133256 step 0 next 1181 2021-08-09 03:52:38.096791: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6e00 of size 256 by op assert_greater_equal/Assert/AssertGuard/pivot_t/_4 action_count 94195468133257 step 0 next 368 2021-08-09 03:52:38.096813: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b6f00 of size 256 by op Const_35 action_count 94195468133258 step 0 next 1382 2021-08-09 03:52:38.096834: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7000 of size 256 by op assert_less_equal/Assert/AssertGuard/pivot_f/_13 action_count 94195468133259 step 0 next 1314 2021-08-09 03:52:38.096851: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7100 of size 256 by op assert_less_equal/Assert/AssertGuard/pivot_t/_14 action_count 94195468133260 step 0 next 1702 2021-08-09 03:52:38.096872: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7200 of size 256 by op assert_greater_equal_1/Assert/AssertGuard/pivot_f/_31 action_count 94195468133261 step 0 next 180 2021-08-09 03:52:38.096892: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7300 of size 256 by op assert_greater_equal_1/Assert/AssertGuard/pivot_t/_32 action_count 94195468133262 step 0 next 2133 2021-08-09 03:52:38.096912: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7400 of size 256 by op assert_less_equal_1/Assert/AssertGuard/pivot_f/_41 action_count 94195468133263 step 0 next 15 2021-08-09 03:52:38.096931: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7500 of size 256 by op assert_less_equal_1/Assert/AssertGuard/pivot_t/_42 action_count 94195468133264 step 0 next 434 2021-08-09 03:52:38.096948: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7600 of size 256 by op assert_greater_equal_2/Assert/AssertGuard/pivot_f/_59 action_count 94195468133265 step 0 next 1844 2021-08-09 03:52:38.096969: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7700 of size 256 by op assert_greater_equal_2/Assert/AssertGuard/pivot_t/_60 action_count 94195468133266 step 0 next 310 2021-08-09 03:52:38.096987: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7800 of size 256 by op assert_less_equal_2/Assert/AssertGuard/pivot_f/_69 action_count 94195468133267 step 0 next 352 2021-08-09 03:52:38.097008: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7900 of size 256 by op assert_less_equal_2/Assert/AssertGuard/pivot_t/_70 action_count 94195468133268 step 0 next 1970 2021-08-09 03:52:38.097029: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7a00 of size 256 by op assert_greater_equal_3/Assert/AssertGuard/pivot_f/_87 action_count 94195468133269 step 0 next 894 2021-08-09 03:52:38.097046: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7b00 of size 256 by op assert_greater_equal_3/Assert/AssertGuard/pivot_t/_88 action_count 94195468133270 step 0 next 30 2021-08-09 03:52:38.097066: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7c00 of size 256 by op assert_less_equal_3/Assert/AssertGuard/pivot_f/_97 action_count 94195468133271 step 0 next 1882 2021-08-09 03:52:38.097083: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7d00 of size 256 by op assert_less_equal_3/Assert/AssertGuard/pivot_t/_98 action_count 94195468133272 step 0 next 300 2021-08-09 03:52:38.097101: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7e00 of size 256 by op assert_greater_equal_4/Assert/AssertGuard/pivot_f/_115 action_count 94195468133273 step 0 next 936 2021-08-09 03:52:38.097123: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b7f00 of size 256 by op assert_greater_equal_4/Assert/AssertGuard/pivot_t/_116 action_count 94195468133274 step 0 next 2197 2021-08-09 03:52:38.097144: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b8000 of size 256 by op assert_less_equal_4/Assert/AssertGuard/pivot_f/_125 action_count 94195468133275 step 0 next 1837 2021-08-09 03:52:38.097162: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b8100 of size 256 by op assert_less_equal_4/Assert/AssertGuard/pivot_t/_126 action_count 94195468133276 step 0 next 1143 2021-08-09 03:52:38.097182: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b8200 of size 256 by op AssignAddVariableOp_52 action_count 94195467564196 step 10280291020125615045 next 998 2021-08-09 03:52:38.097202: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b8300 of size 256 by op Sub action_count 94195480110896 step 0 next 645 2021-08-09 03:52:38.097220: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b8400 of size 256 by op Sub action_count 94195339127952 step 0 next 1973 2021-08-09 03:52:38.097240: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b8500 of size 3584 by op Fill action_count 94195455013464 step 0 next 1432 2021-08-09 03:52:38.097259: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9300 of size 256 by op Sub action_count 94195339127981 step 0 next 178 2021-08-09 03:52:38.097275: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9400 of size 256 by op Sub action_count 94195339127994 step 0 next 925 2021-08-09 03:52:38.097294: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9500 of size 256 by op Sub action_count 94195455013471 step 0 next 620 2021-08-09 03:52:38.097313: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9600 of size 256 by op AssignVariableOp action_count 94195454831394 step 0 next 1634 2021-08-09 03:52:38.097329: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9700 of size 256 by op Sub action_count 94195339127953 step 0 next 1683 2021-08-09 03:52:38.097345: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9800 of size 256 by op Sub action_count 94195455013484 step 0 next 2419 2021-08-09 03:52:38.097361: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9900 of size 256 by op Sub action_count 94195339128020 step 0 next 2170 2021-08-09 03:52:38.097376: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9a00 of size 256 by op Sub action_count 94195339128021 step 0 next 210 2021-08-09 03:52:38.097396: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9b00 of size 256 by op Sub action_count 94195365012496 step 0 next 1286 2021-08-09 03:52:38.097416: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47b9c00 of size 1536 by op Fill action_count 94195455013426 step 0 next 45 2021-08-09 03:52:38.097432: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ba200 of size 256 by op Sub action_count 94195365012569 step 0 next 2105 2021-08-09 03:52:38.097448: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ba300 of size 256 by op Sub action_count 94195365012570 step 0 next 1869 2021-08-09 03:52:38.097467: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ba400 of size 2048 by op Fill action_count 94195455013707 step 0 next 3084 2021-08-09 03:52:38.097486: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bac00 of size 2048 by op Fill action_count 94195455013708 step 0 next 2958 2021-08-09 03:52:38.097502: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bb400 of size 1792 by op Fill action_count 94195455013710 step 0 next 2896 2021-08-09 03:52:38.097526: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bbb00 of size 2304 by op Fill action_count 94195455013711 step 0 next 547 2021-08-09 03:52:38.097542: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bc400 of size 256 by op Sub action_count 94195365012482 step 0 next 2659 2021-08-09 03:52:38.097561: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bc500 of size 256 by op Sub action_count 94195455013485 step 0 next 2155 2021-08-09 03:52:38.097580: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bc600 of size 256 by op Sub action_count 94195129465085 step 0 next 1069 2021-08-09 03:52:38.097599: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bc700 of size 256 by op Sub action_count 94195129465086 step 0 next 2037 2021-08-09 03:52:38.097618: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bc800 of size 256 by op AssignVariableOp action_count 94195467505299 step 0 next 2374 2021-08-09 03:52:38.097638: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bc900 of size 256 by op AssignVariableOp action_count 94195467505301 step 0 next 1012 2021-08-09 03:52:38.097654: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bca00 of size 256 by op AssignVariableOp action_count 94195467505303 step 0 next 847 2021-08-09 03:52:38.097673: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bcb00 of size 256 by op Sub action_count 94195480110897 step 0 next 1660 2021-08-09 03:52:38.097693: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bcc00 of size 256 by op AssignVariableOp action_count 94195467505329 step 0 next 1388 2021-08-09 03:52:38.097712: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bcd00 of size 256 by op AssignVariableOp action_count 94195467505331 step 0 next 2156 2021-08-09 03:52:38.097728: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bce00 of size 1024 by op Fill action_count 94195467562927 step 0 next 54 2021-08-09 03:52:38.097744: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bd200 of size 256 by op Sum_1 action_count 94195455584270 step 0 next 1890 2021-08-09 03:52:38.097760: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bd300 of size 256 by op truediv/y action_count 94195455584272 step 0 next 511 2021-08-09 03:52:38.097782: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bd400 of size 256 by op binary_ce_dice/add_1/y action_count 94195455584273 step 0 next 1136 2021-08-09 03:52:38.097800: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bd500 of size 256 by op binary_ce_dice/weighted_loss/num_elements/Cast action_count 94195455584274 step 0 next 1994 2021-08-09 03:52:38.097820: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bd600 of size 1792 by op Fill action_count 94195467562951 step 0 next 1932 2021-08-09 03:52:38.097840: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bdd00 of size 1792 by op Fill action_count 94195467562952 step 0 next 2316 2021-08-09 03:52:38.097859: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47be400 of size 1792 by op Fill action_count 94195467562953 step 0 next 2172 2021-08-09 03:52:38.097875: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47beb00 of size 1792 by op Fill action_count 94195467562954 step 0 next 2921 2021-08-09 03:52:38.097893: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bf200 of size 1792 by op Fill action_count 94195467562955 step 0 next 2489 2021-08-09 03:52:38.097913: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47bf900 of size 2048 by op Fill action_count 94195467562963 step 0 next 2348 2021-08-09 03:52:38.097933: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0100 of size 256 by op assert_less_equal_2/Assert/AssertGuard/pivot_f/_69 action_count 94195455584296 step 0 next 1946 2021-08-09 03:52:38.097950: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0200 of size 256 by op assert_less_equal_2/Assert/AssertGuard/pivot_t/_70 action_count 94195455584297 step 0 next 1886 2021-08-09 03:52:38.097969: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0300 of size 256 by op assert_greater_equal_3/Assert/AssertGuard/pivot_f/_87 action_count 94195455584298 step 0 next 1458 2021-08-09 03:52:38.097988: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0400 of size 256 by op assert_greater_equal_3/Assert/AssertGuard/pivot_t/_88 action_count 94195455584299 step 0 next 2400 2021-08-09 03:52:38.098007: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0500 of size 256 by op assert_less_equal_3/Assert/AssertGuard/pivot_f/_97 action_count 94195455584300 step 0 next 1070 2021-08-09 03:52:38.098024: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0600 of size 256 by op assert_less_equal_3/Assert/AssertGuard/pivot_t/_98 action_count 94195455584301 step 0 next 2291 2021-08-09 03:52:38.098043: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0700 of size 256 by op assert_greater_equal_4/Assert/AssertGuard/pivot_f/_115 action_count 94195455584302 step 0 next 1394 2021-08-09 03:52:38.098060: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0800 of size 256 by op assert_greater_equal_4/Assert/AssertGuard/pivot_t/_116 action_count 94195455584303 step 0 next 2324 2021-08-09 03:52:38.098079: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0900 of size 256 by op assert_less_equal_4/Assert/AssertGuard/pivot_f/_125 action_count 94195455584304 step 0 next 2372 2021-08-09 03:52:38.098098: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0a00 of size 256 by op assert_less_equal_4/Assert/AssertGuard/pivot_t/_126 action_count 94195455584305 step 0 next 2271 2021-08-09 03:52:38.098114: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0b00 of size 256 by op assert_greater_equal_5/Assert/AssertGuard/pivot_f/_143 action_count 94195455584306 step 0 next 1843 2021-08-09 03:52:38.098134: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0c00 of size 256 by op assert_greater_equal_5/Assert/AssertGuard/pivot_t/_144 action_count 94195455584307 step 0 next 2416 2021-08-09 03:52:38.098155: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0d00 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_f/_153 action_count 94195455584308 step 0 next 2407 2021-08-09 03:52:38.098175: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0e00 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_t/_154 action_count 94195455584309 step 0 next 1783 2021-08-09 03:52:38.098197: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c0f00 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_f/_171 action_count 94195455584310 step 0 next 2274 2021-08-09 03:52:38.098218: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1000 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_t/_172 action_count 94195455584311 step 0 next 2379 2021-08-09 03:52:38.098236: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1100 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_f/_181 action_count 94195455584312 step 0 next 2435 2021-08-09 03:52:38.098255: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1200 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_t/_182 action_count 94195455584313 step 0 next 2280 2021-08-09 03:52:38.098272: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1300 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_f/_199 action_count 94195455584314 step 0 next 2447 2021-08-09 03:52:38.098293: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1400 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_t/_200 action_count 94195455584315 step 0 next 1721 2021-08-09 03:52:38.098314: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1500 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_f/_209 action_count 94195455584316 step 0 next 1588 2021-08-09 03:52:38.098335: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1600 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_t/_210 action_count 94195455584317 step 0 next 2259 2021-08-09 03:52:38.098351: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1700 of size 256 by op assert_greater_equal_8/Assert/AssertGuard/pivot_f/_227 action_count 94195455584318 step 0 next 1805 2021-08-09 03:52:38.098367: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1800 of size 256 by op Sub action_count 94195129465111 step 0 next 2174 2021-08-09 03:52:38.098386: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1900 of size 256 by op Sub action_count 94195129465112 step 0 next 2091 2021-08-09 03:52:38.098406: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1a00 of size 1024 by op Fill action_count 94195480111064 step 0 next 1925 2021-08-09 03:52:38.098422: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c1e00 of size 1024 by op Fill action_count 94195480111065 step 0 next 1834 2021-08-09 03:52:38.098442: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c2200 of size 1024 by op Fill action_count 94195480111066 step 0 next 1061 2021-08-09 03:52:38.098460: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c2600 of size 1024 by op Fill action_count 94195480111067 step 0 next 1048 2021-08-09 03:52:38.098476: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c2a00 of size 1024 by op Fill action_count 94195480111068 step 0 next 284 2021-08-09 03:52:38.098495: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c2e00 of size 1024 by op Fill action_count 94195480111078 step 0 next 2346 2021-08-09 03:52:38.098515: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c3200 of size 1024 by op Fill action_count 94195480111079 step 0 next 2238 2021-08-09 03:52:38.098545: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c3600 of size 1024 by op Fill action_count 94195480111080 step 0 next 1526 2021-08-09 03:52:38.098565: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c3a00 of size 1024 by op Fill action_count 94195480111081 step 0 next 1710 2021-08-09 03:52:38.098584: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c3e00 of size 1024 by op Fill action_count 94195480111082 step 0 next 644 2021-08-09 03:52:38.098603: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c4200 of size 1024 by op Fill action_count 94195480111090 step 0 next 1791 2021-08-09 03:52:38.098619: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c4600 of size 1024 by op Fill action_count 94195480111091 step 0 next 1623 2021-08-09 03:52:38.098640: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c4a00 of size 1024 by op Fill action_count 94195480111092 step 0 next 2074 2021-08-09 03:52:38.098658: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c4e00 of size 1024 by op Fill action_count 94195480111093 step 0 next 2059 2021-08-09 03:52:38.098677: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5200 of size 1024 by op Fill action_count 94195480111094 step 0 next 2095 2021-08-09 03:52:38.098694: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5600 of size 256 by op Fill action_count 94195480111104 step 0 next 544 2021-08-09 03:52:38.098713: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5700 of size 256 by op Fill action_count 94195480111105 step 0 next 1572 2021-08-09 03:52:38.098732: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5800 of size 256 by op Fill action_count 94195480111106 step 0 next 18 2021-08-09 03:52:38.098751: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5900 of size 256 by op Fill action_count 94195480111107 step 0 next 578 2021-08-09 03:52:38.098767: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5a00 of size 256 by op Fill action_count 94195480111108 step 0 next 1311 2021-08-09 03:52:38.098782: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5b00 of size 256 by op Fill action_count 94195480111109 step 0 next 1385 2021-08-09 03:52:38.098801: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5c00 of size 256 by op Fill action_count 94195480111110 step 0 next 1664 2021-08-09 03:52:38.098820: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5d00 of size 256 by op Fill action_count 94195480111111 step 0 next 596 2021-08-09 03:52:38.098852: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c5e00 of size 1024 by op Add action_count 94195480111099 step 0 next 2190 2021-08-09 03:52:38.098872: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6200 of size 256 by op Fill action_count 94195480111112 step 0 next 2621 2021-08-09 03:52:38.098890: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6300 of size 256 by op Fill action_count 94195480111113 step 0 next 2146 2021-08-09 03:52:38.098909: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6400 of size 256 by op Fill action_count 94195480111114 step 0 next 2195 2021-08-09 03:52:38.098927: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6500 of size 256 by op Fill action_count 94195480111115 step 0 next 1111 2021-08-09 03:52:38.098945: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6600 of size 256 by op Fill action_count 94195480111116 step 0 next 1789 2021-08-09 03:52:38.098963: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6700 of size 256 by op Fill action_count 94195480111117 step 0 next 1301 2021-08-09 03:52:38.098981: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6800 of size 256 by op Fill action_count 94195480111118 step 0 next 2286 2021-08-09 03:52:38.098998: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6900 of size 256 by op Fill action_count 94195480111119 step 0 next 1706 2021-08-09 03:52:38.099016: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6a00 of size 256 by op Fill action_count 94195480111120 step 0 next 858 2021-08-09 03:52:38.099033: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6b00 of size 256 by op Fill action_count 94195480111121 step 0 next 2147 2021-08-09 03:52:38.099048: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6c00 of size 256 by op Fill action_count 94195480111122 step 0 next 2592 2021-08-09 03:52:38.099063: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6d00 of size 256 by op Fill action_count 94195480111123 step 0 next 826 2021-08-09 03:52:38.099078: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6e00 of size 256 by op Fill action_count 94195480111124 step 0 next 449 2021-08-09 03:52:38.099093: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c6f00 of size 256 by op Fill action_count 94195480111125 step 0 next 767 2021-08-09 03:52:38.099107: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7000 of size 256 by op Fill action_count 94195480111126 step 0 next 347 2021-08-09 03:52:38.099122: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7100 of size 256 by op Fill action_count 94195480111127 step 0 next 524 2021-08-09 03:52:38.099140: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7200 of size 256 by op Fill action_count 94195480111128 step 0 next 653 2021-08-09 03:52:38.099158: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7300 of size 256 by op Fill action_count 94195480111129 step 0 next 764 2021-08-09 03:52:38.099175: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7400 of size 256 by op Fill action_count 94195480111130 step 0 next 938 2021-08-09 03:52:38.099193: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7500 of size 256 by op Fill action_count 94195480111131 step 0 next 999 2021-08-09 03:52:38.099211: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7600 of size 256 by op Fill action_count 94195480111132 step 0 next 916 2021-08-09 03:52:38.099229: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7700 of size 256 by op Fill action_count 94195480111133 step 0 next 2140 2021-08-09 03:52:38.099246: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7800 of size 256 by op Fill action_count 94195480111134 step 0 next 523 2021-08-09 03:52:38.099264: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7900 of size 256 by op Fill action_count 94195480111135 step 0 next 1146 2021-08-09 03:52:38.099282: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7a00 of size 256 by op Fill action_count 94195480111136 step 0 next 952 2021-08-09 03:52:38.099300: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7b00 of size 256 by op Fill action_count 94195480111137 step 0 next 423 2021-08-09 03:52:38.099318: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7c00 of size 256 by op Fill action_count 94195480111138 step 0 next 2423 2021-08-09 03:52:38.099336: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7d00 of size 256 by op Fill action_count 94195480111139 step 0 next 250 2021-08-09 03:52:38.099354: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7e00 of size 256 by op Fill action_count 94195480111140 step 0 next 859 2021-08-09 03:52:38.099373: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c7f00 of size 256 by op Fill action_count 94195480111141 step 0 next 1186 2021-08-09 03:52:38.099391: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8000 of size 256 by op Fill action_count 94195480111142 step 0 next 1299 2021-08-09 03:52:38.099408: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8100 of size 256 by op Fill action_count 94195480111143 step 0 next 2622 2021-08-09 03:52:38.099427: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8200 of size 256 by op Fill action_count 94195480111144 step 0 next 2076 2021-08-09 03:52:38.099446: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8300 of size 512 by op Fill action_count 94195480111145 step 0 next 671 2021-08-09 03:52:38.099461: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8500 of size 512 by op Fill action_count 94195480111146 step 0 next 1923 2021-08-09 03:52:38.099479: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8700 of size 512 by op Fill action_count 94195480111147 step 0 next 2044 2021-08-09 03:52:38.099497: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8900 of size 512 by op Fill action_count 94195480111148 step 0 next 1859 2021-08-09 03:52:38.099515: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8b00 of size 256 by op Fill action_count 94195480111149 step 0 next 603 2021-08-09 03:52:38.099535: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8c00 of size 256 by op Fill action_count 94195480111150 step 0 next 447 2021-08-09 03:52:38.099550: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8d00 of size 256 by op Fill action_count 94195480111151 step 0 next 362 2021-08-09 03:52:38.099565: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8e00 of size 256 by op Fill action_count 94195480111152 step 0 next 2367 2021-08-09 03:52:38.099583: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c8f00 of size 256 by op Fill action_count 94195480111153 step 0 next 467 2021-08-09 03:52:38.099601: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9000 of size 256 by op Fill action_count 94195480111154 step 0 next 1100 2021-08-09 03:52:38.099619: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9100 of size 256 by op AssignVariableOp action_count 94195480111155 step 0 next 91 2021-08-09 03:52:38.099637: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9200 of size 256 by op Fill action_count 94195480111156 step 0 next 236 2021-08-09 03:52:38.099655: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9300 of size 1536 by op Fill action_count 94195480111157 step 0 next 857 2021-08-09 03:52:38.099673: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9900 of size 512 by op Fill action_count 94195480111158 step 0 next 1779 2021-08-09 03:52:38.099691: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9b00 of size 512 by op Fill action_count 94195480111159 step 0 next 879 2021-08-09 03:52:38.099708: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9d00 of size 512 by op Fill action_count 94195480111160 step 0 next 1191 2021-08-09 03:52:38.099723: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47c9f00 of size 512 by op Fill action_count 94195480111162 step 0 next 2373 2021-08-09 03:52:38.099742: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ca100 of size 512 by op Fill action_count 94195480111163 step 0 next 212 2021-08-09 03:52:38.099760: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ca300 of size 512 by op Fill action_count 94195480111164 step 0 next 27 2021-08-09 03:52:38.099778: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ca500 of size 1024 by op Fill action_count 94195480111166 step 0 next 2453 2021-08-09 03:52:38.099796: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ca900 of size 1024 by op Fill action_count 94195480111167 step 0 next 120 2021-08-09 03:52:38.099814: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cad00 of size 1024 by op Fill action_count 94195480111168 step 0 next 398 2021-08-09 03:52:38.099833: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cb100 of size 1024 by op Fill action_count 94195480111170 step 0 next 394 2021-08-09 03:52:38.099851: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cb500 of size 1024 by op Fill action_count 94195480111171 step 0 next 1774 2021-08-09 03:52:38.099869: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cb900 of size 1024 by op Fill action_count 94195480111172 step 0 next 881 2021-08-09 03:52:38.099887: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cbd00 of size 2048 by op Fill action_count 94195480111174 step 0 next 1019 2021-08-09 03:52:38.099905: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cc500 of size 2048 by op Fill action_count 94195480111175 step 0 next 1787 2021-08-09 03:52:38.099923: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ccd00 of size 2048 by op Fill action_count 94195480111176 step 0 next 768 2021-08-09 03:52:38.099941: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cd500 of size 2048 by op Fill action_count 94195480111178 step 0 next 756 2021-08-09 03:52:38.099959: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cdd00 of size 2048 by op Fill action_count 94195480111179 step 0 next 1265 2021-08-09 03:52:38.099978: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ce500 of size 2048 by op Fill action_count 94195480111180 step 0 next 724 2021-08-09 03:52:38.099997: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ced00 of size 2048 by op Fill action_count 94195480111182 step 0 next 2571 2021-08-09 03:52:38.100015: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cf500 of size 2048 by op Fill action_count 94195480111183 step 0 next 562 2021-08-09 03:52:38.100033: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47cfd00 of size 2048 by op Fill action_count 94195480111184 step 0 next 1038 2021-08-09 03:52:38.100051: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d0500 of size 2048 by op Fill action_count 94195480111186 step 0 next 145 2021-08-09 03:52:38.100069: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d0d00 of size 2048 by op Fill action_count 94195480111187 step 0 next 1627 2021-08-09 03:52:38.100086: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d1500 of size 2048 by op Fill action_count 94195480111188 step 0 next 84 2021-08-09 03:52:38.100101: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d1d00 of size 4096 by op Fill action_count 94195480111190 step 0 next 882 2021-08-09 03:52:38.100116: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d2d00 of size 4096 by op Fill action_count 94195480111191 step 0 next 529 2021-08-09 03:52:38.100131: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d3d00 of size 4096 by op Fill action_count 94195480111192 step 0 next 944 2021-08-09 03:52:38.100146: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d4d00 of size 4096 by op Fill action_count 94195480111194 step 0 next 1955 2021-08-09 03:52:38.100161: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d5d00 of size 4096 by op Fill action_count 94195480111195 step 0 next 122 2021-08-09 03:52:38.100176: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d6d00 of size 4096 by op Fill action_count 94195480111196 step 0 next 1974 2021-08-09 03:52:38.100194: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d7d00 of size 2048 by op Fill action_count 94195480111198 step 0 next 1647 2021-08-09 03:52:38.100212: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d8500 of size 2048 by op Fill action_count 94195480111199 step 0 next 1830 2021-08-09 03:52:38.100230: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d8d00 of size 2048 by op Fill action_count 94195480111200 step 0 next 1244 2021-08-09 03:52:38.100248: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d9500 of size 2048 by op Fill action_count 94195480111202 step 0 next 967 2021-08-09 03:52:38.100266: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47d9d00 of size 2048 by op Fill action_count 94195480111203 step 0 next 1488 2021-08-09 03:52:38.100285: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47da500 of size 2048 by op Fill action_count 94195480111204 step 0 next 561 2021-08-09 03:52:38.100303: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47dad00 of size 2048 by op Fill action_count 94195480111206 step 0 next 803 2021-08-09 03:52:38.100321: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47db500 of size 2048 by op Fill action_count 94195480111207 step 0 next 281 2021-08-09 03:52:38.100339: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47dbd00 of size 2048 by op Fill action_count 94195480111208 step 0 next 1849 2021-08-09 03:52:38.100357: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47dc500 of size 2048 by op Fill action_count 94195480111210 step 0 next 1810 2021-08-09 03:52:38.100375: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47dcd00 of size 2048 by op Fill action_count 94195480111211 step 0 next 535 2021-08-09 03:52:38.100394: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47dd500 of size 2048 by op Fill action_count 94195480111212 step 0 next 1798 2021-08-09 03:52:38.100411: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ddd00 of size 2048 by op Fill action_count 94195480111214 step 0 next 2084 2021-08-09 03:52:38.100425: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47de500 of size 2304 by op Fill action_count 94195480111215 step 0 next 2168 2021-08-09 03:52:38.100440: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47dee00 of size 256 by op Sub action_count 94195129465161 step 0 next 2177 2021-08-09 03:52:38.100455: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47def00 of size 256 by op Sub action_count 94195129465162 step 0 next 2086 2021-08-09 03:52:38.100470: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47df000 of size 3584 by op Fill action_count 94195455013692 step 0 next 415 2021-08-09 03:52:38.100488: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47dfe00 of size 4096 by op Fill action_count 94195455013694 step 0 next 1246 2021-08-09 03:52:38.100507: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e0e00 of size 256 by op Sub action_count 94195129465199 step 0 next 989 2021-08-09 03:52:38.100561: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e0f00 of size 256 by op Sub action_count 94195129465200 step 0 next 2109 2021-08-09 03:52:38.100592: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e1000 of size 1792 by op Fill action_count 94195455013712 step 0 next 2066 2021-08-09 03:52:38.100604: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e1700 of size 1792 by op Fill action_count 94195455013714 step 0 next 2933 2021-08-09 03:52:38.100613: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e1e00 of size 1792 by op Fill action_count 94195455013715 step 0 next 1104 2021-08-09 03:52:38.100623: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e2500 of size 2816 by op Fill action_count 94195455013716 step 0 next 2454 2021-08-09 03:52:38.100632: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e3000 of size 256 by op Sub action_count 94195365012667 step 0 next 1811 2021-08-09 03:52:38.100642: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e3100 of size 256 by op Sub action_count 94195365012668 step 0 next 1998 2021-08-09 03:52:38.100651: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e3200 of size 1792 by op Fill action_count 94195455013781 step 0 next 602 2021-08-09 03:52:38.100660: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e3900 of size 1792 by op Fill action_count 94195455013782 step 0 next 214 2021-08-09 03:52:38.100670: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e4000 of size 1792 by op Fill action_count 94195455013784 step 0 next 1253 2021-08-09 03:52:38.100679: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e4700 of size 1792 by op Fill action_count 94195455013785 step 0 next 2398 2021-08-09 03:52:38.100688: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e4e00 of size 1792 by op Fill action_count 94195455013786 step 0 next 1972 2021-08-09 03:52:38.100697: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e5500 of size 3328 by op Fill action_count 94195455013788 step 0 next 2285 2021-08-09 03:52:38.100706: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e6200 of size 256 by op Sub action_count 94195339127966 step 0 next 1832 2021-08-09 03:52:38.100716: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e6300 of size 1024 by op Fill action_count 94195455013408 step 0 next 333 2021-08-09 03:52:38.100725: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e6700 of size 256 by op Sub action_count 94195339127967 step 0 next 1754 2021-08-09 03:52:38.100734: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e6800 of size 2048 by op Fill action_count 94195455013454 step 0 next 721 2021-08-09 03:52:38.100744: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e7000 of size 256 by op Sub action_count 94195339127980 step 0 next 853 2021-08-09 03:52:38.100753: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e7100 of size 1792 by op Fill action_count 94195455013558 step 0 next 2745 2021-08-09 03:52:38.100762: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e7800 of size 1792 by op Fill action_count 94195455013559 step 0 next 890 2021-08-09 03:52:38.100771: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e7f00 of size 2048 by op Fill action_count 94195455013560 step 0 next 2358 2021-08-09 03:52:38.100780: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e8700 of size 256 by op Sub action_count 94195339127995 step 0 next 845 2021-08-09 03:52:38.100789: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e8800 of size 2048 by op Fill action_count 94195480110908 step 0 next 2413 2021-08-09 03:52:38.100798: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e9000 of size 2048 by op Fill action_count 94195480110916 step 0 next 1780 2021-08-09 03:52:38.100808: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47e9800 of size 2048 by op Fill action_count 94195480110917 step 0 next 61 2021-08-09 03:52:38.100817: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ea000 of size 2048 by op Fill action_count 94195480110918 step 0 next 865 2021-08-09 03:52:38.100826: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ea800 of size 2048 by op Fill action_count 94195480110919 step 0 next 1054 2021-08-09 03:52:38.100835: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47eb000 of size 2048 by op Fill action_count 94195480110920 step 0 next 510 2021-08-09 03:52:38.100845: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47eb800 of size 4096 by op Fill action_count 94195480110928 step 0 next 1992 2021-08-09 03:52:38.100854: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ec800 of size 4096 by op Fill action_count 94195480110929 step 0 next 1912 2021-08-09 03:52:38.100863: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ed800 of size 4096 by op Fill action_count 94195480110930 step 0 next 1156 2021-08-09 03:52:38.100892: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ee800 of size 4096 by op Fill action_count 94195480110931 step 0 next 167 2021-08-09 03:52:38.100902: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47ef800 of size 4096 by op Fill action_count 94195480110932 step 0 next 1745 2021-08-09 03:52:38.100911: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f0800 of size 4096 by op Fill action_count 94195480110940 step 0 next 805 2021-08-09 03:52:38.100920: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f1800 of size 4096 by op Fill action_count 94195480110941 step 0 next 105 2021-08-09 03:52:38.100929: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f2800 of size 4096 by op Fill action_count 94195480110942 step 0 next 1729 2021-08-09 03:52:38.100938: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f3800 of size 4096 by op Fill action_count 94195480110943 step 0 next 1659 2021-08-09 03:52:38.100947: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f4800 of size 4096 by op Fill action_count 94195480110944 step 0 next 1107 2021-08-09 03:52:38.100956: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f5800 of size 2048 by op Fill action_count 94195480110952 step 0 next 1086 2021-08-09 03:52:38.100965: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f6000 of size 2048 by op Fill action_count 94195480110953 step 0 next 353 2021-08-09 03:52:38.100974: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f6800 of size 2048 by op Fill action_count 94195480110954 step 0 next 556 2021-08-09 03:52:38.100983: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f7000 of size 2048 by op Fill action_count 94195480110955 step 0 next 1860 2021-08-09 03:52:38.100992: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f7800 of size 3840 by op Fill action_count 94195480110956 step 0 next 1247 2021-08-09 03:52:38.101001: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f8700 of size 256 by op Sub action_count 94195129465225 step 0 next 2092 2021-08-09 03:52:38.101010: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f8800 of size 256 by op Sub action_count 94195129465226 step 0 next 1900 2021-08-09 03:52:38.101021: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f8900 of size 1792 by op Fill action_count 94195455013752 step 0 next 2603 2021-08-09 03:52:38.101031: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f9000 of size 1792 by op Fill action_count 94195455013753 step 0 next 1335 2021-08-09 03:52:38.101041: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f9700 of size 1792 by op Fill action_count 94195455013754 step 0 next 1537 2021-08-09 03:52:38.101051: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47f9e00 of size 1792 by op Fill action_count 94195455013756 step 0 next 182 2021-08-09 03:52:38.101061: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47fa500 of size 2304 by op Fill action_count 94195455013757 step 0 next 946 2021-08-09 03:52:38.101071: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47fae00 of size 256 by op Sub action_count 94195152301760 step 0 next 442 2021-08-09 03:52:38.101081: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47faf00 of size 1280 by op Fill action_count 94195455013412 step 0 next 274 2021-08-09 03:52:38.101091: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47fb400 of size 256 by op Sub action_count 94195152301802 step 0 next 966 2021-08-09 03:52:38.101101: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47fb500 of size 256 by op Sub action_count 94195152301803 step 0 next 110 2021-08-09 03:52:38.101317: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47fb600 of size 256 by op Sub action_count 94195152301828 step 0 next 1865 2021-08-09 03:52:38.101375: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae47fb700 of size 7012352 by op Add action_count 94195455013529 step 0 next 781 2021-08-09 03:52:38.101423: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae4eab700 of size 24661504 by op Fill action_count 94195455013697 step 0 next 614 2021-08-09 03:52:38.101475: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6630500 of size 256 by op Sub action_count 94195273335853 step 0 next 630 2021-08-09 03:52:38.101507: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6630600 of size 256 by op Sub action_count 94195273335854 step 0 next 1017 2021-08-09 03:52:38.101661: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6630700 of size 3584 by op Fill action_count 94195455013695 step 0 next 2225 2021-08-09 03:52:38.101692: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6631500 of size 4096 by op Fill action_count 94195455013696 step 0 next 559 2021-08-09 03:52:38.101715: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6632500 of size 256 by op Sub action_count 94195273335867 step 0 next 918 2021-08-09 03:52:38.101739: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6632600 of size 256 by op Sub action_count 94195273335868 step 0 next 780 2021-08-09 03:52:38.101765: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6632700 of size 2048 by op Fill action_count 94195455013698 step 0 next 2417 2021-08-09 03:52:38.101793: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6632f00 of size 2048 by op Fill action_count 94195455013699 step 0 next 1044 2021-08-09 03:52:38.101819: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6633700 of size 3584 by op Fill action_count 94195455013700 step 0 next 1815 2021-08-09 03:52:38.101846: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6634500 of size 256 by op Sub action_count 94195273335881 step 0 next 827 2021-08-09 03:52:38.101871: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6634600 of size 256 by op Sub action_count 94195273335882 step 0 next 1995 2021-08-09 03:52:38.101895: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6634700 of size 1024 by op Fill action_count 94195467563084 step 0 next 1248 2021-08-09 03:52:38.101920: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6634b00 of size 1024 by op Fill action_count 94195467563085 step 0 next 1328 2021-08-09 03:52:38.101946: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6634f00 of size 1024 by op Fill action_count 94195467563086 step 0 next 873 2021-08-09 03:52:38.101984: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6635300 of size 1024 by op Fill action_count 94195467563087 step 0 next 384 2021-08-09 03:52:38.102011: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6635700 of size 1024 by op Fill action_count 94195467563095 step 0 next 1325 2021-08-09 03:52:38.102037: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6635b00 of size 1024 by op Fill action_count 94195467563096 step 0 next 537 2021-08-09 03:52:38.102062: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6635f00 of size 1024 by op Fill action_count 94195467563097 step 0 next 2634 2021-08-09 03:52:38.102087: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6636300 of size 1024 by op Fill action_count 94195467563098 step 0 next 1950 2021-08-09 03:52:38.102114: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6636700 of size 1024 by op Fill action_count 94195467563099 step 0 next 2660 2021-08-09 03:52:38.102143: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6636b00 of size 256 by op AssignVariableOp action_count 94195480053238 step 0 next 1239 2021-08-09 03:52:38.102171: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6636c00 of size 256 by op AssignVariableOp action_count 94195480053240 step 0 next 478 2021-08-09 03:52:38.102197: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6636d00 of size 256 by op Sub action_count 94195480110994 step 0 next 821 2021-08-09 03:52:38.102240: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6636e00 of size 256 by op AssignAddVariableOp_12 action_count 94195480109429 step 17368542405085625385 next 778 2021-08-09 03:52:38.102270: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6636f00 of size 256 by op Sub action_count 94195480110995 step 0 next 1693 2021-08-09 03:52:38.102299: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637000 of size 256 by op AssignVariableOp action_count 94195480053234 step 0 next 1852 2021-08-09 03:52:38.102327: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637100 of size 256 by op AssignVariableOp action_count 94195480053236 step 0 next 1129 2021-08-09 03:52:38.102352: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637200 of size 256 by op Sub action_count 94195480111032 step 0 next 1961 2021-08-09 03:52:38.102378: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637300 of size 1024 by op Add action_count 94195467563104 step 0 next 2418 2021-08-09 03:52:38.102405: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637700 of size 256 by op Sub action_count 94195480111033 step 0 next 2315 2021-08-09 03:52:38.102429: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637800 of size 256 by op AssignVariableOp action_count 94195480053226 step 0 next 1180 2021-08-09 03:52:38.102466: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637900 of size 256 by op Sub action_count 94195480111070 step 0 next 710 2021-08-09 03:52:38.102495: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637a00 of size 256 by op AssignAddVariableOp_10 action_count 94195480109361 step 17368542405085625385 next 2555 2021-08-09 03:52:38.102540: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637b00 of size 1024 by op Fill action_count 94195480110850 step 0 next 1888 2021-08-09 03:52:38.102570: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6637f00 of size 1280 by op Fill action_count 94195480110851 step 0 next 2317 2021-08-09 03:52:38.102595: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638400 of size 256 by op AssignAddVariableOp_52 action_count 94195480053815 step 12509324397843644032 next 153 2021-08-09 03:52:38.102624: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638500 of size 512 by op Fill action_count 94195480110836 step 0 next 835 2021-08-09 03:52:38.102652: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638700 of size 768 by op Fill action_count 94195480110837 step 0 next 958 2021-08-09 03:52:38.102683: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638a00 of size 256 by op AssignAddVariableOp_20 action_count 94195480109433 step 17368542405085625385 next 1113 2021-08-09 03:52:38.102710: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638b00 of size 256 by op AssignAddVariableOp_18 action_count 94195480109373 step 17368542405085625385 next 292 2021-08-09 03:52:38.102742: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638c00 of size 256 by op AssignAddVariableOp_28 action_count 94195480109437 step 17368542405085625385 next 610 2021-08-09 03:52:38.102778: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638d00 of size 256 by op AssignVariableOp action_count 94195480053198 step 0 next 226 2021-08-09 03:52:38.102804: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638e00 of size 256 by op AssignVariableOp action_count 94195480053204 step 0 next 1951 2021-08-09 03:52:38.102844: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6638f00 of size 256 by op AssignAddVariableOp_11 action_count 94195480109363 step 17368542405085625385 next 2366 2021-08-09 03:52:38.102873: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639000 of size 256 by op Sub action_count 94195480111071 step 0 next 2282 2021-08-09 03:52:38.102898: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639100 of size 256 by op AssignVariableOp action_count 94195479483519 step 0 next 299 2021-08-09 03:52:38.102926: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639200 of size 256 by op AssignVariableOp action_count 94195480053200 step 0 next 1839 2021-08-09 03:52:38.102955: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639300 of size 256 by op Fill action_count 94195480111102 step 0 next 1398 2021-08-09 03:52:38.102990: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639400 of size 256 by op ConstantFolding/truediv_recip action_count 94195468133239 step 0 next 2053 2021-08-09 03:52:38.103020: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639500 of size 256 by op add_16/y action_count 94195468133240 step 0 next 2983 2021-08-09 03:52:38.103048: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639600 of size 256 by op Sum_1 action_count 94195468133241 step 0 next 1948 2021-08-09 03:52:38.103075: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639700 of size 256 by op truediv/y action_count 94195468133243 step 0 next 1020 2021-08-09 03:52:38.103099: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639800 of size 256 by op binary_ce_dice/add_1/y action_count 94195468133244 step 0 next 1875 2021-08-09 03:52:38.103134: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639900 of size 256 by op AssignVariableOp action_count 94195480053248 step 0 next 436 2021-08-09 03:52:38.103163: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639a00 of size 256 by op AssignVariableOp action_count 94195480053216 step 0 next 1527 2021-08-09 03:52:38.103186: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639b00 of size 256 by op Fill action_count 94195480111103 step 0 next 1241 2021-08-09 03:52:38.103210: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639c00 of size 256 by op Fill action_count 94195467563161 step 0 next 1855 2021-08-09 03:52:38.103236: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6639d00 of size 1536 by op Fill action_count 94195467563162 step 0 next 487 2021-08-09 03:52:38.103263: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663a300 of size 512 by op Fill action_count 94195467563163 step 0 next 2496 2021-08-09 03:52:38.103296: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663a500 of size 512 by op Fill action_count 94195467563164 step 0 next 969 2021-08-09 03:52:38.103324: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663a700 of size 512 by op Fill action_count 94195467563165 step 0 next 1968 2021-08-09 03:52:38.103346: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663a900 of size 512 by op Fill action_count 94195467563167 step 0 next 1922 2021-08-09 03:52:38.103371: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663ab00 of size 512 by op Fill action_count 94195467563168 step 0 next 698 2021-08-09 03:52:38.103397: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663ad00 of size 512 by op Fill action_count 94195467563169 step 0 next 1397 2021-08-09 03:52:38.103423: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663af00 of size 1024 by op Fill action_count 94195467563171 step 0 next 1202 2021-08-09 03:52:38.103450: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663b300 of size 1024 by op Fill action_count 94195467563172 step 0 next 2420 2021-08-09 03:52:38.103484: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663b700 of size 1024 by op Fill action_count 94195467563173 step 0 next 194 2021-08-09 03:52:38.103512: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663bb00 of size 1024 by op Fill action_count 94195467563175 step 0 next 2276 2021-08-09 03:52:38.103546: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663bf00 of size 1024 by op Fill action_count 94195467563176 step 0 next 2593 2021-08-09 03:52:38.103571: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663c300 of size 1024 by op Fill action_count 94195467563177 step 0 next 1395 2021-08-09 03:52:38.103593: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663c700 of size 1792 by op Fill action_count 94195467563179 step 0 next 217 2021-08-09 03:52:38.103618: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663ce00 of size 1792 by op Fill action_count 94195467563180 step 0 next 804 2021-08-09 03:52:38.103664: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663d500 of size 1792 by op Fill action_count 94195467563181 step 0 next 1966 2021-08-09 03:52:38.103693: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663dc00 of size 1792 by op Fill action_count 94195467563183 step 0 next 1491 2021-08-09 03:52:38.103719: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663e300 of size 256 by op Sub action_count 94195273335919 step 0 next 1963 2021-08-09 03:52:38.103746: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663e400 of size 256 by op Sub action_count 94195273335920 step 0 next 424 2021-08-09 03:52:38.103774: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663e500 of size 3584 by op Fill action_count 94195455013765 step 0 next 963 2021-08-09 03:52:38.103800: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae663f300 of size 6656 by op Fill action_count 94195455013766 step 0 next 867 2021-08-09 03:52:38.103835: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6640d00 of size 256 by op Sub action_count 94195273335957 step 0 next 920 2021-08-09 03:52:38.103864: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6640e00 of size 256 by op Sub action_count 94195273335958 step 0 next 1318 2021-08-09 03:52:38.103891: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6640f00 of size 1792 by op Fill action_count 94195455013561 step 0 next 85 2021-08-09 03:52:38.103917: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6641600 of size 1792 by op Fill action_count 94195455013562 step 0 next 1266 2021-08-09 03:52:38.103943: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6641d00 of size 1024 by op Fill action_count 94195455013570 step 0 next 1684 2021-08-09 03:52:38.103968: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6642100 of size 1024 by op Fill action_count 94195455013571 step 0 next 211 2021-08-09 03:52:38.104005: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6642500 of size 256 by op Sub action_count 94195273335983 step 0 next 841 2021-08-09 03:52:38.104031: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6642600 of size 256 by op Sub action_count 94195273335984 step 0 next 1782 2021-08-09 03:52:38.104062: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6642700 of size 8192000 by op Tile_90/_0__cf__3862 action_count 94195410013342 step 0 next 1480 2021-08-09 03:52:38.104090: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6e12700 of size 1099264 by op Fill action_count 94195455013681 step 0 next 2749 2021-08-09 03:52:38.104118: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6f1ed00 of size 549632 by op Fill action_count 94195455013747 step 0 next 1434 2021-08-09 03:52:38.104146: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae6fa5000 of size 1055488 by op Fill action_count 94195455013795 step 0 next 2865 2021-08-09 03:52:38.104181: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae70a6b00 of size 256 by op AssignAddVariableOp_52 action_count 94195410014265 step 11906430663947522641 next 2684 2021-08-09 03:52:38.104211: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae70a6c00 of size 8192000 by op Tile_90/_0__cf__3864 action_count 94195412081363 step 0 next 2864 2021-08-09 03:52:38.104238: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae7876c00 of size 8792832 by op Fill action_count 94195467563190 step 0 next 2262 2021-08-09 03:52:38.104266: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae80d9700 of size 8792832 by op Add action_count 94195467562984 step 0 next 2484 2021-08-09 03:52:38.104292: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae893c200 of size 5775360 by op Add action_count 94195467563008 step 0 next 888 2021-08-09 03:52:38.104329: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae8ebe200 of size 3297536 by op Add action_count 94195467563056 step 0 next 308 2021-08-09 03:52:38.104359: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae91e3300 of size 3714816 by op Add action_count 94195467563044 step 0 next 1489 2021-08-09 03:52:38.104385: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae956e200 of size 7012352 by op Add action_count 94195467563032 step 0 next 2216 2021-08-09 03:52:38.104411: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae9c1e200 of size 2930944 by op Fill action_count 94195467563182 step 0 next 1615 2021-08-09 03:52:38.104449: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ae9ee9b00 of size 5318400 by op Add action_count 94195467563068 step 0 next 2220 2021-08-09 03:52:38.104478: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aea3fc200 of size 14024704 by op Add action_count 94195467562996 step 0 next 1230 2021-08-09 03:52:38.104504: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aeb15c200 of size 14024704 by op Fill action_count 94195467563194 step 0 next 1924 2021-08-09 03:52:38.104538: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aebebc200 of size 5775360 by op Fill action_count 94195467563198 step 0 next 875 2021-08-09 03:52:38.104577: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aec43e200 of size 3145728 by op Fill action_count 94195467563202 step 0 next 1655 2021-08-09 03:52:38.104607: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aec73e200 of size 7012352 by op Fill action_count 94195467563206 step 0 next 940 2021-08-09 03:52:38.104635: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aecdee200 of size 3297536 by op Fill action_count 94195467563210 step 0 next 325 2021-08-09 03:52:38.104661: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aed113300 of size 2198272 by op Fill action_count 94195467563214 step 0 next 1562 2021-08-09 03:52:38.104695: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aed32be00 of size 2930944 by op Fill action_count 94195467563218 step 0 next 2478 2021-08-09 03:52:38.104732: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aed5f7700 of size 824576 by op Fill action_count 94195467563222 step 0 next 1762 2021-08-09 03:52:38.104761: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aed6c0c00 of size 274944 by op Fill action_count 94195467563240 step 0 next 990 2021-08-09 03:52:38.104787: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aed703e00 of size 549632 by op Fill action_count 94195467563244 step 0 next 2485 2021-08-09 03:52:38.104813: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aed78a100 of size 1099264 by op Fill action_count 94195467563248 step 0 next 646 2021-08-09 03:52:38.104838: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aed896700 of size 2198272 by op Fill action_count 94195467563252 step 0 next 359 2021-08-09 03:52:38.104876: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aedaaf200 of size 4396544 by op Fill action_count 94195467563256 step 0 next 480 2021-08-09 03:52:38.104902: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aedee0800 of size 8792832 by op Fill action_count 94195467563260 step 0 next 1417 2021-08-09 03:52:38.104929: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aee743300 of size 14024704 by op Fill action_count 94195467563264 step 0 next 2389 2021-08-09 03:52:38.104957: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aef4a3300 of size 5775360 by op Fill action_count 94195467563268 step 0 next 1738 2021-08-09 03:52:38.104985: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aefa25300 of size 3145728 by op Fill action_count 94195467563272 step 0 next 207 2021-08-09 03:52:38.105021: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3aefd25300 of size 7012352 by op Fill action_count 94195467563276 step 0 next 1300 2021-08-09 03:52:38.105048: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af03d5300 of size 3297536 by op Fill action_count 94195467563280 step 0 next 2101 2021-08-09 03:52:38.105074: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af06fa400 of size 2198272 by op Fill action_count 94195467563284 step 0 next 2381 2021-08-09 03:52:38.105102: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0912f00 of size 2930944 by op Fill action_count 94195467563288 step 0 next 790 2021-08-09 03:52:38.105128: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0bde800 of size 824576 by op Fill action_count 94195467563292 step 0 next 759 2021-08-09 03:52:38.105165: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0ca7d00 of size 549632 by op Fill action_count 94195467563296 step 0 next 2598 2021-08-09 03:52:38.105196: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0d2e000 of size 425984 by op gradient_tape/binary_ce_dice/logistic_loss/zeros_like action_count 94195467563312 step 0 next 1368 2021-08-09 03:52:38.105224: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0d96000 of size 425984 by op Tile_36 action_count 94195467563317 step 0 next 1772 2021-08-09 03:52:38.105253: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0dfe000 of size 425984 by op Tile_54 action_count 94195467563318 step 0 next 2232 2021-08-09 03:52:38.105289: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0e66000 of size 425984 by op Tile_72 action_count 94195467563319 step 0 next 1208 2021-08-09 03:52:38.105321: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0ece000 of size 425984 by op Tile_93 action_count 94195467563321 step 0 next 704 2021-08-09 03:52:38.105350: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0f36000 of size 425984 by op Tile_18 action_count 94195467563322 step 0 next 534 2021-08-09 03:52:38.105377: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af0f9e000 of size 425984 by op Tile action_count 94195467563323 step 0 next 216 2021-08-09 03:52:38.105416: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1006000 of size 425984 by op gradient_tape/binary_ce_dice/logistic_loss/sub/Neg/_0__cf__4148 action_count 94195467563478 step 0 next 1578 2021-08-09 03:52:38.105447: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af106e000 of size 425984 by op gradient_tape/binary_ce_dice/weighted_loss/Tile_1/_1__cf__4149 action_count 94195467563479 step 0 next 1495 2021-08-09 03:52:38.105474: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af10d6000 of size 425984 by op binary_ce_dice/logistic_loss/zeros_like action_count 94195468133242 step 0 next 1119 2021-08-09 03:52:38.105501: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af113e000 of size 425984 by op Tile action_count 94195468133246 step 0 next 372 2021-08-09 03:52:38.105544: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af11a6000 of size 425984 by op Tile_93 action_count 94195468133248 step 0 next 1447 2021-08-09 03:52:38.105573: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af120e000 of size 425984 by op Tile_18 action_count 94195468133249 step 0 next 142 2021-08-09 03:52:38.105601: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1276000 of size 425984 by op Tile_36 action_count 94195468133250 step 0 next 48 2021-08-09 03:52:38.105627: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af12de000 of size 425984 by op Tile_54 action_count 94195468133251 step 0 next 554 2021-08-09 03:52:38.105661: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1346000 of size 425984 by op Tile_72 action_count 94195468133252 step 0 next 2450 2021-08-09 03:52:38.105688: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af13ae000 of size 167168 by op Fill action_count 94195480111161 step 0 next 1695 2021-08-09 03:52:38.105715: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af13d6d00 of size 167168 by op Fill action_count 94195480111251 step 0 next 801 2021-08-09 03:52:38.105741: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af13ffa00 of size 167168 by op Add action_count 94195480110833 step 0 next 1896 2021-08-09 03:52:38.105779: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1428700 of size 334336 by op Fill action_count 94195480111165 step 0 next 2100 2021-08-09 03:52:38.105806: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af147a100 of size 334336 by op Add action_count 94195480110847 step 0 next 243 2021-08-09 03:52:38.105832: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af14cbb00 of size 668416 by op Fill action_count 94195480111169 step 0 next 1256 2021-08-09 03:52:38.105854: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af156ee00 of size 668416 by op Add action_count 94195480111087 step 0 next 885 2021-08-09 03:52:38.105891: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1612100 of size 668416 by op Add action_count 94195480110861 step 0 next 69 2021-08-09 03:52:38.105917: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af16b5400 of size 1336832 by op Add action_count 94195480111075 step 0 next 522 2021-08-09 03:52:38.105943: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af17fba00 of size 1336832 by op Add action_count 94195480110875 step 0 next 2605 2021-08-09 03:52:38.105970: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1942000 of size 2673408 by op Add action_count 94195480111049 step 0 next 1528 2021-08-09 03:52:38.106007: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1bceb00 of size 2673408 by op Fill action_count 94195480111173 step 0 next 420 2021-08-09 03:52:38.106037: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af1e5b600 of size 2673408 by op Add action_count 94195480110887 step 0 next 1731 2021-08-09 03:52:38.106064: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af20e8100 of size 2899968 by op Fill action_count 94195480111177 step 0 next 2014 2021-08-09 03:52:38.106090: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af23ac100 of size 2899968 by op Add action_count 94195480110901 step 0 next 997 2021-08-09 03:52:38.106127: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af2670100 of size 3145728 by op Add action_count 94195480111023 step 0 next 2104 2021-08-09 03:52:38.106156: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af2970100 of size 3145728 by op Add action_count 94195480110913 step 0 next 90 2021-08-09 03:52:38.106184: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af2c70100 of size 2097152 by op Add action_count 94195480110985 step 0 next 346 2021-08-09 03:52:38.106211: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af2e70100 of size 891136 by op Add action_count 94195480111061 step 0 next 51 2021-08-09 03:52:38.106248: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af2f49a00 of size 1206016 by op Fill action_count 94195480111233 step 0 next 651 2021-08-09 03:52:38.106275: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af3070100 of size 4194304 by op Add action_count 94195480110949 step 0 next 1880 2021-08-09 03:52:38.106301: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af3470100 of size 4194304 by op Add action_count 94195480110973 step 0 next 125 2021-08-09 03:52:38.106338: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af3870100 of size 6291456 by op Add action_count 94195480110925 step 0 next 787 2021-08-09 03:52:38.106367: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af3e70100 of size 3145728 by op Add action_count 94195480111011 step 0 next 1250 2021-08-09 03:52:38.106396: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af4170100 of size 4010240 by op Fill action_count 94195480111181 step 0 next 282 2021-08-09 03:52:38.106433: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af4543200 of size 5426944 by op Add action_count 94195480111037 step 0 next 1109 2021-08-09 03:52:38.106463: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af4a70100 of size 14162944 by op Add action_count 94195480110937 step 0 next 2163 2021-08-09 03:52:38.106489: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af57f1d00 of size 256 by op Sub action_count 94195129464775 step 0 next 135 2021-08-09 03:52:38.106531: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af57f1e00 of size 1099264 by op Add action_count 94195455013433 step 0 next 2920 2021-08-09 03:52:38.106562: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af58fe400 of size 2723840 by op Fill action_count 94195455013685 step 0 next 1741 2021-08-09 03:52:38.106588: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97400 of size 256 by op Sub action_count 94195347535728 step 0 next 312 2021-08-09 03:52:38.106624: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97500 of size 512 by op Reshape_92 action_count 94195455584276 step 0 next 1165 2021-08-09 03:52:38.106653: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97700 of size 256 by op Cast_181/x action_count 94195455584282 step 0 next 1894 2021-08-09 03:52:38.106685: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97800 of size 256 by op unet_depth3/encode0/batch_normalization_546/batchnorm/add/y action_count 94195455584283 step 0 next 2269 2021-08-09 03:52:38.106722: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97900 of size 256 by op Cast_180/x action_count 94195455584284 step 0 next 2460 2021-08-09 03:52:38.106751: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97a00 of size 256 by op assert_greater_equal/Assert/AssertGuard/pivot_f/_3 action_count 94195455584285 step 0 next 669 2021-08-09 03:52:38.106779: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97b00 of size 256 by op assert_greater_equal/Assert/AssertGuard/pivot_t/_4 action_count 94195455584286 step 0 next 2847 2021-08-09 03:52:38.106814: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97c00 of size 256 by op Const_35 action_count 94195455584287 step 0 next 2542 2021-08-09 03:52:38.106843: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97d00 of size 256 by op assert_less_equal/Assert/AssertGuard/pivot_f/_13 action_count 94195455584288 step 0 next 2314 2021-08-09 03:52:38.106870: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97e00 of size 256 by op assert_less_equal/Assert/AssertGuard/pivot_t/_14 action_count 94195455584289 step 0 next 2364 2021-08-09 03:52:38.106897: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b97f00 of size 256 by op assert_greater_equal_1/Assert/AssertGuard/pivot_f/_31 action_count 94195455584290 step 0 next 2687 2021-08-09 03:52:38.106933: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98000 of size 256 by op assert_greater_equal_1/Assert/AssertGuard/pivot_t/_32 action_count 94195455584291 step 0 next 2565 2021-08-09 03:52:38.106963: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98100 of size 256 by op assert_less_equal_1/Assert/AssertGuard/pivot_f/_41 action_count 94195455584292 step 0 next 2320 2021-08-09 03:52:38.106990: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98200 of size 256 by op assert_less_equal_1/Assert/AssertGuard/pivot_t/_42 action_count 94195455584293 step 0 next 1703 2021-08-09 03:52:38.107017: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98300 of size 256 by op assert_greater_equal_2/Assert/AssertGuard/pivot_f/_59 action_count 94195455584294 step 0 next 2452 2021-08-09 03:52:38.107053: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98400 of size 256 by op assert_greater_equal_2/Assert/AssertGuard/pivot_t/_60 action_count 94195455584295 step 0 next 3058 2021-08-09 03:52:38.107081: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98500 of size 256 by op AssignVariableOp action_count 94195467505291 step 0 next 2676 2021-08-09 03:52:38.107107: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98600 of size 256 by op AssignVariableOp action_count 94195480053202 step 0 next 2558 2021-08-09 03:52:38.107129: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98700 of size 256 by op AssignVariableOp action_count 94195467505325 step 0 next 779 2021-08-09 03:52:38.107162: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98800 of size 256 by op AssignVariableOp action_count 94195467505327 step 0 next 2591 2021-08-09 03:52:38.107191: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98900 of size 512 by op AssignVariableOp action_count 94195467505337 step 0 next 797 2021-08-09 03:52:38.107217: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98b00 of size 768 by op Fill action_count 94195467562906 step 0 next 716 2021-08-09 03:52:38.107243: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98e00 of size 256 by op Sub action_count 94195347535757 step 0 next 485 2021-08-09 03:52:38.107265: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b98f00 of size 256 by op Sub action_count 94195347535770 step 0 next 233 2021-08-09 03:52:38.107301: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b99000 of size 256 by op Sub action_count 94195347535771 step 0 next 1231 2021-08-09 03:52:38.107328: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af5b99100 of size 6291456 by op Add action_count 94195480110961 step 0 next 1088 2021-08-09 03:52:38.107355: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af6199100 of size 6045696 by op Add action_count 94195480110999 step 0 next 445 2021-08-09 03:52:38.107382: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af675d100 of size 3145728 by op Fill action_count 94195480111185 step 0 next 460 2021-08-09 03:52:38.107408: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af6a5d100 of size 6291456 by op Fill action_count 94195480111189 step 0 next 78 2021-08-09 03:52:38.107445: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af705d100 of size 12582912 by op Fill action_count 94195480111193 step 0 next 1485 2021-08-09 03:52:38.107473: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af7c5d100 of size 4194304 by op Fill action_count 94195480111197 step 0 next 694 2021-08-09 03:52:38.107499: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af805d100 of size 6291456 by op Fill action_count 94195480111201 step 0 next 1071 2021-08-09 03:52:38.107528: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af865d100 of size 3145728 by op Fill action_count 94195480111205 step 0 next 1285 2021-08-09 03:52:38.107563: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af895d100 of size 2097152 by op Fill action_count 94195480111209 step 0 next 627 2021-08-09 03:52:38.107592: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af8b5d100 of size 6045696 by op Fill action_count 94195480111213 step 0 next 1817 2021-08-09 03:52:38.107620: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af9121100 of size 3145728 by op Fill action_count 94195480111217 step 0 next 531 2021-08-09 03:52:38.107648: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af9421100 of size 1933312 by op Fill action_count 94195480111221 step 0 next 1690 2021-08-09 03:52:38.107685: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af95f9100 of size 4010240 by op Fill action_count 94195480111225 step 0 next 34 2021-08-09 03:52:38.107714: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af99cc200 of size 2673408 by op Fill action_count 94195480111229 step 0 next 2339 2021-08-09 03:52:38.107744: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af9c58d00 of size 1002752 by op Fill action_count 94195480111237 step 0 next 202 2021-08-09 03:52:38.107771: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af9d4da00 of size 668416 by op Fill action_count 94195480111241 step 0 next 1126 2021-08-09 03:52:38.107800: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af9df0d00 of size 334336 by op Fill action_count 94195480111255 step 0 next 753 2021-08-09 03:52:38.107827: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af9e42700 of size 668416 by op Fill action_count 94195480111259 step 0 next 99 2021-08-09 03:52:38.107854: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3af9ee5a00 of size 1336832 by op Fill action_count 94195480111263 step 0 next 70 2021-08-09 03:52:38.107880: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afa02c000 of size 2673408 by op Fill action_count 94195480111267 step 0 next 483 2021-08-09 03:52:38.107904: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afa2b8b00 of size 2899968 by op Fill action_count 94195480111271 step 0 next 1603 2021-08-09 03:52:38.107926: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afa57cb00 of size 3145728 by op Fill action_count 94195480111275 step 0 next 1661 2021-08-09 03:52:38.107950: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afa87cb00 of size 6291456 by op Fill action_count 94195480111279 step 0 next 1123 2021-08-09 03:52:38.107988: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afae7cb00 of size 12582912 by op Fill action_count 94195480111283 step 0 next 92 2021-08-09 03:52:38.108018: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afba7cb00 of size 4194304 by op Fill action_count 94195480111287 step 0 next 1326 2021-08-09 03:52:38.108046: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afbe7cb00 of size 6291456 by op Fill action_count 94195480111291 step 0 next 695 2021-08-09 03:52:38.108073: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afc47cb00 of size 3145728 by op Fill action_count 94195480111295 step 0 next 626 2021-08-09 03:52:38.108099: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afc77cb00 of size 2097152 by op Fill action_count 94195480111299 step 0 next 1067 2021-08-09 03:52:38.108126: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afc97cb00 of size 6045696 by op Fill action_count 94195480111303 step 0 next 1103 2021-08-09 03:52:38.108162: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afcf40b00 of size 2048 by op Fill action_count 94195480111305 step 0 next 472 2021-08-09 03:52:38.108190: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afcf41300 of size 2048 by op Fill action_count 94195480111306 step 0 next 1367 2021-08-09 03:52:38.108216: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afcf41b00 of size 3145728 by op Fill action_count 94195480111307 step 0 next 750 2021-08-09 03:52:38.108238: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd241b00 of size 2048 by op Fill action_count 94195480111308 step 0 next 286 2021-08-09 03:52:38.108262: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd242300 of size 2048 by op Fill action_count 94195480111309 step 0 next 658 2021-08-09 03:52:38.108284: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd242b00 of size 2048 by op Fill action_count 94195480111310 step 0 next 1090 2021-08-09 03:52:38.108316: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd243300 of size 1933312 by op Fill action_count 94195480111311 step 0 next 370 2021-08-09 03:52:38.108343: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd41b300 of size 2048 by op Fill action_count 94195480111312 step 0 next 1555 2021-08-09 03:52:38.108369: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd41bb00 of size 2048 by op Fill action_count 94195480111313 step 0 next 947 2021-08-09 03:52:38.108394: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd41c300 of size 2048 by op Fill action_count 94195480111314 step 0 next 1504 2021-08-09 03:52:38.108421: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd41cb00 of size 4010240 by op Fill action_count 94195480111315 step 0 next 1336 2021-08-09 03:52:38.108450: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd7efc00 of size 2048 by op Fill action_count 94195480111316 step 0 next 492 2021-08-09 03:52:38.108476: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd7f0400 of size 2048 by op Fill action_count 94195480111317 step 0 next 1171 2021-08-09 03:52:38.108503: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd7f0c00 of size 2048 by op Fill action_count 94195480111318 step 0 next 469 2021-08-09 03:52:38.108541: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afd7f1400 of size 2673408 by op Fill action_count 94195480111319 step 0 next 1529 2021-08-09 03:52:38.108570: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afda7df00 of size 2048 by op Fill action_count 94195480111320 step 0 next 948 2021-08-09 03:52:38.108607: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afda7e700 of size 2048 by op Fill action_count 94195480111321 step 0 next 1599 2021-08-09 03:52:38.108636: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afda7ef00 of size 2048 by op Fill action_count 94195480111322 step 0 next 1009 2021-08-09 03:52:38.108662: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afda7f700 of size 891136 by op Fill action_count 94195480111323 step 0 next 569 2021-08-09 03:52:38.108689: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdb59000 of size 1024 by op Fill action_count 94195480111324 step 0 next 1520 2021-08-09 03:52:38.108717: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdb59400 of size 1024 by op Fill action_count 94195480111325 step 0 next 463 2021-08-09 03:52:38.108745: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdb59800 of size 1024 by op Fill action_count 94195480111326 step 0 next 1293 2021-08-09 03:52:38.108780: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdb59c00 of size 1002752 by op Fill action_count 94195480111327 step 0 next 1486 2021-08-09 03:52:38.108808: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdc4e900 of size 1024 by op Fill action_count 94195480111328 step 0 next 1642 2021-08-09 03:52:38.108830: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdc4ed00 of size 1024 by op Fill action_count 94195480111329 step 0 next 296 2021-08-09 03:52:38.108854: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdc4f100 of size 1024 by op Fill action_count 94195480111330 step 0 next 654 2021-08-09 03:52:38.108882: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdc4f500 of size 668416 by op Fill action_count 94195480111331 step 0 next 187 2021-08-09 03:52:38.108908: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf2800 of size 1024 by op Fill action_count 94195480111332 step 0 next 1851 2021-08-09 03:52:38.108934: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf2c00 of size 1024 by op Fill action_count 94195480111333 step 0 next 713 2021-08-09 03:52:38.108962: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3000 of size 1024 by op Fill action_count 94195480111334 step 0 next 116 2021-08-09 03:52:38.108995: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3400 of size 1024 by op Fill action_count 94195480111335 step 0 next 2017 2021-08-09 03:52:38.109022: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3800 of size 256 by op Fill action_count 94195480111336 step 0 next 1222 2021-08-09 03:52:38.109058: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3900 of size 256 by op ConstantFolding/truediv_recip action_count 94195480111337 step 0 next 1538 2021-08-09 03:52:38.109088: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3a00 of size 256 by op ConstantFolding/gradient_tape/unet_depth4/encode0/batch_normalization_580/moments/truediv_recip action_count 94 195480111338 step 0 next 563 2021-08-09 03:52:38.109118: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3b00 of size 256 by op ConstantFolding/gradient_tape/unet_depth4/encode1/batch_normalization_582/moments/truediv_recip action_count 94 195480111339 step 0 next 1699 2021-08-09 03:52:38.109148: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3c00 of size 256 by op ConstantFolding/gradient_tape/unet_depth4/encode2/batch_normalization_584/moments/truediv_recip action_count 94 195480111340 step 0 next 960 2021-08-09 03:52:38.109178: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3d00 of size 256 by op ConstantFolding/gradient_tape/unet_depth4/encode3/batch_normalization_586/moments/truediv_recip action_count 94 195480111341 step 0 next 1704 2021-08-09 03:52:38.109207: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3e00 of size 256 by op ConstantFolding/gradient_tape/unet_depth4/two_conv_center/batch_normalization_588/moments/truediv_recip action_ count 94195480111342 step 0 next 1345 2021-08-09 03:52:38.109234: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf3f00 of size 256 by op Adam/add/y action_count 94195480111343 step 0 next 1887 2021-08-09 03:52:38.109261: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf4000 of size 256 by op add_16/y action_count 94195480111344 step 0 next 1579 2021-08-09 03:52:38.109298: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf4100 of size 256 by op gradient_tape/binary_ce_dice/weighted_loss/Reshape_1 action_count 94195480111345 step 0 next 2117 2021-08-09 03:52:38.109329: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf4200 of size 256 by op gradient_tape/binary_ce_dice/logistic_loss/zeros_like/Const action_count 94195480111346 step 0 next 690 2021-08-09 03:52:38.109355: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf4300 of size 256 by op Sum_1 action_count 94195480111347 step 0 next 1701 2021-08-09 03:52:38.109391: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdcf4400 of size 1441792 by op gradient_tape/binary_ce_dice/logistic_loss/zeros_like action_count 94195480111348 step 0 next 2114 2021-08-09 03:52:38.109420: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afde54400 of size 256 by op Adam/gradients/ones action_count 94195480111349 step 0 next 1058 2021-08-09 03:52:38.109447: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afde54500 of size 256 by op truediv/y action_count 94195480111350 step 0 next 1822 2021-08-09 03:52:38.109473: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afde54600 of size 256 by op binary_ce_dice/add_1/y action_count 94195480111351 step 0 next 17 2021-08-09 03:52:38.109510: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afde54700 of size 1441792 by op Tile_93 action_count 94195480111352 step 0 next 223 2021-08-09 03:52:38.109544: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdfb4700 of size 256 by op binary_ce_dice/weighted_loss/num_elements/Cast action_count 94195480111353 step 0 next 2135 2021-08-09 03:52:38.109571: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afdfb4800 of size 1441792 by op Tile_18 action_count 94195480111354 step 0 next 692 2021-08-09 03:52:38.109597: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe114800 of size 1441792 by op Tile_36 action_count 94195480111355 step 0 next 1499 2021-08-09 03:52:38.109619: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe274800 of size 1441792 by op Tile_54 action_count 94195480111356 step 0 next 1747 2021-08-09 03:52:38.109644: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe3d4800 of size 1441792 by op Tile_72 action_count 94195480111357 step 0 next 1220 2021-08-09 03:52:38.109672: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe534800 of size 1441792 by op Tile action_count 94195480111358 step 0 next 1840 2021-08-09 03:52:38.109709: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe694800 of size 512 by op Reshape_92 action_count 94195480111359 step 0 next 941 2021-08-09 03:52:38.109740: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe694a00 of size 256 by op unet_depth4/conv_transpose_decoder0/batch_normalization_599/AssignMovingAvg/decay action_count 94195480111360 s tep 0 next 283 2021-08-09 03:52:38.109767: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe694b00 of size 256 by op unet_depth4/two_conv_decoder0/batch_normalization_601/batchnorm/add/y action_count 94195480111361 step 0 next 3 86 2021-08-09 03:52:38.109794: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe694c00 of size 256 by op gradient_tape/binary_ce_dice/logistic_loss/add/x action_count 94195480111362 step 0 next 1243 2021-08-09 03:52:38.109820: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe694d00 of size 256 by op assert_greater_equal/Assert/AssertGuard/pivot_f/_3 action_count 94195480111363 step 0 next 2145 2021-08-09 03:52:38.109847: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe694e00 of size 256 by op assert_greater_equal/Assert/AssertGuard/pivot_t/_4 action_count 94195480111364 step 0 next 1275 2021-08-09 03:52:38.109884: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe694f00 of size 256 by op assert_less_equal/Assert/AssertGuard/pivot_f/_13 action_count 94195480111365 step 0 next 1304 2021-08-09 03:52:38.109912: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695000 of size 256 by op assert_less_equal/Assert/AssertGuard/pivot_t/_14 action_count 94195480111366 step 0 next 1317 2021-08-09 03:52:38.109938: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695100 of size 256 by op Const_35 action_count 94195480111367 step 0 next 720 2021-08-09 03:52:38.109965: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695200 of size 256 by op ArithmeticOptimizer/AddOpsRewrite_add_16/tmp_var_zeros action_count 94195480111368 step 0 next 1796 2021-08-09 03:52:38.109991: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695300 of size 256 by op assert_greater_equal_1/Assert/AssertGuard/pivot_f/_31 action_count 94195480111369 step 0 next 1288 2021-08-09 03:52:38.110018: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695400 of size 256 by op assert_greater_equal_1/Assert/AssertGuard/pivot_t/_32 action_count 94195480111370 step 0 next 1833 2021-08-09 03:52:38.110052: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695500 of size 256 by op assert_less_equal_1/Assert/AssertGuard/pivot_f/_41 action_count 94195480111371 step 0 next 1133 2021-08-09 03:52:38.110080: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695600 of size 256 by op assert_less_equal_1/Assert/AssertGuard/pivot_t/_42 action_count 94195480111372 step 0 next 474 2021-08-09 03:52:38.110109: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695700 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder0/batch_normalization_601/moments/scalar action_count 94195480111373 step 0 next 224 2021-08-09 03:52:38.110137: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695800 of size 256 by op assert_greater_equal_2/Assert/AssertGuard/pivot_f/_59 action_count 94195480111375 step 0 next 1522 2021-08-09 03:52:38.110163: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695900 of size 256 by op assert_greater_equal_2/Assert/AssertGuard/pivot_t/_60 action_count 94195480111376 step 0 next 598 2021-08-09 03:52:38.110190: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695a00 of size 256 by op assert_less_equal_2/Assert/AssertGuard/pivot_f/_69 action_count 94195480111377 step 0 next 1673 2021-08-09 03:52:38.110226: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695b00 of size 256 by op assert_less_equal_2/Assert/AssertGuard/pivot_t/_70 action_count 94195480111378 step 0 next 1565 2021-08-09 03:52:38.110257: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695c00 of size 256 by op assert_greater_equal_3/Assert/AssertGuard/pivot_f/_87 action_count 94195480111379 step 0 next 1719 2021-08-09 03:52:38.110282: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695d00 of size 256 by op assert_greater_equal_3/Assert/AssertGuard/pivot_t/_88 action_count 94195480111380 step 0 next 1730 2021-08-09 03:52:38.110309: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695e00 of size 256 by op assert_less_equal_3/Assert/AssertGuard/pivot_f/_97 action_count 94195480111381 step 0 next 1514 2021-08-09 03:52:38.110337: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe695f00 of size 256 by op assert_less_equal_3/Assert/AssertGuard/pivot_t/_98 action_count 94195480111382 step 0 next 1671 2021-08-09 03:52:38.110365: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696000 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder0/batch_normalization_600/moments/scalar action_count 94195480111383 step 0 next 1576 2021-08-09 03:52:38.110403: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696100 of size 256 by op assert_greater_equal_4/Assert/AssertGuard/pivot_f/_115 action_count 94195480111384 step 0 next 1597 2021-08-09 03:52:38.110431: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696200 of size 256 by op assert_greater_equal_4/Assert/AssertGuard/pivot_t/_116 action_count 94195480111385 step 0 next 1512 2021-08-09 03:52:38.110458: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696300 of size 256 by op assert_less_equal_4/Assert/AssertGuard/pivot_f/_125 action_count 94195480111386 step 0 next 1558 2021-08-09 03:52:38.110484: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696400 of size 256 by op assert_less_equal_4/Assert/AssertGuard/pivot_t/_126 action_count 94195480111387 step 0 next 1539 2021-08-09 03:52:38.110511: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696500 of size 256 by op assert_greater_equal_5/Assert/AssertGuard/pivot_f/_143 action_count 94195480111388 step 0 next 1536 2021-08-09 03:52:38.110545: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696600 of size 256 by op assert_greater_equal_5/Assert/AssertGuard/pivot_t/_144 action_count 94195480111389 step 0 next 1590 2021-08-09 03:52:38.110583: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696700 of size 256 by op gradient_tape/unet_depth4/conv_transpose_decoder0/batch_normalization_599/moments/scalar action_count 941954801 11390 step 0 next 1725 2021-08-09 03:52:38.110613: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696800 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_f/_153 action_count 94195480111391 step 0 next 1676 2021-08-09 03:52:38.110642: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696900 of size 256 by op assert_less_equal_5/Assert/AssertGuard/pivot_t/_154 action_count 94195480111392 step 0 next 1632 2021-08-09 03:52:38.110669: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696a00 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_f/_171 action_count 94195480111393 step 0 next 1532 2021-08-09 03:52:38.110696: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696b00 of size 256 by op assert_greater_equal_6/Assert/AssertGuard/pivot_t/_172 action_count 94195480111394 step 0 next 1718 2021-08-09 03:52:38.110722: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696c00 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_f/_181 action_count 94195480111395 step 0 next 427 2021-08-09 03:52:38.110758: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696d00 of size 256 by op assert_less_equal_6/Assert/AssertGuard/pivot_t/_182 action_count 94195480111396 step 0 next 1553 2021-08-09 03:52:38.110788: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696e00 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder1/batch_normalization_598/moments/scalar action_count 94195480111397 step 0 next 516 2021-08-09 03:52:38.110814: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe696f00 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_f/_199 action_count 94195480111398 step 0 next 1550 2021-08-09 03:52:38.110841: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697000 of size 256 by op assert_greater_equal_7/Assert/AssertGuard/pivot_t/_200 action_count 94195480111399 step 0 next 129 2021-08-09 03:52:38.110867: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697100 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_f/_209 action_count 94195480111400 step 0 next 369 2021-08-09 03:52:38.110894: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697200 of size 256 by op assert_less_equal_7/Assert/AssertGuard/pivot_t/_210 action_count 94195480111401 step 0 next 1542 2021-08-09 03:52:38.110920: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697300 of size 256 by op assert_greater_equal_8/Assert/AssertGuard/pivot_f/_227 action_count 94195480111402 step 0 next 433 2021-08-09 03:52:38.110958: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697400 of size 256 by op assert_greater_equal_8/Assert/AssertGuard/pivot_t/_228 action_count 94195480111403 step 0 next 1678 2021-08-09 03:52:38.110986: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697500 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder1/batch_normalization_597/moments/scalar action_count 94195480111404 step 0 next 241 2021-08-09 03:52:38.111015: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697600 of size 256 by op assert_less_equal_8/Assert/AssertGuard/pivot_f/_237 action_count 94195480111405 step 0 next 1776 2021-08-09 03:52:38.111052: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697700 of size 256 by op assert_less_equal_8/Assert/AssertGuard/pivot_t/_238 action_count 94195480111406 step 0 next 1568 2021-08-09 03:52:38.111081: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697800 of size 256 by op assert_greater_equal_9/Assert/AssertGuard/pivot_f/_255 action_count 94195480111407 step 0 next 951 2021-08-09 03:52:38.111109: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697900 of size 256 by op assert_greater_equal_9/Assert/AssertGuard/pivot_t/_256 action_count 94195480111408 step 0 next 1720 2021-08-09 03:52:38.111135: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697a00 of size 256 by op assert_less_equal_9/Assert/AssertGuard/pivot_f/_265 action_count 94195480111409 step 0 next 538 2021-08-09 03:52:38.111161: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697b00 of size 256 by op assert_less_equal_9/Assert/AssertGuard/pivot_t/_266 action_count 94195480111410 step 0 next 1287 2021-08-09 03:52:38.111190: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697c00 of size 256 by op assert_greater_equal_10/Assert/AssertGuard/pivot_f/_283 action_count 94195480111411 step 0 next 549 2021-08-09 03:52:38.111218: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697d00 of size 256 by op assert_greater_equal_10/Assert/AssertGuard/pivot_t/_284 action_count 94195480111412 step 0 next 605 2021-08-09 03:52:38.111243: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697e00 of size 256 by op gradient_tape/unet_depth4/conv_transpose_decoder1/batch_normalization_596/moments/scalar action_count 941954801 11413 step 0 next 1567 2021-08-09 03:52:38.111283: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe697f00 of size 256 by op assert_less_equal_10/Assert/AssertGuard/pivot_f/_293 action_count 94195480111414 step 0 next 111 2021-08-09 03:52:38.111311: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698000 of size 256 by op assert_less_equal_10/Assert/AssertGuard/pivot_t/_294 action_count 94195480111415 step 0 next 390 2021-08-09 03:52:38.111340: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698100 of size 256 by op assert_greater_equal_11/Assert/AssertGuard/pivot_f/_311 action_count 94195480111416 step 0 next 907 2021-08-09 03:52:38.111366: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698200 of size 256 by op assert_greater_equal_11/Assert/AssertGuard/pivot_t/_312 action_count 94195480111417 step 0 next 1209 2021-08-09 03:52:38.111393: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698300 of size 256 by op assert_less_equal_11/Assert/AssertGuard/pivot_f/_321 action_count 94195480111418 step 0 next 289 2021-08-09 03:52:38.111430: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698400 of size 256 by op assert_less_equal_11/Assert/AssertGuard/pivot_t/_322 action_count 94195480111419 step 0 next 1891 2021-08-09 03:52:38.111458: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698500 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder2/batch_normalization_595/moments/scalar action_count 94195480111420 step 0 next 268 2021-08-09 03:52:38.111485: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698600 of size 256 by op assert_greater_equal_12/Assert/AssertGuard/pivot_f/_339 action_count 94195480111421 step 0 next 118 2021-08-09 03:52:38.111511: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698700 of size 256 by op assert_greater_equal_12/Assert/AssertGuard/pivot_t/_340 action_count 94195480111422 step 0 next 1145 2021-08-09 03:52:38.111545: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698800 of size 256 by op assert_less_equal_12/Assert/AssertGuard/pivot_f/_349 action_count 94195480111423 step 0 next 893 2021-08-09 03:52:38.111574: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698900 of size 256 by op assert_less_equal_12/Assert/AssertGuard/pivot_t/_350 action_count 94195480111424 step 0 next 1114 2021-08-09 03:52:38.111603: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698a00 of size 256 by op assert_greater_equal_13/Assert/AssertGuard/pivot_f/_367 action_count 94195480111425 step 0 next 1753 2021-08-09 03:52:38.111640: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698b00 of size 256 by op assert_greater_equal_13/Assert/AssertGuard/pivot_t/_368 action_count 94195480111426 step 0 next 1264 2021-08-09 03:52:38.111667: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698c00 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder2/batch_normalization_594/moments/scalar action_count 94195480111427 step 0 next 475 2021-08-09 03:52:38.111706: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698d00 of size 256 by op assert_less_equal_13/Assert/AssertGuard/pivot_f/_377 action_count 94195480111428 step 0 next 1060 2021-08-09 03:52:38.111730: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698e00 of size 256 by op assert_less_equal_13/Assert/AssertGuard/pivot_t/_378 action_count 94195480111429 step 0 next 1700 2021-08-09 03:52:38.111755: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe698f00 of size 256 by op assert_greater_equal_14/Assert/AssertGuard/pivot_f/_395 action_count 94195480111430 step 0 next 1755 2021-08-09 03:52:38.111789: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699000 of size 256 by op assert_greater_equal_14/Assert/AssertGuard/pivot_t/_396 action_count 94195480111431 step 0 next 2062 2021-08-09 03:52:38.111813: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699100 of size 256 by op assert_less_equal_14/Assert/AssertGuard/pivot_f/_405 action_count 94195480111432 step 0 next 1877 2021-08-09 03:52:38.111838: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699200 of size 256 by op assert_less_equal_14/Assert/AssertGuard/pivot_t/_406 action_count 94195480111433 step 0 next 1596 2021-08-09 03:52:38.111862: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699300 of size 256 by op gradient_tape/unet_depth4/conv_transpose_decoder2/batch_normalization_593/moments/scalar action_count 941954801 11434 step 0 next 1140 2021-08-09 03:52:38.111888: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699400 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_f/_423 action_count 94195480111435 step 0 next 418 2021-08-09 03:52:38.111913: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699500 of size 256 by op assert_greater_equal_15/Assert/AssertGuard/pivot_t/_424 action_count 94195480111436 step 0 next 2194 2021-08-09 03:52:38.111947: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699600 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_f/_433 action_count 94195480111437 step 0 next 876 2021-08-09 03:52:38.111975: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699700 of size 256 by op assert_less_equal_15/Assert/AssertGuard/pivot_t/_434 action_count 94195480111438 step 0 next 387 2021-08-09 03:52:38.112003: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699800 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_f/_451 action_count 94195480111439 step 0 next 2048 2021-08-09 03:52:38.112030: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699900 of size 256 by op assert_greater_equal_16/Assert/AssertGuard/pivot_t/_452 action_count 94195480111440 step 0 next 1297 2021-08-09 03:52:38.112060: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699a00 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder3/batch_normalization_592/moments/scalar action_count 94195480111441 step 0 next 1552 2021-08-09 03:52:38.112095: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699b00 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_f/_461 action_count 94195480111442 step 0 next 1858 2021-08-09 03:52:38.112124: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699c00 of size 256 by op assert_less_equal_16/Assert/AssertGuard/pivot_t/_462 action_count 94195480111443 step 0 next 1274 2021-08-09 03:52:38.112150: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699d00 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_f/_479 action_count 94195480111444 step 0 next 2097 2021-08-09 03:52:38.112177: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699e00 of size 256 by op assert_greater_equal_17/Assert/AssertGuard/pivot_t/_480 action_count 94195480111445 step 0 next 55 2021-08-09 03:52:38.112203: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe699f00 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_f/_489 action_count 94195480111446 step 0 next 1333 2021-08-09 03:52:38.112230: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a000 of size 256 by op assert_less_equal_17/Assert/AssertGuard/pivot_t/_490 action_count 94195480111447 step 0 next 1263 2021-08-09 03:52:38.112256: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a100 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_f/_507 action_count 94195480111448 step 0 next 1277 2021-08-09 03:52:38.112286: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a200 of size 256 by op assert_greater_equal_18/Assert/AssertGuard/pivot_t/_508 action_count 94195480111449 step 0 next 1079 2021-08-09 03:52:38.112314: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a300 of size 256 by op gradient_tape/unet_depth4/two_conv_decoder3/batch_normalization_591/moments/scalar action_count 94195480111450 step 0 next 1543 2021-08-09 03:52:38.112339: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a400 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_f/_517 action_count 94195480111451 step 0 next 1722 2021-08-09 03:52:38.112365: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a500 of size 256 by op assert_less_equal_18/Assert/AssertGuard/pivot_t/_518 action_count 94195480111452 step 0 next 2614 2021-08-09 03:52:38.112403: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a600 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_f/_535 action_count 94195480111453 step 0 next 365 2021-08-09 03:52:38.112429: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a700 of size 256 by op assert_greater_equal_19/Assert/AssertGuard/pivot_t/_536 action_count 94195480111454 step 0 next 1068 2021-08-09 03:52:38.112456: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a800 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_f/_545 action_count 94195480111455 step 0 next 900 2021-08-09 03:52:38.112481: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69a900 of size 256 by op assert_less_equal_19/Assert/AssertGuard/pivot_t/_546 action_count 94195480111456 step 0 next 802 2021-08-09 03:52:38.112508: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69aa00 of size 256 by op gradient_tape/unet_depth4/conv_transpose_decoder3/batch_normalization_590/moments/scalar action_count 941954801 11457 step 0 next 2922 2021-08-09 03:52:38.112542: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ab00 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_f/_563 action_count 94195480111458 step 0 next 2994 2021-08-09 03:52:38.112566: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ac00 of size 256 by op assert_greater_equal_20/Assert/AssertGuard/pivot_t/_564 action_count 94195480111459 step 0 next 1443 2021-08-09 03:52:38.112589: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ad00 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_f/_573 action_count 94195480111460 step 0 next 3039 2021-08-09 03:52:38.112612: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ae00 of size 256 by op assert_less_equal_20/Assert/AssertGuard/pivot_t/_574 action_count 94195480111461 step 0 next 2814 2021-08-09 03:52:38.112646: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69af00 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_f/_591 action_count 94195480111462 step 0 next 2808 2021-08-09 03:52:38.112673: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b000 of size 256 by op assert_greater_equal_21/Assert/AssertGuard/pivot_t/_592 action_count 94195480111463 step 0 next 3093 2021-08-09 03:52:38.112697: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b100 of size 256 by op gradient_tape/unet_depth4/two_conv_center/batch_normalization_589/moments/scalar action_count 94195480111464 st ep 0 next 2882 2021-08-09 03:52:38.112721: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b200 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_f/_601 action_count 94195480111465 step 0 next 2963 2021-08-09 03:52:38.112755: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b300 of size 256 by op assert_less_equal_21/Assert/AssertGuard/pivot_t/_602 action_count 94195480111466 step 0 next 1412 2021-08-09 03:52:38.112781: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b400 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_f/_619 action_count 94195480111467 step 0 next 2849 2021-08-09 03:52:38.112805: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b500 of size 256 by op assert_greater_equal_22/Assert/AssertGuard/pivot_t/_620 action_count 94195480111468 step 0 next 2795 2021-08-09 03:52:38.112830: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b600 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_f/_629 action_count 94195480111469 step 0 next 2932 2021-08-09 03:52:38.112856: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b700 of size 256 by op assert_less_equal_22/Assert/AssertGuard/pivot_t/_630 action_count 94195480111470 step 0 next 2770 2021-08-09 03:52:38.112880: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b800 of size 256 by op gradient_tape/unet_depth4/two_conv_center/batch_normalization_588/moments/scalar action_count 94195480111471 st ep 0 next 2243 2021-08-09 03:52:38.112905: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69b900 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_f/_647 action_count 94195480111472 step 0 next 2759 2021-08-09 03:52:38.112929: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ba00 of size 256 by op assert_greater_equal_23/Assert/AssertGuard/pivot_t/_648 action_count 94195480111473 step 0 next 2741 2021-08-09 03:52:38.112965: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69bb00 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_f/_657 action_count 94195480111474 step 0 next 443 2021-08-09 03:52:38.113001: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69bc00 of size 256 by op assert_less_equal_23/Assert/AssertGuard/pivot_t/_658 action_count 94195480111475 step 0 next 2897 2021-08-09 03:52:38.113027: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69bd00 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_f/_675 action_count 94195480111476 step 0 next 2857 2021-08-09 03:52:38.113050: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69be00 of size 256 by op assert_greater_equal_24/Assert/AssertGuard/pivot_t/_676 action_count 94195480111477 step 0 next 3087 2021-08-09 03:52:38.113073: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69bf00 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_f/_685 action_count 94195480111478 step 0 next 3055 2021-08-09 03:52:38.113100: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c000 of size 256 by op assert_less_equal_24/Assert/AssertGuard/pivot_t/_686 action_count 94195480111479 step 0 next 2949 2021-08-09 03:52:38.113125: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c100 of size 256 by op gradient_tape/unet_depth4/encode3/batch_normalization_587/moments/scalar action_count 94195480111480 step 0 nex t 2981 2021-08-09 03:52:38.113159: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c200 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_f/_703 action_count 94195480111481 step 0 next 3083 2021-08-09 03:52:38.113180: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c300 of size 256 by op assert_greater_equal_25/Assert/AssertGuard/pivot_t/_704 action_count 94195480111482 step 0 next 3088 2021-08-09 03:52:38.113203: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c400 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_f/_713 action_count 94195480111483 step 0 next 2752 2021-08-09 03:52:38.113226: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c500 of size 256 by op assert_less_equal_25/Assert/AssertGuard/pivot_t/_714 action_count 94195480111484 step 0 next 3048 2021-08-09 03:52:38.113253: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c600 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_f/_731 action_count 94195480111485 step 0 next 3002 2021-08-09 03:52:38.113285: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c700 of size 256 by op assert_greater_equal_26/Assert/AssertGuard/pivot_t/_732 action_count 94195480111486 step 0 next 349 2021-08-09 03:52:38.113310: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c800 of size 256 by op gradient_tape/unet_depth4/encode3/batch_normalization_586/moments/scalar action_count 94195480111487 step 0 nex t 2859 2021-08-09 03:52:38.113334: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69c900 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_f/_741 action_count 94195480111488 step 0 next 2696 2021-08-09 03:52:38.113358: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ca00 of size 256 by op assert_less_equal_26/Assert/AssertGuard/pivot_t/_742 action_count 94195480111489 step 0 next 2629 2021-08-09 03:52:38.113385: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69cb00 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_f/_759 action_count 94195480111490 step 0 next 3008 2021-08-09 03:52:38.113405: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69cc00 of size 256 by op assert_greater_equal_27/Assert/AssertGuard/pivot_t/_760 action_count 94195480111491 step 0 next 2093 2021-08-09 03:52:38.113428: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69cd00 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_f/_769 action_count 94195480111492 step 0 next 2978 2021-08-09 03:52:38.113459: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ce00 of size 256 by op assert_less_equal_27/Assert/AssertGuard/pivot_t/_770 action_count 94195480111493 step 0 next 3074 2021-08-09 03:52:38.113485: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69cf00 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_f/_787 action_count 94195480111494 step 0 next 3075 2021-08-09 03:52:38.113509: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d000 of size 256 by op assert_greater_equal_28/Assert/AssertGuard/pivot_t/_788 action_count 94195480111495 step 0 next 3018 2021-08-09 03:52:38.113550: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d100 of size 256 by op gradient_tape/unet_depth4/encode2/batch_normalization_585/moments/scalar action_count 94195480111496 step 0 nex t 2844 2021-08-09 03:52:38.113577: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d200 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_f/_797 action_count 94195480111497 step 0 next 1422 2021-08-09 03:52:38.113601: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d300 of size 256 by op assert_less_equal_28/Assert/AssertGuard/pivot_t/_798 action_count 94195480111498 step 0 next 3025 2021-08-09 03:52:38.113625: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d400 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_f/_815 action_count 94195480111499 step 0 next 3003 2021-08-09 03:52:38.113649: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d500 of size 256 by op assert_greater_equal_29/Assert/AssertGuard/pivot_t/_816 action_count 94195480111500 step 0 next 2735 2021-08-09 03:52:38.113674: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d600 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_f/_825 action_count 94195480111501 step 0 next 2969 2021-08-09 03:52:38.113706: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d700 of size 256 by op assert_less_equal_29/Assert/AssertGuard/pivot_t/_826 action_count 94195480111502 step 0 next 2940 2021-08-09 03:52:38.113731: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d800 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_f/_843 action_count 94195480111503 step 0 next 2957 2021-08-09 03:52:38.113756: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69d900 of size 256 by op assert_greater_equal_30/Assert/AssertGuard/pivot_t/_844 action_count 94195480111504 step 0 next 2811 2021-08-09 03:52:38.113780: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69da00 of size 256 by op gradient_tape/unet_depth4/encode2/batch_normalization_584/moments/scalar action_count 94195480111505 step 0 nex t 3012 2021-08-09 03:52:38.113805: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69db00 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_f/_853 action_count 94195480111506 step 0 next 2782 2021-08-09 03:52:38.113828: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69dc00 of size 256 by op assert_less_equal_30/Assert/AssertGuard/pivot_t/_854 action_count 94195480111507 step 0 next 2816 2021-08-09 03:52:38.113851: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69dd00 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_f/_871 action_count 94195480111508 step 0 next 1605 2021-08-09 03:52:38.113876: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69de00 of size 256 by op assert_greater_equal_31/Assert/AssertGuard/pivot_t/_872 action_count 94195480111509 step 0 next 2740 2021-08-09 03:52:38.113900: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69df00 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_f/_881 action_count 94195480111510 step 0 next 2942 2021-08-09 03:52:38.113923: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e000 of size 256 by op assert_less_equal_31/Assert/AssertGuard/pivot_t/_882 action_count 94195480111511 step 0 next 2905 2021-08-09 03:52:38.113957: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e100 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_f/_899 action_count 94195480111512 step 0 next 2806 2021-08-09 03:52:38.113981: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e200 of size 256 by op assert_greater_equal_32/Assert/AssertGuard/pivot_t/_900 action_count 94195480111513 step 0 next 2987 2021-08-09 03:52:38.114006: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e300 of size 256 by op gradient_tape/unet_depth4/encode1/batch_normalization_583/moments/scalar action_count 94195480111514 step 0 nex t 2968 2021-08-09 03:52:38.114031: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e400 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_f/_909 action_count 94195480111515 step 0 next 3052 2021-08-09 03:52:38.114055: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e500 of size 256 by op assert_less_equal_32/Assert/AssertGuard/pivot_t/_910 action_count 94195480111516 step 0 next 3020 2021-08-09 03:52:38.114080: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e600 of size 256 by op gradient_tape/unet_depth4/encode1/batch_normalization_582/moments/scalar action_count 94195480111517 step 0 nex t 2773 2021-08-09 03:52:38.114105: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e700 of size 256 by op gradient_tape/unet_depth4/encode0/batch_normalization_581/moments/scalar action_count 94195480111518 step 0 nex t 2792 2021-08-09 03:52:38.114141: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e800 of size 256 by op gradient_tape/unet_depth4/encode0/batch_normalization_580/moments/scalar action_count 94195480111519 step 0 nex t 2842 2021-08-09 03:52:38.114166: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69e900 of size 256 by op Adam/Adam/Const action_count 94195480111520 step 0 next 3023 2021-08-09 03:52:38.114200: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe69ea00 of size 1441792 by op gradient_tape/binary_ce_dice/logistic_loss/sub/Neg/_0__cf__4291 action_count 94195480111521 step 0 next 279 8 2021-08-09 03:52:38.114227: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe7fea00 of size 1441792 by op gradient_tape/binary_ce_dice/weighted_loss/Tile_1/_1__cf__4292 action_count 94195480111522 step 0 next 2948 2021-08-09 03:52:38.114252: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3afe95ea00 of size 157947392 by op Tile_90 action_count 94195480111525 step 13755587135625806913 next 18446744073709551615 2021-08-09 03:52:38.114277: I tensorflow/core/common_runtime/bfc_allocator.cc:1027] Next region of size 2147483648 2021-08-09 03:52:38.114304: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3b96000000 of size 340262912 by op Adam/gradients/AddN_3/tmp_var_zeros action_count 94195480111374 step 0 next 1663 2021-08-09 03:52:38.114340: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3baa480000 of size 170131456 by op unet_depth4/encode0/conv1d_506/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111553 step 13755587135625806913 next 2699 2021-08-09 03:52:38.114370: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bb46c0000 of size 512 by op unet_depth4/encode0/batch_normalization_580/moments/variance action_count 94195480111559 step 13755587135625806 913 next 3044 2021-08-09 03:52:38.114396: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bb46c0200 of size 170131456 by op gradient_tape/unet_depth4/encode0/conv1d_507/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOpti mizer action_count 94195480111571 step 13755587135625806913 next 2506 2021-08-09 03:52:38.114424: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bbe900200 of size 512 by op unet_depth4/encode0/batch_normalization_581/moments/mean action_count 94195480111593 step 13755587135625806913 next 2970 2021-08-09 03:52:38.114457: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bbe900400 of size 512 by op unet_depth4/encode0/batch_normalization_581/moments/variance action_count 94195480111597 step 13755587135625806 913 next 2492 2021-08-09 03:52:38.114485: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bbe900600 of size 512 by op unet_depth4/encode0/batch_normalization_581/batchnorm/mul action_count 94195480111605 step 13755587135625806913 next 3019 2021-08-09 03:52:38.114512: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bbe900800 of size 170129920 by op unet_depth4/mp_encode0/MaxPool action_count 94195480111610 step 13755587135625806913 next 2951 2021-08-09 03:52:38.114545: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bc8b40200 of size 170131456 by op unet_depth4/encode0/conv1d_507/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111591 step 13755587135625806913 next 3090 2021-08-09 03:52:38.114581: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bd2d80200 of size 170131456 by op unet_depth4/encode0/batch_normalization_581/batchnorm/mul_1 action_count 94195480111606 step 137555871356 25806913 next 2838 2021-08-09 03:52:38.114610: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bdcfc0200 of size 170131456 by op gradient_tape/unet_depth4/mp_encode0/MaxPool/MaxPoolGrad-0-TransposeNHWCToNCHW-LayoutOptimizer action_cou nt 94195480111609 step 13755587135625806913 next 2829 2021-08-09 03:52:38.114638: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7200200 of size 1024 by op unet_depth4/encode1/batch_normalization_582/moments/mean action_count 94195480111635 step 13755587135625806913 next 1051 2021-08-09 03:52:38.114663: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7200600 of size 1024 by op unet_depth4/encode1/batch_normalization_582/moments/variance action_count 94195480111639 step 1375558713562580 6913 next 2989 2021-08-09 03:52:38.114696: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7200a00 of size 1024 by op unet_depth4/encode1/batch_normalization_582/batchnorm/mul action_count 94195480111647 step 1375558713562580691 3 next 3040 2021-08-09 03:52:38.114724: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7200e00 of size 1024 by op unet_depth4/encode1/batch_normalization_583/moments/mean action_count 94195480111673 step 13755587135625806913 next 2344 2021-08-09 03:52:38.114751: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7201200 of size 1024 by op unet_depth4/encode1/batch_normalization_583/moments/variance action_count 94195480111677 step 1375558713562580 6913 next 2890 2021-08-09 03:52:38.114778: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7201600 of size 1024 by op unet_depth4/encode1/batch_normalization_583/batchnorm/mul action_count 94195480111685 step 1375558713562580691 3 next 2930 2021-08-09 03:52:38.114802: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7201a00 of size 2048 by op unet_depth4/encode2/batch_normalization_584/moments/mean action_count 94195480111715 step 13755587135625806913 next 3034 2021-08-09 03:52:38.114836: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7202200 of size 2048 by op unet_depth4/encode2/batch_normalization_584/moments/variance action_count 94195480111719 step 1375558713562580 6913 next 2704 2021-08-09 03:52:38.114862: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7202a00 of size 2048 by op unet_depth4/encode2/batch_normalization_584/batchnorm/mul action_count 94195480111727 step 1375558713562580691 3 next 3066 2021-08-09 03:52:38.114888: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7203200 of size 2048 by op unet_depth4/encode2/batch_normalization_585/moments/mean action_count 94195480111753 step 13755587135625806913 next 1476 2021-08-09 03:52:38.114914: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7203a00 of size 2048 by op unet_depth4/encode2/batch_normalization_585/moments/variance action_count 94195480111757 step 1375558713562580 6913 next 3091 2021-08-09 03:52:38.114942: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7204200 of size 2048 by op unet_depth4/encode2/batch_normalization_585/batchnorm/mul action_count 94195480111765 step 1375558713562580691 3 next 2729 2021-08-09 03:52:38.114976: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7204a00 of size 2048 by op unet_depth4/encode3/batch_normalization_586/moments/mean action_count 94195480111795 step 13755587135625806913 next 3041 2021-08-09 03:52:38.115002: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7205200 of size 2048 by op unet_depth4/encode3/batch_normalization_586/moments/variance action_count 94195480111797 step 1375558713562580 6913 next 3065 2021-08-09 03:52:38.115027: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7205a00 of size 2048 by op unet_depth4/encode3/batch_normalization_586/batchnorm/mul action_count 94195480111803 step 1375558713562580691 3 next 2971 2021-08-09 03:52:38.115052: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7206200 of size 2048 by op unet_depth4/encode3/batch_normalization_587/moments/mean action_count 94195480111829 step 13755587135625806913 next 1680 2021-08-09 03:52:38.115076: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7206a00 of size 2048 by op unet_depth4/encode3/batch_normalization_587/moments/variance action_count 94195480111831 step 1375558713562580 6913 next 2880 2021-08-09 03:52:38.115112: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7207200 of size 2048 by op unet_depth4/encode3/batch_normalization_587/batchnorm/mul action_count 94195480111837 step 1375558713562580691 3 next 2712 2021-08-09 03:52:38.115140: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3be7207a00 of size 85035008 by op unet_depth4/mp_encode3/MaxPool action_count 94195480111842 step 13755587135625806913 next 2763 2021-08-09 03:52:38.115167: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bec320200 of size 85065728 by op gradient_tape/unet_depth4/encode1/conv1d_508/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOptim izer action_count 94195480111612 step 13755587135625806913 next 2765 2021-08-09 03:52:38.115195: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bf1440200 of size 170131456 by op unet_depth4/encode1/batch_normalization_582/batchnorm/mul_1 action_count 94195480111648 step 137555871356 25806913 next 3086 2021-08-09 03:52:38.115220: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3bfb680200 of size 170131456 by op unet_depth4/encode1/conv1d_508/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111633 step 13755587135625806913 next 2790 2021-08-09 03:52:38.115257: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c058c0200 of size 276037120 by op gradient_tape/unet_depth4/encode1/conv1d_509/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOpti mizer action_count 94195480111651 step 13755587135625806913 next 18446744073709551615 2021-08-09 03:52:38.115285: I tensorflow/core/common_runtime/bfc_allocator.cc:1027] Next region of size 4294967296 2021-08-09 03:52:38.115309: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c36000000 of size 170131456 by op unet_depth4/encode1/batch_normalization_583/batchnorm/mul_1 action_count 94195480111686 step 137555871356 25806913 next 3009 2021-08-09 03:52:38.115334: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c40240000 of size 170131456 by op unet_depth4/encode1/conv1d_509/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111671 step 13755587135625806913 next 2924 2021-08-09 03:52:38.115360: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c4a480000 of size 170131456 by op gradient_tape/unet_depth4/mp_encode1/MaxPool/MaxPoolGrad-0-TransposeNHWCToNCHW-LayoutOptimizer action_cou nt 94195480111689 step 13755587135625806913 next 3072 2021-08-09 03:52:38.115388: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c546c0000 of size 85065728 by op unet_depth4/mp_encode1/MaxPool action_count 94195480111690 step 13755587135625806913 next 2768 2021-08-09 03:52:38.115423: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c597e0000 of size 85065728 by op unet_depth4/mp_encode2/MaxPool action_count 94195480111770 step 13755587135625806913 next 737 2021-08-09 03:52:38.115450: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c5e900000 of size 85065728 by op gradient_tape/unet_depth4/encode2/conv1d_510/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOptim izer action_count 94195480111692 step 13755587135625806913 next 3006 2021-08-09 03:52:38.115479: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c63a20000 of size 170131456 by op unet_depth4/encode2/batch_normalization_584/batchnorm/mul_1 action_count 94195480111728 step 137555871356 25806913 next 3013 2021-08-09 03:52:38.115504: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c6dc60000 of size 170131456 by op unet_depth4/encode2/conv1d_510/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111713 step 13755587135625806913 next 3035 2021-08-09 03:52:38.115548: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c77ea0000 of size 170131456 by op gradient_tape/unet_depth4/encode2/conv1d_511/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOpti mizer action_count 94195480111731 step 13755587135625806913 next 2953 2021-08-09 03:52:38.115576: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c820e0000 of size 170131456 by op unet_depth4/encode2/batch_normalization_585/batchnorm/mul_1 action_count 94195480111766 step 137555871356 25806913 next 2995 2021-08-09 03:52:38.115602: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c8c320000 of size 170131456 by op unet_depth4/encode2/conv1d_511/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111751 step 13755587135625806913 next 2966 2021-08-09 03:52:38.115628: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3c96560000 of size 170131456 by op gradient_tape/unet_depth4/mp_encode2/MaxPool/MaxPoolGrad-0-TransposeNHWCToNCHW-LayoutOptimizer action_cou nt 94195480111769 step 13755587135625806913 next 2819 2021-08-09 03:52:38.115655: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a0000 of size 4096 by op unet_depth4/two_conv_center/batch_normalization_588/moments/mean action_count 94195480111867 step 137555871356 25806913 next 2956 2021-08-09 03:52:38.115680: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a1000 of size 4096 by op unet_depth4/two_conv_center/batch_normalization_588/moments/variance action_count 94195480111869 step 13755587 135625806913 next 2939 2021-08-09 03:52:38.115705: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a2000 of size 4096 by op unet_depth4/two_conv_center/batch_normalization_588/batchnorm/mul action_count 94195480111875 step 13755587135 625806913 next 2727 2021-08-09 03:52:38.115730: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a3000 of size 4096 by op unet_depth4/two_conv_center/batch_normalization_589/moments/mean action_count 94195480111901 step 137555871356 25806913 next 3085 2021-08-09 03:52:38.115767: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a4000 of size 4096 by op unet_depth4/two_conv_center/batch_normalization_589/moments/variance action_count 94195480111903 step 13755587 135625806913 next 3046 2021-08-09 03:52:38.115793: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a5000 of size 4096 by op unet_depth4/two_conv_center/batch_normalization_589/batchnorm/mul action_count 94195480111909 step 13755587135 625806913 next 2783 2021-08-09 03:52:38.115819: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a6000 of size 2048 by op unet_depth4/conv_transpose_decoder3/batch_normalization_590/moments/mean action_count 94195480111923 step 1375 5587135625806913 next 2980 2021-08-09 03:52:38.115844: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a6800 of size 2048 by op unet_depth4/conv_transpose_decoder3/batch_normalization_590/batchnorm/mul action_count 94195480111931 step 137 55587135625806913 next 2935 2021-08-09 03:52:38.115880: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a7000 of size 2048 by op unet_depth4/conv_transpose_decoder3/batch_normalization_590/moments/variance action_count 94195480111926 step 13755587135625806913 next 2919 2021-08-09 03:52:38.115908: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a7800 of size 2048 by op unet_depth4/two_conv_decoder3/batch_normalization_591/moments/mean action_count 94195480111959 step 1375558713 5625806913 next 3064 2021-08-09 03:52:38.115934: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a8000 of size 2048 by op unet_depth4/two_conv_decoder3/batch_normalization_591/batchnorm/mul action_count 94195480111967 step 137555871 35625806913 next 2746 2021-08-09 03:52:38.115962: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a8800 of size 2048 by op unet_depth4/two_conv_decoder3/batch_normalization_591/moments/variance action_count 94195480111962 step 137555 87135625806913 next 2778 2021-08-09 03:52:38.115988: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a9000 of size 2048 by op unet_depth4/two_conv_decoder3/batch_normalization_592/moments/mean action_count 94195480111979 step 1375558713 5625806913 next 3014 2021-08-09 03:52:38.116011: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07a9800 of size 2048 by op unet_depth4/two_conv_decoder3/batch_normalization_592/batchnorm/add action_count 94195480111985 step 137555871 35625806913 next 3005 2021-08-09 03:52:38.116045: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07aa000 of size 2048 by op unet_depth4/conv_transpose_decoder2/batch_normalization_593/moments/mean action_count 94195480112001 step 1375 5587135625806913 next 3038 2021-08-09 03:52:38.116073: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07aa800 of size 2048 by op unet_depth4/two_conv_decoder3/batch_normalization_592/batchnorm/mul action_count 94195480111986 step 137555871 35625806913 next 2885 2021-08-09 03:52:38.116106: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ab000 of size 2048 by op unet_depth4/conv_transpose_decoder2/batch_normalization_593/batchnorm/mul action_count 94195480112009 step 137 55587135625806913 next 2738 2021-08-09 03:52:38.116135: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ab800 of size 2048 by op unet_depth4/conv_transpose_decoder2/batch_normalization_593/moments/variance action_count 94195480112004 step 13755587135625806913 next 2695 2021-08-09 03:52:38.116161: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ac000 of size 2048 by op unet_depth4/two_conv_decoder2/batch_normalization_594/moments/mean action_count 94195480112037 step 1375558713 5625806913 next 2869 2021-08-09 03:52:38.116186: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ac800 of size 2048 by op unet_depth4/two_conv_decoder2/batch_normalization_594/batchnorm/mul action_count 94195480112045 step 137555871 35625806913 next 3054 2021-08-09 03:52:38.116210: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ad000 of size 2048 by op unet_depth4/two_conv_decoder2/batch_normalization_594/moments/variance action_count 94195480112040 step 137555 87135625806913 next 2959 2021-08-09 03:52:38.116237: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ad800 of size 2048 by op unet_depth4/two_conv_decoder2/batch_normalization_595/moments/mean action_count 94195480112071 step 1375558713 5625806913 next 2760 2021-08-09 03:52:38.116260: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ae000 of size 2048 by op unet_depth4/two_conv_decoder2/batch_normalization_595/batchnorm/add action_count 94195480112077 step 137555871 35625806913 next 3031 2021-08-09 03:52:38.116296: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07ae800 of size 2048 by op unet_depth4/conv_transpose_decoder1/batch_normalization_596/moments/mean action_count 94195480112093 step 1375 5587135625806913 next 2972 2021-08-09 03:52:38.116323: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07af000 of size 2048 by op unet_depth4/two_conv_decoder2/batch_normalization_595/batchnorm/mul action_count 94195480112078 step 137555871 35625806913 next 2903 2021-08-09 03:52:38.116360: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07af800 of size 2048 by op unet_depth4/conv_transpose_decoder1/batch_normalization_596/batchnorm/mul action_count 94195480112105 step 137 55587135625806913 next 2788 2021-08-09 03:52:38.116387: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b0000 of size 2048 by op unet_depth4/conv_transpose_decoder1/batch_normalization_596/moments/variance action_count 94195480112098 step 13755587135625806913 next 3004 2021-08-09 03:52:38.116413: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b0800 of size 2048 by op unet_depth4/two_conv_decoder1/batch_normalization_597/moments/mean action_count 94195480112133 step 1375558713 5625806913 next 2706 2021-08-09 03:52:38.116438: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b1000 of size 2048 by op unet_depth4/two_conv_decoder1/batch_normalization_597/batchnorm/mul action_count 94195480112145 step 137555871 35625806913 next 3061 2021-08-09 03:52:38.116463: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b1800 of size 2048 by op unet_depth4/two_conv_decoder1/batch_normalization_597/moments/variance action_count 94195480112138 step 137555 87135625806913 next 2962 2021-08-09 03:52:38.116499: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b2000 of size 2048 by op unet_depth4/two_conv_decoder1/batch_normalization_598/moments/mean action_count 94195480112171 step 1375558713 5625806913 next 2889 2021-08-09 03:52:38.116533: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b2800 of size 2048 by op unet_depth4/two_conv_decoder1/batch_normalization_598/batchnorm/add action_count 94195480112181 step 137555871 35625806913 next 2926 2021-08-09 03:52:38.116561: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b3000 of size 1024 by op unet_depth4/conv_transpose_decoder0/batch_normalization_599/moments/mean action_count 94195480112197 step 1375 5587135625806913 next 3043 2021-08-09 03:52:38.116587: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b3400 of size 1024 by op unet_depth4/conv_transpose_decoder0/batch_normalization_599/batchnorm/mul action_count 94195480112209 step 137 55587135625806913 next 2955 2021-08-09 03:52:38.116622: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b3800 of size 2048 by op unet_depth4/two_conv_decoder1/batch_normalization_598/batchnorm/mul action_count 94195480112182 step 137555871 35625806913 next 3028 2021-08-09 03:52:38.116648: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca07b4000 of size 1024 by op unet_depth4/conv_transpose_decoder0/batch_normalization_599/moments/variance action_count 94195480112202 step 13755587135625806913 next 3081 2021-08-09 03:52:38.116675: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] Free at 2b3ca07b4400 of size 84982784 by op UNUSED action_count 94195480112212 step 13755587135625806913 next 1631 2021-08-09 03:52:38.116700: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ca58c0000 of size 85065728 by op gradient_tape/unet_depth4/encode3/conv1d_512/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOptim izer action_count 94195480111772 step 13755587135625806913 next 2950 2021-08-09 03:52:38.116727: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3caa9e0000 of size 92274688 by op unet_depth4/encode3/batch_normalization_586/batchnorm/mul_1 action_count 94195480111804 step 1375558713562 5806913 next 3082 2021-08-09 03:52:38.116762: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cb01e0000 of size 92274688 by op unet_depth4/encode3/conv1d_512/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111793 step 13755587135625806913 next 412 2021-08-09 03:52:38.116790: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cb59e0000 of size 92274688 by op gradient_tape/unet_depth4/encode3/conv1d_513/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOptim izer action_count 94195480111807 step 13755587135625806913 next 3053 2021-08-09 03:52:38.116817: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cbb1e0000 of size 92274688 by op unet_depth4/encode3/batch_normalization_587/batchnorm/mul_1 action_count 94195480111838 step 1375558713562 5806913 next 2988 2021-08-09 03:52:38.116842: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cc09e0000 of size 92274688 by op unet_depth4/encode3/conv1d_513/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195480111827 step 13755587135625806913 next 2982 2021-08-09 03:52:38.116869: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cc61e0000 of size 92274688 by op gradient_tape/unet_depth4/mp_encode3/MaxPool/MaxPoolGrad-0-TransposeNHWCToNCHW-LayoutOptimizer action_coun t 94195480111841 step 13755587135625806913 next 2944 2021-08-09 03:52:38.116905: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ccb9e0000 of size 46137344 by op gradient_tape/unet_depth4/two_conv_center/conv1d_514/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-Lay outOptimizer action_count 94195480111844 step 13755587135625806913 next 2964 2021-08-09 03:52:38.116933: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cce5e0000 of size 92274688 by op unet_depth4/two_conv_center/batch_normalization_588/batchnorm/mul_1 action_count 94195480111876 step 13755 587135625806913 next 2991 2021-08-09 03:52:38.116960: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cd3de0000 of size 92274688 by op unet_depth4/two_conv_center/conv1d_514/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 9419548 0111865 step 13755587135625806913 next 2719 2021-08-09 03:52:38.116986: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cd95e0000 of size 92274688 by op gradient_tape/unet_depth4/two_conv_center/conv1d_515/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-Lay outOptimizer action_count 94195480111879 step 13755587135625806913 next 2694 2021-08-09 03:52:38.117012: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cdede0000 of size 92274688 by op unet_depth4/two_conv_center/batch_normalization_589/batchnorm/mul_1 action_count 94195480111910 step 13755 587135625806913 next 770 2021-08-09 03:52:38.117049: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ce45e0000 of size 92274688 by op unet_depth4/two_conv_center/conv1d_515/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 9419548 0111899 step 13755587135625806913 next 2979 2021-08-09 03:52:38.117077: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ce9de0000 of size 92274688 by op gradient_tape/unet_depth4/conv_transpose_decoder3/conv1d_transpose_104/conv1d_transpose/Conv2DBackpropFilt er-2-TransposeNHWCToNCHW-LayoutOptimizer action_count 94195480111913 step 13755587135625806913 next 2999 2021-08-09 03:52:38.117104: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cef5e0000 of size 92274688 by op unet_depth4/conv_transpose_decoder3/conv1d_transpose_104/conv1d_transpose-0-0-TransposeNCHWToNHWC-LayoutOp timizer action_count 94195480111921 step 13755587135625806913 next 2993 2021-08-09 03:52:38.117131: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cf4de0000 of size 92274688 by op unet_depth4/conv_transpose_decoder3/batch_normalization_590/batchnorm/mul_1 action_count 94195480111933 st ep 13755587135625806913 next 3071 2021-08-09 03:52:38.117167: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cfa5e0000 of size 92274688 by op unet_depth4/two_conv_decoder3/batch_normalization_591/batchnorm/mul_1 action_count 94195480111969 step 137 55587135625806913 next 3001 2021-08-09 03:52:38.117195: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3cffde0000 of size 92274688 by op unet_depth4/two_conv_decoder3/conv1d_516/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195 480111957 step 13755587135625806913 next 2908 2021-08-09 03:52:38.117223: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d055e0000 of size 184549376 by op gradient_tape/unet_depth4/two_conv_decoder3/conv1d_516/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW- LayoutOptimizer action_count 94195480111936 step 13755587135625806913 next 2977 2021-08-09 03:52:38.117251: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d105e0000 of size 92274688 by op gradient_tape/unet_depth4/two_conv_decoder3/conv1d_517/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-L ayoutOptimizer action_count 94195480111971 step 13755587135625806913 next 2736 2021-08-09 03:52:38.117278: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d15de0000 of size 92274688 by op unet_depth4/two_conv_decoder3/batch_normalization_592/batchnorm/mul_1 action_count 94195480111989 step 137 55587135625806913 next 2910 2021-08-09 03:52:38.117304: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d1b5e0000 of size 92274688 by op unet_depth4/two_conv_decoder3/conv1d_517/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 94195 480111977 step 13755587135625806913 next 2685 2021-08-09 03:52:38.117331: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d20de0000 of size 92274688 by op gradient_tape/unet_depth4/conv_transpose_decoder2/conv1d_transpose_105/conv1d_transpose/Conv2DBackpropFilt er-2-TransposeNHWCToNCHW-LayoutOptimizer action_count 94195480111991 step 13755587135625806913 next 3073 2021-08-09 03:52:38.117358: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d265e0000 of size 262275072 by op unet_depth4/conv_transpose_decoder2/conv1d_transpose_105/conv1d_transpose-0-0-TransposeNCHWToNHWC-LayoutO ptimizer action_count 94195480111999 step 13755587135625806913 next 18446744073709551615 2021-08-09 03:52:38.117392: I tensorflow/core/common_runtime/bfc_allocator.cc:1027] Next region of size 6764888064 2021-08-09 03:52:38.117420: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d70000000 of size 184549376 by op unet_depth4/conv_transpose_decoder2/batch_normalization_593/batchnorm/mul_1 action_count 94195480112011 s tep 13755587135625806913 next 3032 2021-08-09 03:52:38.117447: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d7b000000 of size 184549376 by op unet_depth4/two_conv_decoder2/batch_normalization_594/batchnorm/mul_1 action_count 94195480112047 step 13 755587135625806913 next 2626 2021-08-09 03:52:38.117473: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] Free at 2b3d86000000 of size 170131456 by op UNUSED action_count 94195421079702 step 17448270550709606267 next 2997 2021-08-09 03:52:38.117499: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3d90240000 of size 354680832 by op gradient_tape/unet_depth4/two_conv_decoder2/conv1d_518/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW- LayoutOptimizer action_count 94195480112014 step 13755587135625806913 next 2883 2021-08-09 03:52:38.117543: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3da5480000 of size 184549376 by op unet_depth4/two_conv_decoder2/conv1d_518/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 9419 5480112035 step 13755587135625806913 next 3010 2021-08-09 03:52:38.117571: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3db0480000 of size 184549376 by op gradient_tape/unet_depth4/two_conv_decoder2/conv1d_519/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW- LayoutOptimizer action_count 94195480112049 step 13755587135625806913 next 2943 2021-08-09 03:52:38.117597: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3dbb480000 of size 184549376 by op unet_depth4/two_conv_decoder2/batch_normalization_595/batchnorm/mul_1 action_count 94195480112081 step 13 755587135625806913 next 2973 2021-08-09 03:52:38.117624: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3dc6480000 of size 184549376 by op unet_depth4/two_conv_decoder2/conv1d_519/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 9419 5480112069 step 13755587135625806913 next 2984 2021-08-09 03:52:38.117650: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3dd1480000 of size 184549376 by op gradient_tape/unet_depth4/conv_transpose_decoder1/conv1d_transpose_106/conv1d_transpose/Conv2DBackpropFil ter-2-TransposeNHWCToNCHW-LayoutOptimizer action_count 94195480112083 step 13755587135625806913 next 2946 2021-08-09 03:52:38.117677: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ddc480000 of size 340262912 by op unet_depth4/conv_transpose_decoder1/conv1d_transpose_106/conv1d_transpose-0-0-TransposeNCHWToNHWC-LayoutO ptimizer action_count 94195480112091 step 13755587135625806913 next 2002 2021-08-09 03:52:38.117713: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3df0900000 of size 340262912 by op unet_depth4/conv_transpose_decoder1/batch_normalization_596/batchnorm/mul_1 action_count 94195480112107 s tep 13755587135625806913 next 3036 2021-08-09 03:52:38.117741: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3e04d80000 of size 340262912 by op unet_depth4/two_conv_decoder1/batch_normalization_597/batchnorm/mul_1 action_count 94195480112147 step 13 755587135625806913 next 3062 2021-08-09 03:52:38.117777: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] Free at 2b3e19200000 of size 170131456 by op UNUSED action_count 94195419013976 step 17479529273785244716 next 2934 2021-08-09 03:52:38.117806: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3e23440000 of size 510394368 by op gradient_tape/unet_depth4/two_conv_decoder1/conv1d_520/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW- LayoutOptimizer action_count 94195480112110 step 13755587135625806913 next 3033 2021-08-09 03:52:38.117832: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3e41b00000 of size 340262912 by op unet_depth4/two_conv_decoder1/conv1d_520/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 9419 5480112131 step 13755587135625806913 next 2927 2021-08-09 03:52:38.117861: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3e55f80000 of size 340262912 by op gradient_tape/unet_depth4/two_conv_decoder1/conv1d_521/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW- LayoutOptimizer action_count 94195480112149 step 13755587135625806913 next 3022 2021-08-09 03:52:38.117889: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3e6a400000 of size 340262912 by op unet_depth4/two_conv_decoder1/batch_normalization_598/batchnorm/mul_1 action_count 94195480112185 step 13 755587135625806913 next 2998 2021-08-09 03:52:38.117922: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3e7e880000 of size 340262912 by op unet_depth4/two_conv_decoder1/conv1d_521/conv1d-0-0-TransposeNCHWToNHWC-LayoutOptimizer action_count 9419 5480112169 step 13755587135625806913 next 3029 2021-08-09 03:52:38.117951: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3e92d00000 of size 340262912 by op gradient_tape/unet_depth4/conv_transpose_decoder0/conv1d_transpose_107/conv1d_transpose/Conv2DBackpropFil ter-2-TransposeNHWCToNCHW-LayoutOptimizer action_count 94195480112187 step 13755587135625806913 next 2938 2021-08-09 03:52:38.117978: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ea7180000 of size 340262912 by op unet_depth4/conv_transpose_decoder0/conv1d_transpose_107/conv1d_transpose-0-0-TransposeNCHWToNHWC-LayoutO ptimizer action_count 94195480112195 step 13755587135625806913 next 2945 2021-08-09 03:52:38.118005: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ebb600000 of size 340262912 by op unet_depth4/conv_transpose_decoder0/batch_normalization_599/batchnorm/mul_1 action_count 94195480112211 s tep 13755587135625806913 next 3021 2021-08-09 03:52:38.118031: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] InUse at 2b3ecfa80000 of size 510394368 by op unet_depth4/decoder0/concat action_count 94195480112213 step 13755587135625806913 next 3080 2021-08-09 03:52:38.118055: I tensorflow/core/common_runtime/bfc_allocator.cc:1046] Free at 2b3eee140000 of size 354680832 by op UNUSED action_count 94195419013931 step 17479529273785244716 next 18446744073709551615 2021-08-09 03:52:38.118090: I tensorflow/core/common_runtime/bfc_allocator.cc:1051] Summary of in-use Chunks by size: 2021-08-09 03:52:38.118121: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1712 Chunks of size 256 totalling 428.0KiB 2021-08-09 03:52:38.118149: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 140 Chunks of size 512 totalling 70.0KiB 2021-08-09 03:52:38.118185: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 66 Chunks of size 768 totalling 49.5KiB 2021-08-09 03:52:38.118212: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 167 Chunks of size 1024 totalling 167.0KiB 2021-08-09 03:52:38.118237: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 64 Chunks of size 1280 totalling 80.0KiB 2021-08-09 03:52:38.118262: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 16 Chunks of size 1536 totalling 24.0KiB 2021-08-09 03:52:38.118290: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 95 Chunks of size 1792 totalling 166.2KiB 2021-08-09 03:52:38.118326: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 317 Chunks of size 2048 totalling 634.0KiB 2021-08-09 03:52:38.118354: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 11 Chunks of size 2304 totalling 24.8KiB 2021-08-09 03:52:38.118377: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 2560 totalling 12.5KiB 2021-08-09 03:52:38.118402: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 8 Chunks of size 2816 totalling 22.0KiB 2021-08-09 03:52:38.118437: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 3072 totalling 15.0KiB 2021-08-09 03:52:38.118463: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 6 Chunks of size 3328 totalling 19.5KiB 2021-08-09 03:52:38.118488: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 28 Chunks of size 3584 totalling 98.0KiB 2021-08-09 03:52:38.118511: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 3840 totalling 18.8KiB 2021-08-09 03:52:38.118554: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 54 Chunks of size 4096 totalling 216.0KiB 2021-08-09 03:52:38.118581: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 4352 totalling 4.2KiB 2021-08-09 03:52:38.118605: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 4 Chunks of size 4608 totalling 18.0KiB 2021-08-09 03:52:38.118639: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 4864 totalling 9.5KiB 2021-08-09 03:52:38.118666: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 5632 totalling 5.5KiB 2021-08-09 03:52:38.118693: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 6656 totalling 13.0KiB 2021-08-09 03:52:38.118716: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 13312 totalling 39.0KiB 2021-08-09 03:52:38.118752: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 26368 totalling 25.8KiB 2021-08-09 03:52:38.118782: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 29696 totalling 29.0KiB 2021-08-09 03:52:38.118812: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 31488 totalling 30.8KiB 2021-08-09 03:52:38.118849: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 4 Chunks of size 52480 totalling 205.0KiB 2021-08-09 03:52:38.118878: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 69888 totalling 136.5KiB 2021-08-09 03:52:38.118904: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 77056 totalling 75.2KiB 2021-08-09 03:52:38.118943: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 78592 totalling 230.2KiB 2021-08-09 03:52:38.118971: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 15 Chunks of size 81920 totalling 1.17MiB 2021-08-09 03:52:38.118999: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 96512 totalling 94.2KiB 2021-08-09 03:52:38.119035: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 100352 totalling 98.0KiB 2021-08-09 03:52:38.119063: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 104704 totalling 306.8KiB 2021-08-09 03:52:38.119091: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 137472 totalling 268.5KiB 2021-08-09 03:52:38.119127: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 139264 totalling 136.0KiB 2021-08-09 03:52:38.119155: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 167168 totalling 489.8KiB 2021-08-09 03:52:38.119183: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 171008 totalling 167.0KiB 2021-08-09 03:52:38.119219: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 190208 totalling 185.8KiB 2021-08-09 03:52:38.119247: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 205568 totalling 200.8KiB 2021-08-09 03:52:38.119276: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 6 Chunks of size 209152 totalling 1.20MiB 2021-08-09 03:52:38.119308: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 270336 totalling 264.0KiB 2021-08-09 03:52:38.119334: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 4 Chunks of size 274944 totalling 1.05MiB 2021-08-09 03:52:38.119360: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 278784 totalling 816.8KiB 2021-08-09 03:52:38.119396: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 313856 totalling 613.0KiB 2021-08-09 03:52:38.119424: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 334336 totalling 979.5KiB 2021-08-09 03:52:38.119450: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 360448 totalling 704.0KiB 2021-08-09 03:52:38.119487: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 397824 totalling 388.5KiB 2021-08-09 03:52:38.119514: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 418304 totalling 1.20MiB 2021-08-09 03:52:38.119557: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 32 Chunks of size 425984 totalling 13.00MiB 2021-08-09 03:52:38.119582: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 9 Chunks of size 549632 totalling 4.72MiB 2021-08-09 03:52:38.119607: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 549888 totalling 537.0KiB 2021-08-09 03:52:38.119642: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 557568 totalling 544.5KiB 2021-08-09 03:52:38.119667: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 7 Chunks of size 668416 totalling 4.46MiB 2021-08-09 03:52:38.119702: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 824320 totalling 805.0KiB 2021-08-09 03:52:38.119728: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 4 Chunks of size 824576 totalling 3.15MiB 2021-08-09 03:52:38.119751: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 4 Chunks of size 836352 totalling 3.19MiB 2021-08-09 03:52:38.119786: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 891136 totalling 1.70MiB 2021-08-09 03:52:38.119815: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 994560 totalling 971.2KiB 2021-08-09 03:52:38.119839: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 995328 totalling 972.0KiB 2021-08-09 03:52:38.119872: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 1002752 totalling 1.91MiB 2021-08-09 03:52:38.119898: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 1054720 totalling 1.01MiB 2021-08-09 03:52:38.119923: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 1055488 totalling 1.01MiB 2021-08-09 03:52:38.119959: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 1081344 totalling 2.06MiB 2021-08-09 03:52:38.119985: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 1099264 totalling 5.24MiB 2021-08-09 03:52:38.120012: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 1206016 totalling 1.15MiB 2021-08-09 03:52:38.120035: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 1254656 totalling 3.59MiB 2021-08-09 03:52:38.120072: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 1336832 totalling 3.82MiB 2021-08-09 03:52:38.120100: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 13 Chunks of size 1441792 totalling 17.88MiB 2021-08-09 03:52:38.120127: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 1532928 totalling 1.46MiB 2021-08-09 03:52:38.120163: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 1622016 totalling 3.09MiB 2021-08-09 03:52:38.120192: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 1933312 totalling 3.69MiB 2021-08-09 03:52:38.120218: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 1964800 totalling 1.87MiB 2021-08-09 03:52:38.120255: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 7 Chunks of size 2097152 totalling 14.00MiB 2021-08-09 03:52:38.120283: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 9 Chunks of size 2198272 totalling 18.87MiB 2021-08-09 03:52:38.120310: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 6 Chunks of size 2673408 totalling 15.30MiB 2021-08-09 03:52:38.120345: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 2723840 totalling 2.60MiB 2021-08-09 03:52:38.120373: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 2899968 totalling 8.30MiB 2021-08-09 03:52:38.120400: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 6 Chunks of size 2930944 totalling 16.77MiB 2021-08-09 03:52:38.120437: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 22 Chunks of size 3145728 totalling 66.00MiB 2021-08-09 03:52:38.120465: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 6 Chunks of size 3297536 totalling 18.87MiB 2021-08-09 03:52:38.120491: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 3714816 totalling 3.54MiB 2021-08-09 03:52:38.120534: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 4010240 totalling 11.47MiB 2021-08-09 03:52:38.120560: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 4046080 totalling 3.86MiB 2021-08-09 03:52:38.120586: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 4194304 totalling 20.00MiB 2021-08-09 03:52:38.120621: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 4396544 totalling 8.39MiB 2021-08-09 03:52:38.120647: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 4673536 totalling 4.46MiB 2021-08-09 03:52:38.120672: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 4767744 totalling 13.64MiB 2021-08-09 03:52:38.120696: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 4894464 totalling 4.67MiB 2021-08-09 03:52:38.120728: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 5318400 totalling 5.07MiB 2021-08-09 03:52:38.120755: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 5426944 totalling 5.17MiB 2021-08-09 03:52:38.120780: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 5647360 totalling 5.39MiB 2021-08-09 03:52:38.120805: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 5775360 totalling 27.54MiB 2021-08-09 03:52:38.120841: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 3 Chunks of size 6045696 totalling 17.30MiB 2021-08-09 03:52:38.120866: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 6225920 totalling 5.94MiB 2021-08-09 03:52:38.120891: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 12 Chunks of size 6291456 totalling 72.00MiB 2021-08-09 03:52:38.120925: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 6381568 totalling 6.09MiB 2021-08-09 03:52:38.120953: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 6754048 totalling 6.44MiB 2021-08-09 03:52:38.120978: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 6 Chunks of size 7012352 totalling 40.12MiB 2021-08-09 03:52:38.121003: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 7193600 totalling 6.86MiB 2021-08-09 03:52:38.121036: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 7728640 totalling 7.37MiB 2021-08-09 03:52:38.121062: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 8192000 totalling 15.62MiB 2021-08-09 03:52:38.121088: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 4 Chunks of size 8792832 totalling 33.54MiB 2021-08-09 03:52:38.121111: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 9883392 totalling 9.42MiB 2021-08-09 03:52:38.121146: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 10772736 totalling 10.27MiB 2021-08-09 03:52:38.121174: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 4 Chunks of size 12582912 totalling 48.00MiB 2021-08-09 03:52:38.121199: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 13459968 totalling 12.84MiB 2021-08-09 03:52:38.121232: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 14024704 totalling 66.88MiB 2021-08-09 03:52:38.121259: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 14162944 totalling 13.51MiB 2021-08-09 03:52:38.121288: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 18874368 totalling 18.00MiB 2021-08-09 03:52:38.121323: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 24661504 totalling 23.52MiB 2021-08-09 03:52:38.121350: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 36044800 totalling 68.75MiB 2021-08-09 03:52:38.121373: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 46137344 totalling 44.00MiB 2021-08-09 03:52:38.121406: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 78643200 totalling 75.00MiB 2021-08-09 03:52:38.121434: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 85035008 totalling 81.10MiB 2021-08-09 03:52:38.121473: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 5 Chunks of size 85065728 totalling 405.62MiB 2021-08-09 03:52:38.121506: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 20 Chunks of size 92274688 totalling 1.72GiB 2021-08-09 03:52:38.121535: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 143653632 totalling 137.00MiB 2021-08-09 03:52:38.121560: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 157947392 totalling 150.63MiB 2021-08-09 03:52:38.121594: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 170129920 totalling 162.25MiB 2021-08-09 03:52:38.121619: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 16 Chunks of size 170131456 totalling 2.54GiB 2021-08-09 03:52:38.121646: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 8 Chunks of size 184549376 totalling 1.38GiB 2021-08-09 03:52:38.121671: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 245764096 totalling 234.38MiB 2021-08-09 03:52:38.121706: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 262275072 totalling 250.12MiB 2021-08-09 03:52:38.121732: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 276037120 totalling 263.25MiB 2021-08-09 03:52:38.121757: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 314572800 totalling 600.00MiB 2021-08-09 03:52:38.121789: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 11 Chunks of size 340262912 totalling 3.49GiB 2021-08-09 03:52:38.121817: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 1 Chunks of size 354680832 totalling 338.25MiB 2021-08-09 03:52:38.121844: I tensorflow/core/common_runtime/bfc_allocator.cc:1054] 2 Chunks of size 510394368 totalling 973.50MiB 2021-08-09 03:52:38.121879: I tensorflow/core/common_runtime/bfc_allocator.cc:1058] Sum Total of in-use chunks: 13.57GiB 2021-08-09 03:52:38.121906: I tensorflow/core/common_runtime/bfc_allocator.cc:1060] total_region_allocated_bytes_: 15354822656 memory_limit_: 15354822656 available bytes: 0 curr_region_allocation_bytes_: 17179869184 2021-08-09 03:52:38.121937: I tensorflow/core/common_runtime/bfc_allocator.cc:1066] Stats: Limit: 15354822656 InUse: 14574896128 MaxInUse: 14574896128 NumAllocs: 225920650 MaxAllocSize: 3306898944 Reserved: 0 PeakReserved: 0 LargestFreeBlock: 0 2021-08-09 03:52:38.122399: W tensorflow/core/common_runtime/bfc_allocator.cc:467] **************************************************************************************************__ 2021-08-09 03:52:38.122475: W tensorflow/core/framework/op_kernel.cc:1767] OP_REQUIRES failed at transpose_op.cc:184 : Resource exhausted: OOM when allocating tensor with shape[22,354,1,16384] and type float on /job:localhost/replica:0 /task:0/device:GPU:0 by allocator GPU_0_bfc Traceback (most recent call last): File "/beegfs/ye53nis/drmed-git/src/fluotracify/training/search_hparams.py", line 446, in <module> hparams_run() File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/click/core.py", line 1137, in __call__ return self.main(*args, **kwargs) File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/click/core.py", line 1062, in main rv = self.invoke(ctx) File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/click/core.py", line 1404, in invoke return ctx.invoke(self.callback, **ctx.params) File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/click/core.py", line 763, in invoke return __callback(*args, **kwargs) File "/beegfs/ye53nis/drmed-git/src/fluotracify/training/search_hparams.py", line 405, in hparams_run best_auc_val = run_one( File "/beegfs/ye53nis/drmed-git/src/fluotracify/training/search_hparams.py", line 306, in run_one result = model.fit( File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/mlflow/utils/autologging_utils/safety.py", line 490, in safe_patch_function patch_function.call(call_original, *args, **kwargs) File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/mlflow/utils/autologging_utils/safety.py", line 156, in call return cls().__call__(original, *args, **kwargs) File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/mlflow/utils/autologging_utils/safety.py", line 167, in __call__ raise e File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/mlflow/utils/autologging_utils/safety.py", line 160, in __call__ return self._patch_implementation(original, *args, **kwargs) File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/mlflow/utils/autologging_utils/safety.py", line 218, in _patch_implementation result = super(PatchWithManagedRun, self)._patch_implementation( File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/mlflow/tensorflow.py", line 1097, in _patch_implementation history = original(inst, *args, **kwargs) File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/mlflow/utils/autologging_utils/safety.py", line 448, in call_original original_result = original(*og_args, **og_kwargs) File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/tensorflow/python/keras/engine/training.py", line 1183, in fit tmp_logs = self.train_function(iterator) File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py", line 889, in __call__ result = self._call(*args, **kwds) File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py", line 950, in _call return self._stateless_fn(*args, **kwds) File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/tensorflow/python/eager/function.py", line 3023, in __call__ return graph_function._call_flat( File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/tensorflow/python/eager/function.py", line 1960, in _call_flat return self._build_call_outputs(self._inference_function.call( File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/tensorflow/python/eager/function.py", line 591, in call outputs = execute.execute( File "/home/ye53nis/.conda/envs/mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe/lib/python3.9/site-packages/tensorflow/python/eager/execute.py", line 59, in quick_execute tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found. (0) Resource exhausted: OOM when allocating tensor with shape[22,354,1,16384] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node gradient_tape/unet_depth4/two_conv_decoder0/conv1d_522/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOptimizer}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. [[assert_less_equal_4/Assert/AssertGuard/pivot_f/_125/_159]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. (1) Resource exhausted: OOM when allocating tensor with shape[22,354,1,16384] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node gradient_tape/unet_depth4/two_conv_decoder0/conv1d_522/conv1d/Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOptimizer}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. 0 successful operations. 0 derived errors ignored. [Op:__inference_train_function_65983138] Function call stack: train_function -> train_function 2021/08/09 03:52:57 ERROR mlflow.cli: === Run (ID 'b6cbd5623eb44c6c8158c97b7a40c651') failed === (tf) [ye53nis@node130 drmed-git]$
2.4.4 Analyze run 1 and 2
- start
%cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
import mlflow import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd
sys.path.append('src/') from fluotracify.training import build_model as bm, preprocess_data as ppd from fluotracify.applications import correlate, plots, correction from fluotracify.imports import ptu_utils as ptu
- Out of convenience, I used Mlflowui to compare the two runs with all
parameters and metrics. Since a nice exporting option was missing, I
copied the comparison into libreoffice calc by hand and saved it as a
csv. Now lets load it and print the validation AUC as an example.
run1_2 = pd.read_csv('data/exp-210807-hparams/run1-2_comparison.csv', index_col=0) run1_2_valauc = run1_2.loc['val_auc'].astype(float) run1_2_valauc
2761cb4ad23244beafac36189b805c3a 0.975 d92021ec45f5415283a8e5643c7e3449 0.975 e6b70d64227f42bcb647289d2af2afb4 0.944 876fa57de00643b1902f3a0be74e0682 0.940 29905abbb90344798ee59f1f40775880 0.929 ... 158bfabc0fcc448dada729967f924574 0.969 3423b9fa10e44eb7b2cffd78596a193f 0.897 985ec48a8e1b4101abb8a153cee69b57 0.891 5c3e5090c67f4340bf207f949e925758 0.601 ff0bc51f1cd3413bbdebb97b0e127e75 0.889 Name: val_auc, Length: 75, dtype: float64
- I ran each hparams run twice for each random parameter sample. As a
minimal statistical move, lets take the average of the metrics which have
2 identical parameter runs. Unfortunately, one run is only single, since
the program crashed. We have to remove it and later add it again.
singles_ls = ['5441e71efe0f4dae868648e7cc795c65'] run1_2_singles = run1_2.loc[:, singles_ls] run1_2_singles.iloc[35:, :] = run1_2_singles.iloc[35:, :].astype(np.float64) run1_2_singles
5441e71efe0f4dae868648e7cc795c65 Run ID: Run Name: NaN Start Time: 2021-08-08 13:46:29 batch_size None class_weight None epochs 20 ... ... val_tp0.1 756740.0 val_tp0.3 686440.0 val_tp0.5 622523.0 val_tp0.7 505054.0 val_tp0.9 241926.0 104 rows × 1 columns
run1_2 = run1_2.drop(columns=singles_ls)
assert len(run1_2.iloc[35:, :].columns) % 2 == 0
run1_2_doubleparams = pd.DataFrame() run1_2_doublemetrics = pd.DataFrame() double_cols = [] for left, right in zip(run1_2.iloc[:, ::2].items(), run1_2.iloc[:, 1::2].items()): double_cols.append((left[0], right[0])) current_metrics = left[1].iloc[35:].combine(other=right[1].iloc[35:], func=(lambda x1, x2: (float(x1) + float(x2)) / 2)) current_params = left[1].iloc[:35].combine(other=right[1].iloc[:35], func=(lambda x1, x2: set((x1, x2)) if x1 != x2 else x1)) run1_2_doubleparams = pd.concat([run1_2_doubleparams, current_params], axis=1) run1_2_doublemetrics = pd.concat([run1_2_doublemetrics, current_metrics], axis=1) run1_2_doublemetrics = pd.DataFrame(data=run1_2_doublemetrics.to_numpy(), index=run1_2.iloc[35:, :].index, columns=double_cols) run1_2_doubleparams = pd.DataFrame(data=run1_2_doubleparams.to_numpy(), index=run1_2.iloc[:35, :].index, columns=double_cols) run1_2_combimetrics = pd.concat([run1_2_doublemetrics, run1_2_singles.iloc[35:, :]], axis=1) run1_2_combiparams = pd.concat([run1_2_doubleparams, run1_2_singles.iloc[:35, :]], axis=1) run1_2_combiparams
(2761cb4ad23244beafac36189b805c3a, d92021ec45f5415283a8e5643c7e3449) (e6b70d64227f42bcb647289d2af2afb4, 876fa57de00643b1902f3a0be74e0682) (29905abbb90344798ee59f1f40775880, 5a89360285384c728e9e06421ab97c8d) (ab0ff6fff89c4db6983aa98c7eee9663, b9d383f0e9ef4755a801376130594f2a) (481bacb91dcb4d63b16d0a8fe5d198ec, 2ef6df0c95b34b338c4b930f41695ed0) (d36564aa214c41bc966fc7b890df31a8, ba34b505ba324f208d428bd7797233e7) (0a484d3116ab436d8b4cf4a938d470c0, 5a2dfcd776014637bdaef2da3ab1d132) (b72a292b214c462480cbe2e66e811c78, 50c7e9bba0534a27801143bda2e88d35) (9051e32b87d84f3485b980067addec30, 61ff87bdb89b4e2ba64f8dacc774992d) (93b168c0ff7942c8a908a94129daf973, f243b3b742de4dbcb7ccfbd4244706f8) ... (3cbd945b62ec4634839372e403f6f377, 458b36a70db843719d202a8eda448f17) (2648b86e7ef54a0e9f7b57340703150e, 0aae5a802f5342cebed9e51839d48b41) (7719d9fbef8f4c22b710caf91cd527d2, 2b7aab186fad48158d53b78610550d73) (5bbaee372809482ea6d2d985b554cc4b, b8200ec9fb884c12b390e1a5b20299bc) (37ab5992ecdf4760a6292bc64e61e309, 91e4770c10ac4cceb405bfdcebf7c966) (90a949129948495fb7f3b955e8258461, ce09d20be06745fb84c9ff177c8a9cef) (d320b958bde94b1e998d210fd2e53efa, 158bfabc0fcc448dada729967f924574) (3423b9fa10e44eb7b2cffd78596a193f, 985ec48a8e1b4101abb8a153cee69b57) (5c3e5090c67f4340bf207f949e925758, ff0bc51f1cd3413bbdebb97b0e127e75) 5441e71efe0f4dae868648e7cc795c65 Run ID: Run Name: {nan} {nan} {nan} {nan} {nan} {nan} {nan} {nan} {nan} {nan} ... {nan} {nan} {nan} {nan} {nan} {nan} {nan} {nan} {nan} NaN Start Time: {2021-08-09 03:35:27, 2021-08-09 03:18:38} {2021-08-09 03:00:40, 2021-08-09 02:43:08} {2021-08-09 02:21:19, 2021-08-09 01:59:18} {2021-08-09 01:45:12, 2021-08-09 01:52:15} {2021-08-09 01:01:03, 2021-08-09 00:16:49} {2021-08-09 00:01:24, 2021-08-08 23:46:06} {2021-08-08 23:09:26, 2021-08-08 23:27:50} {2021-08-08 23:00:25, 2021-08-08 22:51:22} {2021-08-08 22:10:33, 2021-08-08 21:29:38} {2021-08-08 21:15:24, 2021-08-08 21:01:49} ... {2021-08-08 04:30:30, 2021-08-08 04:19:31} {2021-08-08 03:58:55, 2021-08-08 03:38:13} {2021-08-08 03:12:28, 2021-08-08 03:25:26} {2021-08-08 03:05:58, 2021-08-08 02:59:20} {2021-08-08 02:04:14, 2021-08-08 01:12:38} {2021-08-08 01:05:46, 2021-08-08 00:58:39} {2021-08-08 00:26:43, 2021-08-08 00:43:13} {2021-08-07 23:57:58, 2021-08-07 23:31:44} {2021-08-07 22:57:43, 2021-08-07 22:23:42} 2021-08-08 13:46:29 batch_size None None None None None None None None None None ... None None None None None None None None None None class_weight None None None None None None None None None None ... None None None None None None None None None None epochs 20 20 20 20 20 20 20 20 20 20 ... 20 20 20 20 20 20 20 20 20 20 hp_batch_size 13 5 11 23 13 13 4 18 26 15 ... 9 4 18 10 4 20 14 5 18 14 hp_epochs 20 20 20 20 20 20 20 20 20 20 ... 20 20 20 20 20 20 20 20 20 20 hp_first_filters 107 33 102 58 108 41 64 59 44 23 ... 64 128 32 16 64 32 128 64 32 16 hp_input_size 8192 4096 16384 8192 8192 16384 4096 4096 16384 16384 ... 4096 4096 16384 4096 8192 4096 4096 16384 16384 4096 hp_lr_power 5 7 6 6 6 6 2 2 1 7 ... 1 5 5 1 1 5 1 5 1 5 hp_lr_start 0.00782433731433605 0.0183838908333744 0.0482033274205359 0.00878855796222036 0.00652659278503235 0.0571175071464742 0.047837465592254 0.0330458251501699 0.0136170138242663 0.0305060808685107 ... 0.0100697459464075 0.024311131849965 0.0275283294963226 0.0923388677844686 0.0183950335666331 0.00805377739706802 0.0730305548495589 0.0100791137947559 0.0799422633823613 0.0271446293545328 hp_n_levels 3 5 1 1 6 3 5 1 7 6 ... 5 3 5 3 9 5 3 3 7 7 hp_pool_size 8 2 8 2 2 4 4 8 2 4 ... 4 4 4 2 2 4 4 4 2 2 hp_scaler maxabs robust quant_g minmax minmax l1 standard quant_g standard quant_g ... maxabs maxabs maxabs minmax quant_g l2 robust robust l2 quant_g initial_epoch 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 lr schedule [0.00782433731433605, 0.0060543230624031785, 0... [0.01838389083337442, 0.012838156616261365, 0.... [0.04820332742053588, 0.035433875087977615, 0.... [0.00878855796222036, 0.0064603976883159595, 0... [0.0065265927850323546, 0.004797645429688916, ... [0.057117507146474185, 0.041986616316088646, 0... [0.04783746559225395, 0.043173312697009185, 0.... [0.03304582515016993, 0.029823857198028363, 0.... [0.01361701382426631, 0.012936163133052994, 0.... [0.030506080868510657, 0.021303534028133002, 0... ... [0.010069745946407459, 0.009566258649087086, 0... [0.024311131849965008, 0.018811490394552027, 0... [0.02752832949632261, 0.021300896605473404, 0.... [0.0923388677844686, 0.08772192439524518, 0.08... [0.018395033566633148, 0.01747528188830149, 0.... [0.008053777397068015, 0.0062318594247195965, ... [0.07303055484955895, 0.06937902710708099, 0.0... [0.010079113794755897, 0.007799026121275398, 0... [0.0799422633823613, 0.07594515021324323, 0.07... [0.027144629354532844, 0.021003996750040436, 0... max_queue_size 10 10 10 10 10 10 10 10 10 10 ... 10 10 10 10 10 10 10 10 10 10 num_train_examples 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 ... 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800 num_val_examples 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 ... 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 opt_amsgrad False False False False False False False False False False ... False False False False False False False False False False opt_beta_1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 ... 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 opt_beta_2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 ... 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 opt_decay 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 opt_epsilon 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 ... 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 opt_learning_rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 ... 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 opt_name Adam Adam Adam Adam Adam Adam Adam Adam Adam Adam ... Adam Adam Adam Adam Adam Adam Adam Adam Adam Adam sample_weight None None None None None None None None None None ... None None None None None None None None None None shuffle True True True True True True True True True True ... True True True True True True True True True True steps_per_epoch 369 960 436 208 369 369 1200 266 184 320 ... 533 1200 266 480 1200 240 342 960 266 342 use_multiprocessing False False False False False False False False False False ... False False False False False False False False False False validation_batch_size None None None None None None None None None None ... None None None None None None None None None None validation_freq 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1 validation_split 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 validation_steps 92 240 109 52 92 92 300 66 46 80 ... 133 300 66 120 300 60 85 240 66 85 workers 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1 35 rows × 38 columns
- Now choose the “most successful” runs. I don’t just choose a high AUC,
but especially a high Recall as well:
cond1 = run1_2_combimetrics.loc['val_auc'] > 0.95 cond2 = run1_2_combimetrics.loc['val_recall0.5'] > 0.85 cond3 = run1_2_combimetrics.loc['val_precision0.5'] > 0.85 with pd.option_context('display.max_rows', None, 'display.max_columns', None): # more options can be specified also display(run1_2_combiparams.loc[:, cond1 & cond2 & cond3]) display(run1_2_combimetrics.loc[:, cond1 & cond2 & cond3])
(9051e32b87d84f3485b980067addec30, 61ff87bdb89b4e2ba64f8dacc774992d) (93b168c0ff7942c8a908a94129daf973, f243b3b742de4dbcb7ccfbd4244706f8) (a5b8551144ff46e697a39cd1551e1475, 98cf8cdef9c54b5286e277e75e2ab8c1) (00f2635d9fa2463c9a066722163405be, d0a8e1748b194f3290d471b6b44f19f8) (5604d43c1ece461b8e6eaa0dfb65d6dc, 3612536a77f34f22bc83d1d809140aa6) (7cafab027cdd4fc9bf20a43e989df510, 16dff15d935f45e2a836b1f41b07b4e3) (0e328920e86049928202db95e8cfb7be, bf9d2725eb16462d9a101f0a077ce2b5) (1c954fbc02b747bc813c587ac703c74a, ba49a80c2616407a8f1fe1fd12096fe0) (3cbd945b62ec4634839372e403f6f377, 458b36a70db843719d202a8eda448f17) Run ID: Run Name: {nan} {nan} {nan} {nan} {nan} {nan} {nan} {nan} {nan} Start Time: {2021-08-08 22:10:33, 2021-08-08 21:29:38} {2021-08-08 21:15:24, 2021-08-08 21:01:49} {2021-08-08 19:41:51, 2021-08-08 19:14:27} {2021-08-08 19:07:59, 2021-08-08 19:01:30} {2021-08-08 12:21:05, 2021-08-08 13:03:41} {2021-08-08 10:37:39, 2021-08-08 10:29:07} {2021-08-08 07:47:04, 2021-08-08 08:10:44} {2021-08-08 05:49:55, 2021-08-08 05:42:04} {2021-08-08 04:30:30, 2021-08-08 04:19:31} batch_size None None None None None None None None None class_weight None None None None None None None None None epochs 20 20 20 20 20 20 20 20 20 hp_batch_size 26 15 20 28 20 10 14 17 9 hp_epochs 20 20 20 20 20 20 20 20 20 hp_first_filters 44 23 78 6 128 16 16 16 64 hp_input_size 16384 16384 16384 16384 16384 8192 16384 16384 4096 hp_lr_power 1 7 4 1 1 1 5 5 1 hp_lr_start 0.0136170138242663 0.0305060808685107 0.0584071108418767 0.0553313915596308 0.043549707353273 0.0627676336651573 0.0192390310290551 0.0101590069352232 0.0100697459464075 hp_n_levels 7 6 4 5 3 5 9 3 5 hp_pool_size 2 4 4 4 4 4 2 4 4 hp_scaler standard quant_g standard minmax standard robust robust l2 maxabs initial_epoch 0 0 0 0 0 0 0 0 0 lr schedule [0.01361701382426631, 0.012936163133052994, 0.... [0.030506080868510657, 0.021303534028133002, 0... [0.05840711084187669, 0.04757295682515132, 0.0... [0.05533139155963077, 0.05256482198164923, 0.0... [0.04354970735327304, 0.041372221985609386, 0.... [0.06276763366515732, 0.05962925198189945, 0.0... [0.019239031029055137, 0.014886795466253868, 0... [0.010159006935223234, 0.007860845910406034, 0... [0.010069745946407459, 0.009566258649087086, 0... max_queue_size 10 10 10 10 10 10 10 10 10 num_train_examples 4800 4800 4800 4800 4800 4800 4800 4800 4800 num_val_examples 1200 1200 1200 1200 1200 1200 1200 1200 1200 opt_amsgrad False False False False False False False False False opt_beta_1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 opt_beta_2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 opt_decay 0 0 0 0 0 0 0 0 0 opt_epsilon 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 opt_learning_rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 opt_name Adam Adam Adam Adam Adam Adam Adam Adam Adam sample_weight None None None None None None None None None shuffle True True True True True True True True True steps_per_epoch 184 320 240 171 240 480 342 282 533 use_multiprocessing False False False False False False False False False validation_batch_size None None None None None None None None None validation_freq 1 1 1 1 1 1 1 1 1 validation_split 0 0 0 0 0 0 0 0 0 validation_steps 46 80 60 42 60 120 85 70 133 workers 1 1 1 1 1 1 1 1 1 (9051e32b87d84f3485b980067addec30, 61ff87bdb89b4e2ba64f8dacc774992d) (93b168c0ff7942c8a908a94129daf973, f243b3b742de4dbcb7ccfbd4244706f8) (a5b8551144ff46e697a39cd1551e1475, 98cf8cdef9c54b5286e277e75e2ab8c1) (00f2635d9fa2463c9a066722163405be, d0a8e1748b194f3290d471b6b44f19f8) (5604d43c1ece461b8e6eaa0dfb65d6dc, 3612536a77f34f22bc83d1d809140aa6) (7cafab027cdd4fc9bf20a43e989df510, 16dff15d935f45e2a836b1f41b07b4e3) (0e328920e86049928202db95e8cfb7be, bf9d2725eb16462d9a101f0a077ce2b5) (1c954fbc02b747bc813c587ac703c74a, ba49a80c2616407a8f1fe1fd12096fe0) (3cbd945b62ec4634839372e403f6f377, 458b36a70db843719d202a8eda448f17) Run ID: accuracy 9.710000e-01 9.600000e-01 9.725000e-01 9.735000e-01 9.665000e-01 9.705000e-01 9.640000e-01 9.615000e-01 9.705000e-01 auc 9.810000e-01 9.730000e-01 9.820000e-01 9.840000e-01 9.720000e-01 9.810000e-01 9.730000e-01 9.625000e-01 9.800000e-01 f1 2.640000e-01 2.640000e-01 2.640000e-01 2.650000e-01 2.640000e-01 2.620000e-01 2.650000e-01 2.635000e-01 2.630000e-01 fn0.1 3.682675e+05 4.621365e+05 3.568190e+05 3.122355e+05 5.600420e+05 1.845900e+05 5.070725e+05 7.945210e+05 1.017630e+05 fn0.3 7.227145e+05 9.977800e+05 6.926625e+05 6.512465e+05 9.973125e+05 3.611175e+05 1.124122e+06 1.259410e+06 1.843830e+05 fn0.5 1.136268e+06 1.521807e+06 1.071660e+06 1.004638e+06 1.420861e+06 5.911320e+05 1.642768e+06 1.763400e+06 2.860370e+05 fn0.7 1.738792e+06 2.319607e+06 1.661646e+06 1.556141e+06 2.051528e+06 8.906325e+05 2.305407e+06 2.409087e+06 4.321115e+05 fn0.9 2.890862e+06 4.209348e+06 2.778182e+06 2.663333e+06 3.247781e+06 1.448880e+06 3.677228e+06 3.719575e+06 7.203375e+05 fp0.1 3.958967e+06 5.572852e+06 3.626632e+06 3.504270e+06 4.532016e+06 1.989762e+06 5.707579e+06 4.813038e+06 9.582675e+05 fp0.3 1.991625e+06 2.699346e+06 1.887159e+06 1.789370e+06 2.098466e+06 1.039760e+06 2.281552e+06 2.328430e+06 5.024380e+05 fp0.5 1.120762e+06 1.617764e+06 1.093034e+06 1.072950e+06 1.197675e+06 5.652505e+05 1.199354e+06 1.254754e+06 2.843205e+05 fp0.7 5.437065e+05 8.631090e+05 5.284415e+05 5.297935e+05 5.737150e+05 2.738040e+05 5.788060e+05 6.135885e+05 1.421470e+05 fp0.9 1.503025e+05 2.542905e+05 1.457025e+05 1.390835e+05 1.532515e+05 7.276600e+04 1.507885e+05 1.525270e+05 3.853750e+04 loss 1.950000e-01 2.620000e-01 1.850000e-01 1.710000e-01 2.485000e-01 1.955000e-01 2.645000e-01 3.070000e-01 2.005000e-01 lr 6.809000e-04 2.383000e-11 3.650000e-07 3.000000e-03 2.000000e-03 3.000000e-03 6.012000e-09 3.175000e-09 5.035000e-04 precision0.1 7.455000e-01 6.740000e-01 7.620000e-01 7.690000e-01 7.160000e-01 7.430000e-01 6.675000e-01 6.980000e-01 7.500000e-01 precision0.3 8.490000e-01 8.030000e-01 8.565000e-01 8.640000e-01 8.395000e-01 8.425000e-01 8.260000e-01 8.205000e-01 8.470000e-01 precision0.5 9.060000e-01 8.660000e-01 9.090000e-01 9.110000e-01 8.980000e-01 9.045000e-01 8.960000e-01 8.900000e-01 9.040000e-01 precision0.7 9.495000e-01 9.180000e-01 9.510000e-01 9.515000e-01 9.455000e-01 9.485000e-01 9.435000e-01 9.395000e-01 9.470000e-01 precision0.9 9.835000e-01 9.680000e-01 9.840000e-01 9.850000e-01 9.825000e-01 9.840000e-01 9.825000e-01 9.815000e-01 9.830000e-01 recall0.1 9.690000e-01 9.615000e-01 9.700000e-01 9.740000e-01 9.530000e-01 9.690000e-01 9.575000e-01 9.335000e-01 9.660000e-01 recall0.3 9.395000e-01 9.165000e-01 9.420000e-01 9.455000e-01 9.170000e-01 9.390000e-01 9.060000e-01 8.940000e-01 9.380000e-01 recall0.5 9.050000e-01 8.730000e-01 9.105000e-01 9.160000e-01 8.815000e-01 9.005000e-01 8.625000e-01 8.520000e-01 9.040000e-01 recall0.7 8.545000e-01 8.065000e-01 8.610000e-01 8.705000e-01 8.285000e-01 8.500000e-01 8.070000e-01 7.980000e-01 8.545000e-01 recall0.9 7.580000e-01 6.485000e-01 7.675000e-01 7.775000e-01 7.285000e-01 7.560000e-01 6.925000e-01 6.880000e-01 7.575000e-01 tn0.1 6.248249e+07 6.110056e+07 6.304679e+07 6.295906e+07 6.214143e+07 3.139506e+07 6.077990e+07 6.181710e+07 1.572065e+07 tn0.3 6.444982e+07 6.397410e+07 6.478628e+07 6.467399e+07 6.457496e+07 3.234507e+07 6.420593e+07 6.430173e+07 1.617648e+07 tn0.5 6.532068e+07 6.505565e+07 6.558039e+07 6.539041e+07 6.547576e+07 3.281958e+07 6.528812e+07 6.537538e+07 1.639460e+07 tn0.7 6.589775e+07 6.581032e+07 6.614497e+07 6.593356e+07 6.609972e+07 3.311101e+07 6.590870e+07 6.601654e+07 1.653677e+07 tn0.9 6.629115e+07 6.641916e+07 6.652773e+07 6.632426e+07 6.652018e+07 3.331206e+07 6.633670e+07 6.647764e+07 1.664038e+07 tp0.1 1.157134e+07 1.150763e+07 1.161295e+07 1.167101e+07 1.140972e+07 5.752186e+06 1.145204e+07 1.112024e+07 2.867828e+06 tp0.3 1.121689e+07 1.097199e+07 1.127710e+07 1.133200e+07 1.097245e+07 5.575658e+06 1.083499e+07 1.065535e+07 2.785208e+06 tp0.5 1.080334e+07 1.044796e+07 1.089811e+07 1.097861e+07 1.054891e+07 5.345644e+06 1.031634e+07 1.015136e+07 2.683554e+06 tp0.7 1.020082e+07 9.650160e+06 1.030812e+07 1.042710e+07 9.918238e+06 5.046144e+06 9.653704e+06 9.505670e+06 2.537480e+06 tp0.9 9.048746e+06 7.760420e+06 9.191586e+06 9.319910e+06 8.721986e+06 4.487896e+06 8.281883e+06 8.195182e+06 2.249254e+06 val_accuracy 9.705000e-01 9.580000e-01 9.715000e-01 9.730000e-01 9.655000e-01 9.650000e-01 9.620000e-01 9.540000e-01 9.655000e-01 val_auc 9.810000e-01 9.760000e-01 9.840000e-01 9.870000e-01 9.745000e-01 9.780000e-01 9.760000e-01 9.620000e-01 9.720000e-01 val_f1 2.765000e-01 2.770000e-01 2.770000e-01 2.765000e-01 2.770000e-01 2.770000e-01 2.775000e-01 2.775000e-01 2.810000e-01 val_fn0.1 9.953900e+04 1.018855e+05 8.291750e+04 6.491900e+04 1.300915e+05 5.183400e+04 1.083685e+05 1.989905e+05 4.027450e+04 val_fn0.3 2.065230e+05 2.225190e+05 1.673150e+05 1.418270e+05 2.487260e+05 1.058955e+05 2.645855e+05 3.249370e+05 6.900850e+04 val_fn0.5 3.215935e+05 3.389065e+05 2.659300e+05 2.205875e+05 3.629365e+05 1.735790e+05 3.913830e+05 4.524360e+05 1.028930e+05 val_fn0.7 4.900970e+05 5.129575e+05 4.164020e+05 3.444560e+05 5.346575e+05 2.454170e+05 5.597010e+05 6.320105e+05 1.485405e+05 val_fn0.9 8.184030e+05 9.663815e+05 7.104005e+05 6.000115e+05 8.757840e+05 3.997180e+05 9.522080e+05 9.742990e+05 2.333430e+05 val_fp0.1 9.453770e+05 1.601886e+06 9.806695e+05 1.017959e+06 1.234908e+06 6.305910e+05 1.691592e+06 1.263437e+06 2.185595e+05 val_fp0.3 4.490195e+05 8.010390e+05 5.028105e+05 4.986330e+05 5.470645e+05 3.102420e+05 6.715845e+05 7.084290e+05 1.185620e+05 val_fp0.5 2.523625e+05 4.911005e+05 2.909235e+05 2.976760e+05 3.176580e+05 1.722175e+05 3.474940e+05 4.435775e+05 6.640450e+04 val_fp0.7 1.222830e+05 2.638220e+05 1.435500e+05 1.506035e+05 1.579470e+05 9.873550e+04 1.668495e+05 2.509655e+05 3.329950e+04 val_fp0.9 3.509800e+04 7.686200e+04 4.052800e+04 4.137150e+04 4.698050e+04 3.210800e+04 4.534800e+04 9.132200e+04 9.003000e+03 val_loss 1.985000e-01 2.665000e-01 1.855000e-01 1.735000e-01 2.515000e-01 2.360000e-01 2.725000e-01 3.290000e-01 2.440000e-01 val_precision0.1 7.635000e-01 6.570000e-01 7.585000e-01 7.495000e-01 7.105000e-01 7.095000e-01 6.420000e-01 6.995000e-01 7.770000e-01 val_precision0.3 8.675000e-01 7.860000e-01 8.565000e-01 8.560000e-01 8.425000e-01 8.270000e-01 8.110000e-01 7.990000e-01 8.610000e-01 val_precision0.5 9.180000e-01 8.520000e-01 9.090000e-01 9.065000e-01 8.985000e-01 8.910000e-01 8.880000e-01 8.585000e-01 9.135000e-01 val_precision0.7 9.560000e-01 9.095000e-01 9.505000e-01 9.480000e-01 9.435000e-01 9.315000e-01 9.395000e-01 9.090000e-01 9.515000e-01 val_precision0.9 9.850000e-01 9.660000e-01 9.840000e-01 9.835000e-01 9.800000e-01 9.735000e-01 9.795000e-01 9.595000e-01 9.845000e-01 val_recall0.1 9.685000e-01 9.680000e-01 9.740000e-01 9.790000e-01 9.590000e-01 9.670000e-01 9.655000e-01 9.365000e-01 9.500000e-01 val_recall0.3 9.345000e-01 9.300000e-01 9.470000e-01 9.540000e-01 9.215000e-01 9.330000e-01 9.160000e-01 8.965000e-01 9.140000e-01 val_recall0.5 8.975000e-01 8.930000e-01 9.160000e-01 9.290000e-01 8.850000e-01 8.905000e-01 8.750000e-01 8.560000e-01 8.720000e-01 val_recall0.7 8.445000e-01 8.380000e-01 8.685000e-01 8.890000e-01 8.310000e-01 8.450000e-01 8.215000e-01 7.985000e-01 8.145000e-01 val_recall0.9 7.400000e-01 6.945000e-01 7.750000e-01 8.060000e-01 7.235000e-01 7.475000e-01 6.965000e-01 6.890000e-01 7.090000e-01 val_tn0.1 1.550422e+07 1.489606e+07 1.551728e+07 1.515836e+07 1.526304e+07 7.617204e+06 1.466611e+07 1.509811e+07 3.882080e+06 val_tn0.3 1.600058e+07 1.569691e+07 1.599514e+07 1.567769e+07 1.595088e+07 7.937553e+06 1.568612e+07 1.565312e+07 3.982077e+06 val_tn0.5 1.619724e+07 1.600685e+07 1.620702e+07 1.587864e+07 1.618029e+07 8.075578e+06 1.601021e+07 1.591797e+07 4.034234e+06 val_tn0.7 1.632732e+07 1.623412e+07 1.635440e+07 1.602572e+07 1.634000e+07 8.149060e+06 1.619086e+07 1.611058e+07 4.067340e+06 val_tn0.9 1.641450e+07 1.642108e+07 1.645742e+07 1.613495e+07 1.645097e+07 8.215687e+06 1.631236e+07 1.627022e+07 4.091636e+06 val_tp0.1 3.046124e+06 3.060968e+06 3.079936e+06 3.026346e+06 3.032762e+06 1.530771e+06 3.030885e+06 2.936426e+06 7.619985e+05 val_tp0.3 2.939140e+06 2.940335e+06 2.995539e+06 2.949438e+06 2.914128e+06 1.476710e+06 2.874668e+06 2.810479e+06 7.332645e+05 val_tp0.5 2.824070e+06 2.823948e+06 2.896924e+06 2.870677e+06 2.799918e+06 1.409026e+06 2.747870e+06 2.682980e+06 6.993800e+05 val_tp0.7 2.655566e+06 2.649896e+06 2.746452e+06 2.746808e+06 2.628196e+06 1.337188e+06 2.579552e+06 2.503406e+06 6.537325e+05 val_tp0.9 2.327260e+06 2.196472e+06 2.452454e+06 2.491253e+06 2.287070e+06 1.182887e+06 2.187046e+06 2.161117e+06 5.689300e+05 This looks promising with a wide variety of approaches leading to success. Sadly, only run
00f2635d9fa2463c9a066722163405be
had the model saved out for immediate testing. The other models have to be trained again with the same settings.Lets look at some plots of successful runs as well: High validation AUC: High validation AUC, high validation precision: High validation AUC, high validation recall: High validation AUC, high validation recall, high validation precision:
- Now lets look at some unsuccessful runs and some interesting runs:
High training AUC, low validation AUC (these models overfitted). Here a
clear predictor seems to be
lr_power=1
, a small batch size, and a small pool size. Low validation AUC, low validation recall: Low validation precision, but still reasonably high validation AUC: Low validation recall, but still reasonably high validation AUC: - Lets inspect input sizes. Their might be a slight preference for 2**14 length of traces, but it could also be negligible. Input size of 4096 time steps Input size of 8192 time steps Input size of 16384 time steps
- Next lets inspect a complicated hyperparameter, which adjusts the pool
size of the encoder, as well as the strides and the kernel size of the
decoder. It is connected to the input size and nlevels in model
building, as well. The following condition has to hold:
input_size >= 2 * pool_size**n_levels
. Because of that, a poolsize of 8 is only possible with smaller nlevels. Still, a higher poolsize seems to be useful in this project. pool size, kernel size and strides of 2: pool size, kernel size and strides of 4: pool size, kernel size and strides of 8: - Another complicated hyperparameter is nlevels. It refers to the “depth” of the unet. How many times will the input trace be pooled and skip connections made? This parameter strongly influences the amount of total model parameters and smaller values make the model much more portable and “simpler”, which could be viewed as a positive thing itself. A larger value raises the learning capacity of the network, but also raises the possibility of overfitting. Number of unet levels 1 to 3 Number of unet levels 4 to 6 Number of unet levels 7 to 9
- Lets take a look at the different first filters (starting from this value, the number of filters was doubled for each unet level till a maximum of 512 filters was reached). More filters mean more capacity for learning, but also more risk of overfitting and model size. Here, no real trend is visible, so a lower number of filters should be sufficient. from 6 to 45 first filters from 57 to 77 first filters from 100 to 128 first filters
- Now lets take a look at the starting learning rates and the learning rate power, which together are used to construct a learning rate schedule. For the learning rate starting value, the lower category seemed to perform better than the upper category. The power of 1 is simpler than the values between 4 and 7. Start learning rate between 0.0065 and 0.035: Start learning rate between 0.045 and 0.065: Start learning rate between 0.065 and 0.1: Power of learning rate equation = 1, meaning a linear decay: Power of learning rate equation = 4 to 7, meaning a polynomial decay:
- The next parameter is the batch size, which is directly coupled to the steps per epoch of the training (since I chose the step size to equal the total number of examples divided by the batch size). A larger batch size pools more training examples for decisions. We see that batch size >7 seem to be benefitial. Batch size of 2 to 8, with steps per epoch between 600 and 2400 Batch size of 8 to 20, with steps per epoch between 165 and 550
- Lastly, lets take a look at the different scalers. I used a scaler from
the beginning, because in learning algorithms this guarantees some
numerical stability. As a naive approach I chose one - the Min-Max
scaler. After evaluating the first training approaches I noticed that
there might be problems with this scaler, if the trace has no artifacts
in it, see this example plot, where I plotted a variety of scalers from
sklearn
on some simulated data: From these I chose Standard, Robust, Max-Abs, Quantile (Gaussian), Min-Max, L1 and L2, because they looked most promising. Now, let’s load some of the experimental data and see how these scalers look on this data.path_tb_pex5_egfp = '/beegfs/ye53nis/data/Pablo_structured_experiment' length_delimiter = 2**13 # for U-Net bin_for_correlation = 1e6 ptu_1ms, _ = ptu.import_from_ptu( path=path_tb_pex5_egfp, file_delimiter=2, photon_count_bin=1e6, verbose=True) ptu_1ms = ptu_1ms
1 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu 2 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu
scalers = {'Unscaled data': None, 'Data after standard scaling (z-score)': 'standard', 'Data after robust scaling': 'robust', 'Data after max-abs scaling': 'maxabs', 'Data after quantile transformation (gaussian pdf)': 'quant_g', 'Data after min-max scaling': 'minmax', 'Data after sample-wise L1 normalization (taxicab, LASSO)': 'l1', 'Data after sample-wise L2 normalization (Euclidian)': 'l2'} plt.figure(figsize=(16,14), facecolor='white') for i, (text, s) in enumerate(scalers.items()): plt.subplot(3, 3, i+1, title=text) if s is None: plt.plot(ptu_1ms, alpha=0.75) else: print(np.array(ptu_1ms.iloc[:, 0])) # We have to circumvent the following error because we want to dropna() for scaling: # /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/numpy/core/_asarray.py:136: # VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which # is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) # is deprecated. If you meant to do this, you must specify 'dtype=object' when creating # the ndarray: return array(a, dtype, copy=False, order=order, subok=True) # And the sklearn error: # ValueError: Expected 2D array, got 1D array instead: # array=[486. 455. 622. ... 580. 522. 682.]. # Reshape your data either using array.reshape(-1, 1) if your data has a single feature # or array.reshape(1, -1) if it contains a single sample. tscaled = [ppd.scale_trace(np.array(ptu_1ms.iloc[:, j].dropna(), dtype=object).reshape(-1, 1), scaler=s) for j in range(2)] [plt.plot(tscaled[k], alpha=0.75) for k in range(2)] plt.tight_layout()
with
reshape(-1, 1)
to say that data has a single feature . We already see that the quantile transformation might not be so useful here. In the simulated data with slower cluster speeds it made the peaks clearly distinct, here this is not the case.using
reshape(1, -1)
to say that data contains a single sample does not work e.g. each timestep normalized to 0…First, let’s look at L1 and L2. L1 was only chosen once, L2 got chosen more often. In runs with the highest
val_auc
, this norm especially seems to lead to a high recall (which is a problem with minmax). But we also see that depending on the other parameters there is a wide variation of results, including very bad onesSecond, let’s look at Max-Abs (from 0 to the maximum value) and Min-Max (from the minimum to the maximum value). Both are conceptually somewhat similar, although Max-Abs keeps the distance from 0 to the minimal value, and Min-Max does not. We see that both lead to good results, with some variation. In Max-Abs, the spread seems to be wider.
Third, Quantile Transformation (Gaussian distribution). We see that this transformation suffers from bad valprecision values. Higher recall values can be reached with other transformations. Thus, I think I can neglect this transformation in the future.
Fourth, the Robust Scaler. It robustly (haha) achieves good precision and recall values
Fifth, the Standard Scaler. It achieves some of the best results, even though there is some variation, both in precision and recall.
2.4.5 Look at training logging of training run 00f2635d9fa2463c9a066722163405be
This run is one of the few very good runs where the model got saved out.
- Let’s look at some prediction plots after 1 epoch: after 5 epochs: after 10 epochs: after 15 epochs: after 20 epochs:
- Now let’s print out the model architecture.
-n
prints out line numbers.cat -n data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model_summary.txt
| 1 | unet_depth5 | | 2 | __________________________________________________________________________________________________ | | 3 | Layer (type) Output Shape Param # Connected to | | 4 | ================================================================================================== | | 5 | input_6 (InputLayer) [(None, 16384, 1)] 0 | | 6 | __________________________________________________________________________________________________ | | 7 | encode0 (Sequential) (None, 16384, 6) 186 input_6[0][0] | | 8 | __________________________________________________________________________________________________ | | 9 | mp_encode0 (MaxPooling1D) (None, 4096, 6) 0 encode0[0][0] | | 10 | __________________________________________________________________________________________________ | | 11 | encode1 (Sequential) (None, 4096, 12) 768 mp_encode0[0][0] | | 12 | __________________________________________________________________________________________________ | | 13 | mp_encode1 (MaxPooling1D) (None, 1024, 12) 0 encode1[0][0] | | 14 | __________________________________________________________________________________________________ | | 15 | encode2 (Sequential) (None, 1024, 24) 2832 mp_encode1[0][0] | | 16 | __________________________________________________________________________________________________ | | 17 | mp_encode2 (MaxPooling1D) (None, 256, 24) 0 encode2[0][0] | | 18 | __________________________________________________________________________________________________ | | 19 | encode3 (Sequential) (None, 256, 48) 10848 mp_encode2[0][0] | | 20 | __________________________________________________________________________________________________ | | 21 | mp_encode3 (MaxPooling1D) (None, 64, 48) 0 encode3[0][0] | | 22 | __________________________________________________________________________________________________ | | 23 | encode4 (Sequential) (None, 64, 96) 42432 mp_encode3[0][0] | | 24 | __________________________________________________________________________________________________ | | 25 | mp_encode4 (MaxPooling1D) (None, 16, 96) 0 encode4[0][0] | | 26 | __________________________________________________________________________________________________ | | 27 | two_conv_center (Sequential) (None, 16, 192) 167808 mp_encode4[0][0] | | 28 | __________________________________________________________________________________________________ | | 29 | conv_transpose_decoder4 (Sequen (None, 64, 192) 148416 two_conv_center[0][0] | | 30 | __________________________________________________________________________________________________ | | 31 | decoder4 (Concatenate) (None, 64, 288) 0 encode4[0][0] | | 32 | conv_transpose_decoder4[0][0] | | 33 | __________________________________________________________________________________________________ | | 34 | two_conv_decoder4 (Sequential) (None, 64, 192) 278400 decoder4[0][0] | | 35 | __________________________________________________________________________________________________ | | 36 | conv_transpose_decoder3 (Sequen (None, 256, 96) 74208 two_conv_decoder4[0][0] | | 37 | __________________________________________________________________________________________________ | | 38 | decoder3 (Concatenate) (None, 256, 144) 0 encode3[0][0] | | 39 | conv_transpose_decoder3[0][0] | | 40 | __________________________________________________________________________________________________ | | 41 | two_conv_decoder3 (Sequential) (None, 256, 96) 70080 decoder3[0][0] | | 42 | __________________________________________________________________________________________________ | | 43 | conv_transpose_decoder2 (Sequen (None, 1024, 48) 18672 two_conv_decoder3[0][0] | | 44 | __________________________________________________________________________________________________ | | 45 | decoder2 (Concatenate) (None, 1024, 72) 0 encode2[0][0] | | 46 | conv_transpose_decoder2[0][0] | | 47 | __________________________________________________________________________________________________ | | 48 | two_conv_decoder2 (Sequential) (None, 1024, 48) 17760 decoder2[0][0] | | 49 | __________________________________________________________________________________________________ | | 50 | conv_transpose_decoder1 (Sequen (None, 4096, 24) 4728 two_conv_decoder2[0][0] | | 51 | __________________________________________________________________________________________________ | | 52 | decoder1 (Concatenate) (None, 4096, 36) 0 encode1[0][0] | | 53 | conv_transpose_decoder1[0][0] | | 54 | __________________________________________________________________________________________________ | | 55 | two_conv_decoder1 (Sequential) (None, 4096, 24) 4560 decoder1[0][0] | | 56 | __________________________________________________________________________________________________ | | 57 | conv_transpose_decoder0 (Sequen (None, 16384, 12) 1212 two_conv_decoder1[0][0] | | 58 | __________________________________________________________________________________________________ | | 59 | decoder0 (Concatenate) (None, 16384, 18) 0 encode0[0][0] | | 60 | conv_transpose_decoder0[0][0] | | 61 | __________________________________________________________________________________________________ | | 62 | two_conv_decoder0 (Sequential) (None, 16384, 12) 1200 decoder0[0][0] | | 63 | __________________________________________________________________________________________________ | | 64 | conv1d_89 (Conv1D) (None, 16384, 1) 13 two_conv_decoder0[0][0] | | 65 | ================================================================================================== | | 66 | Total params: 844,123 | | 67 | Trainable params: 840,379 | | 68 | Non-trainable params: 3,744 | | 69 | __________________________________________________________________________________________________ |
- Print out mlflow Model parameters
cat -n data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model/MLmodel
| 1 | artifact_path: model | | 2 | flavors: | | 3 | keras: | | 4 | data: data | | 5 | keras_module: tensorflow.keras | | 6 | keras_version: 2.5.0 | | 7 | save_format: tf | | 8 | python_function: | | 9 | data: data | | 10 | env: conda.yaml | | 11 | loader_module: mlflow.keras | | 12 | python_version: 3.9.6 | | 13 | run_id: 00f2635d9fa2463c9a066722163405be | | 14 | utc_time_created: '2021-08-08 17:14:06.771348' |
- Print out training data parameters. One learning: The f1-metric does not work!
echo "time val_recall0.5 epoch" cat data/mlruns/8/00f2635d9fa2463c9a066722163405be/metrics/val_recall0.5 echo "" echo "time val_precision0.5 epoch" cat data/mlruns/8/00f2635d9fa2463c9a066722163405be/metrics/val_precision0.5 echo "" echo "time val_auc epoch" cat data/mlruns/8/00f2635d9fa2463c9a066722163405be/metrics/val_auc echo "" echo "time val_f1 epoch" cat data/mlruns/8/00f2635d9fa2463c9a066722163405be/metrics/val_f1
time val\recall0.5 epoch 1628442521951 1.0 0 1628442538552 1.0 1 1628442555029 0.9884297847747803 2 1628442571921 0.9939945340156555 3 1628442588629 0.9871219396591187 4 1628442605537 0.9595196843147278 5 1628442622450 0.9733913540840149 6 1628442642363 0.9914226531982422 7 1628442659452 0.9950642585754395 8 1628442676492 0.7978640794754028 9 1628442693576 0.9715087413787842 10 1628442710632 0.9640132188796997 11 1628442727806 0.9724437594413757 12 1628442744594 0.9310197234153748 13 1628442761707 0.8998530507087708 14 1628442778890 0.9342276453971863 15 1628442795829 0.9401260018348694 16 1628442812832 0.9072213768959045 17 1628442829592 0.8626136183738708 18 1628442846600 0.9356982707977295 19 time val\precision0.5 epoch 1628442521951 0.161118745803833 0 1628442538552 0.16019564867019653 1 1628442555029 0.17915846407413483 2 1628442571921 0.243782639503479 3 1628442588629 0.2357945740222931 4 1628442605537 0.24214163422584534 5 1628442622450 0.5458978414535522 6 1628442642363 0.4380616247653961 7 1628442659452 0.2929491698741913 8 1628442676492 0.8729878067970276 9 1628442693576 0.7323421835899353 10 1628442710632 0.5339199304580688 11 1628442727806 0.7172960042953491 12 1628442744594 0.8843752145767212 13 1628442761707 0.9003584980964661 14 1628442778890 0.8853111267089844 15 1628442795829 0.8726167678833008 16 1628442812832 0.9290499091148376 17 1628442829592 0.9494153261184692 18 1628442846600 0.8976160287857056 19 time val\auc epoch 1628442521951 0.5 0 1628442538552 0.5000137686729431 1 1628442555029 0.5814657211303711 2 1628442571921 0.8558493852615356 3 1628442588629 0.7804751396179199 4 1628442605537 0.7518471479415894 5 1628442622450 0.9729548096656799 6 1628442642363 0.980221688747406 7 1628442659452 0.9016830325126648 8 1628442676492 0.9798668026924133 9 1628442693576 0.9884295463562012 10 1628442710632 0.9497971534729004 11 1628442727806 0.9887964129447937 12 1628442744594 0.9877431392669678 13 1628442761707 0.9804221987724304 14 1628442778890 0.9873037338256836 15 1628442795829 0.9889394640922546 16 1628442812832 0.9840959310531616 17 1628442829592 0.9767916202545166 18 1628442846600 0.9875953793525696 19 time val\f1 epoch 1628442521951 0.2775232493877411 0 1628442538552 0.2761525511741638 1 1628442555029 0.27699539065361023 2 1628442571921 0.27680331468582153 3 1628442588629 0.27761173248291016 4 1628442605537 0.2781853973865509 5 1628442622450 0.27713820338249207 6 1628442642363 0.27754780650138855 7 1628442659452 0.27742522954940796 8 1628442676492 0.2759542465209961 9 1628442693576 0.27791914343833923 10 1628442710632 0.2769533693790436 11 1628442727806 0.2773088812828064 12 1628442744594 0.2751254439353943 13 1628442761707 0.2785097658634186 14 1628442778890 0.27688315510749817 15 1628442795829 0.2764797508716583 16 1628442812832 0.27767083048820496 17 1628442829592 0.2765066623687744 18 1628442846600 0.27736371755599976 19 - Of course I have plotted out a lot of further info (tensorflow, mlflow, experiment parameters, etc). But I will plot this out in the dedicated training run, not in the hparams run.
2.4.6 Apply model from run 2 to experimental data
%cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
from pathlib import Path import sys import mlflow import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import tensorflow as tf print("tf version: ", tf.version.VERSION) print("tf.keras version: ", tf.keras.__version__) print("mlflow version: ", mlflow.version.VERSION)
tf version: 2.5.0 tf.keras version: 2.5.0 mlflow version: 1.19.0
sys.path.append('src/') from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, ) from fluotracify.training import build_model as bm, preprocess_data as ppd from fluotracify.applications import correlate, plots, correction from fluotracify.imports import ptu_utils as ptu
import importlib importlib.reload(correction)
logged_model = 'file:///beegfs/ye53nis/drmed-git/data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model' metrics_thresholds = [0.1, 0.3, 0.5, 0.7, 0.9] loaded_model = mlflow.keras.load_model(logged_model, compile=False) loaded_model.compile(loss=bm.binary_ce_dice_loss(), optimizer=tf.keras.optimizers.Adam(), metrics = bm.unet_metrics(metrics_thresholds)) loaded_model
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. <tensorflow.python.keras.engine.functional.Functional at 0x2b21c027e8b0>
# The following block has to be executed multiple times with different array lengths # e.g. 2**14, 2**13, 2**12 # note that: after executing 2**14, then 2**13, there will be an error # if you then execute 2**12 and then 2**13 again, the error will be gone test_features = np.zeros((2**14)).reshape(1, -1, 1) print(test_features.shape) predictions = loaded_model.predict(test_features, verbose=0).flatten() predictions
(1, 16384, 1) array([1.4064237e-01, 1.3650321e-08, 7.4799689e-10, ..., 3.1755112e-10, 1.8236226e-10, 6.6588524e-10], dtype=float32)
test_features2 = np.zeros((2**13)).reshape(1, -1, 1) print(test_features2.shape) predictions = loaded_model.predict(test_features2, verbose=0).flatten() predictions
(1, 8192, 1) array([1.4064237e-01, 1.3650321e-08, 7.4799689e-10, ..., 3.1755112e-10, 1.8236226e-10, 6.6588524e-10], dtype=float32)
path_tb_pex5_egfp = '/beegfs/ye53nis/data/Pablo_structured_experiment' pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9] length_delimiter = 2**13 # for U-Net bin_for_correlation = 1e6 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction( path_list=path_tb_pex5_egfp, model=loaded_model, pred_thresh=pred_thresh, photon_count_bin=bin_for_correlation, ntraces=None, save_as_csv=True) out
Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment with bin=1e6. This can take a while... 1 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu 2 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu Processing correlation of unprocessed dataset 1 Processing correlation with correction by prediction of dataset 1
\(D\) in \(\frac{{\mu m^2}}{{s}}\) | \(\tau_{{D}}\) in \(ms\) | Trace lengths | folderid-tracesused | Photon count bin for correlation in \(ns\) | FileGUID | FileCreatingTime | MeasurementSubMode | FileComment | TTResultStopReason | … | MeasDescGlobalResolution | TTResultNumberOfRecords | MeasDescAcquisitionTime | TTResultMDescWarningFlags | TTResultStopAfter | TTResultFormatTTTRRecType | TTResultFormatBitsPerRecord | UsrPowerDiode | HeaderEnd | Number of Channels | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.898516 | 12.544077 | 8192 | 0-orig | 1000000.0 | {1FADBD63-E853-4886-82EB-0D4FEB0A2641} | (2019, 10, 31, 11, 17, 29, 3, 304, 0) | 0 | 0 | … | 0.0 | 6124808 | 10000 | 0 | 10000 | 16843524 | 32 | 1002.253351 | <empty Tag> | 1 | |
1 | 1.488758 | 7.570775 | 8192 | 0-orig | 1000000.0 | {1104778F-509F-40AB-9176-580B3A1CE38D} | (2019, 10, 31, 11, 17, 16, 3, 304, 0) | 0 | 0 | … | 0.0 | 5881858 | 10000 | 0 | 10000 | 16843524 | 32 | 979.946455 | <empty Tag> | 1 | |
2 | 7.747958 | 1.454713 | 5053 | 0-pred-0.1 | 1000000.0 | {1FADBD63-E853-4886-82EB-0D4FEB0A2641} | (2019, 10, 31, 11, 17, 29, 3, 304, 0) | 0 | 0 | … | 0.0 | 6124808 | 10000 | 0 | 10000 | 16843524 | 32 | 1002.253351 | <empty Tag> | 1 | |
3 | 2.388373 | 4.719135 | 5926 | 0-pred-0.1 | 1000000.0 | {1104778F-509F-40AB-9176-580B3A1CE38D} | (2019, 10, 31, 11, 17, 16, 3, 304, 0) | 0 | 0 | … | 0.0 | 5881858 | 10000 | 0 | 10000 | 16843524 | 32 | 979.946455 | <empty Tag> | 1 | |
4 | 5.875199 | 1.918413 | 5729 | 0-pred-0.3 | 1000000.0 | {1FADBD63-E853-4886-82EB-0D4FEB0A2641} | (2019, 10, 31, 11, 17, 29, 3, 304, 0) | 0 | 0 | … | 0.0 | 6124808 | 10000 | 0 | 10000 | 16843524 | 32 | 1002.253351 | <empty Tag> | 1 | |
5 | 2.144527 | 5.255731 | 6707 | 0-pred-0.3 | 1000000.0 | {1104778F-509F-40AB-9176-580B3A1CE38D} | (2019, 10, 31, 11, 17, 16, 3, 304, 0) | 0 | 0 | … | 0.0 | 5881858 | 10000 | 0 | 10000 | 16843524 | 32 | 979.946455 | <empty Tag> | 1 | |
6 | 3.673109 | 3.068532 | 6179 | 0-pred-0.5 | 1000000.0 | {1FADBD63-E853-4886-82EB-0D4FEB0A2641} | (2019, 10, 31, 11, 17, 29, 3, 304, 0) | 0 | 0 | … | 0.0 | 6124808 | 10000 | 0 | 10000 | 16843524 | 32 | 1002.253351 | <empty Tag> | 1 | |
7 | 1.816449 | 6.204994 | 7164 | 0-pred-0.5 | 1000000.0 | {1104778F-509F-40AB-9176-580B3A1CE38D} | (2019, 10, 31, 11, 17, 16, 3, 304, 0) | 0 | 0 | … | 0.0 | 5881858 | 10000 | 0 | 10000 | 16843524 | 32 | 979.946455 | <empty Tag> | 1 | |
8 | 1.857476 | 6.067942 | 6576 | 0-pred-0.7 | 1000000.0 | {1FADBD63-E853-4886-82EB-0D4FEB0A2641} | (2019, 10, 31, 11, 17, 29, 3, 304, 0) | 0 | 0 | … | 0.0 | 6124808 | 10000 | 0 | 10000 | 16843524 | 32 | 1002.253351 | <empty Tag> | 1 | |
9 | 1.45624 | 7.739836 | 7446 | 0-pred-0.7 | 1000000.0 | {1104778F-509F-40AB-9176-580B3A1CE38D} | (2019, 10, 31, 11, 17, 16, 3, 304, 0) | 0 | 0 | … | 0.0 | 5881858 | 10000 | 0 | 10000 | 16843524 | 32 | 979.946455 | <empty Tag> | 1 | |
10 | 0.986952 | 11.420058 | 7081 | 0-pred-0.9 | 1000000.0 | {1FADBD63-E853-4886-82EB-0D4FEB0A2641} | (2019, 10, 31, 11, 17, 29, 3, 304, 0) | 0 | 0 | … | 0.0 | 6124808 | 10000 | 0 | 10000 | 16843524 | 32 | 1002.253351 | <empty Tag> | 1 | |
11 | 1.150654 | 9.795347 | 7735 | 0-pred-0.9 | 1000000.0 | {1104778F-509F-40AB-9176-580B3A1CE38D} | (2019, 10, 31, 11, 17, 16, 3, 304, 0) | 0 | 0 | … | 0.0 | 5881858 | 10000 | 0 | 10000 | 16843524 | 32 | 979.946455 | <empty Tag> | 1 |
12 rows × 94 columns
path_pex5_exp = ['/beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu', '/beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu'] pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9] length_delimiter = 2**13 # for U-Net bin_for_correlation = 1e5 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction( path_list=path_pex5_exp, model=loaded_model, pred_thresh=pred_thresh, photon_count_bin=bin_for_correlation, ntraces=400, save_as_csv=True) out
Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu with bin=1e6. This can take a while... 1 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1082s_1.ptu 2 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1537s_1.ptu 3 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488210_T2505s_1.ptu 4 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488199_T2375s_1.ptu 5 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2040s_1.ptu 6 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488229_T2733s_1.ptu 7 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1070s_1.ptu 8 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1352s_1.ptu 9 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T986s_1.ptu10 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488227_T2709s_1.ptu 11 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2088s_1.ptu 12 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1214s_1.ptu 13 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1561s_1.ptu 14 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T302s_1.ptu 15 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1932s_1.ptu 16 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2267s_1.ptu 17 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2255s_1.ptu 18 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488208_T2481s_1.ptu 19 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T314s_1.ptu 20 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488221_T2637s_1.ptu 21 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1834s_1.ptu 22 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1883s_1.ptu 23 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488197_T2351s_1.ptu 24 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T254s_1.ptu 25 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48816_T182s_1.ptu 26 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2148s_1.ptu 27 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1238s_1.ptu 28 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T833s_1.ptu 29 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T676s_1.ptu 30 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1496s_1.ptu 31 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T459s_1.ptu 32 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1610s_1.ptu 33 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T592s_1.ptu 34 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1907s_1.ptu 35 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T604s_1.ptu 36 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1895s_1.ptu 37 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T926s_1.ptu 38 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T447s_1.ptu 39 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T821s_1.ptu 40 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48834_T399s_1.ptu 41 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T506s_1.ptu 42 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1076s_1.ptu 43 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2209s_1.ptu 44 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T748s_1.ptu 45 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1232s_1.ptu 46 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2159s_1.ptu 47 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T698s_1.ptu 48 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T855s_1.ptu 49 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1789s_1.ptu 50 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488241_T2877s_1.ptu 51 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488204_T2434s_1.ptu 52 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T918s_1.ptu 53 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2147s_1.ptu 54 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2197s_1.ptu 55 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1908s_1.ptu 56 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488238_T2842s_1.ptu 57 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1968s_1.ptu 58 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488234_T2793s_1.ptu 59 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T979s_1.ptu 60 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1148s_1.ptu 61 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1280s_1.ptu 62 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1654s_1.ptu 63 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1484s_1.ptu 64 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2245s_1.ptu 65 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T879s_1.ptu 66 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1896s_1.ptu 67 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2124s_1.ptu 68 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1328s_1.ptu 69 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T867s_1.ptu 70 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T962s_1.ptu 71 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T628s_1.ptu 72 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48842_T496s_1.ptu 73 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T590s_1.ptu 74 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1184s_1.ptu 75 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488196_T2339s_1.ptu 76 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1956s_1.ptu 77 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488217_T2589s_1.ptu 78 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488218_T2601s_1.ptu 79 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1418s_1.ptu 80 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488206_T2458s_1.ptu 81 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T785s_1.ptu 82 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1226s_1.ptu 83 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T278s_1.ptu 84 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4887_T74s_1.ptu 85 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2099s_1.ptu 86 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48817_T194s_1.ptu 87 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1346s_1.ptu 88 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T688s_1.ptu 89 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488211_T2517s_1.ptu 90 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T712s_1.ptu 91 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48833_T387s_1.ptu 92 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T686s_1.ptu 93 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48813_T146s_1.ptu 94 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488126_T1502s_1.ptu 95 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1118s_1.ptu 96 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1316s_1.ptu 97 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2243s_1.ptu 98 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1430s_1.ptu 99 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488219_T2613s_1.ptu 100 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1646s_1.ptu 101 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2231s_1.ptu 102 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488146_T1742s_1.ptu 103 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488155_T1859s_1.ptu 104 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2075s_1.ptu 105 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1884s_1.ptu 106 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488244_T2914s_1.ptu 107 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4886_T62s_1.ptu 108 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1015s_1.ptu 109 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1979s_1.ptu 110 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T674s_1.ptu 111 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2279s_1.ptu 112 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2183s_1.ptu 113 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1689s_1.ptu 114 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2269s_1.ptu 115 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T266s_1.ptu 116 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488209_T2493s_1.ptu 117 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1630s_1.ptu 118 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488185_T2221s_1.ptu 119 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2135s_1.ptu 120 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T782s_1.ptu 121 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1472s_1.ptu 122 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1919s_1.ptu 123 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T664s_1.ptu 124 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T351s_1.ptu 125 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T375s_1.ptu 126 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T700s_1.ptu 127 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1545s_1.ptu 128 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1714s_1.ptu 129 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1022s_1.ptu 130 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1754s_1.ptu 131 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488193_T2303s_1.ptu 132 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1250s_1.ptu 133 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488228_T2721s_1.ptu 134 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1088s_1.ptu 135 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2040s_1.ptu 136 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48835_T411s_1.ptu 137 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1046s_1.ptu 138 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1466s_1.ptu 139 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T906s_1.ptu 140 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T255s_1.ptu 141 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1730s_1.ptu 142 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1358s_1.ptu 143 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T279s_1.ptu 144 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T638s_1.ptu 145 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2949s_1.ptu 146 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T519s_1.ptu 147 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T482s_1.ptu 148 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T327s_1.ptu 149 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T471s_1.ptu 150 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488225_T2685s_1.ptu 151 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T362s_1.ptu 152 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T578s_1.ptu 153 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T722s_1.ptu 154 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T614s_1.ptu 155 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T616s_1.ptu 156 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1778s_1.ptu 157 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2028s_1.ptu 158 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4883_T26s_1.ptu 159 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T966s_1.ptu 160 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T435s_1.ptu 161 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1666s_1.ptu 162 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2315s_1.ptu 163 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488205_T2446s_1.ptu 164 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48818_T206s_1.ptu 165 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1533s_1.ptu 166 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T602s_1.ptu 167 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488116_T1388s_1.ptu 168 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2196s_1.ptu 169 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1394s_1.ptu 170 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T818s_1.ptu 171 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1130s_1.ptu 172 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2076s_1.ptu 173 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1262s_1.ptu 174 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2993s_1.ptu 175 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1063s_1.ptu 176 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48845_T531s_1.ptu 177 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1400s_1.ptu 178 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488192_T2291s_1.ptu 179 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1992s_1.ptu 180 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1142s_1.ptu 181 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1124s_1.ptu 182 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2111s_1.ptu 183 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48862_T736s_1.ptu 184 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1412s_1.ptu 185 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1100s_1.ptu 186 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T555s_1.ptu 187 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488223_T2661s_1.ptu 188 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T626s_1.ptu 189 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1622s_1.ptu 190 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1810s_1.ptu 191 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2925s_1.ptu 192 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T942s_1.ptu 193 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1448s_1.ptu 194 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T809s_1.ptu 195 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488201_T2398s_1.ptu 196 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1670s_1.ptu 197 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488250_T3006s_1.ptu 198 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4884_T38s_1.ptu 199 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1514s_1.ptu 200 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1244s_1.ptu 201 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2172s_1.ptu 202 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1370s_1.ptu 203 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1678s_1.ptu 204 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T652s_1.ptu 205 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T1003s_1.ptu 206 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T544s_1.ptu 207 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1569s_1.ptu 208 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488236_T2817s_1.ptu 209 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2123s_1.ptu 210 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T869s_1.ptu 211 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1968s_1.ptu 212 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2973s_1.ptu 213 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1801s_1.ptu 214 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488235_T2805s_1.ptu 215 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2028s_1.ptu 216 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2160s_1.ptu 217 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1618s_1.ptu 218 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2281s_1.ptu 219 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T758s_1.ptu 220 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T794s_1.ptu 221 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T891s_1.ptu 222 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T842s_1.ptu 223 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488213_T2541s_1.ptu 224 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2184s_1.ptu 225 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T484s_1.ptu 226 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2052s_1.ptu 227 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1825s_1.ptu 228 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1581s_1.ptu 229 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1762s_1.ptu 230 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1310s_1.ptu 231 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1010s_1.ptu 232 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T290s_1.ptu 233 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488168_T2004s_1.ptu 234 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48820_T230s_1.ptu 235 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1944s_1.ptu 236 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488203_T2422s_1.ptu 237 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488152_T1822s_1.ptu 238 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T243s_1.ptu 239 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T2004s_1.ptu 240 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T436s_1.ptu 241 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1980s_1.ptu 242 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488200_T2386s_1.ptu 243 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1454s_1.ptu 244 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T508s_1.ptu 245 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1220s_1.ptu 246 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T773s_1.ptu 247 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1920s_1.ptu 248 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T267s_1.ptu 249 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T746s_1.ptu 250 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1573s_1.ptu 251 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T797s_1.ptu 252 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1726s_1.ptu 253 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1738s_1.ptu 254 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2016s_1.ptu 255 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1058s_1.ptu 256 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T710s_1.ptu 257 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T363s_1.ptu 258 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488215_T2565s_1.ptu 259 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T930s_1.ptu 260 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T770s_1.ptu 261 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T830s_1.ptu 262 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1364s_1.ptu 263 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488148_T1774s_1.ptu 264 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488224_T2673s_1.ptu 265 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488172_T2052s_1.ptu 266 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T1992s_1.ptu 267 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488100_T1190s_1.ptu 268 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T242s_1.ptu 269 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488240_T2865s_1.ptu 270 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1701s_1.ptu 271 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1549s_1.ptu 272 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T520s_1.ptu 273 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T724s_1.ptu 274 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48814_T158s_1.ptu 275 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1956s_1.ptu 276 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2064s_1.ptu 277 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4885_T50s_1.ptu 278 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T580s_1.ptu 279 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T472s_1.ptu 280 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T991s_1.ptu 281 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2969s_1.ptu 282 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1798s_1.ptu 283 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T566s_1.ptu 284 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1160s_1.ptu 285 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1406s_1.ptu 286 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4889_T98s_1.ptu 287 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T134s_1.ptu 288 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488222_T2649s_1.ptu 289 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1039s_1.ptu 290 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T938s_1.ptu 291 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1051s_1.ptu 292 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T902s_1.ptu 293 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48819_T218s_1.ptu 294 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1112s_1.ptu 295 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1442s_1.ptu 296 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488101_T1208s_1.ptu 297 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488109_T1304s_1.ptu 298 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1526s_1.ptu 299 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488207_T2470s_1.ptu 300 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2937s_1.ptu 301 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488242_T2890s_1.ptu 302 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T640s_1.ptu 303 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T554s_1.ptu 304 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1292s_1.ptu 305 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1597s_1.ptu 306 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4888_T86s_1.ptu 307 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T857s_1.ptu 308 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1786s_1.ptu 309 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T291s_1.ptu 310 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2171s_1.ptu 311 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1871s_1.ptu 312 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488220_T2624s_1.ptu 313 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2981s_1.ptu 314 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1154s_1.ptu 315 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T568s_1.ptu 316 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2100s_1.ptu 317 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1847s_1.ptu 318 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2945s_1.ptu 319 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1658s_1.ptu 320 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T350s_1.ptu 321 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2087s_1.ptu 322 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T662s_1.ptu 323 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488230_T2745s_1.ptu 324 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T894s_1.ptu 325 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1521s_1.ptu 326 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488195_T2327s_1.ptu 327 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T998s_1.ptu 328 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2219s_1.ptu 329 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T974s_1.ptu 330 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1606s_1.ptu 331 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1286s_1.ptu 332 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T315s_1.ptu 333 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488214_T2553s_1.ptu 334 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1944s_1.ptu 335 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T460s_1.ptu 336 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2233s_1.ptu 337 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488243_T2902s_1.ptu 338 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1642s_1.ptu 339 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1861s_1.ptu 340 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4882_T14s_1.ptu 341 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1694s_1.ptu 342 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T123s_1.ptu 343 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2961s_1.ptu 344 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1136s_1.ptu 345 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T303s_1.ptu 346 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2293s_1.ptu 347 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1634s_1.ptu 348 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488133_T1585s_1.ptu 349 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488216_T2577s_1.ptu 350 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1274s_1.ptu 351 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1557s_1.ptu 352 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1436s_1.ptu 353 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T806s_1.ptu 354 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1490s_1.ptu 355 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T374s_1.ptu 356 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1424s_1.ptu 357 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T914s_1.ptu 358 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2257s_1.ptu 359 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48836_T423s_1.ptu 360 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2112s_1.ptu 361 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488112_T1334s_1.ptu 362 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48815_T170s_1.ptu 363 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T448s_1.ptu 364 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2136s_1.ptu 365 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488198_T2363s_1.ptu 366 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T650s_1.ptu 367 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1178s_1.ptu 368 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1931s_1.ptu 369 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2957s_1.ptu 370 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488231_T2757s_1.ptu 371 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1460s_1.ptu 372 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1873s_1.ptu 373 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2329s_1.ptu 374 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T542s_1.ptu 375 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1718s_1.ptu 376 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1322s_1.ptu 377 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1705s_1.ptu 378 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T882s_1.ptu 379 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1478s_1.ptu 380 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1268s_1.ptu 381 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1094s_1.ptu 382 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1376s_1.ptu 383 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T761s_1.ptu 384 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488239_T2853s_1.ptu 385 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1106s_1.ptu 386 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1837s_1.ptu 387 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1256s_1.ptu 388 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48829_T338s_1.ptu 389 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T845s_1.ptu 390 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1172s_1.ptu 391 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48880_T954s_1.ptu 392 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T122s_1.ptu 393 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1682s_1.ptu 394 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488237_T2829s_1.ptu 395 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48810_T110s_1.ptu 396 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1166s_1.ptu 397 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T135s_1.ptu 398 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1034s_1.ptu 399 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488202_T2410s_1.ptu 400 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T326s_1.ptu 401 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1027s_1.ptu Different binning was chosen for correlation. Loading dataset 1 with bin=100000.0. This can take a while... Processing correlation of unprocessed dataset 1 Processing correlation with correction by prediction of dataset 1 Loading dataset 2 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu with bin=1e6. This can take a while... 1 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48869_T825s_1.ptu 2 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488196_T2359s_1.ptu 3 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488146_T1755s_1.ptu 4 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488227_T2733s_1.ptu 5 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T287s_1.ptu 6 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T342s_1.ptu 7 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488194_T2334s_1.ptu 8 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48851_T607s_1.ptu 9 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488210_T2528s_1.ptu 10 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488234_T2818s_1.ptu 11 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48882_T982s_1.ptu 12 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488251_T3022s_1.ptu 13 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T610s_1.ptu 14 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488160_T1924s_1.ptu 15 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T584s_1.ptu 16 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488268_T3227s_1.ptu 17 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T268s_1.ptu 18 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48832_T378s_1.ptu 19 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488241_T2902s_1.ptu 20 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488198_T2383s_1.ptu 21 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48869_T823s_1.ptu 22 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48895_T1139s_1.ptu 23 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48878_T934s_1.ptu 24 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488100_T1197s_1.ptu 25 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488155_T1864s_1.ptu 26 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488132_T1585s_1.ptu 27 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48866_T787s_1.ptu 28 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48877_T922s_1.ptu 29 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48861_T728s_1.ptu 30 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488129_T1548s_1.ptu 31 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T292s_1.ptu 32 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488205_T2468s_1.ptu 33 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4889_T106s_1.ptu 34 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T474s_1.ptu 35 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T546s_1.ptu 36 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48887_T1042s_1.ptu 37 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488116_T1391s_1.ptu 38 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4884_T39s_1.ptu 39 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488110_T1318s_1.ptu 40 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488218_T2625s_1.ptu 41 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48870_T834s_1.ptu 42 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488270_T3251s_1.ptu 43 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488177_T2129s_1.ptu 44 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488136_T1633s_1.ptu 45 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T521s_1.ptu 46 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T341s_1.ptu 47 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T75s_1.ptu 48 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T497s_1.ptu 49 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488291_T3505s_1.ptu 50 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488117_T1403s_1.ptu 51 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T159s_1.ptu 52 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488215_T2589s_1.ptu 53 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488128_T1536s_1.ptu 54 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488135_T1621s_1.ptu 55 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48870_T837s_1.ptu 56 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488239_T2878s_1.ptu 57 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T317s_1.ptu 58 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488231_T2781s_1.ptu 59 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488294_T3541s_1.ptu 60 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488247_T2974s_1.ptu 61 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488226_T2721s_1.ptu 62 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488182_T2189s_1.ptu 63 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488248_T2986s_1.ptu 64 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488216_T2601s_1.ptu 65 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T282s_1.ptu 66 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488152_T1827s_1.ptu 67 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48868_T811s_1.ptu 68 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488112_T1342s_1.ptu 69 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T123s_1.ptu 70 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488185_T2225s_1.ptu 71 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T330s_1.ptu 72 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488232_T2793s_1.ptu 73 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488293_T3529s_1.ptu 74 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T294s_1.ptu 75 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4886_T66s_1.ptu 76 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu 77 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48889_T1067s_1.ptu 78 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T183s_1.ptu 79 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48879_T946s_1.ptu 80 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48876_T910s_1.ptu 81 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T507s_1.ptu 82 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T583s_1.ptu 83 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T595s_1.ptu 84 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T257s_1.ptu 85 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488184_T2213s_1.ptu 86 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T148s_1.ptu 87 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488121_T1452s_1.ptu 88 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488254_T3059s_1.ptu 89 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T171s_1.ptu 90 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T581s_1.ptu 91 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488122_T1464s_1.ptu 92 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488153_T1839s_1.ptu 93 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48851_T605s_1.ptu 94 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T222s_1.ptu 95 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488104_T1246s_1.ptu 96 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488179_T2153s_1.ptu 97 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488130_T1560s_1.ptu 98 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48874_T885s_1.ptu 99 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488115_T1379s_1.ptu 100 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488282_T3397s_1.ptu 101 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488259_T3119s_1.ptu 102 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48858_T690s_1.ptu 103 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T244s_1.ptu 104 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T313s_1.ptu 105 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48861_T726s_1.ptu 106 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T196s_1.ptu 107 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488265_T3191s_1.ptu 108 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48834_T400s_1.ptu 109 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48854_T643s_1.ptu 110 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48873_T873s_1.ptu 111 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48857_T678s_1.ptu 112 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488208_T2504s_1.ptu 113 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4884_T41s_1.ptu 114 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T120s_1.ptu 115 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48873_T870s_1.ptu 116 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48872_T859s_1.ptu 117 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488180_T2165s_1.ptu 118 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T328s_1.ptu 119 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488224_T2697s_1.ptu 120 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488167_T2009s_1.ptu 121 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488237_T2854s_1.ptu 122 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488258_T3107s_1.ptu 123 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488222_T2673s_1.ptu 124 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T534s_1.ptu 125 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488280_T3373s_1.ptu 126 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T569s_1.ptu 127 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T145s_1.ptu 128 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T522s_1.ptu 129 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T351s_1.ptu 130 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488173_T2081s_1.ptu 131 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48893_T1115s_1.ptu 132 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48865_T774s_1.ptu 133 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48862_T740s_1.ptu 134 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488187_T2250s_1.ptu 135 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T136s_1.ptu 136 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48853_T631s_1.ptu 137 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T509s_1.ptu 138 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48880_T955s_1.ptu 139 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T535s_1.ptu 140 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488133_T1597s_1.ptu 141 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48836_T426s_1.ptu 142 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488138_T1658s_1.ptu 143 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488235_T2830s_1.ptu 144 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488111_T1330s_1.ptu 145 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488156_T1876s_1.ptu 146 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48855_T655s_1.ptu 147 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T80s_1.ptu 148 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T365s_1.ptu 149 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48854_T642s_1.ptu 150 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48872_T861s_1.ptu 151 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488107_T1282s_1.ptu 152 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T280s_1.ptu 153 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488256_T3083s_1.ptu 154 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488204_T2456s_1.ptu 155 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488197_T2371s_1.ptu 156 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48852_T619s_1.ptu 157 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488176_T2117s_1.ptu 158 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488229_T2757s_1.ptu 159 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T498s_1.ptu 160 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T305s_1.ptu 161 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48864_T762s_1.ptu 162 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488289_T3481s_1.ptu 163 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T624s_1.ptu 164 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488249_T2998s_1.ptu 165 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T184s_1.ptu 166 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T197s_1.ptu 167 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48884_T1006s_1.ptu 168 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488178_T2141s_1.ptu 169 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48855_T654s_1.ptu 170 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T158s_1.ptu 171 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488118_T1415s_1.ptu 172 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488127_T1524s_1.ptu 173 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48836_T425s_1.ptu 174 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T352s_1.ptu 175 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T340s_1.ptu 176 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488261_T3143s_1.ptu 177 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48837_T468s_1.ptu 178 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T354s_1.ptu 179 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T220s_1.ptu 180 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488236_T2842s_1.ptu 181 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488257_T3095s_1.ptu 182 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T219s_1.ptu 183 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488253_T3047s_1.ptu 184 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T485s_1.ptu 185 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T377s_1.ptu 186 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488201_T2420s_1.ptu 187 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T412s_1.ptu 188 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488269_T3239s_1.ptu 189 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T545s_1.ptu 190 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T416s_1.ptu 191 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T461s_1.ptu 192 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T637s_1.ptu 193 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488276_T3324s_1.ptu 194 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488286_T3445s_1.ptu 195 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488181_T2177s_1.ptu 196 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488199_T2395s_1.ptu 197 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488244_T2938s_1.ptu 198 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488101_T1209s_1.ptu 199 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48881_T970s_1.ptu 200 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488126_T1512s_1.ptu 201 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488223_T2685s_1.ptu 202 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T557s_1.ptu 203 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488158_T1900s_1.ptu 204 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488139_T1670s_1.ptu 205 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T281s_1.ptu 206 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48859_T702s_1.ptu 207 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T546s_1.ptu 208 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488267_T3215s_1.ptu 209 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4883_T28s_1.ptu 210 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T318s_1.ptu 211 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T232s_1.ptu 212 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48860_T716s_1.ptu 213 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4882_T15s_1.ptu 214 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48896_T1151s_1.ptu 215 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T353s_1.ptu 216 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488262_T3155s_1.ptu 217 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48899_T1187s_1.ptu 218 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488209_T2516s_1.ptu 219 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488150_T1803s_1.ptu 220 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488147_T1767s_1.ptu 221 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488134_T1609s_1.ptu 222 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48815_T171s_1.ptu 223 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488264_T3179s_1.ptu 224 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488298_T3590s_1.ptu 225 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488193_T2322s_1.ptu 226 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4888_T87s_1.ptu 227 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488106_T1270s_1.ptu 228 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488284_T3421s_1.ptu 229 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488145_T1743s_1.ptu 230 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T329s_1.ptu 231 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488183_T2201s_1.ptu 232 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48856_T668s_1.ptu 233 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4888_T93s_1.ptu 234 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4889_T100s_1.ptu 235 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T222s_1.ptu 236 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T442s_1.ptu 237 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488175_T2105s_1.ptu 238 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T486s_1.ptu 239 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T390s_1.ptu 240 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488245_T2950s_1.ptu 241 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488195_T2347s_1.ptu 242 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48867_T799s_1.ptu 243 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T494s_1.ptu 244 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T195s_1.ptu 245 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488105_T1258s_1.ptu 246 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48897_T1163s_1.ptu 247 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T413s_1.ptu 248 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T248s_1.ptu 249 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T520s_1.ptu 250 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4881_T0s_1.ptu 251 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488165_T1984s_1.ptu 252 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48887_T1040s_1.ptu 253 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T210s_1.ptu 254 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4883_T27s_1.ptu 255 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48891_T1091s_1.ptu 256 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488233_T2806s_1.ptu 257 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T132s_1.ptu 258 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48876_T906s_1.ptu 259 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T462s_1.ptu 260 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488109_T1306s_1.ptu 261 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488162_T1948s_1.ptu 262 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48858_T692s_1.ptu 263 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488151_T1815s_1.ptu 264 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488203_T2444s_1.ptu 265 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48815_T184s_1.ptu 266 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T366s_1.ptu 267 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48883_T991s_1.ptu 268 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48881_T967s_1.ptu 269 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488287_T3457s_1.ptu 270 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48884_T1003s_1.ptu 271 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48886_T1031s_1.ptu 272 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T234s_1.ptu 273 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T533s_1.ptu 274 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488100_T1199s_1.ptu 275 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488214_T2577s_1.ptu 276 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T571s_1.ptu 277 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48856_T666s_1.ptu 278 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488172_T2069s_1.ptu 279 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48837_T438s_1.ptu 280 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T256s_1.ptu 281 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488243_T2926s_1.ptu 282 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488240_T2890s_1.ptu 283 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488206_T2480s_1.ptu 284 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T208s_1.ptu 285 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48866_T788s_1.ptu 286 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48863_T752s_1.ptu 287 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488238_T2866s_1.ptu 288 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488260_T3131s_1.ptu 289 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T210s_1.ptu 290 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48892_T1103s_1.ptu 291 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T147s_1.ptu 292 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48834_T402s_1.ptu 293 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48853_T630s_1.ptu 294 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488114_T1367s_1.ptu 295 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488300_T3614s_1.ptu 296 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488119_T1427s_1.ptu 297 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48868_T813s_1.ptu 298 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488157_T1888s_1.ptu 299 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488188_T2262s_1.ptu 300 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488212_T2552s_1.ptu 301 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T388s_1.ptu 302 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48864_T764s_1.ptu 303 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T269s_1.ptu 304 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488252_T3035s_1.ptu 305 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488169_T2032s_1.ptu 306 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48890_T1079s_1.ptu 307 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48871_T847s_1.ptu 308 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488137_T1646s_1.ptu 309 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488166_T1997s_1.ptu 310 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488283_T3409s_1.ptu 311 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488279_T3360s_1.ptu 312 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488125_T1500s_1.ptu 313 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488200_T2408s_1.ptu 314 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48882_T979s_1.ptu 315 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488281_T3385s_1.ptu 316 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T124s_1.ptu 317 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488102_T1221s_1.ptu 318 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T293s_1.ptu 319 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488186_T2237s_1.ptu 320 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488274_T3299s_1.ptu 321 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T450s_1.ptu 322 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T304s_1.ptu 323 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488163_T1960s_1.ptu 324 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488174_T2093s_1.ptu 325 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488250_T3010s_1.ptu 326 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488255_T3071s_1.ptu 327 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T597s_1.ptu 328 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488288_T3469s_1.ptu 329 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488103_T1234s_1.ptu 330 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488164_T1972s_1.ptu 331 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48885_T1018s_1.ptu 332 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T246s_1.ptu 333 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T135s_1.ptu 334 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488242_T2914s_1.ptu 335 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488142_T1706s_1.ptu 336 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488159_T1912s_1.ptu 337 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T76s_1.ptu 338 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48886_T1028s_1.ptu 339 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488263_T3167s_1.ptu 340 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T299s_1.ptu 341 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488113_T1354s_1.ptu 342 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488108_T1294s_1.ptu 343 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T197s_1.ptu 344 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48863_T750s_1.ptu 345 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488140_T1682s_1.ptu 346 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488230_T2769s_1.ptu 347 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488131_T1573s_1.ptu 348 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488220_T2649s_1.ptu 349 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T449s_1.ptu 350 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488154_T1852s_1.ptu 351 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T481s_1.ptu 352 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488120_T1439s_1.ptu 353 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488207_T2492s_1.ptu 354 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488171_T2056s_1.ptu 355 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488190_T2286s_1.ptu 356 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T558s_1.ptu 357 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48898_T1175s_1.ptu 358 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48862_T738s_1.ptu 359 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T186s_1.ptu 360 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488299_T3602s_1.ptu 361 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488219_T2637s_1.ptu 362 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T111s_1.ptu 363 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488278_T3348s_1.ptu 364 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488189_T2274s_1.ptu 365 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48859_T704s_1.ptu 366 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48832_T376s_1.ptu 367 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48865_T776s_1.ptu 368 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488225_T2709s_1.ptu 369 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48871_T849s_1.ptu 370 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48883_T994s_1.ptu 371 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T390s_1.ptu 372 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488272_T3276s_1.ptu 373 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488148_T1779s_1.ptu 374 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48875_T898s_1.ptu 375 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T532s_1.ptu 376 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488290_T3493s_1.ptu 377 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48877_T918s_1.ptu 378 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488297_T3578s_1.ptu 379 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488191_T2298s_1.ptu 380 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T160s_1.ptu 381 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T558s_1.ptu 382 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488221_T2661s_1.ptu 383 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488211_T2540s_1.ptu 384 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu 385 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488123_T1475s_1.ptu 386 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48852_T617s_1.ptu 387 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488149_T1791s_1.ptu 388 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488141_T1694s_1.ptu 389 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T338s_1.ptu 390 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488217_T2613s_1.ptu 391 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T571s_1.ptu 392 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4886_T63s_1.ptu 393 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T510s_1.ptu 394 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T112s_1.ptu 395 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488124_T1488s_1.ptu 396 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488271_T3263s_1.ptu 397 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T473s_1.ptu 398 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T306s_1.ptu 399 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4885_T54s_1.ptu 400 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T316s_1.ptu 401 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T593s_1.ptu Different binning was chosen for correlation. Loading dataset 2 with bin=100000.0. This can take a while... Processing correlation of unprocessed dataset 2 Processing correlation with correction by prediction of dataset 2 /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py:508: UserWarning: Metadata is not saved with data. Reason: the correlation algorithm failed for one or more traces which were shorter than 32 time steps after correction.Since metadata is loaded in the beginning, it is not sure, which correlation is missing to ensure proper joining of data and metadata. warnings.warn('Metadata is not saved with data. Reason: the '
corr_out = pd.read_csv(filepath_or_buffer='data/exp-210807-hparams/2021-08-26_correlations.csv') corr_out
\(D\) in \(\frac{{\mu m^2}}{{s}}\) | \(\tau_{{D}}\) in \(ms\) | Trace lengths | folderid-tracesused | Photon count bin for correlation in \(ns\) | |
---|---|---|---|---|---|
0 | 19.078159 | 0.590783 | 8192.0 | 0-orig | 100000.0 |
1 | 20.314897 | 0.554817 | 8192.0 | 0-orig | 100000.0 |
2 | 21.007772 | 0.536518 | 8192.0 | 0-orig | 100000.0 |
3 | 22.716317 | 0.496166 | 8192.0 | 0-orig | 100000.0 |
4 | 24.089236 | 0.467888 | 8192.0 | 0-orig | 100000.0 |
… | … | … | … | … | … |
4795 | 0.577566 | 19.514749 | 7240.0 | 1-pred-0.9 | 100000.0 |
4796 | 0.236147 | 47.728941 | 7078.0 | 1-pred-0.9 | 100000.0 |
4797 | 1.860295 | 6.058745 | 7819.0 | 1-pred-0.9 | 100000.0 |
4798 | 1.946114 | 5.791570 | 7520.0 | 1-pred-0.9 | 100000.0 |
4799 | 0.859799 | 13.108948 | 7841.0 | 1-pred-0.9 | 100000.0 |
4800 rows × 5 columns
- Check out the
nan
valuescorr_out[corr_out['$D$ in $\\frac{{\mu m^2}}{{s}}$'].isna()]
\(D\) in \(\frac{{\mu m^2}}{{s}}\) \(\tau_{{D}}\) in \(ms\) Trace lengths folderid-tracesused Photon count bin for correlation in \(ns\)
Good news! This time there are no
nan
values. Inexp-210204-unet
, we had 31 of them in theclean
dataset with pred-0.1, which suggested a lot of false positives in the clean data, which led to traces shorter than 32 time steps, where the multipletau algorithm fails. Still, I am not sure why the metadata was not saved out in the correlation program. I will investigate another time… - Refactor
folder-id_traces-used
into 2 columnscorr_out['folder_id-traces_used']
0 0-orig 1 0-orig 2 0-orig 3 0-orig 4 0-orig ... 4795 1-pred-0.9 4796 1-pred-0.9 4797 1-pred-0.9 4798 1-pred-0.9 4799 1-pred-0.9 Name: folder_id-traces_used, Length: 4800, dtype: object
corr_out[['Folder ID', 'Traces used']] = corr_out['folder_id-traces_used'].str.split(pat='-', n=1, expand=True)
- Some basic statistical descriptions
corr_stats = pd.DataFrame() for fid in sorted(set(corr_out['Folder ID'])): for tu in sorted(set(corr_out['Traces used'])): corr_new = corr_out[(corr_out['Folder ID'] == fid) & (corr_out['Traces used'] == tu)].describe() new_index_tuple = zip(((fid),)*8, ((tu),)*8, ('count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max')) corr_new.index = pd.MultiIndex.from_tuples(new_index_tuple, names=['Folder ID', 'Traces used', 'Stats']) corr_stats = pd.concat([corr_stats, corr_new], axis=0) with pd.option_context('display.max_rows', None, 'display.max_columns', None): display(corr_stats)
$D$ in $\frac{{\mu m^2}}{{s}}$ $\tau_{{D}}$ in $ms$ Trace lengths Photon count bin for correlation in $ns$ Folder ID Traces used Stats 0 orig count 400.000000 400.000000 400.000000 400.0 mean 22.397754 0.507013 8192.000000 100000.0 std 1.994998 0.042972 0.000000 0.0 min 18.207878 0.379407 8192.000000 100000.0 25% 20.921029 0.481523 8192.000000 100000.0 50% 22.149393 0.508866 8192.000000 100000.0 75% 23.407135 0.538743 8192.000000 100000.0 max 29.707022 0.619021 8192.000000 100000.0 pred-0.1 count 400.000000 400.000000 400.000000 400.0 mean 22.444596 0.502583 8182.360000 100000.0 std 0.645526 0.014330 8.417990 0.0 min 20.681787 0.460807 8124.000000 100000.0 25% 21.961521 0.492386 8179.000000 100000.0 50% 22.368956 0.503870 8184.000000 100000.0 75% 22.890670 0.513218 8188.000000 100000.0 max 24.459398 0.544975 8192.000000 100000.0 pred-0.3 count 400.000000 400.000000 400.000000 400.0 mean 22.420126 0.503131 8190.077500 100000.0 std 0.644112 0.014326 2.892648 0.0 min 20.668056 0.461330 8174.000000 100000.0 25% 21.946382 0.493151 8189.000000 100000.0 50% 22.342680 0.504463 8191.000000 100000.0 75% 22.855193 0.513572 8192.000000 100000.0 max 24.431668 0.545337 8192.000000 100000.0 pred-0.5 count 400.000000 400.000000 400.000000 400.0 mean 22.411363 0.503324 8191.300000 100000.0 std 0.641300 0.014276 1.488469 0.0 min 20.666124 0.462115 8183.000000 100000.0 25% 21.944307 0.493346 8191.000000 100000.0 50% 22.325232 0.504857 8192.000000 100000.0 75% 22.846137 0.513621 8192.000000 100000.0 max 24.390149 0.545388 8192.000000 100000.0 pred-0.7 count 400.000000 400.000000 400.000000 400.0 mean 22.403669 0.503500 8191.810000 100000.0 std 0.643185 0.014327 0.797175 0.0 min 20.615435 0.462115 8184.000000 100000.0 25% 21.935997 0.493728 8192.000000 100000.0 50% 22.323219 0.504903 8192.000000 100000.0 75% 22.828459 0.513816 8192.000000 100000.0 max 24.390149 0.546729 8192.000000 100000.0 pred-0.9 count 400.000000 400.000000 400.000000 400.0 mean 22.401607 0.503547 8191.937500 100000.0 std 0.643493 0.014338 0.509158 0.0 min 20.615435 0.462115 8185.000000 100000.0 25% 21.917571 0.493728 8192.000000 100000.0 50% 22.323219 0.504903 8192.000000 100000.0 75% 22.828459 0.514247 8192.000000 100000.0 max 24.390149 0.546729 8192.000000 100000.0 1 orig count 400.000000 400.000000 400.000000 400.0 mean 2.089838 106.604322 8192.000000 100000.0 std 4.867448 244.689593 0.000000 0.0 min 0.005636 0.370469 8192.000000 100000.0 25% 0.110612 9.232342 8192.000000 100000.0 50% 0.277676 40.594163 8192.000000 100000.0 75% 1.220995 101.904123 8192.000000 100000.0 max 30.423708 2000.000000 8192.000000 100000.0 pred-0.1 count 400.000000 400.000000 400.000000 400.0 mean 23.487424 0.729772 6014.930000 100000.0 std 11.632062 0.978357 655.329984 0.0 min 0.704858 0.213925 4055.000000 100000.0 25% 14.296784 0.349318 5582.750000 100000.0 50% 22.055818 0.511024 6069.500000 100000.0 75% 32.266393 0.788363 6477.250000 100000.0 max 52.686940 15.990532 7586.000000 100000.0 pred-0.3 count 400.000000 400.000000 400.000000 400.0 mean 16.200632 1.809016 6649.735000 100000.0 std 10.841992 4.819835 535.204704 0.0 min 0.204291 0.221455 4702.000000 100000.0 25% 7.332725 0.495671 6317.250000 100000.0 50% 14.302030 0.788074 6699.500000 100000.0 75% 22.739144 1.537091 7043.250000 100000.0 max 50.895517 55.171591 7781.000000 100000.0 pred-0.5 count 400.000000 400.000000 400.000000 400.0 mean 10.787920 4.217836 7002.527500 100000.0 std 8.761952 11.682295 448.347782 0.0 min 0.080967 0.273684 5168.000000 100000.0 25% 3.713476 0.730534 6733.500000 100000.0 50% 8.729210 1.291190 7049.000000 100000.0 75% 15.428534 3.035206 7327.750000 100000.0 max 41.182749 139.205234 7887.000000 100000.0 pred-0.7 count 400.000000 400.000000 400.000000 400.0 mean 6.669685 9.416059 7267.402500 100000.0 std 6.356652 21.185204 368.356589 0.0 min 0.065038 0.375238 5715.000000 100000.0 25% 1.657642 1.154375 7053.500000 100000.0 50% 4.786510 2.355174 7323.000000 100000.0 75% 9.763811 6.803933 7543.250000 100000.0 max 30.037104 173.299931 7969.000000 100000.0 pred-0.9 count 400.000000 400.000000 400.000000 400.0 mean 3.074691 21.394545 7556.762500 100000.0 std 3.639749 36.676351 269.188535 0.0 min 0.038601 0.593323 6349.000000 100000.0 25% 0.459359 2.485594 7406.750000 100000.0 50% 1.544961 7.295842 7603.500000 100000.0 75% 4.534553 24.536530 7750.000000 100000.0 max 18.996487 291.988834 8072.000000 100000.0 - Have a look at the trace lengths
x = 'Trace lengths' g = sns.FacetGrid(data=corr_out, col='Folder ID', col_wrap=1, sharex=True, aspect=1.5, height=5, legend_out=True) g.map_dataframe(sns.boxplot, x=x, y='Traces used', palette='colorblind', showfliers=False) g.map_dataframe(sns.stripplot, x=x, y='Traces used', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2) g.set_xlabels(x) g.fig.patch.set_facecolor('white') g.tight_layout() plt.show()
Trace lengths:
First of all: the extension of simulated training data clearly helped to avoid the enormous amount of false positives in the run
exp-210204-unet
in folder0
. Here, only few traces are shortened, which is to be expected, since it represents a negative control. Looking at folder1
, the reduction of trace length increased with all prediction thresholds. I later plot trace length vs tau to see if this reduction in trace length introduces artifacts or if it is mainly a desired outcome of more found artifacts. - Have a look at diffusion coefficient and transit times
# '$D$ in $\\frac{{\mu m^2}}{{s}}$' # '$\\tau_{{D}}$ in $ms$' x = '$D$ in $\\frac{{\mu m^2}}{{s}}$' g = sns.FacetGrid(data=corr_out, col='Folder ID', col_wrap=1, sharex=True, aspect=1.5, height=5, legend_out=True) g.map_dataframe(sns.boxplot, x=x, y='Traces used', palette='colorblind', showfliers=False).set(xscale = 'log') g.map_dataframe(sns.stripplot, x=x, y='Traces used', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2).set(xscale = 'log') g.set_xlabels(x) g.tight_layout() g.fig.patch.set_facecolor('white') plt.show()
tau: D:
- This scatterplot shows Diffusion rates / transit times against trace
lengths. I used a subsample to avoid overplotting.
# '$D$ in $\\frac{{\mu m^2}}{{s}}$' # '$\\tau_{{D}}$ in $ms$' x = '$\\tau_{{D}}$ in $ms$' g = sns.FacetGrid(data=corr_out, row='Traces used', col='Folder ID', hue='Traces used', sharex=True, sharey=True, aspect=1.5, height=3.5, margin_titles=True, legend_out=True) g.map_dataframe(sns.scatterplot, x=x, y='Trace lengths', palette='colorblind').set(xscale = 'log') g.add_legend(title='Traces used') g.set_xlabels(x) g.tight_layout() g.fig.patch.set_facecolor('white') plt.show()
# '$D$ in $\\frac{{\mu m^2}}{{s}}$' # '$\\tau_{{D}}$ in $ms$' x = '$\\tau_{{D}}$ in $ms$' g = sns.FacetGrid(data=corr_out.sample(1000), row='Folder ID', hue='Traces used', hue_order=['orig', 'pred-0.1', 'pred-0.3', 'pred-0.5', 'pred-0.7', 'pred-0.9'], sharex=True, sharey=True, aspect=1.5, height=4, margin_titles=True, legend_out=True) g.map_dataframe(sns.scatterplot, x=x, y='Trace lengths', palette='colorblind').set(xscale = 'log') g.add_legend(title='Traces used') g.set_xlabels(x) g.tight_layout() g.fig.patch.set_facecolor('white') plt.show()
For me, this plot shows that the reduction of trace length is not too severe even with low prediction thresholds. Also, the reduction in trace length mainly seems to be due to better recognition of artifacts.
2.4.7 Apply model from run 2 to simulated data
%cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
from pathlib import Path import sys import mlflow import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import tensorflow as tf print("tf version: ", tf.version.VERSION) print("tf.keras version: ", tf.keras.__version__) print("mlflow version: ", mlflow.version.VERSION)
tf version: 2.5.0 tf.keras version: 2.5.0 mlflow version: 1.19.0
sys.path.append('src/') from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, ) from fluotracify.training import build_model as bm, preprocess_data as ppd from fluotracify.applications import correlate, plots, correction from fluotracify.imports import ptu_utils as ptu
folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020_test' col_per_example = 3 lab_thresh = 0.04 pred_thresh = 0.5 artifact = 0 model_type = 1 fwhm = 250 logged_model = 'file:///beegfs/ye53nis/drmed-git/data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model' metrics_thresholds = [0.1, 0.3, 0.5, 0.7, 0.9]
loaded_model = mlflow.keras.load_model(logged_model, compile=False) loaded_model.compile(loss=bm.binary_ce_dice_loss(), optimizer=tf.keras.optimizers.Adam(), metrics = bm.unet_metrics(metrics_thresholds)) loaded_model
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. <tensorflow.python.keras.engine.functional.Functional at 0x2b01891b62e0>
# The following block has to be executed multiple times with different array lengths # e.g. 2**14, 2**13, 2**12 # note that: after executing 2**14, then 2**13, there will be an error # if you then execute 2**12 and then 2**13 again, the error will be gone test_features = np.zeros((2**13)).reshape(1, -1, 1) print(test_features.shape) predictions = loaded_model.predict(test_features, verbose=0).flatten() predictions
(1, 8192, 1) array([1.4064237e-01, 1.3650321e-08, 7.4799689e-10, ..., 3.1755112e-10, 1.8236226e-10, 6.6588524e-10], dtype=float32)
The simulated data was separated in train, val, and test beforehand. Now, I only load test data.
dataset, _, nsamples, experiment_params = isfc.import_from_csv( folder=folder, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None)
0 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/1.0/traces_brightclust_Nov2020_D0.069_set010.csv 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/0.1/traces_brightclust_Nov2020_D50_set003.csv 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/0.1/traces_brightclust_Nov2020_D0.4_set001.csv 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/0.1/traces_brightclust_Nov2020_D0.2_set007.csv 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/1.0/traces_brightclust_Nov2020_D3.0_set002.csv 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/0.01/traces_brightclust_Nov2020_D3.0_set004.csv 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/0.01/traces_brightclust_Nov2020_D50_set002.csv 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/1.0/traces_brightclust_Nov2020_D0.2_set005.csv 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/1.0/traces_brightclust_Nov2020_D0.6_set009.csv 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/0.1/traces_brightclust_Nov2020_D10_set001.csv10 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/1.0/traces_brightclust_Nov2020_D0.08_set001.csv 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/0.1/traces_brightclust_Nov2020_D0.6_set003.csv 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/1.0/traces_brightclust_Nov2020_D0.1_set001.csv 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/1.0/traces_brightclust_Nov2020_D0.4_set005.csv 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/1.0/traces_brightclust_Nov2020_D10_set005.csv 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/1.0/traces_brightclust_Nov2020_D1.0_set005.csv 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/0.1/traces_brightclust_Nov2020_D0.069_set001.csv 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/1.0/traces_brightclust_Nov2020_D50_set001.csv 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/0.01/traces_brightclust_Nov2020_D0.1_set002.csv 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/0.1/traces_brightclust_Nov2020_D0.08_set003.csv 20 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/0.01/traces_brightclust_Nov2020_D1.0_set006.csv 21 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/0.1/traces_brightclust_Nov2020_D1.0_set003.csv 22 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/0.01/traces_brightclust_Nov2020_D0.2_set002.csv 23 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/0.1/traces_brightclust_Nov2020_D0.1_set005.csv 24 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/0.1/traces_brightclust_Nov2020_D3.0_set007.csv 25 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/0.01/traces_brightclust_Nov2020_D0.08_set005.csv 26 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/0.01/traces_brightclust_Nov2020_D0.069_set005.csv 27 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/0.01/traces_brightclust_Nov2020_D10_set002.csv 28 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/0.01/traces_brightclust_Nov2020_D0.6_set008.csv 29 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/0.01/traces_brightclust_Nov2020_D0.4_set008.csv
experiment_params.T.sort_values(by='diffusion rate of molecules in micrometer^2 / s', ignore_index=True)
unique identifier | path and file name | FWHMs of excitation PSFs used in nm | Extent of simulated PSF (distance to center of Gaussian) in nm | total simulation time in ms | time step in ms | number of fast molecules | diffusion rate of molecules in micrometer2 / s | width of the simulation in nm | height of the simulation in nm | number of slow clusters | diffusion rate of clusters in micrometer2 / s | trace001 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | bebf4d6b-0ffe-4dcf-be78-93bfa70dd04c | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 679 | 0.069 | 3000.0 | 3000.0 | 3 | 1.0 | label0011 |
1 | 5abeceef-c30b-46d8-96a6-dfd623820542 | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 1930 | 0.069 | 3000.0 | 3000.0 | 10 | 0.01 | label0011 |
2 | daf0898c-38d3-48e5-8d97-41490fb30cd7 | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 897 | 0.069 | 3000.0 | 3000.0 | 7 | 0.1 | label0011 |
3 | cae1a0a7-6d83-49fe-b0b7-fb1f7fa3d541 | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 1673 | 0.08 | 3000.0 | 3000.0 | 10 | 0.01 | label0011 |
4 | b85aeec3-5e79-444f-b0c5-5ba7057fad8c | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 856 | 0.08 | 3000.0 | 3000.0 | 7 | 0.1 | label0011 |
5 | 9f7d64ef-5e20-4a2a-bf66-adefc770d2d3 | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 2569 | 0.08 | 3000.0 | 3000.0 | 3 | 1.0 | label0011 |
6 | 0d5dcb67-7e31-43dd-8036-11b7243daf14 | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 1156 | 0.1 | 3000.0 | 3000.0 | 7 | 0.1 | label0011 |
7 | 9a2f89bd-c64e-4324-910c-46a5b8a657ba | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 2975 | 0.1 | 3000.0 | 3000.0 | 10 | 0.01 | label0011 |
8 | db48ccc0-e770-4570-8cf0-d0ea83bfc588 | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 1456 | 0.1 | 3000.0 | 3000.0 | 3 | 1.0 | label0011 |
9 | 33ee5002-7064-4882-88de-79c773d741cd | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 895 | 0.2 | 3000.0 | 3000.0 | 7 | 0.1 | label0011 |
10 | e3fd87db-7a9e-4f0a-a7f3-30acd95752eb | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 1844 | 0.2 | 3000.0 | 3000.0 | 10 | 0.01 | label0011 |
11 | 511e911a-aaa3-4d9d-a14e-d172bd4d8dbb | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 2735 | 0.2 | 3000.0 | 3000.0 | 3 | 1.0 | label0011 |
12 | eb3f3035-955f-4e86-bfbd-16421eede63f | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 560 | 0.4 | 3000.0 | 3000.0 | 3 | 1.0 | label0011 |
13 | 20f0a9df-2c4d-409f-86de-ceda40d1aafe | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 1724 | 0.4 | 3000.0 | 3000.0 | 10 | 0.01 | label0011 |
14 | 2c825894-5e96-4acb-9d4d-c6d0c21e71bf | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 1939 | 0.4 | 3000.0 | 3000.0 | 7 | 0.1 | label0011 |
15 | dd3aef12-414f-4cb7-9330-8db192d67143 | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 2545 | 0.6 | 3000.0 | 3000.0 | 10 | 0.01 | label0011 |
16 | 87d9374a-3ae4-4dfb-8dc3-ec401df4961d | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 1296 | 0.6 | 3000.0 | 3000.0 | 3 | 1.0 | label0011 |
17 | f43754f2-e756-405f-89a4-9eae43dbf996 | /beegfs/ye53nis/saves/firstartifactNov2020/0…. | [250] | 4000 | 16384 | 1.0 | 2535 | 0.6 | 3000.0 | 3000.0 | 7 | 0.1 | label0011 |
18 | 84116b56-7264-4f63-833a-2fa1af968288 | /beegfs/ye53nis/saves/firstartifactNov2020/1…. | [250] | 4000 | 16384 | 1.0 | 2059 | 1.0 | 3000.0 | 3000.0 | 3 | 1.0 | label0011 |
19 | c1a85eb4-f202-40f7-8bce-cd3fd3a843dc | /beegfs/ye53nis/saves/firstartifactNov2020/1…. | [250] | 4000 | 16384 | 1.0 | 1357 | 1.0 | 3000.0 | 3000.0 | 10 | 0.01 | label0011 |
20 | e0118d21-73cf-4c2d-bc3f-f48a44e1b5b8 | /beegfs/ye53nis/saves/firstartifactNov2020/1…. | [250] | 4000 | 16384 | 1.0 | 627 | 1.0 | 3000.0 | 3000.0 | 7 | 0.1 | label0011 |
21 | 6a3c00e3-24e6-4758-9c6d-f2a9dc23f7d9 | /beegfs/ye53nis/saves/firstartifactNov2020/10… | [250] | 4000 | 16384 | 1.0 | 1376 | 10 | 3000.0 | 3000.0 | 7 | 0.1 | label0011 |
22 | 9246b720-b8d4-4390-82b6-71404ced9bea | /beegfs/ye53nis/saves/firstartifactNov2020/10… | [250] | 4000 | 16384 | 1.0 | 1396 | 10 | 3000.0 | 3000.0 | 10 | 0.01 | label0011 |
23 | e26d94e4-c2d0-46da-b571-91b8fba15f0a | /beegfs/ye53nis/saves/firstartifactNov2020/10… | [250] | 4000 | 16384 | 1.0 | 2618 | 10 | 3000.0 | 3000.0 | 3 | 1.0 | label0011 |
24 | cf57c545-933f-41b8-bcfe-19723d79b7bf | /beegfs/ye53nis/saves/firstartifactNov2020/3…. | [250] | 4000 | 16384 | 1.0 | 1785 | 3.0 | 3000.0 | 3000.0 | 10 | 0.01 | label0011 |
25 | f2dcf7ee-f180-4b26-9706-526ceb6b9fe6 | /beegfs/ye53nis/saves/firstartifactNov2020/3…. | [250] | 4000 | 16384 | 1.0 | 2900 | 3.0 | 3000.0 | 3000.0 | 3 | 1.0 | label0011 |
26 | 4f56e86f-7912-4308-b273-1d2cbe919555 | /beegfs/ye53nis/saves/firstartifactNov2020/3…. | [250] | 4000 | 16384 | 1.0 | 3042 | 3.0 | 3000.0 | 3000.0 | 7 | 0.1 | label0011 |
27 | 4a6c04ea-6d95-4c9a-8985-4e2845cd4372 | /beegfs/ye53nis/saves/firstartifactNov2020/50… | [250] | 4000 | 16384 | 1.0 | 3083 | 50 | 3000.0 | 3000.0 | 3 | 1.0 | label0011 |
28 | 0953132e-d7d6-44bb-b1ee-df54b288beb0 | /beegfs/ye53nis/saves/firstartifactNov2020/50… | [250] | 4000 | 16384 | 1.0 | 2323 | 50 | 3000.0 | 3000.0 | 10 | 0.01 | label0011 |
29 | b2b78a0f-278b-4b7d-82a3-5e625fbc91de | /beegfs/ye53nis/saves/firstartifactNov2020/50… | [250] | 4000 | 16384 | 1.0 | 2561 | 50 | 3000.0 | 3000.0 | 7 | 0.1 | label0011 |
diffrates = experiment_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32) nmols = experiment_params.loc['number of fast molecules'].astype(np.float32) clusters = experiment_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32) dataset_sep = isfc.separate_data_and_labels(array=dataset, nsamples=nsamples, col_per_example=col_per_example) features = dataset_sep['0'] labels_artifact = dataset_sep['1'] labels_artifact_bool = labels_artifact > lab_thresh labels_puretrace = dataset_sep['2']
The given DataFrame was split into 3 parts with shapes: [(16384, 3000), (16384, 3000), (16384, 3000)]
Let’s correct the traces with the new model and correlate them!
corr_out = ans.correlate_simulations_corrected_by_prediction( model=loaded_model, lab_thresh=lab_thresh, pred_thresh=pred_thresh, artifact=artifact, model_type=model_type, experiment_params=experiment_params, nsamples=nsamples, features=features, labels_artifact=labels_artifact, labels_puretrace=labels_puretrace, save_as_csv=True) corr_out
processed correlation of 3000 traces with correction by label processed correlation of 3000 traces with correction by prediction processed correlation of 3000 traces without correction processed correlation of pure 3000 traces
corr_out = pd.read_csv(filepath_or_buffer='data/exp-210807-hparams/2021-12-15_correlations.csv') corr_out
Simulated \(D\) | Simulated \(D_{{clust}}\) | nmol | \(D\) in \(\frac{{\mu m^2}}{{s}}\) | \(\tau_{{D}}\) in \(ms\) | Trace lengths | Traces used | |
---|---|---|---|---|---|---|---|
0 | 0.069 | 1.00 | 679.0 | 1.037836 | 10.860146 | 16384 | corrupted without correction |
1 | 0.069 | 1.00 | 679.0 | 0.814030 | 13.846002 | 16384 | corrupted without correction |
2 | 0.069 | 1.00 | 679.0 | 1.053716 | 10.696482 | 16384 | corrupted without correction |
3 | 0.069 | 1.00 | 679.0 | 0.897022 | 12.564974 | 16384 | corrupted without correction |
4 | 0.069 | 1.00 | 679.0 | 1.083577 | 10.401707 | 16384 | corrupted without correction |
… | … | … | … | … | … | … | … |
11995 | 0.400 | 0.01 | 1724.0 | 0.337877 | 33.358455 | 16267 | corrected by prediction |
11996 | 0.400 | 0.01 | 1724.0 | 0.317319 | 35.519585 | 7942 | corrected by prediction |
11997 | 0.400 | 0.01 | 1724.0 | 0.380969 | 29.585216 | 5315 | corrected by prediction |
11998 | 0.400 | 0.01 | 1724.0 | 0.376623 | 29.926600 | 12591 | corrected by prediction |
11999 | 0.400 | 0.01 | 1724.0 | 0.167653 | 67.228585 | 13305 | corrected by prediction |
12000 rows × 7 columns
- Check out the
NaN
values.print('All NaN values: {}'.format(corr_out[corr_out['$D$ in $\\frac{{\mu m^2}}{{s}}$'].isna()]))
All NaN values: Empty DataFrame Columns: [Simulated $D$, Simulated $D_{{clust}}$, nmol, $D$ in $\frac{{\mu m^2}}{{s}}$, $\tau_{{D}}$ in $ms$, Trace lengths, Traces used] Index: []
We confirmed that the correlation did not fail on none of the test traces (no NaN values).
- Now, first plot the trace lengths.
x = 'Trace lengths' g = sns.FacetGrid(data=corr_out, col='Simulated $D$', col_wrap=2, sharex=True, aspect=1.5, height=5, legend_out=True) g.map_dataframe(sns.boxplot, x=x, y='Traces used', hue='Simulated $D_{{clust}}$', palette='colorblind', showfliers=False) g.add_legend(title='Simulated $D_{{clust}}$') g.map_dataframe(sns.stripplot, x=x, y='Traces used', hue='Simulated $D_{{clust}}$', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2) g.set_xlabels(x) g.fig.patch.set_facecolor('white') g.tight_layout() plt.show()
Check out the trace lengths. The reduction seems similar over all simulated data. This speaks to a good generalization. Compared to
exp-210204-unet
, there is especially an improvement in the Simulated D of 0.1, and 0.4 to 50 and Simulated \(D_{clust}\) of 0.01. - Now let’s take a look at the diffrates and transit times. Since the
distribution follows a log normal, use a log scale.
# '$D$ in $\\frac{{\mu m^2}}{{s}}$' # '$\\tau_{{D}}$ in $ms$' x = '$\\tau_{{D}}$ in $ms$' g = sns.FacetGrid(data=corr_out, col='Simulated $D$', col_wrap=2, sharex=False, # False for x=D or x=tau, True for x=Trace lengths aspect=1.5, height=5, legend_out=True) g.map_dataframe(sns.boxplot, x=x, y='Traces used', hue='Simulated $D_{{clust}}$', palette='colorblind', showfliers=False).set(xscale = 'log') g.add_legend(title='Simulated $D_{{clust}}$') g.map_dataframe(sns.stripplot, x=x, y='Traces used', hue='Simulated $D_{{clust}}$', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2).set(xscale = 'log') g.set_xlabels(x) g.fig.patch.set_facecolor('white') g.tight_layout() plt.show()
D:
We see again a strong improvement in \(D_{clust} = 0.01\), this time with all simulated \(D\). We also see that there are occasional outliers in the prediction group (e.g. \(D = 50\) and \(D_{clust} = 0.01\)), but the statistics are in general okay now.
Still things to look out for: for \(D=50\) we see a slight distortion to lower transit times / faster diffrates, in both reduction by label and prediction. Here seems to lie a boundary of the correction method.
- Lastly, let’s take a look at a scatterplot of transit times vs trace
lengths using a subsample to avoid overplotting.
corr_scatter = corr_out[corr_out['Traces used'].isin(['corrected by labels (control)', 'corrected by prediction'])].sample(1000) corr_scatter
Simulated \(D\) Simulated \(D_{{clust}}\) nmol \(D\) in \(\frac{{\mu m^2}}{{s}}\) \(\tau_{{D}}\) in \(ms\) Trace lengths Traces used 9099 0.069 1.00 679.0 0.053497 210.684366 15232 corrected by prediction 9032 0.069 1.00 679.0 0.065549 171.949847 15583 corrected by prediction 10678 0.069 0.10 897.0 0.023812 473.327986 15480 corrected by prediction 9556 3.000 0.01 1785.0 3.321410 3.393455 13251 corrected by prediction 11319 0.100 0.10 1156.0 0.075619 149.050995 14235 corrected by prediction … … … … … … … … 6002 0.069 1.00 679.0 0.060130 187.443486 14908 corrected by labels (control) 9256 0.400 0.10 1939.0 0.398673 28.271429 15496 corrected by prediction 9094 0.069 1.00 679.0 0.016429 686.039288 14580 corrected by prediction 11329 0.100 0.10 1156.0 0.165504 68.101517 9384 corrected by prediction 11012 1.000 0.01 1357.0 1.491715 7.555768 4462 corrected by prediction 1000 rows × 7 columns
# '$D$ in $\\frac{{\mu m^2}}{{s}}$' # '$\\tau_{{D}}$ in $ms$' x = '$D$ in $\\frac{{\mu m^2}}{{s}}$' g = sns.relplot( data=corr_scatter, x=x, y="Trace lengths", row="Traces used", hue="Simulated $D$", style="Simulated $D_{{clust}}$", kind="scatter", aspect=1.5, palette='colorblind').set(xscale='log') g.set_xlabels(x) g.tight_layout() g.fig.patch.set_facecolor('white') plt.show()
We see that the distribution for \(D\) starts to spread out after rougly 10% of a trace has been deleted. The traces which had the most artifacts in them and thus were corrected most, were with a \(D_{clust}\) of 0.01.
2.4.8 Learnings from run 1 and 2
- The f1 metric does not work
- I need to fix the fitting algorithm - as can be seen in <exp-…> the binning to 100um is not sufficient to correlate the plateau, thus we fit only the tail. This could be one reason why we get an average / median transit time of 0.5ms for uncorrupted traces, even though Pablo fitted 0.225ms in FOCUSpoint.
- Boundary of correction method seems to be D=50, here correction by label and correction by prediction reduce the transit times too much, as in the achieved transit times are too low / diffrates are too fast.
2.5 exp-220120-correlate-ptu
2.5.1 Setup: Jupyter 1 on HPC compute node 1
- Setup tmux (
#+CALL: setup-tmux[:session remote]
)sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: > ye53nis@ara-login01.rz.uni-jena.de’s password: - Request compute node via tmux
cd / srun -p s_standard --time=7-10:00:00 --nodes=1 --ntasks-per-node=24 --mem=150000 --pty bash
(base) [ye53nis@node305 /]$
- Branch out git branch
exp-220120-correlate-ptu
frommain
(done via magit) and make sure ou are on the correct branchcd /beegfs/ye53nis/drmed-git git checkout exp-220120-correlate-ptu
(base) [ye53nis@node165 drmed-git]$ git checkout exp-220120-correlate-ptu Checking out files: 100% (147/147), done. M src/nanosimpy Branch exp-220120-correlate-ptu set up to track remote branch exp-220120-correlate-ptu from origin. Switched to a new branch 'exp-220120-correlate-ptu' (base) [ye53nis@node165 drmed-git]$
- Make directory for experiment
mkdir data/exp-220120-correlate-ptu/jupyter
- Customize the output folder using the following org-mode variable
(setq org-babel-jupyter-resource-directory "./exp-220120-correlate-ptu/jupyter")
./exp-220120-correlate-ptu/jupyter
- Load conda environment, and start jupyter (
#+CALL: jpt-tmux[:session jpmux]
)(tf) [ye53nis@node205 /]$ jupyter lab --no-browser --port=$PORT [I 2022-02-17 18:56:48.700 ServerApp] jupyterlab | extension was successfully linked. [I 2022-02-17 18:57:23.918 ServerApp] nbclassic | extension was successfully linked. [I 2022-02-17 18:57:27.274 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab [I 2022-02-17 18:57:27.275 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab [I 2022-02-17 18:57:27.405 ServerApp] jupyterlab | extension was successfully loaded. [I 2022-02-17 18:57:28.130 ServerApp] nbclassic | extension was successfully loaded. [I 2022-02-17 18:57:28.130 ServerApp] Serving notebooks from local directory: / [I 2022-02-17 18:57:28.131 ServerApp] Jupyter Server 1.4.1 is running at: [I 2022-02-17 18:57:28.131 ServerApp] http://localhost:8889/lab?token=6f26a99296b37cdb05f3969fb347c51d49b9552c75ee7eb4 [I 2022-02-17 18:57:28.131 ServerApp] or http://127.0.0.1:8889/lab?token=6f26a99296b37cdb05f3969fb347c51d49b9552c75ee7eb4 [I 2022-02-17 18:57:28.131 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 2022-02-17 18:57:28.499 ServerApp] To access the server, open this file in a browser: file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-308527-open.html Or copy and paste one of these URLs: http://localhost:8889/lab?token=6f26a99296b37cdb05f3969fb347c51d49b9552c75ee7eb4 or http://127.0.0.1:8889/lab?token=6f26a99296b37cdb05f3969fb347c51d49b9552c75ee7eb4
- Create ssh tunnel (
#+CALL: ssh-tunnel(port="8889", node="node165")
)sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: Warning: Permanently added ’node305,192.168.194.50’ (ECDSA) to the list of known hosts. ye53nis@node305’s password: - I started a Python3 kernel using
jupyter-server-list-kernels
. Then I added the kernel ID to the:PROPERTIES:
drawer of this (and following) subtrees.python3 03038b73-b2b5-49ce-a1dc-21afb6247d0f a few seconds ago starting 0
- Test and save metadata (including the python packages before the update in
Experiment 2a):
No of CPUs in system: 72 No of CPUs the current process can use: 24 load average: (6.14, 6.09, 6.06) os.uname(): posix.uname_result(sysname='Linux', nodename='node154', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64') PID of process: 59210 RAM total: 199G, RAM used: 27G, RAM free: 85G the current directory: / My disk usage: Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 3.8G 47G 8% / devtmpfs 94G 0 94G 0% /dev tmpfs 94G 3.1M 94G 1% /dev/shm tmpfs 94G 107M 94G 1% /run tmpfs 94G 0 94G 0% /sys/fs/cgroup nfs01-ib:/home 80T 67T 14T 84% /home nfs01-ib:/cluster 2.0T 468G 1.6T 23% /cluster nfs03-ib:/pool/work 100T 79T 22T 79% /nfsdata nfs02-ib:/data01 88T 72T 16T 82% /data01 /dev/sda3 6.0G 407M 5.6G 7% /var /dev/sda6 169G 11G 158G 7% /local /dev/sda5 2.0G 34M 2.0G 2% /tmp beegfs_nodev 524T 476T 49T 91% /beegfs tmpfs 19G 0 19G 0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 4.5 1_gnu absl-py 0.13.0 pypi_0 pypi alembic 1.4.1 pypi_0 pypi anyio 2.2.0 py39h06a4308_1 argon2-cffi 20.1.0 py39h27cfd23_1 asteval 0.9.25 pypi_0 pypi astunparse 1.6.3 pypi_0 pypi async_generator 1.10 pyhd3eb1b0_0 attrs 21.2.0 pyhd3eb1b0_0 babel 2.9.1 pyhd3eb1b0_0 backcall 0.2.0 pyhd3eb1b0_0 bleach 3.3.1 pyhd3eb1b0_0 brotlipy 0.7.0 py39h27cfd23_1003 ca-certificates 2021.7.5 h06a4308_1 cachetools 4.2.2 pypi_0 pypi certifi 2021.5.30 py39h06a4308_0 cffi 1.14.6 py39h400218f_0 chardet 4.0.0 py39h06a4308_1003 click 8.0.1 pypi_0 pypi cloudpickle 1.6.0 pypi_0 pypi cryptography 3.4.7 py39hd23ed53_0 cycler 0.10.0 pypi_0 pypi databricks-cli 0.14.3 pypi_0 pypi decorator 5.0.9 pyhd3eb1b0_0 defusedxml 0.7.1 pyhd3eb1b0_0 docker 5.0.0 pypi_0 pypi entrypoints 0.3 py39h06a4308_0 fcsfiles 2021.6.6 pypi_0 pypi flask 2.0.1 pypi_0 pypi flatbuffers 1.12 pypi_0 pypi future 0.18.2 pypi_0 pypi gast 0.4.0 pypi_0 pypi gitdb 4.0.7 pypi_0 pypi gitpython 3.1.18 pypi_0 pypi google-auth 1.34.0 pypi_0 pypi google-auth-oauthlib 0.4.5 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi greenlet 1.1.0 pypi_0 pypi grpcio 1.34.1 pypi_0 pypi gunicorn 20.1.0 pypi_0 pypi h5py 3.1.0 pypi_0 pypi idna 2.10 pyhd3eb1b0_0 importlib-metadata 3.10.0 py39h06a4308_0 importlib_metadata 3.10.0 hd3eb1b0_0 ipykernel 5.3.4 py39hb070fc8_0 ipython 7.22.0 py39hb070fc8_0 ipython_genutils 0.2.0 pyhd3eb1b0_1 itsdangerous 2.0.1 pypi_0 pypi jedi 0.17.2 py39h06a4308_1 jinja2 3.0.1 pyhd3eb1b0_0 joblib 1.0.1 pypi_0 pypi json5 0.9.6 pyhd3eb1b0_0 jsonschema 3.2.0 py_2 jupyter-packaging 0.7.12 pyhd3eb1b0_0 jupyter_client 6.1.12 pyhd3eb1b0_0 jupyter_core 4.7.1 py39h06a4308_0 jupyter_server 1.4.1 py39h06a4308_0 jupyterlab 3.0.14 pyhd3eb1b0_1 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 2.6.1 pyhd3eb1b0_0 keras-nightly 2.5.0.dev2021032900 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.1 pypi_0 pypi ld_impl_linux-64 2.35.1 h7274673_9 libffi 3.3 he6710b0_2 libgcc-ng 9.3.0 h5101ec6_17 libgomp 9.3.0 h5101ec6_17 libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.3.0 hd4cf53a_17 lmfit 1.0.2 pypi_0 pypi mako 1.1.4 pypi_0 pypi markdown 3.3.4 pypi_0 pypi markupsafe 2.0.1 py39h27cfd23_0 matplotlib 3.4.2 pypi_0 pypi mistune 0.8.4 py39h27cfd23_1000 mlflow 1.19.0 pypi_0 pypi multipletau 0.3.3 pypi_0 pypi nbclassic 0.2.6 pyhd3eb1b0_0 nbclient 0.5.3 pyhd3eb1b0_0 nbconvert 6.1.0 py39h06a4308_0 nbformat 5.1.3 pyhd3eb1b0_0 ncurses 6.2 he6710b0_1 nest-asyncio 1.5.1 pyhd3eb1b0_0 notebook 6.4.0 py39h06a4308_0 numpy 1.19.5 pypi_0 pypi oauthlib 3.1.1 pypi_0 pypi openssl 1.1.1k h27cfd23_0 opt-einsum 3.3.0 pypi_0 pypi packaging 21.0 pyhd3eb1b0_0 pandas 1.3.1 pypi_0 pypi pandocfilters 1.4.3 py39h06a4308_1 parso 0.7.0 py_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 8.3.1 pypi_0 pypi pip 21.1.3 py39h06a4308_0 prometheus-flask-exporter 0.18.2 pypi_0 pypi prometheus_client 0.11.0 pyhd3eb1b0_0 prompt-toolkit 3.0.17 pyh06a4308_0 protobuf 3.17.3 pypi_0 pypi ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.20 py_2 pygments 2.9.0 pyhd3eb1b0_0 pyopenssl 20.0.1 pyhd3eb1b0_1 pyparsing 2.4.7 pyhd3eb1b0_0 pyrsistent 0.18.0 py39h7f8727e_0 pysocks 1.7.1 py39h06a4308_0 python 3.9.5 h12debd9_4 python-dateutil 2.8.2 pyhd3eb1b0_0 python-editor 1.0.4 pypi_0 pypi pytz 2021.1 pyhd3eb1b0_0 pyyaml 5.4.1 pypi_0 pypi pyzmq 20.0.0 py39h2531618_1 querystring-parser 1.2.4 pypi_0 pypi readline 8.1 h27cfd23_0 requests 2.25.1 pyhd3eb1b0_0 requests-oauthlib 1.3.0 pypi_0 pypi rsa 4.7.2 pypi_0 pypi scikit-learn 0.24.2 pypi_0 pypi scipy 1.7.0 pypi_0 pypi seaborn 0.11.1 pypi_0 pypi send2trash 1.5.0 pyhd3eb1b0_1 setuptools 52.0.0 py39h06a4308_0 six 1.15.0 pypi_0 pypi smmap 4.0.0 pypi_0 pypi sniffio 1.2.0 py39h06a4308_1 sqlalchemy 1.4.22 pypi_0 pypi sqlite 3.36.0 hc218d9a_0 sqlparse 0.4.1 pypi_0 pypi tabulate 0.8.9 pypi_0 pypi tensorboard 2.5.0 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.0 pypi_0 pypi tensorflow 2.5.0 pypi_0 pypi tensorflow-estimator 2.5.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.4 py39h06a4308_0 testpath 0.5.0 pyhd3eb1b0_0 threadpoolctl 2.2.0 pypi_0 pypi tifffile 2021.7.30 pypi_0 pypi tk 8.6.10 hbc83047_0 tornado 6.1 py39h27cfd23_0 traitlets 5.0.5 pyhd3eb1b0_0 typing-extensions 3.7.4.3 pypi_0 pypi tzdata 2021a h52ac0ba_0 uncertainties 3.1.6 pypi_0 pypi urllib3 1.26.6 pyhd3eb1b0_1 wcwidth 0.2.5 py_0 webencodings 0.5.1 py39h06a4308_1 websocket-client 1.1.0 pypi_0 pypi werkzeug 2.0.1 pypi_0 pypi wheel 0.36.2 pyhd3eb1b0_0 wrapt 1.12.1 pypi_0 pypi xz 5.2.5 h7b6447c_0 zeromq 4.3.4 h2531618_0 zipp 3.5.0 pyhd3eb1b0_0 zlib 1.2.11 h7b6447c_3 Note: you may need to restart the kernel to use updated packages. {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint', 'SLURM_NODELIST': 'node154', 'SLURM_JOB_NAME': 'bash', 'XDG_SESSION_ID': '44301', 'SLURMD_NODENAME': 'node154', 'SLURM_TOPOLOGY_ADDR': 'node154', 'SLURM_NTASKS_PER_NODE': '24', 'HOSTNAME': 'login01', 'SLURM_PRIO_PROCESS': '0', 'SLURM_SRUN_COMM_PORT': '41523', 'SHELL': '/bin/bash', 'TERM': 'xterm-color', 'SLURM_JOB_QOS': 'qstand', 'SLURM_PTY_WIN_ROW': '34', 'HISTSIZE': '1000', 'TMPDIR': '/tmp', 'SLURM_TOPOLOGY_ADDR_PATTERN': 'node', 'SSH_CLIENT': '10.231.181.128 49370 22', 'CONDA_SHLVL': '2', 'CONDA_PROMPT_MODIFIER': '(tf) ', 'QTDIR': '/usr/lib64/qt-3.3', 'QTINC': '/usr/lib64/qt-3.3/include', 'SSH_TTY': '/dev/pts/79', 'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'QT_GRAPHICSSYSTEM_CHECKED': '1', 'SLURM_NNODES': '1', 'USER': 'ye53nis', 'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:', 'CONDA_EXE': '/cluster/miniconda3/bin/conda', 'SLURM_STEP_NUM_NODES': '1', 'SLURM_JOBID': '1608805', 'SRUN_DEBUG': '3', 'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_NTASKS': '24', 'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5', 'SLURM_STEP_ID': '0', 'TMUX': '/tmp/tmux-67339/default,20557,4', '_CE_CONDA': '', 'CONDA_PREFIX_1': '/cluster/miniconda3', 'SLURM_STEP_LAUNCHER_PORT': '41523', 'SLURM_TASKS_PER_NODE': '24', 'MAIL': '/var/spool/mail/ye53nis', 'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin', 'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448', 'SLURM_JOB_ID': '1608805', 'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf', 'SLURM_JOB_USER': 'ye53nis', 'SLURM_STEPID': '0', 'PWD': '/', 'SLURM_SRUN_COMM_HOST': '192.168.192.5', 'LANG': 'en_US.UTF-8', 'SLURM_PTY_WIN_COL': '236', 'SLURM_UMASK': '0022', 'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles', 'SLURM_JOB_UID': '67339', 'LOADEDMODULES': '', 'SLURM_NODEID': '0', 'TMUX_PANE': '%4', 'SLURM_SUBMIT_DIR': '/', 'SLURM_TASK_PID': '57304', 'SLURM_NPROCS': '24', 'SLURM_CPUS_ON_NODE': '24', 'SLURM_DISTRIBUTION': 'block', 'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_PROCID': '0', 'HISTCONTROL': 'ignoredups', '_CE_M': '', 'SLURM_JOB_NODELIST': 'node154', 'SLURM_PTY_PORT': '38987', 'HOME': '/home/ye53nis', 'SHLVL': '3', 'SLURM_LOCALID': '0', 'SLURM_JOB_GID': '13280', 'SLURM_JOB_CPUS_PER_NODE': '24', 'SLURM_CLUSTER_NAME': 'hpc', 'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23', 'SLURM_SUBMIT_HOST': 'login01', 'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_JOB_PARTITION': 's_standard', 'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3', 'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python', 'LOGNAME': 'ye53nis', 'SLURM_STEP_NUM_TASKS': '24', 'QTLIB': '/usr/lib64/qt-3.3/lib', 'SLURM_JOB_ACCOUNT': 'iaob', 'SLURM_JOB_NUM_NODES': '1', 'MODULESHOME': '/usr/share/Modules', 'CONDA_DEFAULT_ENV': 'tf', 'LESSOPEN': '||/usr/bin/lesspipe.sh %s', 'SLURM_STEP_TASKS_PER_NODE': '24', 'PORT': '8889', 'SLURM_STEP_NODELIST': 'node154', 'DISPLAY': ':0', 'XDG_RUNTIME_DIR': '', 'XAUTHORITY': '/home/lex/.Xauthority', 'BASH_FUNC_module()': '() { eval `/usr/bin/modulecmd bash $*`\n}', '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter', 'JPY_PARENT_PID': '58148', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
- Test and save metadata after update in Experiment 2a
No of CPUs in system: 72 No of CPUs the current process can use: 24 load average: (8.76, 8.8, 8.92) os.uname(): posix.uname_result(sysname='Linux', nodename='node154', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64') PID of process: 151057 RAM total: 199G, RAM used: 45G, RAM free: 66G the current directory: /beegfs/ye53nis/drmed-git My disk usage: Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 3.8G 47G 8% / devtmpfs 94G 0 94G 0% /dev tmpfs 94G 3.1M 94G 1% /dev/shm tmpfs 94G 107M 94G 1% /run tmpfs 94G 0 94G 0% /sys/fs/cgroup nfs01-ib:/home 80T 67T 14T 84% /home nfs01-ib:/cluster 2.0T 468G 1.6T 23% /cluster nfs03-ib:/pool/work 100T 79T 22T 79% /nfsdata nfs02-ib:/data01 88T 72T 16T 82% /data01 /dev/sda3 6.0G 406M 5.6G 7% /var /dev/sda6 169G 11G 158G 7% /local /dev/sda5 2.0G 34M 2.0G 2% /tmp beegfs_nodev 524T 476T 49T 91% /beegfs tmpfs 19G 0 19G 0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 4.5 1_gnu absl-py 1.0.0 pypi_0 pypi alembic 1.7.6 pypi_0 pypi anyio 2.2.0 py39h06a4308_1 argon2-cffi 20.1.0 py39h27cfd23_1 asteval 0.9.26 pypi_0 pypi astunparse 1.6.3 pypi_0 pypi async_generator 1.10 pyhd3eb1b0_0 attrs 21.4.0 pyhd3eb1b0_0 babel 2.9.1 pyhd3eb1b0_0 backcall 0.2.0 pyhd3eb1b0_0 bleach 4.1.0 pyhd3eb1b0_0 brotlipy 0.7.0 py39h27cfd23_1003 ca-certificates 2021.10.26 h06a4308_2 cachetools 5.0.0 pypi_0 pypi certifi 2021.10.8 py39h06a4308_2 cffi 1.15.0 py39hd667e15_1 charset-normalizer 2.0.4 pyhd3eb1b0_0 click 8.0.3 pypi_0 pypi cloudpickle 2.0.0 pypi_0 pypi cryptography 36.0.0 py39h9ce1e76_0 cycler 0.11.0 pypi_0 pypi cython 0.29.27 pypi_0 pypi databricks-cli 0.16.4 pypi_0 pypi debugpy 1.5.1 py39h295c915_0 decorator 5.1.1 pyhd3eb1b0_0 defusedxml 0.7.1 pyhd3eb1b0_0 docker 5.0.3 pypi_0 pypi entrypoints 0.3 py39h06a4308_0 fcsfiles 2022.2.2 pypi_0 pypi flask 2.0.2 pypi_0 pypi flatbuffers 2.0 pypi_0 pypi fonttools 4.29.1 pypi_0 pypi future 0.18.2 pypi_0 pypi gast 0.5.3 pypi_0 pypi gitdb 4.0.9 pypi_0 pypi gitpython 3.1.26 pypi_0 pypi google-auth 2.6.0 pypi_0 pypi google-auth-oauthlib 0.4.6 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi greenlet 1.1.2 pypi_0 pypi grpcio 1.43.0 pypi_0 pypi gunicorn 20.1.0 pypi_0 pypi h5py 3.6.0 pypi_0 pypi idna 3.3 pyhd3eb1b0_0 importlib-metadata 4.8.2 py39h06a4308_0 importlib_metadata 4.8.2 hd3eb1b0_0 ipykernel 6.4.1 py39h06a4308_1 ipython 7.31.1 py39h06a4308_0 ipython_genutils 0.2.0 pyhd3eb1b0_1 itsdangerous 2.0.1 pypi_0 pypi jedi 0.18.1 py39h06a4308_1 jinja2 3.0.2 pyhd3eb1b0_0 joblib 1.1.0 pypi_0 pypi json5 0.9.6 pyhd3eb1b0_0 jsonschema 3.2.0 pyhd3eb1b0_2 jupyter_client 7.1.2 pyhd3eb1b0_0 jupyter_core 4.9.1 py39h06a4308_0 jupyter_server 1.4.1 py39h06a4308_0 jupyterlab 3.2.1 pyhd3eb1b0_1 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 2.10.2 pyhd3eb1b0_1 keras 2.8.0 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.2 pypi_0 pypi ld_impl_linux-64 2.35.1 h7274673_9 libclang 13.0.0 pypi_0 pypi libffi 3.3 he6710b0_2 libgcc-ng 9.3.0 h5101ec6_17 libgomp 9.3.0 h5101ec6_17 libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.3.0 hd4cf53a_17 lmfit 1.0.3 pypi_0 pypi mako 1.1.6 pypi_0 pypi markdown 3.3.6 pypi_0 pypi markupsafe 2.0.1 py39h27cfd23_0 matplotlib 3.5.1 pypi_0 pypi matplotlib-inline 0.1.2 pyhd3eb1b0_2 mistune 0.8.4 py39h27cfd23_1000 mlflow 1.23.1 pypi_0 pypi multipletau 0.3.3 pypi_0 pypi nbclassic 0.2.6 pyhd3eb1b0_0 nbclient 0.5.3 pyhd3eb1b0_0 nbconvert 6.3.0 py39h06a4308_0 nbformat 5.1.3 pyhd3eb1b0_0 ncurses 6.3 h7f8727e_2 nest-asyncio 1.5.1 pyhd3eb1b0_0 notebook 6.4.6 py39h06a4308_0 numpy 1.22.2 pypi_0 pypi oauthlib 3.2.0 pypi_0 pypi openssl 1.1.1m h7f8727e_0 opt-einsum 3.3.0 pypi_0 pypi packaging 21.3 pyhd3eb1b0_0 pandas 1.4.0 pypi_0 pypi pandocfilters 1.5.0 pyhd3eb1b0_0 parso 0.8.3 pyhd3eb1b0_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 9.0.1 pypi_0 pypi pip 21.2.4 py39h06a4308_0 prometheus-flask-exporter 0.18.7 pypi_0 pypi prometheus_client 0.13.1 pyhd3eb1b0_0 prompt-toolkit 3.0.20 pyhd3eb1b0_0 protobuf 3.19.4 pypi_0 pypi ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.21 pyhd3eb1b0_0 pygments 2.11.2 pyhd3eb1b0_0 pyopenssl 22.0.0 pyhd3eb1b0_0 pyparsing 3.0.4 pyhd3eb1b0_0 pyrsistent 0.18.0 py39heee7806_0 pysocks 1.7.1 py39h06a4308_0 python 3.9.7 h12debd9_1 python-dateutil 2.8.2 pyhd3eb1b0_0 pytz 2021.3 pyhd3eb1b0_0 pyyaml 6.0 pypi_0 pypi pyzmq 22.3.0 py39h295c915_2 querystring-parser 1.2.4 pypi_0 pypi readline 8.1.2 h7f8727e_1 requests 2.27.1 pyhd3eb1b0_0 requests-oauthlib 1.3.1 pypi_0 pypi rsa 4.8 pypi_0 pypi scikit-learn 1.0.2 pypi_0 pypi scipy 1.8.0 pypi_0 pypi seaborn 0.11.2 pypi_0 pypi send2trash 1.8.0 pyhd3eb1b0_1 setuptools 58.0.4 py39h06a4308_0 six 1.16.0 pyhd3eb1b0_0 smmap 5.0.0 pypi_0 pypi sniffio 1.2.0 py39h06a4308_1 sqlalchemy 1.4.31 pypi_0 pypi sqlite 3.37.2 hc218d9a_0 sqlparse 0.4.2 pypi_0 pypi tabulate 0.8.9 pypi_0 pypi tensorboard 2.8.0 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.1 pypi_0 pypi tensorflow 2.8.0 pypi_0 pypi tensorflow-io-gcs-filesystem 0.24.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.4 py39h06a4308_0 testpath 0.5.0 pyhd3eb1b0_0 tf-estimator-nightly 2.8.0.dev2021122109 pypi_0 pypi threadpoolctl 3.1.0 pypi_0 pypi tk 8.6.11 h1ccaba5_0 tornado 6.1 py39h27cfd23_0 traitlets 5.1.1 pyhd3eb1b0_0 typing-extensions 4.0.1 pypi_0 pypi tzdata 2021e hda174b7_0 uncertainties 3.1.6 pypi_0 pypi urllib3 1.26.8 pyhd3eb1b0_0 wcwidth 0.2.5 pyhd3eb1b0_0 webencodings 0.5.1 py39h06a4308_1 websocket-client 1.2.3 pypi_0 pypi werkzeug 2.0.3 pypi_0 pypi wheel 0.37.1 pyhd3eb1b0_0 wrapt 1.13.3 pypi_0 pypi xz 5.2.5 h7b6447c_0 zeromq 4.3.4 h2531618_0 zipp 3.7.0 pyhd3eb1b0_0 zlib 1.2.11 h7f8727e_4 Note: you may need to restart the kernel to use updated packages. {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint', 'SLURM_NODELIST': 'node154', 'SLURM_JOB_NAME': 'bash', 'XDG_SESSION_ID': '44301', 'SLURMD_NODENAME': 'node154', 'SLURM_TOPOLOGY_ADDR': 'node154', 'SLURM_NTASKS_PER_NODE': '24', 'HOSTNAME': 'login01', 'SLURM_PRIO_PROCESS': '0', 'SLURM_SRUN_COMM_PORT': '41523', 'SHELL': '/bin/bash', 'TERM': 'xterm-color', 'SLURM_JOB_QOS': 'qstand', 'SLURM_PTY_WIN_ROW': '34', 'HISTSIZE': '1000', 'TMPDIR': '/tmp', 'SLURM_TOPOLOGY_ADDR_PATTERN': 'node', 'SSH_CLIENT': '10.231.181.128 49370 22', 'CONDA_SHLVL': '2', 'CONDA_PROMPT_MODIFIER': '(tf) ', 'QTDIR': '/usr/lib64/qt-3.3', 'QTINC': '/usr/lib64/qt-3.3/include', 'SSH_TTY': '/dev/pts/79', 'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'QT_GRAPHICSSYSTEM_CHECKED': '1', 'SLURM_NNODES': '1', 'USER': 'ye53nis', 'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:', 'CONDA_EXE': '/cluster/miniconda3/bin/conda', 'SLURM_STEP_NUM_NODES': '1', 'SLURM_JOBID': '1608805', 'SRUN_DEBUG': '3', 'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_NTASKS': '24', 'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5', 'SLURM_STEP_ID': '0', 'TMUX': '/tmp/tmux-67339/default,20557,4', '_CE_CONDA': '', 'CONDA_PREFIX_1': '/cluster/miniconda3', 'SLURM_STEP_LAUNCHER_PORT': '41523', 'SLURM_TASKS_PER_NODE': '24', 'MAIL': '/var/spool/mail/ye53nis', 'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin', 'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448', 'SLURM_JOB_ID': '1608805', 'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf', 'SLURM_JOB_USER': 'ye53nis', 'SLURM_STEPID': '0', 'PWD': '/', 'SLURM_SRUN_COMM_HOST': '192.168.192.5', 'LANG': 'en_US.UTF-8', 'SLURM_PTY_WIN_COL': '236', 'SLURM_UMASK': '0022', 'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles', 'SLURM_JOB_UID': '67339', 'LOADEDMODULES': '', 'SLURM_NODEID': '0', 'TMUX_PANE': '%4', 'SLURM_SUBMIT_DIR': '/', 'SLURM_TASK_PID': '57304', 'SLURM_NPROCS': '24', 'SLURM_CPUS_ON_NODE': '24', 'SLURM_DISTRIBUTION': 'block', 'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_PROCID': '0', 'HISTCONTROL': 'ignoredups', '_CE_M': '', 'SLURM_JOB_NODELIST': 'node154', 'SLURM_PTY_PORT': '38987', 'HOME': '/home/ye53nis', 'SHLVL': '3', 'SLURM_LOCALID': '0', 'SLURM_JOB_GID': '13280', 'SLURM_JOB_CPUS_PER_NODE': '24', 'SLURM_CLUSTER_NAME': 'hpc', 'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23', 'SLURM_SUBMIT_HOST': 'login01', 'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_JOB_PARTITION': 's_standard', 'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3', 'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python', 'LOGNAME': 'ye53nis', 'SLURM_STEP_NUM_TASKS': '24', 'QTLIB': '/usr/lib64/qt-3.3/lib', 'SLURM_JOB_ACCOUNT': 'iaob', 'SLURM_JOB_NUM_NODES': '1', 'MODULESHOME': '/usr/share/Modules', 'CONDA_DEFAULT_ENV': 'tf', 'LESSOPEN': '||/usr/bin/lesspipe.sh %s', 'SLURM_STEP_TASKS_PER_NODE': '24', 'PORT': '8889', 'SLURM_STEP_NODELIST': 'node154', 'DISPLAY': ':0', 'XDG_RUNTIME_DIR': '', 'XAUTHORITY': '/home/lex/.Xauthority', 'BASH_FUNC_module()': '() { eval `/usr/bin/modulecmd bash $*`\n}', '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter', 'JPY_PARENT_PID': '58148', 'PYDEVD_USE_FRAME_EVAL': 'NO', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://matplotlib_inline.backend_inline', 'TF2_BEHAVIOR': '1', 'KMP_DUPLICATE_LIB_OK': 'True', 'KMP_INIT_AT_FORK': 'FALSE'}
- Test and save metadata for Analysis 4 (
190327_detectordropout
needs a lot of RAM)No of CPUs in system: 72 No of CPUs the current process can use: 24 load average: (0.0, 0.01, 0.05) os.uname(): posix.uname_result(sysname='Linux', nodename='node305', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64') PID of process: 215732 RAM total: 199G, RAM used: 4.9G, RAM free: 110G the current directory: / My disk usage: Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 3.8G 47G 8% / devtmpfs 94G 0 94G 0% /dev tmpfs 94G 5.6G 89G 6% /dev/shm tmpfs 94G 155M 94G 1% /run tmpfs 94G 0 94G 0% /sys/fs/cgroup nfs01-ib:/home 80T 68T 13T 85% /home nfs03-ib:/pool/work 100T 71T 29T 71% /nfsdata nfs01-ib:/cluster 2.0T 468G 1.6T 23% /cluster nfs02-ib:/data01 88T 72T 16T 82% /data01 /dev/sda6 169G 2.6G 166G 2% /local /dev/sda5 2.0G 34M 2.0G 2% /tmp /dev/sda3 6.0G 419M 5.6G 7% /var beegfs_nodev 524T 491T 34T 94% /beegfs tmpfs 19G 0 19G 0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 4.5 1_gnu absl-py 1.0.0 pypi_0 pypi alembic 1.7.6 pypi_0 pypi anyio 2.2.0 py39h06a4308_1 argon2-cffi 20.1.0 py39h27cfd23_1 asteval 0.9.26 pypi_0 pypi astunparse 1.6.3 pypi_0 pypi async_generator 1.10 pyhd3eb1b0_0 attrs 21.4.0 pyhd3eb1b0_0 babel 2.9.1 pyhd3eb1b0_0 backcall 0.2.0 pyhd3eb1b0_0 bleach 4.1.0 pyhd3eb1b0_0 brotlipy 0.7.0 py39h27cfd23_1003 ca-certificates 2021.10.26 h06a4308_2 cachetools 5.0.0 pypi_0 pypi certifi 2021.10.8 py39h06a4308_2 cffi 1.15.0 py39hd667e15_1 charset-normalizer 2.0.4 pyhd3eb1b0_0 click 8.0.3 pypi_0 pypi cloudpickle 2.0.0 pypi_0 pypi cryptography 36.0.0 py39h9ce1e76_0 cycler 0.11.0 pypi_0 pypi cython 0.29.27 pypi_0 pypi databricks-cli 0.16.4 pypi_0 pypi debugpy 1.5.1 py39h295c915_0 decorator 5.1.1 pyhd3eb1b0_0 defusedxml 0.7.1 pyhd3eb1b0_0 docker 5.0.3 pypi_0 pypi entrypoints 0.3 py39h06a4308_0 fcsfiles 2022.2.2 pypi_0 pypi flask 2.0.2 pypi_0 pypi flatbuffers 2.0 pypi_0 pypi fonttools 4.29.1 pypi_0 pypi future 0.18.2 pypi_0 pypi gast 0.5.3 pypi_0 pypi gitdb 4.0.9 pypi_0 pypi gitpython 3.1.26 pypi_0 pypi google-auth 2.6.0 pypi_0 pypi google-auth-oauthlib 0.4.6 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi greenlet 1.1.2 pypi_0 pypi grpcio 1.43.0 pypi_0 pypi gunicorn 20.1.0 pypi_0 pypi h5py 3.6.0 pypi_0 pypi idna 3.3 pyhd3eb1b0_0 importlib-metadata 4.8.2 py39h06a4308_0 importlib_metadata 4.8.2 hd3eb1b0_0 ipykernel 6.4.1 py39h06a4308_1 ipython 7.31.1 py39h06a4308_0 ipython_genutils 0.2.0 pyhd3eb1b0_1 itsdangerous 2.0.1 pypi_0 pypi jedi 0.18.1 py39h06a4308_1 jinja2 3.0.2 pyhd3eb1b0_0 joblib 1.1.0 pypi_0 pypi json5 0.9.6 pyhd3eb1b0_0 jsonschema 3.2.0 pyhd3eb1b0_2 jupyter_client 7.1.2 pyhd3eb1b0_0 jupyter_core 4.9.1 py39h06a4308_0 jupyter_server 1.4.1 py39h06a4308_0 jupyterlab 3.2.1 pyhd3eb1b0_1 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 2.10.2 pyhd3eb1b0_1 keras 2.8.0 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.2 pypi_0 pypi ld_impl_linux-64 2.35.1 h7274673_9 libclang 13.0.0 pypi_0 pypi libffi 3.3 he6710b0_2 libgcc-ng 9.3.0 h5101ec6_17 libgomp 9.3.0 h5101ec6_17 libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.3.0 hd4cf53a_17 lmfit 1.0.3 pypi_0 pypi mako 1.1.6 pypi_0 pypi markdown 3.3.6 pypi_0 pypi markupsafe 2.0.1 py39h27cfd23_0 matplotlib 3.5.1 pypi_0 pypi matplotlib-inline 0.1.2 pyhd3eb1b0_2 mistune 0.8.4 py39h27cfd23_1000 mlflow 1.23.1 pypi_0 pypi multipletau 0.3.3 pypi_0 pypi nbclassic 0.2.6 pyhd3eb1b0_0 nbclient 0.5.3 pyhd3eb1b0_0 nbconvert 6.3.0 py39h06a4308_0 nbformat 5.1.3 pyhd3eb1b0_0 ncurses 6.3 h7f8727e_2 nest-asyncio 1.5.1 pyhd3eb1b0_0 notebook 6.4.6 py39h06a4308_0 numpy 1.22.2 pypi_0 pypi oauthlib 3.2.0 pypi_0 pypi openssl 1.1.1m h7f8727e_0 opt-einsum 3.3.0 pypi_0 pypi packaging 21.3 pyhd3eb1b0_0 pandas 1.4.0 pypi_0 pypi pandocfilters 1.5.0 pyhd3eb1b0_0 parso 0.8.3 pyhd3eb1b0_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 9.0.1 pypi_0 pypi pip 21.2.4 py39h06a4308_0 prometheus-flask-exporter 0.18.7 pypi_0 pypi prometheus_client 0.13.1 pyhd3eb1b0_0 prompt-toolkit 3.0.20 pyhd3eb1b0_0 protobuf 3.19.4 pypi_0 pypi ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.21 pyhd3eb1b0_0 pygments 2.11.2 pyhd3eb1b0_0 pyopenssl 22.0.0 pyhd3eb1b0_0 pyparsing 3.0.4 pyhd3eb1b0_0 pyrsistent 0.18.0 py39heee7806_0 pysocks 1.7.1 py39h06a4308_0 python 3.9.7 h12debd9_1 python-dateutil 2.8.2 pyhd3eb1b0_0 pytz 2021.3 pyhd3eb1b0_0 pyyaml 6.0 pypi_0 pypi pyzmq 22.3.0 py39h295c915_2 querystring-parser 1.2.4 pypi_0 pypi readline 8.1.2 h7f8727e_1 requests 2.27.1 pyhd3eb1b0_0 requests-oauthlib 1.3.1 pypi_0 pypi rsa 4.8 pypi_0 pypi scikit-learn 1.0.2 pypi_0 pypi scipy 1.8.0 pypi_0 pypi seaborn 0.11.2 pypi_0 pypi send2trash 1.8.0 pyhd3eb1b0_1 setuptools 58.0.4 py39h06a4308_0 six 1.16.0 pyhd3eb1b0_0 smmap 5.0.0 pypi_0 pypi sniffio 1.2.0 py39h06a4308_1 sqlalchemy 1.4.31 pypi_0 pypi sqlite 3.37.2 hc218d9a_0 sqlparse 0.4.2 pypi_0 pypi tabulate 0.8.9 pypi_0 pypi tensorboard 2.8.0 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.1 pypi_0 pypi tensorflow 2.8.0 pypi_0 pypi tensorflow-io-gcs-filesystem 0.24.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.4 py39h06a4308_0 testpath 0.5.0 pyhd3eb1b0_0 tf-estimator-nightly 2.8.0.dev2021122109 pypi_0 pypi threadpoolctl 3.1.0 pypi_0 pypi tk 8.6.11 h1ccaba5_0 tornado 6.1 py39h27cfd23_0 traitlets 5.1.1 pyhd3eb1b0_0 typing-extensions 4.0.1 pypi_0 pypi tzdata 2021e hda174b7_0 uncertainties 3.1.6 pypi_0 pypi urllib3 1.26.8 pyhd3eb1b0_0 wcwidth 0.2.5 pyhd3eb1b0_0 webencodings 0.5.1 py39h06a4308_1 websocket-client 1.2.3 pypi_0 pypi werkzeug 2.0.3 pypi_0 pypi wheel 0.37.1 pyhd3eb1b0_0 wrapt 1.13.3 pypi_0 pypi xz 5.2.5 h7b6447c_0 zeromq 4.3.4 h2531618_0 zipp 3.7.0 pyhd3eb1b0_0 zlib 1.2.11 h7f8727e_4 Note: you may need to restart the kernel to use updated packages. {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint', 'SLURM_NODELIST': 'node305', 'SLURM_JOB_NAME': 'bash', 'XDG_SESSION_ID': '44301', 'SLURMD_NODENAME': 'node305', 'SLURM_TOPOLOGY_ADDR': 'node305', 'SLURM_NTASKS_PER_NODE': '24', 'HOSTNAME': 'login01', 'SLURM_PRIO_PROCESS': '0', 'SLURM_SRUN_COMM_PORT': '44912', 'SHELL': '/bin/bash', 'TERM': 'xterm-color', 'SLURM_JOB_QOS': 'qstand', 'SLURM_PTY_WIN_ROW': '34', 'HISTSIZE': '1000', 'TMPDIR': '/tmp', 'SLURM_TOPOLOGY_ADDR_PATTERN': 'node', 'SSH_CLIENT': '10.231.181.128 49370 22', 'CONDA_SHLVL': '2', 'CONDA_PROMPT_MODIFIER': '(tf) ', 'QTDIR': '/usr/lib64/qt-3.3', 'QTINC': '/usr/lib64/qt-3.3/include', 'SSH_TTY': '/dev/pts/79', 'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'QT_GRAPHICSSYSTEM_CHECKED': '1', 'SLURM_NNODES': '1', 'USER': 'ye53nis', 'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:', 'CONDA_EXE': '/cluster/miniconda3/bin/conda', 'SLURM_STEP_NUM_NODES': '1', 'SLURM_JOBID': '1612149', 'SRUN_DEBUG': '3', 'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_NTASKS': '24', 'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5', 'SLURM_STEP_ID': '0', 'TMUX': '/tmp/tmux-67339/default,20557,4', '_CE_CONDA': '', 'CONDA_PREFIX_1': '/cluster/miniconda3', 'SLURM_STEP_LAUNCHER_PORT': '44912', 'SLURM_TASKS_PER_NODE': '24', 'MAIL': '/var/spool/mail/ye53nis', 'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin', 'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448', 'SLURM_JOB_ID': '1612149', 'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf', 'SLURM_JOB_USER': 'ye53nis', 'SLURM_STEPID': '0', 'PWD': '/', 'SLURM_SRUN_COMM_HOST': '192.168.192.5', 'LANG': 'en_US.UTF-8', 'SLURM_PTY_WIN_COL': '236', 'SLURM_UMASK': '0022', 'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles', 'SLURM_JOB_UID': '67339', 'LOADEDMODULES': '', 'SLURM_NODEID': '0', 'TMUX_PANE': '%4', 'SLURM_SUBMIT_DIR': '/', 'SLURM_TASK_PID': '214733', 'SLURM_NPROCS': '24', 'SLURM_CPUS_ON_NODE': '24', 'SLURM_DISTRIBUTION': 'block', 'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_PROCID': '0', 'HISTCONTROL': 'ignoredups', '_CE_M': '', 'SLURM_JOB_NODELIST': 'node305', 'SLURM_PTY_PORT': '44825', 'HOME': '/home/ye53nis', 'SHLVL': '3', 'SLURM_LOCALID': '0', 'SLURM_JOB_GID': '13280', 'SLURM_JOB_CPUS_PER_NODE': '24', 'SLURM_CLUSTER_NAME': 'hpc', 'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23', 'SLURM_SUBMIT_HOST': 'login01', 'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_JOB_PARTITION': 's_standard', 'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3', 'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python', 'LOGNAME': 'ye53nis', 'SLURM_STEP_NUM_TASKS': '24', 'QTLIB': '/usr/lib64/qt-3.3/lib', 'SLURM_JOB_ACCOUNT': 'iaob', 'SLURM_JOB_NUM_NODES': '1', 'MODULESHOME': '/usr/share/Modules', 'CONDA_DEFAULT_ENV': 'tf', 'LESSOPEN': '||/usr/bin/lesspipe.sh %s', 'SLURM_STEP_TASKS_PER_NODE': '24', 'PORT': '8889', 'SLURM_STEP_NODELIST': 'node305', 'DISPLAY': ':0', 'XDG_RUNTIME_DIR': '', 'XAUTHORITY': '/home/lex/.Xauthority', 'BASH_FUNC_module()': '() { eval `/usr/bin/modulecmd bash $*`\n}', '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter', 'PYDEVD_USE_FRAME_EVAL': 'NO', 'JPY_PARENT_PID': '214856', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://matplotlib_inline.backend_inline'}
2.5.2 Setup: Jupyter 2 on HPC compute node 2
- Setup tmux (
#+CALL: setup-tmux[:session remote]
) - done already above - Request compute node via tmux
cd / srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
(base) [ye53nis@login01 /]$ srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2 000 --pty bash (base) [ye53nis@node169 /]$
- Branch out git branch
exp-220120-correlate-ptu
frommain
(done via magit) and make sure ou are on the correct branchcd /beegfs/ye53nis/drmed-git git checkout exp-220120-correlate-ptu
(base) [ye53nis@node145 drmed-git]$ git checkout exp-220120-correlate-ptu M src/nanosimpy Already on 'exp-220120-correlate-ptu' (base) [ye53nis@node145 drmed-git]$
- Make directory for experiment - already done above
ls data/exp-220120-correlate-ptu
(base) [ye53nis@node145 drmed-git]$ ls data/exp-220120-correlate-ptu jupyter
- Set output folder using the following org-mode variable - already done above
- Load conda environment, and start jupyter
conda activate tf export PORT=9997 export XDG_RUNTIME_DIR='' export XDG_RUNTIME_DIR="" jupyter lab --no-browser --port=$PORT
(tf) [ye53nis@node169 /]$ jupyter lab --no-browser --port=$PORT [I 2022-02-08 15:21:03.957 ServerApp] jupyterlab | extension was successfully linked. [I 2022-02-08 15:21:04.593 ServerApp] nbclassic | extension was successfully linked. [I 2022-02-08 15:21:04.659 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/ python3.9/site-packages/jupyterlab [I 2022-02-08 15:21:04.659 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/s hare/jupyter/lab [I 2022-02-08 15:21:04.670 ServerApp] jupyterlab | extension was successfully loaded. [I 2022-02-08 15:21:04.684 ServerApp] nbclassic | extension was successfully loaded. [I 2022-02-08 15:21:04.685 ServerApp] Serving notebooks from local directory: / [I 2022-02-08 15:21:04.685 ServerApp] Jupyter Server 1.4.1 is running at: [I 2022-02-08 15:21:04.685 ServerApp] http://localhost:9997/lab?token=9ac76fb054cea3bc3b076004eac0489 60ff38213a8a87ed2 [I 2022-02-08 15:21:04.685 ServerApp] or http://127.0.0.1:9997/lab?token=9ac76fb054cea3bc3b076004eac 048960ff38213a8a87ed2 [I 2022-02-08 15:21:04.685 ServerApp] Use Control-C to stop this server and shut down all kernels (tw ice to skip confirmation). [C 2022-02-08 15:21:04.697 ServerApp] To access the server, open this file in a browser: file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-319063-open.html Or copy and paste one of these URLs: http://localhost:9997/lab?token=9ac76fb054cea3bc3b076004eac048960ff38213a8a87ed2 or http://127.0.0.1:9997/lab?token=9ac76fb054cea3bc3b076004eac048960ff38213a8a87ed2
- Create ssh tunnel (
#+CALL: ssh-tunnel[:session org-tunnel2](port="9997", node="node169")
)sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: ye53nis@node169’s password: Last login: Wed Feb 9 13:54:20 2022 from login01.ara - I started a Python3 kernel using
jupyter-server-list-kernels
. Then I added the kernel ID to the:PROPERTIES:
drawer of this (and following) subtrees.python3 03038b73-b2b5-49ce-a1dc-21afb6247d0f a few seconds ago starting 0
- Test: (
#+CALL: jp-metadata(_long='True)
) before update in Experiment 2aNo of CPUs in system: 72 No of CPUs the current process can use: 24 load average: (35.8, 34.75, 28.33) os.uname(): posix.uname_result(sysname='Linux', nodename='node169', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64') PID of process: 320784 RAM total: 199G, RAM used: 75G, RAM free: 75G the current directory: / My disk usage: Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 3.8G 47G 8% / devtmpfs 94G 0 94G 0% /dev tmpfs 94G 7.5M 94G 1% /dev/shm tmpfs 94G 403M 94G 1% /run tmpfs 94G 0 94G 0% /sys/fs/cgroup nfs03-ib:/pool/work 100T 79T 22T 79% /nfsdata nfs02-ib:/data01 88T 72T 16T 82% /data01 nfs01-ib:/home 80T 67T 14T 84% /home nfs01-ib:/cluster 2.0T 468G 1.6T 23% /cluster /dev/sda6 169G 750M 168G 1% /local /dev/sda3 6.0G 414M 5.6G 7% /var /dev/sda5 2.0G 34M 2.0G 2% /tmp beegfs_nodev 524T 476T 49T 91% /beegfs tmpfs 19G 0 19G 0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 4.5 1_gnu absl-py 0.13.0 pypi_0 pypi alembic 1.4.1 pypi_0 pypi anyio 2.2.0 py39h06a4308_1 argon2-cffi 20.1.0 py39h27cfd23_1 asteval 0.9.25 pypi_0 pypi astunparse 1.6.3 pypi_0 pypi async_generator 1.10 pyhd3eb1b0_0 attrs 21.2.0 pyhd3eb1b0_0 babel 2.9.1 pyhd3eb1b0_0 backcall 0.2.0 pyhd3eb1b0_0 bleach 3.3.1 pyhd3eb1b0_0 brotlipy 0.7.0 py39h27cfd23_1003 ca-certificates 2021.7.5 h06a4308_1 cachetools 4.2.2 pypi_0 pypi certifi 2021.5.30 py39h06a4308_0 cffi 1.14.6 py39h400218f_0 chardet 4.0.0 py39h06a4308_1003 click 8.0.1 pypi_0 pypi cloudpickle 1.6.0 pypi_0 pypi cryptography 3.4.7 py39hd23ed53_0 cycler 0.10.0 pypi_0 pypi databricks-cli 0.14.3 pypi_0 pypi decorator 5.0.9 pyhd3eb1b0_0 defusedxml 0.7.1 pyhd3eb1b0_0 docker 5.0.0 pypi_0 pypi entrypoints 0.3 py39h06a4308_0 fcsfiles 2021.6.6 pypi_0 pypi flask 2.0.1 pypi_0 pypi flatbuffers 1.12 pypi_0 pypi future 0.18.2 pypi_0 pypi gast 0.4.0 pypi_0 pypi gitdb 4.0.7 pypi_0 pypi gitpython 3.1.18 pypi_0 pypi google-auth 1.34.0 pypi_0 pypi google-auth-oauthlib 0.4.5 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi greenlet 1.1.0 pypi_0 pypi grpcio 1.34.1 pypi_0 pypi gunicorn 20.1.0 pypi_0 pypi h5py 3.1.0 pypi_0 pypi idna 2.10 pyhd3eb1b0_0 importlib-metadata 3.10.0 py39h06a4308_0 importlib_metadata 3.10.0 hd3eb1b0_0 ipykernel 5.3.4 py39hb070fc8_0 ipython 7.22.0 py39hb070fc8_0 ipython_genutils 0.2.0 pyhd3eb1b0_1 itsdangerous 2.0.1 pypi_0 pypi jedi 0.17.2 py39h06a4308_1 jinja2 3.0.1 pyhd3eb1b0_0 joblib 1.0.1 pypi_0 pypi json5 0.9.6 pyhd3eb1b0_0 jsonschema 3.2.0 py_2 jupyter-packaging 0.7.12 pyhd3eb1b0_0 jupyter_client 6.1.12 pyhd3eb1b0_0 jupyter_core 4.7.1 py39h06a4308_0 jupyter_server 1.4.1 py39h06a4308_0 jupyterlab 3.0.14 pyhd3eb1b0_1 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 2.6.1 pyhd3eb1b0_0 keras-nightly 2.5.0.dev2021032900 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.1 pypi_0 pypi ld_impl_linux-64 2.35.1 h7274673_9 libffi 3.3 he6710b0_2 libgcc-ng 9.3.0 h5101ec6_17 libgomp 9.3.0 h5101ec6_17 libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.3.0 hd4cf53a_17 lmfit 1.0.2 pypi_0 pypi mako 1.1.4 pypi_0 pypi markdown 3.3.4 pypi_0 pypi markupsafe 2.0.1 py39h27cfd23_0 matplotlib 3.4.2 pypi_0 pypi mistune 0.8.4 py39h27cfd23_1000 mlflow 1.19.0 pypi_0 pypi multipletau 0.3.3 pypi_0 pypi nbclassic 0.2.6 pyhd3eb1b0_0 nbclient 0.5.3 pyhd3eb1b0_0 nbconvert 6.1.0 py39h06a4308_0 nbformat 5.1.3 pyhd3eb1b0_0 ncurses 6.2 he6710b0_1 nest-asyncio 1.5.1 pyhd3eb1b0_0 notebook 6.4.0 py39h06a4308_0 numpy 1.19.5 pypi_0 pypi oauthlib 3.1.1 pypi_0 pypi openssl 1.1.1k h27cfd23_0 opt-einsum 3.3.0 pypi_0 pypi packaging 21.0 pyhd3eb1b0_0 pandas 1.3.1 pypi_0 pypi pandocfilters 1.4.3 py39h06a4308_1 parso 0.7.0 py_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 8.3.1 pypi_0 pypi pip 21.1.3 py39h06a4308_0 prometheus-flask-exporter 0.18.2 pypi_0 pypi prometheus_client 0.11.0 pyhd3eb1b0_0 prompt-toolkit 3.0.17 pyh06a4308_0 protobuf 3.17.3 pypi_0 pypi ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.20 py_2 pygments 2.9.0 pyhd3eb1b0_0 pyopenssl 20.0.1 pyhd3eb1b0_1 pyparsing 2.4.7 pyhd3eb1b0_0 pyrsistent 0.18.0 py39h7f8727e_0 pysocks 1.7.1 py39h06a4308_0 python 3.9.5 h12debd9_4 python-dateutil 2.8.2 pyhd3eb1b0_0 python-editor 1.0.4 pypi_0 pypi pytz 2021.1 pyhd3eb1b0_0 pyyaml 5.4.1 pypi_0 pypi pyzmq 20.0.0 py39h2531618_1 querystring-parser 1.2.4 pypi_0 pypi readline 8.1 h27cfd23_0 requests 2.25.1 pyhd3eb1b0_0 requests-oauthlib 1.3.0 pypi_0 pypi rsa 4.7.2 pypi_0 pypi scikit-learn 0.24.2 pypi_0 pypi scipy 1.7.0 pypi_0 pypi seaborn 0.11.1 pypi_0 pypi send2trash 1.5.0 pyhd3eb1b0_1 setuptools 52.0.0 py39h06a4308_0 six 1.15.0 pypi_0 pypi smmap 4.0.0 pypi_0 pypi sniffio 1.2.0 py39h06a4308_1 sqlalchemy 1.4.22 pypi_0 pypi sqlite 3.36.0 hc218d9a_0 sqlparse 0.4.1 pypi_0 pypi tabulate 0.8.9 pypi_0 pypi tensorboard 2.5.0 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.0 pypi_0 pypi tensorflow 2.5.0 pypi_0 pypi tensorflow-estimator 2.5.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.4 py39h06a4308_0 testpath 0.5.0 pyhd3eb1b0_0 threadpoolctl 2.2.0 pypi_0 pypi tifffile 2021.7.30 pypi_0 pypi tk 8.6.10 hbc83047_0 tornado 6.1 py39h27cfd23_0 traitlets 5.0.5 pyhd3eb1b0_0 typing-extensions 3.7.4.3 pypi_0 pypi tzdata 2021a h52ac0ba_0 uncertainties 3.1.6 pypi_0 pypi urllib3 1.26.6 pyhd3eb1b0_1 wcwidth 0.2.5 py_0 webencodings 0.5.1 py39h06a4308_1 websocket-client 1.1.0 pypi_0 pypi werkzeug 2.0.1 pypi_0 pypi wheel 0.36.2 pyhd3eb1b0_0 wrapt 1.12.1 pypi_0 pypi xz 5.2.5 h7b6447c_0 zeromq 4.3.4 h2531618_0 zipp 3.5.0 pyhd3eb1b0_0 zlib 1.2.11 h7b6447c_3 Note: you may need to restart the kernel to use updated packages. {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint', 'SLURM_NODELIST': 'node169', 'SLURM_JOB_NAME': 'bash', 'XDG_SESSION_ID': '44301', 'SLURMD_NODENAME': 'node169', 'SLURM_TOPOLOGY_ADDR': 'node169', 'SLURM_NTASKS_PER_NODE': '24', 'HOSTNAME': 'login01', 'SLURM_PRIO_PROCESS': '0', 'SLURM_SRUN_COMM_PORT': '41490', 'SHELL': '/bin/bash', 'TERM': 'xterm-color', 'SLURM_JOB_QOS': 'qstand', 'SLURM_PTY_WIN_ROW': '27', 'HISTSIZE': '1000', 'TMPDIR': '/tmp', 'SLURM_TOPOLOGY_ADDR_PATTERN': 'node', 'SSH_CLIENT': '10.231.181.128 49370 22', 'CONDA_SHLVL': '2', 'CONDA_PROMPT_MODIFIER': '(tf) ', 'QTDIR': '/usr/lib64/qt-3.3', 'QTINC': '/usr/lib64/qt-3.3/include', 'SSH_TTY': '/dev/pts/79', 'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'QT_GRAPHICSSYSTEM_CHECKED': '1', 'SLURM_NNODES': '1', 'USER': 'ye53nis', 'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:', 'CONDA_EXE': '/cluster/miniconda3/bin/conda', 'SLURM_STEP_NUM_NODES': '1', 'SLURM_JOBID': '1608816', 'SRUN_DEBUG': '3', 'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_NTASKS': '24', 'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5', 'SLURM_STEP_ID': '0', 'TMUX': '/tmp/tmux-67339/default,20557,9', '_CE_CONDA': '', 'CONDA_PREFIX_1': '/cluster/miniconda3', 'SLURM_STEP_LAUNCHER_PORT': '41490', 'SLURM_TASKS_PER_NODE': '24', 'MAIL': '/var/spool/mail/ye53nis', 'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin', 'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448', 'SLURM_JOB_ID': '1608816', 'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf', 'SLURM_JOB_USER': 'ye53nis', 'SLURM_STEPID': '0', 'PWD': '/', 'SLURM_SRUN_COMM_HOST': '192.168.192.5', 'LANG': 'en_US.UTF-8', 'SLURM_PTY_WIN_COL': '101', 'SLURM_UMASK': '0022', 'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles', 'SLURM_JOB_UID': '67339', 'LOADEDMODULES': '', 'SLURM_NODEID': '0', 'TMUX_PANE': '%9', 'SLURM_SUBMIT_DIR': '/', 'SLURM_TASK_PID': '318230', 'SLURM_NPROCS': '24', 'SLURM_CPUS_ON_NODE': '24', 'SLURM_DISTRIBUTION': 'block', 'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_PROCID': '0', 'HISTCONTROL': 'ignoredups', '_CE_M': '', 'SLURM_JOB_NODELIST': 'node169', 'SLURM_PTY_PORT': '38396', 'HOME': '/home/ye53nis', 'SHLVL': '3', 'SLURM_LOCALID': '0', 'SLURM_JOB_GID': '13280', 'SLURM_JOB_CPUS_PER_NODE': '24', 'SLURM_CLUSTER_NAME': 'hpc', 'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23', 'SLURM_SUBMIT_HOST': 'login01', 'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_JOB_PARTITION': 's_standard', 'MATHEMATICA_HOME': '/cluster/apps/mathematica/12.3', 'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python', 'LOGNAME': 'ye53nis', 'SLURM_STEP_NUM_TASKS': '24', 'QTLIB': '/usr/lib64/qt-3.3/lib', 'SLURM_JOB_ACCOUNT': 'iaob', 'SLURM_JOB_NUM_NODES': '1', 'MODULESHOME': '/usr/share/Modules', 'CONDA_DEFAULT_ENV': 'tf', 'LESSOPEN': '||/usr/bin/lesspipe.sh %s', 'SLURM_STEP_TASKS_PER_NODE': '24', 'PORT': '9997', 'SLURM_STEP_NODELIST': 'node169', 'DISPLAY': ':0', 'XDG_RUNTIME_DIR': '', 'XAUTHORITY': '/home/lex/.Xauthority', 'BASH_FUNC_module()': '() { eval `/usr/bin/modulecmd bash $*`\n}', '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter', 'JPY_PARENT_PID': '319063', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
- Test and save metadata after update in Experiment 2a
No of CPUs in system: 72 No of CPUs the current process can use: 24 load average: (35.7, 25.74, 18.03) os.uname(): posix.uname_result(sysname='Linux', nodename='node169', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64') PID of process: 320784 RAM total: 199G, RAM used: 75G, RAM free: 74G the current directory: / My disk usage: Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 3.8G 47G 8% / devtmpfs 94G 0 94G 0% /dev tmpfs 94G 7.5M 94G 1% /dev/shm tmpfs 94G 403M 94G 1% /run tmpfs 94G 0 94G 0% /sys/fs/cgroup nfs03-ib:/pool/work 100T 79T 22T 79% /nfsdata nfs02-ib:/data01 88T 72T 16T 82% /data01 nfs01-ib:/home 80T 67T 14T 84% /home nfs01-ib:/cluster 2.0T 468G 1.6T 23% /cluster /dev/sda6 169G 750M 168G 1% /local /dev/sda3 6.0G 414M 5.6G 7% /var /dev/sda5 2.0G 34M 2.0G 2% /tmp beegfs_nodev 524T 476T 49T 91% /beegfs tmpfs 19G 0 19G 0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 4.5 1_gnu absl-py 1.0.0 pypi_0 pypi alembic 1.7.6 pypi_0 pypi anyio 2.2.0 py39h06a4308_1 argon2-cffi 20.1.0 py39h27cfd23_1 asteval 0.9.26 pypi_0 pypi astunparse 1.6.3 pypi_0 pypi async_generator 1.10 pyhd3eb1b0_0 attrs 21.4.0 pyhd3eb1b0_0 babel 2.9.1 pyhd3eb1b0_0 backcall 0.2.0 pyhd3eb1b0_0 bleach 4.1.0 pyhd3eb1b0_0 brotlipy 0.7.0 py39h27cfd23_1003 ca-certificates 2021.10.26 h06a4308_2 cachetools 5.0.0 pypi_0 pypi certifi 2021.10.8 py39h06a4308_2 cffi 1.15.0 py39hd667e15_1 charset-normalizer 2.0.4 pyhd3eb1b0_0 click 8.0.3 pypi_0 pypi cloudpickle 2.0.0 pypi_0 pypi cryptography 36.0.0 py39h9ce1e76_0 cycler 0.11.0 pypi_0 pypi cython 0.29.27 pypi_0 pypi databricks-cli 0.16.4 pypi_0 pypi debugpy 1.5.1 py39h295c915_0 decorator 5.1.1 pyhd3eb1b0_0 defusedxml 0.7.1 pyhd3eb1b0_0 docker 5.0.3 pypi_0 pypi entrypoints 0.3 py39h06a4308_0 fcsfiles 2022.2.2 pypi_0 pypi flask 2.0.2 pypi_0 pypi flatbuffers 2.0 pypi_0 pypi fonttools 4.29.1 pypi_0 pypi future 0.18.2 pypi_0 pypi gast 0.5.3 pypi_0 pypi gitdb 4.0.9 pypi_0 pypi gitpython 3.1.26 pypi_0 pypi google-auth 2.6.0 pypi_0 pypi google-auth-oauthlib 0.4.6 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi greenlet 1.1.2 pypi_0 pypi grpcio 1.43.0 pypi_0 pypi gunicorn 20.1.0 pypi_0 pypi h5py 3.6.0 pypi_0 pypi idna 3.3 pyhd3eb1b0_0 importlib-metadata 4.8.2 py39h06a4308_0 importlib_metadata 4.8.2 hd3eb1b0_0 ipykernel 6.4.1 py39h06a4308_1 ipython 7.31.1 py39h06a4308_0 ipython_genutils 0.2.0 pyhd3eb1b0_1 itsdangerous 2.0.1 pypi_0 pypi jedi 0.18.1 py39h06a4308_1 jinja2 3.0.2 pyhd3eb1b0_0 joblib 1.1.0 pypi_0 pypi json5 0.9.6 pyhd3eb1b0_0 jsonschema 3.2.0 pyhd3eb1b0_2 jupyter_client 7.1.2 pyhd3eb1b0_0 jupyter_core 4.9.1 py39h06a4308_0 jupyter_server 1.4.1 py39h06a4308_0 jupyterlab 3.2.1 pyhd3eb1b0_1 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 2.10.2 pyhd3eb1b0_1 keras 2.8.0 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.2 pypi_0 pypi ld_impl_linux-64 2.35.1 h7274673_9 libclang 13.0.0 pypi_0 pypi libffi 3.3 he6710b0_2 libgcc-ng 9.3.0 h5101ec6_17 libgomp 9.3.0 h5101ec6_17 libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.3.0 hd4cf53a_17 lmfit 1.0.3 pypi_0 pypi mako 1.1.6 pypi_0 pypi markdown 3.3.6 pypi_0 pypi markupsafe 2.0.1 py39h27cfd23_0 matplotlib 3.5.1 pypi_0 pypi matplotlib-inline 0.1.2 pyhd3eb1b0_2 mistune 0.8.4 py39h27cfd23_1000 mlflow 1.23.1 pypi_0 pypi multipletau 0.3.3 pypi_0 pypi nbclassic 0.2.6 pyhd3eb1b0_0 nbclient 0.5.3 pyhd3eb1b0_0 nbconvert 6.3.0 py39h06a4308_0 nbformat 5.1.3 pyhd3eb1b0_0 ncurses 6.3 h7f8727e_2 nest-asyncio 1.5.1 pyhd3eb1b0_0 notebook 6.4.6 py39h06a4308_0 numpy 1.22.2 pypi_0 pypi oauthlib 3.2.0 pypi_0 pypi openssl 1.1.1m h7f8727e_0 opt-einsum 3.3.0 pypi_0 pypi packaging 21.3 pyhd3eb1b0_0 pandas 1.4.0 pypi_0 pypi pandocfilters 1.5.0 pyhd3eb1b0_0 parso 0.8.3 pyhd3eb1b0_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 9.0.1 pypi_0 pypi pip 21.2.4 py39h06a4308_0 prometheus-flask-exporter 0.18.7 pypi_0 pypi prometheus_client 0.13.1 pyhd3eb1b0_0 prompt-toolkit 3.0.20 pyhd3eb1b0_0 protobuf 3.19.4 pypi_0 pypi ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.21 pyhd3eb1b0_0 pygments 2.11.2 pyhd3eb1b0_0 pyopenssl 22.0.0 pyhd3eb1b0_0 pyparsing 3.0.4 pyhd3eb1b0_0 pyrsistent 0.18.0 py39heee7806_0 pysocks 1.7.1 py39h06a4308_0 python 3.9.7 h12debd9_1 python-dateutil 2.8.2 pyhd3eb1b0_0 pytz 2021.3 pyhd3eb1b0_0 pyyaml 6.0 pypi_0 pypi pyzmq 22.3.0 py39h295c915_2 querystring-parser 1.2.4 pypi_0 pypi readline 8.1.2 h7f8727e_1 requests 2.27.1 pyhd3eb1b0_0 requests-oauthlib 1.3.1 pypi_0 pypi rsa 4.8 pypi_0 pypi scikit-learn 1.0.2 pypi_0 pypi scipy 1.8.0 pypi_0 pypi seaborn 0.11.2 pypi_0 pypi send2trash 1.8.0 pyhd3eb1b0_1 setuptools 58.0.4 py39h06a4308_0 six 1.16.0 pyhd3eb1b0_0 smmap 5.0.0 pypi_0 pypi sniffio 1.2.0 py39h06a4308_1 sqlalchemy 1.4.31 pypi_0 pypi sqlite 3.37.2 hc218d9a_0 sqlparse 0.4.2 pypi_0 pypi tabulate 0.8.9 pypi_0 pypi tensorboard 2.8.0 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.1 pypi_0 pypi tensorflow 2.8.0 pypi_0 pypi tensorflow-io-gcs-filesystem 0.24.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.4 py39h06a4308_0 testpath 0.5.0 pyhd3eb1b0_0 tf-estimator-nightly 2.8.0.dev2021122109 pypi_0 pypi threadpoolctl 3.1.0 pypi_0 pypi tk 8.6.11 h1ccaba5_0 tornado 6.1 py39h27cfd23_0 traitlets 5.1.1 pyhd3eb1b0_0 typing-extensions 4.0.1 pypi_0 pypi tzdata 2021e hda174b7_0 uncertainties 3.1.6 pypi_0 pypi urllib3 1.26.8 pyhd3eb1b0_0 wcwidth 0.2.5 pyhd3eb1b0_0 webencodings 0.5.1 py39h06a4308_1 websocket-client 1.2.3 pypi_0 pypi werkzeug 2.0.3 pypi_0 pypi wheel 0.37.1 pyhd3eb1b0_0 wrapt 1.13.3 pypi_0 pypi xz 5.2.5 h7b6447c_0 zeromq 4.3.4 h2531618_0 zipp 3.7.0 pyhd3eb1b0_0 zlib 1.2.11 h7f8727e_4 Note: you may need to restart the kernel to use updated packages. {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint', 'SLURM_NODELIST': 'node169', 'SLURM_JOB_NAME': 'bash', 'XDG_SESSION_ID': '44301', 'SLURMD_NODENAME': 'node169', 'SLURM_TOPOLOGY_ADDR': 'node169', 'SLURM_NTASKS_PER_NODE': '24', 'HOSTNAME': 'login01', 'SLURM_PRIO_PROCESS': '0', 'SLURM_SRUN_COMM_PORT': '41490', 'SHELL': '/bin/bash', 'TERM': 'xterm-color', 'SLURM_JOB_QOS': 'qstand', 'SLURM_PTY_WIN_ROW': '27', 'HISTSIZE': '1000', 'TMPDIR': '/tmp', 'SLURM_TOPOLOGY_ADDR_PATTERN': 'node', 'SSH_CLIENT': '10.231.181.128 49370 22', 'CONDA_SHLVL': '2', 'CONDA_PROMPT_MODIFIER': '(tf) ', 'QTDIR': '/usr/lib64/qt-3.3', 'QTINC': '/usr/lib64/qt-3.3/include', 'SSH_TTY': '/dev/pts/79', 'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'QT_GRAPHICSSYSTEM_CHECKED': '1', 'SLURM_NNODES': '1', 'USER': 'ye53nis', 'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:', 'CONDA_EXE': '/cluster/miniconda3/bin/conda', 'SLURM_STEP_NUM_NODES': '1', 'SLURM_JOBID': '1608816', 'SRUN_DEBUG': '3', 'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_NTASKS': '24', 'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5', 'SLURM_STEP_ID': '0', 'TMUX': '/tmp/tmux-67339/default,20557,9', '_CE_CONDA': '', 'CONDA_PREFIX_1': '/cluster/miniconda3', 'SLURM_STEP_LAUNCHER_PORT': '41490', 'SLURM_TASKS_PER_NODE': '24', 'MAIL': '/var/spool/mail/ye53nis', 'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin', 'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448', 'SLURM_JOB_ID': '1608816', 'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf', 'SLURM_JOB_USER': 'ye53nis', 'SLURM_STEPID': '0', 'PWD': '/', 'SLURM_SRUN_COMM_HOST': '192.168.192.5', 'LANG': 'en_US.UTF-8', 'SLURM_PTY_WIN_COL': '101', 'SLURM_UMASK': '0022', 'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles', 'SLURM_JOB_UID': '67339', 'LOADEDMODULES': '', 'SLURM_NODEID': '0', 'TMUX_PANE': '%9', 'SLURM_SUBMIT_DIR': '/', 'SLURM_TASK_PID': '318230', 'SLURM_NPROCS': '24', 'SLURM_CPUS_ON_NODE': '24', 'SLURM_DISTRIBUTION': 'block', 'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_PROCID': '0', 'HISTCONTROL': 'ignoredups', '_CE_M': '', 'SLURM_JOB_NODELIST': 'node169', 'SLURM_PTY_PORT': '38396', 'HOME': '/home/ye53nis', 'SHLVL': '3', 'SLURM_LOCALID': '0', 'SLURM_JOB_GID': '13280', 'SLURM_JOB_CPUS_PER_NODE': '24', 'SLURM_CLUSTER_NAME': 'hpc', 'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23', 'SLURM_SUBMIT_HOST': 'login01', 'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_JOB_PARTITION': 's_standard', 'MATHEMATICA_HOME': '/cluster/apps/mathematica/12.3', 'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python', 'LOGNAME': 'ye53nis', 'SLURM_STEP_NUM_TASKS': '24', 'QTLIB': '/usr/lib64/qt-3.3/lib', 'SLURM_JOB_ACCOUNT': 'iaob', 'SLURM_JOB_NUM_NODES': '1', 'MODULESHOME': '/usr/share/Modules', 'CONDA_DEFAULT_ENV': 'tf', 'LESSOPEN': '||/usr/bin/lesspipe.sh %s', 'SLURM_STEP_TASKS_PER_NODE': '24', 'PORT': '9997', 'SLURM_STEP_NODELIST': 'node169', 'DISPLAY': ':0', 'XDG_RUNTIME_DIR': '', 'XAUTHORITY': '/home/lex/.Xauthority', 'BASH_FUNC_module()': '() { eval `/usr/bin/modulecmd bash $*`\n}', '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter', 'JPY_PARENT_PID': '319063', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
2.5.3 Setup: Jupyter 3 on local computer
- on our local machine we don’t need tmux. A simple sh command is enough. So
let’s start the conda environment in the sh session
local
and start jupterlab there.conda activate tf jupyter lab --no-browser --port=8888
sh-5.1$ [I 2022-01-25 13:54:15.779 ServerApp] jupyterlab | extension was successfully linked. [I 2022-01-25 13:54:16.426 ServerApp] nbclassic | extension was successfully linked. [I 2022-01-25 13:54:16.509 LabApp] JupyterLab extension loaded from /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/jupyterlab [I 2022-01-25 13:54:16.509 LabApp] JupyterLab application directory is /home/lex/Programme/miniconda3/envs/tf/share/jupyter/lab [I 2022-01-25 13:54:16.517 ServerApp] jupyterlab | extension was successfully loaded. [I 2022-01-25 13:54:16.529 ServerApp] nbclassic | extension was successfully loaded. [I 2022-01-25 13:54:16.530 ServerApp] Serving notebooks from local directory: /home/lex/Programme/drmed-git [I 2022-01-25 13:54:16.530 ServerApp] Jupyter Server 1.4.1 is running at: [I 2022-01-25 13:54:16.530 ServerApp] http://localhost:8888/lab?token=a45ac98a52ac86cdccd87547a734345bdc338322def30d98 [I 2022-01-25 13:54:16.530 ServerApp] or http://127.0.0.1:8888/lab?token=a45ac98a52ac86cdccd87547a734345bdc338322def30d98 [I 2022-01-25 13:54:16.530 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 2022-01-25 13:54:16.540 ServerApp] To access the server, open this file in a browser: file:///home/lex/.local/share/jupyter/runtime/jpserver-62432-open.html Or copy and paste one of these URLs: http://localhost:8888/lab?token=a45ac98a52ac86cdccd87547a734345bdc338322def30d98 or http://127.0.0.1:8888/lab?token=a45ac98a52ac86cdccd87547a734345bdc338322def30d98
- I started a Python3 kernel using
jupyter-server-list-kernels
. Then I added the kernel ID to the:PROPERTIES:
drawer of this (and following) subtrees.python3 03038b73-b2b5-49ce-a1dc-21afb6247d0f a few seconds ago starting 0
- Test: (
#+CALL: jp-metadata(_long='True)
)No of CPUs in system: 4 No of CPUs the current process can use: 4 load average: (3.83, 4.72, 5.29) os.uname(): posix.uname_result(sysname='Linux', nodename='Topialex', release='5.13.19-2-MANJARO', version='#1 SMP PREEMPT Sun Sep 19 21:31:53 UTC 2021', machine='x86_64') PID of process: 321569 RAM total: 16Gi, RAM used: 3,2Gi, RAM free: 9,1Gi the current directory: /home/lex/Programme/drmed-git My disk usage: Filesystem Size Used Avail Use% Mounted on dev 3,9G 0 3,9G 0% /dev run 3,9G 1,5M 3,9G 1% /run /dev/sda2 167G 130G 29G 82% / tmpfs 3,9G 96M 3,8G 3% /dev/shm tmpfs 3,9G 18M 3,9G 1% /tmp /dev/sda1 300M 264K 300M 1% /boot/efi tmpfs 784M 100K 784M 1% /run/user/1000# packages in environment at /home/lex/Programme/miniconda3/envs/tf: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 4.5 1_gnu absl-py 1.0.0 pypi_0 pypi alembic 1.4.1 pypi_0 pypi anyio 2.2.0 py39h06a4308_1 argon2-cffi 20.1.0 py39h27cfd23_1 asteval 0.9.25 pypi_0 pypi astroid 2.9.2 pypi_0 pypi astunparse 1.6.3 pypi_0 pypi async_generator 1.10 pyhd3eb1b0_0 attrs 21.2.0 pyhd3eb1b0_0 babel 2.9.1 pyhd3eb1b0_0 backcall 0.2.0 pyhd3eb1b0_0 bleach 4.0.0 pyhd3eb1b0_0 brotlipy 0.7.0 py39h27cfd23_1003 ca-certificates 2021.10.26 h06a4308_2 cachetools 4.2.4 pypi_0 pypi certifi 2021.10.8 py39h06a4308_0 cffi 1.14.6 py39h400218f_0 charset-normalizer 2.0.4 pyhd3eb1b0_0 click 8.0.3 pypi_0 pypi cloudpickle 2.0.0 pypi_0 pypi cryptography 36.0.0 py39h9ce1e76_0 cycler 0.11.0 pypi_0 pypi cython 0.29.26 pypi_0 pypi databricks-cli 0.16.2 pypi_0 pypi debugpy 1.5.1 py39h295c915_0 decorator 5.1.0 pyhd3eb1b0_0 defusedxml 0.7.1 pyhd3eb1b0_0 docker 5.0.3 pypi_0 pypi entrypoints 0.3 py39h06a4308_0 fcsfiles 2021.6.6 pypi_0 pypi flake8 4.0.1 pypi_0 pypi flask 2.0.2 pypi_0 pypi flatbuffers 2.0 pypi_0 pypi focuspoint 0.1 pypi_0 pypi fonttools 4.28.5 pypi_0 pypi future 0.18.2 pypi_0 pypi gast 0.4.0 pypi_0 pypi gitdb 4.0.9 pypi_0 pypi gitpython 3.1.24 pypi_0 pypi google-auth 2.3.3 pypi_0 pypi google-auth-oauthlib 0.4.6 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi greenlet 1.1.2 pypi_0 pypi grpcio 1.43.0 pypi_0 pypi gunicorn 20.1.0 pypi_0 pypi h5py 3.6.0 pypi_0 pypi idna 3.3 pyhd3eb1b0_0 importlib-metadata 4.8.2 py39h06a4308_0 importlib_metadata 4.8.2 hd3eb1b0_0 ipykernel 6.4.1 py39h06a4308_1 ipython 7.29.0 py39hb070fc8_0 ipython_genutils 0.2.0 pyhd3eb1b0_1 isort 5.10.1 pypi_0 pypi itsdangerous 2.0.1 pypi_0 pypi jedi 0.18.0 py39h06a4308_1 jinja2 3.0.2 pyhd3eb1b0_0 joblib 1.1.0 pypi_0 pypi json5 0.9.6 pyhd3eb1b0_0 jsonschema 3.2.0 pyhd3eb1b0_2 jupyter_client 7.1.0 pyhd3eb1b0_0 jupyter_core 4.9.1 py39h06a4308_0 jupyter_server 1.4.1 py39h06a4308_0 jupyterlab 3.2.1 pyhd3eb1b0_1 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 2.8.2 pyhd3eb1b0_0 keras 2.7.0 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.2 pypi_0 pypi lazy-object-proxy 1.7.1 pypi_0 pypi ld_impl_linux-64 2.35.1 h7274673_9 libclang 12.0.0 pypi_0 pypi libffi 3.3 he6710b0_2 libgcc-ng 9.3.0 h5101ec6_17 libgomp 9.3.0 h5101ec6_17 libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.3.0 hd4cf53a_17 lmfit 1.0.3 pypi_0 pypi mako 1.1.6 pypi_0 pypi markdown 3.3.6 pypi_0 pypi markupsafe 2.0.1 py39h27cfd23_0 matplotlib 3.5.1 pypi_0 pypi matplotlib-inline 0.1.2 pyhd3eb1b0_2 mccabe 0.6.1 pypi_0 pypi mistune 0.8.4 py39h27cfd23_1000 mlflow 1.22.0 pypi_0 pypi multipletau 0.3.3 pypi_0 pypi mypy 0.930 pypi_0 pypi mypy-extensions 0.4.3 pypi_0 pypi nbclassic 0.2.6 pyhd3eb1b0_0 nbclient 0.5.3 pyhd3eb1b0_0 nbconvert 6.1.0 py39h06a4308_0 nbformat 5.1.3 pyhd3eb1b0_0 ncurses 6.3 h7f8727e_2 nest-asyncio 1.5.1 pyhd3eb1b0_0 nodeenv 1.6.0 pypi_0 pypi notebook 6.4.6 py39h06a4308_0 numpy 1.21.5 pypi_0 pypi oauthlib 3.1.1 pypi_0 pypi openssl 1.1.1l h7f8727e_0 opt-einsum 3.3.0 pypi_0 pypi packaging 21.3 pyhd3eb1b0_0 pandas 1.3.5 pypi_0 pypi pandocfilters 1.4.3 py39h06a4308_1 parso 0.8.2 pyhd3eb1b0_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 8.4.0 pypi_0 pypi pip 21.2.4 py39h06a4308_0 platformdirs 2.4.1 pypi_0 pypi prometheus-flask-exporter 0.18.7 pypi_0 pypi prometheus_client 0.12.0 pyhd3eb1b0_0 prompt-toolkit 3.0.20 pyhd3eb1b0_0 protobuf 3.19.1 pypi_0 pypi ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycodestyle 2.8.0 pypi_0 pypi pycparser 2.21 pyhd3eb1b0_0 pyflakes 2.4.0 pypi_0 pypi pygments 2.10.0 pyhd3eb1b0_0 pylint 2.12.2 pypi_0 pypi pyopenssl 21.0.0 pyhd3eb1b0_1 pyparsing 3.0.4 pyhd3eb1b0_0 pyright 0.0.13 pypi_0 pypi pyrsistent 0.18.0 py39heee7806_0 pysocks 1.7.1 py39h06a4308_0 python 3.9.7 h12debd9_1 python-dateutil 2.8.2 pyhd3eb1b0_0 python-editor 1.0.4 pypi_0 pypi pytz 2021.3 pyhd3eb1b0_0 pyyaml 6.0 pypi_0 pypi pyzmq 22.3.0 py39h295c915_2 querystring-parser 1.2.4 pypi_0 pypi readline 8.1 h27cfd23_0 requests 2.26.0 pyhd3eb1b0_0 requests-oauthlib 1.3.0 pypi_0 pypi rsa 4.8 pypi_0 pypi scikit-learn 1.0.2 pypi_0 pypi scipy 1.7.3 pypi_0 pypi seaborn 0.11.2 pypi_0 pypi send2trash 1.8.0 pyhd3eb1b0_1 setuptools 58.0.4 py39h06a4308_0 six 1.16.0 pyhd3eb1b0_0 smmap 5.0.0 pypi_0 pypi sniffio 1.2.0 py39h06a4308_1 sqlalchemy 1.4.29 pypi_0 pypi sqlite 3.37.0 hc218d9a_0 sqlparse 0.4.2 pypi_0 pypi tabulate 0.8.9 pypi_0 pypi tensorboard 2.7.0 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.0 pypi_0 pypi tensorflow 2.7.0 pypi_0 pypi tensorflow-estimator 2.7.0 pypi_0 pypi tensorflow-io-gcs-filesystem 0.23.1 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.4 py39h06a4308_0 testpath 0.5.0 pyhd3eb1b0_0 threadpoolctl 3.0.0 pypi_0 pypi tk 8.6.11 h1ccaba5_0 toml 0.10.2 pypi_0 pypi tomli 2.0.0 pypi_0 pypi tornado 6.1 py39h27cfd23_0 traitlets 5.1.1 pyhd3eb1b0_0 typing-extensions 4.0.1 pypi_0 pypi tzdata 2021e hda174b7_0 uncertainties 3.1.6 pypi_0 pypi urllib3 1.26.7 pyhd3eb1b0_0 wcwidth 0.2.5 pyhd3eb1b0_0 webencodings 0.5.1 py39h06a4308_1 websocket-client 1.2.3 pypi_0 pypi werkzeug 2.0.2 pypi_0 pypi wheel 0.37.0 pyhd3eb1b0_1 wrapt 1.13.3 pypi_0 pypi xz 5.2.5 h7b6447c_0 zeromq 4.3.4 h2531618_0 zipp 3.6.0 pyhd3eb1b0_0 zlib 1.2.11 h7f8727e_4 Note: you may need to restart the kernel to use updated packages. {'SHELL': '/bin/bash', 'SESSION_MANAGER': 'local/Topialex:@/tmp/.ICE-unix/938,unix/Topialex:/tmp/.ICE-unix/938', 'XDG_CONFIG_DIRS': '/home/lex/.config/kdedefaults:/etc/xdg', 'XDG_SESSION_PATH': '/org/freedesktop/DisplayManager/Session1', 'CONDA_EXE': '/home/lex/Programme/miniconda3/bin/conda', '_CE_M': '', 'LANGUAGE': 'en_GB', 'TERMCAP': '', 'LC_ADDRESS': 'de_DE.UTF-8', 'LC_NAME': 'de_DE.UTF-8', 'INSIDE_EMACS': '27.2,comint', 'DESKTOP_SESSION': 'plasma', 'LC_MONETARY': 'de_DE.UTF-8', 'GTK_RC_FILES': '/etc/gtk/gtkrc:/home/lex/.gtkrc:/home/lex/.config/gtkrc', 'XCURSOR_SIZE': '24', 'GTK_MODULES': 'canberra-gtk-module', 'XDG_SEAT': 'seat0', 'PWD': '/home/lex/Programme/drmed-git', 'LOGNAME': 'lex', 'XDG_SESSION_DESKTOP': 'KDE', 'XDG_SESSION_TYPE': 'x11', 'CONDA_PREFIX': '/home/lex/Programme/miniconda3/envs/tf', 'DSSI_PATH': '/home/lex/.dssi:/usr/lib/dssi:/usr/local/lib/dssi', 'SYSTEMD_EXEC_PID': '819', 'XAUTHORITY': '/home/lex/.Xauthority', 'MOTD_SHOWN': 'pam', 'GTK2_RC_FILES': '/etc/gtk-2.0/gtkrc:/home/lex/.gtkrc-2.0:/home/lex/.config/gtkrc-2.0', 'HOME': '/home/lex', 'LANG': 'de_DE.UTF-8', 'LC_PAPER': 'de_DE.UTF-8', 'VST_PATH': '/home/lex/.vst:/usr/lib/vst:/usr/local/lib/vst', 'XDG_CURRENT_DESKTOP': 'KDE', 'COLUMNS': '80', 'CONDA_PROMPT_MODIFIER': '', 'XDG_SEAT_PATH': '/org/freedesktop/DisplayManager/Seat0', 'KDE_SESSION_UID': '1000', 'XDG_SESSION_CLASS': 'user', 'LC_IDENTIFICATION': 'de_DE.UTF-8', 'TERM': 'xterm-color', '_CE_CONDA': '', 'USER': 'lex', 'CONDA_SHLVL': '1', 'KDE_SESSION_VERSION': '5', 'PAM_KWALLET5_LOGIN': '/run/user/1000/kwallet5.socket', 'DISPLAY': ':0', 'SHLVL': '2', 'LC_TELEPHONE': 'de_DE.UTF-8', 'LC_MEASUREMENT': 'de_DE.UTF-8', 'XDG_VTNR': '1', 'XDG_SESSION_ID': '2', 'QT_LINUX_ACCESSIBILITY_ALWAYS_ON': '1', 'CONDA_PYTHON_EXE': '/home/lex/Programme/miniconda3/bin/python', 'MOZ_PLUGIN_PATH': '/usr/lib/mozilla/plugins', 'XDG_RUNTIME_DIR': '/run/user/1000', 'CONDA_DEFAULT_ENV': 'tf', 'LC_TIME': 'de_DE.UTF-8', 'QT_AUTO_SCREEN_SCALE_FACTOR': '0', 'XCURSOR_THEME': 'breeze_cursors', 'XDG_DATA_DIRS': '/home/lex/.local/share/flatpak/exports/share:/var/lib/flatpak/exports/share:/usr/local/share:/usr/share:/var/lib/snapd/desktop', 'KDE_FULL_SESSION': 'true', 'BROWSER': 'vivaldi-stable', 'PATH': '/home/lex/Programme/miniconda3/envs/tf/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin', 'DBUS_SESSION_BUS_ADDRESS': 'unix:path=/run/user/1000/bus', 'LV2_PATH': '/home/lex/.lv2:/usr/lib/lv2:/usr/local/lib/lv2', 'KDE_APPLICATIONS_AS_SCOPE': '1', 'MAIL': '/var/spool/mail/lex', 'LC_NUMERIC': 'de_DE.UTF-8', 'LADSPA_PATH': '/home/lex/.ladspa:/usr/lib/ladspa:/usr/local/lib/ladspa', 'CADENCE_AUTO_STARTED': 'true', '_': '/home/lex/Programme/miniconda3/envs/tf/bin/jupyter', 'PYDEVD_USE_FRAME_EVAL': 'NO', 'JPY_PARENT_PID': '320867', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://matplotlib_inline.backend_inline'}
2.5.4 Experiment 1a: Correlate all_clean_ptu
on Jupyter 1
- Make sure we are in the correct directory, also do a git log -3 to
document latest git commits
%cd /beegfs/ye53nis/drmed-git !git log -3
/beegfs/ye53nis/drmed-git commit e2037847eadb43f0eaaeeb48cda3cc48141e24f2 Author: Apoplex <oligolex@vivaldi.net> Date: Wed Jan 19 20:10:28 2022 +0100 Fix tt_key again commit 7c750e0c8ed328033d1e55b7331f5d8d8dedb4b5 Author: Apoplex <oligolex@vivaldi.net> Date: Wed Jan 19 20:07:41 2022 +0100 Fix tt_key commit 6a23a927a62b1c05e3e6e438c9af4d6dc7791b48 Author: Apoplex <oligolex@vivaldi.net> Date: Wed Jan 19 20:01:15 2022 +0100 Fix tttr2xfcs keyError when using standard name
- Create directory where we want to save our correlations in
%mkdir /beegfs/ye53nis/saves/2022-01-20_correlate-all-clean-ptu/
- Load all needed modules
import mlflow import logging import os import sys import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from pathlib import Path from pprint import pprint FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import corr_fit_object as cfo from fluotracify.training import build_model as bm logging.basicConfig(filename='data/exp-220120-correlate-ptu/2022-01-20_correlate-all-clean-ptu.log', filemode='w', format='%(asctime)s - %(message)s', force=True, level=logging.DEBUG)
- Define variables and prepare model
class ParameterClass(): """Stores parameters for correlation """ def __init__(self): # Where the data is stored. self.data = [] self.objectRef = [] self.subObjectRef = [] self.colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black'] self.numOfLoaded = 0 # very fast from Ncasc ~ 14 onwards self.NcascStart = 0 self.NcascEnd = 30 # 25 self.Nsub = 6 # 6 self.photonLifetimeBin = 10 # used for photon decay self.photonCountBin = 1 # used for time series path = "../data/Pablo_structured_experiment/all_clean_ptu" logged_model = 'file:///beegfs/ye53nis/drmed-git/data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model' weight = 0 output_path = '/beegfs/ye53nis/saves/2022-01-20_correlate-all-clean-ptu/' par_obj = ParameterClass() loaded_model = mlflow.keras.load_model(logged_model, compile=False) loaded_model.compile(loss=bm.binary_ce_dice_loss(), optimizer=tf.keras.optimizers.Adam(), metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9])) bm.prepare_model(loaded_model)
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- Run experiment: Correlate
all_clean_ptu
on Jupyter 1path = Path(path) files = [path / f for f in os.listdir(path) if f.endswith('.ptu')] if len(files) == 0: raise FileNotFoundError('The path provided does not include any' ' .ptu files.') for myfile in files: ptufile = cfo.PicoObject(myfile, par_obj) ptufile.predictTimeSeries(model=loaded_model, scaler='minmax') ptufile.correctTCSPC(method='weights', weight=weight) shift_name = f'shift_{ptufile.name}' ptufile.getTimeSeries(timeseries_name=shift_name) ptufile.getPhotonCountingStats(name=shift_name) ptufile.predictTimeSeries(model=loaded_model, scaler='minmax', name=shift_name) ptufile.correctTCSPC(method='delete_and_shift', timeseries_name=shift_name) for key in list(ptufile.trueTimeArr.keys()): if "_FORWEIGHTS" in key: ptufile.get_autocorrelation(method='tttr2xfcs_with_weights', name=key) else: ptufile.get_autocorrelation(method='tttr2xfcs', name=key) for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key in list(ptufile.autoNorm[m].keys()): ptufile.save_autocorrelation(name=key, method=m, output_path=output_path)
c4358abc-9c3b-458a-b64c-9d5e34fa28b0
- According to log, the first run ended with an Error
[I 2022-01-22 21:32:42.402 ServerApp] AsyncIOLoopKernelRestarter: restarting kernel (1/5), keep random ports
Only 229 traces were analyzed.
- Analyze using a different weight
%cd /beegfs/ye53nis/drmed-git !git log -3
/beegfs/ye53nis/drmed-git commit 9e735ecd10d0e5e5eae591f8cc40201ae6144b6a Author: Alex Seltmann <seltmann@posteo.de> Date: Mon Jan 24 20:34:54 2022 +0100 add correlations 2 commit c0b4bc8494409a6b83a623977f07d91a373dc085 Author: Alex Seltmann <seltmann@posteo.de> Date: Fri Jan 21 15:33:06 2022 +0100 add correlations 100/400 clean commit e2037847eadb43f0eaaeeb48cda3cc48141e24f2 Author: Apoplex <oligolex@vivaldi.net> Date: Wed Jan 19 20:10:28 2022 +0100 Fix tt_key again
- Change some parameters and execute as
2022-01-25_correlate-all-clean-ptu
:logging.basicConfig(filename='data/exp-220120-correlate-ptu/2022-01-25_correlate-all-clean-ptu.log', filemode='w', format='%(asctime)s - %(message)s', force=True, level=logging.DEBUG) weight_list = [0.2, 0.4, 0.6, 0.8] output_path = '/beegfs/ye53nis/saves/2022-01-25_correlate-all-clean-ptu/' path = Path(path) files = [path / f for f in os.listdir(path) if f.endswith('.ptu')] if len(files) == 0: raise FileNotFoundError('The path provided does not include any' ' .ptu files.') for myfile in files: ptufile = cfo.PicoObject(myfile, par_obj) for w in weight_list: weight_name = f'weight{w}_{ptufile.name}' ptufile.getTimeSeries(timeseries_name=weight_name) ptufile.getPhotonCountingStats(name=weight_name) ptufile.predictTimeSeries(model=loaded_model, scaler='minmax', name=weight_name) ptufile.correctTCSPC(method='weights', weight=w, timeseries_name=weight_name) for key in list(ptufile.trueTimeArr.keys()): if "_FORWEIGHTS" in key: ptufile.get_autocorrelation(method='tttr2xfcs_with_weights', name=key) for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key in list(ptufile.autoNorm[m].keys()): ptufile.save_autocorrelation(name=key, method=m, output_path=output_path)
8e913e9c-fdcf-4a67-988c-dad76773f19c
2.5.5 Experiment 1b: Correlate all_dirty_ptu
on Jupyter 2
- Make sure we are in the correct directory, also do a git log -3 to
document latest git commits
%cd /beegfs/ye53nis/drmed-git !git log -3
/beegfs/ye53nis/drmed-git commit e2037847eadb43f0eaaeeb48cda3cc48141e24f2 Author: Apoplex <oligolex@vivaldi.net> Date: Wed Jan 19 20:10:28 2022 +0100 Fix tt_key again commit 7c750e0c8ed328033d1e55b7331f5d8d8dedb4b5 Author: Apoplex <oligolex@vivaldi.net> Date: Wed Jan 19 20:07:41 2022 +0100 Fix tt_key commit 6a23a927a62b1c05e3e6e438c9af4d6dc7791b48 Author: Apoplex <oligolex@vivaldi.net> Date: Wed Jan 19 20:01:15 2022 +0100 Fix tttr2xfcs keyError when using standard name
- Create directory where we want to save our correlations in
%mkdir /beegfs/ye53nis/saves/2022-01-20_correlate-all-dirty-ptu/
- Load all needed modules
import mlflow import logging import os import sys import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from pathlib import Path from pprint import pprint FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import corr_fit_object as cfo from fluotracify.training import build_model as bm logging.basicConfig(filename='data/exp-220120-correlate-ptu/2022-01-20_correlate-all-dirty-ptu.log', filemode='w', format='%(asctime)s - %(message)s', force=True, level=logging.DEBUG)
- Define variables and prepare model
class ParameterClass(): """Stores parameters for correlation """ def __init__(self): # Where the data is stored. self.data = [] self.objectRef = [] self.subObjectRef = [] self.colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black'] self.numOfLoaded = 0 # very fast from Ncasc ~ 14 onwards self.NcascStart = 0 self.NcascEnd = 30 # 25 self.Nsub = 6 # 6 self.photonLifetimeBin = 10 # used for photon decay self.photonCountBin = 1 # used for time series path = "../data/Pablo_structured_experiment/all_dirty_ptu" logged_model = 'file:///beegfs/ye53nis/drmed-git/data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model' weight = 0 output_path = '/beegfs/ye53nis/saves/2022-01-20_correlate-all-dirty-ptu/' par_obj = ParameterClass() loaded_model = mlflow.keras.load_model(logged_model, compile=False) loaded_model.compile(loss=bm.binary_ce_dice_loss(), optimizer=tf.keras.optimizers.Adam(), metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9])) bm.prepare_model(loaded_model)
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- Run experiment: Correlate
all_dirty_ptu
on Jupyter 2path = Path(path) files = [path / f for f in os.listdir(path) if f.endswith('.ptu')] if len(files) == 0: raise FileNotFoundError('The path provided does not include any' ' .ptu files.') for myfile in files: ptufile = cfo.PicoObject(myfile, par_obj) ptufile.predictTimeSeries(model=loaded_model, scaler='minmax') ptufile.correctTCSPC(method='weights', weight=weight) shift_name = f'shift_{ptufile.name}' ptufile.getTimeSeries(timeseries_name=shift_name) ptufile.getPhotonCountingStats(name=shift_name) ptufile.predictTimeSeries(model=loaded_model, scaler='minmax', name=shift_name) ptufile.correctTCSPC(method='delete_and_shift', timeseries_name=shift_name) for key in list(ptufile.trueTimeArr.keys()): if "_FORWEIGHTS" in key: ptufile.get_autocorrelation(method='tttr2xfcs_with_weights', name=key) else: ptufile.get_autocorrelation(method='tttr2xfcs', name=key) for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key in list(ptufile.autoNorm[m].keys()): ptufile.save_autocorrelation(name=key, method=m, output_path=output_path)
WARNING:tensorflow:6 out of the last 9 calls to <function Model.make_predict_function.<locals>.predict_function at 0x2b217faeb9d0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.
- According to log, the first run ended with an Error
[I 2022-01-23 00:26:40.512 ServerApp] AsyncIOLoopKernelRestarter: restarting kernel (1/5), keep random ports
Only 229 traces were analyzed.
- Analyze using a different weight
%cd /beegfs/ye53nis/drmed-git !git log -3
/beegfs/ye53nis/drmed-git commit 9e735ecd10d0e5e5eae591f8cc40201ae6144b6a Author: Alex Seltmann <seltmann@posteo.de> Date: Mon Jan 24 20:34:54 2022 +0100 add correlations 2 commit c0b4bc8494409a6b83a623977f07d91a373dc085 Author: Alex Seltmann <seltmann@posteo.de> Date: Fri Jan 21 15:33:06 2022 +0100 add correlations 100/400 clean commit e2037847eadb43f0eaaeeb48cda3cc48141e24f2 Author: Apoplex <oligolex@vivaldi.net> Date: Wed Jan 19 20:10:28 2022 +0100 Fix tt_key again
- Change some parameters and execute as
2022-01-25_correlate-all-dirty-ptu
logging.basicConfig(filename='data/exp-220120-correlate-ptu/2022-01-25_correlate-all-dirty-ptu.log', filemode='w', format='%(asctime)s - %(message)s', force=True, level=logging.DEBUG) weight_list = [0.2, 0.4, 0.6, 0.8] output_path = '/beegfs/ye53nis/saves/2022-01-25_correlate-all-dirty-ptu/' path = Path(path) files = [path / f for f in os.listdir(path) if f.endswith('.ptu')] if len(files) == 0: raise FileNotFoundError('The path provided does not include any' ' .ptu files.') for myfile in files: ptufile = cfo.PicoObject(myfile, par_obj) for w in weight_list: weight_name = f'weight{w}_{ptufile.name}' ptufile.getTimeSeries(timeseries_name=weight_name) ptufile.getPhotonCountingStats(name=weight_name) ptufile.predictTimeSeries(model=loaded_model, scaler='minmax', name=weight_name) ptufile.correctTCSPC(method='weights', weight=w, timeseries_name=weight_name) for key in list(ptufile.trueTimeArr.keys()): if "_FORWEIGHTS" in key: ptufile.get_autocorrelation(method='tttr2xfcs_with_weights', name=key) for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key in list(ptufile.autoNorm[m].keys()): ptufile.save_autocorrelation(name=key, method=m, output_path=output_path)
fa1b6a82-0827-4730-a145-2ab9f4c967ef
2.5.6 Analysis 1 of no-correction vs weight=0 vs shift
- log files can be found here:
tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-20_correlate-all-clean-ptu.log tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-20_correlate-all-dirty-ptu.log
(tf) [ye53nis@login01 applications]$ tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-20_correla te-all-clean-ptu.log 2022-01-22 21:32:10,206 - Finished predictTimeSeries() with name=shift_20 nM AF488110_T1310s_1 2022-01-22 21:32:10,249 - correctTCSPC: some samples: subChan 3486766, truetime 3486766,photonMask 3486766, channelM ask 3486993 2022-01-22 21:32:10,261 - correctTCSPC: deleted 633925 photons of 3486993 photons. 2022-01-22 21:32:10,280 - correctTCSPC: shifted non-deleted photon arrival times by photonCountBin=1 2022-01-22 21:32:10,281 - Finished correctTCSPC() with name 20 nM AF488110_T1310s_1, timeseries_name shift_20 nM AF4 88110_T1310s_1 2022-01-22 21:32:10,281 - get_autocorrelation: Starting tttr2xfcs correlation.with name 20 nM AF488110_T1310s_1 2022-01-22 21:32:10,281 - Given key 20 nM AF488110_T1310s_1 of trueTimeArr does not include a hint on which channel was used. Assume all channels shall be used and continue 2022-01-22 21:32:16,525 - crossAndAuto: sum(indeces)=3486993 2022-01-22 21:32:16,611 - crossAndAuto: finished preparation 2022-01-22 21:32:38,406 - tttr2xfcs: finished Ncasc 0 (tf) [ye53nis@login01 applications]$ tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-20_correla te-all-dirty-ptu.log 2022-01-25 00:52:57,129 - Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. 2022-01-25 00:53:05,683 - prepare_model: test shape (1, 16384, 1), e.g. [1.4064237e-01 1.3650321e-08 7.4799689e-10 1 .7243300e-10 1.3498201e-10] 2022-01-25 00:53:05,736 - prepare_model: test shape (1, 8192, 1). prediction failed as expected. Retry... 2022-01-25 00:53:06,390 - prepare_model: test shape (1, 4096, 1), e.g. [1.4064237e-01 1.3650321e-08 7.4799689e-10 1. 7243300e-10 1.3498201e-10] 2022-01-25 00:53:06,455 - prepare_model: test shape (1, 8192, 1), e.g. [1.4064237e-01 1.3650321e-08 7.4799689e-10 1. 7243300e-10 1.3498201e-10] 2022-01-25 00:53:06,455 - prepare_model: UNET ready for different trace lengths (tf) [ye53nis@login01 applications]$
- I committed the correlations to the git repository, since the file size is rather small (~5kB / correlation, makes ~15kB per file)
- I sorted the correlations according to the 3 things I did with the .ptu
data and the correlation method
- No correction: I just read in the .ptu data and correlated the photon
arrival times using the
tttr2xfcs
algorithm - Corrected with weights: I read in the .ptu data, constructed a
timetrace from it, fed the time trace to my trained unet which predicts
bright burst artifacts, then mapped the time trace prediction on the
photon arrival times and gave all photons inside a bin labelled as
artifactual a weight of 0 in the
tttr2xfcs
algorithm - Corrected by photon deletion with shift: I read in the .ptu data,
constructed a timetrace from it, fed the timetrace to my trained unet
which predicts bright burst artifacts, then mapped the time trace
prediction on the photon arrival times and deleted all photons inside a
bin labelled as artifactual and the arrival times of all photons which
come after a deleted bin by the bin size, then I correlated the
resulting new photon arrival times using the
tttr2xfcs
algorithm
- No correction: I just read in the .ptu data and correlated the photon
arrival times using the
- Then I fitted the traces in each of the 3 folders using Dominic Waithe’s https://dwaithe.github.io/FCSfitJS/
- now let’s look at the results:
%cd /home/lex/Programme/drmed-git
/home/lex/Programme/drmed-git
import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint # use seaborn style as default even if I just use matplotlib sns.set()
folder_clean = Path('data/exp-220120-correlate-ptu/2022-01-20_correlate-all-clean-ptu') folder_dirty = Path('data/exp-220120-correlate-ptu/2022-01-20_correlate-all-dirty-ptu') clean_v1_param_path = folder_clean / '2022-01-20_clean_no-correction_param_229of400.csv' clean_v2_param_path = folder_clean / '2022-01-20_clean_corrected-with-weights_param_229of400.csv' clean_v3_param_path = folder_clean / '2022-01-20_clean_corrected-by-photon-deletion-with-shift_param_229of400.csv' clean_v1_plot_path = folder_clean / '2022-01-20_clean_no-correction_plot_229of400.csv' clean_v2_plot_path = folder_clean / '2022-01-20_clean_corrected-with-weights_plot_229of400.csv' clean_v3_plot_path = folder_clean / '2022-01-20_clean_corrected-by-photon-deletion-with-shift_plot_229of400.csv' dirty_v1_param_path = folder_dirty / '2022-01-20_dirty_no-correction_param_173of400.csv' dirty_v2_param_path = folder_dirty / '2022-01-20_dirty_corrected-with-weights_param_173of400.csv' dirty_v3_param_path = folder_dirty / '2022-01-20_dirty_corrected-by-photon-deletion-with-shift_param_173of400.csv' dirty_v1_plot_path = folder_dirty / '2022-01-20_dirty_no-correction_plot_173of400.csv' dirty_v2_plot_path = folder_dirty / '2022-01-20_dirty_corrected-with-weights_plot_173of400.csv' dirty_v3_plot_path = folder_dirty / '2022-01-20_dirty_corrected-by-photon-deletion-with-shift_plot_173of400.csv'
clean_v1_param = pd.read_csv(clean_v1_param_path, sep=',') clean_v2_param = pd.read_csv(clean_v2_param_path, sep=',') clean_v3_param = pd.read_csv(clean_v3_param_path, sep=',') clean_v1_taudiff = clean_v1_param['txy1'] clean_v2_taudiff = clean_v2_param['txy1'] clean_v3_taudiff = clean_v3_param['txy1'] dirty_v1_param = pd.read_csv(dirty_v1_param_path, sep=',') dirty_v2_param = pd.read_csv(dirty_v2_param_path, sep=',') dirty_v3_param = pd.read_csv(dirty_v3_param_path, sep=',') dirty_v1_taudiff = dirty_v1_param['txy1'] dirty_v2_taudiff = dirty_v2_param['txy1'] dirty_v3_taudiff = dirty_v3_param['txy1'] display(clean_v1_param.head(2).T) display(clean_v2_param.head(2).T) display(clean_v3_param.head(2).T) display(dirty_v1_param.head(2).T) display(dirty_v2_param.head(2).T) display(dirty_v3_param.head(2).T)
0 1 nameofplot 2022-01-20tttr2xfcsCH2BIN120 nM AF48816T1… 2022-01-20tttr2xfcsCH2BIN120 nM AF48822T2… masterfile Not known Not known parentname 20 nM AF48816T182s1 20 nM AF48822T254s1 parentuqid NaN NaN time of fit 24 January 2022 22:35:35 24 January 2022 22:35:35 Diffeq Equation 1A Equation 1A Diffspecies 1 1 Tripleteq Triplet Eq 2A Triplet Eq 2A Tripletspecies 1 1 Dimen 3D 3D xmin 0.001018 0.001018 xmax 117.440506 117.440506 offset -0.000577 -0.000577 stdev(offset) NaN NaN GN0 0.074965 0.074965 stdev(GN0) NaN NaN N (FCS) 13.339549 13.339549 cpm (kHz) 25.896822 25.862088 A1 1 1 stdev(A1) NaN NaN txy1 0.033317 0.033317 stdev(txy1) NaN NaN alpha1 0.8512 0.8512 stdev(alpha1) NaN NaN N (mom) 72.053415 73.936945 bri (kHz) 4.794626 4.666217 0 1 nameofplot 2022-01-20tttr2xfcswithweightsCH2BIN120 … 2022-01-20tttr2xfcswithweightsCH2BIN120 … masterfile Not known Not known parentname 20 nM AF48816T182s1 20 nM AF48822T254s1 parentuqid NaN NaN time of fit 24 January 2022 22:34:07 24 January 2022 22:34:07 Diffeq Equation 1A Equation 1A Diffspecies 1 1 Tripleteq Triplet Eq 2A Triplet Eq 2A Tripletspecies 1 1 Dimen 3D 3D xmin 0.001018 0.001018 xmax 100.66329 100.66329 offset 0.314375 0.148697 stdev(offset) NaN NaN GN0 0.161316 0.096106 stdev(GN0) NaN NaN N (FCS) 6.198997 10.405181 cpm (kHz) 55.727064 33.155463 A1 1 1 stdev(A1) NaN NaN txy1 0.066262 0.038902 stdev(txy1) NaN NaN alpha1 0.5 0.737984 stdev(alpha1) NaN NaN N (mom) 72.053415 73.936945 bri (kHz) 4.794626 4.666217 0 1 nameofplot 2022-01-20tttr2xfcsCH2BIN1shift20 nM AF48… 2022-01-20tttr2xfcsCH2BIN1shift20 nM AF48… masterfile Not known Not known parentname shift20 nM AF48816T182s1 shift20 nM AF48822T254s1 parentuqid NaN NaN time of fit 24 January 2022 22:32:21 24 January 2022 22:32:21 Diffeq Equation 1A Equation 1A Diffspecies 1 1 Tripleteq Triplet Eq 2A Triplet Eq 2A Tripletspecies 1 1 Dimen 3D 3D xmin 0.001018 0.001018 xmax 117.440506 117.440506 offset 0.276905 0.139014 stdev(offset) NaN NaN GN0 0.156775 0.095677 stdev(GN0) NaN NaN N (FCS) 6.378581 10.451884 cpm (kHz) 54.158119 33.007311 A1 1 1 stdev(A1) NaN NaN txy1 0.067249 0.038801 stdev(txy1) NaN NaN alpha1 0.5 0.733455 stdev(alpha1) NaN NaN N (mom) 72.053415 73.936945 bri (kHz) 4.794626 4.666217 0 1 nameofplot 2022-01-20tttr2xfcsCH2BIN1DiO LUV 10uM in … 2022-01-20tttr2xfcsCH2BIN1DiO LUV 10uM in … masterfile Not known Not known parentname DiO LUV 10uM in 20 nM AF48823T268s1 DiO LUV 10uM in 20 nM AF48823T287s1 parentuqid NaN NaN time of fit 24 January 2022 22:58:57 24 January 2022 22:59:16 Diffeq Equation 1A Equation 1A Diffspecies 1 1 Tripleteq Triplet Eq 2A Triplet Eq 2A Tripletspecies 1 1 Dimen 3D 3D xmin 0.00089 0.00089 xmax 2147.483642 2147.483642 offset -0.002524 -0.014455 stdev(offset) NaN NaN GN0 0.206576 0.396267 stdev(GN0) NaN NaN N (FCS) 4.840844 2.523549 cpm (kHz) 107.60087 221.540583 A1 1 1 stdev(A1) NaN NaN txy1 6.459892 4.992202 stdev(txy1) NaN NaN alpha1 0.697556 0.973971 stdev(alpha1) NaN NaN N (mom) 5.62743 2.845675 bri (kHz) 92.565361 196.472342 0 1 nameofplot 2022-01-20tttr2xfcswithweightsCH2BIN1DiO… 2022-01-20tttr2xfcswithweightsCH2BIN1DiO… masterfile Not known Not known parentname DiO LUV 10uM in 20 nM AF48823T268s1 DiO LUV 10uM in 20 nM AF48823T287s1 parentuqid NaN NaN time of fit 24 January 2022 22:51:01 24 January 2022 22:51:01 Diffeq Equation 1A Equation 1A Diffspecies 1 1 Tripleteq Triplet Eq 2A Triplet Eq 2A Tripletspecies 1 1 Dimen 3D 3D xmin 0.00089 0.00089 xmax 2415.919098 2415.919098 offset -0.084572 -0.044295 stdev(offset) NaN NaN GN0 0.338889 0.247596 stdev(GN0) NaN NaN N (FCS) 2.950821 4.038831 cpm (kHz) 176.520064 138.423335 A1 1 1 stdev(A1) NaN NaN txy1 20.767381 20.776597 stdev(txy1) NaN NaN alpha1 0.5 0.5 stdev(alpha1) NaN NaN N (mom) 5.62743 2.845675 bri (kHz) 92.565361 196.472342 0 1 nameofplot 2022-01-20tttr2xfcsCH2BIN1shiftDiO LUV 10… 2022-01-20tttr2xfcsCH2BIN1shiftDiO LUV 10… masterfile Not known Not known parentname shiftDiO LUV 10uM in 20 nM AF48823T268s1 shiftDiO LUV 10uM in 20 nM AF48823T287s1 parentuqid NaN NaN time of fit 24 January 2022 23:05:52 24 January 2022 23:06:00 Diffeq Equation 1A Equation 1A Diffspecies 1 1 Tripleteq Triplet Eq 2A Triplet Eq 2A Tripletspecies 1 1 Dimen 3D 3D xmin 0.00089 0.00089 xmax 2415.919098 2415.919098 offset -0.023485 0.011508 stdev(offset) NaN NaN GN0 0.304118 0.211213 stdev(GN0) NaN NaN N (FCS) 3.288199 4.734564 cpm (kHz) 158.408619 118.082341 A1 1 1 stdev(A1) NaN NaN txy1 2.884429 1.956253 stdev(txy1) NaN NaN alpha1 0.5 0.600835 stdev(alpha1) NaN NaN N (mom) 5.62743 2.845675 bri (kHz) 92.565361 196.472342 clean_v1_plot = pd.read_csv(clean_v1_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 459', axis=1) clean_v2_plot = pd.read_csv(clean_v2_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 459', axis=1) clean_v3_plot = pd.read_csv(clean_v3_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 459', axis=1) clean_v1_tau = clean_v1_plot['Time (ms)'] clean_v2_tau = clean_v2_plot['Time (ms)'] clean_v3_tau = clean_v3_plot['Time (ms)'] clean_v1_corr = clean_v1_plot.iloc[:, 1::2] clean_v2_corr = clean_v2_plot.iloc[:, 1::2] clean_v3_corr = clean_v3_plot.iloc[:, 1::2] clean_v1_fit = clean_v1_plot.iloc[:, 2::2] clean_v2_fit = clean_v2_plot.iloc[:, 2::2] clean_v3_fit = clean_v3_plot.iloc[:, 2::2] dirty_v1_plot = pd.read_csv(dirty_v1_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 347', axis=1) dirty_v2_plot = pd.read_csv(dirty_v2_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 347', axis=1) dirty_v3_plot = pd.read_csv(dirty_v3_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 347', axis=1) dirty_v1_tau = dirty_v1_plot['Time (ms)'] dirty_v2_tau = dirty_v2_plot['Time (ms)'] dirty_v3_tau = dirty_v3_plot['Time (ms)'] dirty_v1_corr = dirty_v1_plot.iloc[:, 1::2] dirty_v2_corr = dirty_v2_plot.iloc[:, 1::2] dirty_v3_corr = dirty_v3_plot.iloc[:, 1::2] dirty_v1_fit = dirty_v1_plot.iloc[:, 2::2] dirty_v2_fit = dirty_v2_plot.iloc[:, 2::2] dirty_v3_fit = dirty_v3_plot.iloc[:, 2::2]
taudiff = pd.DataFrame(data=[clean_v1_taudiff, clean_v2_taudiff, clean_v3_taudiff, dirty_v1_taudiff, dirty_v2_taudiff, dirty_v3_taudiff], index=['clean-no c.', 'clean-weights', 'clean-shift', 'dirty-no c.', 'dirty-weights', 'dirty-shift']).T fig = plt.figure(figsize=(16,9)) fig = sns.boxplot(data=taudiff, showfliers=False) ylims = fig.get_ylim() fig.set(ylim=ylims) fig = sns.stripplot(data=taudiff, jitter=True, color='.3') plt.show()
- So from the first run we see:
- we confirm the distortion of transit times in the dirty data
- we see that the correction methods
weight=0
anddelete_and_shift
as they are implemented now don’t work
2.5.7 Analysis 2 of weight=0.2…0.8
- log files can be found here:
tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-25_correlate-all-clean-ptu.log tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-25_correlate-all-dirty-ptu.log
(tf) [ye53nis@login01 applications]$ tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-25_correla te-all-clean-ptu.log 2022-01-26 15:58:00,327 - Finished predictTimeSeries() with name=weight0.6_20 nM AF48866_T782s_1 2022-01-26 15:58:00,367 - correctTCSPC: some samples: subChan 3437400, truetime 3437400,photonMask 3437400, channelM ask 3437580 2022-01-26 15:58:00,409 - Finished correctTCSPC() with name 20 nM AF48866_T782s_1, timeseries_name weight0.6_20 nM A F48866_T782s_1 2022-01-26 15:58:00,513 - Finished time2bin. last_time=9995.0, num_bins=9995.0 2022-01-26 15:58:00,514 - Finished getTimeSeries() with truetime_name 20 nM AF48866_T782s_1, timeseries_name weight0 .8_20 nM AF48866_T782s_1 2022-01-26 15:58:00,516 - Finished getPhotonCountingStats() with name: weight0.8_20 nM AF48866_T782s_1 2022-01-26 15:58:00,568 - Finished predictTimeSeries() with name=weight0.8_20 nM AF48866_T782s_1 2022-01-26 15:58:00,607 - correctTCSPC: some samples: subChan 3437400, truetime 3437400,photonMask 3437400, channelM ask 3437580 2022-01-26 15:58:00,668 - Finished correctTCSPC() with name 20 nM AF48866_T782s_1, timeseries_name weight0.8_20 nM A F48866_T782s_1 2022-01-26 15:58:00,668 - get_autocorrelation: Starting tttr2xfcs correlation.with name CH2_weight0.2_20 nM AF48866_ T782s_1_FORWEIGHTS (tf) [ye53nis@login01 applications]$ tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-01-25_correla te-all-dirty-ptu.log 2022-01-26 15:43:14,278 - Finished predictTimeSeries() with name=weight0.6_DiO LUV 10uM in 20 nM AF48876_T910s_1 2022-01-26 15:43:14,406 - correctTCSPC: some samples: subChan 4672383, truetime 4672383,photonMask 4672383, channelM ask 4672675 2022-01-26 15:43:14,520 - Finished correctTCSPC() with name DiO LUV 10uM in 20 nM AF48876_T910s_1, timeseries_name w eight0.6_DiO LUV 10uM in 20 nM AF48876_T910s_1 2022-01-26 15:43:14,696 - Finished time2bin. last_time=9996.0, num_bins=9996.0 2022-01-26 15:43:14,705 - Finished getTimeSeries() with truetime_name DiO LUV 10uM in 20 nM AF48876_T910s_1, timeser ies_name weight0.8_DiO LUV 10uM in 20 nM AF48876_T910s_1 2022-01-26 15:43:14,707 - Finished getPhotonCountingStats() with name: weight0.8_DiO LUV 10uM in 20 nM AF48876_T910s _1 2022-01-26 15:43:14,762 - Finished predictTimeSeries() with name=weight0.8_DiO LUV 10uM in 20 nM AF48876_T910s_1 2022-01-26 15:43:14,889 - correctTCSPC: some samples: subChan 4672383, truetime 4672383,photonMask 4672383, channelM ask 4672675 2022-01-26 15:43:14,960 - Finished correctTCSPC() with name DiO LUV 10uM in 20 nM AF48876_T910s_1, timeseries_name w eight0.8_DiO LUV 10uM in 20 nM AF48876_T910s_1 2022-01-26 15:43:14,963 - get_autocorrelation: Starting tttr2xfcs correlation.with name CH2_weight0.2_DiO LUV 10uM i n 20 nM AF48876_T910s_1_FORWEIGHTS (tf) [ye53nis@login01 applications]$
- So the first analysis of “no correction” vs “weight=0” vs “delete and
shift” did show that the two correction methods did not work properly.
Another approach is photon weighting, so let’s look at the following
correlations:
- no correction: I just read in the .ptu data and correlated the photon
arrival times using the
tttr2xfcs
algorithm → taken from first experiment - weight=0: I read in the .ptu data, constructed a timetrace from it,
fed the time trace to my trained unet which predicts bright burst
artifacts, then mapped the time trace prediction on the photon arrival
times and gave all photons inside a bin labelled as artifactual a
weight of 0.2 in the
tttr2xfcs
algorithm - weight=0.2: changed weight to 0.2, else see above
- weight=0.4: changed weight to 0.4, else see above
- weight=0.6: changed weight to 0.6, else see above
- weight=0.8: changed weight to 0.8, else see above
- no correction: I just read in the .ptu data and correlated the photon
arrival times using the
- Then I fitted the traces in each of the 3 folders using Dominic Waithe’s https://dwaithe.github.io/FCSfitJS/
- now let’s look at the results:
%cd /home/lex/Programme/drmed-git
/home/lex/Programme/drmed-git
import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint # use seaborn style as default even if I just use matplotlib sns.set()
folder_clean = Path('data/exp-220120-correlate-ptu/2022-01-20_correlate-all-clean-ptu') folder_clean_weights = Path('data/exp-220120-correlate-ptu/2022-01-25_correlate-all-clean-ptu') folder_dirty = Path('data/exp-220120-correlate-ptu/2022-01-20_correlate-all-dirty-ptu') folder_dirty_weights = Path('data/exp-220120-correlate-ptu/2022-01-25_correlate-all-dirty-ptu') clean_v1_param_path = folder_clean / '2022-01-20_clean_no-correction_param_229of400.csv' clean_00_param_path = folder_clean / '2022-01-20_clean_corrected-with-weights_param_229of400.csv' clean_02_param_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.2_param_34of400.csv' clean_04_param_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.4_param_34of400.csv' clean_06_param_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.6_param_34of400.csv' clean_08_param_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.8_param_34of400.csv' clean_v1_plot_path = folder_clean / '2022-01-20_clean_no-correction_plot_229of400.csv' clean_00_plot_path = folder_clean / '2022-01-20_clean_corrected-with-weights_plot_229of400.csv' clean_02_plot_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.2_plot_34of400.csv' clean_04_plot_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.4_plot_34of400.csv' clean_06_plot_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.6_plot_34of400.csv' clean_08_plot_path = folder_clean_weights / '2022-01-25_clean_corrected-with-weights-0.8_plot_34of400.csv' dirty_v1_param_path = folder_dirty / '2022-01-20_dirty_no-correction_param_173of400.csv' dirty_00_param_path = folder_dirty / '2022-01-20_dirty_corrected-with-weights_param_173of400.csv' dirty_02_param_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.2_param_23of400.csv' dirty_04_param_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.4_param_23of400.csv' dirty_06_param_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.6_param_23of400.csv' dirty_08_param_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.8_param_23of400.csv' dirty_v1_plot_path = folder_dirty / '2022-01-20_dirty_no-correction_plot_173of400.csv' dirty_00_plot_path = folder_dirty / '2022-01-20_dirty_corrected-with-weights_plot_173of400.csv' dirty_02_plot_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.2_plot_23of400.csv' dirty_04_plot_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.4_plot_23of400.csv' dirty_06_plot_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.6_plot_23of400.csv' dirty_08_plot_path = folder_dirty_weights / '2022-01-25_dirty_corrected-with-weights-0.8_plot_23of400.csv'
clean_v1_param = pd.read_csv(clean_v1_param_path, sep=',') clean_00_param = pd.read_csv(clean_02_param_path, sep=',') clean_02_param = pd.read_csv(clean_02_param_path, sep=',') clean_04_param = pd.read_csv(clean_04_param_path, sep=',') clean_06_param = pd.read_csv(clean_06_param_path, sep=',') clean_08_param = pd.read_csv(clean_08_param_path, sep=',') clean_v1_taudiff = clean_v1_param['txy1'] clean_00_taudiff = clean_02_param['txy1'] clean_02_taudiff = clean_02_param['txy1'] clean_04_taudiff = clean_04_param['txy1'] clean_06_taudiff = clean_06_param['txy1'] clean_08_taudiff = clean_08_param['txy1'] dirty_v1_param = pd.read_csv(dirty_v1_param_path, sep=',') dirty_00_param = pd.read_csv(dirty_02_param_path, sep=',') dirty_02_param = pd.read_csv(dirty_02_param_path, sep=',') dirty_04_param = pd.read_csv(dirty_04_param_path, sep=',') dirty_06_param = pd.read_csv(dirty_06_param_path, sep=',') dirty_08_param = pd.read_csv(dirty_08_param_path, sep=',') dirty_v1_taudiff = dirty_v1_param['txy1'] dirty_00_taudiff = dirty_02_param['txy1'] dirty_02_taudiff = dirty_02_param['txy1'] dirty_04_taudiff = dirty_04_param['txy1'] dirty_06_taudiff = dirty_06_param['txy1'] dirty_08_taudiff = dirty_08_param['txy1'] display(pd.concat([clean_v1_param.head(1).T, clean_00_param.head(1).T, clean_02_param.head(1).T, clean_04_param.head(1).T, clean_06_param.head(1).T, clean_08_param.head(1).T], axis=1)) display(pd.concat([dirty_v1_param.head(1).T, dirty_00_param.head(1).T, dirty_02_param.head(1).T, dirty_04_param.head(1).T, dirty_06_param.head(1).T, dirty_08_param.head(1).T], axis=1))
0 0 0 0 0 0 nameofplot 2022-01-20tttr2xfcsCH2BIN120 nM AF48816T1… 2022-01-25tttr2xfcswithweightsCH2BIN1wei… 2022-01-25tttr2xfcswithweightsCH2BIN1wei… 2022-01-25tttr2xfcswithweightsCH2BIN1wei… 2022-01-25tttr2xfcswithweightsCH2BIN1wei… 2022-01-25tttr2xfcswithweightsCH2BIN1wei… masterfile Not known Not known Not known Not known Not known Not known parentname 20 nM AF48816T182s1 weight0.220 nM AF48816T182s1 weight0.220 nM AF48816T182s1 weight0.420 nM AF48816T182s1 weight0.620 nM AF48816T182s1 weight0.820 nM AF48816T182s1 parentuqid NaN NaN NaN NaN NaN NaN time of fit 24 January 2022 22:35:35 25 January 2022 14:14:37 25 January 2022 14:14:37 25 January 2022 14:17:36 25 January 2022 14:18:57 25 January 2022 14:20:30 Diffeq Equation 1A Equation 1A Equation 1A Equation 1A Equation 1A Equation 1A Diffspecies 1 1 1 1 1 1 Tripleteq Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A Tripletspecies 1 1 1 1 1 1 Dimen 3D 3D 3D 3D 3D 3D xmin 0.001018 0.001018 0.001018 0.001018 0.001146 0.001146 xmax 117.440506 1073.741818 1073.741818 469.762042 369.098746 603.97977 offset -0.000577 0.171278 0.171278 0.087402 0.035123 0.007769 stdev(offset) NaN NaN NaN NaN NaN NaN GN0 0.074965 0.132934 0.132934 0.095521 0.078695 0.073745 stdev(GN0) NaN NaN NaN NaN NaN NaN N (FCS) 13.339549 7.522504 7.522504 10.468952 12.70734 13.560257 cpm (kHz) 25.896822 45.922465 45.922465 32.997757 27.185228 25.475323 A1 1 1 1 1 1 1 stdev(A1) NaN NaN NaN NaN NaN NaN txy1 0.033317 0.042671 0.042671 0.03675 0.034622 0.033477 stdev(txy1) NaN NaN NaN NaN NaN NaN alpha1 0.8512 0.5 0.5 0.691478 0.843979 0.887953 stdev(alpha1) NaN NaN NaN NaN NaN NaN N (mom) 72.053415 72.053415 72.053415 72.053415 72.053415 72.053415 bri (kHz) 4.794626 4.794626 4.794626 4.794626 4.794626 4.794626 0 0 0 0 0 0 nameofplot 2022-01-20tttr2xfcsCH2BIN1DiO LUV 10uM in … 2022-01-25tttr2xfcswithweightsCH2BIN1wei… 2022-01-25tttr2xfcswithweightsCH2BIN1wei… 2022-01-25tttr2xfcswithweightsCH2BIN1wei… 2022-01-25tttr2xfcswithweightsCH2BIN1wei… 2022-01-25tttr2xfcswithweightsCH2BIN1wei… masterfile Not known Not known Not known Not known Not known Not known parentname DiO LUV 10uM in 20 nM AF48823T268s1 weight0.2DiO LUV 10uM in 20 nM AF48823T268s1 weight0.2DiO LUV 10uM in 20 nM AF48823T268s1 weight0.4DiO LUV 10uM in 20 nM AF48823T268s1 weight0.6DiO LUV 10uM in 20 nM AF48823T268s1 weight0.8DiO LUV 10uM in 20 nM AF48823T268s1 parentuqid NaN NaN NaN NaN NaN NaN time of fit 24 January 2022 22:58:57 25 January 2022 13:58:13 25 January 2022 13:58:13 25 January 2022 14:03:08 25 January 2022 14:04:21 25 January 2022 14:07:40 Diffeq Equation 1A Equation 1A Equation 1A Equation 1A Equation 1A Equation 1A Diffspecies 1 1 1 1 1 1 Tripleteq Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A Triplet Eq 2A Tripletspecies 1 1 1 1 1 1 Dimen 3D 3D 3D 3D 3D 3D xmin 0.00089 0.00089 0.00089 0.001018 0.001018 0.001018 xmax 2147.483642 1073.741818 1073.741818 1610.61273 1610.61273 1879.048186 offset -0.002524 -0.004259 -0.004259 0.001018 0.000758 -0.002585 stdev(offset) NaN NaN NaN NaN NaN NaN GN0 0.206576 0.149601 0.149601 0.092027 0.095303 0.138446 stdev(GN0) NaN NaN NaN NaN NaN NaN N (FCS) 4.840844 6.684437 6.684437 10.866429 10.492811 7.223025 cpm (kHz) 107.60087 77.924146 77.924146 47.934705 49.641517 72.113704 A1 1 1 1 1 1 1 stdev(A1) NaN NaN NaN NaN NaN NaN txy1 6.459892 0.811509 0.811509 0.309739 0.802572 3.675292 stdev(txy1) NaN NaN NaN NaN NaN NaN alpha1 0.697556 0.5 0.5 0.5277 0.5 0.567203 stdev(alpha1) NaN NaN NaN NaN NaN NaN N (mom) 5.62743 5.62743 5.62743 5.62743 5.62743 5.62743 bri (kHz) 92.565361 92.565361 92.565361 92.565361 92.565361 92.565361 clean_v1_plot = pd.read_csv(clean_v1_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 459', axis=1) clean_00_plot = pd.read_csv(clean_00_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 459', axis=1) clean_02_plot = pd.read_csv(clean_02_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 69', axis=1) clean_04_plot = pd.read_csv(clean_04_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 69', axis=1) clean_06_plot = pd.read_csv(clean_06_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 69', axis=1) clean_08_plot = pd.read_csv(clean_08_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 69', axis=1) clean_v1_tau = clean_v1_plot['Time (ms)'] clean_00_tau = clean_00_plot['Time (ms)'] clean_02_tau = clean_02_plot['Time (ms)'] clean_04_tau = clean_04_plot['Time (ms)'] clean_06_tau = clean_06_plot['Time (ms)'] clean_08_tau = clean_08_plot['Time (ms)'] clean_v1_corr = clean_v1_plot.iloc[:, 1::2] clean_00_corr = clean_00_plot.iloc[:, 1::2] clean_02_corr = clean_02_plot.iloc[:, 1::2] clean_04_corr = clean_04_plot.iloc[:, 1::2] clean_06_corr = clean_06_plot.iloc[:, 1::2] clean_08_corr = clean_08_plot.iloc[:, 1::2] clean_v1_fit = clean_v1_plot.iloc[:, 2::2] clean_00_fit = clean_00_plot.iloc[:, 2::2] clean_02_fit = clean_02_plot.iloc[:, 2::2] clean_04_fit = clean_04_plot.iloc[:, 2::2] clean_06_fit = clean_06_plot.iloc[:, 2::2] clean_08_fit = clean_08_plot.iloc[:, 2::2] dirty_v1_plot = pd.read_csv(dirty_v1_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 347', axis=1) dirty_00_plot = pd.read_csv(dirty_00_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 347', axis=1) dirty_02_plot = pd.read_csv(dirty_02_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 47', axis=1) dirty_04_plot = pd.read_csv(dirty_04_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 47', axis=1) dirty_06_plot = pd.read_csv(dirty_06_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 47', axis=1) dirty_08_plot = pd.read_csv(dirty_08_plot_path, sep=',', na_values=' ').drop( 'Unnamed: 47', axis=1) dirty_v1_tau = dirty_v1_plot['Time (ms)'] dirty_00_tau = dirty_00_plot['Time (ms)'] dirty_02_tau = dirty_02_plot['Time (ms)'] dirty_04_tau = dirty_04_plot['Time (ms)'] dirty_06_tau = dirty_06_plot['Time (ms)'] dirty_08_tau = dirty_08_plot['Time (ms)'] dirty_v1_corr = dirty_v1_plot.iloc[:, 1::2] dirty_00_corr = dirty_00_plot.iloc[:, 1::2] dirty_02_corr = dirty_02_plot.iloc[:, 1::2] dirty_04_corr = dirty_04_plot.iloc[:, 1::2] dirty_06_corr = dirty_06_plot.iloc[:, 1::2] dirty_08_corr = dirty_08_plot.iloc[:, 1::2] dirty_v1_fit = dirty_v1_plot.iloc[:, 2::2] dirty_00_fit = dirty_00_plot.iloc[:, 2::2] dirty_02_fit = dirty_02_plot.iloc[:, 2::2] dirty_04_fit = dirty_04_plot.iloc[:, 2::2] dirty_06_fit = dirty_06_plot.iloc[:, 2::2] dirty_08_fit = dirty_08_plot.iloc[:, 2::2]
taudiff = pd.DataFrame(data=[clean_v1_taudiff, clean_00_taudiff, clean_02_taudiff, clean_04_taudiff, clean_06_taudiff, clean_08_taudiff, dirty_v1_taudiff, dirty_00_taudiff, dirty_02_taudiff, dirty_04_taudiff, dirty_06_taudiff, dirty_08_taudiff], index=['clean|no c.', 'clean|weight=0', 'clean|weight=0.2', 'clean|weight=0.4', 'clean|weight=0.6', 'clean|weight=0.8', 'dirty|no c.', 'dirty|weight=0', 'dirty|weight=0.2', 'dirty|weight=0.4', 'dirty|weight=0.6', 'dirty|weight=0.8']).T fig, ax = plt.subplots(figsize=(12,5)) #ax.set_yscale('log') fig = sns.boxplot(data=taudiff, showfliers=False) ylims = fig.get_ylim() fig.set(ylim=ylims) fig = sns.stripplot(data=taudiff, jitter=True, color='.3') plt.xticks(rotation=45) plt.tight_layout() plt.show()
- Now on the first glance with a linear y-scale the correction by weights
seemed to work with
w=0.4
, but we have to look at the log plot and see that this correction is not yet sufficient:taudiff = pd.DataFrame(data=[clean_v1_taudiff, clean_00_taudiff, clean_02_taudiff, clean_04_taudiff, clean_06_taudiff, clean_08_taudiff, dirty_04_taudiff, dirty_v1_taudiff], index=['clean|no c.', 'clean|weight=0', 'clean|weight=0.2', 'clean|weight=0.4', 'clean|weight=0.6', 'clean|weight=0.8', 'dirty|weight=0.4', 'dirty|no c.']).T fig, ax = plt.subplots(figsize=(9,6)) ax.set_yscale('log') fig = sns.boxplot(data=taudiff, showfliers=False) ylims = fig.get_ylim() fig.set(ylim=ylims) fig = sns.stripplot(data=taudiff, jitter=True, color='.3') plt.xticks(rotation=45) plt.tight_layout() plt.show()
- While we are at it let’s look at some subsamples of the data:
- Here are only the clean plots:
- Here are the clean controls and the dirty data with the best correction so
far (
w=0.4
) and the dirty data without correction - What are learnings so far?
- I need to optimize the correlation speed, e.g. by implementing the Cython version of the tttr2xfcs correlation
- we have to investigate why the correction by weights doesn’t work
- Dominic actually had a look at the data and also looked at 2 component
fitting:
Fast fraction Slow fraction Weights txy1 (ms) A1 txy2 (ms) A2 0.0 0.2611 0.6973 25.4920 0.8459 0.2000 0.2222 0.8455 19.3756 0.5863 0.4000 0.0446 0.6774 3.5694 0.8409 0.6000 0.0492 0.5210 5.7868 0.9703 0.8000 0.0504 0.3787 9.1164 0.9561 DIRTY 0.0717 0.2569 12.0547 0.9740 CLEAN 0.0368 0.9924 283.0306 0.0368 - he used a 2 component model, varied A1 and A2, but kept alpha1-2 fixed at 1.0.
- the data suggest that reducing the weight, it gets better till 0.4,
whereafter some funny things happen with the data.
- we should analyze with random weights to see if there is an artefact with setting the weight specifically to 0 or 0.2.
- also it is surprising to see that 2 component fitting works so well.
- it is interesting to see that A1 gets larger for txy1 for smaller weights, showing this component is becoming enriched which is good (until 0.0 which is strange) and conversely for A2
- FROM HINDSIGHT: Dominic used a 2D fit here - but we have a 3D situation here and this table is so far not reproducible in 3D with equation 1B
2.5.8 Experiment 2a: Update packages and Correlate all_clean_ptu
on Jupyter 1
- Make sure we are in the correct directory, also do a git log -3 to
document latest git commits
%cd /beegfs/ye53nis/drmed-git !git log -3
/beegfs/ye53nis/drmed-git commit dffd95906e760976dfdfd635b50cf056c8813ca3 Author: Apoplex <oligolex@vivaldi.net> Date: Wed Feb 9 23:24:34 2022 +0100 Fix memory leak by deleting variables 2 commit 298240ae97e683133071500ff83e0dbd2434883e Author: Apoplex <oligolex@vivaldi.net> Date: Wed Feb 9 23:20:32 2022 +0100 Fix memory leak by deleting variables commit b2987fdc6615e71118ce28f47bc5174109c72ff1 Author: Apoplex <oligolex@vivaldi.net> Date: Tue Feb 8 17:24:12 2022 +0100 Fix get_autocorrelation tttr2xfcs_with_weights
- Create directory where we want to save our correlations in
%mkdir /beegfs/ye53nis/saves/2022-02-08_correlate-all-clean-ptu/
- Install dividAndConquer as a Cython implementation to make tttr2xfcs a lot
faster. First, update all packages, because of a deprecated NumPy API
cd /beegfs/ye53nis/drmed-git/ # executed interactively: # conda env remove -n tf # conda activate tf # pip install numpy mlflow lmfit scikit-learn tensorflow matplotlib pandas # seaborn f csfiles multipletau cython # pip install cython --no-binary cython
(base) [ye53nis@login01 drmed-git]$ conda env remove -n tf Remove all packages in environment /home/ye53nis/.conda/envs/tf: (base) [ye53nis@login01 drmed-git]$ conda create -n tf jupyterlab pip Collecting package metadata (current_repodata.json): done Solving environment: done ==> WARNING: A newer version of conda exists. <== current version: 4.10.0 latest version: 4.11.0 Please update conda by running $ conda update -n base -c defaults conda ## Package Plan ## environment location: /home/ye53nis/.conda/envs/tf added / updated specs: - jupyterlab - pip The following packages will be downloaded: package | build ---------------------------|----------------- attrs-21.4.0 | pyhd3eb1b0_0 51 KB bleach-4.1.0 | pyhd3eb1b0_0 123 KB ca-certificates-2021.10.26 | h06a4308_2 115 KB certifi-2021.10.8 | py39h06a4308_2 151 KB cffi-1.15.0 | py39hd667e15_1 225 KB charset-normalizer-2.0.4 | pyhd3eb1b0_0 35 KB cryptography-36.0.0 | py39h9ce1e76_0 1.3 MB debugpy-1.5.1 | py39h295c915_0 1.7 MB decorator-5.1.1 | pyhd3eb1b0_0 12 KB idna-3.3 | pyhd3eb1b0_0 49 KB importlib-metadata-4.8.2 | py39h06a4308_0 39 KB importlib_metadata-4.8.2 | hd3eb1b0_0 12 KB ipykernel-6.4.1 | py39h06a4308_1 194 KB ipython-7.31.1 | py39h06a4308_0 1006 KB jedi-0.18.1 | py39h06a4308_1 982 KB jinja2-3.0.2 | pyhd3eb1b0_0 110 KB jsonschema-3.2.0 | pyhd3eb1b0_2 47 KB jupyter_client-7.1.2 | pyhd3eb1b0_0 93 KB jupyter_core-4.9.1 | py39h06a4308_0 75 KB jupyterlab-3.2.1 | pyhd3eb1b0_1 3.6 MB jupyterlab_server-2.10.2 | pyhd3eb1b0_1 48 KB matplotlib-inline-0.1.2 | pyhd3eb1b0_2 12 KB nbconvert-6.3.0 | py39h06a4308_0 488 KB ncurses-6.3 | h7f8727e_2 782 KB notebook-6.4.6 | py39h06a4308_0 4.2 MB openssl-1.1.1m | h7f8727e_0 2.5 MB packaging-21.3 | pyhd3eb1b0_0 36 KB pandocfilters-1.5.0 | pyhd3eb1b0_0 11 KB parso-0.8.3 | pyhd3eb1b0_0 70 KB pip-21.2.4 | py39h06a4308_0 1.8 MB prometheus_client-0.13.1 | pyhd3eb1b0_0 47 KB prompt-toolkit-3.0.20 | pyhd3eb1b0_0 259 KB pycparser-2.21 | pyhd3eb1b0_0 94 KB pygments-2.11.2 | pyhd3eb1b0_0 759 KB pyopenssl-22.0.0 | pyhd3eb1b0_0 50 KB pyparsing-3.0.4 | pyhd3eb1b0_0 81 KB pyrsistent-0.18.0 | py39heee7806_0 94 KB python-3.9.7 | h12debd9_1 18.6 MB pytz-2021.3 | pyhd3eb1b0_0 171 KB pyzmq-22.3.0 | py39h295c915_2 470 KB readline-8.1.2 | h7f8727e_1 354 KB requests-2.27.1 | pyhd3eb1b0_0 54 KB send2trash-1.8.0 | pyhd3eb1b0_1 19 KB setuptools-58.0.4 | py39h06a4308_0 790 KB sqlite-3.37.2 | hc218d9a_0 1008 KB tk-8.6.11 | h1ccaba5_0 3.0 MB traitlets-5.1.1 | pyhd3eb1b0_0 84 KB tzdata-2021e | hda174b7_0 112 KB urllib3-1.26.8 | pyhd3eb1b0_0 106 KB wcwidth-0.2.5 | pyhd3eb1b0_0 26 KB wheel-0.37.1 | pyhd3eb1b0_0 33 KB zipp-3.7.0 | pyhd3eb1b0_0 12 KB zlib-1.2.11 | h7f8727e_4 108 KB ------------------------------------------------------------ Total: 46.0 MB The following NEW packages will be INSTALLED: _libgcc_mutex pkgs/main/linux-64::_libgcc_mutex-0.1-main _openmp_mutex pkgs/main/linux-64::_openmp_mutex-4.5-1_gnu anyio pkgs/main/linux-64::anyio-2.2.0-py39h06a4308_1 argon2-cffi pkgs/main/linux-64::argon2-cffi-20.1.0-py39h27cfd23_1 async_generator pkgs/main/noarch::async_generator-1.10-pyhd3eb1b0_0 attrs pkgs/main/noarch::attrs-21.4.0-pyhd3eb1b0_0 babel pkgs/main/noarch::babel-2.9.1-pyhd3eb1b0_0 backcall pkgs/main/noarch::backcall-0.2.0-pyhd3eb1b0_0 bleach pkgs/main/noarch::bleach-4.1.0-pyhd3eb1b0_0 brotlipy pkgs/main/linux-64::brotlipy-0.7.0-py39h27cfd23_1003 ca-certificates pkgs/main/linux-64::ca-certificates-2021.10.26-h06a4308_2 certifi pkgs/main/linux-64::certifi-2021.10.8-py39h06a4308_2 cffi pkgs/main/linux-64::cffi-1.15.0-py39hd667e15_1 charset-normalizer pkgs/main/noarch::charset-normalizer-2.0.4-pyhd3eb1b0_0 cryptography pkgs/main/linux-64::cryptography-36.0.0-py39h9ce1e76_0 debugpy pkgs/main/linux-64::debugpy-1.5.1-py39h295c915_0 decorator pkgs/main/noarch::decorator-5.1.1-pyhd3eb1b0_0 defusedxml pkgs/main/noarch::defusedxml-0.7.1-pyhd3eb1b0_0 entrypoints pkgs/main/linux-64::entrypoints-0.3-py39h06a4308_0 idna pkgs/main/noarch::idna-3.3-pyhd3eb1b0_0 importlib-metadata pkgs/main/linux-64::importlib-metadata-4.8.2-py39h06a4308_0 importlib_metadata pkgs/main/noarch::importlib_metadata-4.8.2-hd3eb1b0_0 ipykernel pkgs/main/linux-64::ipykernel-6.4.1-py39h06a4308_1 ipython pkgs/main/linux-64::ipython-7.31.1-py39h06a4308_0 ipython_genutils pkgs/main/noarch::ipython_genutils-0.2.0-pyhd3eb1b0_1 jedi pkgs/main/linux-64::jedi-0.18.1-py39h06a4308_1 jinja2 pkgs/main/noarch::jinja2-3.0.2-pyhd3eb1b0_0 json5 pkgs/main/noarch::json5-0.9.6-pyhd3eb1b0_0 jsonschema pkgs/main/noarch::jsonschema-3.2.0-pyhd3eb1b0_2 jupyter_client pkgs/main/noarch::jupyter_client-7.1.2-pyhd3eb1b0_0 jupyter_core pkgs/main/linux-64::jupyter_core-4.9.1-py39h06a4308_0 jupyter_server pkgs/main/linux-64::jupyter_server-1.4.1-py39h06a4308_0 jupyterlab pkgs/main/noarch::jupyterlab-3.2.1-pyhd3eb1b0_1 jupyterlab_pygmen~ pkgs/main/noarch::jupyterlab_pygments-0.1.2-py_0 jupyterlab_server pkgs/main/noarch::jupyterlab_server-2.10.2-pyhd3eb1b0_1 ld_impl_linux-64 pkgs/main/linux-64::ld_impl_linux-64-2.35.1-h7274673_9 libffi pkgs/main/linux-64::libffi-3.3-he6710b0_2 libgcc-ng pkgs/main/linux-64::libgcc-ng-9.3.0-h5101ec6_17 libgomp pkgs/main/linux-64::libgomp-9.3.0-h5101ec6_17 libsodium pkgs/main/linux-64::libsodium-1.0.18-h7b6447c_0 libstdcxx-ng pkgs/main/linux-64::libstdcxx-ng-9.3.0-hd4cf53a_17 markupsafe pkgs/main/linux-64::markupsafe-2.0.1-py39h27cfd23_0 matplotlib-inline pkgs/main/noarch::matplotlib-inline-0.1.2-pyhd3eb1b0_2 mistune pkgs/main/linux-64::mistune-0.8.4-py39h27cfd23_1000 nbclassic pkgs/main/noarch::nbclassic-0.2.6-pyhd3eb1b0_0 nbclient pkgs/main/noarch::nbclient-0.5.3-pyhd3eb1b0_0 nbconvert pkgs/main/linux-64::nbconvert-6.3.0-py39h06a4308_0 nbformat pkgs/main/noarch::nbformat-5.1.3-pyhd3eb1b0_0 ncurses pkgs/main/linux-64::ncurses-6.3-h7f8727e_2 nest-asyncio pkgs/main/noarch::nest-asyncio-1.5.1-pyhd3eb1b0_0 notebook pkgs/main/linux-64::notebook-6.4.6-py39h06a4308_0 openssl pkgs/main/linux-64::openssl-1.1.1m-h7f8727e_0 packaging pkgs/main/noarch::packaging-21.3-pyhd3eb1b0_0 pandocfilters pkgs/main/noarch::pandocfilters-1.5.0-pyhd3eb1b0_0 parso pkgs/main/noarch::parso-0.8.3-pyhd3eb1b0_0 pexpect pkgs/main/noarch::pexpect-4.8.0-pyhd3eb1b0_3 pickleshare pkgs/main/noarch::pickleshare-0.7.5-pyhd3eb1b0_1003 pip pkgs/main/linux-64::pip-21.2.4-py39h06a4308_0 prometheus_client pkgs/main/noarch::prometheus_client-0.13.1-pyhd3eb1b0_0 prompt-toolkit pkgs/main/noarch::prompt-toolkit-3.0.20-pyhd3eb1b0_0 ptyprocess pkgs/main/noarch::ptyprocess-0.7.0-pyhd3eb1b0_2 pycparser pkgs/main/noarch::pycparser-2.21-pyhd3eb1b0_0 pygments pkgs/main/noarch::pygments-2.11.2-pyhd3eb1b0_0 pyopenssl pkgs/main/noarch::pyopenssl-22.0.0-pyhd3eb1b0_0 pyparsing pkgs/main/noarch::pyparsing-3.0.4-pyhd3eb1b0_0 pyrsistent pkgs/main/linux-64::pyrsistent-0.18.0-py39heee7806_0 pysocks pkgs/main/linux-64::pysocks-1.7.1-py39h06a4308_0 python pkgs/main/linux-64::python-3.9.7-h12debd9_1 python-dateutil pkgs/main/noarch::python-dateutil-2.8.2-pyhd3eb1b0_0 pytz pkgs/main/noarch::pytz-2021.3-pyhd3eb1b0_0 pyzmq pkgs/main/linux-64::pyzmq-22.3.0-py39h295c915_2 readline pkgs/main/linux-64::readline-8.1.2-h7f8727e_1 requests pkgs/main/noarch::requests-2.27.1-pyhd3eb1b0_0 send2trash pkgs/main/noarch::send2trash-1.8.0-pyhd3eb1b0_1 setuptools pkgs/main/linux-64::setuptools-58.0.4-py39h06a4308_0 six pkgs/main/noarch::six-1.16.0-pyhd3eb1b0_0 sniffio pkgs/main/linux-64::sniffio-1.2.0-py39h06a4308_1 sqlite pkgs/main/linux-64::sqlite-3.37.2-hc218d9a_0 terminado pkgs/main/linux-64::terminado-0.9.4-py39h06a4308_0 testpath pkgs/main/noarch::testpath-0.5.0-pyhd3eb1b0_0 tk pkgs/main/linux-64::tk-8.6.11-h1ccaba5_0 tornado pkgs/main/linux-64::tornado-6.1-py39h27cfd23_0 traitlets pkgs/main/noarch::traitlets-5.1.1-pyhd3eb1b0_0 tzdata pkgs/main/noarch::tzdata-2021e-hda174b7_0 urllib3 pkgs/main/noarch::urllib3-1.26.8-pyhd3eb1b0_0 wcwidth pkgs/main/noarch::wcwidth-0.2.5-pyhd3eb1b0_0 webencodings pkgs/main/linux-64::webencodings-0.5.1-py39h06a4308_1 wheel pkgs/main/noarch::wheel-0.37.1-pyhd3eb1b0_0 xz pkgs/main/linux-64::xz-5.2.5-h7b6447c_0 zeromq pkgs/main/linux-64::zeromq-4.3.4-h2531618_0 zipp pkgs/main/noarch::zipp-3.7.0-pyhd3eb1b0_0 zlib pkgs/main/linux-64::zlib-1.2.11-h7f8727e_4 Proceed ([y]/n)? y Downloading and Extracting Packages send2trash-1.8.0 | 19 KB | ######################################################################### | 100% tk-8.6.11 | 3.0 MB | ######################################################################### | 100% pytz-2021.3 | 171 KB | ######################################################################### | 100% prompt-toolkit-3.0.2 | 259 KB | ######################################################################### | 100% python-3.9.7 | 18.6 MB | ####################################################7 | 72% python-3.9.7 | 18.6 MB | ######################################################################### | 100% importlib-metadata-4 | 39 KB | ######################################################################### | 100% ipykernel-6.4.1 | 194 KB | ######################################################################### | 100% wcwidth-0.2.5 | 26 KB | ######################################################################### | 100% prometheus_client-0. | 47 KB | ######################################################################### | 100% jupyterlab-3.2.1 | 3.6 MB | ######################################################################### | 100% decorator-5.1.1 | 12 KB | ######################################################################### | 100% packaging-21.3 | 36 KB | ######################################################################### | 100% ca-certificates-2021 | 115 KB | ######################################################################### | 100% zlib-1.2.11 | 108 KB | ######################################################################### | 100% readline-8.1.2 | 354 KB | ######################################################################### | 100% wheel-0.37.1 | 33 KB | ######################################################################### | 100% openssl-1.1.1m | 2.5 MB | ######################################################################### | 100% ipython-7.31.1 | 1006 KB | ######################################################################### | 100% idna-3.3 | 49 KB | ######################################################################### | 100% tzdata-2021e | 112 KB | ######################################################################### | 100% urllib3-1.26.8 | 106 KB | ######################################################################### | 100% attrs-21.4.0 | 51 KB | ######################################################################### | 100% jupyter_client-7.1.2 | 93 KB | ######################################################################### | 100% jupyterlab_server-2. | 48 KB | ######################################################################### | 100% zipp-3.7.0 | 12 KB | ######################################################################### | 100% importlib_metadata-4 | 12 KB | ######################################################################### | 100% cffi-1.15.0 | 225 KB | ######################################################################### | 100% traitlets-5.1.1 | 84 KB | ######################################################################### | 100% pyzmq-22.3.0 | 470 KB | ######################################################################### | 100% parso-0.8.3 | 70 KB | ######################################################################### | 100% ncurses-6.3 | 782 KB | ######################################################################### | 100% notebook-6.4.6 | 4.2 MB | ######################################################################### | 100% jinja2-3.0.2 | 110 KB | ######################################################################### | 100% jsonschema-3.2.0 | 47 KB | ######################################################################### | 100% pandocfilters-1.5.0 | 11 KB | ######################################################################### | 100% sqlite-3.37.2 | 1008 KB | ######################################################################### | 100% charset-normalizer-2 | 35 KB | ######################################################################### | 100% pyparsing-3.0.4 | 81 KB | ######################################################################### | 100% pycparser-2.21 | 94 KB | ######################################################################### | 100% pyopenssl-22.0.0 | 50 KB | ######################################################################### | 100% jedi-0.18.1 | 982 KB | ######################################################################### | 100% pyrsistent-0.18.0 | 94 KB | ######################################################################### | 100% matplotlib-inline-0. | 12 KB | ######################################################################### | 100% pip-21.2.4 | 1.8 MB | ######################################################################### | 100% _libgcc_mutex-0.1 | 3 KB | ######################################################################### | 100% debugpy-1.5.1 | 1.7 MB | ######################################################################### | 100% setuptools-58.0.4 | 790 KB | ######################################################################### | 100% certifi-2021.10.8 | 151 KB | ######################################################################### | 100% requests-2.27.1 | 54 KB | ######################################################################### | 100% bleach-4.1.0 | 123 KB | ######################################################################### | 100% nbconvert-6.3.0 | 488 KB | ######################################################################### | 100% jupyter_core-4.9.1 | 75 KB | ######################################################################### | 100% pygments-2.11.2 | 759 KB | ######################################################################### | 100% cryptography-36.0.0 | 1.3 MB | ######################################################################### | 100% Preparing transaction: done Verifying transaction: done Executing transaction: done # # To activate this environment, use # # $ conda activate tf # # To deactivate an active environment, use # # $ conda deactivate (base) [ye53nis@login01 drmed-git]$ conda activate tf (tf) [ye53nis@login01 drmed-git]$ pip install numpy mlflow lmfit scikit-learn tensorflow matplotlib pandas seaborn f csfiles multipletau Collecting numpy Downloading numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB) |████████████████████████████████| 16.8 MB 6.6 MB/s Collecting mlflow Downloading mlflow-1.23.1-py3-none-any.whl (15.6 MB) |████████████████████████████████| 15.6 MB 36.5 MB/s Collecting lmfit Downloading lmfit-1.0.3.tar.gz (292 kB) |████████████████████████████████| 292 kB 15.8 MB/s Collecting scikit-learn Downloading scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.4 MB) |████████████████████████████████| 26.4 MB 35.6 MB/s Collecting tensorflow Downloading tensorflow-2.8.0-cp39-cp39-manylinux2010_x86_64.whl (497.6 MB) |████████████████████████████████| 497.6 MB 15 kB/s Collecting matplotlib Downloading matplotlib-3.5.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (11.2 MB) |████████████████████████████████| 11.2 MB 34.3 MB/s Collecting pandas Downloading pandas-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.7 MB) |████████████████████████████████| 11.7 MB 35.3 MB/s Collecting seaborn Downloading seaborn-0.11.2-py3-none-any.whl (292 kB) |████████████████████████████████| 292 kB 36.2 MB/s Collecting fcsfiles Downloading fcsfiles-2022.2.2-py3-none-any.whl (9.6 kB) Collecting multipletau Using cached multipletau-0.3.3-py2.py3-none-any.whl (12 kB) Collecting sqlparse>=0.3.1 Downloading sqlparse-0.4.2-py3-none-any.whl (42 kB) |████████████████████████████████| 42 kB 1.3 MB/s Collecting querystring-parser Using cached querystring_parser-1.2.4-py2.py3-none-any.whl (7.9 kB) Collecting alembic Downloading alembic-1.7.6-py3-none-any.whl (210 kB) |████████████████████████████████| 210 kB 41.2 MB/s Collecting databricks-cli>=0.8.7 Downloading databricks-cli-0.16.4.tar.gz (58 kB) |████████████████████████████████| 58 kB 7.0 MB/s Requirement already satisfied: importlib-metadata!=4.7.0,>=3.7.0 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site- packages (from mlflow) (4.8.2) Requirement already satisfied: pytz in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from mlflow) (2021. 3) Collecting sqlalchemy Downloading SQLAlchemy-1.4.31-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014 _x86_64.whl (1.6 MB) |████████████████████████████████| 1.6 MB 33.9 MB/s Requirement already satisfied: entrypoints in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from mlflow) (0.3) Requirement already satisfied: requests>=2.17.3 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from ml flow) (2.27.1) Collecting Flask Downloading Flask-2.0.2-py3-none-any.whl (95 kB) |████████████████████████████████| 95 kB 4.8 MB/s Collecting gitpython>=2.1.0 Downloading GitPython-3.1.26-py3-none-any.whl (180 kB) |████████████████████████████████| 180 kB 43.3 MB/s Collecting click>=7.0 Downloading click-8.0.3-py3-none-any.whl (97 kB) |████████████████████████████████| 97 kB 7.1 MB/s Collecting protobuf>=3.7.0 Downloading protobuf-3.19.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB) |████████████████████████████████| 1.1 MB 35.5 MB/s Collecting docker>=4.0.0 Downloading docker-5.0.3-py2.py3-none-any.whl (146 kB) |████████████████████████████████| 146 kB 43.2 MB/s Collecting pyyaml>=5.1 Downloading PyYAML-6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64 .whl (661 kB) |████████████████████████████████| 661 kB 36.9 MB/s Collecting scipy Downloading scipy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (42.1 MB) |████████████████████████████████| 42.1 MB 33.3 MB/s Collecting cloudpickle Downloading cloudpickle-2.0.0-py3-none-any.whl (25 kB) Requirement already satisfied: packaging in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from mlflow) ( 21.3) Collecting gunicorn Using cached gunicorn-20.1.0-py3-none-any.whl (79 kB) Collecting prometheus-flask-exporter Downloading prometheus_flask_exporter-0.18.7-py3-none-any.whl (17 kB) Collecting asteval>=0.9.22 Downloading asteval-0.9.26.tar.gz (40 kB) |████████████████████████████████| 40 kB 4.2 MB/s Collecting uncertainties>=3.0.1 Using cached uncertainties-3.1.6-py2.py3-none-any.whl (98 kB) Collecting joblib>=0.11 Downloading joblib-1.1.0-py2.py3-none-any.whl (306 kB) |████████████████████████████████| 306 kB 37.4 MB/s Collecting threadpoolctl>=2.0.0 Downloading threadpoolctl-3.1.0-py3-none-any.whl (14 kB) Requirement already satisfied: setuptools in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from tensorfl ow) (58.0.4) Collecting keras-preprocessing>=1.1.1 Using cached Keras_Preprocessing-1.1.2-py2.py3-none-any.whl (42 kB) Collecting google-pasta>=0.1.1 Using cached google_pasta-0.2.0-py3-none-any.whl (57 kB) Collecting termcolor>=1.1.0 Using cached termcolor-1.1.0-py3-none-any.whl Collecting tensorflow-io-gcs-filesystem>=0.23.1 Downloading tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB) |████████████████████████████████| 2.1 MB 35.6 MB/s Collecting gast>=0.2.1 Downloading gast-0.5.3-py3-none-any.whl (19 kB) Collecting wrapt>=1.11.0 Downloading wrapt-1.13.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_ 64.whl (81 kB) |████████████████████████████████| 81 kB 11.3 MB/s Collecting h5py>=2.9.0 Downloading h5py-3.6.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (4.5 MB) |████████████████████████████████| 4.5 MB 41.8 MB/s Requirement already satisfied: six>=1.12.0 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from tensorf low) (1.16.0) Collecting opt-einsum>=2.3.2 Using cached opt_einsum-3.3.0-py3-none-any.whl (65 kB) Collecting tf-estimator-nightly==2.8.0.dev2021122109 Downloading tf_estimator_nightly-2.8.0.dev2021122109-py2.py3-none-any.whl (462 kB) |████████████████████████████████| 462 kB 37.0 MB/s Collecting typing-extensions>=3.6.6 Downloading typing_extensions-4.0.1-py3-none-any.whl (22 kB) Collecting tensorboard<2.9,>=2.8 Downloading tensorboard-2.8.0-py3-none-any.whl (5.8 MB) |████████████████████████████████| 5.8 MB 35.0 MB/s Collecting grpcio<2.0,>=1.24.3 Downloading grpcio-1.43.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB) |████████████████████████████████| 4.1 MB 34.1 MB/s Collecting astunparse>=1.6.0 Using cached astunparse-1.6.3-py2.py3-none-any.whl (12 kB) Collecting flatbuffers>=1.12 Downloading flatbuffers-2.0-py2.py3-none-any.whl (26 kB) Collecting libclang>=9.0.1 Downloading libclang-13.0.0-py2.py3-none-manylinux1_x86_64.whl (14.5 MB) |████████████████████████████████| 14.5 MB 31.0 MB/s Collecting absl-py>=0.4.0 Downloading absl_py-1.0.0-py3-none-any.whl (126 kB) |████████████████████████████████| 126 kB 38.1 MB/s Collecting keras<2.9,>=2.8.0rc0 Downloading keras-2.8.0-py2.py3-none-any.whl (1.4 MB) |████████████████████████████████| 1.4 MB 37.0 MB/s Collecting pillow>=6.2.0 Downloading Pillow-9.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB) |████████████████████████████████| 4.3 MB 38.4 MB/s Requirement already satisfied: python-dateutil>=2.7 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (fro m matplotlib) (2.8.2) Collecting fonttools>=4.22.0 Downloading fonttools-4.29.1-py3-none-any.whl (895 kB) |████████████████████████████████| 895 kB 45.3 MB/s Requirement already satisfied: pyparsing>=2.2.1 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from ma tplotlib) (3.0.4) Collecting kiwisolver>=1.0.1 Downloading kiwisolver-1.3.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB) |████████████████████████████████| 1.6 MB 33.7 MB/s Collecting cycler>=0.10 Downloading cycler-0.11.0-py3-none-any.whl (6.4 kB) Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from astunparse>=1.6.0->tensorflow) (0.37.1) Collecting tabulate>=0.7.7 Using cached tabulate-0.8.9-py3-none-any.whl (25 kB) Collecting websocket-client>=0.32.0 Downloading websocket_client-1.2.3-py3-none-any.whl (53 kB) |████████████████████████████████| 53 kB 1.5 MB/s Collecting gitdb<5,>=4.0.1 Downloading gitdb-4.0.9-py3-none-any.whl (63 kB) |████████████████████████████████| 63 kB 1.4 MB/s Collecting smmap<6,>=3.0.1 Downloading smmap-5.0.0-py3-none-any.whl (24 kB) Requirement already satisfied: zipp>=0.5 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from importlib -metadata!=4.7.0,>=3.7.0->mlflow) (3.7.0) Requirement already satisfied: idna<4,>=2.5 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from reques ts>=2.17.3->mlflow) (3.3) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (fr om requests>=2.17.3->mlflow) (1.26.8) Requirement already satisfied: certifi>=2017.4.17 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from requests>=2.17.3->mlflow) (2021.10.8) Requirement already satisfied: charset-normalizer~=2.0.0 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from requests>=2.17.3->mlflow) (2.0.4) Collecting tensorboard-data-server<0.7.0,>=0.6.0 Using cached tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl (4.9 MB) Collecting werkzeug>=0.11.15 Downloading Werkzeug-2.0.3-py3-none-any.whl (289 kB) |████████████████████████████████| 289 kB 42.0 MB/s Collecting google-auth<3,>=1.6.3 Downloading google_auth-2.6.0-py2.py3-none-any.whl (156 kB) |████████████████████████████████| 156 kB 46.0 MB/s Collecting tensorboard-plugin-wit>=1.6.0 Downloading tensorboard_plugin_wit-1.8.1-py3-none-any.whl (781 kB) |████████████████████████████████| 781 kB 34.7 MB/s Collecting markdown>=2.6.8 Downloading Markdown-3.3.6-py3-none-any.whl (97 kB) |████████████████████████████████| 97 kB 6.1 MB/s Collecting google-auth-oauthlib<0.5,>=0.4.1 Downloading google_auth_oauthlib-0.4.6-py2.py3-none-any.whl (18 kB) Collecting cachetools<6.0,>=2.0.0 Downloading cachetools-5.0.0-py3-none-any.whl (9.1 kB) Collecting rsa<5,>=3.1.4 Downloading rsa-4.8-py3-none-any.whl (39 kB) Collecting pyasn1-modules>=0.2.1 Using cached pyasn1_modules-0.2.8-py2.py3-none-any.whl (155 kB) Collecting requests-oauthlib>=0.7.0 Downloading requests_oauthlib-1.3.1-py2.py3-none-any.whl (23 kB) Collecting pyasn1<0.5.0,>=0.4.6 Using cached pyasn1-0.4.8-py2.py3-none-any.whl (77 kB) Collecting oauthlib>=3.0.0 Downloading oauthlib-3.2.0-py3-none-any.whl (151 kB) |████████████████████████████████| 151 kB 41.0 MB/s Collecting future Using cached future-0.18.2-py3-none-any.whl Collecting Mako Downloading Mako-1.1.6-py2.py3-none-any.whl (75 kB) |████████████████████████████████| 75 kB 3.8 MB/s Collecting greenlet!=0.4.17 Downloading greenlet-1.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (153 kB) |████████████████████████████████| 153 kB 44.8 MB/s Requirement already satisfied: Jinja2>=3.0 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from Flask-> mlflow) (3.0.2) Collecting itsdangerous>=2.0 Using cached itsdangerous-2.0.1-py3-none-any.whl (18 kB) Requirement already satisfied: MarkupSafe>=2.0 in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from Jin ja2>=3.0->Flask->mlflow) (2.0.1) Requirement already satisfied: prometheus-client in /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages (from p rometheus-flask-exporter->mlflow) (0.13.1) Building wheels for collected packages: lmfit, asteval, databricks-cli Building wheel for lmfit (setup.py) ... done Created wheel for lmfit: filename=lmfit-1.0.3-py3-none-any.whl size=84402 sha256=eeec89959143b4c2a2cb11c2a3e94314e fe83e19494f90b784e75ec988670aad Stored in directory: /home/ye53nis/.cache/pip/wheels/76/f4/32/c336957bfd694c7746f4df19b74e08d918ada688fe1349cca2 Building wheel for asteval (setup.py) ... done Created wheel for asteval: filename=asteval-0.9.26-py3-none-any.whl size=17648 sha256=cf0f0e455c27d314babbe54d3e60 886323c9dc39f51f6e6f9024972a201ff9d1 Stored in directory: /home/ye53nis/.cache/pip/wheels/2f/e1/8d/9c9d29d91b8e6e79c0de5d06a09b5e69b0e4e390fa9765a449 Building wheel for databricks-cli (setup.py) ... done Created wheel for databricks-cli: filename=databricks_cli-0.16.4-py3-none-any.whl size=106877 sha256=71c0798975bca 4589dde21e027bf35118ae80567838d55515827123c6b3bb93a Stored in directory: /home/ye53nis/.cache/pip/wheels/e2/12/4a/3df4a44571c7f53c075a50e850162af541ea24b2a689d517ac Successfully built lmfit asteval databricks-cli Installing collected packages: pyasn1, rsa, pyasn1-modules, oauthlib, cachetools, werkzeug, smmap, requests-oauthlib , itsdangerous, greenlet, google-auth, click, websocket-client, tensorboard-plugin-wit, tensorboard-data-server, tab ulate, sqlalchemy, protobuf, pillow, numpy, markdown, Mako, kiwisolver, grpcio, google-auth-oauthlib, gitdb, future, fonttools, Flask, cycler, absl-py, wrapt, uncertainties, typing-extensions, threadpoolctl, tf-estimator-nightly, te rmcolor, tensorflow-io-gcs-filesystem, tensorboard, sqlparse, scipy, querystring-parser, pyyaml, prometheus-flask-ex porter, pandas, opt-einsum, matplotlib, libclang, keras-preprocessing, keras, joblib, h5py, gunicorn, google-pasta, gitpython, gast, flatbuffers, docker, databricks-cli, cloudpickle, astunparse, asteval, alembic, tensorflow, seaborn , scikit-learn, multipletau, mlflow, lmfit, fcsfiles Successfully installed Flask-2.0.2 Mako-1.1.6 absl-py-1.0.0 alembic-1.7.6 asteval-0.9.26 astunparse-1.6.3 cachetools -5.0.0 click-8.0.3 cloudpickle-2.0.0 cycler-0.11.0 databricks-cli-0.16.4 docker-5.0.3 fcsfiles-2022.2.2 flatbuffers- 2.0 fonttools-4.29.1 future-0.18.2 gast-0.5.3 gitdb-4.0.9 gitpython-3.1.26 google-auth-2.6.0 google-auth-oauthlib-0. 4.6 google-pasta-0.2.0 greenlet-1.1.2 grpcio-1.43.0 gunicorn-20.1.0 h5py-3.6.0 itsdangerous-2.0.1 joblib-1.1.0 keras -2.8.0 keras-preprocessing-1.1.2 kiwisolver-1.3.2 libclang-13.0.0 lmfit-1.0.3 markdown-3.3.6 matplotlib-3.5.1 mlflow -1.23.1 multipletau-0.3.3 numpy-1.22.2 oauthlib-3.2.0 opt-einsum-3.3.0 pandas-1.4.0 pillow-9.0.1 prometheus-flask-ex porter-0.18.7 protobuf-3.19.4 pyasn1-0.4.8 pyasn1-modules-0.2.8 pyyaml-6.0 querystring-parser-1.2.4 requests-oauthli b-1.3.1 rsa-4.8 scikit-learn-1.0.2 scipy-1.8.0 seaborn-0.11.2 smmap-5.0.0 sqlalchemy-1.4.31 sqlparse-0.4.2 tabulate- 0.8.9 tensorboard-2.8.0 tensorboard-data-server-0.6.1 tensorboard-plugin-wit-1.8.1 tensorflow-2.8.0 tensorflow-io-gc s-filesystem-0.24.0 termcolor-1.1.0 tf-estimator-nightly-2.8.0.dev2021122109 threadpoolctl-3.1.0 typing-extensions-4 .0.1 uncertainties-3.1.6 websocket-client-1.2.3 werkzeug-2.0.3 wrapt-1.13.3 (tf) [ye53nis@login01 applications]$ pip install cython --no-binary cython Collecting cython Downloading Cython-0.29.27.tar.gz (2.1 MB) |████████████████████████████████| 2.1 MB 6.7 MB/s Skipping wheel build for cython, due to binaries being disabled for it. Installing collected packages: cython Running setup.py install for cython ... done Successfully installed cython-0.29.27
- Now Install dividAndConquer as a Cython implementation
cd /beegfs/ye53nis/drmed-git/src/fluotracify/applications cat _correlate_cython_setup.py python _correlate_cython_setup.py build_ext --inplace
(tf) [ye53nis@login01 applications]$ cd /beegfs/ye53nis/drmed-git/src/fluotracify/applications (tf) [ye53nis@login01 applications]$ cat _correlate_cython_setup.py import setuptools from Cython.Build import cythonize import numpy as np setuptools.setup( ext_modules=cythonize("correlate_cython.pyx", compiler_directives={'language_level': '3'}), include_dirs=[np.get_include()] ) (tf) [ye53nis@login01 applications]$ python _correlate_cython_setup.py build_ext --inplace running build_ext copying build/lib.linux-x86_64-3.9/correlate_cython.cpython-39-x86_64-linux-gnu.so -> (tf) [ye53nis@login01 applications]$
- Load all needed modules
import logging import os import sys import tracemalloc from pathlib import Path from pprint import pprint from tensorflow.keras.optimizers import Adam from mlflow.keras import load_model FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import corr_fit_object as cfo from fluotracify.training import build_model as bm logging.basicConfig(filename='data/exp-220120-correlate-ptu/2022-02-08_correlate-all-clean-ptu.log', filemode='w', format='%(asctime)s - %(message)s', force=True, level=logging.DEBUG)
2022-02-10 01:15:43.026025: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-02-10 01:15:43.026059: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
- Define variables and prepare model. Since the first run I changed the
folder names assigned to
path
, because I noticed that I mixed up the experiments I wanted to analyse: the “class ParameterClass(): """Stores parameters for correlation """ def __init__(self): # Where the data is stored. self.data = [] self.objectRef = [] self.subObjectRef = [] self.colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black'] self.numOfLoaded = 0 # very fast from Ncasc ~ 14 onwards self.NcascStart = 0 self.NcascEnd = 30 # 25 self.Nsub = 6 # 6 self.photonLifetimeBin = 10 # used for photon decay self.photonCountBin = 1 # used for time series path = Path("../data/1911DD_atto+LUVs/all_clean_ptu") logged_model = 'file:///beegfs/ye53nis/drmed-git/data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model' mt_bin = 0.001 output_path = '/beegfs/ye53nis/saves/2022-02-08_correlate-all-clean-ptu/' par_obj = ParameterClass() loaded_model = load_model(logged_model, compile=False) loaded_model.compile(loss=bm.binary_ce_dice_loss(), optimizer=Adam(), metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9])) bm.prepare_model(loaded_model, [2**14, 2**13, 2**12, 2**15, 2**13])
2022-02-10 01:15:50.033533: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-02-10 01:15:50.033566: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-02-10 01:15:50.033596: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node154): /proc/driver/nvidia/version does not exist 2022-02-10 01:15:50.033828: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- Run experiment: Correlate
all_clean_ptu
of the AlexaFluor488 experiment on Jupyter 1. We want the following correlations:- clean trace → correlation via tttr2xfcs, and multipletau (bin=0.001)
correction=delete
→ correlation via tttr2xfcs, and multipletau (bin=0.001)correction=delete_and_shift
→ correlation via tttr2xfcs, and multipletau (bin=0.001)correction=weights-random
→ correlation via tttr2xfcscorrection=weights-1-pred
→ correlation via tttr2xfcsmt_bin = 0.001 def run_correlations(myfile): ptufile = cfo.PicoObject(myfile, par_obj) ptufile.getTimeSeries(photonCountBin=mt_bin, timeseries_name=f'us_{ptufile.name}_NOCORR') ptufile.getPhotonCountingStats(name=f'us_{ptufile.name}_NOCORR') for method in ['delete', 'delete_and_shift']: mt_name = f'us_{ptufile.name}_{method}' ptufile.getTimeSeries(timeseries_name=mt_name) ptufile.getPhotonCountingStats(name=mt_name) ptufile.predictTimeSeries(model=loaded_model, scaler='minmax', name=mt_name) ptufile.correctTCSPC(method=method, bin_after_correction=mt_bin, timeseries_name=mt_name) for weight in ['random', '1-pred']: weight_name = f'{ptufile.name}_weights_{weight}' ptufile.getTimeSeries(photonCountBin=1.0, timeseries_name=weight_name) ptufile.getPhotonCountingStats(name=weight_name) ptufile.predictTimeSeries(model=loaded_model, scaler='minmax', name=weight_name) ptufile.correctTCSPC(method='weights', weight=weight, timeseries_name=weight_name) for key in list(ptufile.trueTimeArr.keys()): if "_FORWEIGHTS" in key: ptufile.get_autocorrelation(method='tttr2xfcs_with_weights', name=key) else: ptufile.get_autocorrelation(method='tttr2xfcs', name=key) for key in list(ptufile.timeSeries.keys()): for k, i in ptufile.timeSeries[key].items(): if key.endswith(('_DELBIN', '_DELSHIFTBIN', '_NOCORR')): ptufile.get_autocorrelation(method='multipletau', name=(key, k)) for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key in list(ptufile.autoNorm[m].keys()): ptufile.save_autocorrelation(name=key, method=m, output_path=output_path) del ptufile def sizeof_fmt(num, suffix='B'): ''' by Fred Cirera, https://stackoverflow.com/a/1094933/1870254, modified''' for unit in ['','Ki','Mi','Gi','Ti','Pi','Ei','Zi']: if abs(num) < 1024.0: return "%3.1f %s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f %s%s" % (num, 'Yi', suffix) files = [path / f for f in os.listdir(path) if f.endswith('.ptu')] if len(files) == 0: raise FileNotFoundError('The path provided does not include any' ' .ptu files.') tracemalloc.start() tracemalloc_dict = {} tracemalloc_dict['baseline'] = tracemalloc.take_snapshot() for i, myfile in enumerate(files): if i < 2: print(i) run_correlations(myfile) tracemalloc_dict[f'{i}'] = tracemalloc.take_snapshot()
0 /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!", 1 /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!",
- According to log, the first run ended with an Error
[I 2022-01-22 21:32:42.402 ServerApp] AsyncIOLoopKernelRestarter: restarting kernel (1/5), keep random ports
Only 229 traces were analyzed.
tracemalloc_dict.keys()
dict_keys(['baseline', '0', '1'])
top_stats_base = tracemalloc_dict['baseline'].statistics("lineno") top_stats_0 = tracemalloc_dict['0'].statistics("lineno") top_stats_1 = tracemalloc_dict['1'].statistics("lineno") top_stats_comp = tracemalloc_dict['1'].compare_to(tracemalloc_dict['0'], "lineno") print("---------------------------------------------------------")
---------------------------------------------------------
[print(stat) for stat in top_stats_base[:10]] print("---------------------------------------------------------") [print(stat) for stat in top_stats_0[:10]] print("---------------------------------------------------------") [print(stat) for stat in top_stats_comp[:10]]
/home/ye53nis/.conda/envs/tf/lib/python3.9/codeop.py:143: size=225 B, count=2, average=112 B /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/IPython/core/interactiveshell.py:3377: size=120 B, count=1, average=120 B /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/IPython/core/interactiveshell.py:3371: size=96 B, count=3, average=32 B /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/IPython/core/interactiveshell.py:3441: size=64 B, count=1, average=64 B /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/IPython/core/compilerop.py:178: size=28 B, count=1, average=28 B --------------------------------------------------------- /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:424: size=431 MiB, count=34, average=12.7 MiB /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:732: size=107 MiB, count=4, average=26.6 MiB /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/numpy/lib/function_base.py:5131: size=87.5 MiB, count=10, average=8962 KiB /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:662: size=53.3 MiB, count=8, average=6817 KiB /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:134: size=26.6 MiB, count=2, average=13.3 MiB /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:132: size=26.6 MiB, count=2, average=13.3 MiB /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py:500: size=353 KiB, count=2037, average=177 B /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:550: size=257 KiB, count=9, average=28.6 KiB /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:556: size=257 KiB, count=12, average=21.4 KiB /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py:2110: size=235 KiB, count=2072, average=116 B --------------------------------------------------------- /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:424: size=855 MiB (+424 MiB), count=68 (+34), average=12.6 MiB /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:732: size=213 MiB (+107 MiB), count=8 (+4), average=26.7 MiB /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/numpy/lib/function_base.py:5131: size=171 MiB (+83.1 MiB), count=20 (+10), average=8737 KiB /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:662: size=107 MiB (+53.4 MiB), count=16 (+8), average=6828 KiB /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:134: size=53.3 MiB (+26.7 MiB), count=4 (+2), average=13.3 MiB /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:132: size=53.3 MiB (+26.7 MiB), count=4 (+2), average=13.3 MiB /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:556: size=513 KiB (+257 KiB), count=24 (+12), average=21.4 KiB /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:550: size=514 KiB (+256 KiB), count=17 (+8), average=30.2 KiB /home/ye53nis/.conda/envs/tf/lib/python3.9/tracemalloc.py:558: size=83.3 KiB (+83.2 KiB), count=1533 (+1532), average=56 B /beegfs/ye53nis/drmed-git/src/fluotracify/imports/ptu_utils.py:324: size=105 KiB (+28.2 KiB), count=1923 (+516), average=56 B
import linecache def display_top(snapshot, key_type='lineno', limit=10): snapshot = snapshot.filter_traces(( tracemalloc.Filter(False, "<frozen importlib._bootstrap>"), tracemalloc.Filter(False, "<unknown>"), )) top_stats = snapshot.statistics(key_type) print("Top %s lines" % limit) for index, stat in enumerate(top_stats[:limit], 1): frame = stat.traceback[0] print("#%s: %s:%s: %.1f KiB" % (index, frame.filename, frame.lineno, stat.size / 1024)) line = linecache.getline(frame.filename, frame.lineno).strip() if line: print(' %s' % line) other = top_stats[limit:] if other: size = sum(stat.size for stat in other) print("%s other: %.1f KiB" % (len(other), size / 1024)) total = sum(stat.size for stat in top_stats) print("Total allocated size: %.1f KiB" % (total / 1024)) display_top(tracemalloc_dict['1'])
Top 10 lines #1: /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:732: 218468.5 KiB photon_weights = np.zeros((subChanCorrected.shape[0], 2)) #2: /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/numpy/lib/function_base.py:5131: 174748.2 KiB new = arr[tuple(slobj)] #3: /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:662: 109240.8 KiB trueTimeCorrected = trueTimeCorrected[channelMask] #4: /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:134: 54620.3 KiB trueTimeArr = np.array([i for i in trueTimeArrFull #5: /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:132: 54620.3 KiB subChanArr = np.array([i for i in subChanArrFull #6: /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:424: 2441.8 KiB return np.array(photons_in_bin), np.array(bins_scale) #7: /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:550: 513.7 KiB predictions = model.predict(trace, verbose=0).flatten() #8: /beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py:556: 513.3 KiB self.timeSeries[name][f'{key}_PREPRO'] = trace.flatten().astype( #9: /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py:500: 352.8 KiB self._consumers = [] #10: /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py:2110: 234.7 KiB self._graph = g 606 other: 1929.5 KiB Total allocated size: 617683.8 KiB
mt_bin = 0.001 def run_correlations(myfile): ptufile = cfo.PicoObject(myfile, par_obj) ptufile.getTimeSeries(photonCountBin=mt_bin, timeseries_name=f'us_{ptufile.name}_NOCORR') ptufile.getPhotonCountingStats(name=f'us_{ptufile.name}_NOCORR') for method in ['delete', 'delete_and_shift']: mt_name = f'us_{ptufile.name}_{method}' ptufile.getTimeSeries(timeseries_name=mt_name) ptufile.getPhotonCountingStats(name=mt_name) ptufile.predictTimeSeries(model=loaded_model, scaler='minmax', name=mt_name) ptufile.correctTCSPC(method=method, bin_after_correction=mt_bin, timeseries_name=mt_name) for weight in ['random', '1-pred']: weight_name = f'{ptufile.name}_weights_{weight}' ptufile.getTimeSeries(photonCountBin=1.0, timeseries_name=weight_name) ptufile.getPhotonCountingStats(name=weight_name) ptufile.predictTimeSeries(model=loaded_model, scaler='minmax', name=weight_name) ptufile.correctTCSPC(method='weights', weight=weight, timeseries_name=weight_name) for key in list(ptufile.trueTimeArr.keys()): if "_FORWEIGHTS" in key: ptufile.get_autocorrelation(method='tttr2xfcs_with_weights', name=key) else: ptufile.get_autocorrelation(method='tttr2xfcs', name=key) for key in list(ptufile.timeSeries.keys()): for k, i in ptufile.timeSeries[key].items(): if key.endswith(('_DELBIN', '_DELSHIFTBIN', '_NOCORR')): ptufile.get_autocorrelation(method='multipletau', name=(key, k)) for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key in list(ptufile.autoNorm[m].keys()): ptufile.save_autocorrelation(name=key, method=m, output_path=output_path) del ptufile files = [path / f for f in os.listdir(path) if f.endswith('.ptu')] if len(files) == 0: raise FileNotFoundError('The path provided does not include any' ' .ptu files.') for i, myfile in enumerate(files): run_correlations(myfile)
/home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!",
2.5.9 Experiment 2b: Correlate all_dirty_ptu
on Jupyter 2
- Make sure we are in the correct directory, also do a git log -3 to
document latest git commits
%cd /beegfs/ye53nis/drmed-git !git log -3
/beegfs/ye53nis/drmed-git commit dffd95906e760976dfdfd635b50cf056c8813ca3 Author: Apoplex <oligolex@vivaldi.net> Date: Wed Feb 9 23:24:34 2022 +0100 Fix memory leak by deleting variables 2 commit 298240ae97e683133071500ff83e0dbd2434883e Author: Apoplex <oligolex@vivaldi.net> Date: Wed Feb 9 23:20:32 2022 +0100 Fix memory leak by deleting variables commit b2987fdc6615e71118ce28f47bc5174109c72ff1 Author: Apoplex <oligolex@vivaldi.net> Date: Tue Feb 8 17:24:12 2022 +0100 Fix get_autocorrelation tttr2xfcs_with_weights
- Create directory where we want to save our correlations in
%mkdir /beegfs/ye53nis/saves/2022-02-08_correlate-all-dirty-ptu/
- Installing dividAndConquer as a Cython implementation was already done in
Experiment 2a
- Load all needed modules
import logging import os import sys from pathlib import Path from pprint import pprint from tensorflow.keras.optimizers import Adam from mlflow.keras import load_model FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import corr_fit_object as cfo from fluotracify.training import build_model as bm logging.basicConfig(filename='data/exp-220120-correlate-ptu/2022-02-08_correlate-all-dirty-ptu.log', filemode='w', format='%(asctime)s - %(message)s', force=True, level=logging.DEBUG)
2022-02-10 01:16:31.273603: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-02-10 01:16:31.273668: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
- Define variables and prepare model
class ParameterClass(): """Stores parameters for correlation """ def __init__(self): # Where the data is stored. self.data = [] self.objectRef = [] self.subObjectRef = [] self.colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black'] self.numOfLoaded = 0 # very fast from Ncasc ~ 14 onwards self.NcascStart = 0 self.NcascEnd = 30 # 25 self.Nsub = 6 # 6 self.photonLifetimeBin = 10 # used for photon decay self.photonCountBin = 1 # used for time series path = Path("../data/1911DD_atto+LUVs/all_dirty_ptu") logged_model = 'file:///beegfs/ye53nis/drmed-git/data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model' mt_bin = 0.001 output_path = '/beegfs/ye53nis/saves/2022-02-08_correlate-all-dirty-ptu/' par_obj = ParameterClass() loaded_model = load_model(logged_model, compile=False) loaded_model.compile(loss=bm.binary_ce_dice_loss(), optimizer=Adam(), metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9])) bm.prepare_model(loaded_model, [2**14, 2**13, 2**12, 2**15, 2**13])
2022-02-10 01:16:39.134361: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-02-10 01:16:39.134392: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-02-10 01:16:39.134429: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node169): /proc/driver/nvidia/version does not exist 2022-02-10 01:16:39.134678: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- Run experiment: Correlate
all_dirty_ptu
of the AlexaFluor488 + DiO LUVs experiment on Jupyter 2. We want the following correlations:- dirty trace → correlation via tttr2xfcs, and multipletau (bin=0.001)
correction=delete
→ correlation via tttr2xfcs, and multipletau (bin=0.001)correction=delete_and_shift
→ correlation via tttr2xfcs, and multipletau (bin=0.001)correction=weights-random
→ correlation via tttr2xfcscorrection=weights-1-pred
→ correlation via tttr2xfcsfiles = [path / f for f in os.listdir(path) if f.endswith('.ptu')] mt_bin = 0.001 if len(files) == 0: raise FileNotFoundError('The path provided does not include any' ' .ptu files.') for myfile in files: ptufile = cfo.PicoObject(myfile, par_obj) ptufile.getTimeSeries(photonCountBin=mt_bin, timeseries_name=f'us_{ptufile.name}_NOCORR') ptufile.getPhotonCountingStats(name=f'us_{ptufile.name}_NOCORR') for method in ['delete', 'delete_and_shift']: mt_name = f'us_{ptufile.name}_{method}' ptufile.getTimeSeries(timeseries_name=mt_name) ptufile.getPhotonCountingStats(name=mt_name) ptufile.predictTimeSeries(model=loaded_model, scaler='minmax', name=mt_name) ptufile.correctTCSPC(method=method, bin_after_correction=mt_bin, timeseries_name=mt_name) for weight in ['random', '1-pred']: weight_name = f'{ptufile.name}_weights_{weight}' ptufile.getTimeSeries(photonCountBin=1.0, timeseries_name=weight_name) ptufile.getPhotonCountingStats(name=weight_name) ptufile.predictTimeSeries(model=loaded_model, scaler='minmax', name=weight_name) ptufile.correctTCSPC(method='weights', weight=weight, timeseries_name=weight_name) for key in list(ptufile.trueTimeArr.keys()): if "_FORWEIGHTS" in key: ptufile.get_autocorrelation(method='tttr2xfcs_with_weights', name=key) else: ptufile.get_autocorrelation(method='tttr2xfcs', name=key) for key in list(ptufile.timeSeries.keys()): for k, i in ptufile.timeSeries[key].items(): if key.endswith(('_DELBIN', '_DELSHIFTBIN', '_NOCORR')): ptufile.get_autocorrelation(method='multipletau', name=(key, k)) for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key in list(ptufile.autoNorm[m].keys()): ptufile.save_autocorrelation(name=key, method=m, output_path=output_path) del ptufile
5d0b929a-2855-446b-8b76-55075cd537e3
- According to log, this run ended with an Error again
[I 2022-01-23 00:26:40.512 ServerApp] AsyncIOLoopKernelRestarter: restarting kernel (1/5), keep random ports
Only 229 traces were analyzed.
2.5.10 Analysis 3 of multipletau vs tttr2xfcs, fixed delete_and_shift
, weight-random
and weight-1-pred
- log files can be found here:
tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-02-08_correlate-all-clean-ptu.log tail /beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-02-08_correlate-all-dirty-ptu.log
- This time multiple changes were done in the code. There was an error in
correctTCSPC(method='delete_and_shift')
which I corrected. I also implemented multipletau fitting with smaller bins than the correction, enabling that we actually get information about these very fast dynamics of the molecules here. Thirdly, to investigate why correction with weights behaved strangely for weights <0.4, I implemented random weighting. Fourthly, to have a correction method which is not dependent on setting a weight manually, I implemented weighting automatically with:weight = 1 - prediction
where prediction is the output of the UNET segmentation, a float between 0 and 1.- no correction: I just read in the .ptu data and correlated the photon
arrival times
- 1a using the
tttr2xfcs
algorithm - 1b using the
multipletau
algorithm
- 1a using the
- Corrected by photon deletion: I read in the .ptu data, constructed a
timetrace from it, fed the time trace to my trained unet which predicts
bright burst artifacts, then mapped the time trace prediction on the
photon arrival times and deleted all photons inside a bin labelled as
artifactual
- 2a then correlated using the
tttr2xfcs
algorithm - 2b or using the
multipletau
algorithm
- 2a then correlated using the
- Corrected by photon deletion with shift: I read in the .ptu data,
constructed a timetrace from it, fed the timetrace to my trained unet
which predicts bright burst artifacts, then mapped the time trace
prediction on the photon arrival times and deleted all photons inside a
bin labelled as artifactual and shifted the arrival times of all photons
which come after a deleted bin by the bin size, then I correlated the
resulting new photon arrival times using
- 3a the
tttr2xfcs
algorithm - 3b the
multipletaus
algorithm
- 3a the
- weight=’1-pred’: I read in the .ptu data, constructed a timetrace from
it, fed the time trace to my trained unet which predicts bright burst
artifacts, then mapped the time trace prediction on the photon arrival
times and gave all photons inside a bin labelled as artifactual a
weight of 1 - prediction in the
tttr2xfcs
algorithm - weight=’random’: I read in the .ptu data, constructed a timetrace from
it, fed the time trace to my trained unet which predicts bright burst
artifacts, then mapped the time trace prediction on the photon arrival
times and gave all photons inside a bin labelled as artifactual a
random weight between 0 and 1 in the
tttr2xfcs
algorithm - weight=0 (from 1st exp): I read in the .ptu data, constructed a
timetrace from it, fed the time trace to my trained unet which predicts
bright burst artifacts, then mapped the time trace prediction on the
photon arrival times and gave all photons inside a bin labelled as
artifactual a weight of 0.2 in the
tttr2xfcs
algorithm - weight=0.2 (from 2nd exp): changed weight to 0.2, else see above
- weight=0.4 (from 2nd exp): changed weight to 0.4, else see above
- weight=0.6 (from 2nd exp): changed weight to 0.6, else see above
- weight=0.8 (from 2nd exp): changed weight to 0.8, else see above
- no correction: I just read in the .ptu data and correlated the photon
arrival times
- Then I fitted the traces in each of the 3 folders using Dominic Waithe’s
https://dwaithe.github.io/FCSfitJS/
- each correlation was fitted twice with the following options:
- x: alpha = 1 (fixed) → if we assume no anomalous diffusion
- y: alpha = 0.5…2 (floating) → values between 0.5…1 fitted the dirty data better
- the
xmin
andxmax
were:- 0.001…100 for clean data (because of shoulder between 100 and 1000 in multipletaudelete)
- 0.001…1000 for dirty data
- other parameters:
- 3D, equation 1B → that means we don’t consider txy and tz separately, but
have a aspect ratio
AR
as a conversion between them - no of diffusing species: 1
- triplet states: 1
- offset: floating
- GN0: floating
- A: fixed to 1 (is the relative number of diffusing particles - has to floating with more than 1 species)
- txy1: floating
- AR: 5 (values between 4.5 and 6 are okay)
- 3D, equation 1B → that means we don’t consider txy and tz separately, but
have a aspect ratio
- each correlation was fitted twice with the following options:
- now let’s look at the results:
%cd /home/lex/Programme/drmed-git
/home/lex/Programme/drmed-git
import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint # use seaborn style as default even if I just use matplotlib sns.set() sns.set_palette('colorblind')
- load in all the data (see
Details
block)folder_clean = Path('data/exp-220120-correlate-ptu/2022-02-08_correlate-all-clean-ptu') folder_clean_w0 = Path('data/exp-220120-correlate-ptu/2022-01-20_correlate-all-clean-ptu') folder_clean_weights = Path('data/exp-220120-correlate-ptu/2022-01-25_correlate-all-clean-ptu') folder_dirty = Path('data/exp-220120-correlate-ptu/2022-02-08_correlate-all-dirty-ptu') folder_dirty_w0 = Path('data/exp-220120-correlate-ptu/2022-01-20_correlate-all-dirty-ptu') folder_dirty_weights = Path('data/exp-220120-correlate-ptu/2022-01-25_correlate-all-dirty-ptu') # clean params, alphafix clean_1ax_param_path = folder_clean / 'clean_tttr2xfcs_no-correction_1comp-alphafix_to100_54of400_param.csv' clean_1bx_param_path = folder_clean / 'clean_multipletau_no-correction_1comp-alphafix_to100_54of400_param.csv' clean_2ax_param_path = folder_clean / 'clean_tttr2xfcs_delete_1comp-alphafix_to100_54of400_param.csv' clean_2bx_param_path = folder_clean / 'clean_multipletau_delete_1comp-alphafix_to100_54of400_param.csv' clean_3ax_param_path = folder_clean / 'clean_tttr2xfcs_delete-and-shift_1comp-alphafix_to100_54of400_param.csv' clean_3bx_param_path = folder_clean / 'clean_multipletau_delete-and-shift_1comp-alphafix_to100_54of400_param.csv' clean_4x_param_path = folder_clean / 'clean_tttr2xfcs_weight-1-pred_1comp-alphafix_to100_54of400_param.csv' clean_5x_param_path = folder_clean / 'clean_tttr2xfcs_weight-random_1comp-alphafix_to100_54of400_param.csv' # clean params, alphafloat clean_1ay_param_path = folder_clean / 'clean_tttr2xfcs_no-correction_1comp-alphafloat_to100_54of400_param.csv' clean_1by_param_path = folder_clean / 'clean_multipletau_no-correction_1comp-alphafloat_to100_54of400_param.csv' clean_2ay_param_path = folder_clean / 'clean_tttr2xfcs_delete_1comp-alphafloat_to100_54of400_param.csv' clean_2by_param_path = folder_clean / 'clean_multipletau_delete_1comp-alphafloat_to100_54of400_param.csv' clean_3ay_param_path = folder_clean / 'clean_tttr2xfcs_delete-and-shift_1comp-alphafloat_to100_54of400_param.csv' clean_3by_param_path = folder_clean / 'clean_multipletau_delete-and-shift_1comp-alphafloat_to100_54of400_param.csv' clean_4y_param_path = folder_clean / 'clean_tttr2xfcs_weight-1-pred_1comp-alphafloat_to100_54of400_param.csv' clean_5y_param_path = folder_clean / 'clean_tttr2xfcs_weight-random_1comp-alphafloat_to100_54of400_param.csv' # clean params, from other experiments, alphafix clean_6x_param_path = folder_clean_w0 / 'clean_tttr2xfcs_weight-0_1comp-alphafix_to100_229of400_param.csv' clean_7x_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.2_1comp-alphafix_to100_119of400_param.csv' clean_8x_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.4_1comp-alphafix_to100_119of400_param.csv' clean_9x_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.6_1comp-alphafix_to100_119of400_param.csv' clean_10x_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.8_1comp-alphafix_to100_119of400_param.csv' # clean params, from other experiments, alphafloat clean_6y_param_path = folder_clean_w0 / 'clean_tttr2xfcs_weight-0_1comp-alphafloat_to100_229of400_param.csv' clean_7y_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.2_1comp-alphafloat_to100_119of400_param.csv' clean_8y_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.4_1comp-alphafloat_to100_119of400_param.csv' clean_9y_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.6_1comp-alphafloat_to100_119of400_param.csv' clean_10y_param_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.8_1comp-alphafloat_to100_119of400_param.csv' # clean plots, alphafix clean_1ax_plot_path = folder_clean / 'clean_tttr2xfcs_no-correction_1comp-alphafix_to100_54of400_plot.csv' clean_1bx_plot_path = folder_clean / 'clean_multipletau_no-correction_1comp-alphafix_to100_54of400_plot.csv' clean_2ax_plot_path = folder_clean / 'clean_tttr2xfcs_delete_1comp-alphafix_to100_54of400_plot.csv' clean_2bx_plot_path = folder_clean / 'clean_multipletau_delete_1comp-alphafix_to100_54of400_plot.csv' clean_3ax_plot_path = folder_clean / 'clean_tttr2xfcs_delete-and-shift_1comp-alphafix_to100_54of400_plot.csv' clean_3bx_plot_path = folder_clean / 'clean_multipletau_delete-and-shift_1comp-alphafix_to100_54of400_plot.csv' clean_4x_plot_path = folder_clean / 'clean_tttr2xfcs_weight-1-pred_1comp-alphafix_to100_54of400_plot.csv' clean_5x_plot_path = folder_clean / 'clean_tttr2xfcs_weight-random_1comp-alphafix_to100_54of400_plot.csv' # clean plots, alphafloat clean_1ay_plot_path = folder_clean / 'clean_tttr2xfcs_no-correction_1comp-alphafloat_to100_54of400_plot.csv' clean_1by_plot_path = folder_clean / 'clean_multipletau_no-correction_1comp-alphafloat_to100_54of400_plot.csv' clean_2ay_plot_path = folder_clean / 'clean_tttr2xfcs_delete_1comp-alphafloat_to100_54of400_plot.csv' clean_2by_plot_path = folder_clean / 'clean_multipletau_delete_1comp-alphafloat_to100_54of400_plot.csv' clean_3ay_plot_path = folder_clean / 'clean_tttr2xfcs_delete-and-shift_1comp-alphafloat_to100_54of400_plot.csv' clean_3by_plot_path = folder_clean / 'clean_multipletau_delete-and-shift_1comp-alphafloat_to100_54of400_plot.csv' clean_4y_plot_path = folder_clean / 'clean_tttr2xfcs_weight-1-pred_1comp-alphafloat_to100_54of400_plot.csv' clean_5y_plot_path = folder_clean / 'clean_tttr2xfcs_weight-random_1comp-alphafloat_to100_54of400_plot.csv' # clean plots, from other experiments, alphafix clean_6x_plot_path = folder_clean_w0 / 'clean_tttr2xfcs_weight-0_1comp-alphafix_to100_229of400_plot.csv' clean_7x_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.2_1comp-alphafix_to100_119of400_plot.csv' clean_8x_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.4_1comp-alphafix_to100_119of400_plot.csv' clean_9x_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.6_1comp-alphafix_to100_119of400_plot.csv' clean_10x_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.8_1comp-alphafix_to100_119of400_plot.csv' # clean plots, from other experiments, alphafix clean_6y_plot_path = folder_clean_w0 / 'clean_tttr2xfcs_weight-0_1comp-alphafloat_to100_229of400_plot.csv' clean_7y_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.2_1comp-alphafloat_to100_119of400_plot.csv' clean_8y_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.4_1comp-alphafloat_to100_119of400_plot.csv' clean_9y_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.6_1comp-alphafloat_to100_119of400_plot.csv' clean_10y_plot_path = folder_clean_weights / 'clean_tttr2xfcs_weight-0.8_1comp-alphafloat_to100_119of400_plot.csv' # dirty params, alphafix dirty_1ax_param_path = folder_dirty / 'dirty_tttr2xfcs_no-correction_1comp-alphafix_to1000_53of400_param.csv' dirty_1bx_param_path = folder_dirty / 'dirty_multipletau_no-correction_1comp-alphafix_to1000_53of400_param.csv' dirty_2ax_param_path = folder_dirty / 'dirty_tttr2xfcs_delete_1comp-alphafix_to1000_53of400_param.csv' dirty_2bx_param_path = folder_dirty / 'dirty_multipletau_delete_1comp-alphafix_to1000_53of400_param.csv' dirty_3ax_param_path = folder_dirty / 'dirty_tttr2xfcs_delete-and-shift_1comp-alphafix_to1000_53of400_param.csv' dirty_3bx_param_path = folder_dirty / 'dirty_multipletau_delete-and-shift_1comp-alphafix_to1000_53of400_param.csv' dirty_4x_param_path = folder_dirty / 'dirty_tttr2xfcs_weight-1-pred_1comp-alphafix_to1000_53of400_param.csv' dirty_5x_param_path = folder_dirty / 'dirty_tttr2xfcs_weight-random_1comp-alphafix_to1000_53of400_param.csv' # dirty params, alphafloat dirty_1ay_param_path = folder_dirty / 'dirty_tttr2xfcs_no-correction_1comp-alphafloat_to1000_53of400_param.csv' dirty_1by_param_path = folder_dirty / 'dirty_multipletau_no-correction_1comp-alphafloat_to1000_53of400_param.csv' dirty_2ay_param_path = folder_dirty / 'dirty_tttr2xfcs_delete_1comp-alphafloat_to1000_53of400_param.csv' dirty_2by_param_path = folder_dirty / 'dirty_multipletau_delete_1comp-alphafloat_to1000_53of400_param.csv' dirty_3ay_param_path = folder_dirty / 'dirty_tttr2xfcs_delete-and-shift_1comp-alphafloat_to1000_53of400_param.csv' dirty_3by_param_path = folder_dirty / 'dirty_multipletau_delete-and-shift_1comp-alphafloat_to1000_53of400_param.csv' dirty_4y_param_path = folder_dirty / 'dirty_tttr2xfcs_weight-1-pred_1comp-alphafloat_to1000_53of400_param.csv' dirty_5y_param_path = folder_dirty / 'dirty_tttr2xfcs_weight-random_1comp-alphafloat_to1000_53of400_param.csv' # dirty params, from other experiments, alphafix dirty_6x_param_path = folder_dirty_w0 / 'dirty_tttr2xfcs_weight-0_1comp-alphafix_to1000_173of400_param.csv' dirty_7x_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.2_1comp-alphafix_to1000_79of400_param.csv' dirty_8x_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.4_1comp-alphafix_to1000_79of400_param.csv' dirty_9x_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.6_1comp-alphafix_to1000_79of400_param.csv' dirty_10x_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.8_1comp-alphafix_to1000_79of400_param.csv' # dirty params, from other experiments, alphafloat dirty_6y_param_path = folder_dirty_w0 / 'dirty_tttr2xfcs_weight-0_1comp-alphafloat_to1000_173of400_param.csv' dirty_7y_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.2_1comp-alphafloat_to1000_79of400_param.csv' dirty_8y_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.4_1comp-alphafloat_to1000_79of400_param.csv' dirty_9y_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.6_1comp-alphafloat_to1000_79of400_param.csv' dirty_10y_param_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.8_1comp-alphafloat_to1000_79of400_param.csv' # dirty plots, alphafix dirty_1ax_plot_path = folder_dirty / 'dirty_tttr2xfcs_no-correction_1comp-alphafix_to1000_53of400_plot.csv' dirty_1bx_plot_path = folder_dirty / 'dirty_multipletau_no-correction_1comp-alphafix_to1000_53of400_plot.csv' dirty_2ax_plot_path = folder_dirty / 'dirty_tttr2xfcs_delete_1comp-alphafix_to1000_53of400_plot.csv' dirty_2bx_plot_path = folder_dirty / 'dirty_multipletau_delete_1comp-alphafix_to1000_53of400_plot.csv' dirty_3ax_plot_path = folder_dirty / 'dirty_tttr2xfcs_delete-and-shift_1comp-alphafix_to1000_53of400_plot.csv' dirty_3bx_plot_path = folder_dirty / 'dirty_multipletau_delete-and-shift_1comp-alphafix_to1000_53of400_plot.csv' dirty_4x_plot_path = folder_dirty / 'dirty_tttr2xfcs_weight-1-pred_1comp-alphafix_to1000_53of400_plot.csv' dirty_5x_plot_path = folder_dirty / 'dirty_tttr2xfcs_weight-random_1comp-alphafix_to1000_53of400_plot.csv' # dirty plots, alphafloat dirty_1ay_plot_path = folder_dirty / 'dirty_tttr2xfcs_no-correction_1comp-alphafloat_to1000_53of400_plot.csv' dirty_1by_plot_path = folder_dirty / 'dirty_multipletau_no-correction_1comp-alphafloat_to1000_53of400_plot.csv' dirty_2ay_plot_path = folder_dirty / 'dirty_tttr2xfcs_delete_1comp-alphafloat_to1000_53of400_plot.csv' dirty_2by_plot_path = folder_dirty / 'dirty_multipletau_delete_1comp-alphafloat_to1000_53of400_plot.csv' dirty_3ay_plot_path = folder_dirty / 'dirty_tttr2xfcs_delete-and-shift_1comp-alphafloat_to1000_53of400_plot.csv' dirty_3by_plot_path = folder_dirty / 'dirty_multipletau_delete-and-shift_1comp-alphafloat_to1000_53of400_plot.csv' dirty_4y_plot_path = folder_dirty / 'dirty_tttr2xfcs_weight-1-pred_1comp-alphafloat_to1000_53of400_plot.csv' dirty_5y_plot_path = folder_dirty / 'dirty_tttr2xfcs_weight-random_1comp-alphafloat_to1000_53of400_plot.csv' # dirty plot, from other experiments, alphafix dirty_6x_plot_path = folder_dirty_w0 / 'dirty_tttr2xfcs_weight-0_1comp-alphafix_to1000_173of400_plot.csv' dirty_7x_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.2_1comp-alphafix_to1000_79of400_plot.csv' dirty_8x_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.4_1comp-alphafix_to1000_79of400_plot.csv' dirty_9x_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.6_1comp-alphafix_to1000_79of400_plot.csv' dirty_10x_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.8_1comp-alphafix_to1000_79of400_plot.csv' # dirty plot, from other experiments, alphafloat dirty_6y_plot_path = folder_dirty_w0 / 'dirty_tttr2xfcs_weight-0_1comp-alphafloat_to1000_173of400_plot.csv' dirty_7y_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.2_1comp-alphafloat_to1000_79of400_plot.csv' dirty_8y_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.4_1comp-alphafloat_to1000_79of400_plot.csv' dirty_9y_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.6_1comp-alphafloat_to1000_79of400_plot.csv' dirty_10y_plot_path = folder_dirty_weights / 'dirty_tttr2xfcs_weight-0.8_1comp-alphafloat_to1000_79of400_plot.csv'
# clean params, alphafix clean_1ax_param = pd.read_csv(clean_1ax_param_path, sep=',').assign( fit_with=54*['alpha=1',], correlator=54*['tttr2xfcs',], artifact=54*['clean',], correction=54*['no correction',]) clean_1bx_param = pd.read_csv(clean_1bx_param_path, sep=',').assign( fit_with=54*['alpha=1',], correlator=54*['multipletau',], artifact=54*['clean',], correction=54*['no correction',]) clean_2ax_param = pd.read_csv(clean_2ax_param_path, sep=',').assign( fit_with=54*['alpha=1',], correlator=54*['tttr2xfcs',], artifact=54*['clean',], correction=54*['delete',]) clean_2bx_param = pd.read_csv(clean_2bx_param_path, sep=',').assign( fit_with=54*['alpha=1',], correlator=54*['multipletau',], artifact=54*['clean',], correction=54*['delete',]) clean_3ax_param = pd.read_csv(clean_3ax_param_path, sep=',').assign( fit_with=54*['alpha=1',], correlator=54*['tttr2xfcs',], artifact=54*['clean',], correction=54*['delete and shift',]) clean_3bx_param = pd.read_csv(clean_3bx_param_path, sep=',').assign( fit_with=54*['alpha=1',], correlator=54*['multipletau',], artifact=54*['clean',], correction=54*['delete and shift',]) clean_4x_param = pd.read_csv(clean_4x_param_path, sep=',').assign( fit_with=54*['alpha=1',], correlator=54*['tttr2xfcs',], artifact=54*['clean',], correction=54*['weight=1-pred',]) clean_5x_param = pd.read_csv(clean_5x_param_path, sep=',').assign( fit_with=54*['alpha=1',], correlator=54*['tttr2xfcs',], artifact=54*['clean',], correction=54*['weight=random',]) # clean params, alphafloat clean_1ay_param = pd.read_csv(clean_1ay_param_path, sep=',').assign( fit_with=54*['alpha=float',], correlator=54*['tttr2xfcs',], artifact=54*['clean',], correction=54*['no correction',]) clean_1by_param = pd.read_csv(clean_1by_param_path, sep=',').assign( fit_with=54*['alpha=float',], correlator=54*['multipletau',], artifact=54*['clean',], correction=54*['no correction',]) clean_2ay_param = pd.read_csv(clean_2ay_param_path, sep=',').assign( fit_with=54*['alpha=float',], correlator=54*['tttr2xfcs',], artifact=54*['clean',], correction=54*['delete',]) clean_2by_param = pd.read_csv(clean_2by_param_path, sep=',').assign( fit_with=54*['alpha=float',], correlator=54*['multipletau',], artifact=54*['clean',], correction=54*['delete',]) clean_3ay_param = pd.read_csv(clean_3ay_param_path, sep=',').assign( fit_with=54*['alpha=float',], correlator=54*['tttr2xfcs',], artifact=54*['clean',], correction=54*['delete and shift',]) clean_3by_param = pd.read_csv(clean_3by_param_path, sep=',').assign( fit_with=54*['alpha=float',], correlator=54*['multipletau',], artifact=54*['clean',], correction=54*['delete and shift',]) clean_4y_param = pd.read_csv(clean_4y_param_path, sep=',').assign( fit_with=54*['alpha=float',], correlator=54*['tttr2xfcs',], artifact=54*['clean',], correction=54*['weight=1-pred',]) clean_5y_param = pd.read_csv(clean_5y_param_path, sep=',').assign( fit_with=54*['alpha=float',], correlator=54*['tttr2xfcs',], artifact=54*['clean',], correction=54*['weight=random',]) # clean params, from other experiments, alphafix clean_6x_param = pd.read_csv(clean_6x_param_path, sep=',').assign( fit_with=229*['alpha=1',], correlator=229*['tttr2xfcs',], artifact=229*['clean',], correction=229*['weight=0',]) clean_7x_param = pd.read_csv(clean_7x_param_path, sep=',').assign( fit_with=119*['alpha=1',], correlator=119*['tttr2xfcs',], artifact=119*['clean',], correction=119*['weight=0.2',]) clean_8x_param = pd.read_csv(clean_8x_param_path, sep=',').assign( fit_with=119*['alpha=1',], correlator=119*['tttr2xfcs',], artifact=119*['clean',], correction=119*['weight=0.4',]) clean_9x_param = pd.read_csv(clean_9x_param_path, sep=',').assign( fit_with=119*['alpha=1',], correlator=119*['tttr2xfcs',], artifact=119*['clean',], correction=119*['weight=0.6',]) clean_10x_param = pd.read_csv(clean_10x_param_path, sep=',').assign( fit_with=119*['alpha=1',], correlator=119*['tttr2xfcs',], artifact=119*['clean',], correction=119*['weight=0.8',]) # clean params, from other experiments, alphafloat clean_6y_param = pd.read_csv(clean_6y_param_path, sep=',').assign( fit_with=229*['alpha=float',], correlator=229*['tttr2xfcs',], artifact=229*['clean',], correction=229*['weight=0',]) clean_7y_param = pd.read_csv(clean_7y_param_path, sep=',').assign( fit_with=119*['alpha=float',], correlator=119*['tttr2xfcs',], artifact=119*['clean',], correction=119*['weight=0.2',]) clean_8y_param = pd.read_csv(clean_8y_param_path, sep=',').assign( fit_with=119*['alpha=float',], correlator=119*['tttr2xfcs',], artifact=119*['clean',], correction=119*['weight=0.4',]) clean_9y_param = pd.read_csv(clean_9y_param_path, sep=',').assign( fit_with=119*['alpha=float',], correlator=119*['tttr2xfcs',], artifact=119*['clean',], correction=119*['weight=0.6',]) clean_10y_param = pd.read_csv(clean_10y_param_path, sep=',').assign( fit_with=119*['alpha=float',], correlator=119*['tttr2xfcs',], artifact=119*['clean',], correction=119*['weight=0.8',]) # dirty params, alphafix dirty_1ax_param = pd.read_csv(dirty_1ax_param_path, sep=',').assign( fit_with=53*['alpha=1',], correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['no correction',]) dirty_1bx_param = pd.read_csv(dirty_1bx_param_path, sep=',').assign( fit_with=53*['alpha=1',], correlator=53*['multipletau',], artifact=53*['dirty',], correction=53*['no correction',]) dirty_2ax_param = pd.read_csv(dirty_2ax_param_path, sep=',').assign( fit_with=53*['alpha=1',], correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['delete',]) dirty_2bx_param = pd.read_csv(dirty_2bx_param_path, sep=',').assign( fit_with=53*['alpha=1',], correlator=53*['multipletau',], artifact=53*['dirty',], correction=53*['delete',]) dirty_3ax_param = pd.read_csv(dirty_3ax_param_path, sep=',').assign( fit_with=53*['alpha=1',], correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['delete and shift',]) dirty_3bx_param = pd.read_csv(dirty_3bx_param_path, sep=',').assign( fit_with=53*['alpha=1',], correlator=53*['multipletau',], artifact=53*['dirty',], correction=53*['delete and shift',]) dirty_4x_param = pd.read_csv(dirty_4x_param_path, sep=',').assign( fit_with=53*['alpha=1',], correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['weight=1-pred',]) dirty_5x_param = pd.read_csv(dirty_5x_param_path, sep=',').assign( fit_with=53*['alpha=1',], correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['weight=random',]) # dirty params, alphafloat dirty_1ay_param = pd.read_csv(dirty_1ay_param_path, sep=',').assign( fit_with=53*['alpha=float',], correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['no correction',]) dirty_1by_param = pd.read_csv(dirty_1by_param_path, sep=',').assign( fit_with=53*['alpha=float',], correlator=53*['multipletau',], artifact=53*['dirty',], correction=53*['no correction',]) dirty_2ay_param = pd.read_csv(dirty_2ay_param_path, sep=',').assign( fit_with=53*['alpha=float',], correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['delete',]) dirty_2by_param = pd.read_csv(dirty_2by_param_path, sep=',').assign( fit_with=53*['alpha=float',], correlator=53*['multipletau',], artifact=53*['dirty',], correction=53*['delete',]) dirty_3ay_param = pd.read_csv(dirty_3ay_param_path, sep=',').assign( fit_with=53*['alpha=float',], correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['delete and shift',]) dirty_3by_param = pd.read_csv(dirty_3by_param_path, sep=',').assign( fit_with=53*['alpha=float',], correlator=53*['multipletau',], artifact=53*['dirty',], correction=53*['delete and shift',]) dirty_4y_param = pd.read_csv(dirty_4y_param_path, sep=',').assign( fit_with=53*['alpha=float',], correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['weight=1-pred',]) dirty_5y_param = pd.read_csv(dirty_5y_param_path, sep=',').assign( fit_with=53*['alpha=float',], correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['weight=random',]) # dirty params, from other experiments, alphafix dirty_6x_param = pd.read_csv(dirty_6x_param_path, sep=',').assign( fit_with=173*['alpha=1',], correlator=173*['tttr2xfcs',], artifact=173*['dirty',], correction=173*['weight=0',]) dirty_7x_param = pd.read_csv(dirty_7x_param_path, sep=',').assign( fit_with=79*['alpha=1',], correlator=79*['tttr2xfcs',], artifact=79*['dirty',], correction=79*['weight=0.2',]) dirty_8x_param = pd.read_csv(dirty_8x_param_path, sep=',').assign( fit_with=79*['alpha=1',], correlator=79*['tttr2xfcs',], artifact=79*['dirty',], correction=79*['weight=0.4',]) dirty_9x_param = pd.read_csv(dirty_9x_param_path, sep=',').assign( fit_with=79*['alpha=1',], correlator=79*['tttr2xfcs',], artifact=79*['dirty',], correction=79*['weight=0.6',]) dirty_10x_param = pd.read_csv(dirty_10x_param_path, sep=',').assign( fit_with=79*['alpha=1',], correlator=79*['tttr2xfcs',], artifact=79*['dirty',], correction=79*['weight=0.8',]) # dirty params, from other experiments, alphafloat dirty_6y_param = pd.read_csv(dirty_6y_param_path, sep=',').assign( fit_with=173*['alpha=float',], correlator=173*['tttr2xfcs',], artifact=173*['dirty',], correction=173*['weight=0',]) dirty_7y_param = pd.read_csv(dirty_7y_param_path, sep=',').assign( fit_with=79*['alpha=float',], correlator=79*['tttr2xfcs',], artifact=79*['dirty',], correction=79*['weight=0.2',]) dirty_8y_param = pd.read_csv(dirty_8y_param_path, sep=',').assign( fit_with=79*['alpha=float',], correlator=79*['tttr2xfcs',], artifact=79*['dirty',], correction=79*['weight=0.4',]) dirty_9y_param = pd.read_csv(dirty_9y_param_path, sep=',').assign( fit_with=79*['alpha=float',], correlator=79*['tttr2xfcs',], artifact=79*['dirty',], correction=79*['weight=0.6',]) dirty_10y_param = pd.read_csv(dirty_10y_param_path, sep=',').assign( fit_with=79*['alpha=float',], correlator=79*['tttr2xfcs',], artifact=79*['dirty',], correction=79*['weight=0.8',]) all_param = pd.concat([clean_1ax_param, clean_1bx_param, clean_2ax_param, clean_2bx_param, clean_3ax_param, clean_3bx_param, clean_4x_param, clean_5x_param, clean_6x_param, clean_7x_param, clean_8x_param, clean_9x_param, clean_10x_param, clean_1ay_param, clean_1by_param, clean_2ay_param, clean_2by_param, clean_3ay_param, clean_3by_param, clean_4y_param, clean_5y_param, clean_6y_param, clean_7y_param, clean_8y_param, clean_9y_param, clean_10y_param, dirty_1ax_param, dirty_1bx_param, dirty_2ax_param, dirty_2bx_param, dirty_3ax_param, dirty_3bx_param, dirty_4x_param, dirty_5x_param, dirty_6x_param, dirty_7x_param, dirty_8x_param, dirty_9x_param, dirty_10x_param, dirty_1ay_param, dirty_1by_param, dirty_2ay_param, dirty_2by_param, dirty_3ay_param, dirty_3by_param, dirty_4y_param, dirty_5y_param, dirty_6y_param, dirty_7y_param, dirty_8y_param, dirty_9y_param, dirty_10y_param], ignore_index=True) all_param["correlator-fit_with"] = all_param[["correlator", "fit_with"]].agg(' - '.join, axis=1) all_param
nameofplot masterfile parentname parentuqid time of fit Diffeq Diffspecies Tripleteq Tripletspecies Dimen … stdev(AR1) alpha1 stdev(alpha1) N (mom) bri (kHz) fitwith correlator artifact correction correlator-fitwith 0 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4881… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 1.000000 NaN 72.053415 4.794626 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1 1 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 1.000000 NaN 73.936945 4.666217 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1 2 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 1.000000 NaN 70.721472 4.901863 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1 3 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 1.000000 NaN 72.151740 4.797506 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1 4 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4883… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 1.000000 NaN 72.730578 4.762291 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1 … … … … … … … … … … … … … … … … … … … … … … 4095 2022-01-26tttr2xfcswithweightsCH2BIN1wei… Not known weight0.8DiO LUV 10uM in 20 nM AF488247T2974s1 NaN 13 February 2022 18:58:28 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 0.500000 NaN 8.066484 61.800612 alpha=float tttr2xfcs dirty weight=0.8 tttr2xfcs - alpha=float 4096 2022-01-26tttr2xfcswithweightsCH2BIN1wei… Not known weight0.8DiO LUV 10uM in 20 nM AF488248T2986s1 NaN 13 February 2022 18:58:28 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 0.594970 NaN 4.674732 113.075760 alpha=float tttr2xfcs dirty weight=0.8 tttr2xfcs - alpha=float 4097 2022-01-26tttr2xfcswithweightsCH2BIN1wei… Not known weight0.8DiO LUV 10uM in 20 nM AF488291T3505s1 NaN 13 February 2022 18:58:28 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 0.791023 NaN 3.326365 172.746385 alpha=float tttr2xfcs dirty weight=0.8 tttr2xfcs - alpha=float 4098 2022-01-26tttr2xfcswithweightsCH2BIN1wei… Not known weight0.8DiO LUV 10uM in 20 nM AF488293T3529s1 NaN 13 February 2022 18:58:28 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 0.500000 NaN 9.386688 53.060101 alpha=float tttr2xfcs dirty weight=0.8 tttr2xfcs - alpha=float 4099 2022-01-26tttr2xfcswithweightsCH2BIN1wei… Not known weight0.8DiO LUV 10uM in 20 nM AF488294T3541s1 NaN 13 February 2022 18:58:28 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 0.500000 NaN 6.441874 83.167622 alpha=float tttr2xfcs dirty weight=0.8 tttr2xfcs - alpha=float 4100 rows × 33 columns
- let’s plot all transit times for each correction method and parameters
g = sns.FacetGrid(data=all_param, row='artifact', sharey=True, sharex=True, height=5, aspect=2, legend_out=True) g.map_dataframe(sns.boxplot, y='txy1', x='correction', hue="correlator-fit_with", palette='colorblind', showfliers=False) g.add_legend(title='Correlator and\nfit parameter') g.map_dataframe(sns.stripplot, y='txy1', x='correction', hue="correlator-fit_with", dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2) g.tight_layout() g.fig.suptitle('AlexaFluor488 (top) vs AlexaFluor488 + Dio LUVs (bottom)', y=1.03, size=20) for axes in g.axes.flat: _ = axes.set_xticklabels(axes.get_xticklabels(), rotation=45) plt.setp(g.axes, yscale='log', xlabel='correction method', ylabel=r'transit time $\tau_{D}$ (log)') plt.show()
- we’ll use the more concise
seaborn.catplot
for plotting:g = sns.catplot(data=all_param, y='txy1', x='correction', hue='correlator-fit_with', row='artifact', sharey=True, height=5, aspect=2, legend_out=True, kind='boxen', showfliers=False) g.map_dataframe(sns.stripplot, y='txy1', x='correction', hue="correlator-fit_with", dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2) g.tight_layout() g.fig.suptitle('AlexaFluor488 (top) vs AlexaFluor488 + Dio LUVs (bottom)', y=1.03, size=20) for axes in g.axes.flat: _ = axes.set_xticklabels(axes.get_xticklabels(), rotation=45) plt.setp(g.axes, yscale='log', xlabel='correction method', ylabel=r'transit time $\tau_{D}$ (log)') plt.setp(g.legend, title='Correlator and\nfit parameter') plt.show()
- for sake of simplicity, add a plot of only no correction vs delete and shift:
data = all_param.loc[all_param['correction'].isin(['no correction', 'delete and shift'])] display(data) g = sns.catplot(data=data, y='txy1', x='correction', hue='correlator-fit_with', col='artifact', sharey=True, height=5, aspect=1, legend_out=True, kind='boxen', showfliers=False) g.map_dataframe(sns.stripplot, y='txy1', x='correction', hue="correlator-fit_with", dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2) g.tight_layout() g.fig.suptitle('AlexaFluor488 (left) vs AlexaFluor488 + Dio LUVs (right)', y=1.03, size=20) for axes in g.axes.flat: _ = axes.set_xticklabels(axes.get_xticklabels(), rotation=45) plt.setp(g.axes, yscale='log', xlabel='correction method', ylabel=r'transit time $\tau_{D}$ (log)') plt.setp(g.legend, title='Correlator and\nfit parameter') plt.show()
nameofplot masterfile parentname parentuqid time of fit Diffeq Diffspecies Tripleteq Tripletspecies Dimen … stdev(AR1) alpha1 stdev(alpha1) N (mom) bri (kHz) fitwith correlator artifact correction correlator-fitwith 0 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4881… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 1.000000 NaN 72.053415 4.794626 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1 1 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 1.000000 NaN 73.936945 4.666217 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1 2 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 1.000000 NaN 70.721472 4.901863 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1 3 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 1.000000 NaN 72.151740 4.797506 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1 4 2022-02-10tttr2xfcsCH2BIN1dot020 nM AF4883… Not known tttr2xfcs NaN 11 February 2022 14:02:13 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 1.000000 NaN 72.730578 4.762291 alpha=1 tttr2xfcs clean no correction tttr2xfcs - alpha=1 … … … … … … … … … … … … … … … … … … … … … … 3500 2022-02-10multipletauCH2BIN0dot001usDiO L… Not known multipletau NaN 12 February 2022 21:01:19 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 0.500000 NaN -9.807292 -45.831485 alpha=float multipletau dirty delete and shift multipletau - alpha=float 3501 2022-02-10multipletauCH2BIN0dot001usDiO L… Not known multipletau NaN 12 February 2022 21:01:19 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 0.500000 NaN -9.508777 -50.024738 alpha=float multipletau dirty delete and shift multipletau - alpha=float 3502 2022-02-10multipletauCH2BIN0dot001usDiO L… Not known multipletau NaN 12 February 2022 21:01:19 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 0.647205 NaN -9.413903 -47.210210 alpha=float multipletau dirty delete and shift multipletau - alpha=float 3503 2022-02-10multipletauCH2BIN0dot001usDiO L… Not known multipletau NaN 12 February 2022 21:01:19 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 0.500000 NaN -9.666384 -50.652535 alpha=float multipletau dirty delete and shift multipletau - alpha=float 3504 2022-02-10multipletauCH2BIN0dot001usDiO L… Not known multipletau NaN 12 February 2022 21:01:19 Equation 1B 1 Triplet Eq 2A 1 NaN … NaN 0.500000 NaN -9.805858 -48.478584 alpha=float multipletau dirty delete and shift multipletau - alpha=float 856 rows × 33 columns
- let’s save the DataFrame used for plotting so that re-using it is simpler:
all_param.to_csv('data/exp-220120-correlate-ptu/2022-02-13_all-params.csv')
- We saw above that the correction methods lead to quite different results
regarding the transit time outcomes. The computation of the transit times
depends on:
- the artifact prediction on the time trace (and subsequent correction of photons)
- the correlation of the photon arrival times (or the binned timetrace)
- the fitting of the correlation
- let’s have a deeper look in the correlations and fits, first load all the
correlation and fit plots which were done in
https://dwaithe.github.io/FCSfitJS/
# clean plots, alphafix clean_1ax_plot = pd.read_csv(clean_1ax_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) clean_1bx_plot = pd.read_csv(clean_1bx_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) clean_2ax_plot = pd.read_csv(clean_2ax_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) clean_2bx_plot = pd.read_csv(clean_2bx_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) clean_3ax_plot = pd.read_csv(clean_3ax_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) clean_3bx_plot = pd.read_csv(clean_3bx_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) clean_4x_plot = pd.read_csv(clean_4x_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) clean_5x_plot = pd.read_csv(clean_5x_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) # clean plots, alphafloat clean_1ay_plot = pd.read_csv(clean_1ay_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) clean_1by_plot = pd.read_csv(clean_1by_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) clean_2ay_plot = pd.read_csv(clean_2ay_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) clean_2by_plot = pd.read_csv(clean_2by_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) clean_3ay_plot = pd.read_csv(clean_3ay_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) clean_3by_plot = pd.read_csv(clean_3by_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) clean_4y_plot = pd.read_csv(clean_4y_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) clean_5y_plot = pd.read_csv(clean_5y_plot_path, sep=',', na_values=' ').drop('Unnamed: 109', axis=1) # clean plots, from other experiments, alphafix clean_6x_plot = pd.read_csv(clean_6x_plot_path, sep=',', na_values=' ').drop('Unnamed: 459', axis=1) clean_7x_plot = pd.read_csv(clean_7x_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1) clean_8x_plot = pd.read_csv(clean_8x_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1) clean_9x_plot = pd.read_csv(clean_9x_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1) clean_10x_plot = pd.read_csv(clean_10x_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1) # clean plots, from other experiments, alphafloat clean_6y_plot = pd.read_csv(clean_6y_plot_path, sep=',', na_values=' ').drop('Unnamed: 459', axis=1) clean_7y_plot = pd.read_csv(clean_7y_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1) clean_8y_plot = pd.read_csv(clean_8y_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1) clean_9y_plot = pd.read_csv(clean_9y_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1) clean_10y_plot = pd.read_csv(clean_10y_plot_path, sep=',', na_values=' ').drop('Unnamed: 239', axis=1) # clean transit times, alphafix clean_1ax_tau = clean_1ax_plot['Time (ms)'] clean_1bx_tau = clean_1bx_plot['Time (ms)'] clean_2ax_tau = clean_2ax_plot['Time (ms)'] clean_2bx_tau = clean_2bx_plot['Time (ms)'] clean_3ax_tau = clean_3ax_plot['Time (ms)'] clean_3bx_tau = clean_3bx_plot['Time (ms)'] clean_4x_tau = clean_4x_plot['Time (ms)'] clean_5x_tau = clean_5x_plot['Time (ms)'] # clean transit times, alphafloat clean_1ay_tau = clean_1ay_plot['Time (ms)'] clean_1by_tau = clean_1by_plot['Time (ms)'] clean_2ay_tau = clean_2ay_plot['Time (ms)'] clean_2by_tau = clean_2by_plot['Time (ms)'] clean_3ay_tau = clean_3ay_plot['Time (ms)'] clean_3by_tau = clean_3by_plot['Time (ms)'] clean_4y_tau = clean_4y_plot['Time (ms)'] clean_5y_tau = clean_5y_plot['Time (ms)'] # clean transit times, from other experiments, alphafix clean_6x_tau = clean_6x_plot['Time (ms)'] clean_7x_tau = clean_7x_plot['Time (ms)'] clean_8x_tau = clean_8x_plot['Time (ms)'] clean_9x_tau = clean_9x_plot['Time (ms)'] clean_10x_tau = clean_10x_plot['Time (ms)'] # clean transit times, from other experiments, alphafloat clean_6y_tau = clean_6y_plot['Time (ms)'] clean_7y_tau = clean_7y_plot['Time (ms)'] clean_8y_tau = clean_8y_plot['Time (ms)'] clean_9y_tau = clean_9y_plot['Time (ms)'] clean_10y_tau = clean_10y_plot['Time (ms)'] # clean correlations, alphafix clean_1ax_corr = clean_1ax_plot.iloc[:, 1:7:2] clean_1bx_corr = clean_1bx_plot.iloc[:, 1:7:2] clean_2ax_corr = clean_2ax_plot.iloc[:, 1:7:2] clean_2bx_corr = clean_2bx_plot.iloc[:, 1:7:2] clean_3ax_corr = clean_3ax_plot.iloc[:, 1:7:2] clean_3bx_corr = clean_3bx_plot.iloc[:, 1:7:2] clean_4x_corr = clean_4x_plot.iloc[:, 1:7:2] clean_5x_corr = clean_5x_plot.iloc[:, 1:7:2] # clean correlations, alphafloat clean_1ay_corr = clean_1ay_plot.iloc[:, 1:7:2] clean_1by_corr = clean_1by_plot.iloc[:, 1:7:2] clean_2ay_corr = clean_2ay_plot.iloc[:, 1:7:2] clean_2by_corr = clean_2by_plot.iloc[:, 1:7:2] clean_3ay_corr = clean_3ay_plot.iloc[:, 1:7:2] clean_3by_corr = clean_3by_plot.iloc[:, 1:7:2] clean_4y_corr = clean_4y_plot.iloc[:, 1:7:2] clean_5y_corr = clean_5y_plot.iloc[:, 1:7:2] # clean correlations, from other experiments, alphafix clean_6x_corr = clean_6x_plot.iloc[:, 1:7:2] clean_7x_corr = clean_7x_plot.iloc[:, 1:7:2] clean_8x_corr = clean_8x_plot.iloc[:, 1:7:2] clean_9x_corr = clean_9x_plot.iloc[:, 1:7:2] clean_10x_corr = clean_10x_plot.iloc[:, 1:7:2] # clean correlations, from other experiments, alphafloat clean_6y_corr = clean_6y_plot.iloc[:, 1:7:2] clean_7y_corr = clean_7y_plot.iloc[:, 1:7:2] clean_8y_corr = clean_8y_plot.iloc[:, 1:7:2] clean_9y_corr = clean_9y_plot.iloc[:, 1:7:2] clean_10y_corr = clean_10y_plot.iloc[:, 1:7:2] # clean fits, alphafix clean_1ax_fit = clean_1ax_plot.iloc[:, 2:7:2] clean_1bx_fit = clean_1bx_plot.iloc[:, 2:7:2] clean_2ax_fit = clean_2ax_plot.iloc[:, 2:7:2] clean_2bx_fit = clean_2bx_plot.iloc[:, 2:7:2] clean_3ax_fit = clean_3ax_plot.iloc[:, 2:7:2] clean_3bx_fit = clean_3bx_plot.iloc[:, 2:7:2] clean_4x_fit = clean_4x_plot.iloc[:, 2:7:2] clean_5x_fit = clean_5x_plot.iloc[:, 2:7:2] # clean fits, alphafloat clean_1ay_fit = clean_1ay_plot.iloc[:, 2:7:2] clean_1by_fit = clean_1by_plot.iloc[:, 2:7:2] clean_2ay_fit = clean_2ay_plot.iloc[:, 2:7:2] clean_2by_fit = clean_2by_plot.iloc[:, 2:7:2] clean_3ay_fit = clean_3ay_plot.iloc[:, 2:7:2] clean_3by_fit = clean_3by_plot.iloc[:, 2:7:2] clean_4y_fit = clean_4y_plot.iloc[:, 2:7:2] clean_5y_fit = clean_5y_plot.iloc[:, 2:7:2] # clean fits, from other experiments, alphafix clean_6x_fit = clean_6x_plot.iloc[:, 2:7:2] clean_7x_fit = clean_7x_plot.iloc[:, 2:7:2] clean_8x_fit = clean_8x_plot.iloc[:, 2:7:2] clean_9x_fit = clean_9x_plot.iloc[:, 2:7:2] clean_10x_fit = clean_10x_plot.iloc[:, 2:7:2] # clean fits, from other experiments, alphafloat clean_6y_fit = clean_6y_plot.iloc[:, 2:7:2] clean_7y_fit = clean_7y_plot.iloc[:, 2:7:2] clean_8y_fit = clean_8y_plot.iloc[:, 2:7:2] clean_9y_fit = clean_9y_plot.iloc[:, 2:7:2] clean_10y_fit = clean_10y_plot.iloc[:, 2:7:2] # dirty plots, alphafix dirty_1ax_plot = pd.read_csv(dirty_1ax_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) dirty_1bx_plot = pd.read_csv(dirty_1bx_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) dirty_2ax_plot = pd.read_csv(dirty_2ax_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) dirty_2bx_plot = pd.read_csv(dirty_2bx_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) dirty_3ax_plot = pd.read_csv(dirty_3ax_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) dirty_3bx_plot = pd.read_csv(dirty_3bx_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) dirty_4x_plot = pd.read_csv(dirty_4x_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) dirty_5x_plot = pd.read_csv(dirty_5x_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) # dirty plots, alphafloat dirty_1ay_plot = pd.read_csv(dirty_1ay_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) dirty_1by_plot = pd.read_csv(dirty_1by_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) dirty_2ay_plot = pd.read_csv(dirty_2ay_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) dirty_2by_plot = pd.read_csv(dirty_2by_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) dirty_3ay_plot = pd.read_csv(dirty_3ay_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) dirty_3by_plot = pd.read_csv(dirty_3by_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) dirty_4y_plot = pd.read_csv(dirty_4y_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) dirty_5y_plot = pd.read_csv(dirty_5y_plot_path, sep=',', na_values=' ').drop('Unnamed: 107', axis=1) # dirty plots, from other experiments, alphafix dirty_6x_plot = pd.read_csv(dirty_6x_plot_path, sep=',', na_values=' ').drop('Unnamed: 347', axis=1) dirty_7x_plot = pd.read_csv(dirty_7x_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1) dirty_8x_plot = pd.read_csv(dirty_8x_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1) dirty_9x_plot = pd.read_csv(dirty_9x_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1) dirty_10x_plot = pd.read_csv(dirty_10x_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1) # dirty plots, from other experiments, alphafloat dirty_6y_plot = pd.read_csv(dirty_6y_plot_path, sep=',', na_values=' ').drop('Unnamed: 347', axis=1) dirty_7y_plot = pd.read_csv(dirty_7y_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1) dirty_8y_plot = pd.read_csv(dirty_8y_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1) dirty_9y_plot = pd.read_csv(dirty_9y_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1) dirty_10y_plot = pd.read_csv(dirty_10y_plot_path, sep=',', na_values=' ').drop('Unnamed: 159', axis=1) # dirty transit times, alphafix dirty_1ax_tau = dirty_1ax_plot['Time (ms)'] dirty_1bx_tau = dirty_1bx_plot['Time (ms)'] dirty_2ax_tau = dirty_2ax_plot['Time (ms)'] dirty_2bx_tau = dirty_2bx_plot['Time (ms)'] dirty_3ax_tau = dirty_3ax_plot['Time (ms)'] dirty_3bx_tau = dirty_3bx_plot['Time (ms)'] dirty_4x_tau = dirty_4x_plot['Time (ms)'] dirty_5x_tau = dirty_5x_plot['Time (ms)'] # dirty transit times, alphafloat dirty_1ay_tau = dirty_1ay_plot['Time (ms)'] dirty_1by_tau = dirty_1by_plot['Time (ms)'] dirty_2ay_tau = dirty_2ay_plot['Time (ms)'] dirty_2by_tau = dirty_2by_plot['Time (ms)'] dirty_3ay_tau = dirty_3ay_plot['Time (ms)'] dirty_3by_tau = dirty_3by_plot['Time (ms)'] dirty_4y_tau = dirty_4y_plot['Time (ms)'] dirty_5y_tau = dirty_5y_plot['Time (ms)'] # dirty transit times, from other experiments, alphafix dirty_6x_tau = dirty_6x_plot['Time (ms)'] dirty_7x_tau = dirty_7x_plot['Time (ms)'] dirty_8x_tau = dirty_8x_plot['Time (ms)'] dirty_9x_tau = dirty_9x_plot['Time (ms)'] dirty_10x_tau = dirty_10x_plot['Time (ms)'] # dirty transit times, from other experiments, alphafloat dirty_6y_tau = dirty_6y_plot['Time (ms)'] dirty_7y_tau = dirty_7y_plot['Time (ms)'] dirty_8y_tau = dirty_8y_plot['Time (ms)'] dirty_9y_tau = dirty_9y_plot['Time (ms)'] dirty_10y_tau = dirty_10y_plot['Time (ms)'] # dirty correlations, alphafix dirty_1ax_corr = dirty_1ax_plot.iloc[:, 1:7:2] dirty_1bx_corr = dirty_1bx_plot.iloc[:, 1:7:2] dirty_2ax_corr = dirty_2ax_plot.iloc[:, 1:7:2] dirty_2bx_corr = dirty_2bx_plot.iloc[:, 1:7:2] dirty_3ax_corr = dirty_3ax_plot.iloc[:, 1:7:2] dirty_3bx_corr = dirty_3bx_plot.iloc[:, 1:7:2] dirty_4x_corr = dirty_4x_plot.iloc[:, 1:7:2] dirty_5x_corr = dirty_5x_plot.iloc[:, 1:7:2] # dirty correlations, alphafloat dirty_1ay_corr = dirty_1ay_plot.iloc[:, 1:7:2] dirty_1by_corr = dirty_1by_plot.iloc[:, 1:7:2] dirty_2ay_corr = dirty_2ay_plot.iloc[:, 1:7:2] dirty_2by_corr = dirty_2by_plot.iloc[:, 1:7:2] dirty_3ay_corr = dirty_3ay_plot.iloc[:, 1:7:2] dirty_3by_corr = dirty_3by_plot.iloc[:, 1:7:2] dirty_4y_corr = dirty_4y_plot.iloc[:, 1:7:2] dirty_5y_corr = dirty_5y_plot.iloc[:, 1:7:2] # dirty correlations, from other experiments, alphafix dirty_6x_corr = dirty_6x_plot.iloc[:, 1:7:2] dirty_7x_corr = dirty_7x_plot.iloc[:, 1:7:2] dirty_8x_corr = dirty_8x_plot.iloc[:, 1:7:2] dirty_9x_corr = dirty_9x_plot.iloc[:, 1:7:2] dirty_10x_corr = dirty_10x_plot.iloc[:, 1:7:2] # dirty correlations, from other experiments, alphafloat dirty_6y_corr = dirty_6y_plot.iloc[:, 1:7:2] dirty_7y_corr = dirty_7y_plot.iloc[:, 1:7:2] dirty_8y_corr = dirty_8y_plot.iloc[:, 1:7:2] dirty_9y_corr = dirty_9y_plot.iloc[:, 1:7:2] dirty_10y_corr = dirty_10y_plot.iloc[:, 1:7:2] # dirty fits, alphafix dirty_1ax_fit = dirty_1ax_plot.iloc[:, 2:7:2] dirty_1bx_fit = dirty_1bx_plot.iloc[:, 2:7:2] dirty_2ax_fit = dirty_2ax_plot.iloc[:, 2:7:2] dirty_2bx_fit = dirty_2bx_plot.iloc[:, 2:7:2] dirty_3ax_fit = dirty_3ax_plot.iloc[:, 2:7:2] dirty_3bx_fit = dirty_3bx_plot.iloc[:, 2:7:2] dirty_4x_fit = dirty_4x_plot.iloc[:, 2:7:2] dirty_5x_fit = dirty_5x_plot.iloc[:, 2:7:2] # dirty fits, alphafloat dirty_1ay_fit = dirty_1ay_plot.iloc[:, 2:7:2] dirty_1by_fit = dirty_1by_plot.iloc[:, 2:7:2] dirty_2ay_fit = dirty_2ay_plot.iloc[:, 2:7:2] dirty_2by_fit = dirty_2by_plot.iloc[:, 2:7:2] dirty_3ay_fit = dirty_3ay_plot.iloc[:, 2:7:2] dirty_3by_fit = dirty_3by_plot.iloc[:, 2:7:2] dirty_4y_fit = dirty_4y_plot.iloc[:, 2:7:2] dirty_5y_fit = dirty_5y_plot.iloc[:, 2:7:2] # dirty fits, from other experiments, alphafix dirty_6x_fit = dirty_6x_plot.iloc[:, 2:7:2] dirty_7x_fit = dirty_7x_plot.iloc[:, 2:7:2] dirty_8x_fit = dirty_8x_plot.iloc[:, 2:7:2] dirty_9x_fit = dirty_9x_plot.iloc[:, 2:7:2] dirty_10x_fit = dirty_10x_plot.iloc[:, 2:7:2] # dirty fits, from other experiments, alphafloat dirty_6y_fit = dirty_6y_plot.iloc[:, 2:7:2] dirty_7y_fit = dirty_7y_plot.iloc[:, 2:7:2] dirty_8y_fit = dirty_8y_plot.iloc[:, 2:7:2] dirty_9y_fit = dirty_9y_plot.iloc[:, 2:7:2] dirty_10y_fit = dirty_10y_plot.iloc[:, 2:7:2] all_plot_clean = [{'tttr2xfcs' : {'alpha=1' : {'tau': clean_1ax_tau, 'corr': clean_1ax_corr, 'fit': clean_1ax_fit}, 'alpha=float' : {'tau': clean_1ay_tau, 'corr': clean_1ay_corr, 'fit': clean_1ay_fit}}, 'multipletau': {'alpha=1' : {'tau': clean_1bx_tau, 'corr': clean_1bx_corr, 'fit': clean_1bx_fit}, 'alpha=float': {'tau': clean_1by_tau, 'corr': clean_1by_corr, 'fit': clean_1by_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': clean_2ax_tau, 'corr': clean_2ax_corr, 'fit': clean_2ax_fit}, 'alpha=float' : {'tau': clean_2ay_tau, 'corr': clean_2ay_corr, 'fit': clean_2ay_fit}}, 'multipletau': {'alpha=1' : {'tau': clean_2bx_tau, 'corr': clean_2bx_corr, 'fit': clean_2bx_fit}, 'alpha=float': {'tau': clean_2by_tau, 'corr': clean_2by_corr, 'fit': clean_2by_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': clean_3ax_tau, 'corr': clean_3ax_corr, 'fit': clean_3ax_fit}, 'alpha=float' : {'tau': clean_3ay_tau, 'corr': clean_3ay_corr, 'fit': clean_3ay_fit}}, 'multipletau': {'alpha=1' : {'tau': clean_3bx_tau, 'corr': clean_3bx_corr, 'fit': clean_3bx_fit}, 'alpha=float': {'tau': clean_3by_tau, 'corr': clean_3by_corr, 'fit': clean_3by_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': clean_4x_tau, 'corr': clean_4x_corr, 'fit': clean_4x_fit}, 'alpha=float' : {'tau': clean_4y_tau, 'corr': clean_4y_corr, 'fit': clean_4y_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': clean_5x_tau, 'corr': clean_5x_corr, 'fit': clean_5x_fit}, 'alpha=float' : {'tau': clean_5y_tau, 'corr': clean_5y_corr, 'fit': clean_5y_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': clean_6x_tau, 'corr': clean_6x_corr, 'fit': clean_6x_fit}, 'alpha=float' : {'tau': clean_6y_tau, 'corr': clean_6y_corr, 'fit': clean_6y_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': clean_7x_tau, 'corr': clean_7x_corr, 'fit': clean_7x_fit}, 'alpha=float' : {'tau': clean_7y_tau, 'corr': clean_7y_corr, 'fit': clean_7y_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': clean_8x_tau, 'corr': clean_8x_corr, 'fit': clean_8x_fit}, 'alpha=float' : {'tau': clean_8y_tau, 'corr': clean_8y_corr, 'fit': clean_8y_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': clean_9x_tau, 'corr': clean_9x_corr, 'fit': clean_9x_fit}, 'alpha=float' : {'tau': clean_9y_tau, 'corr': clean_9y_corr, 'fit': clean_9y_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': clean_10x_tau, 'corr': clean_10x_corr, 'fit': clean_10x_fit}, 'alpha=float' : {'tau': clean_10y_tau, 'corr': clean_10y_corr, 'fit': clean_10y_fit}}}] all_plot_dirty = [{'tttr2xfcs' : {'alpha=1' : {'tau': dirty_1ax_tau, 'corr': dirty_1ax_corr, 'fit': dirty_1ax_fit}, 'alpha=float' : {'tau': dirty_1ay_tau, 'corr': dirty_1ay_corr, 'fit': dirty_1ay_fit}}, 'multipletau': {'alpha=1' : {'tau': dirty_1bx_tau, 'corr': dirty_1bx_corr, 'fit': dirty_1bx_fit}, 'alpha=float': {'tau': dirty_1by_tau, 'corr': dirty_1by_corr, 'fit': dirty_1by_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_2ax_tau, 'corr': dirty_2ax_corr, 'fit': dirty_2ax_fit}, 'alpha=float' : {'tau': dirty_2ay_tau, 'corr': dirty_2ay_corr, 'fit': dirty_2ay_fit}}, 'multipletau': {'alpha=1' : {'tau': dirty_2bx_tau, 'corr': dirty_2bx_corr, 'fit': dirty_2bx_fit}, 'alpha=float': {'tau': dirty_2by_tau, 'corr': dirty_2by_corr, 'fit': dirty_2by_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_3ax_tau, 'corr': dirty_3ax_corr, 'fit': dirty_3ax_fit}, 'alpha=float' : {'tau': dirty_3ay_tau, 'corr': dirty_3ay_corr, 'fit': dirty_3ay_fit}}, 'multipletau': {'alpha=1' : {'tau': dirty_3bx_tau, 'corr': dirty_3bx_corr, 'fit': dirty_3bx_fit}, 'alpha=float': {'tau': dirty_3by_tau, 'corr': dirty_3by_corr, 'fit': dirty_3by_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_4x_tau, 'corr': dirty_4x_corr, 'fit': dirty_4x_fit}, 'alpha=float' : {'tau': dirty_4y_tau, 'corr': dirty_4y_corr, 'fit': dirty_4y_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_5x_tau, 'corr': dirty_5x_corr, 'fit': dirty_5x_fit}, 'alpha=float' : {'tau': dirty_5y_tau, 'corr': dirty_5y_corr, 'fit': dirty_5y_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_6x_tau, 'corr': dirty_6x_corr, 'fit': dirty_6x_fit}, 'alpha=float' : {'tau': dirty_6y_tau, 'corr': dirty_6y_corr, 'fit': dirty_6y_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_7x_tau, 'corr': dirty_7x_corr, 'fit': dirty_7x_fit}, 'alpha=float' : {'tau': dirty_7y_tau, 'corr': dirty_7y_corr, 'fit': dirty_7y_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_8x_tau, 'corr': dirty_8x_corr, 'fit': dirty_8x_fit}, 'alpha=float' : {'tau': dirty_8y_tau, 'corr': dirty_8y_corr, 'fit': dirty_8y_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_9x_tau, 'corr': dirty_9x_corr, 'fit': dirty_9x_fit}, 'alpha=float' : {'tau': dirty_9y_tau, 'corr': dirty_9y_corr, 'fit': dirty_9y_fit}}}, {'tttr2xfcs' : {'alpha=1' : {'tau': dirty_10x_tau, 'corr': dirty_10x_corr, 'fit': dirty_10x_fit}, 'alpha=float' : {'tau': dirty_10y_tau, 'corr': dirty_10y_corr, 'fit': dirty_10y_fit}}}] index = ['no correction', 'delete', 'delete and shift', 'w=1-pred', 'w=random', 'w=0', 'w=0.2', 'w=0.4', 'w=0.6', 'w=0.8']
- now, let’s plot correlations and fits for all correction methods:
fig = plt.figure(figsize=(12, 40)) rows = len(index) + 3 counter = 1 palette_clean = [sns.color_palette()[0], sns.color_palette()[1], sns.color_palette()[2]] palette_dirty = [sns.color_palette()[3], sns.color_palette()[4], sns.color_palette()[5]] for i, correction_clean, correction_dirty in zip(index, all_plot_clean, all_plot_dirty): for (method_clean, fitplot_clean), (method_dirty, fitplot_dirty) in zip(correction_clean.items(), correction_dirty.items()): for (fit_clean, plots_clean), (fit_dirty, plots_dirty) in zip(fitplot_clean.items(), fitplot_dirty.items()): # clean if fit_clean == 'alpha=1': fit_color = 'r' else: fit_color= 'b' ax = plt.subplot(rows, 4, counter) ax.set_prop_cycle(color=palette_clean) lines1 = plt.semilogx(plots_clean['tau'], plots_clean['corr'], '.') plt.semilogx(plots_clean['tau'], plots_clean['fit'], f'{fit_color}-') xmin = plots_clean['fit'].dropna().index[0] xmax = plots_clean['fit'].dropna().index[-1] xlims = [plots_clean['tau'][xmin] - 0.5*plots_clean['tau'][xmin], plots_clean['tau'][xmax]+0.5*plots_clean['tau'][xmax]] ylims = [np.min(np.min(plots_clean['fit']))-0.01, np.max(np.max(plots_clean['fit']))+0.01] plt.setp(ax, xlim=xlims, ylim=ylims, title=f'clean | {i}\n{method_clean} | {fit_clean}', xlabel=r'$\tau$ (ms)', ylabel=r'Correlation G($\tau$)') counter += 1 # dirty ax = plt.subplot(rows, 4, counter) ax.set_prop_cycle(color=palette_dirty) lines2 = plt.semilogx(plots_dirty['tau'], plots_dirty['corr'], '.') plt.semilogx(plots_dirty['tau'], plots_dirty['fit'], f'{fit_color}-') xmin = plots_dirty['fit'].dropna().index[0] xmax = plots_dirty['fit'].dropna().index[-1] xlims = [plots_dirty['tau'][xmin] - 0.5*plots_dirty['tau'][xmin], plots_dirty['tau'][xmax]+0.5*plots_dirty['tau'][xmax]] ylims = [np.min(np.min(plots_dirty['fit']))-0.01, np.max(np.max(plots_dirty['fit']))+0.01] plt.setp(ax, xlim=xlims, ylim=ylims, title=f'dirty | {i}\n{method_dirty} | {fit_dirty}', xlabel=r'$\tau$ (ms)', ylabel=r'Correlation G($\tau$)') if counter < 3: handles = lines1 + lines2 fig.legend(handles, ['20 nM AF48816_T182s_1', '20 nM AF48822_T254s_1', '20 nM AF48826_T302s_1', 'DiO LUV 10uM in 20 nM AF4884_T39s_1', 'DiO LUV 10uM in 20 nM AF4887_T75s_1', 'DiO LUV 10uM in 20 nM AF4889_T106s_1'], loc=9, ncol=2, bbox_to_anchor=(0.5, 0.98)) counter += 1 fig.suptitle('AlexaFluor488 (clean) vs AlexaFluor488 + Dio LUVs (dirty)\n- all correlations and fits -', size=20, y=1) plt.tight_layout(rect=(0, 0, 1, 0.98))
2.5.11 Analysis 4: show examples of all experimental traces
:header-args:jupyter-python: :session /jpy:localhost#8889:a37e524a-8134-4d8f-b24a-367acaf1bdd3
- to interprete the correlations correctly, let’s plot the underlying
experimental data.
%cd ~/Programme/drmed-collections/data-from-Eggeling-group/brightbursts
/home/lex/Programme/drmed-collections/data-from-Eggeling-group/brightbursts
%cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
- load modules
import logging import os import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint from tensorflow.keras.optimizers import Adam from mlflow.keras import load_model FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import corr_fit_object as cfo from fluotracify.training import build_model as bm logging.basicConfig(filename="/beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-02-15_experiment-overview/exps.log", filemode='w', format='%(asctime)s - %(message)s', force=True, level=logging.DEBUG) # sns.set_theme(style="whitegrid") sns.set()
2022-02-17 19:45:03.282584: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-02-17 19:45:03.282645: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
- first, we prepare our correction functions as we did before
class ParameterClass(): """Stores parameters for correlation """ def __init__(self): # Where the data is stored. self.data = [] self.objectRef = [] self.subObjectRef = [] self.colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black'] self.numOfLoaded = 0 # very fast from Ncasc ~ 14 onwards self.NcascStart = 0 self.NcascEnd = 30 # 25 self.Nsub = 6 # 6 self.photonLifetimeBin = 10 # used for photon decay self.photonCountBin = 1 # used for time series data_path = Path("/beegfs/ye53nis/data") output_path = "/beegfs/ye53nis/drmed-git/data/exp-220120-correlate-ptu/2022-02-15_experiment-overview" logged_model = 'file:///beegfs/ye53nis/drmed-git/data/mlruns/8/00f2635d9fa2463c9a066722163405be/artifacts/model' par_obj = ParameterClass() loaded_model = load_model(logged_model, compile=False) loaded_model.compile(loss=bm.binary_ce_dice_loss(), optimizer=Adam(), metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9])) bm.prepare_model(loaded_model, [2**14, 2**13, 2**12, 2**15, 2**13])
2022-02-17 19:45:12.370211: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-02-17 19:45:12.370284: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-02-17 19:45:12.370324: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node305): /proc/driver/nvidia/version does not exist 2022-02-17 19:45:12.370974: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- look at first bright cluster artifacts folder:
1911DD_alexafluor+LUVs
- clean = 20nM Alexa Fluor 488, a green-fluorescent dye, pH-insensitive, relatively bright and photostable. We expect a diffusion constant of 350-450 um2/s = 25-32us transit times
- dirty = 20nM Alexa Fluor 488 + 10uM DiO LUV → 10uM of lipids, labelled
with the dye DiO (also green) in the membrane. we expect there to be the
fast fraction with 25-32us transit times as above and a slow fraction
with a diffusion constant of 5 um2/s = 2250us transit time
- LUV preparation method: extrusion (LUVET), detergent dialysis (DOV), reverse evaporation (REV) or ethanol injection? → extrusion through 100nm filter
- large unilamellar vesicles prepared from large multilamellar vesicles (LMVs). Here they are 100nm in diameter or larger. Are stable on storage.
- where is the dye?? In the membrane or inside the vesicle or both?? → in the membrane. We don’t expect to see the diffusion of DiO in the membrane, but rather the diffusion of the LUV itself, because the one in the membrane can not go in and out of the excitation volume
- which fitting methods should we choose? → we should do 3D fitting with equation 1B, fix the AR1 (propert of microscope setup which converts between txy and tz) between 4.5 and 6, and alpha at 1 (no anomalous diffusion). We can also try 2 component fitting!
- let’s plot traces, predictions, and correlations:
path_clean = data_path / '1911DD_alexafluor488+LUVs/clean_subsample/' path_dirty = data_path / '1911DD_alexafluor488+LUVs/dirty_subsample/' files_clean = [path_clean / f for f in os.listdir(path_clean) if f.endswith('.ptu')] files_dirty = [path_dirty / f for f in os.listdir(path_dirty) if f.endswith('.ptu')] traces = pd.DataFrame() predtraces = pd.DataFrame() preds = pd.DataFrame() corrs = pd.DataFrame() mt_bin = 1e-3 for myfile in (files_dirty): ptufile = cfo.PicoObject(myfile, par_obj) ptufile.predictTimeSeries(model=loaded_model, scaler='minmax') mt_name = f'us_{ptufile.name}' ptufile.getTimeSeries(timeseries_name=mt_name, photonCountBin=mt_bin) ptufile.getPhotonCountingStats(name=mt_name) ptufile.predictTimeSeries(model=loaded_model, scaler='minmax', name=mt_name) for key in list(ptufile.trueTimeArr.keys()): ptufile.get_autocorrelation(method='tttr2xfcs', name=key) for key in list(ptufile.timeSeries.keys()): for k, i in ptufile.timeSeries[key].items(): if "PREPRO" in k: if "1.0" in k: predtraces = pd.concat([predtraces, pd.DataFrame(i, columns=[f'{key}_{k}'])], axis=1) elif "1.0" in k: traces = pd.concat([traces, pd.DataFrame(i, columns=[f'{key}_{k}'])], axis=1) preds = pd.concat([preds, pd.DataFrame(data=ptufile.predictions[key][k], columns=[f'{key}_{k}'])], axis=1) elif "0.001" in k: ptufile.get_autocorrelation(method='multipletau', name=(key, k)) for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key, item in list(ptufile.autoNorm[m].items()): ptufile.save_autocorrelation(name=key, method=m, output_path=output_path) predtraces.to_csv(Path(output_path) / 'alexadirty_predtraces.csv') traces.to_csv(Path(output_path) / 'alexadirty_traces.csv') preds.to_csv(Path(output_path) / 'alexadirty_preds.csv')
/home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!", /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!", /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!",
- now I fitted the example traces using https://dwaithe.github.io/FCSfitJS/.
Because of disk space issues, the .ptu files above are not available in
this git repository. Rather, I saved out the traces, prediction traces and
predictions and loaded them in, together with the correlations and fits:
fit_dirty_mt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/dirty/alexadirty_multipletau_plot.csv', index_col=0, usecols=[0, 2, 4, 6], na_values=' ') fit_dirty_tt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/dirty/alexadirty_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 2, 4, 6], na_values=' ') fit_clean_mt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/clean/alexaclean_multipletau_plot.csv' , index_col=0, usecols=[0, 2, 4, 6], na_values=' ') fit_clean_tt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/clean/alexaclean_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 2, 4, 6], na_values=' ') corr_dirty_mt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/dirty/alexadirty_multipletau_plot.csv', index_col=0, usecols=[0, 1, 3, 5], na_values=' ') corr_dirty_tt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/dirty/alexadirty_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 1, 3, 5], na_values=' ') corr_clean_mt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/clean/alexaclean_multipletau_plot.csv' , index_col=0, usecols=[0, 1, 3, 5], na_values=' ') corr_clean_tt = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/clean/alexaclean_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 1, 3, 5], na_values=' ') preds_dirty = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/dirty/alexadirty_preds.csv', index_col=0) predtraces_dirty = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/dirty/alexadirty_predtraces.csv', index_col=0) traces_dirty = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/dirty/alexadirty_traces.csv', index_col=0) preds_clean = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/clean/alexaclean_preds.csv', index_col=0) predtraces_clean = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/clean/alexaclean_predtraces.csv', index_col=0) traces_clean = pd.read_csv(Path(output_path) / '1911DD_alexafluor488+LUVs/clean/alexaclean_traces.csv', index_col=0) fit_clean_mt.columns
Index(['2022-02-02_multipletau_CH2_BIN0dot001_us_20 nM AF4887_T74s_1_correlation-CH2_2 fitted model: ', '2022-02-02_multipletau_CH2_BIN0dot001_us_20 nM AF48896_T1142s_1_correlation-CH2_2 fitted model: ', '2022-02-02_multipletau_CH2_BIN0dot001_us_20 nM AF48897_T1160s_1_correlation-CH2_2 fitted model: '], dtype='object')
plotdata = zip(traces_dirty.items(), traces_clean.items(), predtraces_dirty.items(), predtraces_clean.items(), preds_dirty.items(), preds_clean.items(), corr_dirty_mt.items(), corr_clean_mt.items(), corr_dirty_tt.items(), corr_clean_tt.items(), fit_dirty_mt.items(), fit_clean_mt.items(), fit_dirty_tt.items(), fit_clean_tt.items()) fig = plt.figure(figsize=(16, 20)) gs = fig.add_gridspec(12, 4) for i, ((td_n, td_v), (tc_n, tc_v), (_, ptd_v), (_, ptc_v), (_, pd_v), (_, pc_v), (_, cdm_v), (_, ccm_v), (_, cdt_v), (_, cct_v), (_, fdm_v), (_, fcm_v), (_, fdt_v), (_, fct_v)) in enumerate(plotdata): print(i) ax0 = fig.add_subplot(gs[i*4, 0:2]) sns.lineplot(ax=ax0, data=(tc_n, tc_v)) ax1 = fig.add_subplot(gs[i*4, 2:4]) sns.lineplot(ax=ax1, data=(td_n, td_v)) ax0.set(xlabel='time steps in ms', ylabel='photons') ax1.set(xlabel='time steps in ms', ylabel='photons') ax2 = fig.add_subplot(gs[i*4+1, 0:2], sharex=ax0) sns.lineplot(ax=ax2, data=ptc_v, color=sns.color_palette()[0], legend=False) sns.lineplot(ax=ax2, data=pc_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax3 = fig.add_subplot(gs[i*4+1, 2:4], sharex=ax1) sns.lineplot(ax=ax3, data=ptd_v, legend=False) sns.lineplot(ax=ax3, data=pd_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax2.set(xlabel='time steps in ms', ylabel='probability of artifact') ax3.set(xlabel='time steps in ms', ylabel='probability of artifact') ax4 = fig.add_subplot(gs[i*4+2:i*4+4, 0], title='multipletau w/ us bin') sns.lineplot(ax=ax4, data=ccm_v, marker='.', legend=False) sns.lineplot(ax=ax4, data=fcm_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax5 = fig.add_subplot(gs[i*4+2:i*4+4, 1], title='tttr2xfcs on arrival times') sns.lineplot(ax=ax5, data=cct_v, marker='.', legend=False) sns.lineplot(ax=ax5, data=fct_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax4.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)') ax5.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)') ax6 = fig.add_subplot(gs[i*4+2:i*4+4, 2], title='multipletau w/ us bin', sharey=ax4) sns.lineplot(ax=ax6, data=cdm_v, marker='.', legend=False) sns.lineplot(ax=ax6, data=fdm_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax7 = fig.add_subplot(gs[i*4+2:i*4+4, 3], title='tttr2xfcs on arrival times', sharey=ax5) sns.lineplot(ax=ax7, data=cdt_v, marker='.', legend=False) sns.lineplot(ax=ax7, data=fdt_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax6.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)') ax7.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)') fig.suptitle('AlexaFluor488 (left) vs AF488 + DiO-LUVs (right)', size=20) gs.tight_layout(fig, rect=[0, 0, 1, 0.99])
- the results:
- look at second bright cluster artifacts folder:
191111_Pex5_1
- clean = Homo sapiens PEX5, labelled with eGFP
- dirty = Trypanosoma brucei PEX5, labelled with eGFP
- both measurements have 2 channels! → Pablo said that is because he didn’t know the microscope well → I can just use the channel with the higher count rates.
- let’s plot traces, predictions, and correlations (see
Details
blocks):path_clean = data_path / '191111_Pex5_1/clean_3of10' path_dirty = data_path / '191111_Pex5_1/Tb-PEX5-eGFP_5uW_0.5ugml3_3of177' files_clean = [path_clean / f for f in os.listdir(path_clean) if f.endswith('.ptu')] files_dirty = [path_dirty / f for f in os.listdir(path_dirty) if f.endswith('.ptu')] traces = pd.DataFrame() predtraces = pd.DataFrame() preds = pd.DataFrame() corrs = pd.DataFrame() mt_bin = 1e-3 for myfile in (files_dirty): ptufile = cfo.PicoObject(myfile, par_obj) # ptufile.predictTimeSeries(model=loaded_model, # scaler='minmax') mt_name = f'us_{ptufile.name}' ptufile.getTimeSeries(timeseries_name=mt_name, photonCountBin=mt_bin) ptufile.getPhotonCountingStats(name=mt_name) # ptufile.predictTimeSeries(model=loaded_model, # scaler='minmax', # name=mt_name) for key in list(ptufile.trueTimeArr.keys()): ptufile.get_autocorrelation(method='tttr2xfcs', name=key) for key in list(ptufile.timeSeries.keys()): for k, i in ptufile.timeSeries[key].items(): if "PREPRO" in k: if "1.0" in k: # predtraces = pd.concat([predtraces, pd.DataFrame(i, columns=[f'{key}_{k}'])], # axis=1) pass elif "1.0" in k: traces = pd.concat([traces, pd.DataFrame(i, columns=[f'{key}_{k}'])], axis=1) # preds = pd.concat([preds, pd.DataFrame(data=ptufile.predictions[key][k], # columns=[f'{key}_{k}'])], axis=1) elif "0.001" in k: ptufile.get_autocorrelation(method='multipletau', name=(key, k)) for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key, item in list(ptufile.autoNorm[m].items()): ptufile.save_autocorrelation(name=key, method=m, output_path=output_path) # predtraces.to_csv(Path(output_path) / 'pex2dirty_predtraces.csv') traces.to_csv(Path(output_path) / 'pex1dirty_traces.csv') # preds.to_csv(Path(output_path) / 'pex2dirty_preds.csv')
/home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!",
fit_dirty_mt = pd.read_csv(Path(output_path) / '191111_Pex5_1/dirty/pex1dirty_CH2_multipletau_plot.csv', index_col=0, usecols=[0, 2, 4, 6], na_values=' ') fit_dirty_tt = pd.read_csv(Path(output_path) / '191111_Pex5_1/dirty/pex1dirty_CH2_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 2, 4, 6], na_values=' ') fit_clean_mt = pd.read_csv(Path(output_path) / '191111_Pex5_1/clean/pex1clean_CH2_multipletau_plot.csv' , index_col=0, usecols=[0, 2, 4, 6], na_values=' ') fit_clean_tt = pd.read_csv(Path(output_path) / '191111_Pex5_1/clean/pex1clean_CH2_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 2, 4, 6], na_values=' ') corr_dirty_mt = pd.read_csv(Path(output_path) / '191111_Pex5_1/dirty/pex1dirty_CH2_multipletau_plot.csv', index_col=0, usecols=[0, 1, 3, 5], na_values=' ') corr_dirty_tt = pd.read_csv(Path(output_path) / '191111_Pex5_1/dirty/pex1dirty_CH2_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 1, 3, 5], na_values=' ') corr_clean_mt = pd.read_csv(Path(output_path) / '191111_Pex5_1/clean/pex1clean_CH2_multipletau_plot.csv' , index_col=0, usecols=[0, 1, 3, 5], na_values=' ') corr_clean_tt = pd.read_csv(Path(output_path) / '191111_Pex5_1/clean/pex1clean_CH2_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 1, 3, 5], na_values=' ') # preds_dirty = pd.read_csv(Path(output_path) / '191111_Pex5_1/dirty/pex1dirty_preds.csv', index_col=0) # predtraces_dirty = pd.read_csv(Path(output_path) / '191111_Pex5_1/dirty/pex1dirty_predtraces.csv', index_col=0) traces_dirty = pd.read_csv(Path(output_path) / '191111_Pex5_1/dirty/pex1dirty_traces.csv', index_col=0, usecols=[0, 2, 4, 6]) # preds_clean = pd.read_csv(Path(output_path) / '191111_Pex5_1/clean/pex1clean_preds.csv', index_col=0) # predtraces_clean = pd.read_csv(Path(output_path) / '191111_Pex5_1/clean/pex1clean_predtraces.csv', index_col=0) traces_clean = pd.read_csv(Path(output_path) / '191111_Pex5_1/clean/pex1clean_traces.csv', index_col=0, usecols=[0, 2, 4, 6]) print(fit_clean_mt.columns) print(traces_clean.columns)
Index(['2022-02-03_multipletau_CH2_BIN0dot001_us_2Hs-PEX5-eGFP5_T91s_1_correlation-CH2_2 fitted model: ', '2022-02-03_multipletau_CH2_BIN0dot001_us_Hs-PEX5-eGFP1_T0s_1_correlation-CH2_2 fitted model: ', '2022-02-03_multipletau_CH2_BIN0dot001_us_Hs-PEX5-eGFP2_T26s_1_correlation-CH2_2 fitted model: '], dtype='object') Index(['Hs-PEX5-eGFP1_T0s_1_CH2_BIN1.0', '2Hs-PEX5-eGFP5_T91s_1_CH2_BIN1.0', 'Hs-PEX5-eGFP2_T26s_1_CH2_BIN1.0'], dtype='object')
plotdata = zip(traces_dirty.items(), traces_clean.items(), corr_dirty_mt.items(), corr_clean_mt.items(), corr_dirty_tt.items(), corr_clean_tt.items(), fit_dirty_mt.items(), fit_clean_mt.items(), fit_dirty_tt.items(), fit_clean_tt.items()) fig = plt.figure(figsize=(16, 20)) gs = fig.add_gridspec(12, 4) for i, ((td_n, td_v), (td_n, tc_v), (_, cdm_v), (_, ccm_v), (_, cdt_v), (_, cct_v), (_, fdm_v), (_, fcm_v), (_, fdt_v), (_, fct_v)) in enumerate(plotdata): print(i) ax0 = fig.add_subplot(gs[i*4, 0:2]) sns.lineplot(ax=ax0, data=(td_n, tc_v), legend='auto') ax1 = fig.add_subplot(gs[i*4, 2:4]) sns.lineplot(ax=ax1, data=(td_n, td_v), legend='auto') ax0.set(xlabel='time steps in ms', ylabel='photons') ax1.set(xlabel='time steps in ms', ylabel='photons') # ax2 = fig.add_subplot(gs[i*4+1, 0:2], sharex=ax0) # sns.lineplot(ax=ax2, data=ptc_v, color=sns.color_palette()[0], legend=False) # sns.lineplot(ax=ax2, data=pc_v, color=sns.color_palette()[1], alpha=0.8, legend=False) # ax3 = fig.add_subplot(gs[i*4+1, 2:4], sharex=ax1) # sns.lineplot(ax=ax3, data=ptd_v, legend=False) # sns.lineplot(ax=ax3, data=pd_v, color=sns.color_palette()[1], alpha=0.8, legend=False) # ax2.set(xlabel='time steps in ms', ylabel='probability of artifact') # ax3.set(xlabel='time steps in ms', ylabel='probability of artifact') ax4 = fig.add_subplot(gs[i*4+2:i*4+4, 0], title='multipletau w/ us bin') sns.lineplot(ax=ax4, data=ccm_v, marker='.', legend=False) sns.lineplot(ax=ax4, data=fcm_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax5 = fig.add_subplot(gs[i*4+2:i*4+4, 1], title='tttr2xfcs on arrival times') sns.lineplot(ax=ax5, data=cct_v, marker='.', legend=False) sns.lineplot(ax=ax5, data=fct_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax4.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)') ax5.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)') ax6 = fig.add_subplot(gs[i*4+2:i*4+4, 2], title='multipletau w/ us bin', sharey=ax4) sns.lineplot(ax=ax6, data=cdm_v, marker='.', legend=False) sns.lineplot(ax=ax6, data=fdm_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax7 = fig.add_subplot(gs[i*4+2:i*4+4, 3], title='tttr2xfcs on arrival times', sharey=ax5) sns.lineplot(ax=ax7, data=cdt_v, marker='.', legend=False) sns.lineplot(ax=ax7, data=fdt_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax6.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)') ax7.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)') fig.suptitle('HsPEX5-eGFP (left) vs TbPEX5-eGFP (right) - 11.11.2019', size=20) gs.tight_layout(fig, rect=[0, 0, 1, 0.99])
- the results:
- cave 1: 2 channels - check for the right Channel when plotting (CH2)
- cave 2: in the plot, the traces and the correlations don’t fit right now
inside their respecitve group (different order of names in e.g.
traces_clean
vsfit_clean_mt
) → at the moment I don’t invest the time to fix this, because the fits are quite similar looking, but for publication I have to do this.
- look at third bright cluster artifacts folder:
191113_Pex5_2_structured
- clean = Homo sapiens PEX5, labelled with eGFP
- dirty = Trypanosoma brucei PEX5, labelled with eGFP
- let’s plot traces, predictions, and correlations (see
Details
block):path_clean = data_path / '191113_Pex5_2_structured/HsPEX5EGFP_1-100001_3of250' path_dirty = data_path / '191113_Pex5_2_structured/TbPEX5EGFP_1-10002_3of250' files_clean = [path_clean / f for f in os.listdir(path_clean) if f.endswith('.ptu')] files_dirty = [path_dirty / f for f in os.listdir(path_dirty) if f.endswith('.ptu')] traces = pd.DataFrame() predtraces = pd.DataFrame() preds = pd.DataFrame() corrs = pd.DataFrame() mt_bin = 1e-3 for myfile in (files_clean): ptufile = cfo.PicoObject(myfile, par_obj) # ptufile.predictTimeSeries(model=loaded_model, # scaler='minmax') mt_name = f'us_{ptufile.name}' ptufile.getTimeSeries(timeseries_name=mt_name, photonCountBin=mt_bin) ptufile.getPhotonCountingStats(name=mt_name) # ptufile.predictTimeSeries(model=loaded_model, # scaler='minmax', # name=mt_name) for key in list(ptufile.trueTimeArr.keys()): ptufile.get_autocorrelation(method='tttr2xfcs', name=key) for key in list(ptufile.timeSeries.keys()): for k, i in ptufile.timeSeries[key].items(): if "PREPRO" in k: if "1.0" in k: # predtraces = pd.concat([predtraces, pd.DataFrame(i, columns=[f'{key}_{k}'])], # axis=1) pass elif "1.0" in k: traces = pd.concat([traces, pd.DataFrame(i, columns=[f'{key}_{k}'])], axis=1) # preds = pd.concat([preds, pd.DataFrame(data=ptufile.predictions[key][k], # columns=[f'{key}_{k}'])], axis=1) elif "0.001" in k: ptufile.get_autocorrelation(method='multipletau', name=(key, k)) for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key, item in list(ptufile.autoNorm[m].items()): ptufile.save_autocorrelation(name=key, method=m, output_path=output_path) # predtraces.to_csv(Path(output_path) / 'pex2dirty_predtraces.csv') traces.to_csv(Path(output_path) / 'pex2clean_traces.csv') # preds.to_csv(Path(output_path) / 'pex2dirty_preds.csv')
/home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!",
fit_dirty_mt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_multipletau_plot.csv', index_col=0, usecols=[0, 2, 4, 6], na_values=' ') fit_dirty_tt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 2, 4, 6], na_values=' ') fit_clean_mt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_multipletau_plot.csv' , index_col=0, usecols=[0, 2, 4, 6], na_values=' ') fit_clean_tt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 2, 4, 6], na_values=' ') corr_dirty_mt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_multipletau_plot.csv', index_col=0, usecols=[0, 1, 3, 5], na_values=' ') corr_dirty_tt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 1, 3, 5], na_values=' ') corr_clean_mt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_multipletau_plot.csv' , index_col=0, usecols=[0, 1, 3, 5], na_values=' ') corr_clean_tt = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 1, 3, 5], na_values=' ') # preds_dirty = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_preds.csv', index_col=0) # predtraces_dirty = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_predtraces.csv', index_col=0) traces_dirty = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_traces.csv', index_col=0) # preds_clean = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_preds.csv', index_col=0) # predtraces_clean = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_predtraces.csv', index_col=0) traces_clean = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_traces.csv', index_col=0) fit_clean_mt.columns
Index(['2022-02-02_multipletau_CH2_BIN0dot001_us_HsPEX5EGFP 1-1000015_T309s_1_correlation-CH2_2 fitted model: ', '2022-02-02_multipletau_CH2_BIN0dot001_us_HsPEX5EGFP 1-1000016_T331s_1_correlation-CH2_2 fitted model: ', '2022-02-02_multipletau_CH2_BIN0dot001_us_HsPEX5EGFP 1-1000017_T353s_1_correlation-CH2_2 fitted model: '], dtype='object')
plotdata = zip(traces_dirty.items(), traces_clean.items(), corr_dirty_mt.items(), corr_clean_mt.items(), corr_dirty_tt.items(), corr_clean_tt.items(), fit_dirty_mt.items(), fit_clean_mt.items(), fit_dirty_tt.items(), fit_clean_tt.items()) fig = plt.figure(figsize=(16, 20)) gs = fig.add_gridspec(12, 4) for i, ((_, td_v), (_, tc_v), (_, cdm_v), (_, ccm_v), (_, cdt_v), (_, cct_v), (_, fdm_v), (_, fcm_v), (_, fdt_v), (_, fct_v)) in enumerate(plotdata): print(i) ax0 = fig.add_subplot(gs[i*4, 0:2]) sns.lineplot(ax=ax0, data=tc_v) ax1 = fig.add_subplot(gs[i*4, 2:4]) sns.lineplot(ax=ax1, data=td_v) ax0.set(xlabel='time steps in ms', ylabel='photons') ax1.set(xlabel='time steps in ms', ylabel='photons') # ax2 = fig.add_subplot(gs[i*4+1, 0:2], sharex=ax0) # sns.lineplot(ax=ax2, data=ptc_v, color=sns.color_palette()[0], legend=False) # sns.lineplot(ax=ax2, data=pc_v, color=sns.color_palette()[1], alpha=0.8, legend=False) # ax3 = fig.add_subplot(gs[i*4+1, 2:4], sharex=ax1) # sns.lineplot(ax=ax3, data=ptd_v, legend=False) # sns.lineplot(ax=ax3, data=pd_v, color=sns.color_palette()[1], alpha=0.8, legend=False) # ax2.set(xlabel='time steps in ms', ylabel='probability of artifact') # ax3.set(xlabel='time steps in ms', ylabel='probability of artifact') ax4 = fig.add_subplot(gs[i*4+2:i*4+4, 0], title='multipletau w/ us bin') sns.lineplot(ax=ax4, data=ccm_v, marker='.', legend=False) sns.lineplot(ax=ax4, data=fcm_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax5 = fig.add_subplot(gs[i*4+2:i*4+4, 1], title='tttr2xfcs on arrival times') sns.lineplot(ax=ax5, data=cct_v, marker='.', legend=False) sns.lineplot(ax=ax5, data=fct_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax4.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)') ax5.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)') ax6 = fig.add_subplot(gs[i*4+2:i*4+4, 2], title='multipletau w/ us bin', sharey=ax4) sns.lineplot(ax=ax6, data=cdm_v, marker='.', legend=False) sns.lineplot(ax=ax6, data=fdm_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax7 = fig.add_subplot(gs[i*4+2:i*4+4, 3], title='tttr2xfcs on arrival times', sharey=ax5) sns.lineplot(ax=ax7, data=cdt_v, marker='.', legend=False) sns.lineplot(ax=ax7, data=fdt_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax6.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)') ax7.set(xscale='log', xlabel='tau in ms', ylabel='Correlation G(tau)') fig.suptitle('HsPEX5-eGFP (left) vs TbPEX5-eGFP (right) - 13.11.2019', size=20) gs.tight_layout(fig, rect=[0, 0, 1, 0.99])
- the results:
- look at detector dropout files
- from the file Name we have e24 ? HeLa cells with GFP-SNAP
- let’s see if we can load them (see
Details
block)path_dirty = data_path / "190327_detectordropout/" files_dirty = [path_dirty / f for f in os.listdir(path_dirty) if f.endswith('.ptu')] traces = pd.DataFrame() predtraces = pd.DataFrame() preds = pd.DataFrame() corrs = pd.DataFrame() mt_bin = 1e-3 for myfile in (files_dirty): ptufile = cfo.PicoObject(myfile, par_obj) # ptufile.predictTimeSeries(model=loaded_model, # scaler='minmax') # mt_name = f'us_{ptufile.name}' # ptufile.getTimeSeries(timeseries_name=mt_name, # photonCountBin=mt_bin) # ptufile.getPhotonCountingStats(name=mt_name) # ptufile.predictTimeSeries(model=loaded_model, # scaler='minmax', # name=mt_name) for key in list(ptufile.trueTimeArr.keys()): ptufile.get_autocorrelation(method='tttr2xfcs', name=key) for key in list(ptufile.timeSeries.keys()): for k, i in ptufile.timeSeries[key].items(): if "PREPRO" in k: if "1.0" in k: # predtraces = pd.concat([predtraces, pd.DataFrame(i, columns=[f'{key}_{k}'])], # axis=1) pass elif "1.0" in k: traces = pd.concat([traces, pd.DataFrame(i, columns=[f'{key}_{k}'])], axis=1) ptufile.get_autocorrelation(method='multipletau', name=(key, k)) # preds = pd.concat([preds, pd.DataFrame(data=ptufile.predictions[key][k], # columns=[f'{key}_{k}'])], axis=1) elif "0.001" in k: ptufile.get_autocorrelation(method='multipletau', name=(key, k)) for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key, item in list(ptufile.autoNorm[m].items()): ptufile.save_autocorrelation(name=key, method=m, output_path=output_path) # predtraces.to_csv(Path(output_path) / 'detectordropout_predtraces.csv') traces.to_csv(Path(output_path) / 'detectordropout_traces.csv') # preds.to_csv(Path(output_path) / 'detectordropout_preds.csv')
/home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!", /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!", /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!", /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!", /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!",
fit_dirty = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/detectordropout_tttr2xfcs_plot.csv', index_col=0, usecols=[0, 2, 4, 6, 8, 10], na_values=' ') corr_dirty = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/detectordropout_tttr2xfcs_plot.csv', index_col=0, usecols=[0, 1, 3, 5, 7, 9], na_values=' ') # preds_dirty = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_preds.csv', index_col=0) # predtraces_dirty = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/dirty/pex2dirty_predtraces.csv', index_col=0) traces_dirty = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/detectordropout_traces.csv', index_col=0) # preds_clean = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_preds.csv', index_col=0) # predtraces_clean = pd.read_csv(Path(output_path) / '191113_Pex5_2_structured/clean/pex2clean_predtraces.csv', index_col=0)
plotdata = zip(traces_dirty.items(), corr_dirty.items(), fit_dirty.items()) fig = plt.figure(figsize=(16, 20)) gs = fig.add_gridspec(9, 4) for i, ((td_n, td_v), (_, cdt), (_, fdt)) in enumerate(plotdata): print(i) if i in [0, 2, 4]: i = int(i*1.5) ax0 = fig.add_subplot(gs[i, 0:2], title=td_n) ax1 = fig.add_subplot(gs[i+1:i+3, 0], title='tttr2xfcs on arrival times') elif i in [1, 3]: i -= 1 i = int(i*1.5) ax0 = fig.add_subplot(gs[i, 2:4], title=td_n) ax1 = fig.add_subplot(gs[i+1:i+3, 2], title='tttr2xfcs on arrival times') sns.lineplot(ax=ax0, data=td_v) ax0.set(xlabel='time steps in ms', ylabel='photons') sns.lineplot(ax=ax1, x=cdt.index, y=cdt, marker='.', legend=False) sns.lineplot(ax=ax1, x=fdt.index, y=fdt, color=sns.color_palette()[1], alpha=0.8, legend=False) xmin = fdt.dropna().index[0] xmax = fdt.dropna().index[-1] ymin = np.min(fdt.dropna()) ymax = np.max(fdt.dropna()) plt.setp(ax1, xlim=[xmin - 0.5*xmin, xmax + 0.5*xmax], ylim=[ymin - 0.5*ymin, ymax + 0.5 * ymax], xscale='log', xlabel=r'$\tau$ (ms)', ylabel=r'Correlation G($\tau$)') fig.suptitle('E24-HeLa-GFP-SNAP - detectordropout - 13.11.2019', size=20) gs.tight_layout(fig, rect=[0, 0, 1, 0.99])
- results:
- since each measurement is around 1 GB in size (and loading and processing this file as seen above needs around 100GB of RAM), the experimentors took more traces and saved out only the correlations.
- in total we have 11 experiments with 3 repetitions each
- so in
chopIn01
we have 33 traces with a length of about 16 seconds - and in
chopIn03
each trace is cut in 3 parts so we have 99 traces with a length of around 5 seconds
- so in
- Let’s load and plot them (see
Details
block):chop01_cf = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/E24 HeLa GFP_chopIn01_FCS_CurvesAndFits.csv', header=[0, 1]) chop01_ts = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/E24 HeLa GFP_chopIn01_timetraces.csv', header=[0, 1]) corr_tau_ind = [i for i in chop01_cf.columns if 'Correlation' in i[0]] corr_ind = [i for i in chop01_cf.columns if 'Correlation' in i[1]] corr_sd_ind = [i for i in chop01_cf.columns if 'Deviation' in i[0]] fit_ind = [i for i in chop01_cf.columns if 'Fit' in i[1]] fit_tau_ind = [i for i in chop01_cf.columns if 'Fit' in i[0]] res_tau_ind = [i for i in chop01_cf.columns if 'Residuals' in i[0]] res_ind = [i for i in chop01_cf.columns if 'Residuals' in i[1]] trace_tau_ind = [i for i in chop01_ts.columns if 'Count Rate' in i[0]] trace_ind = [i for i in chop01_ts.columns if 'Count Rate' in i[1]] fig = plt.figure(figsize=(16, 66)) gs = fig.add_gridspec(33, 4) for i, _ in enumerate(corr_tau_ind): ct = chop01_cf[corr_tau_ind].iloc[:, i] corr = chop01_cf[corr_ind].iloc[:, i] csd = chop01_cf[corr_sd_ind].iloc[:, i] fit = chop01_cf[fit_ind].iloc[:, i] ft = chop01_cf[fit_tau_ind].iloc[:, i] res = chop01_cf[res_ind].iloc[:, i] rt = chop01_cf[res_tau_ind].iloc[:, i] trace = chop01_ts[trace_ind].iloc[:, i] tt = chop01_ts[trace_tau_ind].iloc[:, i] ax0 = fig.add_subplot(gs[i, 0:2], title=ct.name) ax1 = fig.add_subplot(gs[i, 2]) ax2 = fig.add_subplot(gs[i, 3]) sns.lineplot(ax=ax0, x=tt, y=trace) sns.lineplot(ax=ax1, x=ct, y=corr, marker='.', label='Correlation') sns.lineplot(ax=ax1, x=ft, y=fit, color=sns.color_palette()[1], alpha=0.8, label='Fit') sns.lineplot(ax=ax2, x=rt, y=res) plt.setp(ax0, ylabel='[kCounts/s]', xlabel='Time [s]') plt.setp(ax1, ylabel=r'Correlation G($\tau$)', xlabel=r'$\tau$ [ms]', xscale='log') plt.setp(ax2, ylabel='Residuals', xlabel=r'$\tau$ [ms]', xscale='log') fig.suptitle('E24-HeLa-GFP-SNAP - detector dropout - 11 traces, 3 repetitions, 1 part - 13.11.2019', size=20, y=1.005) plt.tight_layout()
- these are examples of traces cut in 3 parts:
chop03_cf = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/E24 HeLa GFP_chopIn03_FCS_CurvesAndFits.csv', header=[0, 1]) chop03_ts = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/E24 HeLa GFP_chopIn03_timetraces.csv', header=[0, 1]) corr_tau_ind = [i for i in chop03_cf.columns if 'Correlation' in i[0]] corr_ind = [i for i in chop03_cf.columns if 'Correlation' in i[1]] corr_sd_ind = [i for i in chop03_cf.columns if 'Deviation' in i[0]] fit_ind = [i for i in chop03_cf.columns if 'Fit' in i[1]] fit_tau_ind = [i for i in chop03_cf.columns if 'Fit' in i[0]] res_tau_ind = [i for i in chop03_cf.columns if 'Residuals' in i[0]] res_ind = [i for i in chop03_cf.columns if 'Residuals' in i[1]] trace_tau_ind = [i for i in chop03_ts.columns if 'Count Rate' in i[0]] trace_ind = [i for i in chop03_ts.columns if 'Count Rate' in i[1]] fig = plt.figure(figsize=(16, 24)) gs = fig.add_gridspec(8, 4) i = 0 for j, _ in enumerate(corr_tau_ind): if j in [9, 10, 18, 19, 20, 46, 47, 48]: ct = chop03_cf[corr_tau_ind].iloc[:, j] corr = chop03_cf[corr_ind].iloc[:, j] csd = chop03_cf[corr_sd_ind].iloc[:, j] fit = chop03_cf[fit_ind].iloc[:, j] ft = chop03_cf[fit_tau_ind].iloc[:, j] res = chop03_cf[res_ind].iloc[:, j] rt = chop03_cf[res_tau_ind].iloc[:, j] trace = chop03_ts[trace_ind].iloc[:, j] tt = chop03_ts[trace_tau_ind].iloc[:, j] ax0 = fig.add_subplot(gs[i, 0:2], title=ct.name) ax1 = fig.add_subplot(gs[i, 2]) ax2 = fig.add_subplot(gs[i, 3]) sns.lineplot(ax=ax0, x=tt, y=trace) sns.lineplot(ax=ax1, x=ct, y=corr, marker='.', label='Correlation') sns.lineplot(ax=ax1, x=ft, y=fit, color=sns.color_palette()[1], alpha=0.8, label='Fit') sns.lineplot(ax=ax2, x=rt, y=res) plt.setp(ax0, ylabel='[kCounts/s]', xlabel='Time [s]') plt.setp(ax1, ylabel=r'Correlation G($\tau$)', xlabel=r'$\tau$ [ms]', xscale='log') plt.setp(ax2, ylabel='Residuals', xlabel=r'$\tau$ [ms]', xscale='log') i += 1 fig.suptitle('E24-HeLa-GFP-SNAP - detector dropout - 11 traces, 3 repetitions, 3 parts (example) - 13.11.2019', size=20, y=1.005) plt.tight_layout()
- these are examples of traces cut in 9 parts:
- now let’s load and plot the transit times (see
Details
block):chop01 = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/E24 HeLa GFP_chopIn01_FitParameters.csv', header=[0], index_col=1) chop03 = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/E24 HeLa GFP_chopIn03_FitParameters.csv', header=[0], index_col=1) chop10 = pd.read_csv(Path(output_path) / '190327_detectordropout_onlydirty/E24 HeLa GFP_chopIn10_FitParameters.csv', header=[0], index_col=1) taudiff01 = chop01.loc[:, 'Diffusion Time 1 µs'] taudiff03 = chop03.loc[:, 'Diffusion Time 1 µs'] taudiff10 = chop10.loc[:, 'Diffusion Time 1 µs'] taudiff_dirty01 = taudiff01.loc[[4, 7, 16, 17]].rename('dirty\n(16s, n=4)') taudiff_clean01 = taudiff01.drop([4, 7, 16, 17]).rename('clean\n(16s, n=29)') taudiff_dirty03 = taudiff03.loc[[11, 19, 21, 47, 49]].rename('dirty\n(5s, n=5)') taudiff_clean03 = taudiff03.drop([11, 19, 21, 47, 49]).rename('clean\n(5s, n=94)') taudiff_dirty10 = taudiff10.loc[[34, 62, 67, 157]].rename('dirty\n(1.6s, n=4)') taudiff_clean10 = taudiff10.drop([34, 62, 67, 157]).rename('clean\n(1.6s, n=326)') taudiff_plot = pd.concat([taudiff_clean01, taudiff_clean03, taudiff_clean10, taudiff_dirty01, taudiff_dirty03, taudiff_dirty10], axis=1) ax = sns.boxplot(data=taudiff_plot) sns.stripplot(data=taudiff_plot, dodge=True, palette=sns.color_palette(['0.3'])) plt.setp(ax, ylabel=r'transit time [$\mu s$]', yscale='log', title='E24-HeLa-GFP-SNAP - with (dirty) vs without (clean) detector dropout\n11 traces, 3 repetitions - 13.11.2019') ax.set_xticklabels(ax.get_xticklabels(), rotation=45)
- the results:
- it would be possible to train an UNET on simulated data with such
detector dropout artifacts and test it on the above 4 traces with
artifacts I have as
.ptu
files. Unfortunately, I only have 1 “clean”.ptu
file as a negative control.
- look at photobleaching files
- we have eGFP 0.5 ug/ml in solution
- clean = laser power 5 uW, 5 traces
- dirty = laser power 10 uW,
- let’s see if we can load them
- look at detector dropout files
- from the file Name we have e24 ? HeLa cells with GFP-SNAP
- let’s see if we can load them (see
Details
block)path_clean = data_path / "191107_EGFP_photobleaching/eGFP 5 uW 0.5ugml1" path_dirty = data_path / "191107_EGFP_photobleaching/eGFP 10 uW 0.5ugml2" files_clean = [path_clean / f for f in os.listdir(path_clean) if f.endswith('.ptu')] files_dirty = [path_dirty / f for f in os.listdir(path_dirty) if f.endswith('.ptu')] traces = pd.DataFrame() predtraces = pd.DataFrame() preds = pd.DataFrame() corrs = pd.DataFrame() mt_bin = 1e-3 for myfile in (files_dirty): ptufile = cfo.PicoObject(myfile, par_obj) # ptufile.predictTimeSeries(model=loaded_model, # scaler='minmax') mt_name = f'us_{ptufile.name}' ptufile.getTimeSeries(timeseries_name=mt_name, photonCountBin=mt_bin) ptufile.getPhotonCountingStats(name=mt_name) # ptufile.predictTimeSeries(model=loaded_model, # scaler='minmax', # name=mt_name) for key in list(ptufile.trueTimeArr.keys()): ptufile.get_autocorrelation(method='tttr2xfcs', name=key) for key in list(ptufile.timeSeries.keys()): for k, i in ptufile.timeSeries[key].items(): if "PREPRO" in k: if "1.0" in k: # predtraces = pd.concat([predtraces, pd.DataFrame(i, columns=[f'{key}_{k}'])], # axis=1) pass elif "1.0" in k: traces = pd.concat([traces, pd.DataFrame(i, columns=[f'{key}_{k}'])], axis=1) # preds = pd.concat([preds, pd.DataFrame(data=ptufile.predictions[key][k], # columns=[f'{key}_{k}'])], axis=1) elif "0.001" in k: ptufile.get_autocorrelation(method='multipletau', name=(key, k)) for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key, item in list(ptufile.autoNorm[m].items()): ptufile.save_autocorrelation(name=key, method=m, output_path=output_path) # predtraces.to_csv(Path(output_path) / 'detectordropout_predtraces.csv') traces.to_csv(Path(output_path) / 'photobleaching_traces_dirty.csv') # preds.to_csv(Path(output_path) / 'detectordropout_preds.csv')
/home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!", /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!", /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!", /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!", /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/multipletau/core.py:175: DtypeWarning: Input dtype is not float; casting to np.float_! warnings.warn("Input dtype is not float; casting to np.float_!",
fit_dirty_mt = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/10uW_CH2_multipletau_plot.csv', index_col=0, usecols=[0, 2, 4, 6, 8, 10], na_values=' ') fit_dirty_tt = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/10uW_CH2_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 2, 4, 6, 8, 10], na_values=' ') fit_clean_mt = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/5uW_CH2_multipletau_plot.csv' , index_col=0, usecols=[0, 2, 4, 6, 8, 10], na_values=' ') fit_clean_tt = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/5uW_CH2_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 2, 4, 6, 8, 10], na_values=' ') corr_dirty_mt = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/10uW_CH2_multipletau_plot.csv', index_col=0, usecols=[0, 1, 3, 5, 7, 9], na_values=' ') corr_dirty_tt = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/10uW_CH2_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 1, 3, 5, 7, 9], na_values=' ') corr_clean_mt = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/5uW_CH2_multipletau_plot.csv' , index_col=0, usecols=[0, 1, 3, 5, 7, 9], na_values=' ') corr_clean_tt = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/5uW_CH2_tttr2xfcs_plot.csv' , index_col=0, usecols=[0, 1, 3, 5, 7, 9], na_values=' ') # preds_dirty = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/pex1dirty_preds.csv', index_col=0) # predtraces_dirty = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/pex1dirty_predtraces.csv', index_col=0) traces_dirty = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/photobleaching_traces_dirty.csv', index_col=0, usecols=[0, 2, 4, 6, 8, 10]) # preds_clean = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/pex1clean_preds.csv', index_col=0) # predtraces_clean = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/pex1clean_predtraces.csv', index_col=0) traces_clean = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/photobleaching_traces_clean.csv', index_col=0, usecols=[0, 2, 4, 6, 8, 10]) print(fit_clean_mt.columns) print(traces_clean.columns)
Index(['2022-02-19_multipletau_CH2_BIN0dot001_us_eGFP1-5uW_T0s_1_correlation-CH2_2 fitted model: ', '2022-02-19_multipletau_CH2_BIN0dot001_us_eGFP2-5uW_T25s_1_correlation-CH2_2 fitted model: ', '2022-02-19_multipletau_CH2_BIN0dot001_us_eGFP3-5uW_T48s_1_correlation-CH2_2 fitted model: ', '2022-02-19_multipletau_CH2_BIN0dot001_us_eGFP4-5uW_T69s_1_correlation-CH2_2 fitted model: ', '2022-02-19_multipletau_CH2_BIN0dot001_us_eGFP5-5uW_T91s_1_correlation-CH2_2 fitted model: '], dtype='object') Index(['eGFP1-5uW_T0s_1_CH2_BIN1.0', 'eGFP4-5uW_T69s_1_CH2_BIN1.0', 'eGFP2-5uW_T25s_1_CH2_BIN1.0', 'eGFP3-5uW_T48s_1_CH2_BIN1.0', 'eGFP5-5uW_T91s_1_CH2_BIN1.0'], dtype='object')
plotdata = zip(traces_dirty.items(), traces_clean.items(), corr_dirty_mt.items(), corr_clean_mt.items(), corr_dirty_tt.items(), corr_clean_tt.items(), fit_dirty_mt.items(), fit_clean_mt.items(), fit_dirty_tt.items(), fit_clean_tt.items()) fig = plt.figure(figsize=(16, 30)) gs = fig.add_gridspec(15, 4) for i, ((td_n, td_v), (tc_n, tc_v), (_, cdm_v), (_, ccm_v), (_, cdt_v), (_, cct_v), (_, fdm_v), (_, fcm_v), (_, fdt_v), (_, fct_v)) in enumerate(plotdata): print(i) ax0 = fig.add_subplot(gs[i*3, 0:2], title=tc_n) sns.lineplot(ax=ax0, data=tc_v, legend='auto') ax1 = fig.add_subplot(gs[i*3, 2:4], title=td_n) sns.lineplot(ax=ax1, data=td_v, legend='auto') ax0.set(xlabel='time steps in ms', ylabel='photons') ax1.set(xlabel='time steps in ms', ylabel='photons') # ax2 = fig.add_subplot(gs[i*4+1, 0:2], sharex=ax0) # sns.lineplot(ax=ax2, data=ptc_v, color=sns.color_palette()[0], legend=False) # sns.lineplot(ax=ax2, data=pc_v, color=sns.color_palette()[1], alpha=0.8, legend=False) # ax3 = fig.add_subplot(gs[i*4+1, 2:4], sharex=ax1) # sns.lineplot(ax=ax3, data=ptd_v, legend=False) # sns.lineplot(ax=ax3, data=pd_v, color=sns.color_palette()[1], alpha=0.8, legend=False) # ax2.set(xlabel='time steps in ms', ylabel='probability of artifact') # ax3.set(xlabel='time steps in ms', ylabel='probability of artifact') ax4 = fig.add_subplot(gs[i*3+1:i*3+3, 0], title=r'multipletau w/ $\mu s$ bin') sns.lineplot(ax=ax4, data=ccm_v, marker='.', legend=False) sns.lineplot(ax=ax4, data=fcm_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax5 = fig.add_subplot(gs[i*3+1:i*3+3, 1], title='tttr2xfcs on arrival times') sns.lineplot(ax=ax5, data=cct_v, marker='.', legend=False) sns.lineplot(ax=ax5, data=fct_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax4.set(xscale='log', xlabel=r'$\tau$ [ms]', ylabel=r'Correlation G($\tau$)') ax5.set(xscale='log', xlabel=r'$\tau$ [ms]', ylabel=r'Correlation G($\tau$)') ax6 = fig.add_subplot(gs[i*3+1:i*3+3, 2], title=r'multipletau w/ $\mu s$ bin', sharey=ax4) sns.lineplot(ax=ax6, data=cdm_v, marker='.', legend=False) sns.lineplot(ax=ax6, data=fdm_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax7 = fig.add_subplot(gs[i*3+1:i*3+3, 3], title='tttr2xfcs on arrival times', sharey=ax5) sns.lineplot(ax=ax7, data=cdt_v, marker='.', legend=False) sns.lineplot(ax=ax7, data=fdt_v, color=sns.color_palette()[1], alpha=0.8, legend=False) ax6.set(xscale='log', xlabel=r'$\tau$ [ms]', ylabel=r'Correlation G($\tau$)') ax7.set(xscale='log', xlabel=r'$\tau$ [ms]', ylabel=r'Correlation G($\tau$)') fig.suptitle('eGFP and 5uW (left, clean) vs eGFP and 10uW (right, dirty) - 07.11.2019', size=20) gs.tight_layout(fig, rect=[0, 0, 1, 0.99])
- results:
- seems like this this data does not contain so much of an artifact. Have to ask Pablo if there was other data he took.
- let’s see if the transit times are different (see
Details
block):taudiff_dirty_mt = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/10uW_CH2_multipletau_param.csv', na_values=' ').loc[:, 'txy1'].rename('dirty (n=5\nmultipletau)') taudiff_dirty_tt = pd.read_csv(Path(output_path) / '191107_photobleaching/dirty/10uW_CH2_tttr2xfcs_param.csv', na_values=' ').loc[:, 'txy1'].rename('dirty (n=5\ntttr2xfcs)') taudiff_clean_mt = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/5uW_CH2_multipletau_param.csv', na_values=' ').loc[:, 'txy1'].rename('clean (n=5\nmultipletau)') taudiff_clean_tt = pd.read_csv(Path(output_path) / '191107_photobleaching/clean/5uW_CH2_tttr2xfcs_param.csv', na_values=' ').loc[:, 'txy1'].rename('clean (n=5\ntttr2xfcs)') taudiff_plot = pd.concat([taudiff_clean_mt, taudiff_clean_tt, taudiff_dirty_mt, taudiff_dirty_tt], axis=1) ax = sns.boxplot(data=taudiff_plot) sns.stripplot(data=taudiff_plot, dodge=True, palette=sns.color_palette(['0.3'])) plt.setp(ax, ylabel=r'transit time [$\mu s$]', yscale='log', title='eGFP - 10uW (dirty) vs 5uW (clean) photobleaching - 07.11.2019') ax.set_xticklabels(ax.get_xticklabels(), rotation=45)
- results:
- here too we don’t see big differences in transit times.
- we have eGFP 0.5 ug/ml in solution
2.5.12 learnings from exp-220120-correlate-ptu
- in terms of biological experiments:
- always double-check your data - in the process I mixed up the Alexa-LUV-experiment and the pex5 experiment - which made finding explanations harder when the correction didn’t work out
- it seems like I don’t have photobleaching data yet → have to ask Pablo if there are other experimental data he took
- in terms of machine learning and neural networks:
- while plotting the alexa-luv data, I noticed that my network still has a bug - it learned on data with a fixed size of 2**14. When I use longer traces, I have to pad the data - here with the median value of the trace. BUT: the network wasn’t trained on data like this. In this case, this leads to more false positives (predicted artifactual, even though clean). Re-training the model with such data helps.
- while plotting the pex5 data, I noticed that prediction doesn’t work with trace lengths of 2**15 → this can also be handled by re-training the network and adjusting the parameters so that it works with different input sizes (this works because it is a fully convolutional model)
- from exp-210807-hparams I know that there are still more different network architectures that worked → I should train them as well, just to show that a wide range of architectures can solve this problem.
- in terms of FCS autocorrelation and fitting:
- there is still an open question if 2 component fitting is a way to
improve the outcome of the correction. Dominic did a test which yielded
some promising data - BUT he used a 2D fitting algorithm, and if I tried
to play around with 3D fitting as described above, 1 component fitted
nicely, but the second component always stayed at
txy=0.01, alpha=1, A=1
- also regarding fitting, even though
delete_and_shift
seems to be a promising method to correct bright cluster-artifacts in FCS, there is a shoulder in the correlation curve which is not fitted - this is probably expected since the LUVs have an expected speed at that area (~2-3ms), but still it should be further investigated - regarding the
weights
correction → it is not clear yet, why it doesn’t work. The random correlation results show, that the bad results are probably not the result of an artifactual correlation of the weighted photons.- a possible explanation is, that with
weight=0
or other low weights the gaps themselves get correlated → this happens also in the “detector dropout” artifact. - a possible follow-up experiment would be to distribute the photons in an artifactual bin randomly to remove any correlation in them.
- a possible explanation is, that with
- regarding the
weights=1-pred
correction → it is also not clear, why it performs so badly. - regarding the
delete
andweights=0
corrections it is not clear, why they are not equal → have to re-do them in the same experiment.
- there is still an open question if 2 component fitting is a way to
improve the outcome of the correction. Dominic did a test which yielded
some promising data - BUT he used a 2D fitting algorithm, and if I tried
to play around with 3D fitting as described above, 1 component fitted
nicely, but the second component always stayed at
2.5.13 Analysis 5: fitting with Focuspoint instead of focus-fit-js
- Attention: this section was added after the branch
exp-220120-correlate-ptu
was merged intodata
. - it turns out, that there is a software error in
focus-fit-js
which makes 3D plots unreliable. Together with Pablo, we double-checked the data acquired with the standalone softwareFoCuS-point-correlator
, written by Dominic as well, and tested for years. - With a 3D fit now working, we tried to do a 2 component fit on the data and see if we can regain the underlying transit times of the fast and slow components
- now let’s look at the results:
%cd /home/lex/Programme/drmed-git
/home/lex/Programme/drmed-git
import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint # use seaborn style as default even if I just use matplotlib sns.set() sns.set_palette('colorblind')
- load in all the data (see
Details
block)path = Path('data/exp-220120-correlate-ptu/2022-03-25_FoCuS-point-analysis') # clean params clean_nocorr_notrip_1spec_param_path = path / 'clean-nocorrection-notriplet-1species-5AR_outputParam.csv' # clean_nocorr_tripfixed_1spec_param_path = path / 'clean-nocorrection-triplet2a-0dot25-B1-0dot01-tauT1_outputParam.csv' # dirty params dirty_nocorr_notrip_2spec_param_path = path / 'dirty-nocorrection-notriplet-2species-5AR_outputParam.csv' # dirty_nocorr_tripsemifixed_2spec_param_path = path / 'dirty-nocorrection-triplet2a-float-B1-0dot01-tauT1-2species-5AR_outputParam.csv' # dirty_nocorr_tripfixed_2spec_param_path = path / 'dirty-nocorrection-triplet2a-0dot25-B1-0dot01-tauT1-2species-5AR_outputParam.csv' # dirty params dirty_cutshift_notrip_2spec_param_path = path / 'dirty-cutandshift-notriplet-2species-5AR_outputParam.csv' # dirty_cutshift_tripsemifixed_2spec_param_path = path / 'dirty-cutandshift-triplet2a-float-B1-0dot01-tauT1-2species-5AR_outputParam.csv' # dirty_cutshift_tripfixed_2spec_param_path = path / 'dirty-cutandshift-triplet2a-0dot25-B1-0dot01-tauT1-2species-5AR_outputParam.csv' dirty_delete_notrip_2spec_param_path = path / 'dirty-delete-notriplet-2species-5AR_outputParam.csv' dirty_weight0_notrip_2spec_param_path = path / 'dirty-weight0-notriplet-2species-5AR_outputParam.csv' dirty_1pred_notrip_2spec_param_path = path / 'dirty-1-pred-notriplet-2species-5AR_outputParam.csv'
# clean params clean_param = pd.read_csv(clean_nocorr_notrip_1spec_param_path, sep=',').assign( triplet=229*['None',], species=229*['1',], dimension=229*['3D eq 1B, AR=5',], fraction=229*['small',], correlator=229*['tttr2xfcs',], artifact=229*['clean',], correction=229*['No correction',]) # clean_param = pd.read_csv(clean_nocorr_tripfixed_1spec_param_path, sep=',').assign( # triplet=229*['B1=0.25, tauT1=0.01',], species=229*['1',], dimension=229*['3D eq 1B, AR=5',], # correlator=229*['tttr2xfcs',], artifact=229*['clean',], correction=229*['No correction',]) # clean_param['txy2'] = clean_param['txy1'] # for plotting purposes # clean_param['A2'] = clean_param['A1'] # for plotting purposes # dirty params dirty_nocorr = pd.read_csv(dirty_nocorr_notrip_2spec_param_path, sep=',').assign( triplet=173*['None',], species=173*['2',], dimension=173*['3D eq 1B, AR=5',], fraction=173*['small',], correlator=173*['tttr2xfcs',], artifact=173*['dirty',], correction=173*['No correction',]) # dirty_nocorr_tripsemi = pd.read_csv(dirty_nocorr_tripsemifixed_2spec_param_path, sep=',').assign( # triplet=173*['B1=float, tauT1=0.01',], species=173*['2, AR=5',], # correlator=173*['tttr2xfcs',], artifact=173*['dirty',], correction=173*['None',]) # dirty_nocorr_tripfix = pd.read_csv(dirty_nocorr_tripfixed_2spec_param_path, sep=',').assign( # triplet=173*['B1=0.25, tauT1=0.01',], species=173*['2, AR=5',], # correlator=173*['tttr2xfcs',], artifact=173*['dirty',], correction=173*['None',]) dirty_weight0 = pd.read_csv(dirty_weight0_notrip_2spec_param_path, sep=',').assign( triplet=173*['None',], species=173*['2',], dimension=173*['3D eq 1B, AR=5',], fraction=173*['small',], correlator=173*['tttr2xfcs',], artifact=173*['dirty',], correction=173*['weight=0',]) dirty_cutshift = pd.read_csv(dirty_cutshift_notrip_2spec_param_path, sep=',').assign( triplet=53*['None',], species=53*['2',], dimension=53*['3D eq 1B, AR=5',], fraction=53*['small',], correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['cut and shift',]) # dirty_cutshift_tripsemi = pd.read_csv(dirty_cutshift_tripsemifixed_2spec_param_path, sep=',').assign( # triplet=53*['B1=float, tauT1=0.01',], species=53*['2, AR=5',], # correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['cut and shift',]) # dirty_cutshift_tripfix = pd.read_csv(dirty_cutshift_tripfixed_2spec_param_path, sep=',').assign( # triplet=53*['B1=0.25, tauT1=0.01',], species=53*['2, AR=5',], # correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['cut and shift',]) dirty_delete = pd.read_csv(dirty_delete_notrip_2spec_param_path, sep=',').assign( triplet=53*['None',], species=53*['2',], dimension=53*['3D eq 1B, AR=5',], fraction=53*['small',], correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['delete',]) dirty_1pred = pd.read_csv(dirty_1pred_notrip_2spec_param_path, sep=',').assign( triplet=53*['None',], species=53*['2',], dimension=53*['3D eq 1B, AR=5',], fraction=53*['small',], correlator=53*['tttr2xfcs',], artifact=53*['dirty',], correction=53*['weight=1-prediction',]) all_param = pd.concat([clean_param, dirty_nocorr, dirty_weight0, dirty_cutshift, dirty_delete, dirty_1pred], ignore_index=True) all_param["artifact-correction"] = all_param[["artifact", "correction"]].agg(' - '.join, axis=1) all_param = pd.wide_to_long(all_param, stubnames='txy', i=['name_of_plot'], j='fitted species (txy)') all_param = all_param.reset_index() all_param = pd.wide_to_long(all_param, stubnames='A', i=['name_of_plot', 'fitted species (txy)'], j='fitted species (A)') all_param = all_param.reset_index()
g = sns.catplot(data=all_param, y='txy', x='artifact-correction', hue='fitted species (txy)', sharey=True, height=5, aspect=2, legend_out=True, kind='boxen', showfliers=False) g.map_dataframe(sns.stripplot, y='txy', x='artifact-correction', hue='fitted species (txy)', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2) g.tight_layout() g.fig.suptitle('Transit times of AlexaFluor488 (clean) vs \nAlexaFluor488 + Dio LUVs (dirty) with different correction methods', y=1.08, size=20) for axes in g.axes.flat: _ = axes.set_xticklabels(axes.get_xticklabels(), rotation=45) plt.setp(g.axes, yscale='log', xlabel='biological sample - correction method', ylabel=r'transit time $\tau_{D}$ (log)') plt.show()
g = sns.catplot(data=all_param, y='A', x='artifact-correction', hue='fitted species (A)', sharey=True, height=5, aspect=2, legend_out=True, kind='boxen', showfliers=False) g.map_dataframe(sns.stripplot, y='A', x='artifact-correction', hue='fitted species (A)', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2) g.tight_layout() g.fig.suptitle('Fraction sizes of AlexaFluor488 (clean) vs\nAlexaFluor488 + Dio LUVs (dirty) with different correction methods', y=1.08, size=20) for axes in g.axes.flat: _ = axes.set_xticklabels(axes.get_xticklabels(), rotation=45) plt.setp(g.axes, xlabel='biological sample - correction method', ylabel='relative fraction size') plt.show()
- let’s have a look at transit times and fraction sizes of AF488 vs AF488 + DioLUVs + different correction methods
- I also had a look at different triplet parameters, we decided in the end against using them for the sake of simplicity:
- let’s save the DataFrame used for plotting so that re-using it is simpler:
all_param.to_csv('data/exp-220120-correlate-ptu/2022-04-05_all-params.csv')
2.6 exp-220227-unet
2.6.1 Setup: GPU node on HPC
- Setup tmux
rm: cannot remove ’home/lex.tmux-local-socket-remote-machine’: No such file or directory ye53nis@ara-login01.rz.uni-jena.de’s password: home/lex.tmux-local-socket-remote-machine > ye53nis@ara-login01.rz.uni-jena.de’s password: - first, connect with the GPU node in the high performance cluster
cd / srun -p gpu_p100 --time=7-10:00:00 --ntasks-per-node=12 --mem-per-cpu=4000 --gres=gpu:1 --pty bash
(base) [ye53nis@node128 /]$
- Load CUDA and cuDNN in the version compatible to your tensorflow library
(see https://www.tensorflow.org/install/source#gpu)
module load nvidia/cuda/11.2 module load nvidia/cudnn/8.1 module list
Currently Loaded Modulefiles: 1) nvidia/cuda/11.2 2) nvidia/cudnn/8.1 (base) [ye53nis@node128 /]$
- Branch out git branch
exp-210807-hparams
frommain
(done via magit) and make sure you are on the correct branchcd /beegfs/ye53nis/drmed-git git checkout exp-220227-unet
Checking out files: 100% (147/147), done. M src/nanosimpy Branch exp-220227-unet set up to track remote branch exp-220227-unet from origin. Switched to a new branch 'exp-220227-unet' (base) [ye53nis@node128 drmed-git]$
- load conda environment, define MLflow environment variables and create log directory
conda activate tf cd /beegfs/ye53nis/drmed-git export MLFLOW_EXPERIMENT_NAME=exp-220227-unet export MLFLOW_TRACKING_URI=file:./data/mlruns mkdir -p data/exp-220227-unet/jupyter mkdir ../tmp
(tf) [ye53nis@node128 drmed-git]$
- set output directory for matplotlib plots in jupyter. Give this block the
name
jupyter-set-output-directory
to be able to easily call it later.(setq org-babel-jupyter-resource-directory "./data/exp-220227-unet/jupyter")
./data/exp-220227-unet/jupyter
2.6.2 Setup: Jupyter node on HPC
- Set up tmux (if we haven’t done that before) (
#+CALL: setup-tmux[:session local]
)sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: > ye53nis@ara-login01.rz.uni-jena.de’s password: - Request compute node
cd / srun -p b_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
- Start Jupyter Lab (
#+CALL: jpt-tmux[:session jpmux]
)(tf) [ye53nis@node005 /]$ jupyter lab --no-browser --port=$PORT [I 2023-01-18 11:33:10.992 ServerApp] jupyterlab | extension was successfully linked. [I 2023-01-18 11:33:20.469 ServerApp] nbclassic | extension was successfully linked. [I 2023-01-18 11:33:20.932 ServerApp] nbclassic | extension was successfully loaded. [I 2023-01-18 11:33:20.935 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab [I 2023-01-18 11:33:20.935 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab [I 2023-01-18 11:33:20.943 ServerApp] jupyterlab | extension was successfully loaded. [I 2023-01-18 11:33:20.945 ServerApp] Serving notebooks from local directory: / [I 2023-01-18 11:33:20.945 ServerApp] Jupyter Server 1.13.5 is running at: [I 2023-01-18 11:33:20.945 ServerApp] http://localhost:8889/lab?token=f8a5db2d00721ed0a736f6a6fc2a21020172913cc2337ec0 [I 2023-01-18 11:33:20.945 ServerApp] or http://127.0.0.1:8889/lab?token=f8a5db2d00721ed0a736f6a6fc2a21020172913cc2337ec0 [I 2023-01-18 11:33:20.945 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 2023-01-18 11:33:21.003 ServerApp] To access the server, open this file in a browser: file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-183673-open.html Or copy and paste one of these URLs: http://localhost:8889/lab?token=f8a5db2d00721ed0a736f6a6fc2a21020172913cc2337ec0 or http://127.0.0.1:8889/lab?token=f8a5db2d00721ed0a736f6a6fc2a21020172913cc2337ec0
- Create SSH Tunnel for jupyter lab to the local computer (e.g.
#+CALL: ssh-tunnel(port="8889", node="node160")
)sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: Warning: Permanently added ’node005,192.168.193.5’ (ECDSA) to the list of known hosts. ye53nis@node005’s password: - I started a Python3 kernel using
jupyter-server-list-kernels
. Then I added the kernel ID to the:PROPERTIES:
drawer of this (and following) subtrees.python3 c4f3acce-60c4-489d-922c-407da110fd6a a few seconds ago idle 1
- Test (
#+CALL: jp-metadata(_long='True)
) and record metadata:No of CPUs in system: 48 No of CPUs the current process can use: 24 load average: (24.2, 19.65, 11.23) os.uname(): posix.uname_result(sysname='Linux', nodename='node034', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64') PID of process: 102013 RAM total: 137G, RAM used: 34G, RAM free: 64G the current directory: / My disk usage: Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 4.9G 46G 10% / devtmpfs 63G 0 63G 0% /dev tmpfs 63G 707M 63G 2% /dev/shm tmpfs 63G 107M 63G 1% /run tmpfs 63G 0 63G 0% /sys/fs/cgroup nfs01-ib:/home 80T 71T 9.2T 89% /home nfs03-ib:/pool/work 100T 72T 29T 72% /nfsdata nfs01-ib:/cluster 2.0T 486G 1.6T 24% /cluster /dev/sda5 2.0G 34M 2.0G 2% /tmp /dev/sda6 169G 4.0G 165G 3% /local /dev/sda3 6.0G 438M 5.6G 8% /var beegfs_nodev 524T 441T 84T 85% /beegfs tmpfs 13G 0 13G 0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 5.1 1_gnu absl-py 1.0.0 pypi_0 pypi alembic 1.7.7 pypi_0 pypi anyio 3.5.0 py39h06a4308_0 argon2-cffi 21.3.0 pyhd3eb1b0_0 argon2-cffi-bindings 21.2.0 py39h7f8727e_0 asteval 0.9.26 pypi_0 pypi asttokens 2.0.5 pyhd3eb1b0_0 astunparse 1.6.3 pypi_0 pypi attrs 21.4.0 pyhd3eb1b0_0 babel 2.9.1 pyhd3eb1b0_0 backcall 0.2.0 pyhd3eb1b0_0 beautifulsoup4 4.11.1 py39h06a4308_0 bleach 4.1.0 pyhd3eb1b0_0 brotlipy 0.7.0 py39h27cfd23_1003 ca-certificates 2022.4.26 h06a4308_0 cachetools 5.1.0 pypi_0 pypi certifi 2021.10.8 py39h06a4308_2 cffi 1.15.0 py39hd667e15_1 charset-normalizer 2.0.4 pyhd3eb1b0_0 click 8.1.3 pypi_0 pypi cloudpickle 2.0.0 pypi_0 pypi cryptography 37.0.1 py39h9ce1e76_0 cycler 0.11.0 pypi_0 pypi cython 0.29.30 pypi_0 pypi databricks-cli 0.16.6 pypi_0 pypi debugpy 1.5.1 py39h295c915_0 decorator 5.1.1 pyhd3eb1b0_0 defusedxml 0.7.1 pyhd3eb1b0_0 docker 5.0.3 pypi_0 pypi entrypoints 0.4 py39h06a4308_0 executing 0.8.3 pyhd3eb1b0_0 fcsfiles 2022.2.2 pypi_0 pypi flask 2.1.2 pypi_0 pypi flatbuffers 1.12 pypi_0 pypi fonttools 4.33.3 pypi_0 pypi future 0.18.2 pypi_0 pypi gast 0.4.0 pypi_0 pypi gitdb 4.0.9 pypi_0 pypi gitpython 3.1.27 pypi_0 pypi google-auth 2.6.6 pypi_0 pypi google-auth-oauthlib 0.4.6 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi greenlet 1.1.2 pypi_0 pypi grpcio 1.46.1 pypi_0 pypi gunicorn 20.1.0 pypi_0 pypi h5py 3.6.0 pypi_0 pypi idna 3.3 pyhd3eb1b0_0 importlib-metadata 4.11.3 pypi_0 pypi ipykernel 6.9.1 py39h06a4308_0 ipython 8.3.0 py39h06a4308_0 ipython_genutils 0.2.0 pyhd3eb1b0_1 itsdangerous 2.1.2 pypi_0 pypi jedi 0.18.1 py39h06a4308_1 jinja2 3.0.3 pyhd3eb1b0_0 joblib 1.1.0 pypi_0 pypi json5 0.9.6 pyhd3eb1b0_0 jsonschema 4.4.0 py39h06a4308_0 jupyter_client 7.2.2 py39h06a4308_0 jupyter_core 4.10.0 py39h06a4308_0 jupyter_server 1.13.5 pyhd3eb1b0_0 jupyterlab 3.3.2 pyhd3eb1b0_0 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 2.12.0 py39h06a4308_0 keras 2.9.0 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.4.2 pypi_0 pypi ld_impl_linux-64 2.38 h1181459_0 libclang 14.0.1 pypi_0 pypi libffi 3.3 he6710b0_2 libgcc-ng 11.2.0 h1234567_0 libgomp 11.2.0 h1234567_0 libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 11.2.0 h1234567_0 lmfit 1.0.3 pypi_0 pypi mako 1.2.0 pypi_0 pypi markdown 3.3.7 pypi_0 pypi markupsafe 2.0.1 py39h27cfd23_0 matplotlib 3.5.2 pypi_0 pypi matplotlib-inline 0.1.2 pyhd3eb1b0_2 mistune 0.8.4 py39h27cfd23_1000 mlflow 1.26.0 pypi_0 pypi multipletau 0.3.3 pypi_0 pypi nbclassic 0.3.5 pyhd3eb1b0_0 nbclient 0.5.13 py39h06a4308_0 nbconvert 6.4.4 py39h06a4308_0 nbformat 5.3.0 py39h06a4308_0 ncurses 6.3 h7f8727e_2 nest-asyncio 1.5.5 py39h06a4308_0 notebook 6.4.11 py39h06a4308_0 numpy 1.22.3 pypi_0 pypi oauthlib 3.2.0 pypi_0 pypi openssl 1.1.1o h7f8727e_0 opt-einsum 3.3.0 pypi_0 pypi packaging 21.3 pyhd3eb1b0_0 pandas 1.4.2 pypi_0 pypi pandocfilters 1.5.0 pyhd3eb1b0_0 parso 0.8.3 pyhd3eb1b0_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 9.1.1 pypi_0 pypi pip 21.2.4 py39h06a4308_0 prometheus-flask-exporter 0.20.1 pypi_0 pypi prometheus_client 0.13.1 pyhd3eb1b0_0 prompt-toolkit 3.0.20 pyhd3eb1b0_0 protobuf 3.20.1 pypi_0 pypi ptyprocess 0.7.0 pyhd3eb1b0_2 pure_eval 0.2.2 pyhd3eb1b0_0 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.21 pyhd3eb1b0_0 pygments 2.11.2 pyhd3eb1b0_0 pyjwt 2.4.0 pypi_0 pypi pyopenssl 22.0.0 pyhd3eb1b0_0 pyparsing 3.0.4 pyhd3eb1b0_0 pyrsistent 0.18.0 py39heee7806_0 pysocks 1.7.1 py39h06a4308_0 python 3.9.12 h12debd9_0 python-dateutil 2.8.2 pyhd3eb1b0_0 python-fastjsonschema 2.15.1 pyhd3eb1b0_0 pytz 2021.3 pyhd3eb1b0_0 pyyaml 6.0 pypi_0 pypi pyzmq 22.3.0 py39h295c915_2 querystring-parser 1.2.4 pypi_0 pypi readline 8.1.2 h7f8727e_1 requests 2.27.1 pyhd3eb1b0_0 requests-oauthlib 1.3.1 pypi_0 pypi rsa 4.8 pypi_0 pypi scikit-learn 1.1.0 pypi_0 pypi scipy 1.8.1 pypi_0 pypi seaborn 0.11.2 pypi_0 pypi send2trash 1.8.0 pyhd3eb1b0_1 setuptools 61.2.0 py39h06a4308_0 six 1.16.0 pyhd3eb1b0_1 smmap 5.0.0 pypi_0 pypi sniffio 1.2.0 py39h06a4308_1 soupsieve 2.3.1 pyhd3eb1b0_0 sqlalchemy 1.4.36 pypi_0 pypi sqlite 3.38.3 hc218d9a_0 sqlparse 0.4.2 pypi_0 pypi stack_data 0.2.0 pyhd3eb1b0_0 tabulate 0.8.9 pypi_0 pypi tensorboard 2.9.0 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.1 pypi_0 pypi tensorflow 2.9.0 pypi_0 pypi tensorflow-estimator 2.9.0 pypi_0 pypi tensorflow-io-gcs-filesystem 0.26.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.13.1 py39h06a4308_0 testpath 0.5.0 pyhd3eb1b0_0 threadpoolctl 3.1.0 pypi_0 pypi tk 8.6.11 h1ccaba5_1 tornado 6.1 py39h27cfd23_0 traitlets 5.1.1 pyhd3eb1b0_0 typing-extensions 4.1.1 hd3eb1b0_0 typing_extensions 4.1.1 pyh06a4308_0 tzdata 2022a hda174b7_0 uncertainties 3.1.6 pypi_0 pypi urllib3 1.26.9 py39h06a4308_0 wcwidth 0.2.5 pyhd3eb1b0_0 webencodings 0.5.1 py39h06a4308_1 websocket-client 0.58.0 py39h06a4308_4 werkzeug 2.1.2 pypi_0 pypi wheel 0.37.1 pyhd3eb1b0_0 wrapt 1.14.1 pypi_0 pypi xz 5.2.5 h7f8727e_1 zeromq 4.3.4 h2531618_0 zipp 3.8.0 pypi_0 pypi zlib 1.2.12 h7f8727e_2 Note: you may need to restart the kernel to use updated packages. {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint', 'SLURM_NODELIST': 'node034', 'SLURM_JOB_NAME': 'bash', 'XDG_SESSION_ID': '135386', 'SLURMD_NODENAME': 'node034', 'SLURM_TOPOLOGY_ADDR': 'node034', 'SLURM_NTASKS_PER_NODE': '24', 'HOSTNAME': 'login01', 'SLURM_PRIO_PROCESS': '0', 'SLURM_SRUN_COMM_PORT': '40968', 'SHELL': '/bin/bash', 'TERM': 'xterm-color', 'SLURM_JOB_QOS': 'qstand', 'SLURM_PTY_WIN_ROW': '48', 'HISTSIZE': '1000', 'TMPDIR': '/tmp', 'SLURM_TOPOLOGY_ADDR_PATTERN': 'node', 'SSH_CLIENT': '10.231.185.64 42170 22', 'CONDA_SHLVL': '2', 'CONDA_PROMPT_MODIFIER': '(tf) ', 'WINDOWID': '0', 'QTDIR': '/usr/lib64/qt-3.3', 'QTINC': '/usr/lib64/qt-3.3/include', 'SSH_TTY': '/dev/pts/19', 'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'QT_GRAPHICSSYSTEM_CHECKED': '1', 'SLURM_NNODES': '1', 'USER': 'ye53nis', 'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:', 'CONDA_EXE': '/cluster/miniconda3/bin/conda', 'SLURM_STEP_NUM_NODES': '1', 'SLURM_JOBID': '1657237', 'SRUN_DEBUG': '3', 'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_NTASKS': '24', 'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5', 'SLURM_STEP_ID': '0', 'TMUX': '/tmp/tmux-67339/default,14861,2', '_CE_CONDA': '', 'CONDA_PREFIX_1': '/cluster/miniconda3', 'SLURM_STEP_LAUNCHER_PORT': '40968', 'SLURM_TASKS_PER_NODE': '24', 'MAIL': '/var/spool/mail/ye53nis', 'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/home/lex/Programme/miniconda3/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin', 'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448', 'SLURM_JOB_ID': '1657237', 'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf', 'SLURM_JOB_USER': 'ye53nis', 'SLURM_STEPID': '0', 'PWD': '/', 'SLURM_SRUN_COMM_HOST': '192.168.192.5', 'LANG': 'en_US.UTF-8', 'SLURM_PTY_WIN_COL': '236', 'SLURM_UMASK': '0022', 'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles', 'SLURM_JOB_UID': '67339', 'LOADEDMODULES': '', 'SLURM_NODEID': '0', 'TMUX_PANE': '%2', 'SLURM_SUBMIT_DIR': '/', 'SLURM_TASK_PID': '100551', 'SLURM_NPROCS': '24', 'SLURM_CPUS_ON_NODE': '24', 'SLURM_DISTRIBUTION': 'block', 'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_PROCID': '0', 'HISTCONTROL': 'ignoredups', '_CE_M': '', 'SLURM_JOB_NODELIST': 'node034', 'SLURM_PTY_PORT': '43329', 'HOME': '/home/ye53nis', 'SHLVL': '3', 'SLURM_LOCALID': '0', 'SLURM_JOB_GID': '13280', 'SLURM_JOB_CPUS_PER_NODE': '24', 'SLURM_CLUSTER_NAME': 'hpc', 'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23', 'SLURM_SUBMIT_HOST': 'login01', 'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_JOB_PARTITION': 'b_standard', 'MATHEMATICA_HOME': '/cluster/apps/mathematica/12.3', 'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python', 'LOGNAME': 'ye53nis', 'SLURM_STEP_NUM_TASKS': '24', 'QTLIB': '/usr/lib64/qt-3.3/lib', 'SLURM_JOB_ACCOUNT': 'iaob', 'SLURM_JOB_NUM_NODES': '1', 'MODULESHOME': '/usr/share/Modules', 'CONDA_DEFAULT_ENV': 'tf', 'LESSOPEN': '||/usr/bin/lesspipe.sh %s', 'SLURM_STEP_TASKS_PER_NODE': '24', 'PORT': '8889', 'SLURM_STEP_NODELIST': 'node034', 'DISPLAY': ':0', 'XDG_RUNTIME_DIR': '', 'XAUTHORITY': '/home/lex/.Xauthority', 'BASH_FUNC_module()': '() { eval `/usr/bin/modulecmd bash $*`\n}', '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter', 'PYDEVD_USE_FRAME_EVAL': 'NO', 'JPY_PARENT_PID': '100629', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://matplotlib_inline.backend_inline'}
2.6.3 Setup: Jupyter on local computer
- on our local machine we don’t need tmux. A simple sh command is enough. So
let’s start the conda environment in the sh session
local
and start jupterlab there.conda activate tf jupyter lab --no-browser --port=8888
[I 2022-05-22 14:24:33.496 ServerApp] jupyterlab | extension was successfully linked. [I 2022-05-22 14:24:33.745 ServerApp] nbclassic | extension was successfully linked. [I 2022-05-22 14:24:33.786 LabApp] JupyterLab extension loaded from /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/jupyterlab [I 2022-05-22 14:24:33.786 LabApp] JupyterLab application directory is /home/lex/Programme/miniconda3/envs/tf/share/jupyter/lab [I 2022-05-22 14:24:33.790 ServerApp] jupyterlab | extension was successfully loaded. [I 2022-05-22 14:24:33.799 ServerApp] nbclassic | extension was successfully loaded. [I 2022-05-22 14:24:33.800 ServerApp] Serving notebooks from local directory: /home/lex/Programme/drmed-git [I 2022-05-22 14:24:33.800 ServerApp] Jupyter Server 1.4.1 is running at: [I 2022-05-22 14:24:33.800 ServerApp] http://localhost:8888/lab?token=1d0362f7e2280b0060620c901abee258910e16c879bc0870 [I 2022-05-22 14:24:33.800 ServerApp] or http://127.0.0.1:8888/lab?token=1d0362f7e2280b0060620c901abee258910e16c879bc0870 [I 2022-05-22 14:24:33.800 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 2022-05-22 14:24:33.804 ServerApp] To access the server, open this file in a browser: file:///home/lex/.local/share/jupyter/runtime/jpserver-1749996-open.html Or copy and paste one of these URLs: http://localhost:8888/lab?token=1d0362f7e2280b0060620c901abee258910e16c879bc0870 or http://127.0.0.1:8888/lab?token=1d0362f7e2280b0060620c901abee258910e16c879bc0870
- I started a Python3 kernel using
jupyter-server-list-kernels
. Then I added the kernel ID to the:PROPERTIES:
drawer of this (and following) subtrees.python3 03038b73-b2b5-49ce-a1dc-21afb6247d0f a few seconds ago starting 0
- Test: (
#+CALL: jp-metadata(_long='True)
)No of CPUs in system: 4 No of CPUs the current process can use: 4 load average: (0.93115234375, 0.97216796875, 0.5595703125) os.uname(): posix.uname_result(sysname='Linux', nodename='Topialex', release='5.15.28-1-MANJARO', version='#1 SMP PREEMPT Fri Mar 11 14:12:57 UTC 2022', machine='x86_64') PID of process: 8991 RAM total: 16Gi, RAM used: 1,8Gi, RAM free: 12Gi the current directory: /home/lex/Programme/drmed-git My disk usage: Filesystem Size Used Avail Use% Mounted on dev 3,9G 0 3,9G 0% /dev run 3,9G 1,5M 3,9G 1% /run /dev/sda2 167G 131G 28G 83% / tmpfs 3,9G 63M 3,8G 2% /dev/shm tmpfs 3,9G 4,2M 3,9G 1% /tmp /dev/sda1 300M 264K 300M 1% /boot/efi tmpfs 784M 80K 784M 1% /run/user/1000# packages in environment at /home/lex/Programme/miniconda3/envs/tf: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 4.5 1_gnu absl-py 1.0.0 pypi_0 pypi alembic 1.4.1 pypi_0 pypi anyio 2.2.0 py39h06a4308_1 argon2-cffi 20.1.0 py39h27cfd23_1 asteval 0.9.25 pypi_0 pypi astroid 2.9.2 pypi_0 pypi astunparse 1.6.3 pypi_0 pypi async_generator 1.10 pyhd3eb1b0_0 attrs 21.2.0 pyhd3eb1b0_0 babel 2.9.1 pyhd3eb1b0_0 backcall 0.2.0 pyhd3eb1b0_0 bleach 4.0.0 pyhd3eb1b0_0 brotlipy 0.7.0 py39h27cfd23_1003 ca-certificates 2021.10.26 h06a4308_2 cachetools 4.2.4 pypi_0 pypi certifi 2021.10.8 py39h06a4308_0 cffi 1.14.6 py39h400218f_0 charset-normalizer 2.0.4 pyhd3eb1b0_0 click 8.0.3 pypi_0 pypi cloudpickle 2.0.0 pypi_0 pypi cryptography 36.0.0 py39h9ce1e76_0 cycler 0.11.0 pypi_0 pypi cython 0.29.26 pypi_0 pypi databricks-cli 0.16.2 pypi_0 pypi debugpy 1.5.1 py39h295c915_0 decorator 5.1.0 pyhd3eb1b0_0 defusedxml 0.7.1 pyhd3eb1b0_0 docker 5.0.3 pypi_0 pypi entrypoints 0.3 py39h06a4308_0 fcsfiles 2021.6.6 pypi_0 pypi flake8 4.0.1 pypi_0 pypi flask 2.0.2 pypi_0 pypi flatbuffers 2.0 pypi_0 pypi focuspoint 0.1 pypi_0 pypi fonttools 4.28.5 pypi_0 pypi future 0.18.2 pypi_0 pypi gast 0.4.0 pypi_0 pypi gitdb 4.0.9 pypi_0 pypi gitpython 3.1.24 pypi_0 pypi google-auth 2.3.3 pypi_0 pypi google-auth-oauthlib 0.4.6 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi greenlet 1.1.2 pypi_0 pypi grpcio 1.43.0 pypi_0 pypi gunicorn 20.1.0 pypi_0 pypi h5py 3.6.0 pypi_0 pypi idna 3.3 pyhd3eb1b0_0 importlib-metadata 4.8.2 py39h06a4308_0 importlib_metadata 4.8.2 hd3eb1b0_0 ipykernel 6.4.1 py39h06a4308_1 ipython 7.29.0 py39hb070fc8_0 ipython_genutils 0.2.0 pyhd3eb1b0_1 isort 5.10.1 pypi_0 pypi itsdangerous 2.0.1 pypi_0 pypi jedi 0.18.0 py39h06a4308_1 jinja2 3.0.2 pyhd3eb1b0_0 joblib 1.1.0 pypi_0 pypi json5 0.9.6 pyhd3eb1b0_0 jsonschema 3.2.0 pyhd3eb1b0_2 jupyter_client 7.1.0 pyhd3eb1b0_0 jupyter_core 4.9.1 py39h06a4308_0 jupyter_server 1.4.1 py39h06a4308_0 jupyterlab 3.2.1 pyhd3eb1b0_1 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 2.8.2 pyhd3eb1b0_0 keras 2.7.0 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.2 pypi_0 pypi lazy-object-proxy 1.7.1 pypi_0 pypi ld_impl_linux-64 2.35.1 h7274673_9 libclang 12.0.0 pypi_0 pypi libffi 3.3 he6710b0_2 libgcc-ng 9.3.0 h5101ec6_17 libgomp 9.3.0 h5101ec6_17 libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.3.0 hd4cf53a_17 lmfit 1.0.3 pypi_0 pypi mako 1.1.6 pypi_0 pypi markdown 3.3.6 pypi_0 pypi markupsafe 2.0.1 py39h27cfd23_0 matplotlib 3.5.1 pypi_0 pypi matplotlib-inline 0.1.2 pyhd3eb1b0_2 mccabe 0.6.1 pypi_0 pypi mistune 0.8.4 py39h27cfd23_1000 mlflow 1.22.0 pypi_0 pypi multipletau 0.3.3 pypi_0 pypi mypy 0.930 pypi_0 pypi mypy-extensions 0.4.3 pypi_0 pypi nbclassic 0.2.6 pyhd3eb1b0_0 nbclient 0.5.3 pyhd3eb1b0_0 nbconvert 6.1.0 py39h06a4308_0 nbformat 5.1.3 pyhd3eb1b0_0 ncurses 6.3 h7f8727e_2 nest-asyncio 1.5.1 pyhd3eb1b0_0 nodeenv 1.6.0 pypi_0 pypi notebook 6.4.6 py39h06a4308_0 numpy 1.21.5 pypi_0 pypi oauthlib 3.1.1 pypi_0 pypi openssl 1.1.1l h7f8727e_0 opt-einsum 3.3.0 pypi_0 pypi packaging 21.3 pyhd3eb1b0_0 pandas 1.3.5 pypi_0 pypi pandocfilters 1.4.3 py39h06a4308_1 parso 0.8.2 pyhd3eb1b0_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 8.4.0 pypi_0 pypi pip 21.2.4 py39h06a4308_0 platformdirs 2.4.1 pypi_0 pypi prometheus-flask-exporter 0.18.7 pypi_0 pypi prometheus_client 0.12.0 pyhd3eb1b0_0 prompt-toolkit 3.0.20 pyhd3eb1b0_0 protobuf 3.19.1 pypi_0 pypi ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycodestyle 2.8.0 pypi_0 pypi pycparser 2.21 pyhd3eb1b0_0 pydot 1.4.2 pypi_0 pypi pyflakes 2.4.0 pypi_0 pypi pygments 2.10.0 pyhd3eb1b0_0 pylint 2.12.2 pypi_0 pypi pyopenssl 21.0.0 pyhd3eb1b0_1 pyparsing 3.0.4 pyhd3eb1b0_0 pyright 0.0.13 pypi_0 pypi pyrsistent 0.18.0 py39heee7806_0 pysocks 1.7.1 py39h06a4308_0 python 3.9.7 h12debd9_1 python-dateutil 2.8.2 pyhd3eb1b0_0 python-editor 1.0.4 pypi_0 pypi pytz 2021.3 pyhd3eb1b0_0 pyyaml 6.0 pypi_0 pypi pyzmq 22.3.0 py39h295c915_2 querystring-parser 1.2.4 pypi_0 pypi readline 8.1 h27cfd23_0 requests 2.26.0 pyhd3eb1b0_0 requests-oauthlib 1.3.0 pypi_0 pypi rsa 4.8 pypi_0 pypi scikit-learn 1.0.2 pypi_0 pypi scipy 1.7.3 pypi_0 pypi seaborn 0.11.2 pypi_0 pypi send2trash 1.8.0 pyhd3eb1b0_1 setuptools 58.0.4 py39h06a4308_0 six 1.16.0 pyhd3eb1b0_0 smmap 5.0.0 pypi_0 pypi sniffio 1.2.0 py39h06a4308_1 sqlalchemy 1.4.29 pypi_0 pypi sqlite 3.37.0 hc218d9a_0 sqlparse 0.4.2 pypi_0 pypi tabulate 0.8.9 pypi_0 pypi tensorboard 2.7.0 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.0 pypi_0 pypi tensorflow 2.7.0 pypi_0 pypi tensorflow-estimator 2.7.0 pypi_0 pypi tensorflow-io-gcs-filesystem 0.23.1 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.4 py39h06a4308_0 testpath 0.5.0 pyhd3eb1b0_0 threadpoolctl 3.0.0 pypi_0 pypi tk 8.6.11 h1ccaba5_0 toml 0.10.2 pypi_0 pypi tomli 2.0.0 pypi_0 pypi tornado 6.1 py39h27cfd23_0 traitlets 5.1.1 pyhd3eb1b0_0 typing-extensions 4.0.1 pypi_0 pypi tzdata 2021e hda174b7_0 uncertainties 3.1.6 pypi_0 pypi urllib3 1.26.7 pyhd3eb1b0_0 wcwidth 0.2.5 pyhd3eb1b0_0 webencodings 0.5.1 py39h06a4308_1 websocket-client 1.2.3 pypi_0 pypi werkzeug 2.0.2 pypi_0 pypi wheel 0.37.0 pyhd3eb1b0_1 wrapt 1.13.3 pypi_0 pypi xz 5.2.5 h7b6447c_0 zeromq 4.3.4 h2531618_0 zipp 3.6.0 pyhd3eb1b0_0 zlib 1.2.11 h7f8727e_4 Note: you may need to restart the kernel to use updated packages. {'SHELL': '/bin/bash', 'SESSION_MANAGER': 'local/Topialex:@/tmp/.ICE-unix/878,unix/Topialex:/tmp/.ICE-unix/878', 'XDG_CONFIG_DIRS': '/home/lex/.config/kdedefaults:/etc/xdg', 'XDG_SESSION_PATH': '/org/freedesktop/DisplayManager/Session1', 'CONDA_EXE': '/home/lex/Programme/miniconda3/bin/conda', '_CE_M': '', 'LANGUAGE': 'en_GB', 'TERMCAP': '', 'LC_ADDRESS': 'de_DE.UTF-8', 'LC_NAME': 'de_DE.UTF-8', 'INSIDE_EMACS': '27.2,comint', 'DESKTOP_SESSION': 'plasma', 'LC_MONETARY': 'de_DE.UTF-8', 'GTK_RC_FILES': '/etc/gtk/gtkrc:/home/lex/.gtkrc:/home/lex/.config/gtkrc', 'XCURSOR_SIZE': '24', 'GTK_MODULES': 'canberra-gtk-module', 'XDG_SEAT': 'seat0', 'PWD': '/home/lex/Programme/drmed-git', 'LOGNAME': 'lex', 'XDG_SESSION_DESKTOP': 'KDE', 'XDG_SESSION_TYPE': 'x11', 'CONDA_PREFIX': '/home/lex/Programme/miniconda3/envs/tf', 'DSSI_PATH': '/home/lex/.dssi:/usr/lib/dssi:/usr/local/lib/dssi', 'SYSTEMD_EXEC_PID': '768', 'XAUTHORITY': '/home/lex/.Xauthority', 'MOTD_SHOWN': 'pam', 'GTK2_RC_FILES': '/etc/gtk-2.0/gtkrc:/home/lex/.gtkrc-2.0:/home/lex/.config/gtkrc-2.0', 'HOME': '/home/lex', 'LANG': 'de_DE.UTF-8', 'LC_PAPER': 'de_DE.UTF-8', 'VST_PATH': '/home/lex/.vst:/usr/lib/vst:/usr/local/lib/vst', 'XDG_CURRENT_DESKTOP': 'KDE', 'COLUMNS': '80', 'CONDA_PROMPT_MODIFIER': '', 'XDG_SEAT_PATH': '/org/freedesktop/DisplayManager/Seat0', 'KDE_SESSION_UID': '1000', 'XDG_SESSION_CLASS': 'user', 'LC_IDENTIFICATION': 'de_DE.UTF-8', 'TERM': 'xterm-color', '_CE_CONDA': '', 'USER': 'lex', 'CONDA_SHLVL': '1', 'KDE_SESSION_VERSION': '5', 'PAM_KWALLET5_LOGIN': '/run/user/1000/kwallet5.socket', 'DISPLAY': ':0', 'SHLVL': '2', 'LC_TELEPHONE': 'de_DE.UTF-8', 'LC_MEASUREMENT': 'de_DE.UTF-8', 'XDG_VTNR': '1', 'XDG_SESSION_ID': '2', 'QT_LINUX_ACCESSIBILITY_ALWAYS_ON': '1', 'CONDA_PYTHON_EXE': '/home/lex/Programme/miniconda3/bin/python', 'MOZ_PLUGIN_PATH': '/usr/lib/mozilla/plugins', 'XDG_RUNTIME_DIR': '/run/user/1000', 'CONDA_DEFAULT_ENV': 'tf', 'LC_TIME': 'de_DE.UTF-8', 'QT_AUTO_SCREEN_SCALE_FACTOR': '0', 'XCURSOR_THEME': 'breeze_cursors', 'XDG_DATA_DIRS': '/home/lex/.local/share/flatpak/exports/share:/var/lib/flatpak/exports/share:/usr/local/share:/usr/share:/var/lib/snapd/desktop', 'KDE_FULL_SESSION': 'true', 'BROWSER': 'vivaldi-stable', 'PATH': '/home/lex/Programme/miniconda3/envs/tf/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin', 'DBUS_SESSION_BUS_ADDRESS': 'unix:path=/run/user/1000/bus', 'LV2_PATH': '/home/lex/.lv2:/usr/lib/lv2:/usr/local/lib/lv2', 'KDE_APPLICATIONS_AS_SCOPE': '1', 'MAIL': '/var/spool/mail/lex', 'LC_NUMERIC': 'de_DE.UTF-8', 'LADSPA_PATH': '/home/lex/.ladspa:/usr/lib/ladspa:/usr/local/lib/ladspa', 'CADENCE_AUTO_STARTED': 'true', '_': '/home/lex/Programme/miniconda3/envs/tf/bin/jupyter', 'PYDEVD_USE_FRAME_EVAL': 'NO', 'JPY_PARENT_PID': '8414', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://matplotlib_inline.backend_inline'}
5f083adb-6166-4a49-9fa5-08e37046cbfd
2.6.4 Setup: Node for running Mlflow UI
- Create mlflow tmux session and start mlflow ui
conda activate tf mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns -p 5001
(tf) [ye53nis@login01 ~]$ mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns -p 5001 [2021-08-08 14:47:33 +0200] [5106] [INFO] Starting gunicorn 20.1.0 [2021-08-08 14:47:33 +0200] [5106] [INFO] Listening at: http://127.0.0.1:5001 (5106) [2021-08-08 14:47:33 +0200] [5106] [INFO] Using worker: sync [2021-08-08 14:47:33 +0200] [5115] [INFO] Booting worker with pid: 5115
- SHH tunnel the mflow session to the local computer (
#+CALL: ssh-tunnel[:session local3](port="5001", node="login01")
)sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: ye53nis@login01’s password: bind: Address already in use Last login: Tue Aug 17 18:03:52 2021 from 10.231.188.20
2.6.5 Setup: Record GPU metadata & git
- Current directory, last 10 git commits
pwd git log -10
(tf) [ye53nis@node128 drmed-git]$ pwd /beegfs/ye53nis/drmed-git (tf) [ye53nis@node128 drmed-git]$ git log -10 commit 4c2dc79f0483090d3af2591891c2349b0a48115f Author: Apoplex <oligolex@vivaldi.net> Date: Thu Mar 3 14:10:45 2022 +0100 Fix normalize() for l1 and l2 in preprocessing commit 39baf02076ba8fbcf444bfa11108d302bcb4c45f Author: Alex Seltmann <seltmann@posteo.de> Date: Sun Feb 27 22:20:22 2022 +0100 Add comparison file from exp-210807-hparams commit d51b11eda090b9301e783ec35bdfd26c7bf0709c Author: Apoplex <oligolex@vivaldi.net> Date: Sun Feb 27 18:40:00 2022 +0100 fix model input_size to None; else to crop_size commit c637444d8b798603629f6f0bd72ee55af7f81a5f Author: Apoplex <oligolex@vivaldi.net> Date: Sun Feb 27 18:39:29 2022 +0100 Fix function call correlate_and_fit commit 291c6619c12bc39d526137a43d976b3cb4881e50 Author: Apoplex <oligolex@vivaldi.net> Date: Sat Feb 26 20:04:07 2022 +0100 Fix scale_trace; simplify tf_pad_trace call commit dcca8b9e17909a95b824c8a7b1fec52eeed198c3 Author: Apoplex <oligolex@vivaldi.net> Date: Thu Feb 24 16:11:39 2022 +0100 test tf_pad_trace commit 6cf2da85748ef13f2e752bea8989a6d31549ced3 (tf) [ye53nis@node128 drmed-git]$
- GPU, CPU, RAM, file system, env variables, top info
nvcc -V echo -------------------- lscpu echo -------------------- nproc echo -------------------- free -h echo -------------------- df -h echo -------------------- printenv echo -------------------- top -bcn1 -w512 | head -n 15
(tf) [ye53nis@node128 drmed-git]$ nvcc -V nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2020 NVIDIA Corporation Built on Mon_Nov_30_19:08:53_PST_2020 Cuda compilation tools, release 11.2, V11.2.67 Build cuda_11.2.r11.2/compiler.29373293_0 -------------------- (tf) [ye53nis@node128 drmed-git]$ lscpu Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 48 On-line CPU(s) list: 0-47 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 2 NUMA node(s): 4 Vendor ID: GenuineIntel CPU family: 6 Model: 79 Model name: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz Stepping: 1 CPU MHz: 1203.527 CPU max MHz: 2900.0000 CPU min MHz: 1200.0000 BogoMIPS: 4399.79 Virtualization: VT-x L1d cache: 32K L1i cache: 32K L2 cache: 256K L3 cache: 15360K NUMA node0 CPU(s): 0-5,24-29 NUMA node1 CPU(s): 6-11,30-35 NUMA node2 CPU(s): 12-17,36-41 NUMA node3 CPU(s): 18-23,42-47 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonst op_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 cd p_l3 intel_ppin intel_pt ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a rdseed adx smap xsaveopt cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts spec_ctrl intel_stibp -------------------- (tf) [ye53nis@node128 drmed-git]$ nproc 12 -------------------- (tf) [ye53nis@node128 drmed-git]$ free -h total used free shared buff/cache available Mem: 125G 1.1G 116G 230M 8.6G 123G Swap: 11G 0B 11G -------------------- (tf) [ye53nis@node128 drmed-git]$ df -h Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 7.0G 44G 14% / devtmpfs 63G 0 63G 0% /dev tmpfs 63G 188M 63G 1% /dev/shm tmpfs 63G 43M 63G 1% /run tmpfs 63G 0 63G 0% /sys/fs/cgroup nfs01-ib:/cluster 2.0T 469G 1.6T 23% /cluster nfs01-ib:/home 80T 68T 13T 85% /home nfs03-ib:/pool/work 100T 71T 29T 71% /nfsdata /dev/sda3 6.0G 635M 5.4G 11% /var /dev/sda6 169G 354M 169G 1% /local /dev/sda5 2.0G 35M 2.0G 2% /tmp beegfs_nodev 524T 508T 17T 97% /beegfs -------------------- (tf) [ye53nis@node128 drmed-git]$ printenv SLURM_CHECKPOINT_IMAGE_DIR=/var/slurm/checkpoint SLURM_NODELIST=node128 CUDA_PATH=/cluster/nvidia/cuda/11.2 SLURM_JOB_NAME=bash CUDA_INC_PATH=/cluster/nvidia/cuda/11.2/include XDG_SESSION_ID=44301 SLURMD_NODENAME=node128 SLURM_TOPOLOGY_ADDR=node128 SLURM_NTASKS_PER_NODE=12 HOSTNAME=login01 SLURM_PRIO_PROCESS=0 SLURM_SRUN_COMM_PORT=38740 SHELL=/bin/bash TERM=screen MLFLOW_EXPERIMENT_NAME=exp-220227-unet SLURM_JOB_QOS=qstand SLURM_PTY_WIN_ROW=53 HISTSIZE=1000 TMPDIR=/tmp SLURM_TOPOLOGY_ADDR_PATTERN=node SSH_CLIENT=10.231.181.128 49370 22 INCLUDEDIR=/cluster/nvidia/cuda/11.2/include CONDA_SHLVL=2 CONDA_PROMPT_MODIFIER=(tf) OLDPWD=/beegfs/ye53nis/drmed-git QTDIR=/usr/lib64/qt-3.3 QTINC=/usr/lib64/qt-3.3/include SSH_TTY=/dev/pts/79 NO_PROXY=localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001 QT_GRAPHICSSYSTEM_CHECKED=1 SLURM_NNODES=1 USER=ye53nis http_proxy=http://internet4nzm.rz.uni-jena.de:3128 LD_LIBRARY_PATH=/cluster/nvidia/cuda/11.2/lib64:/cluster/nvidia/cuda/11.2/nvvm/lib64:/cluster/nvidia/cudnn/8.1//lib64 LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01 ;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31: *.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01 ;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35: *.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;3 5:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx= 01;36:*.xspf=01;36: CONDA_EXE=/cluster/miniconda3/bin/conda SLURM_STEP_NUM_NODES=1 SLURM_JOBID=1615665 SRUN_DEBUG=3 FTP_PROXY=http://internet4nzm.rz.uni-jena.de:3128 ftp_proxy=http://internet4nzm.rz.uni-jena.de:3128 SLURM_NTASKS=12 SLURM_LAUNCH_NODE_IPADDR=192.168.192.5 SLURM_STEP_ID=0 TMUX=/tmp/tmux-67339/default,20557,7 _CE_CONDA= CONDA_PREFIX_1=/cluster/miniconda3 MODCUDA=YES SLURM_STEP_LAUNCHER_PORT=38740 SLURM_TASKS_PER_NODE=12 MAIL=/var/spool/mail/ye53nis PATH=/cluster/nvidia/cuda/11.2/bin:/cluster/nvidia/cuda/11.2/nvvm:/cluster/nvidia/cuda/11.2/open64/bin:/cluster/nvidia/cuda/11.2/libnvvp:/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/P rogramme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bi n:/home/ye53nis/bin SLURM_WORKING_CLUSTER=hpc:192.168.192.1:6817:8448 SLURM_JOB_ID=1615665 LD_RUN_PATH=/cluster/nvidia/cuda/11.2/lib64 SLURM_STEP_GPUS=0 CONDA_PREFIX=/home/ye53nis/.conda/envs/tf CUDA_LIB_PATH=/cluster/nvidia/cuda/11.2/lib64 SLURM_JOB_USER=ye53nis SLURM_STEPID=0 PWD=/beegfs/ye53nis/drmed-git _LMFILES_=/cluster/modulefiles/nvidia/cuda/11.2:/cluster/modulefiles/nvidia/cudnn/8.1 CUDA_VISIBLE_DEVICES=0 SLURM_SRUN_COMM_HOST=192.168.192.5 LANG=en_US.UTF-8 SLURM_PTY_WIN_COL=236 SLURM_UMASK=0022 MODULEPATH=/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles SLURM_JOB_UID=67339 LOADEDMODULES=nvidia/cuda/11.2:nvidia/cudnn/8.1 SLURM_NODEID=0 TMUX_PANE=%7 SLURM_SUBMIT_DIR=/ SLURM_TASK_PID=4042 SLURM_NPROCS=12 SLURM_CPUS_ON_NODE=12 SLURM_DISTRIBUTION=block HTTPS_PROXY=http://internet4nzm.rz.uni-jena.de:3128 https_proxy=http://internet4nzm.rz.uni-jena.de:3128 SLURM_PROCID=0 HISTCONTROL=ignoredups _CE_M= SLURM_JOB_NODELIST=node128 SLURM_PTY_PORT=37529 HOME=/home/ye53nis SHLVL=3 SLURM_LOCALID=0 SLURM_JOB_GID=13280 SLURM_JOB_CPUS_PER_NODE=12 SLURM_CLUSTER_NAME=hpc no_proxy=localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001 SLURM_GTIDS=0,1,2,3,4,5,6,7,8,9,10,11 SLURM_SUBMIT_HOST=login01 HTTP_PROXY=http://internet4nzm.rz.uni-jena.de:3128 SLURM_JOB_PARTITION=gpu_p100 MATHEMATICA_HOME=/cluster/apps/mathematica/11.3 CONDA_PYTHON_EXE=/cluster/miniconda3/bin/python LOGNAME=ye53nis SLURM_STEP_NUM_TASKS=12 QTLIB=/usr/lib64/qt-3.3/lib GPU_DEVICE_ORDINAL=0 SLURM_JOB_ACCOUNT=iaob MLFLOW_TRACKING_URI=file:./data/mlruns SLURM_JOB_NUM_NODES=1 MODULESHOME=/usr/share/Modules CONDA_DEFAULT_ENV=tf LESSOPEN=||/usr/bin/lesspipe.sh %s SLURM_STEP_TASKS_PER_NODE=12 SLURM_STEP_NODELIST=node128 DISPLAY=:0 XDG_RUNTIME_DIR=/run/user/67339 INCLUDE=/cluster/nvidia/cudnn/8.1//include XAUTHORITY=/home/lex/.Xauthority BASH_FUNC_module()=() { eval `/usr/bin/modulecmd bash $*` } _=/bin/printenv -------------------- (tf) [ye53nis@node128 drmed-git]$ top -bcn1 -w512 | head -n 15 top - 21:21:42 up 72 days, 9:36, 0 users, load average: 0.00, 0.03, 0.05 Tasks: 521 total, 1 running, 520 sleeping, 0 stopped, 0 zombie %Cpu(s): 0.2 us, 0.2 sy, 0.0 ni, 99.6 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st KiB Mem : 13191630+total, 12171446+free, 1196368 used, 9005476 buff/cache KiB Swap: 12582908 total, 12582908 free, 0 used. 12953688+avail Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 13258 ye53nis 20 0 172732 2620 1664 R 11.1 0.0 0:00.03 top -bcn1 -w512 1 root 20 0 71788 7548 2584 S 0.0 0.0 35:51.03 /usr/lib/systemd/systemd --switched-root --system --deserialize 22 2 root 20 0 0 0 0 S 0.0 0.0 0:01.65 [kthreadd] 3 root 20 0 0 0 0 S 0.0 0.0 0:06.95 [ksoftirqd/0] 5 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 [kworker/0:0H] 8 root rt 0 0 0 0 S 0.0 0.0 0:06.58 [migration/0] 9 root 20 0 0 0 0 S 0.0 0.0 0:00.00 [rcu_bh] 10 root 20 0 0 0 0 S 0.0 0.0 43:01.62 [rcu_sched] (tf) [ye53nis@node128 drmed-git]$
- print conda list
conda list
# packages in environment at /home/ye53nis/.conda/envs/tf: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 4.5 1_gnu absl-py 1.0.0 pypi_0 pypi alembic 1.7.6 pypi_0 pypi anyio 2.2.0 py39h06a4308_1 argon2-cffi 20.1.0 py39h27cfd23_1 asteval 0.9.26 pypi_0 pypi astunparse 1.6.3 pypi_0 pypi async_generator 1.10 pyhd3eb1b0_0 attrs 21.4.0 pyhd3eb1b0_0 babel 2.9.1 pyhd3eb1b0_0 backcall 0.2.0 pyhd3eb1b0_0 bleach 4.1.0 pyhd3eb1b0_0 brotlipy 0.7.0 py39h27cfd23_1003 ca-certificates 2021.10.26 h06a4308_2 cachetools 5.0.0 pypi_0 pypi certifi 2021.10.8 py39h06a4308_2 cffi 1.15.0 py39hd667e15_1 charset-normalizer 2.0.4 pyhd3eb1b0_0 click 8.0.3 pypi_0 pypi cloudpickle 2.0.0 pypi_0 pypi cryptography 36.0.0 py39h9ce1e76_0 cycler 0.11.0 pypi_0 pypi cython 0.29.27 pypi_0 pypi databricks-cli 0.16.4 pypi_0 pypi debugpy 1.5.1 py39h295c915_0 decorator 5.1.1 pyhd3eb1b0_0 defusedxml 0.7.1 pyhd3eb1b0_0 docker 5.0.3 pypi_0 pypi entrypoints 0.3 py39h06a4308_0 fcsfiles 2022.2.2 pypi_0 pypi flask 2.0.2 pypi_0 pypi flatbuffers 2.0 pypi_0 pypi fonttools 4.29.1 pypi_0 pypi future 0.18.2 pypi_0 pypi gast 0.5.3 pypi_0 pypi gitdb 4.0.9 pypi_0 pypi gitpython 3.1.26 pypi_0 pypi google-auth 2.6.0 pypi_0 pypi google-auth-oauthlib 0.4.6 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi greenlet 1.1.2 pypi_0 pypi grpcio 1.43.0 pypi_0 pypi gunicorn 20.1.0 pypi_0 pypi h5py 3.6.0 pypi_0 pypi idna 3.3 pyhd3eb1b0_0 importlib-metadata 4.8.2 py39h06a4308_0 importlib_metadata 4.8.2 hd3eb1b0_0 ipykernel 6.4.1 py39h06a4308_1 ipython 7.31.1 py39h06a4308_0 ipython_genutils 0.2.0 pyhd3eb1b0_1 itsdangerous 2.0.1 pypi_0 pypi jedi 0.18.1 py39h06a4308_1 jinja2 3.0.2 pyhd3eb1b0_0 joblib 1.1.0 pypi_0 pypi json5 0.9.6 pyhd3eb1b0_0 jsonschema 3.2.0 pyhd3eb1b0_2 jupyter_client 7.1.2 pyhd3eb1b0_0 jupyter_core 4.9.1 py39h06a4308_0 jupyter_server 1.4.1 py39h06a4308_0 jupyterlab 3.2.1 pyhd3eb1b0_1 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 2.10.2 pyhd3eb1b0_1 keras 2.8.0 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.2 pypi_0 pypi ld_impl_linux-64 2.35.1 h7274673_9 libclang 13.0.0 pypi_0 pypi libffi 3.3 he6710b0_2 libgcc-ng 9.3.0 h5101ec6_17 libgomp 9.3.0 h5101ec6_17 libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.3.0 hd4cf53a_17 lmfit 1.0.3 pypi_0 pypi mako 1.1.6 pypi_0 pypi markdown 3.3.6 pypi_0 pypi markupsafe 2.0.1 py39h27cfd23_0 matplotlib 3.5.1 pypi_0 pypi matplotlib-inline 0.1.2 pyhd3eb1b0_2 mistune 0.8.4 py39h27cfd23_1000 mlflow 1.23.1 pypi_0 pypi multipletau 0.3.3 pypi_0 pypi nbclassic 0.2.6 pyhd3eb1b0_0 nbclient 0.5.3 pyhd3eb1b0_0 nbconvert 6.3.0 py39h06a4308_0 nbformat 5.1.3 pyhd3eb1b0_0 ncurses 6.3 h7f8727e_2 nest-asyncio 1.5.1 pyhd3eb1b0_0 notebook 6.4.6 py39h06a4308_0 numpy 1.22.2 pypi_0 pypi oauthlib 3.2.0 pypi_0 pypi openssl 1.1.1m h7f8727e_0 opt-einsum 3.3.0 pypi_0 pypi packaging 21.3 pyhd3eb1b0_0 pandas 1.4.0 pypi_0 pypi pandocfilters 1.5.0 pyhd3eb1b0_0 parso 0.8.3 pyhd3eb1b0_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 9.0.1 pypi_0 pypi pip 21.2.4 py39h06a4308_0 prometheus-flask-exporter 0.18.7 pypi_0 pypi prometheus_client 0.13.1 pyhd3eb1b0_0 prompt-toolkit 3.0.20 pyhd3eb1b0_0 protobuf 3.19.4 pypi_0 pypi ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.21 pyhd3eb1b0_0 pygments 2.11.2 pyhd3eb1b0_0 pyopenssl 22.0.0 pyhd3eb1b0_0 pyparsing 3.0.4 pyhd3eb1b0_0 pyrsistent 0.18.0 py39heee7806_0 pysocks 1.7.1 py39h06a4308_0 python 3.9.7 h12debd9_1 python-dateutil 2.8.2 pyhd3eb1b0_0 pytz 2021.3 pyhd3eb1b0_0 pyyaml 6.0 pypi_0 pypi pyzmq 22.3.0 py39h295c915_2 querystring-parser 1.2.4 pypi_0 pypi readline 8.1.2 h7f8727e_1 requests 2.27.1 pyhd3eb1b0_0 requests-oauthlib 1.3.1 pypi_0 pypi rsa 4.8 pypi_0 pypi scikit-learn 1.0.2 pypi_0 pypi scipy 1.8.0 pypi_0 pypi seaborn 0.11.2 pypi_0 pypi send2trash 1.8.0 pyhd3eb1b0_1 setuptools 58.0.4 py39h06a4308_0 six 1.16.0 pyhd3eb1b0_0 smmap 5.0.0 pypi_0 pypi sniffio 1.2.0 py39h06a4308_1 sqlalchemy 1.4.31 pypi_0 pypi sqlite 3.37.2 hc218d9a_0 sqlparse 0.4.2 pypi_0 pypi tabulate 0.8.9 pypi_0 pypi tensorboard 2.8.0 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.1 pypi_0 pypi tensorflow 2.8.0 pypi_0 pypi tensorflow-io-gcs-filesystem 0.24.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.4 py39h06a4308_0 testpath 0.5.0 pyhd3eb1b0_0 tf-estimator-nightly 2.8.0.dev2021122109 pypi_0 pypi threadpoolctl 3.1.0 pypi_0 pypi tk 8.6.11 h1ccaba5_0 tornado 6.1 py39h27cfd23_0 traitlets 5.1.1 pyhd3eb1b0_0 typing-extensions 4.0.1 pypi_0 pypi tzdata 2021e hda174b7_0 uncertainties 3.1.6 pypi_0 pypi urllib3 1.26.8 pyhd3eb1b0_0 wcwidth 0.2.5 pyhd3eb1b0_0 webencodings 0.5.1 py39h06a4308_1 websocket-client 1.2.3 pypi_0 pypi werkzeug 2.0.3 pypi_0 pypi wheel 0.37.1 pyhd3eb1b0_0 wrapt 1.13.3 pypi_0 pypi xz 5.2.5 h7b6447c_0 zeromq 4.3.4 h2531618_0 zipp 3.7.0 pyhd3eb1b0_0 zlib 1.2.11 h7f8727e_4 (tf) [ye53nis@node128 drmed-git]$
- Show tree of input files used.
tree ../saves/firstartifact_Nov2020_train_max2sets echo -------------------- tree ../saves/firstartifact_Nov2020_val_max2sets_SORTEDIN echo -------------------- tree ../saves/firstartifact_Nov2020_test
(tf) [ye53nis@node128 drmed-git]$ tree ../saves/firstartifact_Nov2020_train_max2sets ../saves/firstartifact_Nov2020_train_max2sets ├── 0.069 │ ├── 0.01 │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.069_set002.csv │ │ └── traces_brightclust_Nov2020_D0.069_set003.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.069_set009.csv ├── 0.08 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.08_set007.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.08_set002.csv │ │ └── traces_brightclust_Nov2020_D0.08_set006.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D0.08_set004.csv │ └── traces_brightclust_Nov2020_D0.08_set009.csv ├── 0.1 │ ├── 0.01 │ │ ├── traces_brightclust_Nov2020_D0.1_set004.csv │ │ └── traces_brightclust_Nov2020_D0.1_set006.csv │ ├── 0.1 │ └── 1.0 │ ├── traces_brightclust_Nov2020_D0.1_set003.csv │ └── traces_brightclust_Nov2020_D0.1_set007.csv ├── 0.2 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.2_set003.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.2_set001.csv │ │ └── traces_brightclust_Nov2020_D0.2_set004.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D0.2_set009.csv │ └── traces_brightclust_Nov2020_D0.2_set010.csv ├── 0.4 │ ├── 0.01 │ │ ├── traces_brightclust_Nov2020_D0.4_set004.csv │ │ └── traces_brightclust_Nov2020_D0.4_set010.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.4_set002.csv │ │ └── traces_brightclust_Nov2020_D0.4_set003.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D0.4_set006.csv │ └── traces_brightclust_Nov2020_D0.4_set007.csv ├── 0.6 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.6_set010.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D0.6_set004.csv │ │ └── traces_brightclust_Nov2020_D0.6_set005.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D0.6_set001.csv │ └── traces_brightclust_Nov2020_D0.6_set002.csv ├── 10 │ ├── 0.01 │ │ ├── traces_brightclust_Nov2020_D10_set003.csv │ │ └── traces_brightclust_Nov2020_D10_set004.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D10_set006.csv │ │ └── traces_brightclust_Nov2020_D10_set007.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D10_set010.csv ├── 1.0 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D1.0_set010.csv │ ├── 0.1 │ │ ├── traces_brightclust_Nov2020_D1.0_set004.csv │ │ └── traces_brightclust_Nov2020_D1.0_set007.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D1.0_set001.csv │ └── traces_brightclust_Nov2020_D1.0_set002.csv ├── 3.0 │ ├── 0.01 │ │ ├── traces_brightclust_Nov2020_D3.0_set005.csv │ │ └── traces_brightclust_Nov2020_D3.0_set006.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D3.0_set010.csv │ └── 1.0 │ ├── traces_brightclust_Nov2020_D3.0_set001.csv │ └── traces_brightclust_Nov2020_D3.0_set003.csv └── 50 ├── 0.01 │ └── traces_brightclust_Nov2020_D50_set006.csv ├── 0.1 │ ├── traces_brightclust_Nov2020_D50_set009.csv │ └── traces_brightclust_Nov2020_D50_set010.csv └── 1.0 ├── traces_brightclust_Nov2020_D50_set004.csv └── traces_brightclust_Nov2020_D50_set005.csv 40 directories, 48 files (tf) [ye53nis@node128 drmed-git]$ echo -------------------- -------------------- (tf) [ye53nis@node128 drmed-git]$ tree ../saves/firstartifact_Nov2020_val_max2sets_SORTEDIN ../saves/firstartifact_Nov2020_val_max2sets_SORTEDIN ├── 0.069 │ ├── 0.01 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.069_set006.csv │ └── 1.0 ├── 0.08 │ ├── 0.01 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.08_set008.csv │ └── 1.0 ├── 0.1 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.1_set008.csv │ ├── 0.1 │ └── 1.0 ├── 0.2 │ ├── 0.01 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.2_set006.csv │ └── 1.0 ├── 0.4 │ ├── 0.01 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.4_set009.csv │ └── 1.0 ├── 0.6 │ ├── 0.01 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.6_set006.csv │ └── 1.0 ├── 10 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D10_set008.csv │ ├── 0.1 │ └── 1.0 ├── 1.0 │ ├── 0.01 │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D1.0_set009.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D1.0_set008.csv ├── 3.0 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D3.0_set008.csv │ ├── 0.1 │ └── 1.0 │ └── traces_brightclust_Nov2020_D3.0_set009.csv └── 50 ├── 0.01 ├── 0.1 └── 1.0 └── traces_brightclust_Nov2020_D50_set007.csv 40 directories, 12 files (tf) [ye53nis@node128 drmed-git]$ echo -------------------- -------------------- (tf) [ye53nis@node128 drmed-git]$ tree ../saves/firstartifact_Nov2020_test ../saves/firstartifact_Nov2020_test ├── 0.069 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.069_set005.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.069_set001.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.069_set010.csv ├── 0.08 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.08_set005.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.08_set003.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.08_set001.csv ├── 0.1 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.1_set002.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.1_set005.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.1_set001.csv ├── 0.2 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.2_set002.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.2_set007.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.2_set005.csv ├── 0.4 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.4_set008.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.4_set001.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.4_set005.csv ├── 0.6 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D0.6_set008.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D0.6_set003.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D0.6_set009.csv ├── 10 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D10_set002.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D10_set001.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D10_set005.csv ├── 1.0 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D1.0_set006.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D1.0_set003.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D1.0_set005.csv ├── 3.0 │ ├── 0.01 │ │ └── traces_brightclust_Nov2020_D3.0_set004.csv │ ├── 0.1 │ │ └── traces_brightclust_Nov2020_D3.0_set007.csv │ └── 1.0 │ └── traces_brightclust_Nov2020_D3.0_set002.csv └── 50 ├── 0.01 │ └── traces_brightclust_Nov2020_D50_set002.csv ├── 0.1 │ └── traces_brightclust_Nov2020_D50_set003.csv └── 1.0 └── traces_brightclust_Nov2020_D50_set001.csv 40 directories, 30 files (tf) [ye53nis@node128 drmed-git]$
2.6.6 Setup: Show all hyperparameters that worked in exp-210807-hparams
- get the comparison data of all runs from
exp-210807-hparams
viagit restore
git show 04e9dc3:./data/exp-210807-hparams/mlflow/run1-2_comparison.csv > ./data/exp-220227-unet/mlflow/exp-210807-hparams_comparison.csv
- open the file in jupyter, do some processing to only find the best runs,
and display the relevant hparams (see
exp-210807-hparams
section4. Analyze run 1 and 2
for explanations on the processing)%cd /beegfs/ye53nis/drmed-git import numpy as np import pandas as pd
/beegfs/ye53nis/drmed-git
run1_2 = pd.read_csv('data/exp-220227-unet/mlflow/exp-210807-hparams_comparison.csv', index_col=0) run1_2_valauc = run1_2.loc['val_auc'].astype(float) singles_ls = ['5441e71efe0f4dae868648e7cc795c65'] run1_2_singles = run1_2.loc[:, singles_ls] run1_2_singles.iloc[35:, :] = run1_2_singles.iloc[35:, :].astype(np.float64) run1_2 = run1_2.drop(columns=singles_ls) assert len(run1_2.iloc[35:, :].columns) % 2 == 0 run1_2_doubleparams = pd.DataFrame() run1_2_doublemetrics = pd.DataFrame() double_cols = [] for left, right in zip(run1_2.iloc[:, ::2].items(), run1_2.iloc[:, 1::2].items()): double_cols.append((left[0], right[0])) current_metrics = left[1].iloc[35:].combine(other=right[1].iloc[35:], func=(lambda x1, x2: (float(x1) + float(x2)) / 2)) current_params = left[1].iloc[:35].combine(other=right[1].iloc[:35], func=(lambda x1, x2: set((x1, x2)) if x1 != x2 else x1)) run1_2_doubleparams = pd.concat([run1_2_doubleparams, current_params], axis=1) run1_2_doublemetrics = pd.concat([run1_2_doublemetrics, current_metrics], axis=1) run1_2_doublemetrics = pd.DataFrame(data=run1_2_doublemetrics.to_numpy(), index=run1_2.iloc[35:, :].index, columns=double_cols) run1_2_doubleparams = pd.DataFrame(data=run1_2_doubleparams.to_numpy(), index=run1_2.iloc[:35, :].index, columns=double_cols) run1_2_combimetrics = pd.concat([run1_2_doublemetrics, run1_2_singles.iloc[35:, :]], axis=1) run1_2_combiparams = pd.concat([run1_2_doubleparams, run1_2_singles.iloc[:35, :]], axis=1) run1_2_mymetrics = run1_2_combimetrics.loc[['val_auc', 'val_recall0.5', 'val_precision0.5']] run1_2_myparams = run1_2_combiparams.loc[['hp_batch_size', 'hp_first_filters', 'hp_input_size', 'hp_lr_power', 'hp_lr_start', 'hp_n_levels', 'hp_pool_size', 'hp_scaler']] run1_2_my = pd.concat([run1_2_mymetrics, run1_2_myparams], axis=0).T # cond1 = run1_2_combimetrics.loc[:, 'val_auc'] > 0.95 cond2 = run1_2_my.loc[:, 'val_recall0.5'] > 0.85 cond3 = run1_2_my.loc[:, 'val_precision0.5'] > 0.85 with pd.option_context('display.max_rows', None, 'display.max_columns', None): display(run1_2_my.loc[cond2 & cond3])
Run ID: valauc valrecall0.5 valprecision0.5 hpbatchsize hpfirstfilters hpinputsize hplrpower hplrstart hpnlevels hppoolsize hpscaler (9051e32b87d84f3485b980067addec30, 61ff87bdb89b4e2ba64f8dacc774992d) 0.981 0.8975 0.918 26 44 16384 1 0.0136170138242663 7 2 standard (93b168c0ff7942c8a908a94129daf973, f243b3b742de4dbcb7ccfbd4244706f8) 0.976 0.893 0.852 15 23 16384 7 0.0305060808685107 6 4 quantg (a5b8551144ff46e697a39cd1551e1475, 98cf8cdef9c54b5286e277e75e2ab8c1) 0.984 0.916 0.909 20 78 16384 4 0.0584071108418767 4 4 standard (00f2635d9fa2463c9a066722163405be, d0a8e1748b194f3290d471b6b44f19f8) 0.987 0.929 0.9065 28 6 16384 1 0.0553313915596308 5 4 minmax (5604d43c1ece461b8e6eaa0dfb65d6dc, 3612536a77f34f22bc83d1d809140aa6) 0.9745 0.885 0.8985 20 128 16384 1 0.043549707353273 3 4 standard (7cafab027cdd4fc9bf20a43e989df510, 16dff15d935f45e2a836b1f41b07b4e3) 0.978 0.8905 0.891 10 16 8192 1 0.0627676336651573 5 4 robust (0e328920e86049928202db95e8cfb7be, bf9d2725eb16462d9a101f0a077ce2b5) 0.976 0.875 0.888 14 16 16384 5 0.0192390310290551 9 2 robust (1c954fbc02b747bc813c587ac703c74a, ba49a80c2616407a8f1fe1fd12096fe0) 0.962 0.856 0.8585 17 16 16384 5 0.0101590069352232 3 4 l2 (3cbd945b62ec4634839372e403f6f377, 458b36a70db843719d202a8eda448f17) 0.972 0.872 0.9135 9 64 4096 1 0.0100697459464075 5 4 maxabs - notes on hparams:
- I used three different input sizes in hparams training (4096, 8192, 16384). As experimental test data I have got traces which are around 8000 and traces which are around 32000 time steps. To balance between both, I will only use 16384 as an input size.
- The UNET only excepts input sizes which are exactly the power of 2 and
> 1024. To deal with that for experimental traces which have a different
size, I append the median of the trace until it reaches the next biggest
power of 2. That means in the script below my
input_size
will be14000
, so each trace will be padded with2384
median values (~15% of the input), and the corresponding labels will be0
. - the epoch size used for training will be 100 epochs for each hparam configuration
2.6.7 Setup: Fitting
- all fitting was done in Dominic Waithe’s
focuspoint
. (see https://pubmed.ncbi.nlm.nih.gov/26589275/ and https://github.com/dwaithe/FCS_point_correlator) - I installed the program by cloning the github and following the setup
instructions there. Some packages were missing to run the program, the
following is the conda environment with
focuspoint
and all needed packagesconda list -n focus
# packages in environment at /home/lex/Programme/miniconda3/envs/focus: # # Name Version Build Channel _libgccmutex 0.1 main _openmpmutex 4.5 1gnu asteval 0.9.26 pypi0 pypi blas 1.0 mkl ca-certificates 2022.3.18 h06a43080 certifi 2021.10.8 py39h06a43082 cycler 0.11.0 pypi0 pypi cython 0.29.28 pypi0 pypi dbus 1.13.18 hb2f20db0 expat 2.4.4 h295c9150 focuspoint 0.1 pypi0 pypi fontconfig 2.13.1 h6c099310 fonttools 4.31.2 pypi0 pypi freetype 2.11.0 h70c03450 future 0.18.2 pypi0 pypi glib 2.69.1 h4ff587b1 gst-plugins-base 1.14.0 h8213a912 gstreamer 1.14.0 h28cd5cc2 icu 58.2 he6710b03 intel-openmp 2021.4.0 h06a43083561 jpeg 9d h7f8727e0 kiwisolver 1.4.0 pypi0 pypi ldimpllinux-64 2.35.1 h72746739 libffi 3.3 he6710b02 libgcc-ng 9.3.0 h5101ec617 libgomp 9.3.0 h5101ec617 libpng 1.6.37 hbc830470 libstdcxx-ng 9.3.0 hd4cf53a17 libuuid 1.0.3 h7f8727e2 libxcb 1.14 h7b6447c0 libxml2 2.9.12 h03d6c580 lmfit 1.0.3 pypi0 pypi matplotlib 3.5.1 pypi0 pypi mkl 2021.4.0 h06a4308640 mkl-service 2.4.0 py39h7f8727e0 mklfft 1.3.1 py39hd3c417c0 mklrandom 1.2.2 py39h51133e40 ncurses 6.3 h7f8727e2 numexpr 2.8.1 pypi0 pypi numpy 1.21.2 py39h20f2e390 numpy-base 1.21.2 py39h79a11010 openssl 1.1.1n h7f8727e0 packaging 21.3 pypi0 pypi pcre 8.45 h295c9150 pillow 9.0.1 pypi0 pypi pip 21.2.4 py39h06a43080 pyparsing 3.0.7 pypi0 pypi pyperclip 1.8.2 pypi0 pypi pyqt 5.9.2 py39h25316186 python 3.9.7 h12debd91 python-dateutil 2.8.2 pypi0 pypi qt 5.9.7 h5867ecd1 readline 8.1.2 h7f8727e1 scipy 1.8.0 pypi0 pypi setuptools 58.0.4 py39h06a43080 sip 4.19.13 py39h295c9150 six 1.16.0 pyhd3eb1b01 sqlite 3.38.0 hc218d9a0 tables 3.7.0 pypi0 pypi tifffile 2022.3.16 pypi0 pypi tk 8.6.11 h1ccaba50 tzdata 2021e hda174b70 uncertainties 3.1.6 pypi0 pypi wheel 0.37.1 pyhd3eb1b00 xz 5.2.5 h7b6447c0 zlib 1.2.11 h7f8727e4 - this is how the program is started
conda activate focus python -m focuspoint.FCS_point_correlator
- then:
- go to the ’Fit Function’ tab
- load correlated files, e.g. from
./data/exp-220227-unet/2022-05-22_experimental-af488/clean
- inside the base directory of the experiment (e.g.
./data/exp-220227-unet/2022-05-22_experimental-af488
) I saved the focuspoint profile file, which you can load to reproduce all my fit settings.- for 1-component fit:
./data/exp-220227-unet/2022-05-22_experimental-af488/af488+luvs_1comp.profile
- for 2-component fit:
./data/exp-220227-unet/2022-05-22_experimental-af488/af488+luvs_2comp.profile
- for 1-component fit:
- the setting which is not saved in the
.profile
file is the fit range (xmin, xmax). This is saved in all the...outParam.csv
files. Generally, this was- for
af488
data:xmin=0.001
- for
averaging
correction:xmax=0.5
- for data without peak artifacts (only
af488
) and all other correction methods:xmax=100
- for data with peak artifacts (only
af488+luvs
) and all other correction methods:xmax=500
- for
pex5
data:xmin=0.001
- for
averaging
correction:xmax=0.5
- for all other correction methods:
xmax=1000
- simulated data:
xmin=1
xmax=8000
- note: sometimes the correction methods did shorten the traces below 8000ms. Then, the maximum correlation length was automatically shortened by the program. Inexp-220227-unet
, I did not plot the comparison of fit outcomes of simulated data, so for details on these xmax values see the assert statements when loading simulated data inexp-220316-publication1
- for
2.6.8 Experiment 1: run training of 9 promising hparam combinations
- run training of
(9051e32b87d84f3485b980067addec30, 61ff87bdb89b4e2ba64f8dacc774992d)
with hparams from above.mlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \ -P batch_size=26 \ -P first_filters=44 \ -P input_size=14000 \ -P lr_start=0.0136170138242663 \ -P lr_power=1 \ -P epochs=100 \ -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \ -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \ -P scaler=standard \ -P n_levels=7 \ -P pool_size=2
INFO: 'exp-220227-unet' does not exist. Creating a new experiment 2022/02/27 23:06:17 INFO mlflow.projects.utils: === Created directory /tmp/tmp5u38tprq for downloading remote URIs passed to arguments of type 'path' === 2022/02/27 23:06:17 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 26 --input_size 14000 --lr_start 0.0136170138242663 --lr_power 1 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_p ath_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler standard --n_levels 7 --first_filters 44 --pool_size 2' in run with ID '484af471c61943fa90e5f78e78a229f0' === 2022-02-27 23:06:19.459522: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-02-27 23:06:27,328 - train - Python version: 3.9.6 (default, Jul 30 2021, 16:35:19) [GCC 7.5.0] 2022-02-27 23:06:27,329 - train - Tensorflow version: 2.5.0 2022-02-27 23:06:27,329 - train - tf.keras version: 2.5.0 2022-02-27 23:06:27,329 - train - Cudnn version: 8 2022-02-27 23:06:27,329 - train - Cuda version: 11.2 2022-02-27 23:06:27.332616: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1 2022-02-27 23:06:27.373032: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-02-27 23:06:27.373166: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-02-27 23:06:27.382894: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-02-27 23:06:27.382990: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 2022-02-27 23:06:27.386881: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10 2022-02-27 23:06:27.389946: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10 2022-02-27 23:06:27.399178: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11 2022-02-27 23:06:27.413770: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11 2022-02-27 23:06:27.415902: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-02-27 23:06:27.419520: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-02-27 23:06:27,419 - train - GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"... 2022-02-27 23:06:27,420 - train - Setting memory growth successful. 2022-02-27 23:06:33,649 - train - 1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv 2022-02-27 23:06:47,474 - train - 2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv 2022-02-27 23:06:52,553 - train - 3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv 2022-02-27 23:06:56,374 - train - 4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv 2022-02-27 23:06:59,968 - train - 5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv 2022-02-27 23:07:03,508 - train - 6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv 2022-02-27 23:07:07,092 - train - 7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv 2022-02-27 23:07:10,718 - train - 8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv 2022-02-27 23:07:14,433 - train - 9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv 2022-02-27 23:07:18,054 - train - 10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv 2022-02-27 23:07:21,398 - train - 11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv 2022-02-27 23:07:33,241 - train - 12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv 2022-02-27 23:07:37,082 - train - 13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv 2022-02-27 23:07:40,911 - train - 14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv 2022-02-27 23:07:44,813 - train - 15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv 2022-02-27 23:07:48,436 - train - 16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv 2022-02-27 23:07:52,998 - train - 17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv 2022-02-27 23:07:56,536 - train - 18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv 2022-02-27 23:08:00,088 - train - 19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv 2022-02-27 23:08:03,661 - train - 20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv 2022-02-27 23:08:07,253 - train - 21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv 2022-02-27 23:08:22,306 - train - 22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv 2022-02-27 23:08:25,939 - train - 23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv 2022-02-27 23:08:29,797 - train - 24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv 2022-02-27 23:08:33,419 - train - 25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv 2022-02-27 23:08:38,026 - train - 26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv 2022-02-27 23:08:41,552 - train - 27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv 2022-02-27 23:08:46,334 - train - 28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv 2022-02-27 23:08:52,449 - train - 29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv 2022-02-27 23:09:00,390 - train - 30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv 2022-02-27 23:09:13,802 - train - 31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv 2022-02-27 23:09:17,690 - train - 32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv 2022-02-27 23:09:21,264 - train - 33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv 2022-02-27 23:09:25,460 - train - 34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv 2022-02-27 23:09:29,041 - train - 35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv 2022-02-27 23:09:33,185 - train - 36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv 2022-02-27 23:09:36,927 - train - 37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv 2022-02-27 23:09:43,792 - train - 38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv 2022-02-27 23:09:55,806 - train - 39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv 2022-02-27 23:09:59,340 - train - 40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv 2022-02-27 23:10:04,195 - train - 41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv 2022-02-27 23:10:07,769 - train - 42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv 2022-02-27 23:10:11,494 - train - 43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv 2022-02-27 23:10:15,480 - train - 44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv 2022-02-27 23:10:19,534 - train - 45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv 2022-02-27 23:10:23,308 - train - 46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv 2022-02-27 23:10:27,088 - train - 47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv 2022-02-27 23:10:30,870 - train - 48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv 2022-02-27 23:10:34,365 - train - 1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv 2022-02-27 23:10:43,346 - train - 2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv 2022-02-27 23:10:59,488 - train - 3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv 2022-02-27 23:11:07,159 - train - 4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv 2022-02-27 23:11:11,824 - train - 5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv 2022-02-27 23:11:15,330 - train - 6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv 2022-02-27 23:11:19,613 - train - 7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv 2022-02-27 23:11:22,985 - train - 8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv 2022-02-27 23:11:26,571 - train - 9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv 2022-02-27 23:11:30,142 - train - 10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv 2022-02-27 23:11:33,712 - train - 11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv 2022-02-27 23:11:40,154 - train - 12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv 2022-02-27 23:11:40,374 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)] 2022-02-27 23:11:40,463 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)] 2022-02-27 23:11:40.616724: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio ns: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2022-02-27 23:11:40.620393: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-02-27 23:11:40.624428: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-02-27 23:11:40.624579: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-02-27 23:11:41.105011: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix: 2022-02-27 23:11:41.105083: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264] 0 2022-02-27 23:11:41.105097: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0: N 2022-02-27 23:11:41.107958: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p ci bus id: 0000:82:00.0, compute capability: 6.0) 2022-02-27 23:11:43,160 - train - number of examples: 4800 2022-02-27 23:11:43,526 - train - number of examples: 1200 2022-02-27 23:11:46,063 - train - unet: input shape: (None, None, 1), output shape: (None, None, 1) 2022/02/27 23:11:46 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='26' for run ID='484 af471c61943fa90e5f78e78a229f0'. Attempted logging new value 'None'. Epoch 1/100 2022-02-27 23:11:56.021789: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2) 2022-02-27 23:11:56.201257: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz 2022-02-27 23:12:06.010819: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-02-27 23:12:06.325533: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101 2022-02-27 23:12:06.806608: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-02-27 23:12:07.089703: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 184/184 [==============================] - 212s 1s/step - loss: 1.1422 - tp0.1: 8390499.0000 - fp0.1: 12828878.0000 - tn0.1: 55341968.0000 - fn0.1: 1819714.0000 - precision0.1: 0.3954 - recall0.1: 0.8218 - tp0.3: 7189476.0000 - fp0.3: 4 881676.0000 - tn0.3: 63289180.0000 - fn0.3: 3020737.0000 - precision0.3: 0.5956 - recall0.3: 0.7041 - tp0.5: 6041120.0000 - fp0.5: 2184567.0000 - tn0.5: 65986268.0000 - fn0.5: 4169093.0000 - precision0.5: 0.7344 - recall0.5: 0.5917 - tp 0.7: 4490541.0000 - fp0.7: 712795.0000 - tn0.7: 67458040.0000 - fn0.7: 5719672.0000 - precision0.7: 0.8630 - recall0.7: 0.4398 - tp0.9: 2966847.0000 - fp0.9: 153266.0000 - tn0.9: 68017552.0000 - fn0.9: 7243366.0000 - precision0.9: 0.950 9 - recall0.9: 0.2906 - accuracy: 0.9189 - auc: 0.8890 - f1: 0.6554 - val_loss: 45.6530 - val_tp0.1: 2695397.0000 - val_fp0.1: 16186602.0000 - val_tn0.1: 695010.0000 - val_fn0.1: 18255.0000 - val_precision0.1: 0.1427 - val_recall0.1: 0. 9933 - val_tp0.3: 2693432.0000 - val_fp0.3: 16009674.0000 - val_tn0.3: 871938.0000 - val_fn0.3: 20220.0000 - val_precision0.3: 0.1440 - val_recall0.3: 0.9925 - val_tp0.5: 2691511.0000 - val_fp0.5: 15860014.0000 - val_tn0.5: 1021598.0000 - val_fn0.5: 22141.0000 - val_precision0.5: 0.1451 - val_recall0.5: 0.9918 - val_tp0.7: 2688428.0000 - val_fp0.7: 15650703.0000 - val_tn0.7: 1230909.0000 - val_fn0.7: 25224.0000 - val_precision0.7: 0.1466 - val_recall0.7: 0.9907 - val_ tp0.9: 2681968.0000 - val_fp0.9: 15334839.0000 - val_tn0.9: 1546773.0000 - val_fn0.9: 31684.0000 - val_precision0.9: 0.1489 - val_recall0.9: 0.9883 - val_accuracy: 0.1895 - val_auc: 0.5616 - val_f1: 0.2531 ... Epoch 100/100 184/184 [==============================] - 184s 1s/step - loss: 0.0877 - tp0.1: 10015121.0000 - fp0.1: 1833216.0000 - tn0.1: 66390352.0000 - fn0.1: 142350.0000 - precision0.1: 0.8453 - recall0.1: 0.9860 - tp0.3: 9874038.0000 - fp0.3: 10 86322.0000 - tn0.3: 67137280.0000 - fn0.3: 283433.0000 - precision0.3: 0.9009 - recall0.3: 0.9721 - tp0.5: 9674727.0000 - fp0.5: 664419.0000 - tn0.5: 67559176.0000 - fn0.5: 482744.0000 - precision0.5: 0.9357 - recall0.5: 0.9525 - tp0.7: 9343030.0000 - fp0.7: 341635.0000 - tn0.7: 67881952.0000 - fn0.7: 814441.0000 - precision0.7: 0.9647 - recall0.7: 0.9198 - tp0.9: 8626370.0000 - fp0.9: 88068.0000 - tn0.9: 68135504.0000 - fn0.9: 1531101.0000 - precision0.9: 0.9899 - re call0.9: 0.8493 - accuracy: 0.9854 - auc: 0.9920 - f1: 0.9440 - val_loss: 0.1556 - val_tp0.1: 2623480.0000 - val_fp0.1: 609139.0000 - val_tn0.1: 16273852.0000 - val_fn0.1: 88793.0000 - val_precision0.1: 0.8116 - val_recall0.1: 0.9673 - val_tp0.3: 2573475.0000 - val_fp0.3: 375340.0000 - val_tn0.3: 16507651.0000 - val_fn0.3: 138798.0000 - val_precision0.3: 0.8727 - val_recall0.3: 0.9488 - val_tp0.5: 2518254.0000 - val_fp0.5: 251870.0000 - val_tn0.5: 16631121.0000 - val_ fn0.5: 194019.0000 - val_precision0.5: 0.9091 - val_recall0.5: 0.9285 - val_tp0.7: 2439448.0000 - val_fp0.7: 153092.0000 - val_tn0.7: 16729899.0000 - val_fn0.7: 272825.0000 - val_precision0.7: 0.9409 - val_recall0.7: 0.8994 - val_tp0.9: 2279822.0000 - val_fp0.9: 61468.0000 - val_tn0.9: 16821524.0000 - val_fn0.9: 432451.0000 - val_precision0.9: 0.9737 - val_recall0.9: 0.8406 - val_accuracy: 0.9772 - val_auc: 0.9814 - val_f1: 0.9187 2022-02-28 04:24:39.818514: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. 2022/02/28 04:24:58 INFO mlflow.projects: === Run (ID '484af471c61943fa90e5f78e78a229f0') succeeded === (tf) [ye53nis@node128 drmed-git]$
- name of run:
484af471c61943fa90e5f78e78a229f0
- metrics after 100th epoch:
- precisionval,0.5: 0.9091 - recallval,0.5: 0.9285 - f1val,0.5: 0.9187
- aucval: 0.9814
- a note on the metrics notation:
- val means: metrics computed on validation dataset, which was used in training to e.g. ensure no overfitting occurs.
- 0.5 means: a threshold of 0.5 was applied to the predicted output (floating point values between 0 and 1). That means we get a binary classification - and this classification was compared to the ground truth, which was binary as well. Then, precision, recall, f1, etc were computed
- the auc function uses 100 different thresholds for computation, so there no own threshold has to be set.
- name of run:
- run training of
(93b168c0ff7942c8a908a94129daf973, f243b3b742de4dbcb7ccfbd4244706f8)
with hparams from abovemlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \ -P batch_size=15 \ -P first_filters=23 \ -P input_size=14000 \ -P lr_start=0.0305060808685107 \ -P lr_power=7 \ -P epochs=100 \ -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \ -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \ -P scaler=quant_g \ -P n_levels=6 \ -P pool_size=4
2022/02/28 14:14:59 INFO mlflow.projects.utils: === Created directory /tmp/tmpjco1jnk_ for downloading remote URIs passed to arguments of type 'path' === 2022/02/28 14:15:00 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 15 --input_size 14000 --lr_start 0.0305060808685107 --lr_power 7 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_p ath_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler quant_g --n_levels 6 --first_filters 23 --pool_size 4' in run with ID '0cd2023eeaf745aca0d3e8ad5e1fc653' === 2022-02-28 14:15:13.580296: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-02-28 14:15:25,693 - train - Python version: 3.9.6 (default, Jul 30 2021, 16:35:19) [GCC 7.5.0] 2022-02-28 14:15:25,693 - train - Tensorflow version: 2.5.0 2022-02-28 14:15:25,693 - train - tf.keras version: 2.5.0 2022-02-28 14:15:25,693 - train - Cudnn version: 8 2022-02-28 14:15:25,693 - train - Cuda version: 11.2 2022-02-28 14:15:25.695839: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1 2022-02-28 14:15:25.776740: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-02-28 14:15:25.776884: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-02-28 14:15:25.786987: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-02-28 14:15:25.787115: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 2022-02-28 14:15:25.790205: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10 2022-02-28 14:15:25.791541: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10 2022-02-28 14:15:25.799938: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11 2022-02-28 14:15:25.821517: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11 2022-02-28 14:15:25.822676: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-02-28 14:15:25.826275: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-02-28 14:15:25,826 - train - GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"... 2022-02-28 14:15:25,827 - train - Setting memory growth successful. 2022-02-28 14:15:33,830 - train - 1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv 2022-02-28 14:15:46,000 - train - 2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv 2022-02-28 14:15:50,090 - train - 3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv 2022-02-28 14:16:02,981 - train - 4/48: /beegfs/ye53nis/saves/first artifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv 2022-02-28 14:16:11,106 - train - 5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv 2022-02-28 14:16:16,436 - train - 6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv 2022-02-28 14:16:21,251 - train - 7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv 2022-02-28 14:16:24,785 - train - 8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv 2022-02-28 14:16:41,395 - train - 9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv 2022-02-28 14:16:45,170 - train - 10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv 2022-02-28 14:16:48,894 - train - 11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv 2022-02-28 14:17:01,362 - train - 12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv 2022-02-28 14:17:05,972 - train - 13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv 2022-02-28 14:17:11,392 - train - 14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv 2022-02-28 14:17:15,150 - train - 15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv 2022-02-28 14:17:18,880 - train - 16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv 2022-02-28 14:17:22,858 - train - 17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv 2022-02-28 14:17:26,879 - train - 18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv 2022-02-28 14:17:31,181 - train - 19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv 2022-02-28 14:17:34,897 - train - 20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv 2022-02-28 14:17:38,846 - train - 21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv 2022-02-28 14:18:01,434 - train - 22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv 2022-02-28 14:18:05,125 - train - 23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv 2022-02-28 14:18:10,548 - train - 24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv 2022-02-28 14:18:15,933 - train - 25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv 2022-02-28 14:18:20,727 - train - 26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv 2022-02-28 14:18:24,064 - train - 27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv 2022-02-28 14:18:35,979 - train - 28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv 2022-02-28 14:18:39,881 - train - 29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv 2022-02-28 14:18:43,394 - train - 30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv 2022-02-28 14:18:53,160 - train - 31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv 2022-02-28 14:18:57,332 - train - 32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv 2022-02-28 14:19:03,503 - train - 33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv 2022-02-28 14:19:08,665 - train - 34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv 2022-02-28 14:19:13,327 - train - 35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv 2022-02-28 14:19:17,293 - train - 36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv 2022-02-28 14:19:21,119 - train - 37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv 2022-02-28 14:19:24,804 - train - 38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv 2022-02-28 14:19:31,451 - train - 39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv 2022-02-28 14:19:41,863 - train - 40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv 2022-02-28 14:19:47,487 - train - 41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv 2022-02-28 14:19:53,197 - train - 42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv 2022-02-28 14:20:00,405 - train - 43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv 2022-02-28 14:20:04,607 - train - 44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv 2022-02-28 14:20:08,353 - train - 45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv 2022-02-28 14:20:12,307 - train - 46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv 2022-02-28 14:20:16,444 - train - 47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv 2022-02-28 14:20:20,213 - train - 48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv 2022-02-28 14:20:23,834 - train - 1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv 2022-02-28 14:20:30,953 - train - 2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv 2022-02-28 14:20:36,797 - train - 3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv 2022-02-28 14:20:48,524 - train - 4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv 2022-02-28 14:20:57,745 - train - 5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv 2022-02-28 14:21:01,411 - train - 6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv 2022-02-28 14:21:13,337 - train - 7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv 2022-02-28 14:21:17,317 - train - 8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv 2022-02-28 14:21:21,005 - train - 9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv 2022-02-28 14:21:24,834 - train - 10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv 2022-02-28 14:21:28,718 - train - 11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv 2022-02-28 14:21:32,087 - train - 12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv 2022-02-28 14:21:32,293 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)] 2022-02-28 14:21:32,383 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)] 2022-02-28 14:21:32.540303: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio ns: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2022-02-28 14:21:32.542865: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-02-28 14:21:32.544861: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-02-28 14:21:32.544960: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-02-28 14:21:32.969057: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix: 2022-02-28 14:21:32.969130: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264] 0 2022-02-28 14:21:32.969144: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0: N 2022-02-28 14:21:32.972037: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p ci bus id: 0000:82:00.0, compute capability: 6.0) 2022-02-28 14:21:35,138 - train - number of examples: 4800 2022-02-28 14:21:35,561 - train - number of examples: 1200 2022-02-28 14:21:37,968 - train - unet: input shape: (None, None, 1), output shape: (None, None, 1) 2022/02/28 14:21:38 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='15' for run ID='0cd 2023eeaf745aca0d3e8ad5e1fc653'. Attempted logging new value 'None'. Epoch 1/100 2022-02-28 14:21:47.612006: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2) 2022-02-28 14:21:47.786795: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz 2022-02-28 14:22:00.556303: I tensorflow/core/kernels/data/shuffle_dataset_op.cc:177] Filling up shuffle buffer (this may take a while): 3118 of 4800 2022-02-28 14:22:05.887971: I tensorflow/core/kernels/data/shuffle_dataset_op.cc:230] Shuffle buffer filled. 2022-02-28 14:22:05.992991: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-02-28 14:22:06.329980: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101 2022-02-28 14:22:06.837590: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-02-28 14:22:07.115604: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 320/320 [==============================] - 80s 158ms/step - loss: 0.6557 - tp0.1: 8858269.0000 - fp0.1: 11367531.0000 - tn0.1: 57039588.0000 - fn0.1: 1377794.0000 - precision0.1: 0.4380 - recall0.1: 0.8654 - tp0.3: 8020446.0000 - fp0.3: 6844078.0000 - tn0.3: 61563052.0000 - fn0.3: 2215617.0000 - precision0.3: 0.5396 - recall0.3: 0.7835 - tp0.5: 6484149.0000 - fp0.5: 3021931.0000 - tn0.5: 65385196.0000 - fn0.5: 3751914.0000 - precision0.5: 0.6821 - recall0.5: 0.6335 - tp0.7: 4743137.0000 - fp0.7: 1127848.0000 - tn0.7: 67279296.0000 - fn0.7: 5492926.0000 - precision0.7: 0.8079 - recall0.7: 0.4634 - tp0.9: 2178331.0000 - fp0.9: 182418.0000 - tn0.9: 68224688.0000 - fn0.9: 8057732.0000 - precision0.9: 0. 9227 - recall0.9: 0.2128 - accuracy: 0.9139 - auc: 0.9007 - f1: 0.6569 - val_loss: 154.4101 - val_tp0.1: 2567299.0000 - val_fp0.1: 15932078.0000 - val_tn0.1: 1006227.0000 - val_fn0.1: 155196.0000 - val_precision0.1: 0.1388 - val_recall0 .1: 0.9430 - val_tp0.3: 2564050.0000 - val_fp0.3: 15892674.0000 - val_tn0.3: 1045631.0000 - val_fn0.3: 158445.0000 - val_precision0.3: 0.1389 - val_recall0.3: 0.9418 - val_tp0.5: 2561216.0000 - val_fp0.5: 15863898.0000 - val_tn0.5: 1074 407.0000 - val_fn0.5: 161279.0000 - val_precision0.5: 0.1390 - val_recall0.5: 0.9408 - val_tp0.7: 2556675.0000 - val_fp0.7: 15829841.0000 - val_tn0.7: 1108464.0000 - val_fn0.7: 165820.0000 - val_precision0.7: 0.1391 - val_recall0.7: 0.9 391 - val_tp0.9: 2546087.0000 - val_fp0.9: 15767476.0000 - val_tn0.9: 1170829.0000 - val_fn0.9: 176408.0000 - val_precision0.9: 0.1390 - val_recall0.9: 0.9352 - val_accuracy: 0.1849 - val_auc: 0.4998 - val_f1: 0.2422 ... Epoch 100/100 320/320 [==============================] - 46s 145ms/step - loss: 0.1275 - tp0.1: 10018370.0000 - fp0.1: 2700999.0000 - tn0.1: 65706144.0000 - fn0.1: 217693.0000 - precision0.1: 0.7876 - recall0.1: 0.9787 - tp0.3: 9775954.0000 - fp0.3: 1429847.0000 - tn0.3: 66977260.0000 - fn0.3: 460109.0000 - precision0.3: 0.8724 - recall0.3: 0.9551 - tp0.5: 9497895.0000 - fp0.5: 850165.0000 - tn0.5: 67556944.0000 - fn0.5: 738168.0000 - precision0.5: 0.9178 - recall0.5: 0.9279 - tp0. 7: 9083449.0000 - fp0.7: 444475.0000 - tn0.7: 67962624.0000 - fn0.7: 1152614.0000 - precision0.7: 0.9534 - recall0.7: 0.8874 - tp0.9: 8160305.0000 - fp0.9: 123032.0000 - tn0.9: 68284080.0000 - fn0.9: 2075758.0000 - precision0.9: 0.9851 - recall0.9: 0.7972 - accuracy: 0.9798 - auc: 0.9876 - f1: 0.9228 - val_loss: 0.1678 - val_tp0.1: 2639044.0000 - val_fp0.1: 807650.0000 - val_tn0.1: 16130655.0000 - val_fn0.1: 83451.0000 - val_precision0.1: 0.7657 - val_recall0.1: 0.969 3 - val_tp0.3: 2571140.0000 - val_fp0.3: 452176.0000 - val_tn0.3: 16486129.0000 - val_fn0.3: 151355.0000 - val_precision0.3: 0.8504 - val_recall0.3: 0.9444 - val_tp0.5: 2500729.0000 - val_fp0.5: 291947.0000 - val_tn0.5: 16646358.0000 - val_fn0.5: 221766.0000 - val_precision0.5: 0.8955 - val_recall0.5: 0.9185 - val_tp0.7: 2397916.0000 - val_fp0.7: 172157.0000 - val_tn0.7: 16766148.0000 - val_fn0.7: 324579.0000 - val_precision0.7: 0.9330 - val_recall0.7: 0.8808 - val_tp 0.9: 2174652.0000 - val_fp0.9: 58658.0000 - val_tn0.9: 16879648.0000 - val_fn0.9: 547843.0000 - val_precision0.9: 0.9737 - val_recall0.9: 0.7988 - val_accuracy: 0.9739 - val_auc: 0.9818 - val_f1: 0.9069 2022-02-28 15:49:04.737117: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. 2022/02/28 15:49:22 INFO mlflow.projects: === Run (ID '0cd2023eeaf745aca0d3e8ad5e1fc653') succeeded ===
- name of run:
0cd2023eeaf745aca0d3e8ad5e1fc653
- metrics after 100th epoch:
- loss: 0.1275 - lossval: 0.1678
- precisionval,0.5: 0.8955 - recallval,0.5: 0.9185 - f1val,0.5: 0.9069
- aucval: 0.9818
- name of run:
- run training of
(a5b8551144ff46e697a39cd1551e1475, 98cf8cdef9c54b5286e277e75e2ab8c1)
with hparams from abovemlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \ -P batch_size=20 \ -P first_filters=78 \ -P input_size=14000 \ -P lr_start=0.0584071108418767 \ -P lr_power=4 \ -P epochs=100 \ -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \ -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \ -P scaler=standard \ -P n_levels=4 \ -P pool_size=4
2022/02/28 17:34:45 INFO mlflow.projects.utils: === Created directory /tmp/tmpwue2ujb5 for downloading remote URIs passed to arguments of type 'path' === 2022/02/28 17:34:45 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 20 --input_size 14000 --lr_start 0.0584071108418767 --lr_power 4 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_p ath_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler standard --n_levels 4 --first_filters 78 --pool_size 4' in run with ID 'fe81d71c52404ed790b3a32051258da9' === 2022-02-28 17:34:58.034002: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-02-28 17:35:10,330 - train - Python version: 3.9.6 (default, Jul 30 2021, 16:35:19) [GCC 7.5.0] 2022-02-28 17:35:10,331 - train - Tensorflow version: 2.5.0 2022-02-28 17:35:10,331 - train - tf.keras version: 2.5.0 2022-02-28 17:35:10,331 - train - Cudnn version: 8 2022-02-28 17:35:10,331 - train - Cuda version: 11.2 2022-02-28 17:35:10.333548: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1 2022-02-28 17:35:10.391240: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-02-28 17:35:10.391388: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-02-28 17:35:10.401553: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-02-28 17:35:10.401669: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 2022-02-28 17:35:10.405228: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10 2022-02-28 17:35:10.407042: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10 2022-02-28 17:35:10.415485: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11 2022-02-28 17:35:10.417900: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11 2022-02-28 17:35:10.419606: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-02-28 17:35:10.422879: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-02-28 17:35:10,423 - train - GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"... 2022-02-28 17:35:10,423 - train - Setting memory growth successful. 2022-02-28 17:35:16,324 - train - 1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv 2022-02-28 17:35:30,676 - train - 2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv 2022-02-28 17:35:34,283 - train - 3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv 2022-02-28 17:35:38,780 - train - 4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv 2022-02-28 17:35:43,054 - train - 5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv 2022-02-28 17:35:46,234 - train - 6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv 2022-02-28 17:35:50,337 - train - 7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv 2022-02-28 17:35:53,421 - train - 8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv 2022-02-28 17:35:59,004 - train - 9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv 2022-02-28 17:36:02,669 - train - 10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv 2022-02-28 17:36:06,267 - train - 11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv 2022-02-28 17:36:14,414 - train - 12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv 2022-02-28 17:36:18,640 - train - 13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv 2022-02-28 17:36:21,742 - train - 14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv 2022-02-28 17:36:25,004 - train - 15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv 2022-02-28 17:36:28,518 - train - 16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv 2022-02-28 17:36:31,957 - train - 17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv 2022-02-28 17:36:35,265 - train - 18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv 2022-02-28 17:36:38,670 - train - 19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv 2022-02-28 17:36:42,309 - train - 20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv 2022-02-28 17:36:45,973 - train - 21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv 2022-02-28 17:36:53,886 - train - 22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv 2022-02-28 17:36:57,387 - train - 23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv 2022-02-28 17:37:00,889 - train - 24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv 2022-02-28 17:37:03,901 - train - 25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv 2022-02-28 17:37:08,741 - train - 26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv 2022-02-28 17:37:11,797 - train - 27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv 2022-02-28 17:37:15,549 - train - 28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv 2022-02-28 17:37:19,909 - train - 29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv 2022-02-28 17:37:32,956 - train - 30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv 2022-02-28 17:37:47,613 - train - 31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv 2022-02-28 17:37:51,591 - train - 32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv 2022-02-28 17:37:59,140 - train - 33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv 2022-02-28 17:38:03,933 - train - 34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv 2022-02-28 17:38:07,415 - train - 35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv 2022-02-28 17:38:15,509 - train - 36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv 2022-02-28 17:38:20,075 - train - 37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv 2022-02-28 17:38:24,146 - train - 38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv 2022-02-28 17:38:38,735 - train - 39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv 2022-02-28 17:38:41,894 - train - 40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv 2022-02-28 17:38:45,710 - train - 41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv 2022-02-28 17:38:49,786 - train - 42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv 2022-02-28 17:38:53,505 - train - 43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv 2022-02-28 17:38:58,205 - train - 44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv 2022-02-28 17:39:02,031 - train - 45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv 2022-02-28 17:39:06,190 - train - 46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv 2022-02-28 17:39:09,521 - train - 47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv 2022-02-28 17:39:14,557 - train - 48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv 2022-02-28 17:39:18,060 - train - 1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv 2022-02-28 17:39:31,842 - train - 2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv 2022-02-28 17:39:51,088 - train - 3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv 2022-02-28 17:40:02,789 - train - 4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv 2022-02-28 17:40:06,696 - train - 5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv 2022-02-28 17:40:10,118 - train - 6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv 2022-02-28 17:40:24,593 - train - 7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv 2022-02-28 17:40:28,308 - train - 8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv 2022-02-28 17:40:37,143 - train - 9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv 2022-02-28 17:40:41,060 - train - 10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv 2022-02-28 17:40:59,911 - train - 11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv 2022-02-28 17:41:19,363 - train - 12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv 2022-02-28 17:41:19,570 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)] 2022-02-28 17:41:19,659 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)] 2022-02-28 17:41:19.824149: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio ns: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2022-02-28 17:41:19.827704: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-02-28 17:41:19.831605: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-02-28 17:41:19.831748: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-02-28 17:41:20.290008: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix: 2022-02-28 17:41:20.290081: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264] 0 2022-02-28 17:41:20.290096: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0: N 2022-02-28 17:41:20.292984: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p ci bus id: 0000:82:00.0, compute capability: 6.0) 2022-02-28 17:41:22,312 - train - number of examples: 4800 2022-02-28 17:41:22,698 - train - number of examples: 1200 2022-02-28 17:41:26,203 - train - unet: input shape: (None, None, 1), output shape: (None, None, 1) 2022/02/28 17:41:26 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='20' for run ID='fe8 1d71c52404ed790b3a32051258da9'. Attempted logging new value 'None'. Epoch 1/100 2022-02-28 17:41:34.119597: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2) 2022-02-28 17:41:34.266024: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz 2022-02-28 17:41:42.993902: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-02-28 17:41:43.305956: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101 2022-02-28 17:41:43.787015: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-02-28 17:41:44.068827: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 240/240 [==============================] - 146s 532ms/step - loss: 0.8392 - tp0.1: 8747285.0000 - fp0.1: 10445142.0000 - tn0.1: 57962008.0000 - fn0.1: 1488778.0000 - precision0.1: 0.4558 - recall0.1: 0.8546 - tp0.3: 7896000.0000 - fp0.3 : 5233157.0000 - tn0.3: 63173976.0000 - fn0.3: 2340063.0000 - precision0.3: 0.6014 - recall0.3: 0.7714 - tp0.5: 6575708.0000 - fp0.5: 2263621.0000 - tn0.5: 66143520.0000 - fn0.5: 3660355.0000 - precision0.5: 0.7439 - recall0.5: 0.6424 - tp0.7: 5154156.0000 - fp0.7: 920133.0000 - tn0.7: 67487000.0000 - fn0.7: 5081907.0000 - precision0.7: 0.8485 - recall0.7: 0.5035 - tp0.9: 3283109.0000 - fp0.9: 213358.0000 - tn0.9: 68193792.0000 - fn0.9: 6952954.0000 - precision0.9: 0. 9390 - recall0.9: 0.3207 - accuracy: 0.9247 - auc: 0.9073 - f1: 0.6894 - val_loss: 1.7768 - val_tp0.1: 2543119.0000 - val_fp0.1: 9378664.0000 - val_tn0.1: 7559641.0000 - val_fn0.1: 179376.0000 - val_precision0.1: 0.2133 - val_recall0.1: 0.9341 - val_tp0.3: 2504900.0000 - val_fp0.3: 7161614.0000 - val_tn0.3: 9776691.0000 - val_fn0.3: 217595.0000 - val_precision0.3: 0.2591 - val_recall0.3: 0.9201 - val_tp0.5: 2470794.0000 - val_fp0.5: 5614724.0000 - val_tn0.5: 11323581. 0000 - val_fn0.5: 251701.0000 - val_precision0.5: 0.3056 - val_recall0.5: 0.9075 - val_tp0.7: 2416278.0000 - val_fp0.7: 4187348.0000 - val_tn0.7: 12750957.0000 - val_fn0.7: 306217.0000 - val_precision0.7: 0.3659 - val_recall0.7: 0.8875 - val_tp0.9: 2331726.0000 - val_fp0.9: 2968486.0000 - val_tn0.9: 13969819.0000 - val_fn0.9: 390769.0000 - val_precision0.9: 0.4399 - val_recall0.9: 0.8565 - val_accuracy: 0.7016 - val_auc: 0.8807 - val_f1: 0.4572 ... Epoch 100/100 240/240 [==============================] - 124s 515ms/step - loss: 0.0941 - tp0.1: 10073753.0000 - fp0.1: 1908290.0000 - tn0.1: 66498824.0000 - fn0.1: 162310.0000 - precision0.1: 0.8407 - recall0.1: 0.9841 - tp0.3: 9929412.0000 - fp0.3: 1163791.0000 - tn0.3: 67243336.0000 - fn0.3: 306651.0000 - precision0.3: 0.8951 - recall0.3: 0.9700 - tp0.5: 9693885.0000 - fp0.5: 672284.0000 - tn0.5: 67734840.0000 - fn0.5: 542178.0000 - precision0.5: 0.9351 - recall0.5: 0.9470 - tp0 .7: 9345709.0000 - fp0.7: 339542.0000 - tn0.7: 68067608.0000 - fn0.7: 890354.0000 - precision0.7: 0.9649 - recall0.7: 0.9130 - tp0.9: 8608433.0000 - fp0.9: 86583.0000 - tn0.9: 68320560.0000 - fn0.9: 1627630.0000 - precision0.9: 0.9900 - recall0.9: 0.8410 - accuracy: 0.9846 - auc: 0.9912 - f1: 0.9411 - val_loss: 0.1372 - val_tp0.1: 2648989.0000 - val_fp0.1: 600014.0000 - val_tn0.1: 16338291.0000 - val_fn0.1: 73506.0000 - val_precision0.1: 0.8153 - val_recall0.1: 0.9730 - val_tp0.3: 2604739.0000 - val_fp0.3: 372047.0000 - val_tn0.3: 16566258.0000 - val_fn0.3: 117756.0000 - val_precision0.3: 0.8750 - val_recall0.3: 0.9567 - val_tp0.5: 2542400.0000 - val_fp0.5: 225996.0000 - val_tn0.5: 16712309.0000 - v al_fn0.5: 180095.0000 - val_precision0.5: 0.9184 - val_recall0.5: 0.9338 - val_tp0.7: 2459692.0000 - val_fp0.7: 126768.0000 - val_tn0.7: 16811536.0000 - val_fn0.7: 262803.0000 - val_precision0.7: 0.9510 - val_recall0.7: 0.9035 - val_tp0 .9: 2288921.0000 - val_fp0.9: 43449.0000 - val_tn0.9: 16894856.0000 - val_fn0.9: 433574.0000 - val_precision0.9: 0.9814 - val_recall0.9: 0.8407 - val_accuracy: 0.9793 - val_auc: 0.9849 - val_f1: 0.9260 2022-02-28 21:13:24.522272: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. 2022/02/28 21:13:37 INFO mlflow.projects: === Run (ID 'fe81d71c52404ed790b3a32051258da9') succeeded === (tf) [ye53nis@node128 drmed-git]$
- name of run:
fe81d71c52404ed790b3a32051258da9
- metrics after 100th epoch:
- precisionval,0.5: 0.9184 - recallval,0.5: 0.9338 - f1val,0.5: 0.9260
- aucval: 0.9849
- name of run:
- run training of
(00f2635d9fa2463c9a066722163405be, d0a8e1748b194f3290d471b6b44f19f8)
with hparams from abovemlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \ -P batch_size=28 \ -P first_filters=6 \ -P input_size=14000 \ -P lr_start=0.0553313915596308 \ -P lr_power=1 \ -P epochs=100 \ -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \ -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \ -P scaler=minmax \ -P n_levels=5 \ -P pool_size=4
2022/03/01 01:02:32 INFO mlflow.projects.utils: === Created directory /tmp/tmpscsw8dai for downloading remote URIs passed to arguments of type 'path' === 2022/03/01 01:02:32 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 28 --input_size 14000 --lr_start 0.0553313915596308 --lr_power 1 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_p ath_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler minmax --n_levels 5 --first_filters 6 --pool_size 4' in run with ID 'ff67be0b68e540a9a29a36a2d0c7a5be' === 2022-03-01 01:02:49.062309: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-01 01:03:02,012 - train - Python version: 3.9.6 (default, Jul 30 2021, 16:35:19) [GCC 7.5.0] 2022-03-01 01:03:02,013 - train - Tensorflow version: 2.5.0 2022-03-01 01:03:02,013 - train - tf.keras version: 2.5.0 2022-03-01 01:03:02,013 - train - Cudnn version: 8 2022-03-01 01:03:02,013 - train - Cuda version: 11.2 2022-03-01 01:03:02.017849: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1 2022-03-01 01:03:02.070568: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-03-01 01:03:02.070675: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-01 01:03:02.081043: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-03-01 01:03:02.081139: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 2022-03-01 01:03:02.085346: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10 2022-03-01 01:03:02.088350: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10 2022-03-01 01:03:02.097715: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11 2022-03-01 01:03:02.100867: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11 2022-03-01 01:03:02.103117: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-03-01 01:03:02.106443: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-03-01 01:03:02,106 - train - GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"... 2022-03-01 01:03:02,107 - train - Setting memory growth successful. 2022-03-01 01:03:08,710 - train - 1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv 2022-03-01 01:03:17,500 - train - 2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv 2022-03-01 01:03:21,523 - train - 3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv 2022-03-01 01:03:25,810 - train - 4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv 2022-03-01 01:03:29,726 - train - 5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv 2022-03-01 01:03:35,702 - train - 6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv 2022-03-01 01:03:39,927 - train - 7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv 2022-03-01 01:03:44,978 - train - 8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv 2022-03-01 01:03:49,851 - train - 9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv 2022-03-01 01:03:54,065 - train - 10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv 2022-03-01 01:03:57,914 - train - 11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv 2022-03-01 01:04:09,148 - train - 12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv 2022-03-01 01:04:14,246 - train - 13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv 2022-03-01 01:04:17,776 - train - 14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv 2022-03-01 01:04:24,334 - train - 15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv 2022-03-01 01:04:28,494 - train - 16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv 2022-03-01 01:04:31,978 - train - 17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv 2022-03-01 01:04:35,535 - train - 18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv 2022-03-01 01:04:39,104 - train - 19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv 2022-03-01 01:04:42,753 - train - 20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv 2022-03-01 01:04:46,786 - train - 21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv 2022-03-01 01:04:50,549 - train - 22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv 2022-03-01 01:05:10,273 - train - 23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv 2022-03-01 01:05:14,332 - train - 24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv 2022-03-01 01:05:17,829 - train - 25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv 2022-03-01 01:05:29,382 - train - 26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv 2022-03-01 01:05:32,892 - train - 27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv 2022-03-01 01:05:37,614 - train - 28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv 2022-03-01 01:05:41,478 - train - 29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv 2022-03-01 01:05:55,816 - train - 30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv 2022-03-01 01:06:06,797 - train - 31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv 2022-03-01 01:06:10,595 - train - 32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv 2022-03-01 01:06:15,368 - train - 33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv 2022-03-01 01:06:20,784 - train - 34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv 2022-03-01 01:06:26,970 - train - 35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv 2022-03-01 01:06:31,521 - train - 36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv 2022-03-01 01:06:35,363 - train - 37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv 2022-03-01 01:06:39,107 - train - 38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv 2022-03-01 01:07:01,475 - train - 39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv 2022-03-01 01:07:05,191 - train - 40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv 2022-03-01 01:07:08,941 - train - 41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv 2022-03-01 01:07:13,043 - train - 42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv 2022-03-01 01:07:16,874 - train - 43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv 2022-03-01 01:07:20,478 - train - 44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv 2022-03-01 01:07:24,571 - train - 45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv 2022-03-01 01:07:28,090 - train - 46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv 2022-03-01 01:07:31,811 - train - 47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv 2022-03-01 01:07:35,574 - train - 48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv 2022-03-01 01:07:39,526 - train - 1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv 2022-03-01 01:07:49,139 - train - 2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv 2022-03-01 01:08:06,079 - train - 3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv 2022-03-01 01:08:17,384 - train - 4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv 2022-03-01 01:08:21,021 - train - 5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv 2022-03-01 01:08:24,646 - train - 6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv 2022-03-01 01:08:33,131 - train - 7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv 2022-03-01 01:08:37,919 - train - 8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv 2022-03-01 01:08:41,923 - train - 9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv 2022-03-01 01:08:45,386 - train - 10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv 2022-03-01 01:08:50,064 - train - 11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv 2022-03-01 01:08:54,537 - train - 12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv 2022-03-01 01:08:54,754 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)] 2022-03-01 01:08:54,844 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)] 2022-03-01 01:08:54.997694: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio ns: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2022-03-01 01:08:55.000062: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-03-01 01:08:55.002040: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-03-01 01:08:55.002135: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-01 01:08:55.428415: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix: 2022-03-01 01:08:55.428487: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264] 0 2022-03-01 01:08:55.428501: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0: N 2022-03-01 01:08:55.431349: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p ci bus id: 0000:82:00.0, compute capability: 6.0) 2022-03-01 01:08:57,489 - train - number of examples: 4800 2022-03-01 01:08:57,859 - train - number of examples: 1200 2022-03-01 01:09:00,816 - train - unet: input shape: (None, None, 1), output shape: (None, None, 1) 2022/03/01 01:09:00 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='28' for run ID='ff6 7be0b68e540a9a29a36a2d0c7a5be'. Attempted logging new value 'None'. Epoch 1/100 2022-03-01 01:09:09.470355: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2) 2022-03-01 01:09:09.627221: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz 2022-03-01 01:09:19.253073: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-03-01 01:09:19.568134: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101 2022-03-01 01:09:20.032500: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-03-01 01:09:20.318967: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 171/171 [==============================] - 38s 111ms/step - loss: 0.6328 - tp0.1: 9097064.0000 - fp0.1: 12967912.0000 - tn0.1: 55269208.0000 - fn0.1: 1112405.0000 - precision0.1: 0.4123 - recall0.1: 0.8910 - tp0.3: 8278749.0000 - fp0.3: 7308225.0000 - tn0.3: 60928896.0000 - fn0.3: 1930720.0000 - precision0.3: 0.5311 - recall0.3: 0.8109 - tp0.5: 6546144.0000 - fp0.5: 2745102.0000 - tn0.5: 65492008.0000 - fn0.5: 3663325.0000 - precision0.5: 0.7045 - recall0.5: 0.6412 - tp0.7: 5069917.0000 - fp0.7: 1036309.0000 - tn0.7: 67200816.0000 - fn0.7: 5139552.0000 - precision0.7: 0.8303 - recall0.7: 0.4966 - tp0.9: 2806365.0000 - fp0.9: 200542.0000 - tn0.9: 68036592.0000 - fn0.9: 7403104.0000 - precision0.9: 0. 9333 - recall0.9: 0.2749 - accuracy: 0.9183 - auc: 0.9138 - f1: 0.6714 - val_loss: 100.5511 - val_tp0.1: 2677947.0000 - val_fp0.1: 16589637.0000 - val_tn0.1: 0.0000e+00 - val_fn0.1: 0.0000e+00 - val_precision0.1: 0.1390 - val_recall0.1: 1.0000 - val_tp0.3: 2677947.0000 - val_fp0.3: 16589563.0000 - val_tn0.3: 74.0000 - val_fn0.3: 0.0000e+00 - val_precision0.3: 0.1390 - val_recall0.3: 1.0000 - val_tp0.5: 2677947.0000 - val_fp0.5: 16589315.0000 - val_tn0.5: 322.0000 - va l_fn0.5: 0.0000e+00 - val_precision0.5: 0.1390 - val_recall0.5: 1.0000 - val_tp0.7: 2677947.0000 - val_fp0.7: 16589042.0000 - val_tn0.7: 595.0000 - val_fn0.7: 0.0000e+00 - val_precision0.7: 0.1390 - val_recall0.7: 1.0000 - val_tp0.9: 26 77947.0000 - val_fp0.9: 16588561.0000 - val_tn0.9: 1076.0000 - val_fn0.9: 0.0000e+00 - val_precision0.9: 0.1390 - val_recall0.9: 1.0000 - val_accuracy: 0.1390 - val_auc: 0.5001 - val_f1: 0.2441 ... Epoch 100/100 171/171 [==============================] - 15s 89ms/step - loss: 0.0890 - tp0.1: 10079569.0000 - fp0.1: 1892418.0000 - tn0.1: 66332504.0000 - fn0.1: 142100.0000 - precision0.1: 0.8419 - recall0.1: 0.9861 - tp0.3: 9939857.0000 - fp0.3: 1 140232.0000 - tn0.3: 67084692.0000 - fn0.3: 281812.0000 - precision0.3: 0.8971 - recall0.3: 0.9724 - tp0.5: 9703286.0000 - fp0.5: 647685.0000 - tn0.5: 67577248.0000 - fn0.5: 518383.0000 - precision0.5: 0.9374 - recall0.5: 0.9493 - tp0.7 : 9385401.0000 - fp0.7: 340758.0000 - tn0.7: 67884160.0000 - fn0.7: 836268.0000 - precision0.7: 0.9650 - recall0.7: 0.9182 - tp0.9: 8688940.0000 - fp0.9: 89880.0000 - tn0.9: 68135024.0000 - fn0.9: 1532729.0000 - precision0.9: 0.9898 - r ecall0.9: 0.8501 - accuracy: 0.9851 - auc: 0.9922 - f1: 0.9433 - val_loss: 0.1286 - val_tp0.1: 2593533.0000 - val_fp0.1: 546329.0000 - val_tn0.1: 16060347.0000 - val_fn0.1: 67375.0000 - val_precision0.1: 0.8260 - val_recall0.1: 0.9747 - val_tp0.3: 2548361.0000 - val_fp0.3: 333669.0000 - val_tn0.3: 16273007.0000 - val_fn0.3: 112547.0000 - val_precision0.3: 0.8842 - val_recall0.3: 0.9577 - val_tp0.5: 2492439.0000 - val_fp0.5: 208035.0000 - val_tn0.5: 16398641.0000 - val _fn0.5: 168469.0000 - val_precision0.5: 0.9230 - val_recall0.5: 0.9367 - val_tp0.7: 2414912.0000 - val_fp0.7: 119511.0000 - val_tn0.7: 16487165.0000 - val_fn0.7: 245996.0000 - val_precision0.7: 0.9528 - val_recall0.7: 0.9076 - val_tp0.9 : 2250009.0000 - val_fp0.9: 39723.0000 - val_tn0.9: 16566953.0000 - val_fn0.9: 410899.0000 - val_precision0.9: 0.9827 - val_recall0.9: 0.8456 - val_accuracy: 0.9805 - val_auc: 0.9859 - val_f1: 0.9298 2022-03-01 01:40:07.449069: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. 2022/03/01 01:40:21 INFO mlflow.projects: === Run (ID 'ff67be0b68e540a9a29a36a2d0c7a5be') succeeded ===
- name of run:
ff67be0b68e540a9a29a36a2d0c7a5be
- metrics after 100th epoch:
- loss: 0.0890 vs lossval: 0.1286
- precisionval,0.5: 0.9230 - recallval,0.5: 0.9367 - f1val,0.5: 0.9298
- aucval: 0.9859
- name of run:
- run training of
(5604d43c1ece461b8e6eaa0dfb65d6dc, 3612536a77f34f22bc83d1d809140aa6)
with hparams from abovemlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \ -P batch_size=20 \ -P first_filters=128 \ -P input_size=14000 \ -P lr_start=0.043549707353273 \ -P lr_power=1 \ -P epochs=100 \ -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \ -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \ -P scaler=standard \ -P n_levels=3 \ -P pool_size=4
2022/03/01 12:32:44 INFO mlflow.projects.utils: === Created directory /tmp/tmpuaqmbl4a for downloading remote URIs passed to arguments of type 'path' === 2022/03/01 12:32:44 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 20 --input_size 14000 --lr_start 0.043549707353273 --lr_power 1 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_pa th_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler standard --n_levels 3 --first_filters 128 --pool_size 4' in run with ID '19e3e786e1bc4e2b93856f5dc9de8216' === 2022-03-01 12:32:58.514798: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-01 12:33:09,490 - train - Python version: 3.9.6 (default, Jul 30 2021, 16:35:19) [GCC 7.5.0] 2022-03-01 12:33:09,490 - train - Tensorflow version: 2.5.0 2022-03-01 12:33:09,490 - train - tf.keras version: 2.5.0 2022-03-01 12:33:09,490 - train - Cudnn version: 8 2022-03-01 12:33:09,490 - train - Cuda version: 11.2 2022-03-01 12:33:09.493303: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1 2022-03-01 12:33:09.550241: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-03-01 12:33:09.550350: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-01 12:33:09.561190: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-03-01 12:33:09.561299: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 2022-03-01 12:33:09.565126: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10 2022-03-01 12:33:09.567931: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10 2022-03-01 12:33:09.576981: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11 2022-03-01 12:33:09.597335: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11 2022-03-01 12:33:09.599375: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-03-01 12:33:09.602568: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-03-01 12:33:09,602 - train - GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"... 2022-03-01 12:33:09,603 - train - Setting memory growth successful. 2022-03-01 12:33:15,918 - train - 1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv 2022-03-01 12:33:19,510 - train - 2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv 2022-03-01 12:33:23,436 - train - 3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv 2022-03-01 12:33:27,059 - train - 4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv 2022-03-01 12:33:31,773 - train - 5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv 2022-03-01 12:33:35,876 - train - 6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv 2022-03-01 12:33:39,462 - train - 7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv 2022-03-01 12:33:42,942 - train - 8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv 2022-03-01 12:33:46,757 - train - 9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv 2022-03-01 12:33:51,064 - train - 10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv 2022-03-01 12:33:56,528 - train - 11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv 2022-03-01 12:34:00,572 - train - 12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv 2022-03-01 12:34:04,069 - train - 13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv 2022-03-01 12:34:07,965 - train - 14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv 2022-03-01 12:34:18,633 - train - 15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv 2022-03-01 12:34:21,910 - train - 16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv 2022-03-01 12:34:25,641 - train - 17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv 2022-03-01 12:34:30,386 - train - 18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv 2022-03-01 12:34:34,226 - train - 19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv 2022-03-01 12:34:37,740 - train - 20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv 2022-03-01 12:34:43,348 - train - 21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv 2022-03-01 12:34:46,797 - train - 22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv 2022-03-01 12:34:50,435 - train - 23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv 2022-03-01 12:34:54,778 - train - 24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv 2022-03-01 12:34:58,764 - train - 25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv 2022-03-01 12:35:02,693 - train - 26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv 2022-03-01 12:35:15,387 - train - 27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv 2022-03-01 12:35:19,459 - train - 28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv 2022-03-01 12:35:23,164 - train - 29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv 2022-03-01 12:35:27,345 - train - 30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv 2022-03-01 12:35:30,844 - train - 31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv 2022-03-01 12:35:34,995 - train - 32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv 2022-03-01 12:35:38,565 - train - 33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv 2022-03-01 12:35:43,358 - train - 34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv 2022-03-01 12:35:48,209 - train - 35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv 2022-03-01 12:35:52,885 - train - 36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv 2022-03-01 12:35:57,900 - train - 37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv 2022-03-01 12:36:01,708 - train - 38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv 2022-03-01 12:36:05,386 - train - 39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv 2022-03-01 12:36:09,008 - train - 40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv 2022-03-01 12:36:13,039 - train - 41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv 2022-03-01 12:36:16,946 - train - 42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv 2022-03-01 12:36:20,517 - train - 43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv 2022-03-01 12:36:24,115 - train - 44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv 2022-03-01 12:36:27,768 - train - 45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv 2022-03-01 12:36:32,136 - train - 46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv 2022-03-01 12:36:36,005 - train - 47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv 2022-03-01 12:36:39,799 - train - 48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv 2022-03-01 12:36:43,465 - train - 1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv 2022-03-01 12:36:47,166 - train - 2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv 2022-03-01 12:36:50,897 - train - 3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv 2022-03-01 12:36:56,421 - train - 4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv 2022-03-01 12:36:59,926 - train - 5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv 2022-03-01 12:37:03,654 - train - 6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv 2022-03-01 12:37:07,675 - train - 7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv 2022-03-01 12:37:11,784 - train - 8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv 2022-03-01 12:37:18,953 - train - 9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv 2022-03-01 12:37:22,467 - train - 10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv 2022-03-01 12:37:26,203 - train - 11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv 2022-03-01 12:37:31,518 - train - 12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv 2022-03-01 12:37:31,732 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)] 2022-03-01 12:37:31,822 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)] 2022-03-01 12:37:32.029003: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio ns: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2022-03-01 12:37:32.031379: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-03-01 12:37:32.033418: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-03-01 12:37:32.033500: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-01 12:37:32.469006: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix: 2022-03-01 12:37:32.469079: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264] 0 2022-03-01 12:37:32.469093: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0: N 2022-03-01 12:37:32.471972: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p ci bus id: 0000:82:00.0, compute capability: 6.0) 2022-03-01 12:37:34,440 - train - number of examples: 4800 2022-03-01 12:37:34,767 - train - number of examples: 1200 2022-03-01 12:37:36,587 - train - unet: input shape: (None, None, 1), output shape: (None, None, 1) 2022/03/01 12:37:36 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='20' for run ID='19e 3e786e1bc4e2b93856f5dc9de8216'. Attempted logging new value 'None'. Epoch 1/100 2022-03-01 12:37:44.731191: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2) 2022-03-01 12:37:44.863807: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz 2022-03-01 12:37:53.275302: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-03-01 12:37:53.580058: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101 2022-03-01 12:37:54.077952: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-03-01 12:37:54.363640: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 240/240 [==============================] - 220s 838ms/step - loss: 1.1221 - tp0.1: 8540565.0000 - fp0.1: 11192430.0000 - tn0.1: 57214708.0000 - fn0.1: 1695498.0000 - precision0.1: 0.4328 - recall0.1: 0.8344 - tp0.3: 7522117.0000 - fp0.3 : 4392113.0000 - tn0.3: 64015032.0000 - fn0.3: 2713946.0000 - precision0.3: 0.6314 - recall0.3: 0.7349 - tp0.5: 6672931.0000 - fp0.5: 2324779.0000 - tn0.5: 66082352.0000 - fn0.5: 3563132.0000 - precision0.5: 0.7416 - recall0.5: 0.6519 - tp0.7: 5275458.0000 - fp0.7: 916716.0000 - tn0.7: 67490392.0000 - fn0.7: 4960605.0000 - precision0.7: 0.8520 - recall0.7: 0.5154 - tp0.9: 3246371.0000 - fp0.9: 199829.0000 - tn0.9: 68207312.0000 - fn0.9: 6989692.0000 - precision0.9: 0. 9420 - recall0.9: 0.3172 - accuracy: 0.9251 - auc: 0.9067 - f1: 0.6939 - val_loss: 1.4857 - val_tp0.1: 978503.0000 - val_fp0.1: 435953.0000 - val_tn0.1: 16502352.0000 - val_fn0.1: 1743992.0000 - val_precision0.1: 0.6918 - val_recall0.1: 0.3594 - val_tp0.3: 873592.0000 - val_fp0.3: 222905.0000 - val_tn0.3: 16715400.0000 - val_fn0.3: 1848903.0000 - val_precision0.3: 0.7967 - val_recall0.3: 0.3209 - val_tp0.5: 816820.0000 - val_fp0.5: 140072.0000 - val_tn0.5: 16798232.00 00 - val_fn0.5: 1905675.0000 - val_precision0.5: 0.8536 - val_recall0.5: 0.3000 - val_tp0.7: 747818.0000 - val_fp0.7: 84156.0000 - val_tn0.7: 16854148.0000 - val_fn0.7: 1974677.0000 - val_precision0.7: 0.8988 - val_recall0.7: 0.2747 - v al_tp0.9: 619063.0000 - val_fp0.9: 32598.0000 - val_tn0.9: 16905708.0000 - val_fn0.9: 2103432.0000 - val_precision0.9: 0.9500 - val_recall0.9: 0.2274 - val_accuracy: 0.8959 - val_auc: 0.7267 - val_f1: 0.4440 ... Epoch 100/100 240/240 [==============================] - 197s 821ms/step - loss: 0.0929 - tp0.1: 10067403.0000 - fp0.1: 1713493.0000 - tn0.1: 66693648.0000 - fn0.1: 168660.0000 - precision0.1: 0.8546 - recall0.1: 0.9835 - tp0.3: 9949382.0000 - fp0.3: 1087364.0000 - tn0.3: 67319792.0000 - fn0.3: 286681.0000 - precision0.3: 0.9015 - recall0.3: 0.9720 - tp0.5: 9760046.0000 - fp0.5: 690436.0000 - tn0.5: 67716696.0000 - fn0.5: 476017.0000 - precision0.5: 0.9339 - recall0.5: 0.9535 - tp0 .7: 9431582.0000 - fp0.7: 374056.0000 - tn0.7: 68033088.0000 - fn0.7: 804481.0000 - precision0.7: 0.9619 - recall0.7: 0.9214 - tp0.9: 8660415.0000 - fp0.9: 112381.0000 - tn0.9: 68294768.0000 - fn0.9: 1575648.0000 - precision0.9: 0.9872 - recall0.9: 0.8461 - accuracy: 0.9852 - auc: 0.9906 - f1: 0.9436 - val_loss: 0.2611 - val_tp0.1: 2521251.0000 - val_fp0.1: 602159.0000 - val_tn0.1: 16336146.0000 - val_fn0.1: 201244.0000 - val_precision0.1: 0.8072 - val_recall0.1: 0.92 61 - val_tp0.3: 2463263.0000 - val_fp0.3: 387212.0000 - val_tn0.3: 16551093.0000 - val_fn0.3: 259232.0000 - val_precision0.3: 0.8642 - val_recall0.3: 0.9048 - val_tp0.5: 2406415.0000 - val_fp0.5: 272305.0000 - val_tn0.5: 16666000.0000 - val_fn0.5: 316080.0000 - val_precision0.5: 0.8983 - val_recall0.5: 0.8839 - val_tp0.7: 2314277.0000 - val_fp0.7: 168490.0000 - val_tn0.7: 16769815.0000 - val_fn0.7: 408218.0000 - val_precision0.7: 0.9321 - val_recall0.7: 0.8501 - val_t p0.9: 2130323.0000 - val_fp0.9: 72929.0000 - val_tn0.9: 16865376.0000 - val_fn0.9: 592172.0000 - val_precision0.9: 0.9669 - val_recall0.9: 0.7825 - val_accuracy: 0.9701 - val_auc: 0.9595 - val_f1: 0.8911 2022-03-01 18:11:37.935237: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. 2022/03/01 18:11:48 INFO mlflow.projects: === Run (ID '19e3e786e1bc4e2b93856f5dc9de8216') succeeded ===
- name of run:
19e3e786e1bc4e2b93856f5dc9de8216
- metrics after 100th epoch:
- precisionval,0.5: 0.8983 - recallval,0.5: 0.8839 - f1val,0.5: 0.8911
- aucval: 0.9595
- name of run:
- run training of
(7cafab027cdd4fc9bf20a43e989df510, 16dff15d935f45e2a836b1f41b07b4e3)
with hparams from abovemlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \ -P batch_size=10 \ -P first_filters=16 \ -P input_size=14000 \ -P lr_start=0.0627676336651573 \ -P lr_power=1 \ -P epochs=100 \ -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \ -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \ -P scaler=robust \ -P n_levels=5 \ -P pool_size=4
2022/03/01 19:36:22 INFO mlflow.projects.utils: === Created directory /tmp/tmpzbcp4g1j for downloading remote URIs passed to arguments of type 'path' === 2022/03/01 19:36:22 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 10 --input_size 14000 --lr_start 0.0627676336651573 --lr_power 1 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_p ath_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler robust --n_levels 5 --first_filters 16 --pool_size 4' in run with ID '347669d050f344ad9fb9e480c814f727' === 2022-03-01 19:36:34.348943: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-01 19:36:46,433 - train - Python version: 3.9.6 (default, Jul 30 2021, 16:35:19) [GCC 7.5.0] 2022-03-01 19:36:46,434 - train - Tensorflow version: 2.5.0 2022-03-01 19:36:46,434 - train - tf.keras version: 2.5.0 2022-03-01 19:36:46,434 - train - Cudnn version: 8 2022-03-01 19:36:46,434 - train - Cuda version: 11.2 2022-03-01 19:36:46.437417: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1 2022-03-01 19:36:46.506267: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-03-01 19:36:46.506409: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-01 19:36:46.516098: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-03-01 19:36:46.516211: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 2022-03-01 19:36:46.519627: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10 2022-03-01 19:36:46.522117: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10 2022-03-01 19:36:46.531350: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11 2022-03-01 19:36:46.534380: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11 2022-03-01 19:36:46.536313: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-03-01 19:36:46.539533: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-03-01 19:36:46,539 - train - GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"... 2022-03-01 19:36:46,540 - train - Setting memory growth successful. 2022-03-01 19:36:53,495 - train - 1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv 2022-03-01 19:36:59,518 - train - 2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv 2022-03-01 19:37:03,152 - train - 3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv 2022-03-01 19:37:06,774 - train - 4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv 2022-03-01 19:37:10,319 - train - 5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv 2022-03-01 19:37:16,051 - train - 6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv 2022-03-01 19:37:20,347 - train - 7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv 2022-03-01 19:37:28,839 - train - 8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv 2022-03-01 19:37:32,240 - train - 9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv 2022-03-01 19:37:36,494 - train - 10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv 2022-03-01 19:37:40,435 - train - 11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv 2022-03-01 19:37:45,646 - train - 12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv 2022-03-01 19:37:49,090 - train - 13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv 2022-03-01 19:37:53,145 - train - 14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv 2022-03-01 19:37:56,818 - train - 15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv 2022-03-01 19:38:00,166 - train - 16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv 2022-03-01 19:38:03,643 - train - 17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv 2022-03-01 19:38:07,281 - train - 18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv 2022-03-01 19:38:10,928 - train - 19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv 2022-03-01 19:38:14,614 - train - 20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv 2022-03-01 19:38:18,136 - train - 21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv 2022-03-01 19:38:21,832 - train - 22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv 2022-03-01 19:38:27,731 - train - 23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv 2022-03-01 19:38:31,406 - train - 24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv 2022-03-01 19:38:34,819 - train - 25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv 2022-03-01 19:38:38,249 - train - 26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv 2022-03-01 19:38:41,695 - train - 27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv 2022-03-01 19:38:45,025 - train - 28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv 2022-03-01 19:38:48,758 - train - 29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv 2022-03-01 19:38:52,913 - train - 30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv 2022-03-01 19:38:56,358 - train - 31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv 2022-03-01 19:39:00,987 - train - 32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv 2022-03-01 19:39:04,634 - train - 33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv 2022-03-01 19:39:08,400 - train - 34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv 2022-03-01 19:39:11,867 - train - 35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv 2022-03-01 19:39:15,951 - train - 36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv 2022-03-01 19:39:19,638 - train - 37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv 2022-03-01 19:39:23,207 - train - 38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv 2022-03-01 19:39:30,739 - train - 39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv 2022-03-01 19:39:34,471 - train - 40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv 2022-03-01 19:39:38,619 - train - 41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv 2022-03-01 19:39:42,300 - train - 42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv 2022-03-01 19:39:45,973 - train - 43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv 2022-03-01 19:39:49,635 - train - 44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv 2022-03-01 19:39:53,835 - train - 45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv 2022-03-01 19:39:57,292 - train - 46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv 2022-03-01 19:40:01,084 - train - 47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv 2022-03-01 19:40:04,949 - train - 48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv 2022-03-01 19:40:08,522 - train - 1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv 2022-03-01 19:40:11,907 - train - 2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv 2022-03-01 19:40:15,721 - train - 3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv 2022-03-01 19:40:19,221 - train - 4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv 2022-03-01 19:40:22,982 - train - 5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv 2022-03-01 19:40:26,520 - train - 6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv 2022-03-01 19:40:30,083 - train - 7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv 2022-03-01 19:40:33,515 - train - 8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv 2022-03-01 19:40:36,862 - train - 9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv 2022-03-01 19:40:40,692 - train - 10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv 2022-03-01 19:40:44,478 - train - 11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv 2022-03-01 19:40:47,736 - train - 12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv 2022-03-01 19:40:47,939 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)] 2022-03-01 19:40:48,032 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)] 2022-03-01 19:40:48.195482: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio ns: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2022-03-01 19:40:48.198562: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-03-01 19:40:48.200594: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-03-01 19:40:48.200695: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-01 19:40:48.635293: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix: 2022-03-01 19:40:48.635366: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264] 0 2022-03-01 19:40:48.635382: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0: N 2022-03-01 19:40:48.638373: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p ci bus id: 0000:82:00.0, compute capability: 6.0) 2022-03-01 19:40:51,863 - train - number of examples: 4800 2022-03-01 19:40:52,254 - train - number of examples: 1200 2022-03-01 19:40:54,716 - train - unet: input shape: (None, None, 1), output shape: (None, None, 1) 2022/03/01 19:40:54 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='10' for run ID='347 669d050f344ad9fb9e480c814f727'. Attempted logging new value 'None'. Epoch 1/100 2022-03-01 19:41:04.464586: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2) 2022-03-01 19:41:04.627492: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz 2022-03-01 19:41:14.720330: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-03-01 19:41:15.055044: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101 2022-03-01 19:41:15.546433: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-03-01 19:41:15.832893: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 480/480 [==============================] - 60s 82ms/step - loss: 0.5773 - tp0.1: 8880905.0000 - fp0.1: 10094803.0000 - tn0.1: 58312352.0000 - fn0.1: 1355158.0000 - precision0.1: 0.4680 - recall0.1: 0.8676 - tp0.3: 7871045.0000 - fp0.3: 4514511.0000 - tn0.3: 63892572.0000 - fn0.3: 2365018.0000 - precision0.3: 0.6355 - recall0.3: 0.7690 - tp0.5: 6608273.0000 - fp0.5: 1693677.0000 - tn0.5: 66713460.0000 - fn0.5: 3627790.0000 - precision0.5: 0.7960 - recall0.5: 0.6456 - t p0.7: 5575527.0000 - fp0.7: 626556.0000 - tn0.7: 67780600.0000 - fn0.7: 4660536.0000 - precision0.7: 0.8990 - recall0.7: 0.5447 - tp0.9: 4341516.0000 - fp0.9: 163073.0000 - tn0.9: 68244088.0000 - fn0.9: 5894547.0000 - precision0.9: 0.96 38 - recall0.9: 0.4241 - accuracy: 0.9323 - auc: 0.9124 - f1: 0.7129 - val_loss: 0.6884 - val_tp0.1: 2348236.0000 - val_fp0.1: 3299237.0000 - val_tn0.1: 13639068.0000 - val_fn0.1: 374259.0000 - val_precision0.1: 0.4158 - val_recall0.1: 0.8625 - val_tp0.3: 2180062.0000 - val_fp0.3: 2146157.0000 - val_tn0.3: 14792148.0000 - val_fn0.3: 542433.0000 - val_precision0.3: 0.5039 - val_recall0.3: 0.8008 - val_tp0.5: 1966718.0000 - val_fp0.5: 1074503.0000 - val_tn0.5: 15863802. 0000 - val_fn0.5: 755777.0000 - val_precision0.5: 0.6467 - val_recall0.5: 0.7224 - val_tp0.7: 1647155.0000 - val_fp0.7: 270297.0000 - val_tn0.7: 16668008.0000 - val_fn0.7: 1075340.0000 - val_precision0.7: 0.8590 - val_recall0.7: 0.6050 - val_tp0.9: 1346781.0000 - val_fp0.9: 48532.0000 - val_tn0.9: 16889772.0000 - val_fn0.9: 1375714.0000 - val_precision0.9: 0.9652 - val_recall0.9: 0.4947 - val_accuracy: 0.9069 - val_auc: 0.8983 - val_f1: 0.6824 ... Epoch 100/100 480/480 [==============================] - 36s 75ms/step - loss: 0.0973 - tp0.1: 10083866.0000 - fp0.1: 2150370.0000 - tn0.1: 66256776.0000 - fn0.1: 152197.0000 - precision0.1: 0.8242 - recall0.1: 0.9851 - tp0.3: 9911194.0000 - fp0.3: 1 217280.0000 - tn0.3: 67189872.0000 - fn0.3: 324869.0000 - precision0.3: 0.8906 - recall0.3: 0.9683 - tp0.5: 9675199.0000 - fp0.5: 716243.0000 - tn0.5: 67690904.0000 - fn0.5: 560864.0000 - precision0.5: 0.9311 - recall0.5: 0.9452 - tp0.7 : 9261235.0000 - fp0.7: 330050.0000 - tn0.7: 68077096.0000 - fn0.7: 974828.0000 - precision0.7: 0.9656 - recall0.7: 0.9048 - tp0.9: 8585163.0000 - fp0.9: 94613.0000 - tn0.9: 68312512.0000 - fn0.9: 1650900.0000 - precision0.9: 0.9891 - r ecall0.9: 0.8387 - accuracy: 0.9838 - auc: 0.9915 - f1: 0.9381 - val_loss: 0.1400 - val_tp0.1: 2648521.0000 - val_fp0.1: 631749.0000 - val_tn0.1: 16306556.0000 - val_fn0.1: 73974.0000 - val_precision0.1: 0.8074 - val_recall0.1: 0.9728 - val_tp0.3: 2586061.0000 - val_fp0.3: 344848.0000 - val_tn0.3: 16593457.0000 - val_fn0.3: 136434.0000 - val_precision0.3: 0.8823 - val_recall0.3: 0.9499 - val_tp0.5: 2514973.0000 - val_fp0.5: 202882.0000 - val_tn0.5: 16735423.0000 - val _fn0.5: 207522.0000 - val_precision0.5: 0.9254 - val_recall0.5: 0.9238 - val_tp0.7: 2409626.0000 - val_fp0.7: 97831.0000 - val_tn0.7: 16840474.0000 - val_fn0.7: 312869.0000 - val_precision0.7: 0.9610 - val_recall0.7: 0.8851 - val_tp0.9: 2228029.0000 - val_fp0.9: 30092.0000 - val_tn0.9: 16908212.0000 - val_fn0.9: 494466.0000 - val_precision0.9: 0.9867 - val_recall0.9: 0.8184 - val_accuracy: 0.9791 - val_auc: 0.9848 - val_f1: 0.9246 2022-03-01 20:46:33.038541: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. 2022/03/01 20:46:47 INFO mlflow.projects: === Run (ID '347669d050f344ad9fb9e480c814f727') succeeded ===
- name of run:
347669d050f344ad9fb9e480c814f727
- metrics after 100th epoch:
- precisionval,0.5: 0.9254 - recallval,0.5: 0.9238 - f1val,0.5: 0.9246
- aucval: 0.9848
- name of run:
- run training of
(0e328920e86049928202db95e8cfb7be, bf9d2725eb16462d9a101f0a077ce2b5)
with hparams from abovemlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \ -P batch_size=14 \ -P first_filters=16 \ -P input_size=14000 \ -P lr_start=0.0192390310290551 \ -P lr_power=5 \ -P epochs=100 \ -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \ -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \ -P scaler=robust \ -P n_levels=9 \ -P pool_size=2
2022/03/01 22:12:06 INFO mlflow.projects.utils: === Created directory /tmp/tmpgcmidltj for downloading remote URIs passed to arguments of type 'path' === 2022/03/01 22:12:06 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 14 --input_size 14000 --lr_start 0.0192390310290551 --lr_power 5 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_p ath_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler robust --n_levels 9 --first_filters 16 --pool_size 2' in run with ID 'c1204e3a8a1e4c40a35b5b7b1922d1ce' === 2022-03-01 22:12:20.335142: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-01 22:12:33,450 - train - Python version: 3.9.6 (default, Jul 30 2021, 16:35:19) [GCC 7.5.0] 2022-03-01 22:12:33,451 - train - Tensorflow version: 2.5.0 2022-03-01 22:12:33,451 - train - tf.keras version: 2.5.0 2022-03-01 22:12:33,451 - train - Cudnn version: 8 2022-03-01 22:12:33,451 - train - Cuda version: 11.2 2022-03-01 22:12:33.453876: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1 2022-03-01 22:12:33.508402: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-03-01 22:12:33.508543: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-01 22:12:33.518297: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-03-01 22:12:33.518392: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 2022-03-01 22:12:33.521775: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10 2022-03-01 22:12:33.523563: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10 2022-03-01 22:12:33.532074: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11 2022-03-01 22:12:33.534870: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11 2022-03-01 22:12:33.536502: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-03-01 22:12:33.539631: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-03-01 22:12:33,539 - train - GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"... 2022-03-01 22:12:33,540 - train - Setting memory growth successful. 2022-03-01 22:12:39,562 - train - 1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv 2022-03-01 22:12:42,849 - train - 2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv 2022-03-01 22:12:46,207 - train - 3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv 2022-03-01 22:12:50,855 - train - 4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv 2022-03-01 22:12:55,527 - train - 5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv 2022-03-01 22:12:58,713 - train - 6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv 2022-03-01 22:13:02,325 - train - 7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv 2022-03-01 22:13:05,461 - train - 8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv 2022-03-01 22:13:08,927 - train - 9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv 2022-03-01 22:13:14,609 - train - 10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv 2022-03-01 22:13:17,983 - train - 11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv 2022-03-01 22:13:21,031 - train - 12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv 2022-03-01 22:13:24,219 - train - 13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv 2022-03-01 22:13:27,321 - train - 14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv 2022-03-01 22:13:30,784 - train - 15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv 2022-03-01 22:13:34,829 - train - 16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv 2022-03-01 22:13:38,078 - train - 17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv 2022-03-01 22:13:41,302 - train - 18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv 2022-03-01 22:13:45,845 - train - 19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv 2022-03-01 22:13:49,546 - train - 20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv 2022-03-01 22:13:53,591 - train - 21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv 2022-03-01 22:13:56,776 - train - 22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv 2022-03-01 22:14:00,326 - train - 23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv 2022-03-01 22:14:03,666 - train - 24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv 2022-03-01 22:14:06,840 - train - 25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv 2022-03-01 22:14:12,440 - train - 26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv 2022-03-01 22:14:15,561 - train - 27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv 2022-03-01 22:14:18,839 - train - 28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv 2022-03-01 22:14:22,240 - train - 29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv 2022-03-01 22:14:25,355 - train - 30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv 2022-03-01 22:14:28,483 - train - 31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv 2022-03-01 22:14:31,960 - train - 32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv 2022-03-01 22:14:35,186 - train - 33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv 2022-03-01 22:14:38,725 - train - 34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv 2022-03-01 22:14:42,022 - train - 35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv 2022-03-01 22:14:45,344 - train - 36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv 2022-03-01 22:14:48,717 - train - 37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv 2022-03-01 22:14:52,459 - train - 38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv 2022-03-01 22:14:57,077 - train - 39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv 2022-03-01 22:15:00,330 - train - 40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv 2022-03-01 22:15:03,675 - train - 41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv 2022-03-01 22:15:07,194 - train - 42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv 2022-03-01 22:15:10,373 - train - 43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv 2022-03-01 22:15:13,913 - train - 44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv 2022-03-01 22:15:17,100 - train - 45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv 2022-03-01 22:15:20,452 - train - 46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv 2022-03-01 22:15:23,646 - train - 47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv 2022-03-01 22:15:27,210 - train - 48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv 2022-03-01 22:15:31,036 - train - 1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv 2022-03-01 22:15:35,097 - train - 2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv 2022-03-01 22:15:38,379 - train - 3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv 2022-03-01 22:15:41,484 - train - 4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv 2022-03-01 22:15:44,853 - train - 5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv 2022-03-01 22:15:50,250 - train - 6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv 2022-03-01 22:15:54,918 - train - 7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv 2022-03-01 22:15:58,298 - train - 8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv 2022-03-01 22:16:02,901 - train - 9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv 2022-03-01 22:16:06,154 - train - 10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv 2022-03-01 22:16:09,817 - train - 11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv 2022-03-01 22:16:12,969 - train - 12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv 2022-03-01 22:16:13,193 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)] 2022-03-01 22:16:13,282 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)] 2022-03-01 22:16:13.549849: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio ns: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2022-03-01 22:16:13.552236: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-03-01 22:16:13.554196: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-03-01 22:16:13.554316: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-01 22:16:13.976589: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix: 2022-03-01 22:16:13.976661: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264] 0 2022-03-01 22:16:13.976674: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0: N 2022-03-01 22:16:13.979482: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p ci bus id: 0000:82:00.0, compute capability: 6.0) 2022-03-01 22:16:15,961 - train - number of examples: 4800 2022-03-01 22:16:16,380 - train - number of examples: 1200 2022-03-01 22:16:19,293 - train - unet: input shape: (None, None, 1), output shape: (None, None, 1) 2022/03/01 22:16:19 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='14' for run ID='c12 04e3a8a1e4c40a35b5b7b1922d1ce'. Attempted logging new value 'None'. Epoch 1/100 2022-03-01 22:16:30.776559: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2) 2022-03-01 22:16:30.983303: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz 2022-03-01 22:16:42.127026: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-03-01 22:16:42.439526: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101 2022-03-01 22:16:42.928881: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-03-01 22:16:43.210835: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 342/342 [==============================] - 124s 292ms/step - loss: 0.7070 - tp0.1: 8568535.0000 - fp0.1: 13083853.0000 - tn0.1: 55158168.0000 - fn0.1: 1636041.0000 - precision0.1: 0.3957 - recall0.1: 0.8397 - tp0.3: 6954119.0000 - fp0.3 : 4121236.0000 - tn0.3: 64120780.0000 - fn0.3: 3250457.0000 - precision0.3: 0.6279 - recall0.3: 0.6815 - tp0.5: 5914618.0000 - fp0.5: 1373295.0000 - tn0.5: 66868700.0000 - fn0.5: 4289958.0000 - precision0.5: 0.8116 - recall0.5: 0.5796 - tp0.7: 5157583.0000 - fp0.7: 495656.0000 - tn0.7: 67746344.0000 - fn0.7: 5046993.0000 - precision0.7: 0.9123 - recall0.7: 0.5054 - tp0.9: 4126657.0000 - fp0.9: 91030.0000 - tn0.9: 68151000.0000 - fn0.9: 6077919.0000 - precision0.9: 0.9 784 - recall0.9: 0.4044 - accuracy: 0.9278 - auc: 0.8844 - f1: 0.6762 - val_loss: 0.6968 - val_tp0.1: 2338956.0000 - val_fp0.1: 2679424.0000 - val_tn0.1: 14116949.0000 - val_fn0.1: 361631.0000 - val_precision0.1: 0.4661 - val_recall0.1: 0.8661 - val_tp0.3: 2156286.0000 - val_fp0.3: 1498035.0000 - val_tn0.3: 15298338.0000 - val_fn0.3: 544301.0000 - val_precision0.3: 0.5901 - val_recall0.3: 0.7985 - val_tp0.5: 1886303.0000 - val_fp0.5: 688918.0000 - val_tn0.5: 16107455. 0000 - val_fn0.5: 814284.0000 - val_precision0.5: 0.7325 - val_recall0.5: 0.6985 - val_tp0.7: 1720047.0000 - val_fp0.7: 358918.0000 - val_tn0.7: 16437455.0000 - val_fn0.7: 980540.0000 - val_precision0.7: 0.8274 - val_recall0.7: 0.6369 - val_tp0.9: 1536712.0000 - val_fp0.9: 146022.0000 - val_tn0.9: 16650351.0000 - val_fn0.9: 1163875.0000 - val_precision0.9: 0.9132 - val_recall0.9: 0.5690 - val_accuracy: 0.9229 - val_auc: 0.9057 - val_f1: 0.7151 ... Epoch 100/100 342/342 [==============================] - 96s 282ms/step - loss: 0.1201 - tp0.1: 9816720.0000 - fp0.1: 2613299.0000 - tn0.1: 65809824.0000 - fn0.1: 206742.0000 - precision0.1: 0.7898 - recall0.1: 0.9794 - tp0.3: 9593189.0000 - fp0.3: 1 365697.0000 - tn0.3: 67057408.0000 - fn0.3: 430273.0000 - precision0.3: 0.8754 - recall0.3: 0.9571 - tp0.5: 9310282.0000 - fp0.5: 760248.0000 - tn0.5: 67662912.0000 - fn0.5: 713180.0000 - precision0.5: 0.9245 - recall0.5: 0.9288 - tp0.7 : 8896402.0000 - fp0.7: 359466.0000 - tn0.7: 68063680.0000 - fn0.7: 1127060.0000 - precision0.7: 0.9612 - recall0.7: 0.8876 - tp0.9: 8125429.0000 - fp0.9: 93565.0000 - tn0.9: 68329576.0000 - fn0.9: 1898033.0000 - precision0.9: 0.9886 - recall0.9: 0.8106 - accuracy: 0.9812 - auc: 0.9882 - f1: 0.9267 - val_loss: 0.1429 - val_tp0.1: 2631773.0000 - val_fp0.1: 731922.0000 - val_tn0.1: 16067311.0000 - val_fn0.1: 65954.0000 - val_precision0.1: 0.7824 - val_recall0.1: 0.9756 - val_tp0.3: 2571221.0000 - val_fp0.3: 390541.0000 - val_tn0.3: 16408692.0000 - val_fn0.3: 126506.0000 - val_precision0.3: 0.8681 - val_recall0.3: 0.9531 - val_tp0.5: 2491171.0000 - val_fp0.5: 222824.0000 - val_tn0.5: 16576409.0000 - va l_fn0.5: 206556.0000 - val_precision0.5: 0.9179 - val_recall0.5: 0.9234 - val_tp0.7: 2379767.0000 - val_fp0.7: 112408.0000 - val_tn0.7: 16686825.0000 - val_fn0.7: 317960.0000 - val_precision0.7: 0.9549 - val_recall0.7: 0.8821 - val_tp0. 9: 2166171.0000 - val_fp0.9: 33767.0000 - val_tn0.9: 16765466.0000 - val_fn0.9: 531556.0000 - val_precision0.9: 0.9847 - val_recall0.9: 0.8030 - val_accuracy: 0.9780 - 2022-03-02 01:02:37.643121: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. 2022/03/02 01:03:00 INFO mlflow.projects: === Run (ID 'c1204e3a8a1e4c40a35b5b7b1922d1ce') succeeded === (tf) [ye53nis@node128 drmed-git]$
- name of run:
c1204e3a8a1e4c40a35b5b7b1922d1ce
- metrics after 100th epoch:
- precisionval,0.5: 0.9179 - recallval,0.5: 0.9234 - f1val,0.5: 0.9207
- aucval: 0.9858
- name of run:
- run training of
(3cbd945b62ec4634839372e403f6f377, 458b36a70db843719d202a8eda448f17)
with hparams from abovemlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \ -P batch_size=9 \ -P first_filters=64 \ -P input_size=14000 \ -P lr_start=0.0100697459464075 \ -P lr_power=1 \ -P epochs=100 \ -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \ -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \ -P scaler=maxabs \ -P n_levels=5 \ -P pool_size=4
2022/03/02 01:11:44 INFO mlflow.projects.utils: === Created directory /tmp/tmpx4epxfnm for downloading remote URIs passed to arguments of type 'path' === 2022/03/02 01:11:44 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 9 --input_size 14000 --lr_start 0.0100697459464075 --lr_power 1 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_pa th_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler maxabs --n_levels 5 --first_filters 64 --pool_size 4' in run with ID '714af8cd12c1441eac4ca980e8c20070' === 2022-03-02 01:11:56.803319: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-02 01:12:07,546 - train - Python version: 3.9.6 (default, Jul 30 2021, 16:35:19) [GCC 7.5.0] 2022-03-02 01:12:07,546 - train - Tensorflow version: 2.5.0 2022-03-02 01:12:07,546 - train - tf.keras version: 2.5.0 2022-03-02 01:12:07,547 - train - Cudnn version: 8 2022-03-02 01:12:07,547 - train - Cuda version: 11.2 2022-03-02 01:12:07.550455: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1 2022-03-02 01:12:07.628356: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-03-02 01:12:07.628511: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-02 01:12:07.638859: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-03-02 01:12:07.638985: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 2022-03-02 01:12:07.643056: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10 2022-03-02 01:12:07.646183: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10 2022-03-02 01:12:07.656023: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11 2022-03-02 01:12:07.659075: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11 2022-03-02 01:12:07.661143: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-03-02 01:12:07.664383: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-03-02 01:12:07,664 - train - GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"... 2022-03-02 01:12:07,665 - train - Setting memory growth successful. 2022-03-02 01:12:13,856 - train - 1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv 2022-03-02 01:12:17,659 - train - 2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv 2022-03-02 01:12:21,236 - train - 3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv 2022-03-02 01:12:24,720 - train - 4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv 2022-03-02 01:12:27,968 - train - 5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv 2022-03-02 01:12:31,066 - train - 6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv 2022-03-02 01:12:34,437 - train - 7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv 2022-03-02 01:12:37,504 - train - 8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv 2022-03-02 01:12:42,706 - train - 9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv 2022-03-02 01:12:46,132 - train - 10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv 2022-03-02 01:12:49,635 - train - 11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv 2022-03-02 01:12:53,763 - train - 12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv 2022-03-02 01:12:57,006 - train - 13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv 2022-03-02 01:13:00,289 - train - 14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv 2022-03-02 01:13:03,628 - train - 15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv 2022-03-02 01:13:07,750 - train - 16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv 2022-03-02 01:13:11,178 - train - 17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv 2022-03-02 01:13:14,491 - train - 18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv 2022-03-02 01:13:17,835 - train - 19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv 2022-03-02 01:13:21,243 - train - 20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv 2022-03-02 01:13:24,830 - train - 21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv 2022-03-02 01:13:28,194 - train - 22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv 2022-03-02 01:13:31,658 - train - 23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv 2022-03-02 01:13:35,112 - train - 24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv 2022-03-02 01:13:38,261 - train - 25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv 2022-03-02 01:13:41,634 - train - 26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv 2022-03-02 01:13:44,894 - train - 27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv 2022-03-02 01:13:48,172 - train - 28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv 2022-03-02 01:13:51,792 - train - 29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv 2022-03-02 01:13:55,890 - train - 30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv 2022-03-02 01:13:59,226 - train - 31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv 2022-03-02 01:14:03,473 - train - 32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv 2022-03-02 01:14:06,889 - train - 33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv 2022-03-02 01:14:11,194 - train - 34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv 2022-03-02 01:14:14,602 - train - 35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv 2022-03-02 01:14:18,195 - train - 36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv 2022-03-02 01:14:23,874 - train - 37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv 2022-03-02 01:14:27,349 - train - 38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv 2022-03-02 01:14:30,931 - train - 39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv 2022-03-02 01:14:39,147 - train - 40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv 2022-03-02 01:14:42,631 - train - 41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv 2022-03-02 01:14:46,112 - train - 42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv 2022-03-02 01:14:49,382 - train - 43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv 2022-03-02 01:14:54,801 - train - 44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv 2022-03-02 01:14:58,059 - train - 45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv 2022-03-02 01:15:01,699 - train - 46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv 2022-03-02 01:15:04,960 - train - 47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv 2022-03-02 01:15:08,548 - train - 48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv 2022-03-02 01:15:11,862 - train - 1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv 2022-03-02 01:15:15,127 - train - 2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv 2022-03-02 01:15:18,793 - train - 3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv 2022-03-02 01:15:24,397 - train - 4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv 2022-03-02 01:15:27,879 - train - 5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv 2022-03-02 01:15:31,270 - train - 6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv 2022-03-02 01:15:34,589 - train - 7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv 2022-03-02 01:15:38,546 - train - 8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv 2022-03-02 01:15:42,044 - train - 9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv 2022-03-02 01:15:45,426 - train - 10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv 2022-03-02 01:15:49,033 - train - 11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv 2022-03-02 01:15:52,325 - train - 12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv 2022-03-02 01:15:52,527 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)] 2022-03-02 01:15:52,616 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)] 2022-03-02 01:15:52.773335: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio ns: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2022-03-02 01:15:52.775655: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-03-02 01:15:52.777670: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-03-02 01:15:52.777752: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-02 01:15:53.202763: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix: 2022-03-02 01:15:53.202835: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264] 0 2022-03-02 01:15:53.202850: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0: N 2022-03-02 01:15:53.205744: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p ci bus id: 0000:82:00.0, compute capability: 6.0) 2022-03-02 01:15:55,214 - train - number of examples: 4800 2022-03-02 01:15:55,624 - train - number of examples: 1200 2022-03-02 01:15:57,731 - train - unet: input shape: (None, None, 1), output shape: (None, None, 1) 2022/03/02 01:15:57 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='9' for run ID='714a f8cd12c1441eac4ca980e8c20070'. Attempted logging new value 'None'. Epoch 1/100 2022-03-02 01:16:06.204044: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2) 2022-03-02 01:16:06.363399: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz 2022-03-02 01:16:14.227408: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-03-02 01:16:14.534785: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101 2022-03-02 01:16:15.007638: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-03-02 01:16:15.294778: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 533/533 [==============================] - 129s 209ms/step - loss: 0.9630 - tp0.1: 8826943.0000 - fp0.1: 17028400.0000 - tn0.1: 51333204.0000 - fn0.1: 1405497.0000 - precision0.1: 0.3414 - recall0.1: 0.8626 - tp0.3: 7038448.0000 - fp0.3 : 7003701.0000 - tn0.3: 61357888.0000 - fn0.3: 3193992.0000 - precision0.3: 0.5012 - recall0.3: 0.6879 - tp0.5: 4980151.0000 - fp0.5: 2201947.0000 - tn0.5: 66159680.0000 - fn0.5: 5252289.0000 - precision0.5: 0.6934 - recall0.5: 0.4867 - tp0.7: 3822069.0000 - fp0.7: 917042.0000 - tn0.7: 67444552.0000 - fn0.7: 6410371.0000 - precision0.7: 0.8065 - recall0.7: 0.3735 - tp0.9: 2341770.0000 - fp0.9: 282920.0000 - tn0.9: 68078696.0000 - fn0.9: 7890670.0000 - precision0.9: 0. 8922 - recall0.9: 0.2289 - accuracy: 0.9052 - auc: 0.8844 - f1: 0.5720 - val_loss: 17.7890 - val_tp0.1: 2710616.0000 - val_fp0.1: 15396795.0000 - val_tn0.1: 1498695.0000 - val_fn0.1: 5542.0000 - val_precision0.1: 0.1497 - val_recall0.1: 0.9980 - val_tp0.3: 2709922.0000 - val_fp0.3: 15341678.0000 - val_tn0.3: 1553812.0000 - val_fn0.3: 6236.0000 - val_precision0.3: 0.1501 - val_recall0.3: 0.9977 - val_tp0.5: 2709375.0000 - val_fp0.5: 15293665.0000 - val_tn0.5: 1601825.0 000 - val_fn0.5: 6783.0000 - val_precision0.5: 0.1505 - val_recall0.5: 0.9975 - val_tp0.7: 2708822.0000 - val_fp0.7: 15242876.0000 - val_tn0.7: 1652614.0000 - val_fn0.7: 7336.0000 - val_precision0.7: 0.1509 - val_recall0.7: 0.9973 - val _tp0.9: 2707532.0000 - val_fp0.9: 15151973.0000 - val_tn0.9: 1743517.0000 - val_fn0.9: 8626.0000 - val_precision0.9: 0.1516 - val_recall0.9: 0.9968 - val_accuracy: 0.2198 - val_auc: 0.5561 - val_f1: 0.2615 ... Epoch 100/100 533/533 [==============================] - 108s 202ms/step - loss: 0.0724 - tp0.1: 10196374.0000 - fp0.1: 1589491.0000 - tn0.1: 66701600.0000 - fn0.1: 106580.0000 - precision0.1: 0.8651 - recall0.1: 0.9897 - tp0.3: 10080835.0000 - fp0.3 : 986714.0000 - tn0.3: 67304368.0000 - fn0.3: 222119.0000 - precision0.3: 0.9108 - recall0.3: 0.9784 - tp0.5: 9895952.0000 - fp0.5: 600682.0000 - tn0.5: 67690432.0000 - fn0.5: 407002.0000 - precision0.5: 0.9428 - recall0.5: 0.9605 - tp0 .7: 9574784.0000 - fp0.7: 291406.0000 - tn0.7: 67999680.0000 - fn0.7: 728170.0000 - precision0.7: 0.9705 - recall0.7: 0.9293 - tp0.9: 8942531.0000 - fp0.9: 72576.0000 - tn0.9: 68218544.0000 - fn0.9: 1360423.0000 - precision0.9: 0.9919 - recall0.9: 0.8680 - accuracy: 0.9872 - auc: 0.9942 - f1: 0.9516 - val_loss: 0.1303 - val_tp0.1: 2631957.0000 - val_fp0.1: 478568.0000 - val_tn0.1: 16426044.0000 - val_fn0.1: 75079.0000 - val_precision0.1: 0.8461 - val_recall0.1: 0.9723 - val_tp0.3: 2587183.0000 - val_fp0.3: 308683.0000 - val_tn0.3: 16595929.0000 - val_fn0.3: 119853.0000 - val_precision0.3: 0.8934 - val_recall0.3: 0.9557 - val_tp0.5: 2531594.0000 - val_fp0.5: 203214.0000 - val_tn0.5: 16701398.0000 - v al_fn0.5: 175442.0000 - val_precision0.5: 0.9257 - val_recall0.5: 0.9352 - val_tp0.7: 2448316.0000 - val_fp0.7: 118418.0000 - val_tn0.7: 16786194.0000 - val_fn0.7: 258720.0000 - val_precision0.7: 0.9539 - val_recall0.7: 0.9044 - val_tp0 .9: 2283631.0000 - val_fp0.9: 49167.0000 - val_tn0.9: 16855444.0000 - val_fn0.9: 423405.0000 - val_precision0.9: 0.9789 - val_recall0.9: 0.8436 - val_accuracy: 0.9807 - val_auc: 0.9843 - val_f1: 0.9304 2022-03-02 04:20:37.604740: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. 2022/03/02 04:20:52 INFO mlflow.projects: === Run (ID '714af8cd12c1441eac4ca980e8c20070') succeeded ===
- name of run:
714af8cd12c1441eac4ca980e8c20070
- metrics after 100th epoch:
- loss: 0.0724 - lossval: 0.1303
- precisionval,0.5: 0.9257 - recallval,0.5: 0.9352 - f1val,0.5: 0.9304
- aucval: 0.9843
- name of run:
- run training of
(3cbd945b62ec4634839372e403f6f377, 458b36a70db843719d202a8eda448f17)
with hparams from abovemlflow run . -e main -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ \ -P batch_size=17 \ -P first_filters=16 \ -P input_size=14000 \ -P lr_start=0.0101590069352232 \ -P lr_power=5 \ -P epochs=100 \ -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets \ -P csv_path_val=/beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN \ -P scaler=l2 \ -P n_levels=3 \ -P pool_size=4
2022/03/03 14:24:46 INFO mlflow.projects.utils: === Created directory /tmp/tmp7c_e9yu1 for downloading remote URIs passed to arguments of type 'path' === 2022/03/03 14:24:46 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-eaf130b8edd83d20d4f1e0db4286dabd625893fe 1>&2 && python src/fluotracify/train ing/train.py --fluotracify_path /beegfs/ye53nis/drmed-git/src --batch_size 17 --input_size 14000 --lr_start 0.0101590069352232 --lr_power 5 --epochs 100 --csv_path_train /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets --csv_p ath_val /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN --col_per_example 3 --scaler l2 --n_levels 3 --first_filters 16 --pool_size 4' in run with ID '34a6d207ac594035b1009c330fb67a65' === 2022-03-03 14:24:50.057413: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-03 14:24:54,004 - train - Python version: 3.9.6 (default, Jul 30 2021, 16:35:19) [GCC 7.5.0] 2022-03-03 14:24:54,004 - train - Tensorflow version: 2.5.0 2022-03-03 14:24:54,004 - train - tf.keras version: 2.5.0 2022-03-03 14:24:54,004 - train - Cudnn version: 8 2022-03-03 14:24:54,004 - train - Cuda version: 11.2 2022-03-03 14:24:54.006301: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1 2022-03-03 14:24:54.030317: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-03-03 14:24:54.030405: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-03 14:24:54.038110: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-03-03 14:24:54.038189: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 2022-03-03 14:24:54.041129: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10 2022-03-03 14:24:54.042988: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10 2022-03-03 14:24:54.050220: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11 2022-03-03 14:24:54.052310: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11 2022-03-03 14:24:54.053334: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-03-03 14:24:54.056200: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-03-03 14:24:54,056 - train - GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]. Trying to set memory growth to "True"... 2022-03-03 14:24:54,056 - train - Setting memory growth successful. 2022-03-03 14:25:01,220 - train - 1/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set004.csv 2022-03-03 14:25:05,184 - train - 2/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set002.csv 2022-03-03 14:25:08,951 - train - 3/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set001.csv 2022-03-03 14:25:15,413 - train - 4/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.1/traces_brightclust_Nov2020_D1.0_set007.csv 2022-03-03 14:25:33,960 - train - 5/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set002.csv 2022-03-03 14:25:37,427 - train - 6/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/1.0/traces_brightclust_Nov2020_D10_set010.csv 2022-03-03 14:25:41,118 - train - 7/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set004.csv 2022-03-03 14:25:49,655 - train - 8/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.1/traces_brightclust_Nov2020_D3.0_set010.csv 2022-03-03 14:25:54,052 - train - 9/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set009.csv 2022-03-03 14:25:57,575 - train - 10/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set003.csv 2022-03-03 14:26:01,255 - train - 11/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/1.0/traces_brightclust_Nov2020_D0.1_set007.csv 2022-03-03 14:26:04,485 - train - 12/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/1.0/traces_brightclust_Nov2020_D1.0_set001.csv 2022-03-03 14:26:08,073 - train - 13/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.01/traces_brightclust_Nov2020_D10_set003.csv 2022-03-03 14:26:11,768 - train - 14/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/1.0/traces_brightclust_Nov2020_D0.6_set002.csv 2022-03-03 14:26:19,400 - train - 15/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set005.csv 2022-03-03 14:26:23,640 - train - 16/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/1.0/traces_brightclust_Nov2020_D0.069_set009.csv 2022-03-03 14:26:27,567 - train - 17/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/1.0/traces_brightclust_Nov2020_D50_set004.csv 2022-03-03 14:26:31,999 - train - 18/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set010.csv 2022-03-03 14:26:36,569 - train - 19/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set009.csv 2022-03-03 14:26:40,326 - train - 20/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/1.0/0.01/traces_brightclust_Nov2020_D1.0_set010.csv 2022-03-03 14:26:43,920 - train - 21/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set007.csv 2022-03-03 14:26:48,619 - train - 22/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/1.0/traces_brightclust_Nov2020_D0.2_set010.csv 2022-03-03 14:26:53,742 - train - 23/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set001.csv 2022-03-03 14:26:57,605 - train - 24/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set003.csv 2022-03-03 14:27:01,008 - train - 25/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/1.0/traces_brightclust_Nov2020_D3.0_set003.csv 2022-03-03 14:27:04,458 - train - 26/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set004.csv 2022-03-03 14:27:07,860 - train - 27/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set001.csv 2022-03-03 14:27:11,489 - train - 28/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set005.csv 2022-03-03 14:27:15,309 - train - 29/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.1/traces_brightclust_Nov2020_D0.08_set006.csv 2022-03-03 14:27:18,677 - train - 30/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.01/traces_brightclust_Nov2020_D0.4_set004.csv 2022-03-03 14:27:22,854 - train - 31/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set006.csv 2022-03-03 14:27:26,667 - train - 32/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.1/traces_brightclust_Nov2020_D0.2_set004.csv 2022-03-03 14:27:30,369 - train - 33/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set005.csv 2022-03-03 14:27:34,196 - train - 34/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set003.csv 2022-03-03 14:27:37,882 - train - 35/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.2/0.01/traces_brightclust_Nov2020_D0.2_set003.csv 2022-03-03 14:27:41,437 - train - 36/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.01/traces_brightclust_Nov2020_D50_set006.csv 2022-03-03 14:27:45,344 - train - 37/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.1/traces_brightclust_Nov2020_D0.6_set004.csv 2022-03-03 14:27:48,979 - train - 38/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/1.0/traces_brightclust_Nov2020_D0.08_set004.csv 2022-03-03 14:27:52,611 - train - 39/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.6/0.01/traces_brightclust_Nov2020_D0.6_set010.csv 2022-03-03 14:27:56,754 - train - 40/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/10/0.1/traces_brightclust_Nov2020_D10_set007.csv 2022-03-03 14:28:00,273 - train - 41/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/1.0/traces_brightclust_Nov2020_D0.4_set006.csv 2022-03-03 14:28:03,971 - train - 42/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.4/0.1/traces_brightclust_Nov2020_D0.4_set002.csv 2022-03-03 14:28:07,564 - train - 43/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.1/0.01/traces_brightclust_Nov2020_D0.1_set006.csv 2022-03-03 14:28:11,272 - train - 44/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/3.0/0.01/traces_brightclust_Nov2020_D3.0_set006.csv 2022-03-03 14:28:15,163 - train - 45/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set010.csv 2022-03-03 14:28:18,794 - train - 46/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.08/0.01/traces_brightclust_Nov2020_D0.08_set007.csv 2022-03-03 14:28:22,428 - train - 47/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/0.069/0.1/traces_brightclust_Nov2020_D0.069_set002.csv 2022-03-03 14:28:26,334 - train - 48/48: /beegfs/ye53nis/saves/firstartifact_Nov2020_train_max2sets/50/0.1/traces_brightclust_Nov2020_D50_set009.csv 2022-03-03 14:28:30,056 - train - 1/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/0.1/traces_brightclust_Nov2020_D1.0_set009.csv 2022-03-03 14:28:33,687 - train - 2/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/50/1.0/traces_brightclust_Nov2020_D50_set007.csv 2022-03-03 14:28:37,128 - train - 3/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.4/0.1/traces_brightclust_Nov2020_D0.4_set009.csv 2022-03-03 14:28:40,617 - train - 4/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/1.0/traces_brightclust_Nov2020_D3.0_set009.csv 2022-03-03 14:28:44,105 - train - 5/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.1/0.01/traces_brightclust_Nov2020_D0.1_set008.csv 2022-03-03 14:28:47,594 - train - 6/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/10/0.01/traces_brightclust_Nov2020_D10_set008.csv 2022-03-03 14:28:51,273 - train - 7/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.08/0.1/traces_brightclust_Nov2020_D0.08_set008.csv 2022-03-03 14:28:56,181 - train - 8/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/1.0/1.0/traces_brightclust_Nov2020_D1.0_set008.csv 2022-03-03 14:28:59,593 - train - 9/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/3.0/0.01/traces_brightclust_Nov2020_D3.0_set008.csv 2022-03-03 14:29:03,237 - train - 10/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.2/0.1/traces_brightclust_Nov2020_D0.2_set006.csv 2022-03-03 14:29:07,571 - train - 11/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.069/0.1/traces_brightclust_Nov2020_D0.069_set006.csv 2022-03-03 14:29:11,901 - train - 12/12: /beegfs/ye53nis/saves/firstartifact_Nov2020_val_max2sets_SORTEDIN/0.6/0.1/traces_brightclust_Nov2020_D0.6_set006.csv 2022-03-03 14:29:12,117 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 4800), (16384, 4800), (16384, 4800)] 2022-03-03 14:29:12,206 - train - The given DataFrame was split into 3 parts with shapes: [(16384, 1200), (16384, 1200), (16384, 1200)] 2022-03-03 14:29:12.413198: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operatio ns: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2022-03-03 14:29:12.417391: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0 coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s 2022-03-03 14:29:12.419377: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2022-03-03 14:29:12.419477: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2022-03-03 14:29:12.833057: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix: 2022-03-03 14:29:12.833127: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264] 0 2022-03-03 14:29:12.833141: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0: N 2022-03-03 14:29:12.835995: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, p ci bus id: 0000:82:00.0, compute capability: 6.0) 2022-03-03 14:29:14,768 - train - number of examples: 4800 2022-03-03 14:29:15,107 - train - number of examples: 1200 2022-03-03 14:29:16,570 - train - unet: input shape: (None, None, 1), output shape: (None, None, 1) 2022/03/03 14:29:16 WARNING mlflow.utils.autologging_utils: Encountered unexpected error during tensorflow autologging: Changing param values is not allowed. Param with key='batch_size' was already logged with value='17' for run ID='34a 6d207ac594035b1009c330fb67a65'. Attempted logging new value 'None'. Epoch 1/100 2022-03-03 14:29:23.930177: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2) 2022-03-03 14:29:24.066046: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2199895000 Hz 2022-03-03 14:29:33.256586: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2022-03-03 14:29:33.572296: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8101 2022-03-03 14:29:34.075599: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2022-03-03 14:29:34.363317: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 282/282 [==============================] - 45s 98ms/step - loss: 1.0922 - tp0.1: 8529810.0000 - fp0.1: 10393289.0000 - tn0.1: 57940184.0000 - fn0.1: 1681616.0000 - precision0.1: 0.4508 - recall0.1: 0.8353 - tp0.3: 7724105.0000 - fp0.3: 3960382.0000 - tn0.3: 64373080.0000 - fn0.3: 2487321.0000 - precision0.3: 0.6611 - recall0.3: 0.7564 - tp0.5: 7024685.0000 - fp0.5: 1630985.0000 - tn0.5: 66702492.0000 - fn0.5: 3186741.0000 - precision0.5: 0.8116 - recall0.5: 0.6879 - t p0.7: 6159487.0000 - fp0.7: 585291.0000 - tn0.7: 67748208.0000 - fn0.7: 4051939.0000 - precision0.7: 0.9132 - recall0.7: 0.6032 - tp0.9: 4931800.0000 - fp0.9: 143363.0000 - tn0.9: 68190096.0000 - fn0.9: 5279626.0000 - precision0.9: 0.97 18 - recall0.9: 0.4830 - accuracy: 0.9387 - auc: 0.9142 - f1: 0.7446 - val_loss: 3.2432 - val_tp0.1: 2699606.0000 - val_fp0.1: 16783988.0000 - val_tn0.1: 12739.0000 - val_fn0.1: 627.0000 - val_precision0.1: 0.1386 - val_recall0.1: 0.999 8 - val_tp0.3: 2697002.0000 - val_fp0.3: 16748206.0000 - val_tn0.3: 48521.0000 - val_fn0.3: 3231.0000 - val_precision0.3: 0.1387 - val_recall0.3: 0.9988 - val_tp0.5: 2695536.0000 - val_fp0.5: 16737605.0000 - val_tn0.5: 59122.0000 - val_ fn0.5: 4697.0000 - val_precision0.5: 0.1387 - val_recall0.5: 0.9983 - val_tp0.7: 2689329.0000 - val_fp0.7: 16678401.0000 - val_tn0.7: 118326.0000 - val_fn0.7: 10904.0000 - val_precision0.7: 0.1389 - val_recall0.7: 0.9960 - val_tp0.9: 22 37862.0000 - val_fp0.9: 12480955.0000 - val_tn0.9: 4315772.0000 - val_fn0.9: 462371.0000 - val_precision0.9: 0.1520 - val_recall0.9: 0.8288 - val_accuracy: 0.1413 - val_auc: 0.5907 - val_f1: 0.2436 ... Epoch 100/100 282/282 [==============================] - 25s 88ms/step - loss: 0.2009 - tp0.1: 9736541.0000 - fp0.1: 3605117.0000 - tn0.1: 64740432.0000 - fn0.1: 462821.0000 - precision0.1: 0.7298 - recall0.1: 0.9546 - tp0.3: 9402084.0000 - fp0.3: 17 39716.0000 - tn0.3: 66605812.0000 - fn0.3: 797278.0000 - precision0.3: 0.8439 - recall0.3: 0.9218 - tp0.5: 9016887.0000 - fp0.5: 920615.0000 - tn0.5: 67424920.0000 - fn0.5: 1182475.0000 - precision0.5: 0.9074 - recall0.5: 0.8841 - tp0.7 : 8513773.0000 - fp0.7: 435436.0000 - tn0.7: 67910080.0000 - fn0.7: 1685589.0000 - precision0.7: 0.9513 - recall0.7: 0.8347 - tp0.9: 7585158.0000 - fp0.9: 106557.0000 - tn0.9: 68238992.0000 - fn0.9: 2614204.0000 - precision0.9: 0.9861 - recall0.9: 0.7437 - accuracy: 0.9732 - auc: 0.9746 - f1: 0.8956 - val_loss: 0.2670 - val_tp0.1: 2538570.0000 - val_fp0.1: 1039161.0000 - val_tn0.1: 15761772.0000 - val_fn0.1: 157457.0000 - val_precision0.1: 0.7095 - val_recall0.1: 0.94 16 - val_tp0.3: 2435718.0000 - val_fp0.3: 590706.0000 - val_tn0.3: 16210227.0000 - val_fn0.3: 260309.0000 - val_precision0.3: 0.8048 - val_recall0.3: 0.9034 - val_tp0.5: 2326279.0000 - val_fp0.5: 379342.0000 - val_tn0.5: 16421591.0000 - val_fn0.5: 369748.0000 - val_precision0.5: 0.8598 - val_recall0.5: 0.8629 - val_tp0.7: 2189825.0000 - val_fp0.7: 228353.0000 - val_tn0.7: 16572580.0000 - val_fn0.7: 506202.0000 - val_precision0.7: 0.9056 - val_recall0.7: 0.8122 - val_t p0.9: 1947380.0000 - val_fp0.9: 92879.0000 - val_tn0.9: 16708054.0000 - val_fn0.9: 748647.0000 - val_precision0.9: 0.9545 - val_recall0.9: 0.7223 - val_accuracy: 0.9616 - val_auc: 0.9652 - val_f1: 0.8613 2022-03-03 15:16:02.951715: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. 2022/03/03 15:16:13 INFO mlflow.projects: === Run (ID '34a6d207ac594035b1009c330fb67a65') succeeded ===
- name of run:
34a6d207ac594035b1009c330fb67a65
- metrics after 100th epoch:
- precisionval,0.5: 0.8598 - recallval,0.5: 0.8629 - f1val,0.5: 0.8613
- aucval: 0.9652
- name of run:
- all metrics after 100th epoch with hparams
run aucval f1val,0.5 precval,0.5 recallval,0.5 model size hpbatchsize hpfirstfilters hpinputsize hplrpower hplrstart hpnlevels hppoolsize hpscaler 484af471c61943fa90e5f78e78a229f0 0.9814 0.9187 0.9091 0.9285 275 MB 26 44 16384 (here: 14000) 1 0.0136170138242663 7 2 standard 0cd2023eeaf745aca0d3e8ad5e1fc653 0.9818 0.9069 0.8955 0.9185 200 MB 15 23 16384 (here: 14000) 7 0.0305060808685107 6 4 quantg fe81d71c52404ed790b3a32051258da9 0.9849 0.9260 0.9184 0.9338 186 MB 20 78 16384 (here: 14000) 4 0.0584071108418767 4 4 standard ff67be0b68e540a9a29a36a2d0c7a5be 0.9859 0.9298 0.9230 0.9367 14 MB 28 6 16384 (here: 14000) 1 0.0553313915596308 5 4 minmax 19e3e786e1bc4e2b93856f5dc9de8216 0.9595 0.8911 0.8983 0.8839 172 MB 20 128 16384 (here: 14000) 1 0.043549707353273 3 4 standard 347669d050f344ad9fb9e480c814f727 0.9848 0.9246 0.9254 0.9238 73 MB 10 16 8192 (here: 14000) 1 0.0627676336651573 5 4 robust c1204e3a8a1e4c40a35b5b7b1922d1ce 0.9858 0.9207 0.9179 0.9234 312 MB 14 16 16384 (here: 14000) 5 0.0192390310290551 9 2 robust 714af8cd12c1441eac4ca980e8c20070 0.9843 0.9304 0.9257 0.9352 234 MB 9 64 4096 (here: 14000) 1 0.0100697459464075 5 4 maxabs 34a6d207ac594035b1009c330fb67a65 0.9652 0.8613 0.8598 0.8629 7 MB 17 16 16384 (here: 14000) 5 0.0101590069352232 3 4 l2 :END:
2.6.9 Analysis 1: show model architecture and loss plots
- first load modules and define model lists and dictionaries to connect
hparam runs and final runs.
%cd ~/Programme/drmed-git
/home/lex/Programme/drmed-git
import datetime import logging import multipletau import os import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import tensorflow as tf from pathlib import Path from pprint import pprint from tensorflow.keras.optimizers import Adam from mlflow.keras import load_model FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.training import (build_model as bm) model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727', '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65', '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653', 'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216', 'c1204e3a8a1e4c40a35b5b7b1922d1ce'] model_dict = { ('9051e32b87d84f3485b980067addec30', '61ff87bdb89b4e2ba64f8dacc774992d') : '484af471c61943fa90e5f78e78a229f0', ('93b168c0ff7942c8a908a94129daf973', 'f243b3b742de4dbcb7ccfbd4244706f8') : '0cd2023eeaf745aca0d3e8ad5e1fc653', ('a5b8551144ff46e697a39cd1551e1475', '98cf8cdef9c54b5286e277e75e2ab8c1') : 'fe81d71c52404ed790b3a32051258da9', ('00f2635d9fa2463c9a066722163405be', 'd0a8e1748b194f3290d471b6b44f19f8') : 'ff67be0b68e540a9a29a36a2d0c7a5be', ('5604d43c1ece461b8e6eaa0dfb65d6dc', '3612536a77f34f22bc83d1d809140aa6') : '19e3e786e1bc4e2b93856f5dc9de8216', ('7cafab027cdd4fc9bf20a43e989df510', '16dff15d935f45e2a836b1f41b07b4e3') : '347669d050f344ad9fb9e480c814f727', ('0e328920e86049928202db95e8cfb7be', 'bf9d2725eb16462d9a101f0a077ce2b5') : 'c1204e3a8a1e4c40a35b5b7b1922d1ce', ('1c954fbc02b747bc813c587ac703c74a', 'ba49a80c2616407a8f1fe1fd12096fe0') : '714af8cd12c1441eac4ca980e8c20070', ('3cbd945b62ec4634839372e403f6f377', '458b36a70db843719d202a8eda448f17') : '34a6d207ac594035b1009c330fb67a65'} model_name_ls = [f'{s:.5}' for s in model_ls] pred_thresh = 0.5
- now print model details for each model where it was saved
for i in model_ls: print(f'model: {i}') try: logged_scaler = Path(f'/home/lex/Programme/drmed-git/data/mlruns/10/{i}/params/scaler') logged_scaler = !cat $logged_scaler logged_scaler = logged_scaler[0] logged_model = Path(f'/home/lex/Programme/drmed-git/data/mlruns/10/{i}/artifacts/model') logged_model = load_model(logged_model, compile=False) logged_model.compile(loss=bm.binary_ce_dice_loss(), optimizer=Adam(), metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9])) print(logged_model.summary()) except AttributeError: pass print('----------------------------------------')
model: ff67be0b68e540a9a29a36a2d0c7a5be WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. 2022-08-23 14:27:17,992 - build model - Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. Model: "unet_depth5" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, None, 1)] 0 [] encode0 (Sequential) (None, None, 6) 186 ['input_1[0][0]'] mp_encode0 (MaxPooling1D) (None, None, 6) 0 ['encode0[0][0]'] encode1 (Sequential) (None, None, 12) 768 ['mp_encode0[0][0]'] mp_encode1 (MaxPooling1D) (None, None, 12) 0 ['encode1[0][0]'] encode2 (Sequential) (None, None, 24) 2832 ['mp_encode1[0][0]'] mp_encode2 (MaxPooling1D) (None, None, 24) 0 ['encode2[0][0]'] encode3 (Sequential) (None, None, 48) 10848 ['mp_encode2[0][0]'] mp_encode3 (MaxPooling1D) (None, None, 48) 0 ['encode3[0][0]'] encode4 (Sequential) (None, None, 96) 42432 ['mp_encode3[0][0]'] mp_encode4 (MaxPooling1D) (None, None, 96) 0 ['encode4[0][0]'] two_conv_center (Sequential) (None, None, 192) 167808 ['mp_encode4[0][0]'] conv_transpose_decoder4 (Seque (None, None, 192) 148416 ['two_conv_center[0][0]'] ntial) decoder4 (Concatenate) (None, None, 288) 0 ['encode4[0][0]', 'conv_transpose_decoder4[0][0]'] two_conv_decoder4 (Sequential) (None, None, 192) 278400 ['decoder4[0][0]'] conv_transpose_decoder3 (Seque (None, None, 96) 74208 ['two_conv_decoder4[0][0]'] ntial) decoder3 (Concatenate) (None, None, 144) 0 ['encode3[0][0]', 'conv_transpose_decoder3[0][0]'] two_conv_decoder3 (Sequential) (None, None, 96) 70080 ['decoder3[0][0]'] conv_transpose_decoder2 (Seque (None, None, 48) 18672 ['two_conv_decoder3[0][0]'] ntial) decoder2 (Concatenate) (None, None, 72) 0 ['encode2[0][0]', 'conv_transpose_decoder2[0][0]'] two_conv_decoder2 (Sequential) (None, None, 48) 17760 ['decoder2[0][0]'] conv_transpose_decoder1 (Seque (None, None, 24) 4728 ['two_conv_decoder2[0][0]'] ntial) decoder1 (Concatenate) (None, None, 36) 0 ['encode1[0][0]', 'conv_transpose_decoder1[0][0]'] two_conv_decoder1 (Sequential) (None, None, 24) 4560 ['decoder1[0][0]'] conv_transpose_decoder0 (Seque (None, None, 12) 1212 ['two_conv_decoder1[0][0]'] ntial) decoder0 (Concatenate) (None, None, 18) 0 ['encode0[0][0]', 'conv_transpose_decoder0[0][0]'] two_conv_decoder0 (Sequential) (None, None, 12) 1200 ['decoder0[0][0]'] conv1d_22 (Conv1D) (None, None, 1) 13 ['two_conv_decoder0[0][0]'] ================================================================================================== Total params: 844,123 Trainable params: 840,379 Non-trainable params: 3,744 __________________________________________________________________________________________________ None ---------------------------------------- model: 347669d050f344ad9fb9e480c814f727WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. 2022-08-23 14:27:26,761 - build model - Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. Model: "unet_depth5" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, None, 1)] 0 [] encode0 (Sequential) (None, None, 16) 976 ['input_1[0][0]'] mp_encode0 (MaxPooling1D) (None, None, 16) 0 ['encode0[0][0]'] encode1 (Sequential) (None, None, 32) 4928 ['mp_encode0[0][0]'] mp_encode1 (MaxPooling1D) (None, None, 32) 0 ['encode1[0][0]'] encode2 (Sequential) (None, None, 64) 19072 ['mp_encode1[0][0]'] mp_encode2 (MaxPooling1D) (None, None, 64) 0 ['encode2[0][0]'] encode3 (Sequential) (None, None, 128) 75008 ['mp_encode2[0][0]'] mp_encode3 (MaxPooling1D) (None, None, 128) 0 ['encode3[0][0]'] encode4 (Sequential) (None, None, 256) 297472 ['mp_encode3[0][0]'] mp_encode4 (MaxPooling1D) (None, None, 256) 0 ['encode4[0][0]'] two_conv_center (Sequential) (None, None, 512) 1184768 ['mp_encode4[0][0]'] conv_transpose_decoder4 (Seque (None, None, 512) 1051136 ['two_conv_center[0][0]'] ntial) decoder4 (Concatenate) (None, None, 768) 0 ['encode4[0][0]', 'conv_transpose_decoder4[0][0]'] two_conv_decoder4 (Sequential) (None, None, 512) 1971200 ['decoder4[0][0]'] conv_transpose_decoder3 (Seque (None, None, 256) 525568 ['two_conv_decoder4[0][0]'] ntial) decoder3 (Concatenate) (None, None, 384) 0 ['encode3[0][0]', 'conv_transpose_decoder3[0][0]'] two_conv_decoder3 (Sequential) (None, None, 256) 494080 ['decoder3[0][0]'] conv_transpose_decoder2 (Seque (None, None, 128) 131712 ['two_conv_decoder3[0][0]'] ntial) decoder2 (Concatenate) (None, None, 192) 0 ['encode2[0][0]', 'conv_transpose_decoder2[0][0]'] two_conv_decoder2 (Sequential) (None, None, 128) 124160 ['decoder2[0][0]'] conv_transpose_decoder1 (Seque (None, None, 64) 33088 ['two_conv_decoder2[0][0]'] ntial) decoder1 (Concatenate) (None, None, 96) 0 ['encode1[0][0]', 'conv_transpose_decoder1[0][0]'] two_conv_decoder1 (Sequential) (None, None, 64) 31360 ['decoder1[0][0]'] conv_transpose_decoder0 (Seque (None, None, 32) 8352 ['two_conv_decoder1[0][0]'] ntial) decoder0 (Concatenate) (None, None, 48) 0 ['encode0[0][0]', 'conv_transpose_decoder0[0][0]'] two_conv_decoder0 (Sequential) (None, None, 32) 8000 ['decoder0[0][0]'] conv1d_22 (Conv1D) (None, None, 1) 33 ['two_conv_decoder0[0][0]'] ================================================================================================== Total params: 5,960,913 Trainable params: 5,950,929 Non-trainable params: 9,984 __________________________________________________________________________________________________ None ---------------------------------------- model: 714af8cd12c1441eac4ca980e8c20070 WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. 2022-08-23 14:27:35,085 - build model - Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. Model: "unet_depth5" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, None, 1)] 0 [] encode0 (Sequential) (None, None, 64) 13120 ['input_1[0][0]'] mp_encode0 (MaxPooling1D) (None, None, 64) 0 ['encode0[0][0]'] encode1 (Sequential) (None, None, 128) 75008 ['mp_encode0[0][0]'] mp_encode1 (MaxPooling1D) (None, None, 128) 0 ['encode1[0][0]'] encode2 (Sequential) (None, None, 256) 297472 ['mp_encode1[0][0]'] mp_encode2 (MaxPooling1D) (None, None, 256) 0 ['encode2[0][0]'] encode3 (Sequential) (None, None, 512) 1184768 ['mp_encode2[0][0]'] mp_encode3 (MaxPooling1D) (None, None, 512) 0 ['encode3[0][0]'] encode4 (Sequential) (None, None, 512) 1577984 ['mp_encode3[0][0]'] mp_encode4 (MaxPooling1D) (None, None, 512) 0 ['encode4[0][0]'] two_conv_center (Sequential) (None, None, 1024) 4728832 ['mp_encode4[0][0]'] conv_transpose_decoder4 (Seque (None, None, 512) 2099712 ['two_conv_center[0][0]'] ntial) decoder4 (Concatenate) (None, None, 1024) 0 ['encode4[0][0]', 'conv_transpose_decoder4[0][0]'] two_conv_decoder4 (Sequential) (None, None, 512) 2364416 ['decoder4[0][0]'] conv_transpose_decoder3 (Seque (None, None, 512) 1051136 ['two_conv_decoder4[0][0]'] ntial) decoder3 (Concatenate) (None, None, 1024) 0 ['encode3[0][0]', 'conv_transpose_decoder3[0][0]'] two_conv_decoder3 (Sequential) (None, None, 512) 2364416 ['decoder3[0][0]'] conv_transpose_decoder2 (Seque (None, None, 512) 1051136 ['two_conv_decoder3[0][0]'] ntial) decoder2 (Concatenate) (None, None, 768) 0 ['encode2[0][0]', 'conv_transpose_decoder2[0][0]'] two_conv_decoder2 (Sequential) (None, None, 512) 1971200 ['decoder2[0][0]'] conv_transpose_decoder1 (Seque (None, None, 256) 525568 ['two_conv_decoder2[0][0]'] ntial) decoder1 (Concatenate) (None, None, 384) 0 ['encode1[0][0]', 'conv_transpose_decoder1[0][0]'] two_conv_decoder1 (Sequential) (None, None, 256) 494080 ['decoder1[0][0]'] conv_transpose_decoder0 (Seque (None, None, 128) 131712 ['two_conv_decoder1[0][0]'] ntial) decoder0 (Concatenate) (None, None, 192) 0 ['encode0[0][0]', 'conv_transpose_decoder0[0][0]'] two_conv_decoder0 (Sequential) (None, None, 128) 124160 ['decoder0[0][0]'] conv1d_22 (Conv1D) (None, None, 1) 129 ['two_conv_decoder0[0][0]'] ================================================================================================== Total params: 20,054,849 Trainable params: 20,033,345 Non-trainable params: 21,504 __________________________________________________________________________________________________ None ---------------------------------------- model: 34a6d207ac594035b1009c330fb67a65 WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. 2022-08-23 14:27:43,275 - build model - Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. Model: "unet_depth3" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, None, 1)] 0 [] encode0 (Sequential) (None, None, 16) 976 ['input_1[0][0]'] mp_encode0 (MaxPooling1D) (None, None, 16) 0 ['encode0[0][0]'] encode1 (Sequential) (None, None, 32) 4928 ['mp_encode0[0][0]'] mp_encode1 (MaxPooling1D) (None, None, 32) 0 ['encode1[0][0]'] encode2 (Sequential) (None, None, 64) 19072 ['mp_encode1[0][0]'] mp_encode2 (MaxPooling1D) (None, None, 64) 0 ['encode2[0][0]'] two_conv_center (Sequential) (None, None, 128) 75008 ['mp_encode2[0][0]'] conv_transpose_decoder2 (Seque (None, None, 128) 66176 ['two_conv_center[0][0]'] ntial) decoder2 (Concatenate) (None, None, 192) 0 ['encode2[0][0]', 'conv_transpose_decoder2[0][0]'] two_conv_decoder2 (Sequential) (None, None, 128) 124160 ['decoder2[0][0]'] conv_transpose_decoder1 (Seque (None, None, 64) 33088 ['two_conv_decoder2[0][0]'] ntial) decoder1 (Concatenate) (None, None, 96) 0 ['encode1[0][0]', 'conv_transpose_decoder1[0][0]'] two_conv_decoder1 (Sequential) (None, None, 64) 31360 ['decoder1[0][0]'] conv_transpose_decoder0 (Seque (None, None, 32) 8352 ['two_conv_decoder1[0][0]'] ntial) decoder0 (Concatenate) (None, None, 48) 0 ['encode0[0][0]', 'conv_transpose_decoder0[0][0]'] two_conv_decoder0 (Sequential) (None, None, 32) 8000 ['decoder0[0][0]'] conv1d_14 (Conv1D) (None, None, 1) 33 ['two_conv_decoder0[0][0]'] ================================================================================================== Total params: 371,153 Trainable params: 368,849 Non-trainable params: 2,304 __________________________________________________________________________________________________ None ---------------------------------------- model: 484af471c61943fa90e5f78e78a229f0 ---------------------------------------- model: 0cd2023eeaf745aca0d3e8ad5e1fc653 WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. 2022-08-23 14:27:49,590 - build model - Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. Model: "unet_depth6" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, None, 1)] 0 [] encode0 (Sequential) (None, None, 23) 1886 ['input_1[0][0]'] mp_encode0 (MaxPooling1D) (None, None, 23) 0 ['encode0[0][0]'] encode1 (Sequential) (None, None, 46) 9982 ['mp_encode0[0][0]'] mp_encode1 (MaxPooling1D) (None, None, 46) 0 ['encode1[0][0]'] encode2 (Sequential) (None, None, 92) 39008 ['mp_encode1[0][0]'] mp_encode2 (MaxPooling1D) (None, None, 92) 0 ['encode2[0][0]'] encode3 (Sequential) (None, None, 184) 154192 ['mp_encode2[0][0]'] mp_encode3 (MaxPooling1D) (None, None, 184) 0 ['encode3[0][0]'] encode4 (Sequential) (None, None, 368) 613088 ['mp_encode3[0][0]'] mp_encode4 (MaxPooling1D) (None, None, 368) 0 ['encode4[0][0]'] encode5 (Sequential) (None, None, 512) 1356800 ['mp_encode4[0][0]'] mp_encode5 (MaxPooling1D) (None, None, 512) 0 ['encode5[0][0]'] two_conv_center (Sequential) (None, None, 1024) 4728832 ['mp_encode5[0][0]'] conv_transpose_decoder5 (Seque (None, None, 512) 2099712 ['two_conv_center[0][0]'] ntial) decoder5 (Concatenate) (None, None, 1024) 0 ['encode5[0][0]', 'conv_transpose_decoder5[0][0]'] two_conv_decoder5 (Sequential) (None, None, 512) 2364416 ['decoder5[0][0]'] conv_transpose_decoder4 (Seque (None, None, 512) 1051136 ['two_conv_decoder5[0][0]'] ntial) decoder4 (Concatenate) (None, None, 880) 0 ['encode4[0][0]', 'conv_transpose_decoder4[0][0]'] two_conv_decoder4 (Sequential) (None, None, 512) 2143232 ['decoder4[0][0]'] conv_transpose_decoder3 (Seque (None, None, 368) 755504 ['two_conv_decoder4[0][0]'] ntial) decoder3 (Concatenate) (None, None, 552) 0 ['encode3[0][0]', 'conv_transpose_decoder3[0][0]'] two_conv_decoder3 (Sequential) (None, None, 368) 1019360 ['decoder3[0][0]'] conv_transpose_decoder2 (Seque (None, None, 184) 271768 ['two_conv_decoder3[0][0]'] ntial) decoder2 (Concatenate) (None, None, 276) 0 ['encode2[0][0]', 'conv_transpose_decoder2[0][0]'] two_conv_decoder2 (Sequential) (None, None, 184) 255760 ['decoder2[0][0]'] conv_transpose_decoder1 (Seque (None, None, 92) 68172 ['two_conv_decoder2[0][0]'] ntial) decoder1 (Concatenate) (None, None, 138) 0 ['encode1[0][0]', 'conv_transpose_decoder1[0][0]'] two_conv_decoder1 (Sequential) (None, None, 92) 64400 ['decoder1[0][0]'] conv_transpose_decoder0 (Seque (None, None, 46) 17158 ['two_conv_decoder1[0][0]'] ntial) decoder0 (Concatenate) (None, None, 69) 0 ['encode0[0][0]', 'conv_transpose_decoder0[0][0]'] two_conv_decoder0 (Sequential) (None, None, 46) 16330 ['decoder0[0][0]'] conv1d_26 (Conv1D) (None, None, 1) 47 ['two_conv_decoder0[0][0]'] ================================================================================================== Total params: 17,030,783 Trainable params: 17,011,503 Non-trainable params: 19,280 __________________________________________________________________________________________________ None ---------------------------------------- model: fe81d71c52404ed790b3a32051258da9 ---------------------------------------- model: 19e3e786e1bc4e2b93856f5dc9de8216 ---------------------------------------- model: c1204e3a8a1e4c40a35b5b7b1922d1ce ----------------------------------------
- plot loss vs validation loss for models in hyperparameter training.
Unfortunately, this info was not saved out for the final runs due to a
misconfiguration in mlflow. So for the final runs print the final
train loss and validation loss
hparam = run1_2_my.loc[cond2 & cond3] hparam.rename(index=model_dict) fig, axs = plt.subplots(len(hparam), 2, facecolor='white', figsize=(9, len(hparam)*3), sharex=True, tight_layout=True) for i, idx in enumerate(hparam.index): for j in range(2): print(i, idx[j], model_dict[idx]) try: logged_val_loss = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/8/{idx[j]}/metrics/val_loss') logged_val_loss = !cat $logged_val_loss logged_val_loss = [i.split(' ') for i in logged_val_loss] logged_val_loss = pd.DataFrame(logged_val_loss, columns=['time', 'val_loss', 'epoch']).astype(float) logged_train_loss = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/8/{idx[j]}/metrics/loss') logged_train_loss = !cat $logged_train_loss logged_train_loss = [i.split(' ') for i in logged_train_loss] logged_train_loss = pd.DataFrame(logged_train_loss, columns=['time', 'train_loss', 'epoch']).astype(float) losses = pd.DataFrame([logged_train_loss.iloc[-1, 1], logged_val_loss.iloc[-1, 1]], index=['train loss', 'val loss'], columns=[f'{model_dict[idx]}_{j}']) display(losses) last_losses = pd.concat([last_losses, ]) sns.lineplot('epoch', 'train_loss', data=logged_train_loss, ax=axs[i, j], label='train loss') sns.lineplot('epoch', 'val_loss', data=logged_val_loss, ax=axs[i, j], label='val loss') if j == 0: axs[i, j].set_title(model_dict[idx]) except ValueError: pass plt.setp(axs, yscale='log', ylabel='') fig.align_ylabels(axs)
0 9051e32b87d84f3485b980067addec30 484af471c61943fa90e5f78e78a229f0
484af471c61943fa90e5f78e78a229f00 train loss 0.196100 val loss 0.199457 0 61ff87bdb89b4e2ba64f8dacc774992d 484af471c61943fa90e5f78e78a229f0
484af471c61943fa90e5f78e78a229f01 train loss 0.194301 val loss 0.197833 1 93b168c0ff7942c8a908a94129daf973 0cd2023eeaf745aca0d3e8ad5e1fc653
0cd2023eeaf745aca0d3e8ad5e1fc6530 train loss 0.245977 val loss 0.250499 1 f243b3b742de4dbcb7ccfbd4244706f8 0cd2023eeaf745aca0d3e8ad5e1fc653
0cd2023eeaf745aca0d3e8ad5e1fc6531 train loss 0.278278 val loss 0.283107 2 a5b8551144ff46e697a39cd1551e1475 fe81d71c52404ed790b3a32051258da9
fe81d71c52404ed790b3a32051258da90 train loss 0.185773 val loss 0.186789 2 98cf8cdef9c54b5286e277e75e2ab8c1 fe81d71c52404ed790b3a32051258da9
fe81d71c52404ed790b3a32051258da91 train loss 0.183874 val loss 0.184316 3 00f2635d9fa2463c9a066722163405be ff67be0b68e540a9a29a36a2d0c7a5be
ff67be0b68e540a9a29a36a2d0c7a5be0 train loss 0.172448 val loss 0.178439 3 d0a8e1748b194f3290d471b6b44f19f8 ff67be0b68e540a9a29a36a2d0c7a5be 4 5604d43c1ece461b8e6eaa0dfb65d6dc 19e3e786e1bc4e2b93856f5dc9de8216
19e3e786e1bc4e2b93856f5dc9de82160 train loss 0.250983 val loss 0.260167 4 3612536a77f34f22bc83d1d809140aa6 19e3e786e1bc4e2b93856f5dc9de8216
19e3e786e1bc4e2b93856f5dc9de82161 train loss 0.246347 val loss 0.242849 5 7cafab027cdd4fc9bf20a43e989df510 347669d050f344ad9fb9e480c814f727
347669d050f344ad9fb9e480c814f7270 train loss 0.194196 val loss 0.221606 5 16dff15d935f45e2a836b1f41b07b4e3 347669d050f344ad9fb9e480c814f727
347669d050f344ad9fb9e480c814f7271 train loss 0.196745 val loss 0.250257 6 0e328920e86049928202db95e8cfb7be c1204e3a8a1e4c40a35b5b7b1922d1ce
c1204e3a8a1e4c40a35b5b7b1922d1ce0 train loss 0.266620 val loss 0.279587 6 bf9d2725eb16462d9a101f0a077ce2b5 c1204e3a8a1e4c40a35b5b7b1922d1ce
c1204e3a8a1e4c40a35b5b7b1922d1ce1 train loss 0.262320 val loss 0.265113 7 1c954fbc02b747bc813c587ac703c74a 714af8cd12c1441eac4ca980e8c20070
714af8cd12c1441eac4ca980e8c200700 train loss 0.310728 val loss 0.317540 7 ba49a80c2616407a8f1fe1fd12096fe0 714af8cd12c1441eac4ca980e8c20070
714af8cd12c1441eac4ca980e8c200701 train loss 0.303487 val loss 0.340323 8 3cbd945b62ec4634839372e403f6f377 34a6d207ac594035b1009c330fb67a65
34a6d207ac594035b1009c330fb67a650 train loss 0.189994 val loss 0.249494 8 458b36a70db843719d202a8eda448f17 34a6d207ac594035b1009c330fb67a65
34a6d207ac594035b1009c330fb67a651 train loss 0.211194 val loss 0.239334
2.6.10 Experiment 2: Evaluate models on simulated test data
- go to correct folder, load modules
%cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
import datetime import logging import multipletau import os import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import tensorflow as tf from pathlib import Path from pprint import pprint from tensorflow.keras.optimizers import Adam from mlflow.keras import load_model FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import (corr_fit_object as cfo, correction, correlate) from fluotracify.imports import ptu_utils as ptu from fluotracify.training import (build_model as bm, preprocess_data as ppd) from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, ) logging.basicConfig(filename="/beegfs/ye53nis/drmed-git/data/exp-220227-unet/jupyter.log", format='%(asctime)s - %(message)s', filemode='w', force=True) log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind', context='paper') model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727', '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65', '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653', 'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216', 'c1204e3a8a1e4c40a35b5b7b1922d1ce'] model_name_ls = [f'{s:.5}' for s in model_ls] pred_thresh = 0.5
2022-08-24 10:31:45.084478: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-08-24 10:31:45.084513: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
import importlib importlib.reload(ppd) importlib.reload(cfo)
<module 'fluotracify.applications.corr_fit_object' from '/beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py'>
- Load test data from simulation experiments
col_per_example = 3 lab_thresh = 0.04 artifact = 0 model_type = 1 fwhm = 250 output_path = "/beegfs/ye53nis/drmed-git/data/exp-220227-unet/2022-04-22_simulations/" sim_path = Path('/beegfs/ye53nis/saves/firstartifact_Nov2020_test') sim, _, nsamples, sim_params = isfc.import_from_csv( folder=sim_path, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None) diffrates = sim_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32) nmols = sim_params.loc['number of fast molecules'].astype(np.float32) clusters = sim_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32) sim_columns = [f'{d:.4}-{c:.4}' for d, c in zip( np.repeat(diffrates, nsamples[0]), np.repeat(clusters, nsamples[0]))] sim_sep = isfc.separate_data_and_labels(array=sim, nsamples=nsamples, col_per_example=col_per_example) sim_dirty = sim_sep['0'] sim_dirty.columns = sim_columns sim_labels = sim_sep['1'] sim_labels.columns = sim_columns sim_labbool = sim_labels > lab_thresh sim_labbool.columns = sim_columns sim_clean = sim_sep['2'] sim_clean.columns = sim_columns sim_dirty
0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 … 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0 395.062347 542.019287 259.171783 378.006470 672.683350 422.525299 435.934174 535.840027 341.197662 546.919556 … 1194.309570 1331.900391 1614.625854 1096.244019 5350.819336 1109.356201 1231.328979 2721.381592 1671.956787 1572.913452 1 395.732605 676.451477 263.082733 365.738861 672.841858 436.986450 408.519165 578.790833 357.324097 518.666321 … 1226.035278 1348.827026 1727.460327 1040.826294 5548.753418 1241.292969 1197.370972 2785.768066 1749.072510 1544.390259 2 385.598785 565.850403 258.483124 350.939362 680.929993 416.969391 408.744873 572.143921 350.399933 546.654846 … 1236.471436 1323.095703 1817.804810 949.081665 5418.844727 1285.566650 1229.268799 2961.105225 1643.184204 1486.991211 3 375.055664 569.737793 252.117035 364.043427 651.953247 449.630371 390.186218 521.915283 366.314545 534.204285 … 1192.580566 1219.429932 1844.903687 888.757324 5756.974121 1303.747803 1190.227539 3127.305664 1713.993042 1427.290771 4 400.554443 590.014893 241.840240 376.104645 681.107056 466.177185 380.395752 531.094727 370.980286 537.930359 … 1168.627441 1194.065186 1756.768799 887.986389 5481.615234 1324.906250 1268.030762 2997.608887 1744.911865 1426.806763 … … … … … … … … … … … … … … … … … … … … … … 16379 433.562714 624.462646 643.004944 518.733643 563.566589 578.520813 348.858429 330.541473 9484.205078 376.017700 … 1352.349854 1400.204102 2025.719604 934.456665 2333.292725 1499.182251 1344.230347 1172.255371 1347.495239 756.805908 16380 462.284454 616.137512 597.266296 487.652924 572.072327 612.569275 328.044495 331.003693 8237.546875 373.477081 … 1305.663696 1453.817993 1847.917114 1012.087402 2349.776611 1498.571411 1446.490479 1191.984253 1482.415894 712.499878 16381 472.551483 612.926758 615.009460 516.941528 579.562378 624.847717 308.531097 308.009369 2722.457275 352.414612 … 1384.178711 1428.226440 1641.537109 975.000366 2291.302734 1541.471436 1334.644897 1173.113770 1520.151367 587.645203 16382 486.679413 637.962769 616.344116 502.372345 593.559937 673.262634 307.834229 322.522400 2823.112305 336.442596 … 1258.534058 1423.324341 1560.817139 1023.877014 2185.760742 1455.700928 1387.281250 1124.065552 1572.194336 618.202820 16383 489.893646 614.733704 614.638000 511.408234 595.268982 673.656921 318.466736 305.981110 1768.038330 361.107300 … 1114.534912 1386.146484 1548.830078 1009.011658 2117.508789 1569.905518 1396.511353 1070.131104 1602.530029 654.377380 16384 rows × 3000 columns
dataset_test, num_test_examples = ppd.tfds_from_pddf( features_df=sim_dirty, labels_df=sim_labbool, frac_val=False) dataset_test
2022-08-23 13:50:29.331909: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-08-23 13:50:29.331967: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-08-23 13:50:29.331995: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node100): /proc/driver/nvidia/version does not exist 2022-08-23 13:50:29.332353: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. <MapDataset element_spec=(TensorSpec(shape=(16384, 1), dtype=tf.float32, name=None), TensorSpec(shape=(16384, 1), dtype=tf.float32, name=None))>
- now apply each model to the held-out test dataset and evaluate prediction
performance. We also get info on the inference time in total and for each
step.
eva = pd.DataFrame() for i in model_ls: logged_scaler = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{i}/params/scaler') logged_scaler = !cat $logged_scaler logged_scaler = logged_scaler[0] logged_model = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{i}/artifacts/model') logged_model = load_model(logged_model, compile=False) logged_model.compile(loss=bm.binary_ce_dice_loss(), optimizer=Adam(), metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9])) dataset = dataset_test.map( lambda trace, label: ppd.tfds_scale_trace_and_label(trace, label, logged_scaler), num_parallel_calls=tf.data.AUTOTUNE) dataset = dataset.map( ppd.tfds_pad_trace_and_label, num_parallel_calls=tf.data.AUTOTUNE) dataset = dataset.batch(1) print(f'model: {i}') eva_new = logged_model.evaluate(dataset, verbose=2, return_dict=True) eva_new = pd.DataFrame(eva_new.values(), index=eva_new.keys(), columns=[f'{i}']) eva = pd.concat([eva, eva_new], axis='columns') print('----------------------------------------')
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. model: ff67be0b68e540a9a29a36a2d0c7a5be 3000/3000 - 47s - loss: 0.1929 - tp0.1: 7216054.0000 - fp0.1: 1445349.0000 - tn0.1: 40150456.0000 - fn0.1: 340179.0000 - precision0.1: 0.8331 - recall0.1: 0.9550 - tp0.3: 7068737.0000 - fp0.3: 874006.0000 - tn0.3: 40721760.0000 - fn0.3: 487496.0000 - precision0.3: 0.8900 - recall0.3: 0.9355 - tp0.5: 6879515.0000 - fp0.5: 517256.0000 - tn0.5: 41078488.0000 - fn0.5: 676718.0000 - precision0.5: 0.9301 - recall0.5: 0.9104 - tp0.7: 6640601.0000 - fp0.7: 285835.0000 - tn0.7: 41309920.0000 - fn0.7: 915632.0000 - precision0.7: 0.9587 - recall0.7: 0.8788 - tp0.9: 6140071.0000 - fp0.9: 88637.0000 - tn0.9: 41507120.0000 - fn0.9: 1416162.0000 - precision0.9: 0.9858 - recall0.9: 0.8126 - accuracy: 0.9757 - auc: 0.9756 - f1: 0.9202 - 47s/epoch - 16ms/step ---------------------------------------- WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. model: 347669d050f344ad9fb9e480c814f727
- we get
run1_2_my
with a summary of the best hyperparameter training runs from the code block#+CALL: get-hparam-comparison()
. This assigns among others the variablesrun1_2_my
,cond2
,cond3
Run ID: valauc valrecall0.5 valprecision0.5 hpbatchsize hpfirstfilters hpinputsize hplrpower hplrstart hpnlevels hppoolsize hpscaler (9051e32b87d84f3485b980067addec30, 61ff87bdb89b4e2ba64f8dacc774992d) 0.981 0.8975 0.918 26 44 16384 1 0.0136170138242663 7 2 standard (93b168c0ff7942c8a908a94129daf973, f243b3b742de4dbcb7ccfbd4244706f8) 0.976 0.893 0.852 15 23 16384 7 0.0305060808685107 6 4 quantg (a5b8551144ff46e697a39cd1551e1475, 98cf8cdef9c54b5286e277e75e2ab8c1) 0.984 0.916 0.909 20 78 16384 4 0.0584071108418767 4 4 standard (00f2635d9fa2463c9a066722163405be, d0a8e1748b194f3290d471b6b44f19f8) 0.987 0.929 0.9065 28 6 16384 1 0.0553313915596308 5 4 minmax (5604d43c1ece461b8e6eaa0dfb65d6dc, 3612536a77f34f22bc83d1d809140aa6) 0.9745 0.885 0.8985 20 128 16384 1 0.043549707353273 3 4 standard (7cafab027cdd4fc9bf20a43e989df510, 16dff15d935f45e2a836b1f41b07b4e3) 0.978 0.8905 0.891 10 16 8192 1 0.0627676336651573 5 4 robust (0e328920e86049928202db95e8cfb7be, bf9d2725eb16462d9a101f0a077ce2b5) 0.976 0.875 0.888 14 16 16384 5 0.0192390310290551 9 2 robust (1c954fbc02b747bc813c587ac703c74a, ba49a80c2616407a8f1fe1fd12096fe0) 0.962 0.856 0.8585 17 16 16384 5 0.0101590069352232 3 4 l2 (3cbd945b62ec4634839372e403f6f377, 458b36a70db843719d202a8eda448f17) 0.972 0.872 0.9135 9 64 4096 1 0.0100697459464075 5 4 maxabs - now get hparams and metrics from final trained models. Inference times
and model sizes are transferred by hand from the evaluation results.
model_dict = { ('9051e32b87d84f3485b980067addec30', '61ff87bdb89b4e2ba64f8dacc774992d') : '484af471c61943fa90e5f78e78a229f0', ('93b168c0ff7942c8a908a94129daf973', 'f243b3b742de4dbcb7ccfbd4244706f8') : '0cd2023eeaf745aca0d3e8ad5e1fc653', ('a5b8551144ff46e697a39cd1551e1475', '98cf8cdef9c54b5286e277e75e2ab8c1') : 'fe81d71c52404ed790b3a32051258da9', ('00f2635d9fa2463c9a066722163405be', 'd0a8e1748b194f3290d471b6b44f19f8') : 'ff67be0b68e540a9a29a36a2d0c7a5be', ('5604d43c1ece461b8e6eaa0dfb65d6dc', '3612536a77f34f22bc83d1d809140aa6') : '19e3e786e1bc4e2b93856f5dc9de8216', ('7cafab027cdd4fc9bf20a43e989df510', '16dff15d935f45e2a836b1f41b07b4e3') : '347669d050f344ad9fb9e480c814f727', ('0e328920e86049928202db95e8cfb7be', 'bf9d2725eb16462d9a101f0a077ce2b5') : 'c1204e3a8a1e4c40a35b5b7b1922d1ce', ('1c954fbc02b747bc813c587ac703c74a', 'ba49a80c2616407a8f1fe1fd12096fe0') : '714af8cd12c1441eac4ca980e8c20070', ('3cbd945b62ec4634839372e403f6f377', '458b36a70db843719d202a8eda448f17') : '34a6d207ac594035b1009c330fb67a65'} inference = pd.DataFrame([['42s', '14ms', '275 MB'], ['65s', '22ms', '200 MB'], ['201s', '67ms', '186 MB'], ['45s', '15ms', '14 MB'], ['370s', '123ms', '172 MB'], ['95s', '32ms', '73 MB'], ['230s', '77ms', '312 MB'], ['361s', '120ms', '234 MB'], ['230s', '77ms', '7 MB']], columns=['HPC inference time (whole test dataset)', 'HPC inference time (one trace)', 'Model size'], index=['484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653', 'fe81d71c52404ed790b3a32051258da9', 'ff67be0b68e540a9a29a36a2d0c7a5be', '19e3e786e1bc4e2b93856f5dc9de8216', '347669d050f344ad9fb9e480c814f727', 'c1204e3a8a1e4c40a35b5b7b1922d1ce', '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65']).T evaluation = pd.concat([eva, inference], axis='index') index = [f'test {e}' for e in evaluation.index] evaluation.index = index training = run1_2_my.loc[cond2 & cond3] training = training.rename(index=model_dict).T final = pd.concat([training, evaluation]) final.to_csv('data/exp-220227-unet/mlflow/2022-08-23_all-models.csv')
484af471c61943fa90e5f78e78a229f0 0cd2023eeaf745aca0d3e8ad5e1fc653 fe81d71c52404ed790b3a32051258da9 ff67be0b68e540a9a29a36a2d0c7a5be 19e3e786e1bc4e2b93856f5dc9de8216 347669d050f344ad9fb9e480c814f727 c1204e3a8a1e4c40a35b5b7b1922d1ce 714af8cd12c1441eac4ca980e8c20070 34a6d207ac594035b1009c330fb67a65 valauc 0.981 0.976 0.984 0.987 0.9745 0.978 0.976 0.962 0.972 valrecall0.5 0.8975 0.893 0.916 0.929 0.885 0.8905 0.875 0.856 0.872 valprecision0.5 0.918 0.852 0.909 0.9065 0.8985 0.891 0.888 0.8585 0.9135 hpbatchsize 26 15 20 28 20 10 14 17 9 hpfirstfilters 44 23 78 6 128 16 16 16 64 hpinputsize 16384 16384 16384 16384 16384 8192 16384 16384 4096 hplrpower 1 7 4 1 1 1 5 5 1 hplrstart 0.0136170138242663 0.0305060808685107 0.0584071108418767 0.0553313915596308 0.043549707353273 0.0627676336651573 0.0192390310290551 0.0101590069352232 0.0100697459464075 hpnlevels 7 6 4 5 3 5 9 3 5 hppoolsize 2 4 4 4 4 4 2 4 4 hpscaler standard quantg standard minmax standard robust robust l2 maxabs test loss 0.228701 0.291168 0.207543 0.192903 0.39377 0.289283 0.264141 0.18674 0.318487 test tp0.1 7120162.0 7030956.0 7195616.0 7216054.0 6702946.0 6968717.0 7094671.0 7191122.0 6898118.0 test fp0.1 1418863.0 1944947.0 1635920.0 1445349.0 1573303.0 1346502.0 1783490.0 1089514.0 1865476.0 test tn0.1 40176900.0 39650840.0 39959820.0 40150456.0 40022456.0 40249248.0 39812172.0 40506272.0 39730280.0 test fn0.1 436071.0 525277.0 360617.0 340179.0 853287.0 587516.0 461562.0 365111.0 658115.0 test precision0.1 0.833838 0.783315 0.814764 0.833128 0.809901 0.838068 0.799115 0.868426 0.787133 test recall0.1 0.94229 0.930484 0.952276 0.95498 0.887075 0.922248 0.938916 0.951681 0.912904 test tp0.3 6967838.0 6780626.0 7057588.0 7068737.0 6536047.0 6749402.0 6893942.0 7062843.0 6565790.0 test fp0.3 864351.0 1063352.0 1032334.0 874006.0 1023316.0 704964.0 923800.0 687977.0 850301.0 test tn0.3 40731400.0 40532408.0 40563420.0 40721760.0 40572400.0 40890776.0 40671944.0 40907784.0 40745504.0 test fn0.3 588395.0 775607.0 498645.0 487496.0 1020186.0 806831.0 662291.0 493390.0 990443.0 test precision0.3 0.889641 0.864437 0.872393 0.889962 0.864629 0.905429 0.881833 0.911238 0.885344 test recall0.3 0.922131 0.897355 0.934009 0.935484 0.864987 0.893223 0.912352 0.934704 0.868924 test tp0.5 6806719.0 6547596.0 6873409.0 6879515.0 6381884.0 6514890.0 6657803.0 6907934.0 6236955.0 test fp0.5 561522.0 671113.0 627857.0 517256.0 718562.0 394738.0 506659.0 432424.0 431128.0 test tn0.5 41034252.0 40924664.0 40967908.0 41078488.0 40877184.0 41201060.0 41089052.0 41163320.0 41164680.0 test fn0.5 749514.0 1008637.0 682824.0 676718.0 1174349.0 1041343.0 898430.0 648299.0 1319278.0 test precision0.5 0.923792 0.907031 0.9163 0.93007 0.8988 0.942871 0.929282 0.94109 0.935345 test recall0.5 0.900809 0.866516 0.909634 0.910442 0.844585 0.862188 0.881101 0.914203 0.825405 test tp0.7 6576475.0 6228335.0 6630207.0 6640601.0 6136998.0 6185431.0 6321268.0 6663553.0 5823676.0 test fp0.7 327204.0 381447.0 350175.0 285835.0 446064.0 178898.0 240152.0 227729.0 194655.0 test tn0.7 41268520.0 41214264.0 41245624.0 41309920.0 41149748.0 41416908.0 41355624.0 41368048.0 41401160.0 test fn0.7 979758.0 1327898.0 926026.0 915632.0 1419235.0 1370802.0 1234965.0 892680.0 1732557.0 test precision0.7 0.952604 0.942291 0.949834 0.958733 0.932241 0.971891 0.963399 0.966954 0.967656 test recall0.7 0.870338 0.824265 0.877449 0.878824 0.812177 0.818587 0.836563 0.881862 0.770712 test tp0.9 6102547.0 5564160.0 6120144.0 6140071.0 5641558.0 5650455.0 5713166.0 6190425.0 5096155.0 test fp0.9 119229.0 132517.0 115037.0 88637.0 190273.0 48800.0 64046.0 69867.0 44052.0 test tn0.9 41476596.0 41463236.0 41480668.0 41507120.0 41405512.0 41546992.0 41531720.0 41525924.0 41551772.0 test fn0.9 1453686.0 1992073.0 1436089.0 1416162.0 1914675.0 1905778.0 1843067.0 1365808.0 2460078.0 test precision0.9 0.980837 0.976738 0.98155 0.98577 0.967373 0.991437 0.988914 0.98884 0.99143 test recall0.9 0.807618 0.736367 0.809946 0.812584 0.74661 0.747787 0.756087 0.819247 0.674431 test accuracy 0.973328 0.965825 0.973334 0.975708 0.961488 0.970784 0.971414 0.978012 0.964389 test auc 0.968705 0.961385 0.973758 0.975623 0.939052 0.95903 0.966802 0.974297 0.953582 test f1 0.912155 0.886311 0.912955 0.920152 0.87085 0.900726 0.90455 0.927452 0.876943 test HPC inference time (whole test dataset) 42s 65s 201s 45s 370s 95s 230s 361s 230s test HPC inference time (one trace) 14ms 22ms 67ms 15ms 123ms 32ms 77ms 120ms 77ms test Model size 275 MB 200 MB 186 MB 14 MB 172 MB 73 MB 312 MB 234 MB 7 MB - for the final data we only take recall, precision, and f1 at a 0.5
prediction threshold.
final.loc[['val_auc', 'test auc', 'val_recall0.5', 'test recall0.5', 'val_precision0.5', 'test precision0.5', 'test f1', 'hp_batch_size', 'hp_input_size', 'hp_lr_power', 'hp_lr_start', 'hp_n_levels', 'hp_pool_size', 'hp_scaler', 'test HPC inference time (whole test dataset)', 'test HPC inference time (one trace)', 'test Model size']]
0cd2023eeaf745aca0d3e8ad5e1fc653 ff67be0b68e540a9a29a36a2d0c7a5be 484af471c61943fa90e5f78e78a229f0 fe81d71c52404ed790b3a32051258da9 19e3e786e1bc4e2b93856f5dc9de8216 347669d050f344ad9fb9e480c814f727 c1204e3a8a1e4c40a35b5b7b1922d1ce 714af8cd12c1441eac4ca980e8c20070 34a6d207ac594035b1009c330fb67a65 valauc 0.976 0.987 0.981 0.984 0.9745 0.978 0.976 0.962 0.972 test auc 0.961385 0.975623 0.968705 0.973758 0.939052 0.95903 0.966802 0.974297 0.953582 valrecall0.5 0.893 0.929 0.8975 0.916 0.885 0.8905 0.875 0.856 0.872 test recall0.5 0.866516 0.910442 0.900809 0.909634 0.844585 0.862188 0.881101 0.914203 0.825405 valprecision0.5 0.852 0.9065 0.918 0.909 0.8985 0.891 0.888 0.8585 0.9135 test precision0.5 0.907031 0.93007 0.923792 0.9163 0.8988 0.942871 0.929282 0.94109 0.935345 test f1 0.886311 0.920152 0.912155 0.912955 0.87085 0.900726 0.90455 0.927452 0.876943 hpbatchsize 15 28 26 20 20 10 14 17 9 hpinputsize 16384 16384 16384 16384 16384 8192 16384 16384 4096 hplrpower 7 1 1 4 1 1 5 5 1 hplrstart 0.0305060808685107 0.0553313915596308 0.0136170138242663 0.0584071108418767 0.043549707353273 0.0627676336651573 0.0192390310290551 0.0101590069352232 0.0100697459464075 hpnlevels 6 5 7 4 3 5 9 3 5 hppoolsize 4 4 2 4 4 4 2 4 4 hpscaler quantg minmax standard standard standard robust robust l2 maxabs test HPC inference time (whole test dataset) 65s 45s 42s 201s 370s 95s 230s 361s 230s test HPC inference time (one trace) 22ms 15ms 14ms 67ms 123ms 32ms 77ms 120ms 77ms test Model size 200 MB 14 MB 275 MB 186 MB 172 MB 73 MB 312 MB 234 MB 7 MB - load held-out test data from simulation.
col_per_example = 3 lab_thresh = 0.04 artifact = 0 model_type = 1 fwhm = 250 output_path = "/beegfs/ye53nis/drmed-git/data/exp-220227-unet/2022-04-25_simulations/" sim_path = Path('/beegfs/ye53nis/saves/firstartifact_Nov2020_test') sim, _, nsamples, sim_params = isfc.import_from_csv( folder=sim_path, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None) diffrates = sim_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32) nmols = sim_params.loc['number of fast molecules'].astype(np.float32) clusters = sim_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32) sim_columns = [f'{d:.4}-{c:.4}' for d, c in zip( np.repeat(diffrates, nsamples[0]), np.repeat(clusters, nsamples[0]))] sim_columns_idx = ['50.0-0.01', '50.0-0.1', '50.0-1.0', '0.2-0.01', '0.2-0.1', '0.2-1.0', '0.069-0.01', '0.069-0.1', '0.069-1.0'] sim_columns_txt = ['fast molecules and slow clusters:\nsimulations', 'fast molecules and medium clusters:\nsimulations', 'fast molecules and fast clusters:\nsimulations', 'medium molecules and slow clusters:\nsimulations', 'medium molecules and medium clusters:\nsimulations', 'medium molecules and fast clusters:\nsimulations', 'slow molecules and slow clusters:\nsimulations', 'slow molecules and medium clusters:\nsimulations', 'slow molecules and fast clusters:\nsimulations'] sim_sep = isfc.separate_data_and_labels(array=sim, nsamples=nsamples, col_per_example=col_per_example) sim_dirty = sim_sep['0'] sim_dirty.columns = sim_columns sim_labels = sim_sep['1'] sim_labels.columns = sim_columns sim_labbool = sim_labels > lab_thresh sim_labbool.columns = sim_columns sim_clean = sim_sep['2'] sim_clean.columns = sim_columns sim_dirty
2022-04-25 11:32:12,435 - 1/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/1.0/traces_brightclust_Nov2020_D0.069_set010.csv 2022-04-25 11:32:15,346 - 2/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/0.1/traces_brightclust_Nov2020_D50_set003.csv 2022-04-25 11:32:18,091 - 3/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/0.1/traces_brightclust_Nov2020_D0.4_set001.csv 2022-04-25 11:32:21,085 - 4/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/0.1/traces_brightclust_Nov2020_D0.2_set007.csv 2022-04-25 11:32:23,781 - 5/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/1.0/traces_brightclust_Nov2020_D3.0_set002.csv 2022-04-25 11:32:26,490 - 6/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/0.01/traces_brightclust_Nov2020_D3.0_set004.csv 2022-04-25 11:32:29,216 - 7/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/0.01/traces_brightclust_Nov2020_D50_set002.csv 2022-04-25 11:32:32,164 - 8/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/1.0/traces_brightclust_Nov2020_D0.2_set005.csv 2022-04-25 11:32:35,219 - 9/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/1.0/traces_brightclust_Nov2020_D0.6_set009.csv 2022-04-25 11:32:38,070 - 10/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/0.1/traces_brightclust_Nov2020_D10_set001.csv2022-04-25 11:32:40,862 - 11/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/1.0/traces_brightclust_Nov2020_D0.08_set001.csv 2022-04-25 11:32:44,030 - 12/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/0.1/traces_brightclust_Nov2020_D0.6_set003.csv 2022-04-25 11:32:46,779 - 13/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/1.0/traces_brightclust_Nov2020_D0.1_set001.csv 2022-04-25 11:32:49,564 - 14/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/1.0/traces_brightclust_Nov2020_D0.4_set005.csv 2022-04-25 11:32:52,553 - 15/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/1.0/traces_brightclust_Nov2020_D10_set005.csv 2022-04-25 11:32:55,473 - 16/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/1.0/traces_brightclust_Nov2020_D1.0_set005.csv 2022-04-25 11:32:58,258 - 17/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/0.1/traces_brightclust_Nov2020_D0.069_set001.csv 2022-04-25 11:33:01,043 - 18/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/50/1.0/traces_brightclust_Nov2020_D50_set001.csv 2022-04-25 11:33:03,986 - 19/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/0.01/traces_brightclust_Nov2020_D0.1_set002.csv 2022-04-25 11:33:06,905 - 20/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/0.1/traces_brightclust_Nov2020_D0.08_set003.csv 2022-04-25 11:33:10,236 - 21/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/0.01/traces_brightclust_Nov2020_D1.0_set006.csv 2022-04-25 11:33:12,972 - 22/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/1.0/0.1/traces_brightclust_Nov2020_D1.0_set003.csv 2022-04-25 11:33:15,879 - 23/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.2/0.01/traces_brightclust_Nov2020_D0.2_set002.csv 2022-04-25 11:33:18,677 - 24/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.1/0.1/traces_brightclust_Nov2020_D0.1_set005.csv 2022-04-25 11:33:21,515 - 25/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/3.0/0.1/traces_brightclust_Nov2020_D3.0_set007.csv 2022-04-25 11:33:24,287 - 26/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.08/0.01/traces_brightclust_Nov2020_D0.08_set005.csv 2022-04-25 11:33:27,293 - 27/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.069/0.01/traces_brightclust_Nov2020_D0.069_set005.csv 2022-04-25 11:33:30,137 - 28/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/10/0.01/traces_brightclust_Nov2020_D10_set002.csv 2022-04-25 11:33:32,952 - 29/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.6/0.01/traces_brightclust_Nov2020_D0.6_set008.csv 2022-04-25 11:33:35,872 - 30/30: /beegfs/ye53nis/saves/firstartifact_Nov2020_test/0.4/0.01/traces_brightclust_Nov2020_D0.4_set008.csv 2022-04-25 11:33:36,060 - The given DataFrame was split into 3 parts with shapes: [(16384, 3000), (16384, 3000), (16384, 3000)]
0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 0.069-1.0 … 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0.4-0.01 0 395.062347 542.019287 259.171783 378.006470 672.683350 422.525299 435.934174 535.840027 341.197662 546.919556 … 1194.309570 1331.900391 1614.625854 1096.244019 5350.819336 1109.356201 1231.328979 2721.381592 1671.956787 1572.913452 1 395.732605 676.451477 263.082733 365.738861 672.841858 436.986450 408.519165 578.790833 357.324097 518.666321 … 1226.035278 1348.827026 1727.460327 1040.826294 5548.753418 1241.292969 1197.370972 2785.768066 1749.072510 1544.390259 2 385.598785 565.850403 258.483124 350.939362 680.929993 416.969391 408.744873 572.143921 350.399933 546.654846 … 1236.471436 1323.095703 1817.804810 949.081665 5418.844727 1285.566650 1229.268799 2961.105225 1643.184204 1486.991211 3 375.055664 569.737793 252.117035 364.043427 651.953247 449.630371 390.186218 521.915283 366.314545 534.204285 … 1192.580566 1219.429932 1844.903687 888.757324 5756.974121 1303.747803 1190.227539 3127.305664 1713.993042 1427.290771 4 400.554443 590.014893 241.840240 376.104645 681.107056 466.177185 380.395752 531.094727 370.980286 537.930359 … 1168.627441 1194.065186 1756.768799 887.986389 5481.615234 1324.906250 1268.030762 2997.608887 1744.911865 1426.806763 … … … … … … … … … … … … … … … … … … … … … … 16379 433.562714 624.462646 643.004944 518.733643 563.566589 578.520813 348.858429 330.541473 9484.205078 376.017700 … 1352.349854 1400.204102 2025.719604 934.456665 2333.292725 1499.182251 1344.230347 1172.255371 1347.495239 756.805908 16380 462.284454 616.137512 597.266296 487.652924 572.072327 612.569275 328.044495 331.003693 8237.546875 373.477081 … 1305.663696 1453.817993 1847.917114 1012.087402 2349.776611 1498.571411 1446.490479 1191.984253 1482.415894 712.499878 16381 472.551483 612.926758 615.009460 516.941528 579.562378 624.847717 308.531097 308.009369 2722.457275 352.414612 … 1384.178711 1428.226440 1641.537109 975.000366 2291.302734 1541.471436 1334.644897 1173.113770 1520.151367 587.645203 16382 486.679413 637.962769 616.344116 502.372345 593.559937 673.262634 307.834229 322.522400 2823.112305 336.442596 … 1258.534058 1423.324341 1560.817139 1023.877014 2185.760742 1455.700928 1387.281250 1124.065552 1572.194336 618.202820 16383 489.893646 614.733704 614.638000 511.408234 595.268982 673.656921 318.466736 305.981110 1768.038330 361.107300 … 1114.534912 1386.146484 1548.830078 1009.011658 2117.508789 1569.905518 1396.511353 1070.131104 1602.530029 654.377380 16384 rows × 3000 columns
- save correlations before correction, then load each model, predict
artifacts, and correct it with the
delete and shift
method, which we later renamedcut and stitch
, then fit the correlations with Dominic Waithe’sfocuspoint
# before correction correlate.correlate_timetrace_and_save( df=sim_dirty, out_path="/beegfs/ye53nis/drmed-git/data/exp-220227-unet/2022-04-25_simulations/", txt='dirty') for mid, mname in enumerate(model_name_ls): logged_scaler = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{model_ls[model_id]}/params/scaler') logged_scaler = !cat $logged_scaler logged_scaler = logged_scaler[0] logged_model = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{model_ls[model_id]}/artifacts/model') logged_model = load_model(logged_model, compile=False) logged_model.compile(loss=bm.binary_ce_dice_loss(), optimizer=Adam(), metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9])) ans.predict_correct_correlate_simulations( sim_df=sim_dirty, model=logged_model, scaler=logged_scaler, out_path="/beegfs/ye53nis/drmed-git/data/exp-220227-unet/2022-04-25_simulations/", txt=mname)
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- we then fitted the data with Dominic Waithe’s
focuspoint
. - One thing I realized later, is that fit results from all curves with simulated diffusion coefficients of \(10\) and \(50 \mu m^2/s\) were not comparable, because the time step size of \(1ms\) of these traces was not fine enough (\(10\mu m^2/s \propto 1.1ms\)). It was still useful to simulate them for training the model.
- for the final paper, we only compared three different times: \(\{0.069, 0.2, 3.0\}\mu m^2 s^{-1}\)
2.6.11 Analysis 2: correct simulated test data
2.6.11.1 illustrative plots
- call
#+CALL: jupyter-set-output-directory()
./data/exp-220227-unet/jupyter
- load modules
%cd ~/Programme/drmed-git import logging import os import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from mlflow.keras import load_model from pathlib import Path from pprint import pprint from sklearn.preprocessing import MaxAbsScaler from tensorflow.keras.optimizers import Adam FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import corr_fit_object as cfo from fluotracify.imports import ptu_utils as ptu from fluotracify.training import (build_model as bm, preprocess_data as ppd) from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, ) logging.basicConfig(filename="/home/lex/Programme/drmed-git/data/exp-220227-unet/jupyter.log", filemode='w', format='%(asctime)s - %(message)s', force=True, level=logging.DEBUG) sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind', context='paper') model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727', '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65', '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653', 'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216', 'c1204e3a8a1e4c40a35b5b7b1922d1ce'] model_name_ls = [f'{s:.5}' for s in model_ls] pred_thresh = 0.5
/home/lex/Programme/drmed-git
- load simulated data
col_per_example = 3 lab_thresh = 0.04 artifact = 0 model_type = 1 fwhm = 250 sim_path = Path('/home/lex/Programme/drmed-collections/drmed-simexps/firstartifact_Nov2020_test') sim, _, nsamples, sim_params = isfc.import_from_csv( folder=sim_path, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None) diffrates = sim_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32) nmols = sim_params.loc['number of fast molecules'].astype(np.float32) clusters = sim_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32) sim_columns = [f'{d:.4}-{c:.4}' for d, c in zip( np.repeat(diffrates, nsamples[0]), np.repeat(clusters, nsamples[0]))] sim_sep = isfc.separate_data_and_labels(array=sim, nsamples=nsamples, col_per_example=col_per_example) sim_dirty = sim_sep['0'] sim_dirty.columns = sim_columns sim_labels = sim_sep['1'] sim_labels.columns = sim_columns sim_labbool = sim_labels > lab_thresh sim_labbool.columns = sim_columns sim_clean = sim_sep['2'] sim_clean.columns = sim_columns sim_dirty
0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 … 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 0 1187.467896 907.677734 480.048798 454.669403 466.063232 384.734467 543.981323 640.921509 795.946167 410.471893 … 1897.398193 2279.646484 3088.531006 2034.432495 2187.548584 2105.736084 1789.366577 2023.093994 2331.185791 2185.028076 1 1184.055176 945.760315 471.065216 458.392487 473.306152 395.165527 558.603088 622.421204 776.199402 409.149170 … 1499.969849 2199.652100 3207.333008 1650.523926 2122.935791 2791.281006 1661.286377 1111.879761 1853.699585 1926.844971 2 1191.848877 980.117798 459.479706 426.087982 482.370209 425.123413 551.536072 624.498535 778.671265 400.971954 … 1822.985229 2456.422607 2969.562500 1934.118286 1457.731812 2251.077393 1903.003662 2063.915527 2198.018066 2038.683105 3 1199.065918 974.313110 462.205566 444.041809 463.703125 434.186615 573.044128 626.252502 747.284058 393.178162 … 1741.839355 2467.149414 2588.980957 2136.627686 1930.263672 2323.700684 2133.313721 1638.169312 1926.058716 1815.259521 4 1221.957397 968.779175 464.918030 455.205292 474.615540 437.029419 586.489136 619.319092 781.954102 406.468018 … 2431.400879 2246.336670 3000.961182 1915.518066 2052.773682 2359.145508 1699.926147 1862.709595 2291.338379 1332.422241 … … … … … … … … … … … … … … … … … … … … … … 16379 506.409668 1012.403931 855.006226 674.470703 769.859192 2110.732178 799.565247 1981.221436 528.844604 483.055878 … 1512.586548 3212.712891 1491.119995 1843.866943 1748.956665 2048.602051 1662.244385 2593.879639 1921.427856 1664.831909 16380 536.809692 1022.029724 840.287720 671.095215 738.908997 2118.984863 807.995789 2624.343262 552.687012 479.768372 … 1661.331055 3190.809570 1770.193970 2081.854248 2164.372803 2295.646729 1846.683594 2038.272339 2222.708252 2122.753662 16381 570.668884 989.891235 839.180298 689.863586 695.739136 2033.681885 786.547852 3528.163574 572.166077 484.491211 … 1643.470337 2564.206787 2025.219971 2104.706787 1792.828613 2106.199463 2087.914062 1457.817871 1874.736938 1683.072021 16382 562.505310 977.029785 1005.927673 683.250183 661.608337 2566.123047 805.594116 3731.086426 566.710571 489.289673 … 1556.492188 2783.619385 1312.174561 2378.643311 2466.965576 2160.641357 1691.332520 2013.095093 1632.475708 1352.443237 16383 567.307373 1006.794067 982.376526 677.099854 657.040588 2545.080322 784.917969 3850.334717 570.241699 512.688232 … 2127.414551 2448.062012 1398.359253 1665.321167 2241.687256 1823.699829 1340.686035 1972.661743 1550.770142 1727.808228 16384 rows × 1500 columns
- define plotting functions
plot1_index = ['3.0-0.01', '3.0-0.1', '3.0-1.0', '0.2-0.01', '0.2-0.1', '0.2-1.0', '0.069-0.01', '0.069-0.1', '0.069-1.0'] plot1_traceno = [1, 1, 0, 5, 0, 0, 1, 1, 0] def get_tt(dr): dr = dr.removesuffix('-0.01').removesuffix('-0.1').removesuffix('-1.0') dr = float(dr) tt, _ = ans.convert_diffcoeff_to_transittimes(dr, 250) return f'\nsimulated trace\n$\\tau_{{sim}}={tt:.2f}ms$' def save_plot(filename, txt): plot_file = f'{filename}_{txt}'.replace(' ', '_').replace( '\n', '_').replace('"', '').replace('{', '').replace( '}', '').replace('$', '').replace('=', '-').replace('\\', '') plt.savefig(f'{plot_file}.pdf', bbox_inches='tight', dpi=300) os.system(f'pdf2svg {plot_file}.pdf {plot_file}.svg') os.system(f'rm {plot_file}.pdf') def plot_predictions(model_id, filename): def plot_cluster_prediction(filename): for i, (idx, t) in enumerate(zip(plot1_index, plot1_traceno)): fig = plt.figure() ax = plt.subplot(111) txt = get_tt(idx) ax.set_prop_cycle(color=[sns.color_palette()[3]]) sns.lineplot(data=sim_pred.loc[:, idx].iloc[:, t], label='prediction') plt.axhline(y=pred_thresh, xmin=0, xmax=1, label='\nprediction\nthreshold', color=sns.color_palette()[7], linestyle='--') plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0) plt.setp(ax, xlabel=r'Time [$ms$]', ylabel='artifact probability', title=txt, ylim=[0, 1]) save_plot(filename, f'prediction_{txt}_{i}') def plot_prediction_based_segmentation(filename): for i, (idx, t) in enumerate(zip(plot1_index, plot1_traceno)): fig = plt.figure() ax = plt.subplot(111) txt = get_tt(idx) ax.set_prop_cycle(color=[sns.color_palette()[3]]) sim_predbool_scaled = sim_dirty.loc[:, idx].iloc[:, t].max() * sim_predbool.loc[:, idx].iloc[:, t] sns.lineplot(data=sim_predbool_scaled, alpha=0.5) plt.fill_between(x=sim_predbool.loc[:, idx].iloc[:, t].index, y1=sim_predbool_scaled, y2=0, alpha=0.5, label='prediction:\npeak artifacts') ax.set_prop_cycle(color=[sns.color_palette()[2]]) sim_invpred_scaled = sim_dirty.loc[:, idx].iloc[:, t].max() * ~sim_predbool.loc[:, idx].iloc[:, t] plt.fill_between(x=sim_predbool.loc[:, idx].iloc[:, t].index, y1=sim_invpred_scaled, y2=0, alpha=0.5, label='\nprediction:\nno artifacts') ax.set_prop_cycle(color=[sns.color_palette()[0]]) sns.lineplot(data=sim_dirty.loc[:, idx].iloc[:, t], label=txt) plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0) plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'Intensity [a.u.]', title='') save_plot(filename, f'predseg_{txt}_{i}') def plot_prediction_based_cut_and_shift_correction(filename): for i, (idx, t) in enumerate(zip(plot1_index, plot1_traceno)): fig = plt.figure() ax = plt.subplot(111) txt = get_tt(idx) ax.set_prop_cycle(color=[sns.color_palette()[0]]) sns.lineplot(data=sim_corr.loc[:, idx].iloc[:, t], label=txt) plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0) plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'Intensity [a.u.]', title='') save_plot(filename, f'predcas_{txt}_{i}') logged_scaler = Path(f'/home/lex/Programme/drmed-git/data/mlruns/10/{model_ls[model_id]}/params/scaler') logged_scaler = !cat $logged_scaler logged_scaler = logged_scaler[0] logged_model = Path(f'/home/lex/Programme/drmed-git/data/mlruns/10/{model_ls[model_id]}/artifacts/model') logged_model = load_model(logged_model, compile=False) logged_model.compile(loss=bm.binary_ce_dice_loss(), optimizer=Adam(), metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9])) sim_dirty_prepro = ppd.convert_to_tfds_for_unet(sim_dirty) sim_dirty_prepro = ppd.scale_pad_and_batch_tfds_for_unet( sim_dirty_prepro, scaler=logged_scaler) sim_pred = logged_model.predict(sim_dirty_prepro, verbose=0) sim_pred = pd.DataFrame(sim_pred.squeeze(axis=2)).T sim_pred.columns = sim_columns sim_predbool = sim_pred > pred_thresh sim_corr = pd.DataFrame() for i in range(len(sim_dirty.columns)): sim_corr_trace = np.delete(sim_dirty.iloc[:, i].values, sim_predbool.iloc[:, i].values) sim_corr_trace = pd.DataFrame(sim_corr_trace) sim_corr = pd.concat([sim_corr, sim_corr_trace], axis='columns') sim_corr.columns = sim_columns plot_cluster_prediction(filename) plot_prediction_based_segmentation(filename) plot_prediction_based_cut_and_shift_correction(filename) plt.close('all')
- first model:
ff67be0b68e540a9a29a36a2d0c7a5be
plot_predictions(model_id=0, filename='data/exp-220227-unet/jupyter/analysis2_ff67b')
- model predictions
- prediction-based segmentation (threshold=0.5)
- prediction-based cut-and-stitch correction
- model predictions
- second model:
347669d050f344ad9fb9e480c814f727
plot_predictions(model_id=1, filename='data/exp-220227-unet/jupyter/analysis2_34766')
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. /tmp/ipykernel_5495/3600776436.py:87: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). fig = plt.figure()
- model predictions
- prediction-based segmentation (threshold=0.5)
- prediction-based cut-and-stitch correction
- model predictions
- third model:
714af8cd12c1441eac4ca980e8c20070
plot_predictions(model_id=2, filename='data/exp-220227-unet/jupyter/analysis2_714af')
fig = plt.figure() WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. /tmp/ipykernel_5495/3600776436.py:87: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). fig = plt.figure()
- model predictions
- prediction-based segmentation (threshold=0.5)
- prediction-based cut-and-stitch correction
- model predictions
- fourth model:
34a6d207ac594035b1009c330fb67a65
plot_predictions(model_id=3, filename='data/exp-220227-unet/jupyter/analysis2_34a6d')
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. /tmp/ipykernel_5495/3600776436.py:87: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). fig = plt.figure()
- model predictions
- prediction-based segmentation (threshold=0.5)
- prediction-based cut-and-stitch correction
- model predictions
- fifth model:
0cd2023eeaf745aca0d3e8ad5e1fc653
. I re-wrote the plotting script a bit.plot_predictions(model_id=5, filename='data/exp-220227-unet/jupyter/analysis2_0cd20')
2022-08-13 17:00:55.175177: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-08-13 17:00:55.175214: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-08-13 17:00:55.175247: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (Topialex): /proc/driver/nvidia/version does not exist 2022-08-13 17:00:55.177043: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. 2022-08-13 17:01:06.559383: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory. 2022-08-13 17:01:06.640827: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory. 2022-08-13 17:01:07.439633: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory. 2022-08-13 17:01:07.700351: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory.2022-08-13 17:03:32.777028: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory. /tmp/ipykernel_6898/3697032523.py:92: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). fig = plt.figure()
- model predictions
- prediction-based segmentation (threshold=0.5)
- prediction-based cut-and-stitch correction
- model predictions
- fifth model:
fe81d71c52404ed790b3a32051258da9
plot_predictions(model_id=6, filename='data/exp-220227-unet/jupyter/analysis2_fe81d')
2023-02-16 13:42:36.880181: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2023-02-16 13:42:36.882860: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2023-02-16 13:42:36.885399: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (Topialex): /proc/driver/nvidia/version does not exist 2023-02-16 13:42:36.911523: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`. 2023-02-16 13:42:48.544143: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory. 2023-02-16 13:42:48.656459: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory. 2023-02-16 13:42:49.489339: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory. 2023-02-16 13:42:50.028156: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory.2023-02-16 13:52:50.335793: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 98304000 exceeds 10% of free system memory. /tmp/ipykernel_14923/851958287.py:66: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). fig = plt.figure()
- model predictions
- prediction-based segmentation (threshold=0.5)
- prediction-based cut-and-stitch correction
- model predictions
- I did not do these plots for models
19e3e
orc1204
, because the did not work well in latex table (See below)
2.6.11.2 latex table from sim results
- All correlation curve fitting from Analysis 1b and 1c was done in a
structured manner via
focuspoint.FCS_point_correlator
from Dominic Waithe. - Now we load the modules and tell the code where to find the fit results
- these fit results are the average of 300 curves per simulated group of fast molecule diffusion coefficients \(\{0.069, 0.08, 0.1, 0.2, 0.4, 0.6, 1.0, 3.0, 10, 50\}\mu m^2/s\)
- this is only an illustration, because the actual distribution of each of
the 300 fitted curves is the interesting result. This is shown in
exp-220316-publication1
- here, the latex export is the cool thing - and the comparison of all models!
%cd ~/Programme/drmed-git
/home/lex/Programme/drmed-git
import os import sys import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.simulations import ( analyze_simulations as ans, ) # use seaborn style as default even if I just use matplotlib sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind', context='paper') # logging.basicConfig(filename="/home/lex/Programme/drmed-git/data/exp-220227-unet/jupyter.log", # filemode='w', format='%(asctime)s - %(message)s', # force=True, # level=logging.DEBUG) model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727', '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65', '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653', 'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216', 'c1204e3a8a1e4c40a35b5b7b1922d1ce'] model_name_ls = [f'{s:.5}' for s in model_ls]
2023-02-15 22:29:36.789486: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-02-15 22:29:36.789635: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
path1 = Path('data/exp-220227-unet/2022-04-25_simulations') path2 = Path('data/exp-220316-publication1/220517_simulations') odot069_models1_path = path1 / '0.069-all-results/0dot069_all_1comp_outputParam.csv' odot069_models2_path = path1 / '0.069-all-results/0dot069_all_2comp_outputParam.csv' odot069_corr1_path = path2 / '0.069-all-results/0dot069_lab-all_1comp_outputParam.csv' odot069_corr2_path = path2 / '0.069-all-results/0dot069_lab-all_2comp_outputParam.csv' odot08_models1_path = path1 / '0.08-all-results/0dot08_all_1comp_outputParam.csv' odot08_models2_path = path1 / '0.08-all-results/0dot08_all_2comp_outputParam.csv' odot08_corr1_path = path2 / '0.08-all-results/0dot08_lab-all_1comp_outputParam.csv' odot08_corr2_path = path2 / '0.08-all-results/0dot08_lab-all_2comp_outputParam.csv' odot1_models1_path = path1 / '0.1-all-results/0dot1_all_1comp_outputParam.csv' odot1_models2_path = path1 / '0.1-all-results/0dot1_all_2comp_outputParam.csv' odot1_corr1_path = path2 / '0.1-all-results/0dot1_lab-all_1comp_outputParam.csv' odot1_corr2_path = path2 / '0.1-all-results/0dot1_lab-all_2comp_outputParam.csv' odot2_models1_path = path1 / '0.2-all-results/0dot2_all_1comp_outputParam.csv' odot2_models2_path = path1 / '0.2-all-results/0dot2_all_2comp_outputParam.csv' odot2_corr1_path = path2 / '0.2-all-results/0dot2_lab-all_1comp_outputParam.csv' odot2_corr2_path = path2 / '0.2-all-results/0dot2_lab-all_2comp_outputParam.csv' odot4_models1_path = path1 / '0.4-all-results/0dot4_all_1comp_outputParam.csv' odot4_models2_path = path1 / '0.4-all-results/0dot4_all_2comp_outputParam.csv' odot4_corr1_path = path2 / '0.4-all-results/0dot4_lab-all_1comp_outputParam.csv' odot4_corr2_path = path2 / '0.4-all-results/0dot4_lab-all_2comp_outputParam.csv' odot6_models1_path = path1 / '0.6-all-results/0dot6_all_1comp_outputParam.csv' odot6_models2_path = path1 / '0.6-all-results/0dot6_all_2comp_outputParam.csv' odot6_corr1_path = path2 / '0.6-all-results/0dot6_lab-all_1comp_outputParam.csv' odot6_corr2_path = path2 / '0.6-all-results/0dot6_lab-all_2comp_outputParam.csv' one_models1_path = path1 / '1.0-all-results/1dot0_all_1comp_outputParam.csv' one_models2_path = path1 / '1.0-all-results/1dot0_all_2comp_outputParam.csv' one_corr1_path = path2 / '1.0-all-results/1dot0_lab-all_1comp_outputParam.csv' one_corr2_path = path2 / '1.0-all-results/1dot0_lab-all_2comp_outputParam.csv' three_models1_path = path1 / '3.0-all-results/3dot0_all_1comp_outputParam.csv' three_models2_path = path1 / '3.0-all-results/3dot0_all_2comp_outputParam.csv' three_corr1_path = path2 / '3.0-all-results/3dot0_lab-all_1comp_outputParam.csv' three_corr2_path = path2 / '3.0-all-results/3dot0_lab-all_2comp_outputParam.csv' ten_models1_path = path1 / '10.0-all-results/10dot0_all_1comp_outputParam.csv' ten_models2_path = path1 / '10.0-all-results/10dot0_all_2comp_outputParam.csv' ten_corr1_path = path2 / '10.0-all-results/10dot0_lab-all_1comp_outputParam.csv' ten_corr2_path = path2 / '10.0-all-results/10dot0_lab-all_2comp_outputParam.csv' fifty_models1_path = path1 / '50.0-all-results/50dot0_all_1comp_outputParam.csv' fifty_models2_path = path1 / '50.0-all-results/50dot0_all_2comp_outputParam.csv' fifty_corr1_path = path2 / '50.0-all-results/50dot0_lab-all_1comp_outputParam.csv' fifty_corr2_path = path2 / '50.0-all-results/50dot0_lab-all_2comp_outputParam.csv'
- we load the data and combine it. We convert the simulated D [um2/s] in t[ms]. Based on an exploratory plot of A1 and A2 we swap A1-A2 and txy1-txy2, so that A1 and txy1 always represent the bigger fitted fraction size.
- I wrote a latex table export. The table should display cells with a green background, when the correction method is inside an accepted range of +-log 10%, else it should have an orange background.
- I prepared tables for two occasions:
- a short table for a beamer presentation
- a long table for a report
tt_txt = 0.069 odot069_models1 = pd.read_csv(odot069_models1_path, sep=',').assign( components=10*[1,], sim=10*[tt_txt]) odot069_models2 = pd.read_csv(odot069_models2_path, sep=',').assign( components=10*[2,], sim=10*[tt_txt]) odot069_corr1 = pd.read_csv(odot069_corr1_path, sep=',').assign( components=2*[1,], sim=2*[tt_txt]) odot069_corr2 = pd.read_csv(odot069_corr2_path, sep=',').assign( components=2*[2,], sim=2*[tt_txt]) tt_txt = 0.08 odot08_models1 = pd.read_csv(odot08_models1_path, sep=',').assign( components=10*[1,], sim=10*[tt_txt]) odot08_models2 = pd.read_csv(odot08_models2_path, sep=',').assign( components=10*[2,], sim=10*[tt_txt]) odot08_corr1 = pd.read_csv(odot08_corr1_path, sep=',').assign( components=2*[1,], sim=2*[tt_txt]) odot08_corr2 = pd.read_csv(odot08_corr2_path, sep=',').assign( components=2*[2,], sim=2*[tt_txt]) tt_txt = 0.1 odot1_models1 = pd.read_csv(odot1_models1_path, sep=',').assign( components=10*[1,], sim=10*[tt_txt]) odot1_models2 = pd.read_csv(odot1_models2_path, sep=',').assign( components=10*[2,], sim=10*[tt_txt]) odot1_corr1 = pd.read_csv(odot1_corr1_path, sep=',').assign( components=2*[1,], sim=2*[tt_txt]) odot1_corr2 = pd.read_csv(odot1_corr2_path, sep=',').assign( components=2*[2,], sim=2*[tt_txt]) tt_txt = 0.2 odot2_models1 = pd.read_csv(odot2_models1_path, sep=',').assign( components=10*[1,], sim=10*[tt_txt]) odot2_models2 = pd.read_csv(odot2_models2_path, sep=',').assign( components=10*[2,], sim=10*[tt_txt]) odot2_corr1 = pd.read_csv(odot2_corr1_path, sep=',').assign( components=2*[1,], sim=2*[tt_txt]) odot2_corr2 = pd.read_csv(odot2_corr2_path, sep=',').assign( components=2*[2,], sim=2*[tt_txt]) tt_txt = 0.4 odot4_models1 = pd.read_csv(odot4_models1_path, sep=',').assign( components=10*[1,], sim=10*[tt_txt]) odot4_models2 = pd.read_csv(odot4_models2_path, sep=',').assign( components=10*[2,], sim=10*[tt_txt]) odot4_corr1 = pd.read_csv(odot4_corr1_path, sep=',').assign( components=2*[1,], sim=2*[tt_txt]) odot4_corr2 = pd.read_csv(odot4_corr2_path, sep=',').assign( components=2*[2,], sim=2*[tt_txt]) tt_txt = 0.6 odot6_models1 = pd.read_csv(odot6_models1_path, sep=',').assign( components=10*[1,], sim=10*[tt_txt]) odot6_models2 = pd.read_csv(odot6_models2_path, sep=',').assign( components=10*[2,], sim=10*[tt_txt]) odot6_corr1 = pd.read_csv(odot6_corr1_path, sep=',').assign( components=2*[1,], sim=2*[tt_txt]) odot6_corr2 = pd.read_csv(odot6_corr2_path, sep=',').assign( components=2*[2,], sim=2*[tt_txt]) tt_txt = 1 one_models1 = pd.read_csv(one_models1_path, sep=',').assign( components=10*[1,], sim=10*[tt_txt]) one_models2 = pd.read_csv(one_models2_path, sep=',').assign( components=10*[2,], sim=10*[tt_txt]) one_corr1 = pd.read_csv(one_corr1_path, sep=',').assign( components=2*[1,], sim=2*[tt_txt]) one_corr2 = pd.read_csv(one_corr2_path, sep=',').assign( components=2*[2,], sim=2*[tt_txt]) tt_txt = 3 three_models1 = pd.read_csv(three_models1_path, sep=',').assign( components=10*[1,], sim=10*[tt_txt]) three_models2 = pd.read_csv(three_models2_path, sep=',').assign( components=10*[2,], sim=10*[tt_txt]) three_corr1 = pd.read_csv(three_corr1_path, sep=',').assign( components=2*[1,], sim=2*[tt_txt]) three_corr2 = pd.read_csv(three_corr2_path, sep=',').assign( components=2*[2,], sim=2*[tt_txt]) tt_txt = 10 ten_models1 = pd.read_csv(ten_models1_path, sep=',').assign( components=10*[1,], sim=10*[tt_txt]) ten_models2 = pd.read_csv(ten_models2_path, sep=',').assign( components=10*[2,], sim=10*[tt_txt]) ten_corr1 = pd.read_csv(ten_corr1_path, sep=',').assign( components=2*[1,], sim=2*[tt_txt]) ten_corr2 = pd.read_csv(ten_corr2_path, sep=',').assign( components=2*[2,], sim=2*[tt_txt]) tt_txt = 50 # fifty_models1 = pd.read_csv(fifty_models1_path, sep=',', # index_col='name_of_plot').assign(components=10*[1,]) # fifty_models2 = pd.read_csv(fifty_models2_path, sep=',', # index_col='name_of_plot').assign(components=10*[2,]) fifty_corr1 = pd.read_csv(fifty_corr1_path, sep=',').assign( components=2*[1,], sim=2*[tt_txt]) fifty_corr2 = pd.read_csv(fifty_corr2_path, sep=',').assign( components=2*[2,], sim=2*[tt_txt]) all_param = pd.concat([odot069_models1, odot069_models2, odot069_corr1, odot069_corr2, odot08_models1, odot08_models2, odot08_corr1, odot08_corr2, odot1_models2, odot1_models1, odot1_corr2, odot1_corr1, odot2_models1, odot2_models2, odot2_corr1, odot2_corr2, odot4_models1, odot4_models2, odot4_corr1, odot4_corr2, odot6_models1, odot6_models2, odot6_corr1, odot6_corr2, one_models1, one_models2, one_corr1, one_corr2, three_models1, three_models2, three_corr1, three_corr2]) # ten_models1, ten_models2, # ten_corr1, ten_corr2, # fifty_models1, fifty_models2, # fifty_corr1, fifty_corr2 def diffcoeff_to_transittimes(diff, prec): tt, tt_low_high = ans.convert_diffcoeff_to_transittimes(diff, fwhm=250) # tt_txt = f'\\makecell{{${tt:.{prec}f}$\\\\$\\numrange{{{tt_low_high[0]:.{prec}f}}}{{{tt_low_high[1]:.{prec}f}}}$}}' # \\\\$(\\sim {diff})$ tt_txt = f'\\makecell{{${tt:.{prec}f}$\\\\$\\textbf{{{tt_low_high[0]:.{prec}f}-{tt_low_high[1]:.{prec}f}}}$}}' # \\\\$(\\sim {diff})$ return tt_txt def sort_fit(param_ls): sim = param_ls[-1] _, tt_low_high = ans.convert_diffcoeff_to_transittimes(sim, fwhm=250) array = np.array(list(param_ls)[:-1]).reshape((2, 2)) # sort by transit times array = array[:, array[0, :].argsort()] A_fast = array[1, 0] A_slow = array[1, 1] t_fast = array[0, 0] t_slow = array[0, 1] if np.isnan(t_slow): if tt_low_high[0] <= t_fast <= tt_low_high[1]: # out = f'\\cellcolor[HTML]{{009e73}}${t_fast:.2f}$' # for beamer: out = f'\\colorbox[HTML]{{009e73}}{{\\makecell{{${t_fast:.2f}$}}}}' else: # out = f'\\cellcolor[HTML]{{d55e00}}${t_fast:.2f}$' out = f'\\colorbox[HTML]{{d55e00}}{{\\makecell{{${t_fast:.2f}$}}}}' elif f'{A_fast:.0%}' == '100%': if tt_low_high[0] <= t_fast <= tt_low_high[1]: # out = f'\\cellcolor[HTML]{{009e73}}${t_fast:.2f}(100\\%)$' out = f'\\colorbox[HTML]{{009e73}}{{\\makecell{{${t_fast:.2f}$}}}}' else: # out = f'\\cellcolor[HTML]{{d55e00}}${t_fast:.2f}(100\\%)$' out = f'\\colorbox[HTML]{{d55e00}}{{\\makecell{{${t_fast:.2f}$}}}}' elif f'{A_slow:.0%}' == '100%': if tt_low_high[0] <= t_slow <= tt_low_high[1]: # out = f'\\cellcolor[HTML]{{009e73}}${t_slow:.2f}(100\\%)$' out = f'\\colorbox[HTML]{{009e73}}{{\\makecell{{${t_slow:.2f}$}}}}' else: # out = f'\\cellcolor[HTML]{{d55e00}}${t_slow:.2f}(100\\%)$' out = f'\\colorbox[HTML]{{d55e00}}{{\\makecell{{${t_slow:.2f}$}}}}' else: if (tt_low_high[0] <= t_fast <= tt_low_high[1]) or ( tt_low_high[0] <= t_slow <= tt_low_high[1]): # out = f'\\cellcolor[HTML]{{009e73}}\\colorbox[HTML]{{009e73}}{{\\makecell{{${t_fast:.2f}^f({A_fast:.0%})$\\\\'\ # f'${t_slow:.2f}^s({A_slow:.0%})$}}}}' out = f'\\colorbox[HTML]{{009e73}}{{\\makecell{{${t_fast:.2f}$\\\\'\ f'${t_slow:.2f}$}}}}' else: # out = f'\\cellcolor[HTML]{{d55e00}}\\colorbox[HTML]{{d55e00}}{{\\makecell{{${t_fast:.2f}^f({A_fast:.0%})$\\\\'\ # f'${t_slow:.2f}^s({A_slow:.0%})$}}}}' out = f'\\colorbox[HTML]{{d55e00}}{{\\makecell{{${t_fast:.2f}$\\\\'\ f'${t_slow:.2f}$}}}}' out = out.replace('%', '\\%') return out all_param['fit results'] = all_param[['txy1', 'txy2', 'A1', 'A2', 'sim']].apply(lambda x: sort_fit(x), axis=1) all_param = all_param[['name_of_plot', 'sim', 'components', 'fit results']] all_param = all_param.pivot_table(values='fit results', columns='sim', index=['name_of_plot', 'components'], aggfunc=lambda x: '-'.join(x)) # for beamer: only dirty, delete, and cutandshift first = ['dirty', 'cutandshift', 'delete'] # dirty, delete, cutandshift, and all models # first = ['dirty', 'cutandshift', 'delete'] + model_name_ls.copy() second = [1, 2] index_order = pd.MultiIndex.from_product([first, second], names=[r'\makecell{type of\\processing}', 'fit']) column_order = [0.069, 0.08, 0.1, 0.2, 0.4, 0.6, 1, 3] #, 10, 50] all_param = all_param.reindex(index=index_order, columns=column_order) all_param = all_param.rename_axis(columns={'sim' : r'\makecell{simulated \tau_D [\unit{\ms}]\\\log 10\% \text{ tol.}}'}) # \\(\sim D [\unit[per-mode = fraction]{\micro\metre\squared\per\second}]) # index={'fit' : 'fit^*'}) all_param = all_param.rename(index={'dirty' : r'\makecell{control:\\no correction}', 'delete' : r'\makecell{old method:\\weight=0}', 'cutandshift' : r'\makecell{new method:\\cut and shift}', 'ff67b' : r'\makecell{prediction model:\\ff67b (\qty{14}{\mega\byte})}', '34766' : r'\makecell{prediction model:\\34766 (\qty{73}{\mega\byte})}', '714af' : r'\makecell{prediction model:\\714af (\qty{234}{\mega\byte})}', '34a6d' : r'\makecell{prediction model:\\34a6d (\qty{7}{\mega\byte})}', '484af' : r'\makecell{prediction model:\\484af (\qty{275}{\mega\byte})}', '0cd20' : r'\makecell{prediction model:\\0cd20 (\qty{200}{\mega\byte})}', 'fe81d' : r'\makecell{prediction model:\\fe81d (\qty{186}{\mega\byte})}', '19e3e' : r'\makecell{prediction model:\\19e3e (\qty{172}{\mega\byte})}', 'c1204' : r'\makecell{prediction model:\\c1204 (\qty{312}{\mega\byte})}', 1 : r'\makecell{1 species}', 2 : r'\makecell{2 - fast sp.\\2 - slow sp.}'}, columns={0.069 : diffcoeff_to_transittimes(0.069, prec=0), 0.08 : diffcoeff_to_transittimes(0.08, prec=0), 0.1 : diffcoeff_to_transittimes(0.1, prec=0), 0.2 : diffcoeff_to_transittimes(0.2, prec=0), 0.4 : diffcoeff_to_transittimes(0.4, prec=0), 0.6 : diffcoeff_to_transittimes(0.6, prec=0), 1 : diffcoeff_to_transittimes(1, prec=1), 3 : diffcoeff_to_transittimes(3, prec=2)}) # 10 : diffcoeff_to_transittimes(10, prec=3), # 50 : diffcoeff_to_transittimes(50, prec=4) # for creation of multiindex: # predictions_mi = len(predictions) * ['prediction',] # column_multiindex = ['no correction', 'control', 'control'] + predictions_mi # column_tuple = list(zip(column_multiindex, column_order)) # all_param.columns = pd.MultiIndex.from_tuples(column_tuple) # for nanoletters # with pd.option_context("max_colwidth", 1000): # print(all_param.to_latex(escape=False, # column_format='cccccccccccccccccccc', # multicolumn_format='c', # longtable=True, # caption=('Justification of "cut and shift" in simulated fluorescence traces, and comparison of different models for prediction followed by "cut and shift" correction', 'Simulated data - correction results'))) # for beamer with pd.option_context("max_colwidth", 1000): print(all_param.to_latex(escape=False, column_format='ccrrrrrrrrrrrrrrrrrr', multicolumn_format='c', caption=('"cut and shift" vs old correction method in simulated fluorescence traces', 'Simulated data - correction results'))) all_param
\begin{table} \centering \caption[Simulated data - correction results]{"cut and shift" vs old correction method in simulated fluorescence traces} \begin{tabular}{ccrrrrrrrrrrrrrrrrrr} \toprule & \makecell{simulated \tau_D [\unit{\ms}]\\\log 10\% \text{ tol.}} & \makecell{$163$\\$\textbf{98-272}$} & \makecell{$141$\\$\textbf{86-231}$} & \makecell{$113$\\$\textbf{70-181}$} & \makecell{$56$\\$\textbf{38-84}$} & \makecell{$28$\\$\textbf{20-39}$} & \makecell{$19$\\$\textbf{14-25}$} & \makecell{$11.3$\\$\textbf{8.8-14.4}$} & \makecell{$3.76$\\$\textbf{3.29-4.29}$} \\ \makecell{type of\\processing} & fit & & & & & & & & \\ \midrule \makecell{control:\\no correction} & \makecell{1 species} & \colorbox[HTML]{d55e00}{\makecell{$58.92$}} & \colorbox[HTML]{009e73}{\makecell{$142.83$}} & \colorbox[HTML]{009e73}{\makecell{$80.93$}} & \colorbox[HTML]{d55e00}{\makecell{$145.00$}} & \colorbox[HTML]{009e73}{\makecell{$27.55$}} & \colorbox[HTML]{d55e00}{\makecell{$54.11$}} & \colorbox[HTML]{d55e00}{\makecell{$110.39$}} & \colorbox[HTML]{d55e00}{\makecell{$287.87$}} \\ & \makecell{2 - fast sp.\\2 - slow sp.} & \colorbox[HTML]{009e73}{\makecell{$15.85$\\$229.90$}} & \colorbox[HTML]{d55e00}{\makecell{$70.02$\\$445.84$}} & \colorbox[HTML]{009e73}{\makecell{$12.82$\\$138.39$}} & \colorbox[HTML]{009e73}{\makecell{$53.66$\\$446.38$}} & \colorbox[HTML]{d55e00}{\makecell{$13.17$\\$383.01$}} & \colorbox[HTML]{009e73}{\makecell{$16.68$\\$424.67$}} & \colorbox[HTML]{d55e00}{\makecell{$47.23$\\$284.90$}} & \colorbox[HTML]{d55e00}{\makecell{$16.59$\\$643.73$}} \\ \makecell{new method:\\cut and shift} & \makecell{1 species} & \colorbox[HTML]{009e73}{\makecell{$161.43$}} & \colorbox[HTML]{009e73}{\makecell{$130.03$}} & \colorbox[HTML]{009e73}{\makecell{$100.67$}} & \colorbox[HTML]{009e73}{\makecell{$53.11$}} & \colorbox[HTML]{009e73}{\makecell{$26.25$}} & \colorbox[HTML]{009e73}{\makecell{$17.43$}} & \colorbox[HTML]{009e73}{\makecell{$11.52$}} & \colorbox[HTML]{009e73}{\makecell{$3.62$}} \\ & \makecell{2 - fast sp.\\2 - slow sp.} & \colorbox[HTML]{009e73}{\makecell{$120.86$\\$429.73$}} & \colorbox[HTML]{009e73}{\makecell{$4.33$\\$131.89$}} & \colorbox[HTML]{009e73}{\makecell{$100.67$\\$100.68$}} & \colorbox[HTML]{009e73}{\makecell{$0.00$\\$53.11$}} & \colorbox[HTML]{009e73}{\makecell{$0.01$\\$26.34$}} & \colorbox[HTML]{009e73}{\makecell{$17.43$}} & \colorbox[HTML]{009e73}{\makecell{$11.52$}} & \colorbox[HTML]{009e73}{\makecell{$3.62$\\$3.62$}} \\ \makecell{old method:\\weight=0} & \makecell{1 species} & \colorbox[HTML]{d55e00}{\makecell{$383.41$}} & \colorbox[HTML]{d55e00}{\makecell{$253.55$}} & \colorbox[HTML]{d55e00}{\makecell{$293.12$}} & \colorbox[HTML]{d55e00}{\makecell{$301.92$}} & \colorbox[HTML]{d55e00}{\makecell{$287.00$}} & \colorbox[HTML]{d55e00}{\makecell{$143.32$}} & \colorbox[HTML]{d55e00}{\makecell{$142.88$}} & \colorbox[HTML]{d55e00}{\makecell{$362.80$}} \\ & \makecell{2 - fast sp.\\2 - slow sp.} & \colorbox[HTML]{d55e00}{\makecell{$28.66$\\$819.05$}} & \colorbox[HTML]{d55e00}{\makecell{$45.97$\\$1158.57$}} & \colorbox[HTML]{d55e00}{\makecell{$36.14$\\$723.50$}} & \colorbox[HTML]{009e73}{\makecell{$44.09$\\$1733.81$}} & \colorbox[HTML]{d55e00}{\makecell{$19.30$\\$747.77$}} & \colorbox[HTML]{d55e00}{\makecell{$10.94$\\$211.09$}} & \colorbox[HTML]{d55e00}{\makecell{$34.31$\\$1041.96$}} & \colorbox[HTML]{d55e00}{\makecell{$20.37$\\$775.82$}} \\ \bottomrule \end{tabular} \end{table}
\makecell{simulated τD [\unit{\ms}]\\log 10\% \text{ tol.}} \makecell{$163$\\\(\textbf{98-272}\)} \makecell{$141$\\\(\textbf{86-231}\)} \makecell{$113$\\\(\textbf{70-181}\)} \makecell{$56$\\\(\textbf{38-84}\)} \makecell{$28$\\\(\textbf{20-39}\)} \makecell{$19$\\\(\textbf{14-25}\)} \makecell{$11.3$\\\(\textbf{8.8-14.4}\)} \makecell{$3.76$\\\(\textbf{3.29-4.29}\)} \makecell{type of\\processing} fit \makecell{control:\\no correction} \makecell{1 species} \colorbox[HTML]{d55e00}{\makecell{$58.92$}} \colorbox[HTML]{009e73}{\makecell{$142.83$}} \colorbox[HTML]{009e73}{\makecell{$80.93$}} \colorbox[HTML]{d55e00}{\makecell{$145.00$}} \colorbox[HTML]{009e73}{\makecell{$27.55$}} \colorbox[HTML]{d55e00}{\makecell{$54.11$}} \colorbox[HTML]{d55e00}{\makecell{$110.39$}} \colorbox[HTML]{d55e00}{\makecell{$287.87$}} \makecell{2 - fast sp.\\2 - slow sp.} \colorbox[HTML]{009e73}{\makecell{$15.85$\\$22… \colorbox[HTML]{d55e00}{\makecell{$70.02$\\$44… \colorbox[HTML]{009e73}{\makecell{$12.82$\\$13… \colorbox[HTML]{009e73}{\makecell{$53.66$\\$44… \colorbox[HTML]{d55e00}{\makecell{$13.17$\\$38… \colorbox[HTML]{009e73}{\makecell{$16.68$\\$42… \colorbox[HTML]{d55e00}{\makecell{$47.23$\\$28… \colorbox[HTML]{d55e00}{\makecell{$16.59$\\$64… \makecell{new method:\\cut and shift} \makecell{1 species} \colorbox[HTML]{009e73}{\makecell{$161.43$}} \colorbox[HTML]{009e73}{\makecell{$130.03$}} \colorbox[HTML]{009e73}{\makecell{$100.67$}} \colorbox[HTML]{009e73}{\makecell{$53.11$}} \colorbox[HTML]{009e73}{\makecell{$26.25$}} \colorbox[HTML]{009e73}{\makecell{$17.43$}} \colorbox[HTML]{009e73}{\makecell{$11.52$}} \colorbox[HTML]{009e73}{\makecell{$3.62$}} \makecell{2 - fast sp.\\2 - slow sp.} \colorbox[HTML]{009e73}{\makecell{$120.86$\\$4… \colorbox[HTML]{009e73}{\makecell{$4.33$\\$131… \colorbox[HTML]{009e73}{\makecell{$100.67$\\$1… \colorbox[HTML]{009e73}{\makecell{$0.00$\\$53…. \colorbox[HTML]{009e73}{\makecell{$0.01$\\$26…. \colorbox[HTML]{009e73}{\makecell{$17.43$}} \colorbox[HTML]{009e73}{\makecell{$11.52$}} \colorbox[HTML]{009e73}{\makecell{$3.62$\\$3.6… \makecell{old method:\\weight=0} \makecell{1 species} \colorbox[HTML]{d55e00}{\makecell{$383.41$}} \colorbox[HTML]{d55e00}{\makecell{$253.55$}} \colorbox[HTML]{d55e00}{\makecell{$293.12$}} \colorbox[HTML]{d55e00}{\makecell{$301.92$}} \colorbox[HTML]{d55e00}{\makecell{$287.00$}} \colorbox[HTML]{d55e00}{\makecell{$143.32$}} \colorbox[HTML]{d55e00}{\makecell{$142.88$}} \colorbox[HTML]{d55e00}{\makecell{$362.80$}} \makecell{2 - fast sp.\\2 - slow sp.} \colorbox[HTML]{d55e00}{\makecell{$28.66$\\$81… \colorbox[HTML]{d55e00}{\makecell{$45.97$\\$11… \colorbox[HTML]{d55e00}{\makecell{$36.14$\\$72… \colorbox[HTML]{009e73}{\makecell{$44.09$\\$17… \colorbox[HTML]{d55e00}{\makecell{$19.30$\\$74… \colorbox[HTML]{d55e00}{\makecell{$10.94$\\$21… \colorbox[HTML]{d55e00}{\makecell{$34.31$\\$10… \colorbox[HTML]{d55e00}{\makecell{$20.37$\\$77… - I copied the latex code in the latex online editor Overleaf and compiled it there. The rendered PDF looks like this for the beamer slide:
- and here the rendered PDF of a long table
2.6.12 Experiment 3: Run models on experimental data
2.6.12.1 node 1 (overview)
- this is the
prepare-jupyter
function%cd /beegfs/ye53nis/drmed-git import logging import os import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint from tensorflow.keras.optimizers import Adam from mlflow.keras import load_model FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import corr_fit_object as cfo from fluotracify.training import build_model as bm data_path = Path(data_path) output_path = Path(output_path) log_path = output_path.parent / f'{output_path.name}.log' logging.basicConfig(filename=log_path, filemode='w', format='%(asctime)s - %(message)s', force=True) log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind', context='paper') class ParameterClass(): """Stores parameters for correlation """ def __init__(self): # Where the data is stored. self.data = [] self.objectRef = [] self.subObjectRef = [] self.colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black'] self.numOfLoaded = 0 # very fast from Ncasc ~ 14 onwards self.NcascStart = 0 self.NcascEnd = 30 # 25 self.Nsub = 6 # 6 self.photonLifetimeBin = 10 # used for photon decay self.photonCountBin = 1 # used for time series par_obj = ParameterClass() model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727', '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65', '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653', 'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216', 'c1204e3a8a1e4c40a35b5b7b1922d1ce'] model_name_ls = [f'{s:.5}' for s in model_ls] # scaler_ls = ['minmax', 'robust', 'maxabs', 'l2', 'standard', 'quant_g', 'standard', # 'standard', 'robust'] pred_thresh = 0.5 if data_path.name == "1911DD_atto+LUVs": path_clean1 = data_path / 'clean_ptu_part1/' path_clean2 = data_path / 'clean_ptu_part2/' path_dirty1 = data_path / 'dirty_ptu_part1/' path_dirty2 = data_path / 'dirty_ptu_part2/' files_clean1 = [path_clean1 / f for f in os.listdir(path_clean1) if f.endswith('.ptu')] files_clean2 = [path_clean2 / f for f in os.listdir(path_clean2) if f.endswith('.ptu')] files_dirty1 = [path_dirty1 / f for f in os.listdir(path_dirty1) if f.endswith('.ptu')] files_dirty2 = [path_dirty2 / f for f in os.listdir(path_dirty2) if f.endswith('.ptu')] if data_path.name == "191113_Pex5_2_structured": path_clean = data_path / 'HsPEX5EGFP 1-100001' path_dirty = data_path / 'TbPEX5EGFP 1-10002' files_clean = [path_clean / f for f in os.listdir(path_clean) if f.endswith('.ptu')] files_dirty = [path_dirty / f for f in os.listdir(path_dirty) if f.endswith('.ptu')] def predict_correct_correlate_ptu(files, model_id, method, out_path): logged_scaler = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{model_ls[model_id]}/params/scaler') logged_scaler = !cat $logged_scaler logged_scaler = logged_scaler[0] logged_model = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{model_ls[model_id]}/artifacts/model') logged_model = load_model(logged_model, compile=False) logged_model.compile(loss=bm.binary_ce_dice_loss(), optimizer=Adam(), metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9])) if method == 'delete_and_shift': method_str = 'DELSHIFT' elif method == 'delete': method_str = 'DEL' for idx, myfile in enumerate(files): ptufile = cfo.PicoObject(myfile, par_obj) ptufile.predictTimeSeries(model=logged_model, scaler=logged_scaler) ptufile.correctTCSPC(method=method) for key in list(ptufile.trueTimeArr.keys()): if method_str in key: ptufile.get_autocorrelation(method='tttr2xfcs', name=key) for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key, item in list(ptufile.autoNorm[m].items()): if method_str in key: ptufile.save_autocorrelation(name=key, method=m, output_path=out_path) def correlate_ptu(files, out_path): for idx, myfile in enumerate(files): ptufile = cfo.PicoObject(myfile, par_obj) for key in list(ptufile.trueTimeArr.keys()): ptufile.get_autocorrelation(method='tttr2xfcs', name=key) for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key, item in list(ptufile.autoNorm[m].items()): ptufile.save_autocorrelation(name=key, method=m, output_path=out_path)
/beegfs/ye53nis/drmed-git 2023-01-10 17:38:18.004165: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-01-10 17:38:18.004236: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
- this is the
kill-jupyter
functionos._exit(00)
7a752b61-60c1-4322-8105-e8dbd705caa0
- now call the model and apply it to
af488+luv
data (with peak artifacts), first withdelete_and_shift
, which we later calledcut and stitch
model_id = 0 out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty1, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-05-23 14:47:32.428742: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-05-23 14:47:32.428785: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-05-23 14:47:32.428823: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist 2022-05-23 14:47:32.429138: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
2df4455b-0130-4b59-af50-3a85f1419fd2
/beegfs/ye53nis/drmed-git 2022-05-23 19:52:48.412017: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-05-23 19:52:48.412054: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 0 out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty2, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-05-23 19:53:11.911961: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-05-23 19:53:11.912000: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-05-23 19:53:11.912024: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist 2022-05-23 19:53:11.912392: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- on node 2:
model_id = 1 out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty1 and files_dirty2, model_id=model_id, method='delete_and_shift', out_path=out_dir)
- on node 3:
model_id = 2 out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty1 and files_dirty2, model_id=model_id, method='delete_and_shift', out_path=out_dir)
- on node 2:
model_id = 3 # 34a6d out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty, model_id=0, out_path=out_dir)
- on node 3:
model_id = 4 # 484af out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty, model_id=0, out_path=out_dir)
ea569473-6848-41cb-bae6-4f5ac1590e71
/beegfs/ye53nis/drmed-git 2022-05-23 21:51:34.834624: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-05-23 21:51:34.834663: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
- on node 1:
model_id = 5 # 0cd20 out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty1, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-05-23 21:52:02.797179: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-05-23 21:52:02.797239: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-05-23 21:52:02.797260: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist 2022-05-23 21:52:02.797625: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
/beegfs/ye53nis/drmed-git 2022-05-24 10:12:54.289832: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-05-24 10:12:54.289868: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 5 # 0cd20 out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty2, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-05-24 10:13:01.303436: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-05-24 10:13:01.303503: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-05-24 10:13:01.303541: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist 2022-05-24 10:13:01.303975: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- on node 2:
model_id = 6 # fe81d out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty1, model_id=model_id, method='delete_and_shift', out_path=out_dir)
bf3b2ade-cc27-404c-b7bc-9db7a0583d4e
/beegfs/ye53nis/drmed-git 2022-05-24 13:29:48.438857: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-05-24 13:29:48.438908: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
- on node 1:
model_id = 7 # 19e3e out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty1, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-05-24 13:30:26.419948: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-05-24 13:30:26.420019: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-05-24 13:30:26.420055: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist 2022-05-24 13:30:26.420612: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
c55ec613-2fe9-4dd8-bbb0-03251a8173c2
/beegfs/ye53nis/drmed-git 2022-05-24 17:07:04.399895: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-05-24 17:07:04.399949: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
- on node 1:
model_id = 7 # 19e3e out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty2, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-05-24 17:07:10.270368: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-05-24 17:07:10.270428: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-05-24 17:07:10.270454: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist 2022-05-24 17:07:10.270792: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- on node 3:
model_id = 8 # c1204 out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty, model_id=model_id, method='delete_and_shift', out_path=out_dir)
- on node 2:
- now do
af488
andaf488+luvs
correlations without any correction- on node 3:
out_dir = output_path / f'clean/' os.makedirs(out_dir, exist_ok=True) correlate_ptu( files=files_clean_1 and files_clean2, out_path=out_dir)
- on node 1:
a26d0ea2-4340-4437-afb6-5e931c8efe68
/beegfs/ye53nis/drmed-git 2022-05-27 13:21:04.304353: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-05-27 13:21:04.304423: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
out_dir = output_path / f'dirty/' os.makedirs(out_dir, exist_ok=True) correlate_ptu( files=files_dirty2, out_path=out_dir)
- on node 3:
out_dir = output_path / f'clean/' os.makedirs(out_dir, exist_ok=True) correlate_ptu( files=files_clean_1 and files_clean2, out_path=out_dir)
out_dir = output_path / f'dirty/' os.makedirs(out_dir, exist_ok=True) correlate_ptu( files=files_dirty2, out_path=out_dir)
- on node 3:
- now call the model and apply it to
af488
data (without peak artifacts - this is a control, the models should not detect peak artifacts here), first withdelete_and_shift
, which we later calledcut and stitch
- on node 1:
model_id = 5 # 0cd20 out_dir = output_path / f'clean_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean1, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-05-25 14:48:29.187895: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-05-25 14:48:29.187952: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-05-25 14:48:29.187985: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist 2022-05-25 14:48:29.188422: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
7e9aa800-f60f-4d9a-b565-722c72070338
/beegfs/ye53nis/drmed-git 2022-05-25 16:48:58.124680: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-05-25 16:48:58.124720: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 5 # 0cd20 out_dir = output_path / f'clean_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean2, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-05-25 16:49:18.365951: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-05-25 16:49:18.366011: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-05-25 16:49:18.366045: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist 2022-05-25 16:49:18.366534: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- on node 3:
model_id = 2 # 714af out_dir = output_path / f'clean_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean_1 and files_clean2, model_id=model_id, method='delete_and_shift', out_path=out_dir)
- on node 2:
model_id = 0 # ff67b out_dir = output_path / f'clean_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean1, model_id=model_id, method='delete_and_shift', out_path=out_dir)
- on node 1:
model_id = 1 # 34766 out_dir = output_path / f'clean_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean1, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-05-26 00:11:02.988574: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-05-26 00:11:02.988629: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-05-26 00:11:02.988653: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist 2022-05-26 00:11:02.988969: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
/beegfs/ye53nis/drmed-git 2022-05-26 11:49:10.130005: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-05-26 11:49:10.130041: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 1 out_dir = output_path / f'clean_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean2, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-05-26 11:49:16.690889: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-05-26 11:49:16.690951: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-05-26 11:49:16.690989: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node105): /proc/driver/nvidia/version does not exist 2022-05-26 11:49:16.691462: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- on node 2:
model_id = 3 # 34a6d out_dir = output_path / f'clean_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean_1 and files_clean2, model_id=model_id, method='delete_and_shift', out_path=out_dir)
- on node 1:
a26d0ea2-4340-4437-afb6-5e931c8efe68
/beegfs/ye53nis/drmed-git 2022-05-27 13:21:04.304353: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-05-27 13:21:04.304423: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
- on node 2:
model_id = 7 # 19e3e out_dir = output_path / f'clean_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean_1 and files_clean2, model_id=model_id, method='delete_and_shift', out_path=out_dir)
- on node 3:
model_id = 4 # 484af out_dir = output_path / f'clean_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean_1 and files_clean2, model_id=model_id, method='delete_and_shift', out_path=out_dir)
- on node 2:
model_id = 8 # c1204 out_dir = output_path / f'clean_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean_1 and files_clean2, model_id=model_id, method='delete_and_shift', out_path=out_dir)
- on node 3:
model_id = 6 # fe81d out_dir = output_path / f'clean_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean_1 and files_clean2, model_id=model_id, method='delete_and_shift', out_path=out_dir)
- on node 1:
- now call the model and apply it to
pex5
data. First the correlations of Trypanosoma brucei-PEX5-eGFP (peak artifacts) and Homo sapiens-PEX5-eGFP (no artifacts) without corrections. Not thatprepare-jupyter
now looks like this:#+CALL: prepare-jupyter("/beegfs/ye53nis/data/191113_Pex5_2_structured", output_path="/beegfs/ye53nis/drmed-git/data/exp-220227-unet/2022-06-02_experimental-pex5/")
- on node 1:
/beegfs/ye53nis/drmed-git
out_dir = output_path / f'clean/' os.makedirs(out_dir, exist_ok=True) correlate_ptu( files=files_clean, out_path=out_dir)
274c16ef-1bb8-47fd-9ac9-d83e193d2c7c
/beegfs/ye53nis/drmed-git 2022-06-03 00:20:04.405561: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-06-03 00:20:04.405614: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
out_dir = output_path / f'dirty/' os.makedirs(out_dir, exist_ok=True) correlate_ptu( files=files_dirty, out_path=out_dir)
2022-06-02 16:25:02.408577: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-02 16:25:02.408633: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-02 16:25:02.408668: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist 2022-06-02 16:25:02.409190: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- on node 1:
- now call the model and apply it to all
pex5
data (with and without peak artifacts), first withdelete_and_shift
correction, which we later calledcut and stitch
- on node 2:
model_id = 0 # ff67b out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty and files_clean, model_id=model_id, method='delete_and_shift', out_path=out_dir)
- on node 3:
model_id = 1 # 34766 out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty and files_clean, model_id=model_id, method='delete_and_shift', out_path=out_dir)
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
e17bafa1-336e-4ae4-9eac-2e4e754b163b
/beegfs/ye53nis/drmed-git 2022-06-03 00:35:48.794905: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-06-03 00:35:48.794949: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
- on node 1:
model_id = 2 # 714af out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-06-03 00:36:59.208902: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-03 00:36:59.208990: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-03 00:36:59.209034: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist 2022-06-03 00:36:59.209615: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
cb8ca215-2cec-4c8a-b57f-9e7a3fa0850a
/beegfs/ye53nis/drmed-git 2022-06-03 01:03:42.934510: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-06-03 01:03:42.934560: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 2 # 714af out_dir = output_path / f'clean_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-06-03 01:03:53.314614: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-03 01:03:53.314706: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-03 01:03:53.314759: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist 2022-06-03 01:03:53.315343: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- on node 2:
model_id = 3 # 34a6d out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty and files_clean, model_id=model_id, method='delete_and_shift', out_path=out_dir)
- on node 1:
model_id = 4 # 484af out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-06-03 16:05:25.702609: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-03 16:05:25.702662: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-03 16:05:25.702697: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist 2022-06-03 16:05:25.703121: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
/beegfs/ye53nis/drmed-git 2022-06-03 17:13:28.754363: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-06-03 17:13:28.754407: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 4 # 484af out_dir = output_path / f'clean_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-06-03 17:13:35.380945: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-03 17:13:35.380992: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-03 17:13:35.381021: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist 2022-06-03 17:13:35.381294: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- on node 3:
model_id = 5 # 0cd20 out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty and files_clean, model_id=model_id, method='delete_and_shift', out_path=out_dir)
- on node 2:
model_id = 6 # fe81d out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty and files_clean, model_id=model_id, method='delete_and_shift', out_path=out_dir)
- on node 1:
model_id = 7 # 19e3e out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-06-03 17:59:22.958003: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-03 17:59:22.958066: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-03 17:59:22.958106: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist 2022-06-03 17:59:22.958596: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
/beegfs/ye53nis/drmed-git 2022-06-03 18:12:09.643502: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-06-03 18:12:09.643564: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 7 # 19e3e out_dir = output_path / f'clean_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean, model_id=model_id, method='delete_and_shift', out_path=out_dir)
2022-06-03 18:12:16.305111: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-03 18:12:16.305153: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-03 18:12:16.305181: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist 2022-06-03 18:12:16.305464: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
on node 3:
model_id = 8 # c1204 out_dir = output_path / f'dirty_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty and files_clean, model_id=model_id, method='delete_and_shift', out_path=out_dir)
- on node 2:
- now call the model and apply it to all
pex5
data (with and without peak artifacts), now withdelete
correction, which we later calledset to zero
- on node 2
model_id = 0 # ff67b out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty and files_clean, model_id=model_id, method='delete', out_path=out_dir)
on node 1:
model_id = 1 # 34766 out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty and files_clean, model_id=model_id, method='delete', out_path=out_dir)
2022-06-03 18:34:51.572833: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-03 18:34:51.572883: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-03 18:34:51.572912: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist 2022-06-03 18:34:51.573277: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
947e95f9-7f45-4e35-a5f6-857c1a00df32
/beegfs/ye53nis/drmed-git 2022-06-05 19:58:02.542852: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-06-05 19:58:02.542898: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 1 # 34766 out_dir = output_path / f'clean_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean, model_id=model_id, method='delete', out_path=out_dir)
2022-06-05 19:58:25.596269: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-05 19:58:25.596330: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-05 19:58:25.596366: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist 2022-06-05 19:58:25.596907: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- on node 3
model_id = 2 # 714af out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty and files_clean, model_id=model_id, method='delete', out_path=out_dir)
- on node 1:
model_id = 3 # 34a6d out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty and files_clean, model_id=model_id, method='delete', out_path=out_dir)
2022-06-05 20:29:47.728848: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-05 20:29:47.728912: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-05 20:29:47.728949: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist 2022-06-05 20:29:47.729437: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
2623f23f-2abb-44a9-8a8a-37fe279cda97
/beegfs/ye53nis/drmed-git 2022-06-06 11:30:37.942306: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-06-06 11:30:37.942353: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 3 # 34a6d out_dir = output_path / f'clean_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean, model_id=model_id, method='delete', out_path=out_dir)
2022-06-06 11:30:52.913876: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-06 11:30:52.913938: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-06 11:30:52.913990: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist 2022-06-06 11:30:52.914431: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- on node 2
model_id = 4 # 484af out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty and files_clean, model_id=model_id, method='delete', out_path=out_dir)
- on node 3
model_id = 5 # 0cd20 out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty and files_clean, model_id=model_id, method='delete', out_path=out_dir)
- on node 1:
model_id = 6 # fe81d out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty and files_clean, model_id=model_id, method='delete', out_path=out_dir)
2022-06-06 16:01:59.893483: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-06 16:01:59.893526: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-06 16:01:59.893551: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node034): /proc/driver/nvidia/version does not exist 2022-06-06 16:01:59.893887: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
--------------------------------------------------------------------------- NameError Traceback (most recent call last) Input In [1], in <cell line: 1>() ----> 1 os._exit(00) NameError: name 'os' is not defined
/beegfs/ye53nis/drmed-git 2022-06-06 16:01:50.356512: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-06-06 16:01:50.356556: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 6 # fe81d out_dir = output_path / f'clean_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean, model_id=model_id, method='delete', out_path=out_dir)
- on node 2
model_id = 7 # 19e3e out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty and files_clean, model_id=model_id, method='delete', out_path=out_dir)
- on node 2
2.6.12.2 node 2
- Set up tmux (if we haven’t done that before) (
#+CALL: setup-tmux[:session local]
)sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: > ye53nis@ara-login01.rz.uni-jena.de’s password: - Request compute node
cd / srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
- Start Jupyter Lab (
#+CALL: jpt-tmux[:session jpmux]
)conda activate tf export PORT=8890 export XDG_RUNTIME_DIR='' export XDG_RUNTIME_DIR="" jupyter lab --no-browser --port=$PORT
(tf) [ye53nis@node152 /]$ jupyter lab --no-browser --port=$PORT [I 2022-06-03 00:24:43.720 ServerApp] jupyterlab | extension was successfully linked. [I 2022-06-03 00:24:44.304 ServerApp] nbclassic | extension was successfully linked. [I 2022-06-03 00:24:44.363 ServerApp] nbclassic | extension was successfully loaded. [I 2022-06-03 00:24:44.364 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab [I 2022-06-03 00:24:44.364 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab [I 2022-06-03 00:24:44.368 ServerApp] jupyterlab | extension was successfully loaded. [I 2022-06-03 00:24:44.369 ServerApp] Serving notebooks from local directory: / [I 2022-06-03 00:24:44.369 ServerApp] Jupyter Server 1.13.5 is running at: [I 2022-06-03 00:24:44.369 ServerApp] http://localhost:8890/lab?token=b2f94d18a55263d5a94b5c7e52c96c60bfdfc076bfb6f00a [I 2022-06-03 00:24:44.369 ServerApp] or http://127.0.0.1:8890/lab?token=b2f94d18a55263d5a94b5c7e52c96c60bfdfc076bfb6f00a [I 2022-06-03 00:24:44.370 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 2022-06-03 00:24:44.376 ServerApp] To access the server, open this file in a browser: file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-207633-open.html Or copy and paste one of these URLs: http://localhost:8890/lab?token=b2f94d18a55263d5a94b5c7e52c96c60bfdfc076bfb6f00a or http://127.0.0.1:8890/lab?token=b2f94d18a55263d5a94b5c7e52c96c60bfdfc076bfb6f00a
- Create SSH Tunnel for jupyter lab to the local computer (e.g.
#+CALL: ssh-tunnel(port="8889", node="node160")
)sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: ye53nis@node152’s password: Last login: Mon Jun 6 11:31:14 2022 from login01.ara - this subtree was connected to another compute node. I kept the going
track record of all executed commands in the mother node. These following
two code blocks are just examples. The process was the same as in the
mother node.
/beegfs/ye53nis/drmed-git 2022-06-06 16:03:48.742170: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-06-06 16:03:48.742202: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 7 # 19e3e out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty, model_id=model_id, method='delete', out_path=out_dir)
2022-06-06 16:03:54.537136: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-06 16:03:54.537186: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-06 16:03:54.537212: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node152): /proc/driver/nvidia/version does not exist 2022-06-06 16:03:54.537595: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
744ddb63-44d8-4041-b531-2ce90bcb0e5c
/beegfs/ye53nis/drmed-git 2022-06-06 11:31:31.271711: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-06-06 11:31:31.271745: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 4 # 484af out_dir = output_path / f'clean_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean, model_id=model_id, method='delete', out_path=out_dir)
2022-06-06 11:31:39.219733: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-06 11:31:39.219776: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-06 11:31:39.219797: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node152): /proc/driver/nvidia/version does not exist 2022-06-06 11:31:39.220117: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `
2.6.12.3 node 3
- Set up tmux (if we haven’t done that before) (
#+CALL: setup-tmux[:session local]
)sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: > ye53nis@ara-login01.rz.uni-jena.de’s password: - Request compute node
cd / srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
- Start Jupyter Lab (
#+CALL: jpt-tmux[:session jpmux]
)conda activate tf export PORT=8891 export XDG_RUNTIME_DIR='' export XDG_RUNTIME_DIR="" jupyter lab --no-browser --port=$PORT
(tf) [ye53nis@node155 /]$ jupyter lab --no-browser --port=$PORT [I 2022-06-03 00:28:12.112 ServerApp] jupyterlab | extension was successfully linked. [I 2022-06-03 00:28:12.735 ServerApp] nbclassic | extension was successfully linked. [I 2022-06-03 00:28:12.778 ServerApp] nbclassic | extension was successfully loaded. [I 2022-06-03 00:28:12.780 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab [I 2022-06-03 00:28:12.780 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab [I 2022-06-03 00:28:12.783 ServerApp] jupyterlab | extension was successfully loaded. [I 2022-06-03 00:28:12.784 ServerApp] Serving notebooks from local directory: / [I 2022-06-03 00:28:12.784 ServerApp] Jupyter Server 1.13.5 is running at: [I 2022-06-03 00:28:12.784 ServerApp] http://localhost:8891/lab?token=fe7d23f6a124fa20ea2b5d7f0dfadc3b20f0db64f8feadfd [I 2022-06-03 00:28:12.784 ServerApp] or http://127.0.0.1:8891/lab?token=fe7d23f6a124fa20ea2b5d7f0dfadc3b20f0db64f8feadfd [I 2022-06-03 00:28:12.784 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 2022-06-03 00:28:12.790 ServerApp] To access the server, open this file in a browser: file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-12523-open.html Or copy and paste one of these URLs: http://localhost:8891/lab?token=fe7d23f6a124fa20ea2b5d7f0dfadc3b20f0db64f8feadfd or http://127.0.0.1:8891/lab?token=fe7d23f6a124fa20ea2b5d7f0dfadc3b20f0db64f8feadfd
- Create SSH Tunnel for jupyter lab to the local computer (e.g.
#+CALL: ssh-tunnel(port="8889", node="node160")
)sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: ye53nis@node155’s password: Last login: Mon Jun 6 11:32:59 2022 from login01.ara - this subtree was connected to another compute node. I kept the going
track record of all executed commands in the mother node. These following
two code blocks are just examples. The process was the same as in the
mother node.
/beegfs/ye53nis/drmed-git 2022-06-06 16:04:50.862041: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-06-06 16:04:50.862080: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 5 # 0cd20 out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_dirty, model_id=model_id, method='delete', out_path=out_dir)
2022-06-06 11:33:30.480931: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-06 11:33:30.480975: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-06 11:33:30.481005: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node155): /proc/driver/nvidia/version does not exist 2022-06-06 11:33:30.481315: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
/beegfs/ye53nis/drmed-git
model_id = 5 # 0cd20 out_dir = output_path / f'clean_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) predict_correct_correlate_ptu( files=files_clean, model_id=model_id, method='delete', out_path=out_dir)
2022-06-06 16:04:56.835044: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-06-06 16:04:56.835085: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-06-06 16:04:56.835105: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node155): /proc/driver/nvidia/version does not exist 2022-06-06 16:04:56.835386: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
2.6.12.4 Apply averaging
and settozero
correction with 0cd20
- let’s first prepare the function which loads modules, the files list, and
provides a wrapper for the
fluotracify
correlation and correction functions: prepare-jupyter-averaging(data_path="/beegfs/ye53nis/data/1911DD_atto+LUVs", output_path="/beegfs/ye53nis/drmed-git/data/exp-220227-unet/2023-01-10_experimental-averaging-delete/")
prepare-jupyter-averaging(data_path="/beegfs/ye53nis/data/1911DD_atto+LUVs", output_path="/beegfs/ye53nis/drmed-git/data/exp-220227-unet/2023-01-10_experimental-averaging-delete/")
%cd /beegfs/ye53nis/drmed-git import logging import os import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint from tensorflow.keras.optimizers import Adam from mlflow.keras import load_model FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import corr_fit_object as cfo from fluotracify.training import build_model as bm data_path = Path(data_path) output_path = Path(output_path) log_path = output_path.parent / f'{output_path.name}.log' logging.basicConfig(filename=log_path, filemode='w', format='%(asctime)s - %(message)s', force=True) log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind', context='paper') class ParameterClass(): """Stores parameters for correlation """ def __init__(self): # Where the data is stored. self.data = [] self.objectRef = [] self.subObjectRef = [] self.colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black'] self.numOfLoaded = 0 # very fast from Ncasc ~ 14 onwards self.NcascStart = 0 self.NcascEnd = 30 # 25 self.Nsub = 6 # 6 self.photonLifetimeBin = 10 # used for photon decay self.photonCountBin = 1 # used for time series par_obj = ParameterClass() model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727', '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65', '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653', 'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216', 'c1204e3a8a1e4c40a35b5b7b1922d1ce'] model_name_ls = [f'{s:.5}' for s in model_ls] # scaler_ls = ['minmax', 'robust', 'maxabs', 'l2', 'standard', 'quant_g', 'standard', # 'standard', 'robust'] pred_thresh = 0.5 if data_path.name == "1911DD_atto+LUVs": path_clean1 = data_path / 'clean_ptu_part1/' path_clean2 = data_path / 'clean_ptu_part2/' path_dirty1 = data_path / 'dirty_ptu_part1/' path_dirty2 = data_path / 'dirty_ptu_part2/' files_clean1 = [path_clean1 / f for f in os.listdir(path_clean1) if f.endswith('.ptu')] files_clean2 = [path_clean2 / f for f in os.listdir(path_clean2) if f.endswith('.ptu')] files_dirty1 = [path_dirty1 / f for f in os.listdir(path_dirty1) if f.endswith('.ptu')] files_dirty2 = [path_dirty2 / f for f in os.listdir(path_dirty2) if f.endswith('.ptu')] if data_path.name == "191113_Pex5_2_structured": path_clean = data_path / 'HsPEX5EGFP 1-100001' path_dirty = data_path / 'TbPEX5EGFP 1-10002' files_clean = [path_clean / f for f in os.listdir(path_clean) if f.endswith('.ptu')] files_dirty = [path_dirty / f for f in os.listdir(path_dirty) if f.endswith('.ptu')] def predict_correct_correlate_ptu(files, model_id, method, out_path): logged_scaler = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{model_ls[model_id]}/params/scaler') logged_scaler = !cat $logged_scaler logged_scaler = logged_scaler[0] logged_model = Path(f'/beegfs/ye53nis/drmed-git/data/mlruns/10/{model_ls[model_id]}/artifacts/model') logged_model = load_model(logged_model, compile=False) logged_model.compile(loss=bm.binary_ce_dice_loss(), optimizer=Adam(), metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9])) if method == 'delete_and_shift': method_corr = 'tttr2xfcs' method_str = 'DELSHIFT' elif method == 'delete': method_corr = 'tttr2xfcs' method_str = 'DEL' elif method == 'weights': method_corr = 'tttr2xfcs_with_weights' method_str = 'tttr2xfcs_with_weights' elif method == 'averaging': method_corr = 'tttr2xfcs_with_averaging' method_str = 'tttr2xfcs_with_averaging' for idx, myfile in enumerate(files): ptufile = cfo.PicoObject(myfile, par_obj) ptufile.predictTimeSeries(method='unet', model=logged_model, scaler=logged_scaler) ptufile.correctTCSPC(method=method) if method in ['delete', 'delete_and_shift', 'weights']: for key in ptufile.trueTimeArr.keys(): ptufile.get_autocorrelation(method=method_corr, name=key) elif method == 'averaging': for key in ptufile.trueTimeParts.keys(): ptufile.get_autocorrelation(method=method_corr, name=key) if method_corr in list(ptufile.autoNorm.keys()): for key in list(ptufile.autoNorm[method_corr].keys()): if ((method_str in key) or (method_str in ['tttr2xfcs_with_weights', 'tttr2xfcs_with_averaging'])): ptufile.save_autocorrelation(name=key, method=method_corr, output_path=out_path)
/beegfs/ye53nis/drmed-git
import importlib importlib.reload(cfo)
<module 'fluotracify.applications.corr_fit_object' from '/beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py'>
- let’s also define a function to kill the jupyter environment. This is due
to the
fluotracify
correlation algorithm memory allocation problem I haven’t figured out yet. It will fill the memory after processing ~300 files of theaf488
experiments (higher count rates). Because I haven’t figured out how to solve this problem, I split the folders in parts and restart the environment.os._exit(00)
7a752b61-60c1-4322-8105-e8dbd705caa0
- first:
af488luvs
andaf488
withaveraging
anddelete
correction (later we called itset to zero
). We only use mode0cd20
for prediction, because this has proved to be the most robust.#+CALL: prepare-jupyter-averaging()
/beegfs/ye53nis/drmed-git 2023-01-12 13:29:49.334418: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-01-12 13:29:49.334472: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 5 out_dir = output_path / f'dirty_averaging_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) ptufile = predict_correct_correlate_ptu( files=files_dirty1, model_id=model_id, method='averaging', out_path=out_dir)
#+CALL: kill-jupyter()
1603e9bd-2d3a-4295-ace3-d86b1cdf4f4f
#+CALL: prepare-jupyter-averaging()
etc…/beegfs/ye53nis/drmed-git 2023-01-12 17:28:27.364198: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-01-12 17:28:27.364273: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 5 out_dir = output_path / f'dirty_averaging_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) ptufile = predict_correct_correlate_ptu( files=files_dirty2, model_id=model_id, method='averaging', out_path=out_dir)
2023-01-12 17:28:58.975546: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2023-01-12 17:28:58.975606: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2023-01-12 17:28:58.975643: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist 2023-01-12 17:28:58.976216: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
/beegfs/ye53nis/drmed-git 2023-01-13 12:01:00.676480: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-01-13 12:01:00.676539: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 5 out_dir = output_path / f'clean_averaging_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) ptufile = predict_correct_correlate_ptu( files=files_clean1, model_id=model_id, method='averaging', out_path=out_dir)
2023-01-13 12:07:29.082697: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2023-01-13 12:07:29.082756: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2023-01-13 12:07:29.082791: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist 2023-01-13 12:07:29.083227: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
5b633a1b-0c54-453f-a4bf-a9d30182fdd3
/beegfs/ye53nis/drmed-git 2023-01-13 14:38:58.893878: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-01-13 14:38:58.893919: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 5 out_dir = output_path / f'clean_averaging_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) ptufile = predict_correct_correlate_ptu( files=files_clean2, model_id=model_id, method='averaging', out_path=out_dir)
2023-01-13 14:39:25.593798: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2023-01-13 14:39:25.593871: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2023-01-13 14:39:25.593915: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist 2023-01-13 14:39:25.594445: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
a965cd3e-f452-4c79-9428-b5152c3ba8aa
- second:
af488luvs
andaf488
delete correction. #+CALL: prepare-jupyter-averaging()
etc…/beegfs/ye53nis/drmed-git 2023-01-16 16:37:55.758832: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-01-16 16:37:55.758867: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 5 out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) ptufile = predict_correct_correlate_ptu( files=files_dirty1, model_id=model_id, method='delete', out_path=out_dir)
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
b91bd6bb-e7b8-44c1-b014-02275b3516b6
/beegfs/ye53nis/drmed-git 2023-01-16 23:53:43.486077: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-01-16 23:53:43.486120: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 5 out_dir = output_path / f'dirty_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) ptufile = predict_correct_correlate_ptu( files=files_dirty2, model_id=model_id, method='delete', out_path=out_dir)
2023-01-16 23:53:57.181417: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2023-01-16 23:53:57.181479: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2023-01-16 23:53:57.181516: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist 2023-01-16 23:53:57.181940: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
/beegfs/ye53nis/drmed-git 2023-01-17 13:11:45.290135: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-01-17 13:11:45.290197: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 5 out_dir = output_path / f'clean_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) ptufile = predict_correct_correlate_ptu( files=files_clean1, model_id=model_id, method='delete', out_path=out_dir)
2023-01-17 13:12:04.995182: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2023-01-17 13:12:04.995223: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2023-01-17 13:12:04.995253: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist 2023-01-17 13:12:04.995535: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
63efbb75-e4b2-4b2c-ba46-ecf44a9d66fc
/beegfs/ye53nis/drmed-git 2023-01-17 17:20:22.162939: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-01-17 17:20:22.162993: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 5 out_dir = output_path / f'clean_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) ptufile = predict_correct_correlate_ptu( files=files_clean2, model_id=model_id, method='delete', out_path=out_dir)
2023-01-17 17:20:51.771891: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2023-01-17 17:20:51.771954: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2023-01-17 17:20:51.771992: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist 2023-01-17 17:20:51.772457: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
63efbb75-e4b2-4b2c-ba46-ecf44a9d66fc
- third:
tb-pex5
andhs-pex5
withaveraging
correction andset to zero
correction. Because these files are small and memory allocation is less of a problem, we don’t need to kill our jupyter session in between#+CALL: prepare-jupyter-averaging("/beegfs/ye53nis/data/191113_Pex5_2_structured")
/beegfs/ye53nis/drmed-git 2023-01-18 11:53:14.696643: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-01-18 11:53:14.696707: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
model_id = 5 out_dir = output_path / f'tbpex5_averaging_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) ptufile = predict_correct_correlate_ptu( files=files_dirty, model_id=model_id, method='averaging', out_path=out_dir)
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
model_id = 5 out_dir = output_path / f'tbpex5_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) ptufile = predict_correct_correlate_ptu( files=files_dirty, model_id=model_id, method='delete', out_path=out_dir)
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
model_id = 5 out_dir = output_path / f'hspex5_averaging_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) ptufile = predict_correct_correlate_ptu( files=files_clean, model_id=model_id, method='averaging', out_path=out_dir)
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
model_id = 5 out_dir = output_path / f'hspex5_delete_{model_name_ls[model_id]}/' os.makedirs(out_dir, exist_ok=True) ptufile = predict_correct_correlate_ptu( files=files_clean, model_id=model_id, method='delete', out_path=out_dir)
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
2.6.13 Analysis 3: correlations and fits of experimental data
2.6.13.1 compare model performance on af488
data
- call
#+CALL: jupyter-set-output-directory()
./data/exp-220227-unet/jupyter
- first, illlustrative correlations and fits from
FoCuS-point
fitting. We start with the data which was later used to plotavg_param
data- Averaged curves of
AF488
(no artifacts) with proceesings (no correction + all models, each curves is averaged from 424 correlations) - Averaged curves of
AF488 + DiO-LUVs
(peak artifacts) with proceesings (no correction + all models, each curves is averaged from 440 correlations)
- Averaged curves of
- Now we continue with
AF488
- this is data without peak artifacts, which was later read in asall_param
no correction
, 1 species and 2 species fits. The 1 species fit ofno correction
is the gold standard all correction methods are compared against.0cd20
, 1 species and 2 species fits.19e3e
, 1 species and 2 species fits.34a6d
, 1 species and 2 species fits.484af
, 1 species and 2 species fits.714af
, 1 species and 2 species fits.34766
, 1 species and 2 species fits.c1204
, 1 species and 2 species fits.fe81d
, 1 species and 2 species fits.ff67b
, 1 species and 2 species fits.
- now illlustrative correlations and fits from
AF488 + DiO-LUVs
(data with peak artifacts). This is the data we want to correct.no correction
, 1 species and 2 species fits.0cd20
, 1 species and 2 species fits.19e3e
, 1 species and 2 species fits.34a6d
, 1 species and 2 species fits.484af
, 1 species and 2 species fits.714af
, 1 species and 2 species fits.34766
, 1 species and 2 species fits.c1204
, 1 species and 2 species fits.fe81d
, 1 species and 2 species fits.ff67b
, 1 species and 2 species fits.
- second, load modules and data
%cd ~/Programme/drmed-git
/home/lex/Programme/drmed-git
import os import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind', context='paper') model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727', '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65', '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653', 'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216', 'c1204e3a8a1e4c40a35b5b7b1922d1ce'] model_name_ls = [f'{s:.5}' for s in model_ls]
path = Path('data/exp-220227-unet/2022-05-22_experimental-af488/') # averaged values dirty_avg_1comp_path = path / 'dirty-all-results/dirty_all_1comp_outputParam.csv' dirty_avg_2comp_path = path / 'dirty-all-results/dirty_all_2comp_outputParam.csv' clean_avg_1comp_path = path / 'clean-all-results/clean_all_1comp_outputParam.csv' clean_avg_2comp_path = path / 'clean-all-results/clean_all_2comp_outputParam.csv' # dirty params dirty_noc_1comp_path = path / 'dirty-all-results/dirty_no-correction_1comp_outputParam.csv' dirty_noc_2comp_path = path / 'dirty-all-results/dirty_no-correction_2comp_outputParam.csv' dirty_0cd20_1comp_path = path / 'dirty-all-results/dirty_0cd20_1comp_outputParam.csv' dirty_0cd20_2comp_path = path / 'dirty-all-results/dirty_0cd20_2comp_outputParam.csv' dirty_19e3e_1comp_path = path / 'dirty-all-results/dirty_19e3e_1comp_outputParam.csv' dirty_19e3e_2comp_path = path / 'dirty-all-results/dirty_19e3e_2comp_outputParam.csv' dirty_34766_1comp_path = path / 'dirty-all-results/dirty_34766_1comp_outputParam.csv' dirty_34766_2comp_path = path / 'dirty-all-results/dirty_34766_2comp_outputParam.csv' dirty_34a6d_1comp_path = path / 'dirty-all-results/dirty_34a6d_1comp_outputParam.csv' dirty_34a6d_2comp_path = path / 'dirty-all-results/dirty_34a6d_2comp_outputParam.csv' dirty_484af_1comp_path = path / 'dirty-all-results/dirty_484af_1comp_outputParam.csv' dirty_484af_2comp_path = path / 'dirty-all-results/dirty_484af_2comp_outputParam.csv' dirty_714af_1comp_path = path / 'dirty-all-results/dirty_714af_1comp_outputParam.csv' dirty_714af_2comp_path = path / 'dirty-all-results/dirty_714af_2comp_outputParam.csv' dirty_c1204_1comp_path = path / 'dirty-all-results/dirty_c1204_1comp_outputParam.csv' dirty_c1204_2comp_path = path / 'dirty-all-results/dirty_c1204_2comp_outputParam.csv' dirty_fe81d_1comp_path = path / 'dirty-all-results/dirty_fe81d_1comp_outputParam.csv' dirty_fe81d_2comp_path = path / 'dirty-all-results/dirty_fe81d_2comp_outputParam.csv' dirty_ff67b_1comp_path = path / 'dirty-all-results/dirty_ff67b_1comp_outputParam.csv' dirty_ff67b_2comp_path = path / 'dirty-all-results/dirty_ff67b_2comp_outputParam.csv' # clean params clean_noc_1comp_path = path / 'clean-all-results/clean_no-correction_1comp_outputParam.csv' clean_noc_2comp_path = path / 'clean-all-results/clean_no-correction_2comp_outputParam.csv' clean_0cd20_1comp_path = path / 'clean-all-results/clean_0cd20_1comp_outputParam.csv' clean_0cd20_2comp_path = path / 'clean-all-results/clean_0cd20_2comp_outputParam.csv' clean_19e3e_1comp_path = path / 'clean-all-results/clean_19e3e_1comp_outputParam.csv' clean_19e3e_2comp_path = path / 'clean-all-results/clean_19e3e_2comp_outputParam.csv' clean_34766_1comp_path = path / 'clean-all-results/clean_34766_1comp_outputParam.csv' clean_34766_2comp_path = path / 'clean-all-results/clean_34766_2comp_outputParam.csv' clean_34a6d_1comp_path = path / 'clean-all-results/clean_34a6d_1comp_outputParam.csv' clean_34a6d_2comp_path = path / 'clean-all-results/clean_34a6d_2comp_outputParam.csv' clean_484af_1comp_path = path / 'clean-all-results/clean_484af_1comp_outputParam.csv' clean_484af_2comp_path = path / 'clean-all-results/clean_484af_2comp_outputParam.csv' clean_714af_1comp_path = path / 'clean-all-results/clean_714af_1comp_outputParam.csv' clean_714af_2comp_path = path / 'clean-all-results/clean_714af_2comp_outputParam.csv' clean_c1204_1comp_path = path / 'clean-all-results/clean_c1204_1comp_outputParam.csv' clean_c1204_2comp_path = path / 'clean-all-results/clean_c1204_2comp_outputParam.csv' clean_fe81d_1comp_path = path / 'clean-all-results/clean_fe81d_1comp_outputParam.csv' clean_fe81d_2comp_path = path / 'clean-all-results/clean_fe81d_2comp_outputParam.csv' clean_ff67b_1comp_path = path / 'clean-all-results/clean_ff67b_1comp_outputParam.csv' clean_ff67b_2comp_path = path / 'clean-all-results/clean_ff67b_2comp_outputParam.csv' # average parameters dirty_avg_1comp = pd.read_csv(dirty_avg_1comp_path, sep=',').assign( artifact=10*['af488+luvs',]) dirty_avg_2comp = pd.read_csv(dirty_avg_2comp_path, sep=',').assign( artifact=10*['af488+luvs',]) clean_avg_1comp = pd.read_csv(clean_avg_1comp_path, sep=',').assign( artifact=10*['af488',]) clean_avg_2comp = pd.read_csv(clean_avg_2comp_path, sep=',').assign( artifact=10*['af488',]) # dirty params dirty_noc_1comp = pd.read_csv(dirty_noc_1comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['No correction']) dirty_noc_2comp = pd.read_csv(dirty_noc_2comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['No correction']) dirty_0cd20_1comp = pd.read_csv(dirty_0cd20_1comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['0cd20']) dirty_0cd20_2comp = pd.read_csv(dirty_0cd20_2comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['0cd20']) dirty_19e3e_1comp = pd.read_csv(dirty_19e3e_1comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['19e3e']) dirty_19e3e_2comp = pd.read_csv(dirty_19e3e_2comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['19e3e']) dirty_34766_1comp = pd.read_csv(dirty_34766_1comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['34766']) dirty_34766_2comp = pd.read_csv(dirty_34766_2comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['34766']) dirty_34a6d_1comp = pd.read_csv(dirty_34a6d_1comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['34a6d']) dirty_34a6d_2comp = pd.read_csv(dirty_34a6d_2comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['34a6d']) dirty_484af_1comp = pd.read_csv(dirty_484af_1comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['484af']) dirty_484af_2comp = pd.read_csv(dirty_484af_2comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['484af']) dirty_714af_1comp = pd.read_csv(dirty_714af_1comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['714af']) dirty_714af_2comp = pd.read_csv(dirty_714af_2comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['714af']) dirty_c1204_1comp = pd.read_csv(dirty_c1204_1comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['c1204']) dirty_c1204_2comp = pd.read_csv(dirty_c1204_2comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['c1204']) dirty_fe81d_1comp = pd.read_csv(dirty_fe81d_1comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['fe81d']) dirty_fe81d_2comp = pd.read_csv(dirty_fe81d_2comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['fe81d']) dirty_ff67b_1comp = pd.read_csv(dirty_ff67b_1comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['ff67b']) dirty_ff67b_2comp = pd.read_csv(dirty_ff67b_2comp_path, sep=',').assign( artifact=440*['af488+luvs',], processing=440*['ff67b']) # clean params clean_noc_1comp = pd.read_csv(clean_noc_1comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['No correction']) clean_noc_2comp = pd.read_csv(clean_noc_2comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['No correction']) clean_0cd20_1comp = pd.read_csv(clean_0cd20_1comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['0cd20']) clean_0cd20_2comp = pd.read_csv(clean_0cd20_2comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['0cd20']) clean_19e3e_1comp = pd.read_csv(clean_19e3e_1comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['19e3e']) clean_19e3e_2comp = pd.read_csv(clean_19e3e_2comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['19e3e']) clean_34766_1comp = pd.read_csv(clean_34766_1comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['34766']) clean_34766_2comp = pd.read_csv(clean_34766_2comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['34766']) clean_34a6d_1comp = pd.read_csv(clean_34a6d_1comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['34a6d']) clean_34a6d_2comp = pd.read_csv(clean_34a6d_2comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['34a6d']) clean_484af_1comp = pd.read_csv(clean_484af_1comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['484af']) clean_484af_2comp = pd.read_csv(clean_484af_2comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['484af']) clean_714af_1comp = pd.read_csv(clean_714af_1comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['714af']) clean_714af_2comp = pd.read_csv(clean_714af_2comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['714af']) clean_c1204_1comp = pd.read_csv(clean_c1204_1comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['c1204']) clean_c1204_2comp = pd.read_csv(clean_c1204_2comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['c1204']) clean_fe81d_1comp = pd.read_csv(clean_fe81d_1comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['fe81d']) clean_fe81d_2comp = pd.read_csv(clean_fe81d_2comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['fe81d']) clean_ff67b_1comp = pd.read_csv(clean_ff67b_1comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['ff67b']) clean_ff67b_2comp = pd.read_csv(clean_ff67b_2comp_path, sep=',').assign( artifact=424*['af488',], processing=424*['ff67b']) avg_param = pd.concat([clean_avg_1comp, clean_avg_2comp, dirty_avg_1comp, dirty_avg_2comp]) all_param = pd.concat([clean_noc_1comp, clean_noc_2comp, dirty_noc_1comp, dirty_noc_2comp, dirty_0cd20_1comp, dirty_0cd20_2comp, dirty_19e3e_1comp, dirty_19e3e_2comp, dirty_34766_1comp, dirty_34766_2comp, dirty_34a6d_1comp, dirty_34a6d_2comp, dirty_484af_1comp, dirty_484af_2comp, dirty_714af_1comp, dirty_714af_2comp, dirty_c1204_1comp, dirty_c1204_2comp, dirty_fe81d_1comp, dirty_fe81d_2comp, dirty_ff67b_1comp, dirty_ff67b_2comp, clean_0cd20_1comp, clean_0cd20_2comp, clean_19e3e_1comp, clean_19e3e_2comp, clean_34766_1comp, clean_34766_2comp, clean_34a6d_1comp, clean_34a6d_2comp, clean_484af_1comp, clean_484af_2comp, clean_714af_1comp, clean_714af_2comp, clean_c1204_1comp, clean_c1204_2comp, clean_fe81d_1comp, clean_fe81d_2comp, clean_ff67b_1comp, clean_ff67b_2comp]) assert set(all_param['Dimen']) == {'3D'} assert set(all_param['AR1'] == {5.0}) assert set(all_param['Diff_eq']) == {'Equation 1B'} assert set(all_param['Triplet_eq']) == {'no triplet'} assert set(all_param['alpha1']) == {1.0} assert set(all_param['xmin']) == {0.001018} assert set(all_param['xmax']) == {100.66329, 469.762042} assert set(all_param[all_param['xmax'] == 100.66329]['artifact']) == {'af488'} assert set(all_param[all_param['xmax'] == 469.762042]['artifact']) == {'af488+luvs'} avg_param = pd.concat([clean_avg_1comp, clean_avg_2comp, dirty_avg_1comp, dirty_avg_2comp]) assert set(avg_param['Dimen']) == {'3D'} assert set(avg_param['AR1'] == {5.0}) assert set(avg_param['Diff_eq']) == {'Equation 1B'} assert set(avg_param['Triplet_eq']) == {'no triplet'} assert set(avg_param['alpha1']) == {1.0} assert set(avg_param['xmin']) == {0.001018} assert set(avg_param['xmax']) == {100.66329, 469.762042} assert set(avg_param[avg_param['xmax'] == 100.66329]['artifact']) == {'af488'} assert set(avg_param[avg_param['xmax'] == 469.762042]['artifact']) == {'af488+luvs'} all_param
nameofplot masterfile parentname parentuqid time of fit Diffeq Diffspecies Tripleteq Tripletspecies Dimen … artifact processing A2 stdev(A2) txy2 stdev(txy2) alpha2 stdev(alpha2) AR2 stdev(AR2) 0 2022-05-26tttr2xfcsCH2BIN1dot020 nM AF4881… Not known tttr2xfcs 0 Mon May 30 14:12:23 2022 Equation 1B 1 no triplet 1 3D … af488 No correction NaN NaN NaN NaN NaN NaN NaN NaN 1 2022-05-26tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs 0 Mon May 30 14:12:24 2022 Equation 1B 1 no triplet 1 3D … af488 No correction NaN NaN NaN NaN NaN NaN NaN NaN 2 2022-05-26tttr2xfcsCH2BIN1dot020 nM AF4883… Not known tttr2xfcs 0 Mon May 30 14:12:24 2022 Equation 1B 1 no triplet 1 3D … af488 No correction NaN NaN NaN NaN NaN NaN NaN NaN 3 2022-05-26tttr2xfcsCH2BIN1dot020 nM AF4884… Not known tttr2xfcs 0 Mon May 30 14:12:24 2022 Equation 1B 1 no triplet 1 3D … af488 No correction NaN NaN NaN NaN NaN NaN NaN NaN 4 2022-05-26tttr2xfcsCH2BIN1dot020 nM AF4885… Not known tttr2xfcs 0 Mon May 30 14:12:24 2022 Equation 1B 1 no triplet 1 3D … af488 No correction NaN NaN NaN NaN NaN NaN NaN NaN … … … … … … … … … … … … … … … … … … … … … … 419 2022-05-25tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs 0 Mon May 30 14:42:23 2022 Equation 1B 2 no triplet 1 3D … af488 ff67b 0.488985 None 0.096094 None 1.0 None 5.0 None 420 2022-05-25tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs 0 Mon May 30 14:42:23 2022 Equation 1B 2 no triplet 1 3D … af488 ff67b 0.386551 None 0.112745 None 1.0 None 5.0 None 421 2022-05-25tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs 0 Mon May 30 14:42:24 2022 Equation 1B 2 no triplet 1 3D … af488 ff67b 0.658441 None 0.054065 None 1.0 None 5.0 None 422 2022-05-25tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs 0 Mon May 30 14:42:24 2022 Equation 1B 2 no triplet 1 3D … af488 ff67b 0.730166 None 0.060976 None 1.0 None 5.0 None 423 2022-05-25tttr2xfcsCH2BIN1dot020 nM AF4882… Not known tttr2xfcs 0 Mon May 30 14:42:24 2022 Equation 1B 2 no triplet 1 3D … af488 ff67b 0.461469 None 0.097456 None 1.0 None 5.0 None 17280 rows × 39 columns
40 rows × 34 columns
- first, let’s take a look only at
avg_param
. There, for each model all curves ofaf488
andaf488+luvs
were fitted, and then the correlations were averaged. This gives us a good overview with direct comparison of model fit outcome to the fit outcomes without correction. BUT this is not enough to determine that the model is good enough, because in practice, we rarely take 400 times the same measurement and average. So this more resembles the optimal fit outcomes and in the final paper, I analysed the success via fit distributions (so plotting all 400 extracted transit times and comparing the distributions)def sort_fit(param_ls): nfcs = list(param_ls)[-1] array = np.array(list(param_ls)[:-1]).reshape((2, 2)) # sort by transit times array = array[:, array[0, :].argsort()] A_fast = float(array[1, 0]) A_slow = float(array[1, 1]) N_fast = A_fast * float(nfcs) N_slow = A_slow * float(nfcs) t_fast = float(array[0, 0]) * 1000 t_slow = float(array[0, 1]) * 1000 if np.isnan(t_slow): # if tt_low_high[0] <= t_fast <= tt_low_high[1]: # out = f'\\cellcolor[HTML]{{009e73}}${t_fast:.2f}$' # else: # out = f'\\cellcolor[HTML]{{d55e00}}${t_fast:.2f}$' out = f'$\\tau_D={t_fast:.1f}\\hspace{{1em}}N={nfcs:.1f}$' elif f'{A_fast:.0%}' == '100%': # if tt_low_high[0] <= t_fast <= tt_low_high[1]: # out = f'\\cellcolor[HTML]{{009e73}}${t_fast:.2f}(100\\%)$' # else: # out = f'\\cellcolor[HTML]{{d55e00}}${t_fast:.2f}(100\\%)$' out = f'$\\tau_D^{{fast}}={t_fast:.1f}\\hspace{{1em}}N^{{fast}}={N_fast:.1f}$' elif f'{A_slow:.0%}' == '100%': # if tt_low_high[0] <= t_slow <= tt_low_high[1]: # out = f'\\cellcolor[HTML]{{009e73}}${t_slow:.2f}(100\\%)$' # else: # out = f'\\cellcolor[HTML]{{d55e00}}${t_slow:.2f}(100\\%)$' out = f'$\\tau_D^{{slow}}={t_slow:.1f}\\hspace{{1em}}N^{{slow}}={N_slow:.1f}$' else: # if (tt_low_high[0] <= t_fast <= tt_low_high[1]) or ( # tt_low_high[0] <= t_slow <= tt_low_high[1]): # out = f'\\cellcolor[HTML]{{009e73}}\\colorbox[HTML]{{009e73}}{{\\makecell{{${t_fast:.2f}^f({A_fast:.0%})$\\\\'\ # f'${t_slow:.2f}^s({A_slow:.0%})$}}}}' # else: # out = f'\\cellcolor[HTML]{{d55e00}}\\colorbox[HTML]{{d55e00}}{{\\makecell{{${t_fast:.2f}^f({A_fast:.0%})$\\\\'\ # f'${t_slow:.2f}^s({A_slow:.0%})$}}}}' out = f'\\makecell{{$\\tau_D^{{fast}}={t_fast:.1f}\\hspace{{1em}}N^{{fast}}={N_fast:.1f}$\\\\'\ f'$\\tau_D^{{slow}}={t_slow:.1f}\\hspace{{1em}}N^{{slow}}={N_slow:.1f}$}}' out = out.replace('%', '\\%') return out avg_param['fit results'] = avg_param[['txy1', 'txy2', 'A1', 'A2', 'N (FCS)']].apply(lambda x: sort_fit(x), axis=1) avg_param = avg_param[['name_of_plot', 'Diff_species', 'artifact', 'fit results']] avg_param = avg_param.pivot_table(values='fit results', columns='artifact', index=['name_of_plot', 'Diff_species'], aggfunc=lambda x: '-'.join(x)) avg_param.loc[('clean', 1), 'af488+luvs'] = avg_param.loc[('dirty', 1), 'af488+luvs'] avg_param.loc[('clean', 2), 'af488+luvs'] = avg_param.loc[('dirty', 2), 'af488+luvs'] avg_param = avg_param.rename(index={'clean' : 'no correction'}) # to get all models first = ['no correction',] + model_name_ls.copy() # just two examples # first = ['no correction', '0cd20', '34a6d'] second = [1, 2] index_order = pd.MultiIndex.from_product([first, second], names=[r'\makecell{type of\\processing}', 'fit']) avg_param = avg_param.reindex(index=index_order) with pd.option_context("max_colwidth", 1000): print(avg_param.to_latex(escape=False, column_format='cccc', caption=(r'Experimental results AF488 data. $\tau_D$ in $\mu s$. For 1 species fit, $N = N(FCS) * T1$. For 2 species fit, $N^{sp} = A^{sp} * (N(FCS) * T1)$ and $\tau_D$ is sorted in fast and slow. If $A^{sp}=100\%$, only display the corresponding $\tau_D$ and $N$ values. 2 species fit results of AF488 in solution has no biophysical relevance and is only shown for completion','Experimental results AF488 data')))
\begin{table} \centering \caption[Experimental results AF488 data]{Experimental results AF488 data. $\tau_D$ in $\mu s$. For 1 species fit, $N = N(FCS) * T1$. For 2 species fit, $N^{sp} = A^{sp} * (N(FCS) * T1)$ and $\tau_D$ is sorted in fast and slow. If $A^{sp}=100\%$, only display the corresponding $\tau_D$ and $N$ values. 2 species fit results of AF488 in solution has no biophysical relevance and is only shown for completion} \begin{tabular}{cccc} \toprule & artifact & af488 & af488+luvs \\ \makecell{type of\\processing} & fit & & \\ \midrule no correction & 1 & $\tau_D=39.7\hspace{1em}N=14.3$ & $\tau_D=7355.0\hspace{1em}N=4.7$ \\ & 2 & \makecell{$\tau_D^{fast}=9.5\hspace{1em}N^{fast}=4.9$\\$\tau_D^{slow}=69.8\hspace{1em}N^{slow}=8.6$} & \makecell{$\tau_D^{fast}=78.3\hspace{1em}N^{fast}=0.7$\\$\tau_D^{slow}=11944.6\hspace{1em}N^{slow}=3.5$} \\ ff67b & 1 & $\tau_D=39.8\hspace{1em}N=14.3$ & $\tau_D=94.0\hspace{1em}N=22.4$ \\ & 2 & \makecell{$\tau_D^{fast}=9.9\hspace{1em}N^{fast}=5.0$\\$\tau_D^{slow}=71.7\hspace{1em}N^{slow}=8.4$} & \makecell{$\tau_D^{fast}=41.8\hspace{1em}N^{fast}=13.1$\\$\tau_D^{slow}=20282.4\hspace{1em}N^{slow}=5.2$} \\ 34766 & 1 & $\tau_D=35.1\hspace{1em}N=14.7$ & $\tau_D=62.5\hspace{1em}N=23.2$ \\ & 2 & \makecell{$\tau_D^{fast}=1.4\hspace{1em}N^{fast}=2.4$\\$\tau_D^{slow}=42.0\hspace{1em}N^{slow}=10.7$} & \makecell{$\tau_D^{fast}=38.9\hspace{1em}N^{fast}=15.8$\\$\tau_D^{slow}=24434.3\hspace{1em}N^{slow}=4.1$} \\ 714af & 1 & $\tau_D=39.8\hspace{1em}N=14.3$ & $\tau_D=104.2\hspace{1em}N=22.3$ \\ & 2 & \makecell{$\tau_D^{fast}=10.0\hspace{1em}N^{fast}=5.1$\\$\tau_D^{slow}=71.9\hspace{1em}N^{slow}=8.4$} & \makecell{$\tau_D^{fast}=41.8\hspace{1em}N^{fast}=12.3$\\$\tau_D^{slow}=21435.4\hspace{1em}N^{slow}=5.5$} \\ 34a6d & 1 & $\tau_D=39.7\hspace{1em}N=14.3$ & $\tau_D=78.9\hspace{1em}N=22.5$ \\ & 2 & \makecell{$\tau_D^{fast}=9.4\hspace{1em}N^{fast}=4.8$\\$\tau_D^{slow}=69.6\hspace{1em}N^{slow}=8.6$} & \makecell{$\tau_D^{fast}=41.9\hspace{1em}N^{fast}=14.2$\\$\tau_D^{slow}=22526.1\hspace{1em}N^{slow}=4.6$} \\ 484af & 1 & $\tau_D=39.8\hspace{1em}N=14.3$ & $\tau_D=91.2\hspace{1em}N=22.5$ \\ & 2 & \makecell{$\tau_D^{fast}=10.1\hspace{1em}N^{fast}=5.1$\\$\tau_D^{slow}=72.2\hspace{1em}N^{slow}=8.4$} & \makecell{$\tau_D^{fast}=41.2\hspace{1em}N^{fast}=12.8$\\$\tau_D^{slow}=23742.5\hspace{1em}N^{slow}=5.2$} \\ 0cd20 & 1 & $\tau_D=39.6\hspace{1em}N=14.3$ & $\tau_D=71.3\hspace{1em}N=21.7$ \\ & 2 & \makecell{$\tau_D^{fast}=8.9\hspace{1em}N^{fast}=4.6$\\$\tau_D^{slow}=67.5\hspace{1em}N^{slow}=8.8$} & \makecell{$\tau_D^{fast}=38.8\hspace{1em}N^{fast}=15.5$\\$\tau_D^{slow}=5823.0\hspace{1em}N^{slow}=3.9$} \\ fe81d & 1 & $\tau_D=39.8\hspace{1em}N=14.3$ & $\tau_D=90.4\hspace{1em}N=22.3$ \\ & 2 & \makecell{$\tau_D^{fast}=10.0\hspace{1em}N^{fast}=5.0$\\$\tau_D^{slow}=71.8\hspace{1em}N^{slow}=8.4$} & \makecell{$\tau_D^{fast}=42.0\hspace{1em}N^{fast}=13.3$\\$\tau_D^{slow}=19906.1\hspace{1em}N^{slow}=5.0$} \\ 19e3e & 1 & $\tau_D=39.6\hspace{1em}N=14.3$ & $\tau_D=79.8\hspace{1em}N=22.4$ \\ & 2 & \makecell{$\tau_D^{fast}=9.2\hspace{1em}N^{fast}=4.8$\\$\tau_D^{slow}=68.9\hspace{1em}N^{slow}=8.7$} & \makecell{$\tau_D^{fast}=41.7\hspace{1em}N^{fast}=13.6$\\$\tau_D^{slow}=27489.8\hspace{1em}N^{slow}=4.7$} \\ c1204 & 1 & $\tau_D=29.2\hspace{1em}N=15.2$ & $\tau_D=51.4\hspace{1em}N=23.8$ \\ & 2 & \makecell{$\tau_D^{fast}=0.1\hspace{1em}N^{fast}=3.9$\\$\tau_D^{slow}=31.4\hspace{1em}N^{slow}=5.0$} & \makecell{$\tau_D^{fast}=35.5\hspace{1em}N^{fast}=16.4$\\$\tau_D^{slow}=39055.9\hspace{1em}N^{slow}=3.9$} \\ \bottomrule \end{tabular} \end{table}
- now I put latex in a simple template of the
Overleaf
online latex editor like this\documentclass{article} \usepackage{booktabs} % for \toprule and \midrule in table \usepackage{makecell} % for linebreaks in table cells \begin{document} %% here the code abvoe \end{document}
- the final rendering looks like this:
- now, we work with
all_param
. Here, all single correlation curves are loaded without averaging.def sort_fit_simple(param_ls): nfcs = list(param_ls)[-1] array = np.array(list(param_ls)[:-1]).reshape((2, 2)) # sort by transit times array = array[:, array[0, :].argsort()] A_fast = float(array[1, 0]) A_slow = float(array[1, 1]) N_fast = A_fast * float(nfcs) N_slow = A_slow * float(nfcs) t_fast = float(array[0, 0]) t_slow = float(array[0, 1]) if np.isnan(t_slow): # 1-component fit out = t_fast, N_fast, pd.NA, pd.NA # 2-component fits elif f'{A_fast:.0%}' == '100%': out = t_fast, N_fast, pd.NA, pd.NA elif f'{A_slow:.0%}' == '100%': out = t_slow, N_slow, pd.NA, pd.NA else: out = t_fast, N_fast, t_slow, N_slow return out all_param = all_param.reset_index() (all_param['t_fast'], all_param['N_fast'], all_param['t_slow'], all_param['N_slow']) = zip(*all_param[['txy1', 'txy2', 'A1', 'A2', 'N (FCS)']].apply( lambda x: sort_fit_simple(x), axis=1)) all_param = all_param[['index', 'Diff_species', 'processing', 'artifact', 't_fast', 'N_fast', 't_slow', 'N_slow']] all_param = all_param.loc[((all_param['Diff_species'] == 1) & (all_param['artifact'] == 'af488')) | ((all_param['Diff_species'] == 2) & (all_param['artifact'] == 'af488+luvs'))] N_param = all_param.pivot_table(values='N_fast', index='index', columns=['processing', 'artifact', 'Diff_species']) t_param = all_param.pivot_table(values='t_fast', index='index', columns=['processing', 'artifact', 'Diff_species']) t_param = t_param * 1000 print('Statistics of fitted particle numbers') display(pd.concat([pd.Series(N_param.median(axis=0), name='median'), N_param.describe().T], axis=1)) print('Statistics of fitted transit times') display(pd.concat([pd.Series(t_param.median(axis=0), name='median'), t_param.describe().T], axis=1))
Statistics of fitted particle numbers
median count mean std min 25% 50% 75% max processing artifact Diffspecies 0cd20 af488 1 14.341568 424.0 14.335000 0.263291 13.412392 14.205747 14.341568 14.505898 14.988332 af488+luvs 2 15.248202 440.0 15.106186 1.484036 6.267150 14.334271 15.248202 16.039287 18.110889 19e3e af488 1 14.336272 424.0 14.329986 0.263853 13.367317 14.201544 14.336272 14.511038 14.931337 af488+luvs 2 13.826313 440.0 13.270444 3.181698 0.562121 11.573624 13.826313 15.704750 18.581205 34766 af488 1 14.702547 424.0 14.684973 0.276662 13.720920 14.551659 14.702547 14.869845 15.347210 af488+luvs 2 15.732460 440.0 15.267823 2.476381 6.346636 13.704650 15.732460 17.068360 19.961155 34a6d af488 1 14.335075 424.0 14.325905 0.264438 13.365160 14.194973 14.335075 14.510599 14.933380 af488+luvs 2 14.302934 440.0 13.641062 2.740812 1.417894 12.297284 14.302934 15.593493 17.885668 484af af488 1 14.325842 424.0 14.317763 0.263824 13.365161 14.188180 14.325842 14.499389 14.919546 af488+luvs 2 13.373178 440.0 12.784654 3.023495 1.591405 10.908164 13.373178 15.029049 18.453017 714af af488 1 14.325842 424.0 14.318594 0.263337 13.365161 14.189044 14.325842 14.497586 14.919546 af488+luvs 2 12.420635 440.0 12.233933 2.490236 5.295190 10.570730 12.420635 14.066820 17.968677 No correction af488 1 14.331944 424.0 14.324938 0.264089 13.369703 14.194097 14.331944 14.503913 14.925030 af488+luvs 2 0.928103 440.0 1.115437 0.832436 0.111298 0.497226 0.928103 1.475898 5.530194 c1204 af488 1 15.262632 424.0 15.254311 0.321478 13.987100 15.077046 15.262632 15.475146 16.260415 af488+luvs 2 15.912205 440.0 15.532688 3.448340 1.815959 13.639535 15.912205 18.127480 21.748767 fe81d af488 1 14.326219 424.0 14.319104 0.263526 13.365161 14.189106 14.326219 14.499389 14.919546 af488+luvs 2 13.689452 440.0 13.077269 3.152211 0.536799 11.056025 13.689452 15.387298 19.102249 ff67b af488 1 14.326219 424.0 14.319636 0.263558 13.365161 14.189298 14.326219 14.499389 14.919546 af488+luvs 2 13.089802 440.0 12.894021 2.446790 4.838165 11.518550 13.089802 14.484227 18.392188 Statistics of fitted transit times
median count mean std min 25% 50% 75% max processing artifact Diffspecies 0cd20 af488 1 39.575746 424.0 39.574374 1.040061 37.190978 38.879728 39.575746 40.279227 42.984704 af488+luvs 2 38.762520 440.0 38.933931 5.459816 21.356080 35.228893 38.762520 42.262441 62.131261 19e3e af488 1 39.568778 424.0 39.656947 1.047036 37.102746 38.934719 39.568778 40.416838 42.501109 af488+luvs 2 41.177209 440.0 41.351740 4.525924 19.027233 38.362287 41.177209 43.854646 60.151240 34766 af488 1 35.067658 424.0 35.077446 1.109175 32.086412 34.355154 35.067658 35.736697 38.864156 af488+luvs 2 38.713203 440.0 38.910032 3.349258 27.709990 36.625985 38.713203 41.009242 49.822679 34a6d af488 1 39.667568 424.0 39.707795 1.038806 36.985999 39.012984 39.667568 40.457557 42.803298 af488+luvs 2 41.267814 440.0 41.654939 4.707523 30.986888 38.312301 41.267814 44.652582 57.155144 484af af488 1 39.854056 424.0 39.854861 1.040952 37.153441 39.141726 39.854056 40.582409 42.744448 af488+luvs 2 40.605601 440.0 41.036124 4.307502 31.922451 38.063892 40.605601 43.505466 63.739400 714af af488 1 39.835832 424.0 39.838266 1.041757 37.153441 39.107415 39.835832 40.571805 42.696864 af488+luvs 2 41.430208 440.0 41.791645 4.068318 31.775699 38.784115 41.430208 44.084046 55.334179 No correction af488 1 39.678008 424.0 39.726486 1.037956 37.049340 39.010144 39.678008 40.444667 42.680513 af488+luvs 2 59.671435 440.0 295.128650 823.953683 4.884506 42.516272 59.671435 117.828320 9785.473007 c1204 af488 1 29.177928 424.0 29.247641 1.225078 25.901046 28.399698 29.177928 30.113028 32.740869 af488+luvs 2 35.278166 440.0 35.503411 2.690742 29.246945 33.580404 35.278166 36.865166 44.796158 fe81d af488 1 39.830813 424.0 39.828821 1.044278 37.153441 39.089567 39.830813 40.555985 42.744448 af488+luvs 2 40.439757 440.0 40.766428 6.403163 12.890876 37.417914 40.439757 43.275102 84.641627 ff67b af488 1 39.803435 424.0 39.830343 1.042279 37.153441 39.087859 39.803435 40.555985 42.744448 af488+luvs 2 41.451285 440.0 41.757214 4.040506 32.434107 38.893139 41.451285 44.293295 57.788748 - now we plot fit outcomes (transit times, particle numbers) after neural
network prediction and
cut and stitch
correction. For thisAF488
data, we compare the 1 species fit ofAF488
in solution with the fast species of the 2 species fit ofAF488 + DiO-LUVs
. The results show that all models except34766
andc1204
do quite well in this challenge. Transit times and particle numbers could be restored without introducing false values in clean “AF488
in solution” data.pub_param = all_param.replace(['0cd20'], '0cd20: large model\n(200 MB), 6 levels,\npool size=4, scaler\n=quantile transform\n(Gaussian pdf)') pub_param = pub_param.replace(['34a6d'], '34a6d: small model\n(7 MB), 3 levels,\npool size=4, scaler=l2') pub_param = pub_param.replace(['484af'], '484af: large model\n(275 MB), 7 levels,\npool_size=2, scaler\n=standard') pub_param = pub_param.replace(['fe81d'], 'fe81d: large model\n(186 MB), 4 levels,\npool_size=4, scaler\n=standard') pub_param = pub_param.replace(['ff67b'], 'ff67b: small model\n(14 MB), 5 levels,\npool_size=4, scaler\n=minmax') pub_param = pub_param.replace(['19e3e'], '19e3e: large model\n(172 MB), 3 levels,\npool_size=4, scaler\n=standard') pub_param = pub_param.replace(['34766'], '34766: middle-sized\nmodel (73 MB), 5 levels,\npool_size=4, scaler\n=robust') pub_param = pub_param.replace(['c1204'], 'c1204: large model\n(312 MB), 9 levels,\npool_size=2, scaler\n=robust') pub_param = pub_param.replace(['714af'], '714af: large model\n(234 MB), 5 levels,\npool_size=4, scaler\n=maxabs') g = sns.catplot(data=pub_param, y='t_fast', x='processing', hue='artifact', sharey=True, height=10, aspect=3.3, legend_out=True, kind='boxen', showfliers=False) g._legend.set_title('') g._legend.remove() for i, ax in enumerate(g.axes): clean = pub_param[(pub_param['processing'] == 'No correction') & (pub_param['artifact'] == 'af488')] median = clean['t_fast'].median() line = ax[0].axhline(median, lw=4, label='', ls='--') line_legend = {f'\n$\\tau_{{exp}}={median:.2f}ms$' : line} g._legend_data.update(line_legend) g.add_legend(g._legend_data) new_labels = ['424 traces of\nAlexaFluor488\n(no artifacts)\n$\\tau_D$ from\n1 species fit', '440 traces of\nAF488 + DiO LUVs\n(peak artifacts)\n$\\tau_D$ from\nfast sp. of 2 sp. fit'] for t, l in zip(g._legend.texts, new_labels): t.set_text(l) g.map_dataframe(sns.stripplot, y='t_fast', x='processing', hue='artifact', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2) g.fig.suptitle('Simulation → prediction → correction pipeline successfully restores transit times', size=25) plt.setp(g.axes, yscale='log', xlabel='', ylabel=r'log transit time $\tau_{D}$ $[ms]$') g.tight_layout() savefig = f'./data/exp-220227-unet/jupyter/analysis3_af488_compare-transit-times' plt.savefig(f'{savefig}.pdf', dpi=300) # os.system(f'pdf2svg {savefig}.pdf {savefig}.svg') plt.close('all') g = sns.catplot(data=pub_param, y='N_fast', x='processing', hue='artifact', sharey=True, height=10.3, aspect=3.3, legend_out=True, kind='boxen', showfliers=False) g._legend.set_title('') g._legend.remove() for i, ax in enumerate(g.axes): clean = pub_param[(pub_param['processing'] == 'No correction') & (pub_param['artifact'] == 'af488')] median = clean['N_fast'].median() line = ax[0].axhline(median, lw=4, label='', ls=':') line_legend = {f'\n$N{{exp}}={median:.2f}$' : line} g._legend_data.update(line_legend) g.add_legend(g._legend_data) new_labels = ['424 traces of\nAlexaFluor488\n(no artifacts)\n$N (FCS)$ from\n1 species fit', '440 traces of\nAF488 + DiO LUVs\n(peak artifacts)\n$N (FCS)\\cdot A$ from\nfast sp. of 2 sp. fit'] for t, l in zip(g._legend.texts, new_labels): t.set_text(l) g.map_dataframe(sns.stripplot, y='N_fast', x='processing', hue='artifact', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2) g.fig.suptitle('Simulation → prediction → correction pipeline successfully restores particle number', size=25) plt.setp(g.axes, xlabel='', ylabel=r'particle number $N$ $[fl^{-1}]$') g.tight_layout() savefig = f'./data/exp-220227-unet/jupyter/analysis3_af488_compare-particle-numbers' plt.savefig(f'{savefig}.pdf', dpi=300) # os.system(f'pdf2svg {savefig}.pdf {savefig}.svg') plt.close('all')
- this is the two plots as PDFs, first the comparison of transit times, second the comparison of particle numbers
2.6.13.2 compare model performance on pex5
data
- call
#+CALL: jupyter-set-output-directory()
./data/exp-220227-unet/jupyter
- first, illlustrative correlations and fits from
FoCuS-point
fitting. We start with the data which was later used to plotavg_param
data- Averaged curves of
Hs-PEX5-eGFP
(no artifacts) with proceesings (no correction + all models, each curves is averaged from 250 correlations) - Averaged curves of
Tb-PEX5-eGFP
(peak artifacts) with proceesings (no correction + all models, each curves is averaged from 250 correlations)
- Averaged curves of
- Now we continue with
Hs-PEX5-eGFP
- this is data without peak artifacts, which was later read in asall_param
no correction
, 1 species and 2 species fits. The 1 species fit ofno correction
is the gold standard all correction methods are compared against.- As can be noticed, the amplitudes vary widely. There probably was an instability in the measurement. Here the curves 1-25
- curves 26-50
- curves 51-75
- curves 76-100
- curves 101-125
- curves 126-150
- curves 151-175
- curves 176-200
- curves 201-225
- curves 226-250
0cd20
, 1 species and 2 species fits.19e3e
, 1 species and 2 species fits.34a6d
, 1 species and 2 species fits.484af
, 1 species and 2 species fits.714af
, 1 species and 2 species fits.34766
, 1 species and 2 species fits.c1204
, 1 species and 2 species fits.fe81d
, 1 species and 2 species fits.ff67b
, 1 species and 2 species fits.
- now illlustrative correlations and fits from
AF488 + DiO-LUVs
(data with peak artifacts). This is the data we want to correct.no correction
, 1 species and 2 species fits.0cd20
, 1 species and 2 species fits.19e3e
, 1 species and 2 species fits.34a6d
, 1 species and 2 species fits.484af
, 1 species and 2 species fits.714af
, 1 species and 2 species fits.34766
, 1 species and 2 species fits.c1204
, 1 species and 2 species fits.fe81d
, 1 species and 2 species fits.ff67b
, 1 species and 2 species fits.
- second, load modules and data
%cd ~/Programme/drmed-git
import os import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint sns.set_theme(style="whitegrid", font_scale=2.5, palette='colorblind', context='paper') model_ls = ['ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727', '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65', '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653', 'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216', 'c1204e3a8a1e4c40a35b5b7b1922d1ce'] model_name_ls = [f'{s:.5}' for s in model_ls]
path = Path('data/exp-220227-unet/2022-06-02_experimental-pex5/') # averaged values dirty_avg_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_avg_cas_1comp_outputParam.csv' dirty_avg_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_avg_cas_2comp_outputParam.csv' clean_avg_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_avg_cas_1comp_outputParam.csv' clean_avg_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_avg_cas_2comp_outputParam.csv' # dirty params dirty_noc_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_no-correction_1comp_outputParam.csv' dirty_noc_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_no-correction_2comp_outputParam.csv' dirty_0cd20_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_0cd20_1comp_outputParam.csv' dirty_0cd20_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_0cd20_2comp_outputParam.csv' dirty_19e3e_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_19e3e_1comp_outputParam.csv' dirty_19e3e_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_19e3e_2comp_outputParam.csv' dirty_34766_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_34766_1comp_outputParam.csv' dirty_34766_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_34766_2comp_outputParam.csv' dirty_34a6d_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_34a6d_1comp_outputParam.csv' dirty_34a6d_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_34a6d_2comp_outputParam.csv' dirty_484af_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_484af_1comp_outputParam.csv' dirty_484af_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_484af_2comp_outputParam.csv' dirty_714af_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_714af_1comp_outputParam.csv' dirty_714af_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_714af_2comp_outputParam.csv' dirty_c1204_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_c1204_1comp_outputParam.csv' dirty_c1204_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_c1204_2comp_outputParam.csv' dirty_fe81d_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_fe81d_1comp_outputParam.csv' dirty_fe81d_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_fe81d_2comp_outputParam.csv' dirty_ff67b_1comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_ff67b_1comp_outputParam.csv' dirty_ff67b_2comp_path = path / 'dirty-all-results/Tb-PEX5-eGFP_ff67b_2comp_outputParam.csv' # clean params clean_noc_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_no-correction_1comp_outputParam.csv' clean_noc_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_no-correction_2comp_outputParam.csv' clean_0cd20_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_0cd20_1comp_outputParam.csv' clean_0cd20_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_0cd20_2comp_outputParam.csv' clean_19e3e_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_19e3e_1comp_outputParam.csv' clean_19e3e_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_19e3e_2comp_outputParam.csv' clean_34766_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_34766_1comp_outputParam.csv' clean_34766_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_34766_2comp_outputParam.csv' clean_34a6d_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_34a6d_1comp_outputParam.csv' clean_34a6d_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_34a6d_2comp_outputParam.csv' clean_484af_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_484af_1comp_outputParam.csv' clean_484af_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_484af_2comp_outputParam.csv' clean_714af_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_714af_1comp_outputParam.csv' clean_714af_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_714af_2comp_outputParam.csv' clean_c1204_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_c1204_1comp_outputParam.csv' clean_c1204_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_c1204_2comp_outputParam.csv' clean_fe81d_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_fe81d_1comp_outputParam.csv' clean_fe81d_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_fe81d_2comp_outputParam.csv' clean_ff67b_1comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_ff67b_1comp_outputParam.csv' clean_ff67b_2comp_path = path / 'clean-all-results/Hs-PEX5-eGFP_ff67b_2comp_outputParam.csv' # average parameters dirty_avg_1comp = pd.read_csv(dirty_avg_1comp_path, sep=',').assign( artifact=10*['Tb-PEX5-eGFP',]) dirty_avg_2comp = pd.read_csv(dirty_avg_2comp_path, sep=',').assign( artifact=10*['Tb-PEX5-eGFP',]) clean_avg_1comp = pd.read_csv(clean_avg_1comp_path, sep=',').assign( artifact=10*['Hs-PEX5-eGFP',]) clean_avg_2comp = pd.read_csv(clean_avg_2comp_path, sep=',').assign( artifact=10*['Hs-PEX5-eGFP',]) # dirty params dirty_noc_1comp = pd.read_csv(dirty_noc_1comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['No correction']) dirty_noc_2comp = pd.read_csv(dirty_noc_2comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['No correction']) dirty_0cd20_1comp = pd.read_csv(dirty_0cd20_1comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['0cd20']) dirty_0cd20_2comp = pd.read_csv(dirty_0cd20_2comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['0cd20']) dirty_19e3e_1comp = pd.read_csv(dirty_19e3e_1comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['19e3e']) dirty_19e3e_2comp = pd.read_csv(dirty_19e3e_2comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['19e3e']) dirty_34766_1comp = pd.read_csv(dirty_34766_1comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['34766']) dirty_34766_2comp = pd.read_csv(dirty_34766_2comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['34766']) dirty_34a6d_1comp = pd.read_csv(dirty_34a6d_1comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['34a6d']) dirty_34a6d_2comp = pd.read_csv(dirty_34a6d_2comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['34a6d']) dirty_484af_1comp = pd.read_csv(dirty_484af_1comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['484af']) dirty_484af_2comp = pd.read_csv(dirty_484af_2comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['484af']) dirty_714af_1comp = pd.read_csv(dirty_714af_1comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['714af']) dirty_714af_2comp = pd.read_csv(dirty_714af_2comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['714af']) dirty_c1204_1comp = pd.read_csv(dirty_c1204_1comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['c1204']) dirty_c1204_2comp = pd.read_csv(dirty_c1204_2comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['c1204']) dirty_fe81d_1comp = pd.read_csv(dirty_fe81d_1comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['fe81d']) dirty_fe81d_2comp = pd.read_csv(dirty_fe81d_2comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['fe81d']) dirty_ff67b_1comp = pd.read_csv(dirty_ff67b_1comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['ff67b']) dirty_ff67b_2comp = pd.read_csv(dirty_ff67b_2comp_path, sep=',').assign( artifact=250*['Tb-PEX5-eGFP',], processing=250*['ff67b']) # clean params clean_noc_1comp = pd.read_csv(clean_noc_1comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['No correction']) clean_noc_2comp = pd.read_csv(clean_noc_2comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['No correction']) clean_0cd20_1comp = pd.read_csv(clean_0cd20_1comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['0cd20']) clean_0cd20_2comp = pd.read_csv(clean_0cd20_2comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['0cd20']) clean_19e3e_1comp = pd.read_csv(clean_19e3e_1comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['19e3e']) clean_19e3e_2comp = pd.read_csv(clean_19e3e_2comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['19e3e']) clean_34766_1comp = pd.read_csv(clean_34766_1comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['34766']) clean_34766_2comp = pd.read_csv(clean_34766_2comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['34766']) clean_34a6d_1comp = pd.read_csv(clean_34a6d_1comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['34a6d']) clean_34a6d_2comp = pd.read_csv(clean_34a6d_2comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['34a6d']) clean_484af_1comp = pd.read_csv(clean_484af_1comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['484af']) clean_484af_2comp = pd.read_csv(clean_484af_2comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['484af']) clean_714af_1comp = pd.read_csv(clean_714af_1comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['714af']) clean_714af_2comp = pd.read_csv(clean_714af_2comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['714af']) clean_c1204_1comp = pd.read_csv(clean_c1204_1comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['c1204']) clean_c1204_2comp = pd.read_csv(clean_c1204_2comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['c1204']) clean_fe81d_1comp = pd.read_csv(clean_fe81d_1comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['fe81d']) clean_fe81d_2comp = pd.read_csv(clean_fe81d_2comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['fe81d']) clean_ff67b_1comp = pd.read_csv(clean_ff67b_1comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['ff67b']) clean_ff67b_2comp = pd.read_csv(clean_ff67b_2comp_path, sep=',').assign( artifact=250*['Hs-PEX5-eGFP',], processing=250*['ff67b']) avg_param = pd.concat([clean_avg_1comp, clean_avg_2comp, dirty_avg_1comp, dirty_avg_2comp]) assert set(avg_param['Dimen']) == {'3D'} assert set(avg_param['AR1'] == {6.0}) assert set(avg_param['Diff_eq']) == {'Equation 1B'} assert set(avg_param['Triplet_eq']) == {'Triplet Eq 2B'} assert set(avg_param['tauT1']) == {0.04} assert set(avg_param['alpha1']) == {1.0} assert set(avg_param['xmin']) == {0.001018} assert set(avg_param['xmax']) == {939.52409} all_param = pd.concat([clean_noc_1comp, clean_noc_2comp, dirty_noc_1comp, dirty_noc_2comp, dirty_0cd20_1comp, dirty_0cd20_2comp, dirty_19e3e_1comp, dirty_19e3e_2comp, dirty_34766_1comp, dirty_34766_2comp, dirty_34a6d_1comp, dirty_34a6d_2comp, dirty_484af_1comp, dirty_484af_2comp, dirty_714af_1comp, dirty_714af_2comp, dirty_c1204_1comp, dirty_c1204_2comp, dirty_fe81d_1comp, dirty_fe81d_2comp, dirty_ff67b_1comp, dirty_ff67b_2comp, clean_0cd20_1comp, clean_0cd20_2comp, clean_19e3e_1comp, clean_19e3e_2comp, clean_34766_1comp, clean_34766_2comp, clean_34a6d_1comp, clean_34a6d_2comp, clean_484af_1comp, clean_484af_2comp, clean_714af_1comp, clean_714af_2comp, clean_c1204_1comp, clean_c1204_2comp, clean_fe81d_1comp, clean_fe81d_2comp, clean_ff67b_1comp, clean_ff67b_2comp]) assert set(all_param['Dimen']) == {'3D'} assert set(all_param['AR1'] == {6.0}) assert set(all_param['Diff_eq']) == {'Equation 1B'} assert set(all_param['Triplet_eq']) == {'Triplet Eq 2B'} assert set(all_param['tauT1']) == {0.04} assert set(all_param['alpha1']) == {1.0} assert set(all_param['xmin']) == {0.001018} assert set(all_param['xmax']) == {939.52409} all_param
nameofplot masterfile parentname parentuqid time of fit Diffeq Diffspecies Tripleteq Tripletspecies Dimen … artifact processing A2 stdev(A2) txy2 stdev(txy2) alpha2 stdev(alpha2) AR2 stdev(AR2) 0 2022-06-02tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:38:08 2022 Equation 1B 1 Triplet Eq 2B 1 3D … Hs-PEX5-eGFP No correction NaN NaN NaN NaN NaN NaN NaN NaN 1 2022-06-02tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:38:08 2022 Equation 1B 1 Triplet Eq 2B 1 3D … Hs-PEX5-eGFP No correction NaN NaN NaN NaN NaN NaN NaN NaN 2 2022-06-02tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:38:08 2022 Equation 1B 1 Triplet Eq 2B 1 3D … Hs-PEX5-eGFP No correction NaN NaN NaN NaN NaN NaN NaN NaN 3 2022-06-02tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:38:08 2022 Equation 1B 1 Triplet Eq 2B 1 3D … Hs-PEX5-eGFP No correction NaN NaN NaN NaN NaN NaN NaN NaN 4 2022-06-02tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:38:08 2022 Equation 1B 1 Triplet Eq 2B 1 3D … Hs-PEX5-eGFP No correction NaN NaN NaN NaN NaN NaN NaN NaN … … … … … … … … … … … … … … … … … … … … … … 245 2022-06-03tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:51:37 2022 Equation 1B 2 Triplet Eq 2B 1 3D … Hs-PEX5-eGFP ff67b 0.294062 None 0.221001 None 1.0 None 6.0 None 246 2022-06-03tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:51:37 2022 Equation 1B 2 Triplet Eq 2B 1 3D … Hs-PEX5-eGFP ff67b 0.334689 None 0.203118 None 1.0 None 6.0 None 247 2022-06-03tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:51:37 2022 Equation 1B 2 Triplet Eq 2B 1 3D … Hs-PEX5-eGFP ff67b 0.285890 None 0.198634 None 1.0 None 6.0 None 248 2022-06-03tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:51:37 2022 Equation 1B 2 Triplet Eq 2B 1 3D … Hs-PEX5-eGFP ff67b 0.334689 None 0.203118 None 1.0 None 6.0 None 249 2022-06-03tttr2xfcsCH2BIN1dot0HsPEX5EGFP 1… Not known tttr2xfcs 0 Mon Aug 1 13:51:37 2022 Equation 1B 2 Triplet Eq 2B 1 3D … Hs-PEX5-eGFP ff67b 0.334689 None 0.203118 None 1.0 None 6.0 None 10000 rows × 43 columns
- first, let’s again take a look only at
avg_param
. There, for each model all curves ofhs-pex5-egfp
andtb-pex5-egfp
were fitted, and then the correlations were averaged. This gives us a good overview with direct comparison of model fit outcome to the fit outcomes without correction. BUT this is not enough to determine that the model is good enough, because in practice, we rarely take 250 times the same measurement and average. So this more resembles the optimal fit outcomes and in the final paper, I analysed the success via fit distributions (so plotting all 250 extracted transit times and comparing the distributions, see later)def sort_fit(param_ls): nfcs = list(param_ls)[-1] triplet = list(param_ls)[-2] array = np.array(list(param_ls)[:-2]).reshape((2, 2)) # sort by transit times array = array[:, array[0, :].argsort()] A_fast = float(array[1, 0]) A_slow = float(array[1, 1]) N_fast = A_fast * (triplet * float(nfcs)) N_slow = A_slow * (triplet * float(nfcs)) t_fast = float(array[0, 0]) t_slow = float(array[0, 1]) if np.isnan(t_slow): # if tt_low_high[0] <= t_fast <= tt_low_high[1]: # out = f'\\cellcolor[HTML]{{009e73}}${t_fast:.2f}$' # else: # out = f'\\cellcolor[HTML]{{d55e00}}${t_fast:.2f}$' out = f'$\\tau_D={t_fast:.2f}\\hspace{{3em}}N={nfcs:.1f}$' elif f'{A_fast:.0%}' == '100%': # if tt_low_high[0] <= t_fast <= tt_low_high[1]: # out = f'\\cellcolor[HTML]{{009e73}}${t_fast:.2f}(100\\%)$' # else: # out = f'\\cellcolor[HTML]{{d55e00}}${t_fast:.2f}(100\\%)$' out = f'$\\tau_D^{{fast}}={t_fast:.2f}\\hspace{{1em}}N^{{fast}}={N_fast:.1f}$' elif f'{A_slow:.0%}' == '100%': # if tt_low_high[0] <= t_slow <= tt_low_high[1]: # out = f'\\cellcolor[HTML]{{009e73}}${t_slow:.2f}(100\\%)$' # else: # out = f'\\cellcolor[HTML]{{d55e00}}${t_slow:.2f}(100\\%)$' out = f'$\\tau_D^{{slow}}={t_slow:.2f}\\hspace{{1em}}N^{{slow}}={N_slow:.1f}$' else: # if (tt_low_high[0] <= t_fast <= tt_low_high[1]) or ( # tt_low_high[0] <= t_slow <= tt_low_high[1]): # out = f'\\cellcolor[HTML]{{009e73}}\\colorbox[HTML]{{009e73}}{{\\makecell{{${t_fast:.2f}^f({A_fast:.0%})$\\\\'\ # f'${t_slow:.2f}^s({A_slow:.0%})$}}}}' # else: # out = f'\\cellcolor[HTML]{{d55e00}}\\colorbox[HTML]{{d55e00}}{{\\makecell{{${t_fast:.2f}^f({A_fast:.0%})$\\\\'\ # f'${t_slow:.2f}^s({A_slow:.0%})$}}}}' out = f'\\makecell{{$\\tau_D^{{fast}}={t_fast:.2f}\\hspace{{1em}}N^{{fast}}={N_fast:.1f}$\\\\'\ f'$\\tau_D^{{slow}}={t_slow:.2f}\\hspace{{1em}}N^{{slow}}={N_slow:.1f}$}}' out = out.replace('%', '\\%') return out avg_param['fit results'] = avg_param[['txy1', 'txy2', 'A1', 'A2', 'T1', 'N (FCS)']].apply(lambda x: sort_fit(x), axis=1) avg_param = avg_param[['name_of_plot', 'Diff_species', 'artifact', 'fit results']] avg_param = avg_param.pivot_table(values='fit results', columns='artifact', index=['name_of_plot', 'Diff_species'], aggfunc=lambda x: '-'.join(x)) avg_param.loc[('clean', 1), 'Tb-PEX5-eGFP'] = avg_param.loc[('dirty', 1), 'Tb-PEX5-eGFP'] avg_param.loc[('clean', 2), 'Tb-PEX5-eGFP'] = avg_param.loc[('dirty', 2), 'Tb-PEX5-eGFP'] avg_param = avg_param.rename(index={'clean' : 'no correction'}) # to get all models first = ['no correction',] + model_name_ls.copy() # just two examples # first = ['no correction', '0cd20', '34a6d'] second = [1, 2] index_order = pd.MultiIndex.from_product([first, second], names=[r'\makecell{type of\\processing}', 'fit']) avg_param = avg_param.reindex(index=index_order) with pd.option_context("max_colwidth", 1000): print(avg_param.to_latex(escape=False, column_format='ccll', caption=(r'Experimental results PEX5 data. $\tau_D$ in $ms$. For 1 species fit, $N = N(FCS)$. For 2 species fit, $N^{sp} = A^{sp} * N(FCS)$ and $\tau_D$ is sorted in fast and slow. If $A^{sp}=100\%$, only display the corresponding $\tau_D$ and $N$ values','Experimental results PEX5 data.')))
\begin{table} \centering \caption[Experimental results PEX5 data.]{Experimental results PEX5 data. $\tau_D$ in $ms$. For 1 species fit, $N = N(FCS)$. For 2 species fit, $N^{sp} = A^{sp} * N(FCS)$ and $\tau_D$ is sorted in fast and slow. If $A^{sp}=100\%$, only display the corresponding $\tau_D$ and $N$ values} \begin{tabular}{ccll} \toprule & artifact & Hs-PEX5-eGFP & Tb-PEX5-eGFP \\ \makecell{type of\\processing} & fit & & \\ \midrule no correction & 1 & $\tau_D=0.36\hspace{3em}N=1.1$ & $\tau_D=0.52\hspace{3em}N=0.8$ \\ & 2 & \makecell{$\tau_D^{fast}=0.36\hspace{1em}N^{fast}=0.1$\\$\tau_D^{slow}=0.36\hspace{1em}N^{slow}=0.1$} & \makecell{$\tau_D^{fast}=0.45\hspace{1em}N^{fast}=0.2$\\$\tau_D^{slow}=13.44\hspace{1em}N^{slow}=0.0$} \\ ff67b & 1 & $\tau_D=0.23\hspace{3em}N=2.1$ & $\tau_D=0.28\hspace{3em}N=1.5$ \\ & 2 & \makecell{$\tau_D^{fast}=0.21\hspace{1em}N^{fast}=0.5$\\$\tau_D^{slow}=86.83\hspace{1em}N^{slow}=0.0$} & \makecell{$\tau_D^{fast}=0.24\hspace{1em}N^{fast}=0.4$\\$\tau_D^{slow}=31.23\hspace{1em}N^{slow}=0.0$} \\ 34766 & 1 & $\tau_D=0.39\hspace{3em}N=3.6$ & $\tau_D=1.12\hspace{3em}N=4.1$ \\ & 2 & \makecell{$\tau_D^{fast}=0.05\hspace{1em}N^{fast}=0.0$\\$\tau_D^{slow}=6.32\hspace{1em}N^{slow}=0.0$} & \makecell{$\tau_D^{fast}=0.04\hspace{1em}N^{fast}=0.0$\\$\tau_D^{slow}=7.78\hspace{1em}N^{slow}=0.0$} \\ 714af & 1 & $\tau_D=0.25\hspace{3em}N=2.8$ & $\tau_D=0.37\hspace{3em}N=2.2$ \\ & 2 & \makecell{$\tau_D^{fast}=0.15\hspace{1em}N^{fast}=0.6$\\$\tau_D^{slow}=11.84\hspace{1em}N^{slow}=0.1$} & \makecell{$\tau_D^{fast}=0.13\hspace{1em}N^{fast}=0.4$\\$\tau_D^{slow}=3.61\hspace{1em}N^{slow}=0.1$} \\ 34a6d & 1 & $\tau_D=0.39\hspace{3em}N=3.7$ & $\tau_D=1.62\hspace{3em}N=4.2$ \\ & 2 & $\tau_D^{fast}=591.08\hspace{1em}N^{fast}=1.9$ & \makecell{$\tau_D^{fast}=0.00\hspace{1em}N^{fast}=0.7$\\$\tau_D^{slow}=1.29\hspace{1em}N^{slow}=0.5$} \\ 484af & 1 & $\tau_D=0.26\hspace{3em}N=1.9$ & $\tau_D=0.24\hspace{3em}N=2.1$ \\ & 2 & \makecell{$\tau_D^{fast}=0.23\hspace{1em}N^{fast}=0.4$\\$\tau_D^{slow}=73.45\hspace{1em}N^{slow}=0.0$} & \makecell{$\tau_D^{fast}=0.20\hspace{1em}N^{fast}=0.5$\\$\tau_D^{slow}=63.57\hspace{1em}N^{slow}=0.0$} \\ 0cd20 & 1 & $\tau_D=0.32\hspace{3em}N=1.1$ & $\tau_D=0.33\hspace{3em}N=1.0$ \\ & 2 & $\tau_D^{fast}=0.32\hspace{1em}N^{fast}=0.2$ & $\tau_D^{fast}=0.33\hspace{1em}N^{fast}=0.2$ \\ fe81d & 1 & $\tau_D=0.27\hspace{3em}N=1.6$ & $\tau_D=0.24\hspace{3em}N=1.7$ \\ & 2 & \makecell{$\tau_D^{fast}=0.25\hspace{1em}N^{fast}=0.3$\\$\tau_D^{slow}=177.40\hspace{1em}N^{slow}=0.0$} & \makecell{$\tau_D^{fast}=0.22\hspace{1em}N^{fast}=0.4$\\$\tau_D^{slow}=133.87\hspace{1em}N^{slow}=0.0$} \\ 19e3e & 1 & $\tau_D=0.25\hspace{3em}N=2.0$ & $\tau_D=0.24\hspace{3em}N=2.2$ \\ & 2 & \makecell{$\tau_D^{fast}=0.23\hspace{1em}N^{fast}=0.4$\\$\tau_D^{slow}=146.64\hspace{1em}N^{slow}=0.0$} & \makecell{$\tau_D^{fast}=0.20\hspace{1em}N^{fast}=0.5$\\$\tau_D^{slow}=78.29\hspace{1em}N^{slow}=0.0$} \\ c1204 & 1 & $\tau_D=2.69\hspace{3em}N=5.5$ & $\tau_D=7.60\hspace{3em}N=6.1$ \\ & 2 & \makecell{$\tau_D^{fast}=2.35\hspace{1em}N^{fast}=3.0$\\$\tau_D^{slow}=2000.00\hspace{1em}N^{slow}=0.8$} & \makecell{$\tau_D^{fast}=0.00\hspace{1em}N^{fast}=1.1$\\$\tau_D^{slow}=6.86\hspace{1em}N^{slow}=0.6$} \\ \bottomrule \end{tabular} \end{table}
- now I put latex in a simple template of the
Overleaf
online latex editor like this\documentclass{article} \usepackage{booktabs} % for \toprule and \midrule in table \usepackage{makecell} % for linebreaks in table cells \begin{document} %% here the code abvoe \end{document}
- the final rendering looks like this:
- now, we work with
all_param
. Here, all single correlation curves are loaded without averaging.def sort_fit(param_ls): nfcs = list(param_ls)[-1] triplet = list(param_ls)[-2] array = np.array(list(param_ls)[:-2]).reshape((2, 2)) # sort by transit times array = array[:, array[0, :].argsort()] A_fast = float(array[1, 0]) A_slow = float(array[1, 1]) N_fast = A_fast * (triplet * float(nfcs)) N_slow = A_slow * (triplet * float(nfcs)) t_fast = float(array[0, 0]) t_slow = float(array[0, 1]) # for pex5: want to plot t_slow if np.isnan(t_slow): # 1-component fit out = t_fast, N_fast, pd.NA, pd.NA # out = pd.NA, pd.NA, t_fast, N_fast # 2-component fits elif f'{A_fast:.0%}' == '100%': out = t_fast, N_fast, pd.NA, pd.NA # out = pd.NA, pd.NA, t_fast, N_fast elif f'{A_slow:.0%}' == '100%': # out = t_slow, N_slow, pd.NA, pd.NA out = pd.NA, pd.NA, t_slow, N_slow else: out = t_fast, N_fast, t_slow, N_slow return out def sort_fit_legend(param_ls): species = param_ls[0] component = param_ls[1] if species == 1: legend = '$\\tau_D$ from\n1 species fit' elif (species == 2) and (component == 'fast'): legend = '$\\tau_D$ from\nfast sp. of 2 sp. fit' elif (species == 2) and (component == 'slow'): legend = '$\\tau_D$ from\nslow sp. of 2 sp. fit' return legend all_param[['t_fast', 'N_fast', 't_slow', 'N_slow'] ]= all_param[['txy1', 'txy2', 'A1', 'A2', 'T1', 'N (FCS)'] ].apply(lambda x: sort_fit(x), axis=1, result_type='expand') all_param = pd.wide_to_long(all_param, stubnames=['t', 'N'], i=['name_of_plot', 'Diff_species', 'processing'], j='fit component', sep='_', suffix=r'\w+') all_param = all_param.reset_index() # if Diff_species is 1, there is only 1 component all_param = all_param[~((all_param['fit component'] == 'slow') & (all_param['Diff_species'] == 1))] all_param = all_param.reset_index() all_param['legend'] = all_param[['Diff_species', 'fit component']].apply( lambda x: sort_fit_legend(x), axis=1) print('before dropping NaNs') print('1 species fit: {}'.format(len(all_param[all_param["legend"] == "$\\tau_D$ from\n1 species fit"]))) print('slow sp of 2 sp fit: {}'.format(len(all_param[all_param["legend"] == "$\\tau_D$ from\nslow sp. of 2 sp. fit"]))) print('fast sp of 2 sp fit: {}'.format(len(all_param[all_param["legend"] == "$\\tau_D$ from\nfast sp. of 2 sp. fit"]))) all_param = all_param[~pd.isna(all_param['t'])] print('after dropping NaNs') print('1 species fit: {}'.format(len(all_param[all_param["legend"] == "$\\tau_D$ from\n1 species fit"]))) print('slow sp of 2 sp fit: {}'.format(len(all_param[all_param["legend"] == "$\\tau_D$ from\nslow sp. of 2 sp. fit"]))) print('fast sp of 2 sp fit: {}'.format(len(all_param[all_param["legend"] == "$\\tau_D$ from\nfast sp. of 2 sp. fit"]))) all_param = all_param[['legend', 't', 'N', 'artifact', 'processing']] all_param.loc[:, ['t', 'N']] = all_param.loc[:, ['t', 'N']].apply(pd.to_numeric) all_param N_param = all_param.pivot_table(values='N', index=all_param.index, columns=['processing', 'artifact', 'legend'], sort=False) t_param = all_param.pivot_table(values='t', index=all_param.index, columns=['processing', 'artifact', 'legend']) print('Statistics of fitted particle numbers') with pd.option_context('display.float_format', '{:.3f}'.format): display(pd.concat([pd.Series(N_param.median(axis=0), name='median'), N_param.describe().T], axis=1)) print('Statistics of fitted transit times') display(pd.concat([pd.Series(t_param.median(axis=0), name='median'), t_param.describe().T], axis=1))
before dropping NaNs 1 species fit: 5000 slow sp of 2 sp fit: 5000 fast sp of 2 sp fit: 5000 after dropping NaNs 1 species fit: 5000 slow sp of 2 sp fit: 4588 fast sp of 2 sp fit: 4940 Statistics of fitted particle numbers
median count mean std min 25% 50% 75% max processing artifact legend 0cd20 Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.266 250.000 0.253 0.068 0.094 0.193 0.266 0.303 0.489 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.043 249.000 0.056 0.047 0.000 0.043 0.043 0.043 0.264 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.029 226.000 0.036 0.024 0.000 0.029 0.029 0.029 0.177 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.208 250.000 0.210 0.033 0.132 0.186 0.208 0.229 0.298 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.193 244.000 0.175 0.074 0.000 0.176 0.193 0.212 0.319 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.014 79.000 0.049 0.068 0.000 0.003 0.014 0.060 0.239 19e3e Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.422 250.000 0.534 0.313 0.000 0.367 0.422 0.532 1.748 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.047 250.000 0.063 0.115 0.000 0.047 0.047 0.047 0.888 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.031 250.000 0.033 0.027 0.000 0.031 0.031 0.031 0.324 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.659 250.000 0.653 0.239 0.000 0.497 0.659 0.796 1.372 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.032 249.000 0.086 0.132 0.000 0.000 0.032 0.108 0.744 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.010 250.000 0.039 0.080 0.000 0.000 0.010 0.036 0.770 34766 Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 1.416 250.000 525.558 8274.061 0.000 1.015 1.416 2.362 130826.616 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.156 247.000 302.119 4744.397 0.000 0.156 0.156 0.156 74564.294 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.068 249.000 0.515 6.186 0.000 0.068 0.068 0.068 97.572 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 2.158 250.000 2.526 0.922 0.176 1.848 2.158 3.524 4.153 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000 248.000 0.160 0.365 0.000 0.000 0.000 0.056 1.599 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.000 250.000 0.225 0.691 0.000 0.000 0.000 0.007 4.143 34a6d Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 1.377 250.000 1.954 1.534 0.000 1.117 1.377 2.135 7.288 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000 237.000 0.261 0.620 0.000 0.000 0.000 0.381 7.287 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.000 249.000 0.381 1.252 0.000 0.000 0.000 0.054 6.970 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 3.059 250.000 2.908 0.666 0.000 2.526 3.059 3.322 4.297 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000 250.000 0.019 0.157 0.000 0.000 0.000 0.000 1.549 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.000 250.000 0.007 0.062 0.000 0.000 0.000 0.000 0.819 484af Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.413 250.000 0.508 0.251 0.000 0.371 0.413 0.521 1.576 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.343 250.000 0.390 0.202 0.000 0.293 0.343 0.406 1.301 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.014 247.000 0.021 0.020 0.000 0.010 0.014 0.024 0.140 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.588 250.000 0.601 0.213 0.000 0.472 0.588 0.726 1.269 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.074 250.000 0.079 0.060 0.000 0.074 0.074 0.074 0.656 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.053 250.000 0.052 0.016 0.000 0.053 0.053 0.053 0.225 714af Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.767 250.000 1.131 0.801 0.000 0.618 0.767 1.472 3.447 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.434 250.000 0.397 0.315 0.000 0.225 0.434 0.551 2.821 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.023 247.000 0.059 0.169 0.000 0.010 0.023 0.039 1.567 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.997 250.000 1.003 0.419 0.229 0.633 0.997 1.262 2.225 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.056 250.000 0.169 0.208 0.000 0.000 0.056 0.307 0.812 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.011 250.000 0.034 0.056 0.000 0.000 0.011 0.050 0.382 No correction Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.268 250.000 0.257 0.071 0.118 0.194 0.268 0.309 0.508 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.253 249.000 0.235 0.087 0.000 0.173 0.253 0.297 0.505 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.003 156.000 0.012 0.034 0.000 0.002 0.003 0.005 0.259 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.189 250.000 0.188 0.041 0.012 0.169 0.189 0.212 0.292 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.166 249.000 0.155 0.059 0.000 0.137 0.166 0.195 0.275 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.006 226.000 0.008 0.008 0.000 0.003 0.006 0.011 0.046 c1204 Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 3.582 250.000 1800.956 16542.991 0.000 2.368 3.582 4.792 186293.638 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.252 248.000 0.366 0.804 0.000 0.252 0.252 0.252 8.390 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.062 248.000 0.190 0.663 0.000 0.062 0.062 0.062 6.570 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 4.392 250.000 5.219 2.156 0.000 3.632 4.392 7.214 11.235 \(\tau_D\) from\nfast sp. of 2 sp. fit 2.757 242.000 3.311 2.830 0.000 1.054 2.757 4.820 11.086 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.629 177.000 1.297 1.914 0.000 0.000 0.629 1.264 8.789 fe81d Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.326 250.000 0.393 0.197 0.000 0.298 0.326 0.377 1.327 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.030 250.000 0.044 0.100 0.000 0.030 0.030 0.030 1.038 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.018 250.000 0.022 0.022 0.000 0.018 0.018 0.018 0.235 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.427 250.000 0.440 0.157 0.000 0.336 0.427 0.543 0.900 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.062 228.000 0.154 0.181 0.000 0.009 0.062 0.248 0.790 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.022 235.000 0.082 0.133 0.000 0.005 0.022 0.074 0.545 ff67b Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.502 250.000 0.557 0.202 0.185 0.428 0.502 0.603 1.429 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.029 250.000 0.051 0.121 0.000 0.029 0.029 0.029 0.978 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.014 250.000 0.020 0.026 0.000 0.014 0.014 0.014 0.227 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.412 250.000 0.438 0.120 0.236 0.358 0.412 0.489 0.837 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.337 250.000 0.345 0.127 0.000 0.279 0.337 0.399 0.781 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.015 249.000 0.019 0.030 0.000 0.011 0.015 0.020 0.422 Statistics of fitted transit times
median count mean std min 25% 50% 75% max processing artifact legend 0cd20 Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.323617 250.0 0.320864 0.020821 0.249462 0.308254 0.323617 0.335541 0.359334 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000172 249.0 0.060898 0.119981 0.000100 0.000100 0.000172 0.004964 0.333456 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.299218 226.0 0.652991 5.386862 0.230471 0.299212 0.299218 0.299225 81.276695 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.324881 250.0 0.326603 0.027692 0.259626 0.309170 0.324881 0.343199 0.429618 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.330889 244.0 0.296751 0.115240 0.000100 0.304649 0.330889 0.336307 0.565352 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.344133 79.0 96.592373 358.830694 0.232596 0.291604 0.344133 3.224768 1999.956477 19e3e Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.248882 250.0 0.246302 0.043006 0.034228 0.231552 0.248882 0.266995 0.492987 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000100 250.0 0.007082 0.035425 0.000100 0.000100 0.000100 0.000100 0.311329 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.231668 250.0 11.096372 128.807510 0.160041 0.231668 0.231668 0.231668 1999.965381 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.237834 250.0 0.241093 0.056889 0.123511 0.205615 0.237834 0.265857 0.711353 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.005744 249.0 0.046721 0.065354 0.000100 0.000100 0.005744 0.105139 0.312681 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.214517 250.0 13.995457 40.382504 0.130520 0.184269 0.214517 2.095036 392.234249 34766 Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.282741 250.0 1.960813 10.421541 0.000109 0.211177 0.282741 0.804156 161.798448 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000100 247.0 0.140035 1.065767 0.000100 0.000100 0.000100 0.000100 12.772683 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.199918 249.0 40.935269 281.035522 0.036570 0.199918 0.199918 0.199918 2000.000000 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.691528 250.0 2.826474 3.458340 0.150428 0.417778 0.691528 5.433018 19.065626 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.051069 248.0 0.055039 0.052744 0.000100 0.020852 0.051069 0.065619 0.366803 \(\tau_D\) from\nslow sp. of 2 sp. fit 7.512514 250.0 8.054456 4.969898 0.134926 5.006964 7.512514 10.973836 30.326475 34a6d Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.284963 250.0 2.814169 7.351230 0.001338 0.236236 0.284963 0.512840 40.170929 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.063051 237.0 0.220596 2.374881 0.000100 0.045802 0.063051 0.087420 36.620450 \(\tau_D\) from\nslow sp. of 2 sp. fit 9.022691 249.0 10.867661 7.960415 0.106761 6.005959 9.022691 13.070269 47.255466 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 1.834290 250.0 2.268876 1.877872 0.088689 0.856312 1.834290 3.069606 10.252194 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.052587 250.0 0.052591 0.005518 0.016660 0.052587 0.052587 0.052587 0.122504 \(\tau_D\) from\nslow sp. of 2 sp. fit 7.066470 250.0 7.212279 1.224819 3.041586 7.066470 7.066470 7.066470 20.280015 484af Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.265457 250.0 0.260147 0.040656 0.128895 0.240648 0.265457 0.283187 0.444097 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.233343 250.0 0.222758 0.050222 0.000100 0.200308 0.233343 0.257370 0.328613 \(\tau_D\) from\nslow sp. of 2 sp. fit 69.916879 247.0 133.744606 200.200824 0.142299 38.940604 69.916879 147.092548 1924.273303 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.241658 250.0 0.243606 0.044011 0.113022 0.213493 0.241658 0.271191 0.435722 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000100 250.0 0.004805 0.031999 0.000100 0.000100 0.000100 0.000100 0.357377 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.221663 250.0 0.666995 3.190823 0.155482 0.221663 0.221663 0.221663 27.635426 714af Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.233111 250.0 0.411415 0.475560 0.027502 0.204674 0.233111 0.326329 3.026657 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.151704 250.0 0.139625 0.181602 0.000100 0.073383 0.151704 0.176694 2.807864 \(\tau_D\) from\nslow sp. of 2 sp. fit 15.624278 247.0 33.247501 63.227049 0.137890 6.196147 15.624278 35.200767 651.235702 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.366270 250.0 0.401344 0.128259 0.187158 0.329494 0.366270 0.431351 1.122314 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.077699 250.0 0.101588 0.078889 0.000100 0.050206 0.077699 0.153557 0.330826 \(\tau_D\) from\nslow sp. of 2 sp. fit 3.390052 250.0 4.456640 4.540913 0.198274 1.685021 3.390052 5.868710 36.023611 No correction Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.356176 250.0 0.356892 0.017251 0.316204 0.345597 0.356176 0.367787 0.422647 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.348573 249.0 0.330113 0.080803 0.000100 0.334796 0.348573 0.359479 0.422648 \(\tau_D\) from\nslow sp. of 2 sp. fit 42.013383 156.0 234.082459 382.506491 0.301974 10.840074 42.013383 273.555579 1999.121327 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.437270 250.0 0.507154 0.229794 0.351314 0.403647 0.437270 0.498338 2.429498 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.391268 249.0 0.389270 0.136774 0.000100 0.365634 0.391268 0.428259 1.044106 \(\tau_D\) from\nslow sp. of 2 sp. fit 15.194065 226.0 89.237400 267.388024 0.352227 5.441904 15.194065 43.653002 2000.000000 c1204 Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.651378 250.0 4.339958 9.135442 0.000100 0.255066 0.651378 3.500988 70.322682 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000100 248.0 0.194788 1.877687 0.000100 0.000100 0.000100 0.000100 26.384233 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.195006 248.0 1.556390 12.510745 0.099500 0.195006 0.195006 0.195006 193.005430 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 4.027498 250.0 39.287596 137.224405 0.087313 2.197479 4.027498 42.922206 1999.613089 \(\tau_D\) from\nfast sp. of 2 sp. fit 3.121523 242.0 24.498094 44.439024 0.000100 0.078008 3.121523 35.018711 300.809427 \(\tau_D\) from\nslow sp. of 2 sp. fit 1182.632990 177.0 1021.164847 960.486419 0.148180 10.943002 1182.632990 1999.979383 2000.000000 fe81d Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.270886 250.0 0.264426 0.040805 0.126198 0.239281 0.270886 0.292043 0.417882 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000100 250.0 0.005696 0.031403 0.000100 0.000100 0.000100 0.000225 0.277912 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.253200 250.0 1.574326 8.690581 0.159645 0.253200 0.253200 0.253200 91.512999 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.237785 250.0 0.239106 0.035075 0.162728 0.215458 0.237785 0.258728 0.452019 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.095902 228.0 0.111506 0.108528 0.000100 0.000513 0.095902 0.223517 0.452037 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.238129 235.0 25.725146 77.901884 0.148100 0.201307 0.238129 7.581677 739.642771 ff67b Hs-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.230441 250.0 0.239749 0.047058 0.144283 0.213528 0.230441 0.250664 0.577085 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.000100 250.0 0.007750 0.041582 0.000100 0.000100 0.000100 0.000100 0.288617 \(\tau_D\) from\nslow sp. of 2 sp. fit 0.203118 250.0 5.851806 61.517373 0.148434 0.203118 0.203118 0.203118 922.471752 Tb-PEX5-eGFP \(\tau_D\) from\n1 species fit 0.280494 250.0 0.281235 0.040631 0.184676 0.253043 0.280494 0.306884 0.405158 \(\tau_D\) from\nfast sp. of 2 sp. fit 0.237870 250.0 0.229680 0.058269 0.000100 0.206773 0.237870 0.265449 0.362244 \(\tau_D\) from\nslow sp. of 2 sp. fit 31.791098 249.0 46.205757 52.410003 0.158099 14.756188 31.791098 58.344302 455.148873 - now we plot fit outcomes (transit times, particle numbers) after neural
network prediction and
cut and stitch
correction. For thisPEX5
data, we compareHs-PEX5-eGFP
(no artifacts) againstTb-PEX5-eGFP
(peak artifacts). The gold standard was the 1 component fit ofHs-PEX5-eGFP
without any correction (see median values plotted with a horizontal line). Here, the results were much more mixed, so I kept the 1 species fit, which worked best, and all 2 species fits. The best method was0cd20
(only 1 species fits) which corrected theTb-PEX5-eGFP
traces without distorting theHs-PEX5-eGFP
traces. All other models had problems.pub_param = all_param.replace(['0cd20'], '0cd20: large model\n(200 MB), 6 levels,\npool size=4, scaler\n=quantile transform\n(Gaussian pdf)') pub_param = pub_param.replace(['34a6d'], '34a6d: small model\n(7 MB), 3 levels,\npool size=4, scaler=l2') pub_param = pub_param.replace(['484af'], '484af: large model\n(275 MB), 7 levels,\npool_size=2, scaler\n=standard') pub_param = pub_param.replace(['fe81d'], 'fe81d: large model\n(186 MB), 4 levels,\npool_size=4, scaler\n=standard') pub_param = pub_param.replace(['ff67b'], 'ff67b: small model\n(14 MB), 5 levels,\npool_size=4, scaler\n=minmax') pub_param = pub_param.replace(['19e3e'], '19e3e: large model\n(172 MB), 3 levels,\npool_size=4, scaler\n=standard') pub_param = pub_param.replace(['34766'], '34766: middle-sized\nmodel (73 MB), 5 levels,\npool_size=4, scaler\n=robust') pub_param = pub_param.replace(['c1204'], 'c1204: large model\n(312 MB), 9 levels,\npool_size=2, scaler\n=robust') pub_param = pub_param.replace(['714af'], '714af: large model\n(234 MB), 5 levels,\npool_size=4, scaler\n=maxabs') # to make log plot work with a catplot violin plot, we have to do the # log transform manually pub_param.loc[:, 't'] = pub_param.loc[:, 't'].apply(lambda x: np.log10(x)) g = sns.catplot(data=pub_param, y='t', x='processing', row='artifact', hue='legend', height=9, aspect=3.5, legend_out=True, kind='violin', sharey=True, showfliers=False, scale='width', cut=0) g._legend.remove() for i, ax in enumerate(g.axes): clean = pub_param[(pub_param['processing'] == 'No correction') & (pub_param['artifact'] == 'Hs-PEX5-eGFP')] median = clean['t'].median() median_text = 10**median line = ax[0].axhline(median, lw=4, label='', ls='--') line_legend = {f'\n$\\tau_{{exp}}={median_text:.2f}ms$' : line} g._legend_data.update(line_legend) g.add_legend(g._legend_data) g.fig.suptitle('Model performance in simulation → prediction → correction pipeline successfully (transit times)', size=25) plt.setp(g.axes, yscale='linear', ylabel=r'log transit time $\tau_{D}$ $[ms]$', xlabel='', xlim=None) for i, ax in enumerate(g.axes): ylab = ax[0].get_yticklabels() # because seaborns violinplot does not support kde calculation in log values, # I have to do this manually, by first log-transforming the data, now # extracting the yticklabels and manually transforming them back. ylab_power = [10**lab.get_position()[1] for lab in ylab] ax[0].set_yticklabels(ylab_power) # the following code snippet makes minor grid lines in log plots visible. Since I have to # hack the log axis here to make violin catplots work, this is not possible # for ax in g.axes.flatten(): # ax.grid(visible=True, which='both', axis='y') g.tight_layout() savefig = f'./data/exp-220227-unet/jupyter/analysis3_pex5_transit-times' plt.savefig(f'{savefig}.pdf', dpi=300) # os.system(f'pdf2svg {savefig}.pdf {savefig}.svg') plt.close('all') g = sns.catplot(data=pub_param, y='N', x='processing', row='artifact', hue='legend', height=9, aspect=3.5, legend_out=True, kind='violin', sharey=True, showfliers=False, scale='width', cut=0) g._legend.remove() for i, ax in enumerate(g.axes): clean = pub_param[(pub_param['processing'] == 'No correction') & (pub_param['artifact'] == 'Hs-PEX5-eGFP')] median = clean['N'].median() line = ax[0].axhline(median, lw=4, label='', ls=':') line_legend = {f'\n$N{{exp}}={median:.2f}$' : line} g._legend_data.update(line_legend) g.add_legend(g._legend_data) g.fig.suptitle('Model performance in Simulation → prediction → correction pipeline (particle numbers)', size=25) plt.setp(g.axes, yscale='linear', ylabel=r'particle number $N$ $[fl^{-1}]$', xlabel='', ylim=[-0.1, 3]) # for i, ax in enumerate(g.axes): # ylab = ax[0].get_yticklabels() # # because seaborns violinplot does not support kde calculation in log values, # # I have to do this manually, by first log-transforming the data, now # # extracting the yticklabels and manually transforming them back. # ylab_power = [10**lab.get_position()[1] for lab in ylab] # ax[0].set_yticklabels(ylab_power) g.tight_layout() savefig = f'./data/exp-220227-unet/jupyter/analysis3_pex5_particle-numbers' plt.savefig(f'{savefig}.pdf', dpi=300) # os.system(f'pdf2svg {savefig}.pdf {savefig}.svg') plt.close('all')
/tmp/ipykernel_371129/654097065.py:48: UserWarning: FixedFormatter should only be used together with FixedLocator ax[0].set_yticklabels(ylab_power)
- this is the two plots as PDFs, first the comparison of transit times, second the comparison of particle numbers
2.6.14 final remarks
- This is a table for quick lookup of all metrics of the best models after 100th epoch with hparams
run valauc valf1 0.5 valprec 0.5 valrecall 0.5 model size hpbatchsize hpfirstfilters hpinputsize hplrpower hplrstart hpnlevels hppoolsize hpscaler 484af471c61943fa90e5f78e78a229f0 0.9814 0.9187 0.9091 0.9285 275 MB 26 44 16384 (here: 14000) 1 0.0136170138242663 7 2 standard 0cd2023eeaf745aca0d3e8ad5e1fc653 0.9818 0.9069 0.8955 0.9185 200 MB 15 23 16384 (here: 14000) 7 0.0305060808685107 6 4 quantg fe81d71c52404ed790b3a32051258da9 0.9849 0.9260 0.9184 0.9338 186 MB 20 78 16384 (here: 14000) 4 0.0584071108418767 4 4 standard ff67be0b68e540a9a29a36a2d0c7a5be + 0.9859 0.9298 0.9230 0.9367 14 MB 28 6 16384 (here: 14000) 1 0.0553313915596308 5 4 minmax 19e3e786e1bc4e2b93856f5dc9de8216 0.9595 0.8911 0.8983 0.8839 172 MB 20 128 16384 (here: 14000) 1 0.043549707353273 3 4 standard 347669d050f344ad9fb9e480c814f727 + 0.9848 0.9246 0.9254 0.9238 73 MB 10 16 8192 (here: 14000) 1 0.0627676336651573 5 4 robust c1204e3a8a1e4c40a35b5b7b1922d1ce 0.9858 0.9207 0.9179 0.9234 312 MB 14 16 16384 (here: 14000) 5 0.0192390310290551 9 2 robust 714af8cd12c1441eac4ca980e8c20070 + 0.9843 0.9304 0.9257 0.9352 234 MB 9 64 4096 (here: 14000) 1 0.0100697459464075 5 4 maxabs 34a6d207ac594035b1009c330fb67a65 + 0.9652 0.8613 0.8598 0.8629 7 MB 17 16 16384 (here: 14000) 5 0.0101590069352232 3 4 l2 - I did further evaluation of the most promising model,
0cd20
, and appliedaveraging
andset to zero
corrections. For these results, seeexp-220316-publication1
2.7 exp-220316-publication1
2.7.1 Setup: Jupyter on local computer
- let’s start a conda environment in the sh session local and start
jupterlab there.
conda activate tf jupyter lab --no-browser --port=8888
sh-5.1$ [I 2023-01-03 14:36:05.432 ServerApp] jupyterlab | extension was successfully linked. [I 2023-01-03 14:36:05.738 ServerApp] nbclassic | extension was successfully linked. [I 2023-01-03 14:36:05.805 LabApp] JupyterLab extension loaded from /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/jupyterlab [I 2023-01-03 14:36:05.805 LabApp] JupyterLab application directory is /home/lex/Programme/miniconda3/envs/tf/share/jupyter/lab [I 2023-01-03 14:36:05.811 ServerApp] jupyterlab | extension was successfully loaded. [I 2023-01-03 14:36:05.823 ServerApp] nbclassic | extension was successfully loaded. [I 2023-01-03 14:36:05.824 ServerApp] Serving notebooks from local directory: /home/lex/Programme/drmed-git [I 2023-01-03 14:36:05.824 ServerApp] Jupyter Server 1.4.1 is running at: [I 2023-01-03 14:36:05.824 ServerApp] http://localhost:8888/lab?token=8b657ca59261218ed47d32775aa4dd87bac4e9116158bfbd [I 2023-01-03 14:36:05.824 ServerApp] or http://127.0.0.1:8888/lab?token=8b657ca59261218ed47d32775aa4dd87bac4e9116158bfbd [I 2023-01-03 14:36:05.824 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 2023-01-03 14:36:05.837 ServerApp] To access the server, open this file in a browser: file:///home/lex/.local/share/jupyter/runtime/jpserver-7169-open.html Or copy and paste one of these URLs: http://localhost:8888/lab?token=8b657ca59261218ed47d32775aa4dd87bac4e9116158bfbd or http://127.0.0.1:8888/lab?token=8b657ca59261218ed47d32775aa4dd87bac4e9116158bfbd
- I started a Python3 kernel using
jupyter-server-list-kernels
. Then I added the kernel ID to the:PROPERTIES:
drawer of this (and following) subtrees.python3 03038b73-b2b5-49ce-a1dc-21afb6247d0f a few seconds ago starting 0
- Test: (
#+CALL: jp-metadata(_long='True)
)No of CPUs in system: 4 No of CPUs the current process can use: 4 load average: (0.5380859375, 0.63232421875, 1.0) os.uname(): posix.uname_result(sysname='Linux', nodename='Topialex', release='5.15.60-1-MANJARO', version='#1 SMP PREEMPT Thu Aug 11 13:14:05 UTC 2022', machine='x86_64') PID of process: 196700 RAM total: 16Gi, RAM used: 8,6Gi, RAM free: 5,9Gi the current directory: /home/lex/Programme/drmed-git My disk usage: Filesystem Size Used Avail Use% Mounted on dev 3,9G 0 3,9G 0% /dev run 3,9G 1,5M 3,9G 1% /run /dev/sda2 167G 133G 26G 85% / tmpfs 3,9G 197M 3,7G 6% /dev/shm tmpfs 3,9G 23M 3,9G 1% /tmp /dev/sda1 300M 264K 300M 1% /boot/efi tmpfs 784M 124K 784M 1% /run/user/1000# packages in environment at /home/lex/Programme/miniconda3/envs/tf: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 4.5 1_gnu absl-py 1.0.0 pypi_0 pypi alembic 1.4.1 pypi_0 pypi anyio 2.2.0 py39h06a4308_1 argon2-cffi 20.1.0 py39h27cfd23_1 asteval 0.9.25 pypi_0 pypi astroid 2.9.2 pypi_0 pypi astunparse 1.6.3 pypi_0 pypi async_generator 1.10 pyhd3eb1b0_0 attrs 21.2.0 pyhd3eb1b0_0 babel 2.9.1 pyhd3eb1b0_0 backcall 0.2.0 pyhd3eb1b0_0 bleach 4.0.0 pyhd3eb1b0_0 brotlipy 0.7.0 py39h27cfd23_1003 ca-certificates 2021.10.26 h06a4308_2 cachetools 4.2.4 pypi_0 pypi certifi 2021.10.8 py39h06a4308_0 cffi 1.14.6 py39h400218f_0 charset-normalizer 2.0.4 pyhd3eb1b0_0 click 8.0.3 pypi_0 pypi cloudpickle 2.0.0 pypi_0 pypi cryptography 36.0.0 py39h9ce1e76_0 cycler 0.11.0 pypi_0 pypi cython 0.29.26 pypi_0 pypi databricks-cli 0.16.2 pypi_0 pypi debugpy 1.5.1 py39h295c915_0 decorator 5.1.0 pyhd3eb1b0_0 defusedxml 0.7.1 pyhd3eb1b0_0 docker 5.0.3 pypi_0 pypi entrypoints 0.3 py39h06a4308_0 fcsfiles 2021.6.6 pypi_0 pypi flake8 4.0.1 pypi_0 pypi flask 2.0.2 pypi_0 pypi flatbuffers 2.0 pypi_0 pypi focuspoint 0.1 pypi_0 pypi fonttools 4.28.5 pypi_0 pypi future 0.18.2 pypi_0 pypi gast 0.4.0 pypi_0 pypi gitdb 4.0.9 pypi_0 pypi gitpython 3.1.24 pypi_0 pypi google-auth 2.3.3 pypi_0 pypi google-auth-oauthlib 0.4.6 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi greenlet 1.1.2 pypi_0 pypi grpcio 1.43.0 pypi_0 pypi gunicorn 20.1.0 pypi_0 pypi h5py 3.6.0 pypi_0 pypi idna 3.3 pyhd3eb1b0_0 importlib-metadata 4.8.2 py39h06a4308_0 importlib_metadata 4.8.2 hd3eb1b0_0 ipykernel 6.4.1 py39h06a4308_1 ipython 7.29.0 py39hb070fc8_0 ipython_genutils 0.2.0 pyhd3eb1b0_1 isort 5.10.1 pypi_0 pypi itsdangerous 2.0.1 pypi_0 pypi jedi 0.18.0 py39h06a4308_1 jinja2 3.0.2 pyhd3eb1b0_0 joblib 1.1.0 pypi_0 pypi json5 0.9.6 pyhd3eb1b0_0 jsonschema 3.2.0 pyhd3eb1b0_2 jupyter_client 7.1.0 pyhd3eb1b0_0 jupyter_core 4.9.1 py39h06a4308_0 jupyter_server 1.4.1 py39h06a4308_0 jupyterlab 3.2.1 pyhd3eb1b0_1 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 2.8.2 pyhd3eb1b0_0 keras 2.7.0 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.2 pypi_0 pypi lazy-object-proxy 1.7.1 pypi_0 pypi ld_impl_linux-64 2.35.1 h7274673_9 libclang 12.0.0 pypi_0 pypi libffi 3.3 he6710b0_2 libgcc-ng 9.3.0 h5101ec6_17 libgomp 9.3.0 h5101ec6_17 libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.3.0 hd4cf53a_17 lmfit 1.0.3 pypi_0 pypi mako 1.1.6 pypi_0 pypi markdown 3.3.6 pypi_0 pypi markupsafe 2.0.1 py39h27cfd23_0 matplotlib 3.5.1 pypi_0 pypi matplotlib-inline 0.1.2 pyhd3eb1b0_2 mccabe 0.6.1 pypi_0 pypi mistune 0.8.4 py39h27cfd23_1000 mlflow 1.22.0 pypi_0 pypi multipletau 0.3.3 pypi_0 pypi mypy 0.930 pypi_0 pypi mypy-extensions 0.4.3 pypi_0 pypi nbclassic 0.2.6 pyhd3eb1b0_0 nbclient 0.5.3 pyhd3eb1b0_0 nbconvert 6.1.0 py39h06a4308_0 nbformat 5.1.3 pyhd3eb1b0_0 ncurses 6.3 h7f8727e_2 nest-asyncio 1.5.1 pyhd3eb1b0_0 nodeenv 1.6.0 pypi_0 pypi notebook 6.4.6 py39h06a4308_0 numpy 1.21.5 pypi_0 pypi oauthlib 3.1.1 pypi_0 pypi openssl 1.1.1l h7f8727e_0 opt-einsum 3.3.0 pypi_0 pypi packaging 21.3 pyhd3eb1b0_0 pandas 1.3.5 pypi_0 pypi pandocfilters 1.4.3 py39h06a4308_1 parso 0.8.2 pyhd3eb1b0_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 8.4.0 pypi_0 pypi pip 21.2.4 py39h06a4308_0 platformdirs 2.4.1 pypi_0 pypi prometheus-flask-exporter 0.18.7 pypi_0 pypi prometheus_client 0.12.0 pyhd3eb1b0_0 prompt-toolkit 3.0.20 pyhd3eb1b0_0 protobuf 3.19.1 pypi_0 pypi ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycodestyle 2.8.0 pypi_0 pypi pycparser 2.21 pyhd3eb1b0_0 pydot 1.4.2 pypi_0 pypi pyflakes 2.4.0 pypi_0 pypi pygments 2.10.0 pyhd3eb1b0_0 pylint 2.12.2 pypi_0 pypi pyopenssl 21.0.0 pyhd3eb1b0_1 pyparsing 3.0.4 pyhd3eb1b0_0 pyright 0.0.13 pypi_0 pypi pyrsistent 0.18.0 py39heee7806_0 pysocks 1.7.1 py39h06a4308_0 python 3.9.7 h12debd9_1 python-dateutil 2.8.2 pyhd3eb1b0_0 python-editor 1.0.4 pypi_0 pypi pytz 2021.3 pyhd3eb1b0_0 pyyaml 6.0 pypi_0 pypi pyzmq 22.3.0 py39h295c915_2 querystring-parser 1.2.4 pypi_0 pypi readline 8.1 h27cfd23_0 requests 2.26.0 pyhd3eb1b0_0 requests-oauthlib 1.3.0 pypi_0 pypi rsa 4.8 pypi_0 pypi scikit-learn 1.0.2 pypi_0 pypi scipy 1.7.3 pypi_0 pypi seaborn 0.11.2 pypi_0 pypi send2trash 1.8.0 pyhd3eb1b0_1 setuptools 58.0.4 py39h06a4308_0 six 1.16.0 pyhd3eb1b0_0 smmap 5.0.0 pypi_0 pypi sniffio 1.2.0 py39h06a4308_1 sqlalchemy 1.4.29 pypi_0 pypi sqlite 3.37.0 hc218d9a_0 sqlparse 0.4.2 pypi_0 pypi tabulate 0.8.9 pypi_0 pypi tensorboard 2.7.0 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.0 pypi_0 pypi tensorflow 2.7.0 pypi_0 pypi tensorflow-estimator 2.7.0 pypi_0 pypi tensorflow-io-gcs-filesystem 0.23.1 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.4 py39h06a4308_0 testpath 0.5.0 pyhd3eb1b0_0 threadpoolctl 3.0.0 pypi_0 pypi tk 8.6.11 h1ccaba5_0 toml 0.10.2 pypi_0 pypi tomli 2.0.0 pypi_0 pypi tornado 6.1 py39h27cfd23_0 traitlets 5.1.1 pyhd3eb1b0_0 typing-extensions 4.0.1 pypi_0 pypi tzdata 2021e hda174b7_0 uncertainties 3.1.6 pypi_0 pypi urllib3 1.26.7 pyhd3eb1b0_0 wcwidth 0.2.5 pyhd3eb1b0_0 webencodings 0.5.1 py39h06a4308_1 websocket-client 1.2.3 pypi_0 pypi werkzeug 2.0.2 pypi_0 pypi wheel 0.37.0 pyhd3eb1b0_1 wrapt 1.13.3 pypi_0 pypi xz 5.2.5 h7b6447c_0 zeromq 4.3.4 h2531618_0 zipp 3.6.0 pyhd3eb1b0_0 zlib 1.2.11 h7f8727e_4 Note: you may need to restart the kernel to use updated packages. {'SHELL': '/bin/bash', 'SESSION_MANAGER': 'local/Topialex:@/tmp/.ICE-unix/986,unix/Topialex:/tmp/.ICE-unix/986', 'XDG_CONFIG_DIRS': '/home/lex/.config/kdedefaults:/etc/xdg', 'XDG_SESSION_PATH': '/org/freedesktop/DisplayManager/Session1', 'CONDA_EXE': '/home/lex/Programme/miniconda3/bin/conda', '_CE_M': '', 'LANGUAGE': 'en_GB', 'TERMCAP': '', 'LC_ADDRESS': 'de_DE.UTF-8', 'LC_NAME': 'de_DE.UTF-8', 'INSIDE_EMACS': '28.1,comint', 'DESKTOP_SESSION': 'plasma', 'LC_MONETARY': 'de_DE.UTF-8', 'GTK_RC_FILES': '/etc/gtk/gtkrc:/home/lex/.gtkrc:/home/lex/.config/gtkrc', 'XCURSOR_SIZE': '24', 'GTK_MODULES': 'canberra-gtk-module', 'XDG_SEAT': 'seat0', 'PWD': '/home/lex/Programme/drmed-git', 'LOGNAME': 'lex', 'XDG_SESSION_DESKTOP': 'KDE', 'XDG_SESSION_TYPE': 'x11', 'CONDA_PREFIX': '/home/lex/Programme/miniconda3/envs/tf', 'DSSI_PATH': '/home/lex/.dssi:/usr/lib/dssi:/usr/local/lib/dssi', 'SYSTEMD_EXEC_PID': '877', 'XAUTHORITY': '/home/lex/.Xauthority', 'MOTD_SHOWN': 'pam', 'GTK2_RC_FILES': '/etc/gtk-2.0/gtkrc:/home/lex/.gtkrc-2.0:/home/lex/.config/gtkrc-2.0', 'HOME': '/home/lex', 'LANG': 'de_DE.UTF-8', 'LC_PAPER': 'de_DE.UTF-8', 'VST_PATH': '/home/lex/.vst:/usr/lib/vst:/usr/local/lib/vst', 'XDG_CURRENT_DESKTOP': 'KDE', 'COLUMNS': '163', 'CONDA_PROMPT_MODIFIER': '', 'XDG_SEAT_PATH': '/org/freedesktop/DisplayManager/Seat0', 'KDE_SESSION_UID': '1000', 'XDG_SESSION_CLASS': 'user', 'LC_IDENTIFICATION': 'de_DE.UTF-8', 'TERM': 'xterm-color', '_CE_CONDA': '', 'USER': 'lex', 'CONDA_SHLVL': '1', 'KDE_SESSION_VERSION': '5', 'PAM_KWALLET5_LOGIN': '/run/user/1000/kwallet5.socket', 'DISPLAY': ':0', 'SHLVL': '2', 'LC_TELEPHONE': 'de_DE.UTF-8', 'LC_MEASUREMENT': 'de_DE.UTF-8', 'XDG_VTNR': '1', 'XDG_SESSION_ID': '2', 'QT_LINUX_ACCESSIBILITY_ALWAYS_ON': '1', 'CONDA_PYTHON_EXE': '/home/lex/Programme/miniconda3/bin/python', 'MOZ_PLUGIN_PATH': '/usr/lib/mozilla/plugins', 'XDG_RUNTIME_DIR': '/run/user/1000', 'CONDA_DEFAULT_ENV': 'tf', 'LC_TIME': 'de_DE.UTF-8', 'QT_AUTO_SCREEN_SCALE_FACTOR': '0', 'XCURSOR_THEME': 'breeze_cursors', 'XDG_DATA_DIRS': '/home/lex/.local/share/flatpak/exports/share:/var/lib/flatpak/exports/share:/usr/local/share:/usr/share:/var/lib/snapd/desktop', 'KDE_FULL_SESSION': 'true', 'BROWSER': 'vivaldi-stable', 'PATH': '/home/lex/Programme/miniconda3/envs/tf/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin', 'DBUS_SESSION_BUS_ADDRESS': 'unix:path=/run/user/1000/bus', 'LV2_PATH': '/home/lex/.lv2:/usr/lib/lv2:/usr/local/lib/lv2', 'KDE_APPLICATIONS_AS_SCOPE': '1', 'MAIL': '/var/spool/mail/lex', 'LC_NUMERIC': 'de_DE.UTF-8', 'LADSPA_PATH': '/home/lex/.ladspa:/usr/lib/ladspa:/usr/local/lib/ladspa', 'CADENCE_AUTO_STARTED': 'true', '_': '/home/lex/Programme/miniconda3/envs/tf/bin/jupyter', 'PYDEVD_USE_FRAME_EVAL': 'NO', 'JPY_PARENT_PID': '156430', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://matplotlib_inline.backend_inline'}
- Branch out git branch
exp-220316-publication1
frommain
(done via magit) and make sure you are on the correct branchcd /home/lex/Programme/drmed-git git status
sh-5.1$ cd /home/lex/Programme/drmed-git sh-5.1$ git status On branch exp-220316-publication1 Your branch is up to date with 'origin/exp-220316-publication1'.
- Create experiment folder including the plot folder for jupyter plots
mkdir -p ./data/exp-220316-publication1/jupyter
- set output directory for matplotlib plots in jupyter
(setq org-babel-jupyter-resource-directory "./data/exp-220316-publication1/jupyter")
./data/exp-220316-publication1/jupyter
2.7.2 Setup: Jupyter node on HPC
- Set up tmux (if we haven’t done that before) (
#+CALL: setup-tmux[:session local]
)sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: > ye53nis@ara-login01.rz.uni-jena.de’s password: - Request compute node
cd / srun -p b_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
- Start Jupyter Lab (
#+CALL: jpt-tmux[:session jpmux]
)(tf) [ye53nis@node117 /]$ jupyter lab --no-browser --port=$PORT [I 2023-01-03 22:14:33.399 ServerApp] jupyterlab | extension was successfully linked. [I 2023-01-03 22:14:40.846 ServerApp] nbclassic | extension was successfully linked. [I 2023-01-03 22:14:41.330 ServerApp] nbclassic | extension was successfully loaded. [I 2023-01-03 22:14:41.332 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab [I 2023-01-03 22:14:41.332 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab [I 2023-01-03 22:14:41.340 ServerApp] jupyterlab | extension was successfully loaded. [I 2023-01-03 22:14:41.342 ServerApp] Serving notebooks from local directory: / [I 2023-01-03 22:14:41.342 ServerApp] Jupyter Server 1.13.5 is running at: [I 2023-01-03 22:14:41.342 ServerApp] http://localhost:8889/lab?token=2ff8ed3f281a95c2bda81a0c453699c478ee1fd2e52e8bab [I 2023-01-03 22:14:41.342 ServerApp] or http://127.0.0.1:8889/lab?token=2ff8ed3f281a95c2bda81a0c453699c478ee1fd2e52e8bab [I 2023-01-03 22:14:41.342 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 2023-01-03 22:14:41.456 ServerApp] To access the server, open this file in a browser: file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-158816-open.html Or copy and paste one of these URLs: http://localhost:8889/lab?token=2ff8ed3f281a95c2bda81a0c453699c478ee1fd2e52e8bab or http://127.0.0.1:8889/lab?token=2ff8ed3f281a95c2bda81a0c453699c478ee1fd2e52e8bab
- Create SSH Tunnel for jupyter lab to the local computer (e.g.
#+CALL: ssh-tunnel(port="8889", node="node160")
)sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: ye53nis@node117’s password: Last login: Tue Jan 3 22:15:58 2023 from login01.ara - I started a Python3 kernel using
jupyter-server-list-kernels
. Then I added the kernel ID to the:PROPERTIES:
drawer of this (and following) subtrees.python3 c4f3acce-60c4-489d-922c-407da110fd6a a few seconds ago idle 1
- Test (
#+CALL: jp-metadata(_long='True)
) and record metadata:No of CPUs in system: 48 No of CPUs the current process can use: 24 load average: (1658.36, 1661.86, 1648.89) os.uname(): posix.uname_result(sysname='Linux', nodename='node095', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64') PID of process: 189118 RAM total: 137G, RAM used: 18G, RAM free: 103G the current directory: / My disk usage: Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 5.0G 46G 10% / devtmpfs 63G 0 63G 0% /dev tmpfs 63G 199M 63G 1% /dev/shm tmpfs 63G 27M 63G 1% /run tmpfs 63G 0 63G 0% /sys/fs/cgroup nfs01-ib:/home 80T 63T 18T 79% /home nfs03-ib:/pool/work 100T 72T 29T 72% /nfsdata nfs01-ib:/cluster 2.0T 496G 1.6T 25% /cluster /dev/sda3 6.0G 429M 5.6G 7% /var /dev/sda6 169G 3.8G 165G 3% /local /dev/sda5 2.0G 119M 1.9G 6% /tmp beegfs_nodev 524T 456T 69T 87% /beegfs tmpfs 13G 0 13G 0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 5.1 1_gnu absl-py 1.0.0 pypi_0 pypi alembic 1.7.7 pypi_0 pypi anyio 3.5.0 py39h06a4308_0 argon2-cffi 21.3.0 pyhd3eb1b0_0 argon2-cffi-bindings 21.2.0 py39h7f8727e_0 asteval 0.9.26 pypi_0 pypi asttokens 2.0.5 pyhd3eb1b0_0 astunparse 1.6.3 pypi_0 pypi attrs 21.4.0 pyhd3eb1b0_0 babel 2.9.1 pyhd3eb1b0_0 backcall 0.2.0 pyhd3eb1b0_0 beautifulsoup4 4.11.1 py39h06a4308_0 bleach 4.1.0 pyhd3eb1b0_0 brotlipy 0.7.0 py39h27cfd23_1003 ca-certificates 2022.4.26 h06a4308_0 cachetools 5.1.0 pypi_0 pypi certifi 2021.10.8 py39h06a4308_2 cffi 1.15.0 py39hd667e15_1 charset-normalizer 2.0.4 pyhd3eb1b0_0 click 8.1.3 pypi_0 pypi cloudpickle 2.0.0 pypi_0 pypi cryptography 37.0.1 py39h9ce1e76_0 cycler 0.11.0 pypi_0 pypi cython 0.29.30 pypi_0 pypi databricks-cli 0.16.6 pypi_0 pypi debugpy 1.5.1 py39h295c915_0 decorator 5.1.1 pyhd3eb1b0_0 defusedxml 0.7.1 pyhd3eb1b0_0 docker 5.0.3 pypi_0 pypi entrypoints 0.4 py39h06a4308_0 executing 0.8.3 pyhd3eb1b0_0 fcsfiles 2022.2.2 pypi_0 pypi flask 2.1.2 pypi_0 pypi flatbuffers 1.12 pypi_0 pypi fonttools 4.33.3 pypi_0 pypi future 0.18.2 pypi_0 pypi gast 0.4.0 pypi_0 pypi gitdb 4.0.9 pypi_0 pypi gitpython 3.1.27 pypi_0 pypi google-auth 2.6.6 pypi_0 pypi google-auth-oauthlib 0.4.6 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi greenlet 1.1.2 pypi_0 pypi grpcio 1.46.1 pypi_0 pypi gunicorn 20.1.0 pypi_0 pypi h5py 3.6.0 pypi_0 pypi idna 3.3 pyhd3eb1b0_0 importlib-metadata 4.11.3 pypi_0 pypi ipykernel 6.9.1 py39h06a4308_0 ipython 8.3.0 py39h06a4308_0 ipython_genutils 0.2.0 pyhd3eb1b0_1 itsdangerous 2.1.2 pypi_0 pypi jedi 0.18.1 py39h06a4308_1 jinja2 3.0.3 pyhd3eb1b0_0 joblib 1.1.0 pypi_0 pypi json5 0.9.6 pyhd3eb1b0_0 jsonschema 4.4.0 py39h06a4308_0 jupyter_client 7.2.2 py39h06a4308_0 jupyter_core 4.10.0 py39h06a4308_0 jupyter_server 1.13.5 pyhd3eb1b0_0 jupyterlab 3.3.2 pyhd3eb1b0_0 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 2.12.0 py39h06a4308_0 keras 2.9.0 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.4.2 pypi_0 pypi ld_impl_linux-64 2.38 h1181459_0 libclang 14.0.1 pypi_0 pypi libffi 3.3 he6710b0_2 libgcc-ng 11.2.0 h1234567_0 libgomp 11.2.0 h1234567_0 libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 11.2.0 h1234567_0 lmfit 1.0.3 pypi_0 pypi mako 1.2.0 pypi_0 pypi markdown 3.3.7 pypi_0 pypi markupsafe 2.0.1 py39h27cfd23_0 matplotlib 3.5.2 pypi_0 pypi matplotlib-inline 0.1.2 pyhd3eb1b0_2 mistune 0.8.4 py39h27cfd23_1000 mlflow 1.26.0 pypi_0 pypi multipletau 0.3.3 pypi_0 pypi nbclassic 0.3.5 pyhd3eb1b0_0 nbclient 0.5.13 py39h06a4308_0 nbconvert 6.4.4 py39h06a4308_0 nbformat 5.3.0 py39h06a4308_0 ncurses 6.3 h7f8727e_2 nest-asyncio 1.5.5 py39h06a4308_0 notebook 6.4.11 py39h06a4308_0 numpy 1.22.3 pypi_0 pypi oauthlib 3.2.0 pypi_0 pypi openssl 1.1.1o h7f8727e_0 opt-einsum 3.3.0 pypi_0 pypi packaging 21.3 pyhd3eb1b0_0 pandas 1.4.2 pypi_0 pypi pandocfilters 1.5.0 pyhd3eb1b0_0 parso 0.8.3 pyhd3eb1b0_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 9.1.1 pypi_0 pypi pip 21.2.4 py39h06a4308_0 prometheus-flask-exporter 0.20.1 pypi_0 pypi prometheus_client 0.13.1 pyhd3eb1b0_0 prompt-toolkit 3.0.20 pyhd3eb1b0_0 protobuf 3.20.1 pypi_0 pypi ptyprocess 0.7.0 pyhd3eb1b0_2 pure_eval 0.2.2 pyhd3eb1b0_0 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.21 pyhd3eb1b0_0 pygments 2.11.2 pyhd3eb1b0_0 pyjwt 2.4.0 pypi_0 pypi pyopenssl 22.0.0 pyhd3eb1b0_0 pyparsing 3.0.4 pyhd3eb1b0_0 pyrsistent 0.18.0 py39heee7806_0 pysocks 1.7.1 py39h06a4308_0 python 3.9.12 h12debd9_0 python-dateutil 2.8.2 pyhd3eb1b0_0 python-fastjsonschema 2.15.1 pyhd3eb1b0_0 pytz 2021.3 pyhd3eb1b0_0 pyyaml 6.0 pypi_0 pypi pyzmq 22.3.0 py39h295c915_2 querystring-parser 1.2.4 pypi_0 pypi readline 8.1.2 h7f8727e_1 requests 2.27.1 pyhd3eb1b0_0 requests-oauthlib 1.3.1 pypi_0 pypi rsa 4.8 pypi_0 pypi scikit-learn 1.1.0 pypi_0 pypi scipy 1.8.1 pypi_0 pypi seaborn 0.11.2 pypi_0 pypi send2trash 1.8.0 pyhd3eb1b0_1 setuptools 61.2.0 py39h06a4308_0 six 1.16.0 pyhd3eb1b0_1 smmap 5.0.0 pypi_0 pypi sniffio 1.2.0 py39h06a4308_1 soupsieve 2.3.1 pyhd3eb1b0_0 sqlalchemy 1.4.36 pypi_0 pypi sqlite 3.38.3 hc218d9a_0 sqlparse 0.4.2 pypi_0 pypi stack_data 0.2.0 pyhd3eb1b0_0 tabulate 0.8.9 pypi_0 pypi tensorboard 2.9.0 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.1 pypi_0 pypi tensorflow 2.9.0 pypi_0 pypi tensorflow-estimator 2.9.0 pypi_0 pypi tensorflow-io-gcs-filesystem 0.26.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.13.1 py39h06a4308_0 testpath 0.5.0 pyhd3eb1b0_0 threadpoolctl 3.1.0 pypi_0 pypi tk 8.6.11 h1ccaba5_1 tornado 6.1 py39h27cfd23_0 traitlets 5.1.1 pyhd3eb1b0_0 typing-extensions 4.1.1 hd3eb1b0_0 typing_extensions 4.1.1 pyh06a4308_0 tzdata 2022a hda174b7_0 uncertainties 3.1.6 pypi_0 pypi urllib3 1.26.9 py39h06a4308_0 wcwidth 0.2.5 pyhd3eb1b0_0 webencodings 0.5.1 py39h06a4308_1 websocket-client 0.58.0 py39h06a4308_4 werkzeug 2.1.2 pypi_0 pypi wheel 0.37.1 pyhd3eb1b0_0 wrapt 1.14.1 pypi_0 pypi xz 5.2.5 h7f8727e_1 zeromq 4.3.4 h2531618_0 zipp 3.8.0 pypi_0 pypi zlib 1.2.12 h7f8727e_2 Note: you may need to restart the kernel to use updated packages. {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint', 'SLURM_NODELIST': 'node095', 'SLURM_JOB_NAME': 'bash', 'XDG_SESSION_ID': '135386', 'SLURMD_NODENAME': 'node095', 'SLURM_TOPOLOGY_ADDR': 'node095', 'SLURM_NTASKS_PER_NODE': '24', 'HOSTNAME': 'login01', 'SLURM_PRIO_PROCESS': '0', 'SLURM_SRUN_COMM_PORT': '43002', 'SHELL': '/bin/bash', 'TERM': 'xterm-color', 'SLURM_JOB_QOS': 'qstand', 'SLURM_PTY_WIN_ROW': '48', 'HISTSIZE': '1000', 'TMPDIR': '/tmp', 'SLURM_TOPOLOGY_ADDR_PATTERN': 'node', 'SSH_CLIENT': '10.231.185.64 42170 22', 'CONDA_SHLVL': '2', 'CONDA_PROMPT_MODIFIER': '(tf) ', 'WINDOWID': '0', 'QTDIR': '/usr/lib64/qt-3.3', 'QTINC': '/usr/lib64/qt-3.3/include', 'SSH_TTY': '/dev/pts/19', 'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'QT_GRAPHICSSYSTEM_CHECKED': '1', 'SLURM_NNODES': '1', 'USER': 'ye53nis', 'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:', 'CONDA_EXE': '/cluster/miniconda3/bin/conda', 'SLURM_STEP_NUM_NODES': '1', 'SLURM_JOBID': '1679082', 'SRUN_DEBUG': '3', 'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_NTASKS': '24', 'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5', 'SLURM_STEP_ID': '0', 'TMUX': '/tmp/tmux-67339/default,14861,2', '_CE_CONDA': '', 'CONDA_PREFIX_1': '/cluster/miniconda3', 'SLURM_STEP_LAUNCHER_PORT': '43002', 'SLURM_TASKS_PER_NODE': '24', 'MAIL': '/var/spool/mail/ye53nis', 'PATH': '/home/ye53nis/.conda/envs/tf/bin:/home/lex/Programme/miniconda3/envs/tf/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/home/lex/Programme/miniconda3/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin', 'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448', 'SLURM_JOB_ID': '1679082', 'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf', 'SLURM_JOB_USER': 'ye53nis', 'SLURM_STEPID': '0', 'PWD': '/', 'SLURM_SRUN_COMM_HOST': '192.168.192.5', 'LANG': 'en_US.UTF-8', 'SLURM_PTY_WIN_COL': '236', 'SLURM_UMASK': '0022', 'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles', 'SLURM_JOB_UID': '67339', 'LOADEDMODULES': '', 'SLURM_NODEID': '0', 'TMUX_PANE': '%2', 'SLURM_SUBMIT_DIR': '/', 'SLURM_TASK_PID': '186350', 'SLURM_NPROCS': '24', 'SLURM_CPUS_ON_NODE': '24', 'SLURM_DISTRIBUTION': 'block', 'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_PROCID': '0', 'HISTCONTROL': 'ignoredups', '_CE_M': '', 'SLURM_JOB_NODELIST': 'node095', 'SLURM_PTY_PORT': '41832', 'HOME': '/home/ye53nis', 'SHLVL': '3', 'SLURM_LOCALID': '0', 'SLURM_JOB_GID': '13280', 'SLURM_JOB_CPUS_PER_NODE': '24', 'SLURM_CLUSTER_NAME': 'hpc', 'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24,vmaster,node001', 'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23', 'SLURM_SUBMIT_HOST': 'login01', 'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_JOB_PARTITION': 'b_standard', 'MATHEMATICA_HOME': '/cluster/apps/mathematica/12.3', 'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python', 'LOGNAME': 'ye53nis', 'SLURM_STEP_NUM_TASKS': '24', 'QTLIB': '/usr/lib64/qt-3.3/lib', 'SLURM_JOB_ACCOUNT': 'iaob', 'SLURM_JOB_NUM_NODES': '1', 'MODULESHOME': '/usr/share/Modules', 'CONDA_DEFAULT_ENV': 'tf', 'LESSOPEN': '||/usr/bin/lesspipe.sh %s', 'SLURM_STEP_TASKS_PER_NODE': '24', 'PORT': '8889', 'SLURM_STEP_NODELIST': 'node095', 'DISPLAY': ':0', 'XDG_RUNTIME_DIR': '', 'XAUTHORITY': '/home/lex/.Xauthority', 'BASH_FUNC_module()': '() { eval `/usr/bin/modulecmd bash $*`\n}', '_': '/home/ye53nis/.conda/envs/tf/bin/jupyter', 'PYDEVD_USE_FRAME_EVAL': 'NO', 'JPY_PARENT_PID': '187359', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://matplotlib_inline.backend_inline'}
2.7.3 Setup: current git log
pwd git --no-pager log -5
/home/lex/Programme/drmed-git commit d51b11eda090b9301e783ec35bdfd26c7bf0709c (HEAD -> exp-220316-publication1, origin/main, origin/exp-220316-publication1, origin/HEAD, main) Date: Sun Feb 27 18:40:00 2022 +0100 fix model input_size to None; else to crop_size commit c637444d8b798603629f6f0bd72ee55af7f81a5f Date: Sun Feb 27 18:39:29 2022 +0100 Fix function call correlate_and_fit commit 291c6619c12bc39d526137a43d976b3cb4881e50 Date: Sat Feb 26 20:04:07 2022 +0100 Fix scale_trace; simplify tf_pad_trace call commit dcca8b9e17909a95b824c8a7b1fec52eeed198c3 Date: Thu Feb 24 16:11:39 2022 +0100 test tf_pad_trace commit 6cf2da85748ef13f2e752bea8989a6d31549ced3 Date: Thu Feb 24 16:10:33 2022 +0100 Fix tf_pad_trace
2.7.4 Exp: simexps - weight=0
vs cut and shift
vs avg
- To justify
cut and shift
as a method, let’s eliminate the confounder of bad prediction and compare it to the alternative based on a segmentation we know from the simulations that is correct.weight=0
gives each time bin classified as ’dominated by clusters’ a weight of 0.cut and shift
gives removes each time bin classified as ’dominated by clusters’ and shifts all remaining time bins together.
- After re-reading a lot of literature and putting it into text
(
- segment trace in artifactual and non-artifactual (here: given by simulations)
- correlate all non-artifactual segments
- average correlations and fit the average
%cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
), I decided to add the averaging method:
- load modules
import datetime import logging import multipletau import os import scipy import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import correlate from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, ) logging.basicConfig(filename="/beegfs/ye53nis/drmed-git/data/exp-220316-publication1/jupyter.log", filemode='w', format='%(asctime)s - %(message)s', force=True, level=logging.DEBUG) log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind', context='paper')
2023-01-03 23:23:38.245766: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-01-03 23:23:38.245806: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
import importlib importlib.reload(isfc)
<module 'fluotracify.applications.corr_fit_object' from '/home/lex/Programme/drmed-git/src/fluotracify/applications/corr_fit_object.py'>
- load simulated data
col_per_example = 3 # lab_thresh = 0.04 # artifact = 0 # model_type = 1 fwhm = 250 sim_path = Path('/beegfs/ye53nis/saves/firstartifact_Nov2020_test') sim, _, nsamples, sim_params = isfc.import_from_csv( folder=sim_path, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None) diffrates = sim_params.loc[ 'diffusion rate of molecules in micrometer^2 / s'].astype(np.float32) nmols = sim_params.loc['number of fast molecules'].astype(np.float32) clusters = sim_params.loc[ 'diffusion rate of clusters in micrometer^2 / s'].astype(np.float32) sim_columns = [f'{d:.4}-{c:.4}' for d, c in zip( np.repeat(diffrates, nsamples[0]), np.repeat(clusters, nsamples[0]))] sim_sep = isfc.separate_data_and_labels(array=sim, nsamples=nsamples, col_per_example=col_per_example) sim_dirty = sim_sep['0'] sim_dirty.columns = sim_columns sim_labels = sim_sep['1'] sim_labels.columns = sim_columns sim_clean = sim_sep['2'] sim_clean.columns = sim_columns sim
trace001 label0011 label0012 trace002 label0021 label0022 trace003 label0031 label0032 trace004 … label0972 trace098 label0981 label0982 trace099 label0991 label0992 trace100 label1001 label1002 0 395.062347 4.538784e-20 395.062347 542.019287 8.120830e-03 501.415161 259.171783 2.228045e-24 259.171783 378.006470 … 1231.325928 2721.381592 0.195874 1154.387695 1671.956787 6.682719e-04 1667.278809 1572.913452 1.325364e-02 1466.884277 1 395.732605 1.310606e-19 395.732605 676.451477 3.468467e-02 503.028076 263.082733 1.117190e-24 263.082733 365.738861 … 1197.367310 2785.768066 0.203337 1159.073364 1749.072510 7.613653e-04 1743.742920 1544.390259 1.122567e-02 1454.584839 2 385.598785 6.306126e-22 385.598785 565.850403 1.276007e-02 502.050110 258.483124 8.280664e-26 258.483124 350.939362 … 1229.265015 2961.105225 0.226369 1150.153320 1643.184204 6.983961e-04 1638.295532 1486.991211 1.182248e-02 1392.411377 3 375.055664 8.333913e-22 375.055664 569.737793 7.499466e-03 532.240479 252.117035 6.761740e-26 252.117035 364.043427 … 1190.224854 3127.305664 0.243025 1183.104492 1713.993042 7.364776e-04 1708.837769 1427.290771 1.086318e-02 1340.385376 4 400.554443 2.098773e-21 400.554443 590.014893 7.808361e-03 550.973083 241.840240 7.160055e-28 241.840240 376.104645 … 1268.028931 2997.608887 0.223969 1205.857422 1744.911865 6.761284e-04 1740.178955 1426.806763 9.973858e-03 1347.015869 … … … … … … … … … … … … … … … … … … … … … … 16379 433.562714 2.027369e-11 433.562714 624.462646 1.359731e-07 624.461975 643.004944 1.486138e-06 642.994568 518.733643 … 1281.519775 1172.255371 0.000024 1172.062500 1347.495239 1.545398e-07 1347.494141 756.805908 3.299088e-13 756.805908 16380 462.284454 4.281444e-14 462.284454 616.137512 5.455384e-08 616.137268 597.266296 1.347712e-06 597.256836 487.652924 … 1384.850098 1191.984253 0.000021 1191.816162 1482.415894 1.717639e-07 1482.414673 712.499878 2.858745e-13 712.499878 16381 472.551483 6.157024e-11 472.551483 612.926758 7.076798e-07 612.923218 615.009460 3.518227e-08 615.009216 516.941528 … 1274.193848 1173.113770 0.000031 1172.869263 1520.151367 2.125578e-07 1520.149780 587.645203 2.861725e-13 587.645203 16382 486.679413 3.604344e-09 486.679382 637.962769 1.704117e-08 637.962708 616.344116 4.384124e-08 616.343811 502.372345 … 1310.505981 1124.065552 0.000027 1123.853271 1572.194336 2.867827e-07 1572.192261 618.202820 4.085783e-13 618.202820 16383 489.893646 1.907032e-08 489.893555 614.733704 1.560388e-06 614.725891 614.638000 6.400571e-07 614.633545 511.408234 … 1324.207275 1070.131104 0.000030 1069.894531 1602.530029 2.109545e-07 1602.528564 654.377380 5.819386e-13 654.377380 16384 rows × 9000 columns
- define plotting functions
def label_correct_correlate(sim_dirty, sim_labels, sim_columns, lab_thresh, out_path): sim_labbool = sim_labels > lab_thresh sim_labbool.columns = sim_columns sim_cas, sim_del = pd.DataFrame(), pd.DataFrame() for i in range(len(sim_dirty.columns)): # cut and shift correction sim_cas_trace = np.delete(sim_dirty.iloc[:, i].values, sim_labbool.iloc[:, i].values) sim_cas_trace = pd.DataFrame(sim_cas_trace) sim_cas = pd.concat([sim_cas, sim_cas_trace], axis='columns') # weight=0 / delete correction sim_del_trace = np.where(sim_labbool.iloc[:, i].values == 1, 0, sim_dirty.iloc[:, i].values) sim_del_trace = pd.DataFrame(sim_del_trace) sim_del = pd.concat([sim_del, sim_del_trace], axis='columns') sim_cas.columns, sim_del.columns = sim_dirty.columns, sim_dirty.columns log.debug('label_correct_correlate: Finished "cut and shift" and ' '"weight=0" correction.') # after correction lab_str = f'{lab_thresh}'.replace(".", "dot") cas_txt = f'labthresh-{lab_str}_cutandshift' del_txt = f'labthresh-{lab_str}_delete' correlate.correlate_timetrace_and_save(df=sim_cas, out_path=out_path, out_txt=cas_txt) correlate.correlate_timetrace_and_save(df=sim_del, out_path=out_path, out_txt=del_txt)
- plot simulated data with label thresholds of interest
out_path = "/beegfs/ye53nis/drmed-git/data/exp-220316-publication1/220517_simulations/" label_correct_correlate( sim_dirty=sim_dirty, sim_labels=sim_labels, sim_columns=sim_columns, lab_thresh=0.04, out_path=out_path)
- now order the correlations in respective folders
cd /beegfs/ye53nis/drmed-git/data/exp-220316-publication1/220517_simulations mkdir -p labthresh-0.04-cutandshift/0.069 mkdir -p labthresh-0.04-cutandshift/0.08 mkdir -p labthresh-0.04-cutandshift/0.1 mkdir -p labthresh-0.04-cutandshift/0.2 mkdir -p labthresh-0.04-cutandshift/0.4 mkdir -p labthresh-0.04-cutandshift/0.6 mkdir -p labthresh-0.04-cutandshift/1.0 mkdir -p labthresh-0.04-cutandshift/3.0 mkdir -p labthresh-0.04-cutandshift/10.0 mkdir -p labthresh-0.04-cutandshift/50.0 mkdir -p labthresh-0.04-delete/0.069 mkdir -p labthresh-0.04-delete/0.08 mkdir -p labthresh-0.04-delete/0.1 mkdir -p labthresh-0.04-delete/0.2 mkdir -p labthresh-0.04-delete/0.4 mkdir -p labthresh-0.04-delete/0.6 mkdir -p labthresh-0.04-delete/1.0 mkdir -p labthresh-0.04-delete/3.0 mkdir -p labthresh-0.04-delete/10.0 mkdir -p labthresh-0.04-delete/50.0
mv *cutandshift_0dot069* labthresh-0.04-cutandshift/0.069 mv *cutandshift_0dot08* labthresh-0.04-cutandshift/0.08 mv *cutandshift_0dot1* labthresh-0.04-cutandshift/0.1 mv *cutandshift_0dot2* labthresh-0.04-cutandshift/0.2 mv *cutandshift_0dot4* labthresh-0.04-cutandshift/0.4 mv *cutandshift_0dot6* labthresh-0.04-cutandshift/0.6 mv *cutandshift_1dot0* labthresh-0.04-cutandshift/1.0 mv *cutandshift_3dot0* labthresh-0.04-cutandshift/3.0 mv *cutandshift_10dot0* labthresh-0.04-cutandshift/10.0 mv *cutandshift_50dot0* labthresh-0.04-cutandshift/50.0 mv *delete_0dot069* labthresh-0.04-delete/0.069 mv *delete_0dot08* labthresh-0.04-delete/0.08 mv *delete_0dot1* labthresh-0.04-delete/0.1 mv *delete_0dot2* labthresh-0.04-delete/0.2 mv *delete_0dot4* labthresh-0.04-delete/0.4 mv *delete_0dot6* labthresh-0.04-delete/0.6 mv *delete_1dot0* labthresh-0.04-delete/1.0 mv *delete_3dot0* labthresh-0.04-delete/3.0 mv *delete_10dot0* labthresh-0.04-delete/10.0 mv *delete_50dot0* labthresh-0.04-delete/50.0
2.7.5 Exp: simexps - characterization of cutandshift
- We want to check the following properties of FCS trace cutting: does
cutting introduce artifacts (Does condition of stationarity hold?) → plot
of mean / median / mode of transit times in clean trace when cut with
growing number of cuts and then shuffling the trace
%cd ~/Programme/drmed-git
/home/lex/Programme/drmed-git
- load modules
import logging import os import pdb import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import (corr_fit_object as cfo, correlate) from fluotracify.imports import ptu_utils as ptu from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, ) logging.basicConfig(filename="/home/lex/Programme/drmed-git/data/exp-220316-publication1/jupyter.log", filemode='w', format='%(asctime)s - %(message)s', force=True, level=logging.DEBUG) sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind', context='paper')
import importlib importlib.reload(correlate) importlib.reload(ans)
<module 'fluotracify.simulations.analyze_simulations' from '/home/lex/Programme/drmed-git/src/fluotracify/simulations/analyze_simulations.py'>
- load simulated data
col_per_example = 3 lab_thresh = 0.04 artifact = 0 model_type = 1 fwhm = 250 sim_path = Path('/home/lex/Programme/drmed-collections/drmed-simexps/firstartifact_Nov2020_test') sim, _, nsamples, sim_params = isfc.import_from_csv( folder=sim_path, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None) diffrates = sim_params.loc[ 'diffusion rate of molecules in micrometer^2 / s'].astype(np.float32) nmols = sim_params.loc['number of fast molecules'].astype(np.float32) clusters = sim_params.loc[ 'diffusion rate of clusters in micrometer^2 / s'].astype(np.float32) sim_columns = [f'{d:.4}' for d, c in zip( np.repeat(diffrates, nsamples[0]), np.repeat(clusters, nsamples[0]))] sim_sep = isfc.separate_data_and_labels(array=sim, nsamples=nsamples, col_per_example=col_per_example) sim_dirty = sim_sep['0'] sim_dirty.columns = sim_columns sim_labels = sim_sep['1'] sim_labels.columns = sim_columns sim_labbool = sim_labels > lab_thresh sim_labbool.columns = sim_columns sim_clean = sim_sep['2'] sim_clean.columns = sim_columns sim_dirty
0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 … 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 0 1187.467896 907.677734 480.048798 454.669403 466.063232 384.734467 543.981323 640.921509 795.946167 410.471893 … 1897.398193 2279.646484 3088.531006 2034.432495 2187.548584 2105.736084 1789.366577 2023.093994 2331.185791 2185.028076 1 1184.055176 945.760315 471.065216 458.392487 473.306152 395.165527 558.603088 622.421204 776.199402 409.149170 … 1499.969849 2199.652100 3207.333008 1650.523926 2122.935791 2791.281006 1661.286377 1111.879761 1853.699585 1926.844971 2 1191.848877 980.117798 459.479706 426.087982 482.370209 425.123413 551.536072 624.498535 778.671265 400.971954 … 1822.985229 2456.422607 2969.562500 1934.118286 1457.731812 2251.077393 1903.003662 2063.915527 2198.018066 2038.683105 3 1199.065918 974.313110 462.205566 444.041809 463.703125 434.186615 573.044128 626.252502 747.284058 393.178162 … 1741.839355 2467.149414 2588.980957 2136.627686 1930.263672 2323.700684 2133.313721 1638.169312 1926.058716 1815.259521 4 1221.957397 968.779175 464.918030 455.205292 474.615540 437.029419 586.489136 619.319092 781.954102 406.468018 … 2431.400879 2246.336670 3000.961182 1915.518066 2052.773682 2359.145508 1699.926147 1862.709595 2291.338379 1332.422241 … … … … … … … … … … … … … … … … … … … … … … 16379 506.409668 1012.403931 855.006226 674.470703 769.859192 2110.732178 799.565247 1981.221436 528.844604 483.055878 … 1512.586548 3212.712891 1491.119995 1843.866943 1748.956665 2048.602051 1662.244385 2593.879639 1921.427856 1664.831909 16380 536.809692 1022.029724 840.287720 671.095215 738.908997 2118.984863 807.995789 2624.343262 552.687012 479.768372 … 1661.331055 3190.809570 1770.193970 2081.854248 2164.372803 2295.646729 1846.683594 2038.272339 2222.708252 2122.753662 16381 570.668884 989.891235 839.180298 689.863586 695.739136 2033.681885 786.547852 3528.163574 572.166077 484.491211 … 1643.470337 2564.206787 2025.219971 2104.706787 1792.828613 2106.199463 2087.914062 1457.817871 1874.736938 1683.072021 16382 562.505310 977.029785 1005.927673 683.250183 661.608337 2566.123047 805.594116 3731.086426 566.710571 489.289673 … 1556.492188 2783.619385 1312.174561 2378.643311 2466.965576 2160.641357 1691.332520 2013.095093 1632.475708 1352.443237 16383 567.307373 1006.794067 982.376526 677.099854 657.040588 2545.080322 784.917969 3850.334717 570.241699 512.688232 … 2127.414551 2448.062012 1398.359253 1665.321167 2241.687256 1823.699829 1340.686035 1972.661743 1550.770142 1727.808228 16384 rows × 1500 columns
- I wrote a small function to cut the simulated traces and shuffle the
resulting chunks. Let’s look at the timing:
sim_clean_cut = ans.cut_simulations_and_shuffle_chunks(sim_clean, 1000)
/home/lex/Programme/drmed-git/src/fluotracify/simulations/analyze_simulations.py:406: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray. # shuffle the list of series
%%timeit sim_clean_cut = pd.DataFrame() # 230 µs ± 6.17 pos_of_cuts = rng.choice(sim_clean.iloc[:, 0].index, 15000, replace=False, shuffle=False) # 3.81 ms ± 186 µs pos_of_cuts.sort() # 15.8 ms ± 796 µs trace = np.split(sim_clean.iloc[:, 0].to_numpy(), pos_of_cuts) # 1.3 ms ± 32.2 µs trace = rng.permuted(trace) # 2.97 ms ± 173 µs trace = np.concatenate(trace) trace = pd.Series(trace, name=sim_clean.iloc[:, 0].name) sim_clean_cut = pd.concat([sim_clean_cut, trace], axis=1)
<magic-timeit>:9: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray. 38.4 ms ± 1.7 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
- now create all the shuffled traces, correlate them, and save them:
out_path = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220714_sim-cutandshift') for i in [1, 10, 100, 1000, 10000]: sim_clean_cut = ans.cut_simulations_and_shuffle_chunks(sim_clean, i) for name in set(sim_clean.columns): out_folder = out_path / f'{name}' / f'{i}_cuts' out_txt = f'{i}-cuts' %mkdir -p $out_folder correlate.correlate_timetrace_and_save(sim_clean_cut.loc[:, name], out_folder, out_txt)
/home/lex/Programme/drmed-git/src/fluotracify/simulations/analyze_simulations.py:471: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray. trace = rng.permuted(trace)
out_path = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220714_sim-cutandshift') for i in [2 , 4, 8, 20, 40, 80, 200, 400, 800]: sim_clean_cut = ans.cut_simulations_and_shuffle_chunks(sim_clean, i) for name in set(sim_clean.columns): out_folder = out_path / f'{name}' / f'{i}_cuts' out_txt = f'{i}-cuts' %mkdir -p $out_folder correlate.correlate_timetrace_and_save( sim_clean_cut.loc[:, name], out_folder, out_txt)
out_path = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220714_sim-cutandshift') for i in [0]: for name in set(sim_clean.columns): out_folder = out_path / f'{name}' / f'{i}_cuts' out_txt = f'{i}-cuts' %mkdir -p $out_folder correlate.correlate_timetrace_and_save( sim_clean.loc[:, name], out_folder, out_txt)
out_path = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220714_sim-cutandshift') for i in [0, 1, 2 , 4, 8, 10, 20, 40, 80, 100, 200, 400, 800, 1000, 10000]: if i == 0: for name in set(sim_clean.loc[:, '3.0'].columns): out_folder = out_path / f'{name}' / f'{i}_cuts' out_txt = f'{i}-cuts' %mkdir -p $out_folder correlate.correlate_timetrace_and_save( sim_clean.loc[:, name], out_folder, out_txt) else: sim_clean_cut = ans.cut_simulations_and_shuffle_chunks( sim_clean.loc[:, '3.0'], i) for name in set(sim_clean.loc[:, '3.0'].columns): out_folder = out_path / f'{name}' / f'{i}_cuts' out_txt = f'{i}-cuts' %mkdir -p $out_folder correlate.correlate_timetrace_and_save( sim_clean_cut.loc[:, name], out_folder, out_txt)
/home/lex/Programme/drmed-git/src/fluotracify/simulations/analyze_simulations.py:519: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray. trace = rng.permuted(trace)
2.7.6 Exp: simexps - prediction by threshold
- As basline for peak prediction compare UNET performance against common peak
finding algorithms. I decided on simple manual thresholding after robust
scaling. The following would be alternatives we could try later:
- robust peak detection algorithm using z-scores https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data
- rolling ball https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_rolling_ball.html#d-signal-filtering
- scipy peak width finding https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.peak_widths.html#scipy.signal.peak_widths
- call
jupyter-set-output-directory
and prepare modules and data./data/exp-220316-publication1/jupyter
%cd ~/Programme/drmed-git
/home/lex/Programme/drmed-git
- load modules
import logging import os import pdb import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import (corr_fit_object as cfo, correlate) from fluotracify.imports import ptu_utils as ptu from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, ) logging.basicConfig(filename="/home/lex/Programme/drmed-git/data/exp-220316-publication1/jupyter.log", filemode='w', format='%(asctime)s - %(message)s', force=True, level=logging.DEBUG) sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind', context='paper')
2022-08-11 13:27:20.978319: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-08-11 13:27:20.978362: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
import importlib importlib.reload(correlate) importlib.reload(ans)
<module 'fluotracify.simulations.analyze_simulations' from '/home/lex/Programme/drmed-git/src/fluotracify/simulations/analyze_simulations.py'>
- load simulated data
col_per_example = 3 lab_thresh = 0.04 artifact = 0 model_type = 1 fwhm = 250 sim_path = Path('/home/lex/Programme/drmed-collections/drmed-simexps/firstartifact_Nov2020_test') sim, _, nsamples, sim_params = isfc.import_from_csv( folder=sim_path, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None) diffrates = sim_params.loc[ 'diffusion rate of molecules in micrometer^2 / s'].astype(np.float32) nmols = sim_params.loc['number of fast molecules'].astype(np.float32) clusters = sim_params.loc[ 'diffusion rate of clusters in micrometer^2 / s'].astype(np.float32) sim_columns = [f'{d:.4}' for d, c in zip( np.repeat(diffrates, nsamples[0]), np.repeat(clusters, nsamples[0]))] sim_sep = isfc.separate_data_and_labels(array=sim, nsamples=nsamples, col_per_example=col_per_example) sim_dirty = sim_sep['0'] sim_dirty.columns = sim_columns sim_labels = sim_sep['1'] sim_labels.columns = sim_columns sim_labbool = sim_labels > lab_thresh sim_labbool.columns = sim_columns sim_clean = sim_sep['2'] sim_clean.columns = sim_columns sim_dirty
0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 … 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 0 1187.467896 907.677734 480.048798 454.669403 466.063232 384.734467 543.981323 640.921509 795.946167 410.471893 … 1897.398193 2279.646484 3088.531006 2034.432495 2187.548584 2105.736084 1789.366577 2023.093994 2331.185791 2185.028076 1 1184.055176 945.760315 471.065216 458.392487 473.306152 395.165527 558.603088 622.421204 776.199402 409.149170 … 1499.969849 2199.652100 3207.333008 1650.523926 2122.935791 2791.281006 1661.286377 1111.879761 1853.699585 1926.844971 2 1191.848877 980.117798 459.479706 426.087982 482.370209 425.123413 551.536072 624.498535 778.671265 400.971954 … 1822.985229 2456.422607 2969.562500 1934.118286 1457.731812 2251.077393 1903.003662 2063.915527 2198.018066 2038.683105 3 1199.065918 974.313110 462.205566 444.041809 463.703125 434.186615 573.044128 626.252502 747.284058 393.178162 … 1741.839355 2467.149414 2588.980957 2136.627686 1930.263672 2323.700684 2133.313721 1638.169312 1926.058716 1815.259521 4 1221.957397 968.779175 464.918030 455.205292 474.615540 437.029419 586.489136 619.319092 781.954102 406.468018 … 2431.400879 2246.336670 3000.961182 1915.518066 2052.773682 2359.145508 1699.926147 1862.709595 2291.338379 1332.422241 … … … … … … … … … … … … … … … … … … … … … … 16379 506.409668 1012.403931 855.006226 674.470703 769.859192 2110.732178 799.565247 1981.221436 528.844604 483.055878 … 1512.586548 3212.712891 1491.119995 1843.866943 1748.956665 2048.602051 1662.244385 2593.879639 1921.427856 1664.831909 16380 536.809692 1022.029724 840.287720 671.095215 738.908997 2118.984863 807.995789 2624.343262 552.687012 479.768372 … 1661.331055 3190.809570 1770.193970 2081.854248 2164.372803 2295.646729 1846.683594 2038.272339 2222.708252 2122.753662 16381 570.668884 989.891235 839.180298 689.863586 695.739136 2033.681885 786.547852 3528.163574 572.166077 484.491211 … 1643.470337 2564.206787 2025.219971 2104.706787 1792.828613 2106.199463 2087.914062 1457.817871 1874.736938 1683.072021 16382 562.505310 977.029785 1005.927673 683.250183 661.608337 2566.123047 805.594116 3731.086426 566.710571 489.289673 … 1556.492188 2783.619385 1312.174561 2378.643311 2466.965576 2160.641357 1691.332520 2013.095093 1632.475708 1352.443237 16383 567.307373 1006.794067 982.376526 677.099854 657.040588 2545.080322 784.917969 3850.334717 570.241699 512.688232 … 2127.414551 2448.062012 1398.359253 1665.321167 2241.687256 1823.699829 1340.686035 1972.661743 1550.770142 1727.808228 16384 rows × 1500 columns
- I implemented a simple control prediction algorithm:
- apply robust scaling to the fluorescence trace
- manual threshold
- here the code
threshold = 2 sim_pred = pd.DataFrame() sim_corr = pd.DataFrame() sim_robust = pd.DataFrame() for i in range(len(sim_dirty.columns)): trace = sim_dirty.iloc[:, i].to_numpy() trace_robust = ppd.scale_trace(trace.reshape(-1, 1), 'robust') trace_pred = trace_robust.flatten() > threshold trace_corr = np.delete(trace, trace_pred) trace_corr = pd.DataFrame(trace_corr) trace_pred = pd.DataFrame(trace_pred) trace_robust = pd.DataFrame(trace_robust) sim_corr = pd.concat([sim_corr, trace_corr], axis='columns') sim_pred = pd.concat([sim_pred, trace_pred], axis='columns') sim_robust = pd.concat([sim_robust, trace_robust], axis='columns') sim_corr.columns = sim_dirty.columns sim_pred.columns = sim_dirty.columns sim_robust.columns = sim_dirty.columns
for i in [4, 100, 200, 400]: fig = plt.figure(figsize=(16,9)) ax1 = plt.subplot(311, title='Original trace') ax1.set_prop_cycle(color=[sns.color_palette()[0]]) sns.lineplot(x=sim_dirty.iloc[:, i].index, y=sim_dirty.iloc[:, i]) ax1.set_ylabel(r'intensity $[a.u.]$') ax2 = plt.subplot(312, title='Scaled trace and prediction', sharex=ax1) ax2.set_prop_cycle(color=[sns.color_palette()[0]]) sns.lineplot(x=sim_robust.iloc[:, i].index, y=sim_robust.iloc[:, i], alpha=0.5) ax2.set_prop_cycle(color=[sns.color_palette()[1]]) sns.lineplot(x=sim_pred.iloc[:, i].index, y=sim_pred.iloc[:, i] * sim_robust.iloc[:, i].max()) ax2.set_prop_cycle(color=[sns.color_palette()[2]]) plt.hlines(y=2, xmin=0, xmax=sim_pred.index.max(), ls='--', color=sns.color_palette()[2]) ax2.set_ylabel(r'scaled intensity $[a.u.]$') ax3 = plt.subplot(313, title='Corrected trace by cutandshift', sharex=ax1) ax3.set_prop_cycle(color=[sns.color_palette()[0]]) sns.lineplot(x=sim_corr.iloc[:, i].index, y=sim_corr.iloc[:, i]) ax3.set_ylabel(r'intensity $[a.u.]$') ax3.set_xlabel(r'time steps $[ms]$') fig.suptitle('Control of robust scaling and thresholding. Molecule' f' speed = {sim_dirty.columns[i]}') fig.tight_layout() plt.show() plt.close('all')
- here the examplary plots:
- example for diffusion coefficient D=0.069:
- example for D=0.2:
- example for D=1.0:
- example for D=50.0
- now let’s save correlations and fit them with FOCUSpoint
mkdir /home/lex/Programme/drmed-git/data/exp-220316-publication1/220719_threshold-prediction
out_path = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220719_threshold-prediction') threshold = 2 for name in set(sim_dirty.columns): out_folder = out_path / f'{name}' out_txt = f'robust_thresh-{threshold}' %mkdir -p $out_folder ans.threshold_predict_correct_correlate_simulations( sim_dirty.loc[:, name], out_path=out_folder, out_txt=out_txt, threshold=threshold)
2022-07-21 16:48:51.311194: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-07-21 16:48:51.312823: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-07-21 16:48:51.314823: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (Topialex): /proc/driver/nvidia/version does not exist 2022-07-21 16:48:51.368332: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
- another thing I didn’t do before is correlate the clean traces, so here it
comes
out_path = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220719_threshold-prediction/') for name in set(sim_clean.columns): out_folder = out_path / f'{name}-clean' out_txt = 'clean' %mkdir -p $out_folder correlate.correlate_timetrace_and_save( df=sim_clean.loc[:, name], out_path=out_folder, out_txt=out_txt)
2.7.7 Exp: simexps - failed attempts: weight=np.nan correction
and modulation filtering
- modulation filtering (@perssonmodulation2009). The algorithmic approach is to divide the correlation function of the registered intensity trace with that of a modulation (a square wave pattern, in this case representing the peak artifacts)
- since I have time constraints in my project, I will try if the straight
forward approach
- take the dirty trace and the given mask from the simulations
- correlate dirty trace and mask trace (0 = no artifact, 1 = artifact)
- divide correlation of dirty trace by correlation of mask
- call
jupyter-set-output-directory
and prepare modules and data./data/exp-220316-publication1/jupyter
%cd ~/Programme/drmed-git
/home/lex/Programme/drmed-git
- load modules
import datetime import logging import os import pdb import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from multipletau import autocorrelate from pathlib import Path from pprint import pprint FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import (corr_fit_object as cfo, correlate) from fluotracify.imports import ptu_utils as ptu from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, ) logging.basicConfig(filename="/home/lex/Programme/drmed-git/data/exp-220316-publication1/jupyter.log", filemode='w', format='%(asctime)s - %(message)s', force=True, level=logging.DEBUG) sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind', context='paper')
2023-07-10 11:04:18.480020: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-07-10 11:04:18.480133: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
import importlib importlib.reload(correlate) importlib.reload(ans)
<module 'fluotracify.simulations.analyze_simulations' from '/home/lex/Programme/drmed-git/src/fluotracify/simulations/analyze_simulations.py'>
- load simulated data
col_per_example = 3 lab_thresh = 0.04 artifact = 0 model_type = 1 fwhm = 250 sim_path = Path('/home/lex/Programme/drmed-collections/drmed-simexps/' '2020-11-FCS-peak-artifacts-dataset-test-split') sim, _, nsamples, sim_params = isfc.import_from_csv( folder=sim_path, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None) diffrates = sim_params.loc[ 'diffusion rate of molecules in micrometer^2 / s'].astype(np.float32) nmols = sim_params.loc['number of fast molecules'].astype(np.float32) clusters = sim_params.loc[ 'diffusion rate of clusters in micrometer^2 / s'].astype(np.float32) sim_columns = [f'{d:.4}' for d, c in zip( np.repeat(diffrates, nsamples[0]), np.repeat(clusters, nsamples[0]))] sim_sep = isfc.separate_data_and_labels(array=sim, nsamples=nsamples, col_per_example=col_per_example) sim_dirty = sim_sep['0'] sim_dirty.columns = sim_columns sim_labels = sim_sep['1'] sim_labels.columns = sim_columns sim_labbool = sim_labels > lab_thresh sim_labbool.columns = sim_columns sim_clean = sim_sep['2'] sim_clean.columns = sim_columns sim_dirty
set(sim_labbool.columns)
0.069 0.2 3.0 for col in set(sim_labbool.columns): print(col) dirty_trace = sim_dirty.loc[:, col].iloc[:, 0].astype(np.float64) clean_trace = sim_clean.loc[:, col].iloc[:, 0].astype(np.float64) mod_trace = (~sim_labbool.loc[:, col].iloc[:, 0]).astype(np.float64) # adjusting the amplitude of the modulation trace makes no difference, # because the correlation normalization in autocorrelate() # dirty_amp = np.max(dirty_trace) - np.min(dirty_trace) # mod_trace *= dirty_amp mod_corr = autocorrelate( a=mod_trace, m=16, deltat=1, normalize=True) dirty_corr = autocorrelate( a=dirty_trace, m=16, deltat=1, normalize=True) clean_corr = autocorrelate( a=clean_trace, m=16, deltat=1, normalize=True) mod_corr[:, 1] += 1 dirty_corr[:, 1] += 1 filt_corr = dirty_corr[1:, 1] / mod_corr[1:, 1] filt_corr -= 1 fig, ax = plt.subplots(3, 2, figsize=(16, 9)) ax2 = plt.twinx(ax=ax[2, 1]) ax2.set_prop_cycle(color=[sns.color_palette()[1]]) sns.lineplot(x=clean_trace.index, y=clean_trace, ax=ax[2, 0]).set( title='clean') line1 = sns.lineplot( x=mod_corr[1:, 0], y=filt_corr, ax=ax[2, 1], label='filtered', legend=False).set( title='clean vs filtered (dirty corr / modulation corr)') line2 = sns.lineplot(x=mod_corr[1:, 0], y=clean_corr[1:, 1], ax=ax2, label='clean', legend=False) sns.lineplot(x=mod_trace.index, y=mod_trace, ax=ax[1, 0]).set( title='modulation') sns.lineplot(x=mod_corr[1:, 0], y=mod_corr[1:, 1], ax=ax[1, 1]).set( title='modulation corr') sns.lineplot(x=dirty_trace.index, y=dirty_trace, ax=ax[0, 0]).set( title='dirty') sns.lineplot(x=dirty_corr[1:, 0], y=dirty_corr[1:, 1], ax=ax[0, 1]).set( title='dirty corr') plt.setp(ax[:, 1], xscale='log') fig.legend(loc='lower right') # plt.setp(ax[1, :], ylim=[-1, 5]) # lns = lns1 + lns2 + lns3 # labs = [l.get_label() for l in lns] # ax.legend(lns, labs, loc=0) plt.tight_layout() plt.show()
- here the plots:
- diffusion coefficient D=3.0
- D=0.069
- D=0.2
- it seems like this simple approach does not work since it introduces at least huge instabilities in the tail of the correlation curve (and the start doesn’t look tidy as well). In the publications by persson et al they also spoke of an analytical solution to the correlation of the modulation - but I have not time to figure this out at the moment
- at MAF2022, Thorsten Wohland mentioned my current implementation of
weight=0
correction might be problematic. Instead of setting the part of the trace to 0, I should try to set it tonan
, and that most correlation algorithms would account for these missing values. Let’s try that formultipletau
andtttr2xfcs
sim_nan = pd.DataFrame() for i in range(len(sim_dirty.columns)): # weight=nan sim_nan_trace = np.where(sim_labbool.iloc[:, i].values == 1, np.nan, sim_dirty.iloc[:, i].values) sim_nan_trace = pd.DataFrame(sim_nan_trace) sim_nan = pd.concat([sim_nan, sim_nan_trace], axis='columns') sim_nan.columns = sim_columns # log.debug('label_correct_correlate: Finished "cut and shift" correction.') # after correction # lab_str = f'{lab_thresh}'.replace(".", "dot") # cas_txt = f'labthresh-{lab_str}_cutandshift' # del_txt = f'labthresh-{lab_str}_delete' # correlate.correlate_timetrace_and_save(df=sim_cas, out_path=out_path, out_txt=cas_txt) # correlate.correlate_timetrace_and_save(df=sim_del, out_path=out_path, out_txt=del_txt) sim_nan
0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 … 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 0 1187.467896 907.677734 480.048798 454.669403 466.063232 384.734467 543.981323 640.921509 795.946167 410.471893 … 1897.398193 NaN NaN 2034.432495 2187.548584 2105.736084 1789.366577 2023.093994 2331.185791 2185.028076 1 1184.055176 945.760315 471.065216 458.392487 473.306152 395.165527 558.603088 622.421204 776.199402 409.149170 … 1499.969849 NaN NaN 1650.523926 2122.935791 2791.281006 1661.286377 1111.879761 1853.699585 1926.844971 2 1191.848877 980.117798 459.479706 426.087982 482.370209 425.123413 551.536072 624.498535 778.671265 400.971954 … 1822.985229 NaN NaN 1934.118286 NaN 2251.077393 1903.003662 2063.915527 2198.018066 2038.683105 3 1199.065918 974.313110 462.205566 444.041809 463.703125 434.186615 573.044128 626.252502 747.284058 393.178162 … 1741.839355 NaN NaN 2136.627686 NaN 2323.700684 2133.313721 1638.169312 1926.058716 1815.259521 4 1221.957397 968.779175 464.918030 455.205292 474.615540 437.029419 586.489136 619.319092 781.954102 406.468018 … 2431.400879 NaN NaN 1915.518066 NaN 2359.145508 1699.926147 1862.709595 2291.338379 1332.422241 … … … … … … … … … … … … … … … … … … … … … … 16379 506.409668 1012.403931 855.006226 674.470703 769.859192 NaN 799.565247 NaN 528.844604 483.055878 … 1512.586548 NaN 1491.119995 1843.866943 NaN 2048.602051 1662.244385 2593.879639 1921.427856 1664.831909 16380 536.809692 1022.029724 840.287720 671.095215 738.908997 NaN 807.995789 NaN 552.687012 479.768372 … 1661.331055 NaN 1770.193970 2081.854248 NaN 2295.646729 1846.683594 2038.272339 2222.708252 2122.753662 16381 570.668884 989.891235 839.180298 689.863586 695.739136 NaN 786.547852 NaN 572.166077 484.491211 … 1643.470337 NaN 2025.219971 2104.706787 NaN 2106.199463 2087.914062 1457.817871 1874.736938 1683.072021 16382 562.505310 977.029785 1005.927673 683.250183 661.608337 NaN 805.594116 NaN 566.710571 489.289673 … 1556.492188 NaN 1312.174561 2378.643311 NaN 2160.641357 1691.332520 2013.095093 1632.475708 1352.443237 16383 567.307373 1006.794067 982.376526 677.099854 657.040588 NaN 784.917969 NaN 570.241699 512.688232 … 2127.414551 NaN 1398.359253 1665.321167 NaN 1823.699829 1340.686035 1972.661743 1550.770142 1727.808228 16384 rows × 1500 columns
for idx, col in enumerate(sim_nan.columns): trace = sim_nan.iloc[:, idx] corr_fn = autocorrelate( a=trace, m=16, deltat=1, normalize=True, compress='first') # try: # corr_fn = autocorrelate( # a=trace, # m=16, # deltat=1, # normalize=True) # autotime = corr_fn[1:, 0] # autonorm = corr_fn[1:, 1] # out_file_txt = f'nan_{col.replace(".", "dot")}' # out_file = Path(f'{datetime.date.today()}_multipletau_' # f'{out_file_txt}_{idx:04}_correlation.csv') # out_file = out_path / out_file # # with open(out_file, 'w', encoding='utf-8') as out: # out.write('version,3.0\n') # out.write('numOfCh,1\n') # out.write('type,point\n') # out.write(f'parent_name,nan\n') # out.write('ch_type,1_1\n') # out.write('kcount,1\n') # arbitrary value # out.write('numberNandB,1\n') # arbitrary value # out.write('brightnessNandB,1\n') # arbitrary value # out.write('carpet pos,0\n') # out.write('pc,0\n') # out.write('Time (ms),CH1 Auto-Correlation\n') # for i in range(autotime.shape[0]): # out.write(f'{autotime[i]},{autonorm[i]}\n') # out.write('end\n') # logging.debug('predict_correct_correlate: Finished saving of file %s', # out_file) # except KeyError: # logging.debug(f'skipped {col}-{idx}') # continue break
- I checked these files with Focus-point. the Python multipletau library
does not seem able to handle np.nan
- I actually discussed this shortly with Paul Müller here: https://github.com/FCS-analysis/multipletau/issues/18
2.7.8 Exp: simexps - correlation averaging
- After re-reading a lot of literature and putting it into text
(
- segment trace in artifactual and non-artifactual (here: given by simulations)
- correlate all non-artifactual segments
- average correlations and fit the average
), I decided to add the averaging method:
- call
jupyter-set-output-directory
and prepare modules and data./data/exp-220316-publication1/jupyter
%cd ~/Programme/drmed-git
/home/lex/Programme/drmed-git
- load modules and correlation function
import datetime import logging import os import pdb import scipy import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from multipletau import autocorrelate from pathlib import Path from pprint import pprint FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import (corr_fit_object as cfo, correlate) from fluotracify.imports import ptu_utils as ptu from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, ) logging.basicConfig(filename="/home/lex/Programme/drmed-git/data/exp-220316-publication1/jupyter.log", filemode='w', format='%(asctime)s - %(message)s', force=True, level=logging.DEBUG) sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind', context='paper') def label_avg_correct_correlate(sim_dirty, sim_labels, sim_columns, lab_thresh, out_path): sim_labbool = sim_labels > lab_thresh sim_labbool.columns = sim_columns sim_avg = pd.DataFrame() for i in range(len(sim_dirty.columns)): # sim_labbool gives False (or 0) for parts deemed non-artifactual # and True (or 1) for parts deemed artifactual. Switch 0 and 1 # for label() fct. Take all connected segments with value 1 # (non-artifactual) and give them a distinct label sim_segments = scipy.ndimage.label(~sim_labbool.iloc[:, i]) time_and_corrs = [] for u in np.unique(sim_segments[0]): # ignore all parts with value 0 (artifactual) if u == 0: continue # now get intensities for each label and correlate the parts part = np.where(sim_segments[0] == u, sim_dirty.iloc[:, i], np.nan) part = part[~np.isnan(part)] if len(part) > 32: # minimal length for multipletau corr_fn = multipletau.autocorrelate( a=part, m=16, deltat=1, normalize=True) time_and_corrs.append(corr_fn) max_autotime = max([len(c[1:, 0]) for c in time_and_corrs]) autotime = [c[1:, 0] for c in time_and_corrs if len(c[1:, 0]) == max_autotime][0] corrs = [c[1:, 1] for c in time_and_corrs] # convert to pandas dataframe to easily compute the mean corr_df = pd.DataFrame(corrs) corr_df.columns = autotime sim_avg = pd.concat([sim_avg, corr_df.mean()], axis='columns') sim_avg.columns = sim_dirty.columns log.debug('label_avg_correct_correlate: Finished "averaging" ' 'correction.') lab_str = f'{lab_thresh}'.replace(".", "dot") avg_txt = f'labthresh-{lab_str}_avgcorrs' correlate.save_correlations(sim_avg, out_path, out_txt=avg_txt)
2023-07-10 11:48:22.796540: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-07-10 11:48:22.796574: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
import importlib importlib.reload(correlate) importlib.reload(ans)
<module 'fluotracify.simulations.analyze_simulations'" from '/home/lex/Programme/drmed-git/src/fluotracify/simulations/analyze_simulations.py'>
- load simulated data
col_per_example = 3 lab_thresh = 0.04 artifact = 0 model_type = 1 fwhm = 250 sim_path = Path('/home/lex/Programme/drmed-collections/drmed-simexps/' '2020-11-FCS-peak-artifacts-dataset-test-split') sim, _, nsamples, sim_params = isfc.import_from_csv( folder=sim_path, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None) diffrates = sim_params.loc[ 'diffusion rate of molecules in micrometer^2 / s'].astype(np.float32) nmols = sim_params.loc[ 'number of fast molecules'].astype(np.float32) clusters = sim_params.loc[ 'diffusion rate of clusters in micrometer^2 / s'].astype(np.float32) sim_columns = [f'{d:.4}' for d, c in zip( np.repeat(diffrates, nsamples[0]), np.repeat(clusters, nsamples[0]))] sim_sep = isfc.separate_data_and_labels(array=sim, nsamples=nsamples, col_per_example=col_per_example) sim_dirty = sim_sep['0'] sim_dirty.columns = sim_columns sim_labels = sim_sep['1'] sim_labels.columns = sim_columns sim_labbool = sim_labels > lab_thresh sim_labbool.columns = sim_columns sim_clean = sim_sep['2'] sim_clean.columns = sim_columns sim_dirty
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 … 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0 713.265991 744.802124 826.520020 1026.031250 722.783569 535.900879 451.262878 1367.333374 681.179382 535.767944 … 2261.223389 2543.748047 2256.473389 2542.755127 2330.921387 2305.083252 2173.232666 2062.797119 2289.139648 2152.042480 1 722.252319 683.359253 880.494141 1007.574158 799.677307 482.778961 454.336945 1940.016602 651.036133 499.024017 … 2266.271240 2587.961914 2031.263794 2432.657959 2406.232910 2352.105469 2160.110596 2065.708252 2417.550293 2122.049072 2 733.600647 649.684509 877.483398 998.538635 831.312439 512.006714 363.979126 2271.991943 625.854797 566.044983 … 2044.131836 2745.176025 2255.511475 2752.760010 2274.791504 2367.735107 2438.015625 2010.474243 2499.894287 2342.889404 3 691.043701 639.145508 873.966919 968.573364 884.279236 549.445007 343.515106 2651.022705 695.761230 530.203247 … 2230.916992 2731.761719 2393.619141 2296.860352 2555.209473 2386.559570 2486.250488 2485.065430 2527.566162 2480.090576 4 682.564026 655.725647 840.207397 963.088501 838.273865 633.566284 340.292023 2005.732788 694.750122 555.557312 … 2264.185547 2576.068848 1982.958008 2461.842285 2413.839844 2401.447754 1931.255737 2544.301514 2350.519531 2328.060303 … … … … … … … … … … … … … … … … … … … … … … 16379 600.689514 7167.673828 1000.159180 3518.484131 834.950256 742.670410 701.583862 839.283447 1272.512939 656.729065 … 2214.889160 2510.637939 1935.603516 2684.689453 2603.836182 2310.200928 1734.098999 2858.153320 1930.742920 1907.025391 16380 611.448669 7144.153320 943.029175 3300.464111 833.614929 758.665100 654.534546 828.262878 1227.944214 680.955994 … 2341.741699 2702.447998 2133.985596 2922.751465 2096.801514 2249.673340 1593.777466 3053.259277 1608.163696 2044.107910 16381 573.900452 7138.144531 866.439880 3580.420654 848.203918 710.973389 658.252441 787.160461 1316.438721 658.184998 … 2368.291748 2579.004639 2052.473633 2915.779785 2403.829346 2225.661377 1544.997437 3116.909912 1916.492798 2009.656250 16382 568.064331 7123.159668 816.428101 3322.972656 770.866638 732.948914 722.686584 744.262878 1739.399414 630.757263 … 2236.975586 2199.813232 1976.238037 2792.360107 2691.937500 2318.651123 1828.193726 2749.119629 2232.070312 2055.447266 16383 606.832397 7652.136230 809.240173 3446.315674 716.062012 663.057251 692.925720 734.263550 1758.154663 659.775452 … 2856.197021 2314.668213 1927.936157 2672.146729 2615.285156 2549.162109 1872.694458 2377.272217 2335.970215 2172.795898 16384 rows × 900 columns
- let’s start implementing the averaging
testtrace = [5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 9] testsegme = [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1] testlabel = scipy.ndimage.label(testsegme) testparts = [] for u in np.unique(testlabel[0]): if u == 0: continue part = np.where(testlabel[0] == u, testtrace, np.nan) part = part[~np.isnan(part)] testparts.append(part) print(testparts)
[array([7., 8., 3.]), array([6., 7.]), array([9.])]
sim_avg = pd.DataFrame() for i in range(len(sim_dirty.columns)): # sim_labbool gives False (or 0) for parts deemed non-artifactual and # True (or 1) for parts deemed artifactual. Take all connected segments # with value 0 and give them a distinct label sim_segments = scipy.ndimage.label(~sim_labbool.iloc[:, i]) time_and_corrs = [] for u in np.unique(sim_segments[0]): if u == 0: continue # now get intensities for each label and correlate the parts part = np.where(sim_segments[0] == u, sim_dirty.iloc[:, i], np.nan) part = part[~np.isnan(part)] if len(part) > 32: corr_fn = autocorrelate( a=part, m=16, deltat=1, normalize=True) time_and_corrs.append(corr_fn) max_autotime = max([len(c[1:, 0]) for c in time_and_corrs]) autotime = [c[1:, 0] for c in time_and_corrs if len(c[1:, 0]) == max_autotime][0] corrs = [c[1:, 1] for c in time_and_corrs] # convert to pandas dataframe to easily compute the mean corr_df = pd.DataFrame(corrs) corr_df.columns = autotime sim_avg = pd.concat([sim_avg, corr_df.mean()], axis='columns') sim_avg.columns = sim_dirty.columns
- plot some examples:
plt.figure(figsize=(12, 6)) for i, _ in enumerate(sim_avg.columns): plt.subplot(2, 3, i+1).semilogx(sim_avg.index, sim_avg.iloc[:, i]) if i > 4: break plt.tight_layout() plt.show()
- also plot the error margins:
ax = sns.lineplot(x=corr_df.columns, y=corr_df.mean()) plt.setp(ax, xscale='log') ax.fill_between(corr_df.columns, (corr_df.mean() - corr_df.std()).values, (corr_df.mean() + corr_df.std()).values, alpha=0.3) plt.show()
- now the averaging method:
out_path = Path('/beegfs/ye53nis/drmed-git/data/exp-220316-publication1/230103_avg-correction') for name in set(sim_dirty.columns): out_folder = out_path / f'{name.split("-")[0]}' %mkdir -p $out_folder label_avg_correct_correlate( sim_dirty=sim_dirty.loc[:, name], sim_labels=sim_labels, sim_columns=sim_columns, lab_thresh=0.04, out_path=out_folder)
set(sim_dirty.columns)
0.069-0.01 0.069-0.1 0.069-1.0 0.08-0.01 0.08-0.1 0.08-1.0 0.1-0.01 0.1-0.1 0.1-1.0 0.2-0.01 0.2-0.1 0.2-1.0 0.4-0.01 0.4-0.1 0.4-1.0 0.6-0.01 0.6-0.1 0.6-1.0 1.0-0.01 1.0-0.1 1.0-1.0 10.0-0.01 10.0-0.1 10.0-1.0 3.0-0.01 3.0-0.1 3.0-1.0 50.0-0.01 50.0-0.1 50.0-1.0
2.7.9 Exp: bioexps - prediction by threshold
- these calculations take some time, so I used the High Performance Cluster for computation.
- call
jupyter-set-output-directory
and prepare modules and data./data/exp-220316-publication1/jupyter
import importlib importlib.reload(cfo)
<module 'fluotracify.applications.corr_fit_object' from '/beegfs/ye53nis/drmed-git/src/fluotracify/applications/corr_fit_object.py'>
%cd /beegfs/ye53nis/drmed-git import logging import os import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint FLUOTRACIFY_PATH = '/beegfs/ye53nis/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import corr_fit_object as cfo data_path = Path(data_path) output_path = Path(output_path) %mkdir -p output_path log_path = output_path.parent / f'{output_path.name}.log' logging.basicConfig(filename=log_path, filemode='w', format='%(asctime)s - %(message)s', force=True) log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind', context='paper') class ParameterClass(): """Stores parameters for correlation """ def __init__(self): # Where the data is stored. self.data = [] self.objectRef = [] self.subObjectRef = [] self.colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black'] self.numOfLoaded = 0 # very fast from Ncasc ~ 14 onwards self.NcascStart = 0 self.NcascEnd = 30 # 25 self.Nsub = 6 # 6 self.photonLifetimeBin = 10 # used for photon decay self.photonCountBin = 1 # used for time series par_obj = ParameterClass() if data_path.name == "1911DD_atto+LUVs": ylim_clean = [-0.01, 0.08] ylim_dirty = [-0.01, 0.07] path_clean1 = data_path / 'clean_ptu_part1/' path_clean2 = data_path / 'clean_ptu_part2/' path_dirty1 = data_path / 'dirty_ptu_part1/' path_dirty2 = data_path / 'dirty_ptu_part2/' files_clean1 = [path_clean1 / f for f in os.listdir(path_clean1) if f.endswith('.ptu')] files_clean2 = [path_clean2 / f for f in os.listdir(path_clean2) if f.endswith('.ptu')] files_dirty1 = [path_dirty1 / f for f in os.listdir(path_dirty1) if f.endswith('.ptu')] files_dirty2 = [path_dirty2 / f for f in os.listdir(path_dirty2) if f.endswith('.ptu')] if data_path.name == "191113_Pex5_2_structured": ylim_clean = [-0.1, 0.8] ylim_dirty = [-0.1, 1.2] path_clean3 = data_path / 'HsPEX5EGFP 1-100001' path_dirty3 = data_path / 'TbPEX5EGFP 1-10002' files_clean3 = [path_clean3 / f for f in os.listdir(path_clean3) if f.endswith('.ptu')] files_dirty3 = [path_dirty3 / f for f in os.listdir(path_dirty3) if f.endswith('.ptu')] def threshold_predict_correct_correlate_ptu( files, pred_method, pred_threshold, correction_method, out_path): scaler = 'robust' if correction_method == 'delete_and_shift': method_str = 'DELSHIFT' elif correction_method == 'delete': method_str = 'DEL' for idx, myfile in enumerate(files): ptufile = cfo.PicoObject(myfile, par_obj) ptufile.predictTimeSeries(method=pred_method, scaler=scaler, threshold=pred_threshold) ptufile.correctTCSPC(method=correction_method) for key in list(ptufile.trueTimeArr.keys()): if method_str in key: ptufile.get_autocorrelation(method='tttr2xfcs', name=key) for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key, item in list(ptufile.autoNorm[m].items()): if method_str in key: ptufile.save_autocorrelation(name=key, method=m, output_path=out_path) # only for plot_threshold_predict_correct_ptu() # return ptufile def plot_threshold_predict_correct_ptu(files, pred_threshold, out_dir, ylim): ptufile = threshold_predict_correct_correlate_ptu( files=files, pred_method='threshold', pred_threshold=pred_threshold, correction_method='delete_and_shift', out_path=out_dir) fig = plt.figure(figsize=(10, 15), constrained_layout=True, facecolor='white') gs = fig.add_gridspec(6, 2) ax1 = fig.add_subplot(gs[0, :]) ax1.plot(ptufile.timeSeries[f'{ptufile.name}']['CH2_BIN1.0']) ax1.set_title('original trace') ax2 = fig.add_subplot(gs[1, :], sharex=ax1) ax2.plot(ptufile.timeSeries[f'{ptufile.name}']['CH2_BIN1.0_PREPRO']) ax2.set_title('preprocessed trace after robust scaling') ax3 = fig.add_subplot(gs[2, :], sharex=ax1) ax3.plot(ptufile.predictions[f'{ptufile.name}']['CH2_BIN1.0']) ax3.set_title(f'predictions after threshold={pred_threshold} on ' 'preprocessed trace') ax4 = fig.add_subplot(gs[3, :], sharex=ax1) ax4.plot(ptufile.timeSeries[f'{ptufile.name}_DELSHIFT']['CH2_BIN1.0']) ax4.set_title('trace after "cut and shift" correction') ax4.set_xlabel(r'timesteps in $[ms]$') ax5 = fig.add_subplot(gs[4:, 0]) ax5.plot(ptufile.autotime['tttr2xfcs'][f'CH2_BIN1.0_{ptufile.name}_' 'DELSHIFT'].flatten(), ptufile.autoNorm['tttr2xfcs'][f'CH2_BIN1.0_{ptufile.name}_' 'DELSHIFT'].flatten(), ls=':', lw=3) ax5.set_xlim([0.001, 1000]) ax5.set_ylim(ylim) plt.setp(ax5, xscale='log', title='correlation after correction', xlabel=r'$\tau [ms]$', ylabel=r'Correlation $G(\tau)$') plt.setp([ax1.get_xticklabels(), ax2.get_xticklabels(), ax3.get_xticklabels()], visible=False) plt.setp([ax1, ax2, ax3, ax4], ylabel=r'intensity $[a.u.]$') fig.align_labels() plt.show()
/beegfs/ye53nis/drmed-git
os._exit(00)
5d59a92a-218e-4749-87b0-fed81557d851
- first, plot an example of each experimental dataset (images not saved)
/beegfs/ye53nis/drmed-git 2022-07-26 15:34:25.807464: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-07-26 15:34:25.807515: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
out_dir = output_path / f'af488+luvs' pred_method = 'threshold' correction_method = 'delete_and_shift' threshold_ls = [0.8, 1, 1.5, 2, 2.5] os.makedirs(out_dir, exist_ok=True) for thr in threshold_ls: plot_threshold_predict_correct_ptu(files=files_dirty1, pred_threshold=thr, out_dir=out_dir, ylim=ylim_dirty)
for thr in threshold_ls: plot_threshold_predict_correct_ptu(files=files_clean1, pred_threshold=thr, out_dir=out_dir, ylim=ylim_clean)
- now, let’s predict, correct, and correlate all the experimental traces. I
used 3 different compute nodes to make the process faster. Because we have
some memory allocation issue, I restart the jupyter kernel after each new
threshold for each dataset. First, we start with the
AlexaFluor488+LUVs
data# threshold[0]: node1 # threshold[1]: node2 # threshold[2]: node3 # threshold[3]: node2 # threshold[4]: node3 for thr in threshold_ls: out_folder = out_dir / f'robust_thresh-{thr}' %mkdir -p $out_folder threshold_predict_correct_correlate_ptu( files=files_dirty1, pred_method=pred_method, pred_threshold=thr, correction_method=correction_method, out_path=out_folder) break
2022-07-26 15:38:12.573339: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-07-26 15:38:12.573387: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-07-26 15:38:12.573411: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node095): /proc/driver/nvidia/version does not exist 2022-07-26 15:38:12.574336: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
#+CALL: kill-jupyter()
#+CALL: prepare-jupyter()
/beegfs/ye53nis/drmed-git 2022-07-27 10:44:51.957570: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-07-27 10:44:51.957621: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
# threshold[0]: node1 # threshold[1]: node1 # threshold[2]: node2 # threshold[3]: node3 # threshold[4]: node1 # just 431 out_dir = output_path / f'af488+luvs' pred_method = 'threshold' correction_method = 'delete_and_shift' threshold_ls = [0.8, 1, 1.5, 2, 2.5] for thr in threshold_ls[4:]: out_folder = out_dir / f'robust_thresh-{thr}' # %mkdir -p $out_folder threshold_predict_correct_correlate_ptu( files=files_dirty2, pred_method=pred_method, pred_threshold=thr, correction_method=correction_method, out_path=out_folder) break
2022-07-27 00:18:27.343506: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-07-27 00:18:27.343564: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-07-27 00:18:27.343589: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node095): /proc/driver/nvidia/version does not exist 2022-07-27 00:18:27.344160: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
#+CALL: kill-jupyter()
- now, let’s do
AlexaFluor488
(clean) data #+CALL: prepare-jupyter()
# threshold[0]: node2 # threshold[1]: node3 # threshold[2]: node2 # threshold[3]: node3 # threshold[4]: node1 out_dir = output_path / f'af488' pred_method = 'threshold' correction_method = 'delete_and_shift' threshold_ls = [0.8, 1, 1.5, 2, 2.5] for thr in threshold_ls[4:]: out_folder = out_dir / f'robust_thresh-{thr}' %mkdir -p $out_folder threshold_predict_correct_correlate_ptu( files=files_clean1, pred_method=pred_method, pred_threshold=thr, correction_method=correction_method, out_path=out_folder) break
2022-07-27 03:54:07.972324: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-07-27 03:54:07.972364: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-07-27 03:54:07.972390: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node095): /proc/driver/nvidia/version does not exist 2022-07-27 03:54:07.972933: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
#+CALL: kill-jupyter()
#+CALL: prepare-jupyter()
# threshold[0]: node2 # just 420 # threshold[1]: node3 # threshold[2]: node1 # just 422 # threshold[3]: node3 # threshold[4]: node3 out_dir = output_path / f'af488' pred_method = 'threshold' correction_method = 'delete_and_shift' threshold_ls = [0.8, 1, 1.5, 2, 2.5] for thr in threshold_ls[2:]: out_folder = out_dir / f'robust_thresh-{thr}' # %mkdir -p $out_folder threshold_predict_correct_correlate_ptu( files=files_clean2, pred_method=pred_method, pred_threshold=thr, correction_method=correction_method, out_path=out_folder) break
2022-07-27 10:45:14.050433: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-07-27 10:45:14.050526: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-07-27 10:45:14.050552: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node095): /proc/driver/nvidia/version does not exist 2022-07-27 10:45:14.051164: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
#+CALL: kill-jupyter()
- now, let’s do
human pex5
data. First, we plot again example plots (images not saved)#+CALL: prepare-jupyter(data_path="/beegfs/ye53nis/data/191113_Pex5_2_structured")
/beegfs/ye53nis/drmed-git 2022-07-27 12:50:42.718757: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-07-27 12:50:42.718819: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
- compute
threshold_ls = [5, 7, 10] for thr in threshold_ls: plot_threshold_predict_correct_ptu( files=files_clean3, pred_threshold=thr, out_dir=out_dir, ylim=ylim_clean)
threshold_ls = [5, 7, 10] for thr in threshold_ls: plot_threshold_predict_correct_ptu( files=files_dirty3[5:], pred_threshold=thr, out_dir=out_dir, ylim=ylim_dirty)
# threshold[0]: # threshold[1]: # threshold[2]: node1 out_dir = output_path / 'Hs-PEX5-eGFP' pred_method = 'threshold' correction_method = 'delete_and_shift' threshold_ls = [5, 7, 10] for thr in threshold_ls[:2]: out_folder = out_dir / f'robust_thresh-{thr}' %mkdir -p $out_folder threshold_predict_correct_correlate_ptu( files=files_clean3, pred_method=pred_method, pred_threshold=thr, correction_method=correction_method, out_path=out_folder)
# threshold[0]: node2 # threshold[1]: node2 # threshold[2]: node2 out_dir = output_path / 'Tb-PEX5-eGFP' pred_method = 'threshold' correction_method = 'delete_and_shift' threshold_ls = [5, 7, 10] for thr in threshold_ls[2:]: out_folder = out_dir / f'robust_thresh-{thr}' %mkdir -p $out_folder threshold_predict_correct_correlate_ptu( files=files_dirty3, pred_method=pred_method, pred_threshold=thr, correction_method=correction_method, out_path=out_folder)
2.7.9.1 node 2
- Set up tmux (if we haven’t done that before) (
#+CALL: setup-tmux[:session local]
)sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: > ye53nis@ara-login01.rz.uni-jena.de’s password: - Request compute node
cd / srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
- Start Jupyter Lab (
#+CALL: jpt-tmux[:session jpmux]
)conda activate tf export PORT=8890 export XDG_RUNTIME_DIR='' export XDG_RUNTIME_DIR="" jupyter lab --no-browser --port=$PORT
(tf) [ye53nis@node159 /]$ jupyter lab --no-browser --port=$PORT [I 2022-07-26 15:41:02.905 ServerApp] jupyterlab | extension was successfully linked. [I 2022-07-26 15:41:04.628 ServerApp] nbclassic | extension was successfully linked. [I 2022-07-26 15:41:04.768 ServerApp] nbclassic | extension was successfully loaded. [I 2022-07-26 15:41:04.771 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab [I 2022-07-26 15:41:04.771 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab [I 2022-07-26 15:41:04.781 ServerApp] jupyterlab | extension was successfully loaded. [I 2022-07-26 15:41:04.783 ServerApp] Serving notebooks from local directory: / [I 2022-07-26 15:41:04.783 ServerApp] Jupyter Server 1.13.5 is running at: [I 2022-07-26 15:41:04.783 ServerApp] http://localhost:8890/lab?token=d395885914fc03bc2970ad2f723a2cbcd46c9b2a23982d8f [I 2022-07-26 15:41:04.783 ServerApp] or http://127.0.0.1:8890/lab?token=d395885914fc03bc2970ad2f723a2cbcd46c9b2a23982d8f [I 2022-07-26 15:41:04.783 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 2022-07-26 15:41:04.800 ServerApp] To access the server, open this file in a browser: file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-18143-open.html Or copy and paste one of these URLs: http://localhost:8890/lab?token=d395885914fc03bc2970ad2f723a2cbcd46c9b2a23982d8f or http://127.0.0.1:8890/lab?token=d395885914fc03bc2970ad2f723a2cbcd46c9b2a23982d8f
- Create SSH Tunnel for jupyter lab to the local computer (e.g.
#+CALL: ssh-tunnel(port="8889", node="node160")
)sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: ye53nis@node159’s password: Last login: Tue Jul 26 22:11:00 2022 from login01.ara #+CALL: kill-jupyter()
#+CALL: prepare-jupyter(data_path="/beegfs/ye53nis/data/191113_Pex5_2_structured")
and compute/beegfs/ye53nis/drmed-git 2022-07-27 12:53:09.499191: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-07-27 12:53:09.499274: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
# threshold[0]: node2 # threshold[1]: node2 # threshold[2]: node2 out_dir = output_path / 'Tb-PEX5-eGFP' pred_method = 'threshold' correction_method = 'delete_and_shift' threshold_ls = [5, 7, 10] for thr in threshold_ls: out_folder = out_dir / f'robust_thresh-{thr}' %mkdir -p $out_folder threshold_predict_correct_correlate_ptu( files=files_dirty3, pred_method=pred_method, pred_threshold=thr, correction_method=correction_method, out_path=out_folder)
2022-07-27 12:54:02.705997: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-07-27 12:54:02.706040: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-07-27 12:54:02.706062: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node159): /proc/driver/nvidia/version does not exist 2022-07-27 12:54:02.706560: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2.7.9.2 node 3
- Set up tmux (if we haven’t done that before) (
#+CALL: setup-tmux[:session local]
)sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: > ye53nis@ara-login01.rz.uni-jena.de’s password: - Request compute node
cd / srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
- Start Jupyter Lab (
#+CALL: jpt-tmux[:session jpmux]
)conda activate tf export PORT=8891 export XDG_RUNTIME_DIR='' export XDG_RUNTIME_DIR="" jupyter lab --no-browser --port=$PORT
(tf) [ye53nis@node313 /]$ jupyter lab --no-browser --port=$PORT [I 2022-07-26 15:41:17.402 ServerApp] jupyterlab | extension was successfully linked. [I 2022-07-26 15:41:18.325 ServerApp] nbclassic | extension was successfully linked. [I 2022-07-26 15:41:18.431 ServerApp] nbclassic | extension was successfully loaded. [I 2022-07-26 15:41:18.434 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf/lib/python3.9/site-packages/jupyterlab [I 2022-07-26 15:41:18.434 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf/share/jupyter/lab [I 2022-07-26 15:41:18.443 ServerApp] jupyterlab | extension was successfully loaded. [I 2022-07-26 15:41:18.444 ServerApp] Serving notebooks from local directory: / [I 2022-07-26 15:41:18.444 ServerApp] Jupyter Server 1.13.5 is running at: [I 2022-07-26 15:41:18.444 ServerApp] http://localhost:8891/lab?token=9471873c7815b3b2691a44102251c64823a1fb61f5076036 [I 2022-07-26 15:41:18.444 ServerApp] or http://127.0.0.1:8891/lab?token=9471873c7815b3b2691a44102251c64823a1fb61f5076036 [I 2022-07-26 15:41:18.444 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 2022-07-26 15:41:18.460 ServerApp] To access the server, open this file in a browser: file:///home/ye53nis/.local/share/jupyter/runtime/jpserver-94844-open.html Or copy and paste one of these URLs: http://localhost:8891/lab?token=9471873c7815b3b2691a44102251c64823a1fb61f5076036 or http://127.0.0.1:8891/lab?token=9471873c7815b3b2691a44102251c64823a1fb61f5076036
- Create SSH Tunnel for jupyter lab to the local computer (e.g.
#+CALL: ssh-tunnel(port="8889", node="node160")
)sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de’s password: ye53nis@node313’s password: Last login: Tue Jul 26 22:11:17 2022 from login01.ara - calculations
/beegfs/ye53nis/drmed-git 2022-07-27 12:31:19.642954: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-07-27 12:31:19.643031: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
out_dir = output_path / f'af488' pred_method = 'threshold' correction_method = 'delete_and_shift' threshold_ls = [0.8, 1, 1.5, 2, 2.5] for thr in threshold_ls[4:]: out_folder = out_dir / f'robust_thresh-{thr}' # %mkdir -p $out_folder threshold_predict_correct_correlate_ptu( files=files_clean2, pred_method=pred_method, pred_threshold=thr, correction_method=correction_method, out_path=out_folder) break
2022-07-27 12:31:40.270292: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2022-07-27 12:31:40.270377: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2022-07-27 12:31:40.270427: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node313): /proc/driver/nvidia/version does not exist 2022-07-27 12:31:40.271076: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
6c6240a9-a9d6-4fac-936c-a02553ce2158
2.7.10 Exp: bioexps - example traces
- call
jupyter-set-output-directory
and prepare modules and data./data/exp-220316-publication1/jupyter
- to interprete the correlations correctly, let’s plot the underlying
experimental data.
%cd ~/Programme/drmed-git
/home/lex/Programme/drmed-git
- load modules
import logging import os import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint from tensorflow.keras.optimizers import Adam from mlflow.keras import load_model FLUOTRACIFY_PATH = './src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import corr_fit_object as cfo from fluotracify.imports import ptu_utils as ptu from fluotracify.training import (build_model as bm, preprocess_data as ppd) from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, ) logging.basicConfig(filename="./data/exp-220316-publication1/jupyter.log", filemode='w', format='%(asctime)s - %(message)s', force=True, level=logging.DEBUG) sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind', context='paper') model_ls = [ 'ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727', '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65' ] model_name_ls = ['ff67b', '34766', '714af', '34a6d'] scaler_ls = ['minmax', 'robust', 'maxabs', 'l2']
import importlib importlib.reload(ppd) importlib.reload(isfc) importlib.reload(cfo)
<module 'fluotracify.applications.corr_fit_object' from '/home/lex/Programme/drmed-git/src/fluotracify/applications/corr_fit_object.py'>
- first, we prepare our correction functions as we did before
data_path = Path("../drmed-collections/drmed-bioexps/brightbursts/") af488_path = data_path / '1911DD_alexafluor488+LUVs/clean_subsample/' af488luv_path = data_path / '1911DD_alexafluor488+LUVs/dirty_subsample/' hspex5_path = data_path / '191113_Pex5_2_structured/HsPEX5EGFP_1-100001_3of250' tbpex5_path = data_path / '191113_Pex5_2_structured/TbPEX5EGFP_1-10002_3of250' output_path = Path("data/exp-220316-publication1/220323_bioexps") def get_traces_and_predictions_from_ptu(path, model_id, output_path, pred_method='unet'): class ParameterClass(): """Stores parameters for correlation """ def __init__(self): self.data = [] self.objectRef = [] self.numOfLoaded = 0 self.colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black'] # very fast from Ncasc ~ 14 onwards self.NcascStart = 0 self.NcascEnd = 30 # 25 self.Nsub = 6 # 6 self.photonLifetimeBin = 10 # used for photon decay self.photonCountBin = 1 # used for time series par_obj = ParameterClass() if pred_method == 'unet': scaler = scaler_ls[model_id] logged_model = Path(f'./data/mlruns/10/{model_ls[model_id]}/artifacts/model') loaded_model = load_model(logged_model, compile=False) loaded_model.compile(loss=bm.binary_ce_dice_loss(), optimizer=Adam(), metrics = bm.unet_metrics([0.1, 0.3, 0.5, 0.7, 0.9])) elif pred_method == 'threshold': scaler = 'robust' threshold = 7 else: raise ValueError('pred_method has to be "unet" or "threshold"') files = [path / f for f in os.listdir(path) if f.endswith('.ptu')] traces = pd.DataFrame() predtraces = pd.DataFrame() preds = pd.DataFrame() corrtraces = pd.DataFrame() for myfile in (files): ptufile = cfo.PicoObject(myfile, par_obj) if pred_method == 'unet': ptufile.predictTimeSeries(method=pred_method, scaler=scaler, model=loaded_model) elif pred_method == 'threshold': ptufile.predictTimeSeries(method=pred_method, scaler=scaler, threshold=threshold) ptufile.correctTCSPC(method='delete_and_shift') for key in list(ptufile.trueTimeArr.keys()): ptufile.get_autocorrelation(method='tttr2xfcs', name=key) for key in list(ptufile.timeSeries.keys()): if "DELSHIFT" in key: for k, i in ptufile.timeSeries[key].items(): if "1.0" in k: corrtraces = pd.concat([corrtraces, pd.DataFrame( i, columns=[f'{key}_{k}'])], axis='columns') else: for k, i in ptufile.timeSeries[key].items(): if "PREPRO" in k: if "1.0" in k: predtraces = pd.concat([predtraces, pd.DataFrame( i, columns=[f'{key}_{k}'])], axis='columns') elif "1.0" in k: traces = pd.concat([traces, pd.DataFrame( i, columns=[f'{key}_{k}'])], axis='columns') preds = pd.concat([preds, pd.DataFrame( data=ptufile.predictions[key][k], columns=[f'{key}_{k}'])], axis='columns') for m in ['multipletau', 'tttr2xfcs', 'tttr2xfcs_with_weights']: if m in list(ptufile.autoNorm.keys()): for key, item in list(ptufile.autoNorm[m].items()): ptufile.save_autocorrelation(name=key, method=m, output_path=output_path) predtraces.to_csv(Path(output_path) / f'{path.name}_predtraces.csv') traces.to_csv(Path(output_path) / f'{path.name}_traces.csv') preds.to_csv(Path(output_path) / f'{path.name}_preds.csv') corrtraces.to_csv(Path(output_path) / f'{path.name}_corrtraces.csv')
- now let’s load, correlate, edit, and save those traces:
model_id = 0 ptufile = get_traces_and_predictions_from_ptu(af488luv_path, model_id, output_path)
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
model_id = 0 get_traces_and_predictions_from_ptu(af488_path, model_id, output_path)
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
pred_method = 'threshold' get_traces_and_predictions_from_ptu(hspex5_path, model_id, output_path, pred_method=pred_method)
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
pred_method = 'threshold' get_traces_and_predictions_from_ptu(tbpex5_path, model_id, output_path, pred_method=pred_method)
WARNING:tensorflow:Unable to restore custom metric. Please ensure that the layer implements `get_config` and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
- Lastly, we load a ptufile just to visualize the cut and stitch correction
method on TCSPC data (here: TTTR)
data_path = Path("../drmed-collections/drmed-bioexps/brightbursts/1911DD_alexafluor488+LUVs") path_clean = data_path / 'clean_subsample/' path_dirty = data_path / 'dirty_subsample/' output_path = Path("data/exp-220316-publication1/220323_bioexps") def get_ptu(path, output_path): files = [path / f for f in os.listdir(path) if f.endswith('.ptu')] for myfile in (files): myfile = Path(myfile) (out, ptu_tags, ptu_num_records, glob_res) = ptu.import_ptu(myfile) (subChanArrFull, trueTimeArrFull, dTimeArrFull, resolution) = (out["chanArr"], out["trueTimeArr"], out["dTimeArr"], out["resolution"]) # Remove Overflow and Markers; they are not handled at the # moment. subChanArr = np.array([i for i in subChanArrFull if not isinstance(i, tuple)]) trueTimeArr = np.array([i for i in trueTimeArrFull if not isinstance(i, tuple)]) dTimeArr = np.array([i for i in dTimeArrFull if not isinstance(i, tuple)]) return trueTimeArr, dTimeArr ptufile = get_ptu(path_dirty, output_path)
- this is how a TCSPC file conceptually looks like (index = photons)
test = pd.DataFrame(data=[ptufile[0], ptufile[1]], index=['macroscopic times', 'microscobpic times'], dtype=int) test
/home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/pandas/core/frame.py:702: FutureWarning: In a future version, passing float-dtype values and an integer dtype to DataFrame will retain floating dtype if they cannot be cast losslessly (matching Series behavior). To retain the old behavior, use DataFrame(data).astype(dtype) mgr = arrays_to_mgr(
0 1 2 … 5018346 5018347 5018348 macroscopic times 875 1400 2525 … 9996191498 9996192848 9996196673 microscobpic times 39 46 602 … 238 111 42 2 rows × 5018349 columns
- I will use the numbers of the macroscopic times for a figure explaining
cut and stitch, see Fig 2: cut and stitch viz
display(test.iloc[:, 750:753]) display(test.iloc[:, 1540:1543])
750 751 752 macroscopic times 999781 1001257 1001582 microscobpic times 84 101 220 1540 1541 1542 macroscopic times 1999613 2000339 2000814 microscopic times 72 103 970
2.7.11 Plots: jupyter
- first, we define some functions which we will use more often
%pwd
/home/lex/Programme/drmed-git
- load modules (called
simulations-prepare-modules
)%cd ~/Programme/drmed-git import logging import os import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from mlflow.keras import load_model from pathlib import Path from pprint import pprint from sklearn.preprocessing import MaxAbsScaler from tensorflow.keras.optimizers import Adam FLUOTRACIFY_PATH = './src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.applications import corr_fit_object as cfo from fluotracify.imports import ptu_utils as ptu from fluotracify.training import (build_model as bm, preprocess_data as ppd) from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, ) logging.basicConfig(filename="./data/exp-220316-publication1/jupyter.log", filemode='w', format='%(asctime)s - %(message)s', force=True, level=logging.DEBUG) sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind', context='paper') model_ls = [ 'ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727', '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65', '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653', 'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216', 'c1204e3a8a1e4c40a35b5b7b1922d1ce' ] model_name_ls = [f'{s:.5}' for s in model_ls] pred_thresh = 0.5 def sort_fit(param_ls): sim = param_ls[-1] nfcs = param_ls[-2] tt, tt_low_high = ans.convert_diffcoeff_to_transittimes(sim, fwhm=250) array = np.array(list(param_ls)[:-2]).reshape((2, 2)) # sort by transit times array = array[:, array[0, :].argsort()] A_fast = array[1, 0] A_slow = array[1, 1] N_fast = A_fast * nfcs N_slow = A_slow * nfcs t_fast = array[0, 0] t_slow = array[0, 1] if np.isnan(t_slow): # if tt_low_high[0] <= t_fast <= tt_low_high[1]: # out = out = t_fast, nfcs, pd.NA, pd.NA, tt elif f'{A_fast:.0%}' == '100%': # if tt_low_high[0] <= t_fast <= tt_low_high[1]: # out = out = t_fast, N_fast, pd.NA, pd.NA, tt elif f'{A_slow:.0%}' == '100%': # if tt_low_high[0] <= t_slow <= tt_low_high[1]: # out = out = pd.NA, pd.NA, t_slow, N_slow, tt else: # if (tt_low_high[0] <= t_fast <= tt_low_high[1]) or ( # tt_low_high[0] <= t_slow <= tt_low_high[1]): # out = out = t_fast, N_fast, t_slow, N_slow, tt return out def sort_fit_legend(param_ls): species = param_ls[0] component = param_ls[1] if species == 1: legend = '$\\tau_D$ from\n1 species fit' elif (species == 2) and (component == 'fast'): legend = '$\\tau_D$ from\nfast sp. of 2 sp. fit' elif (species == 2) and (component == 'slow'): legend = '$\\tau_D$ from\nslow sp. of 2 sp. fit' return legend def prepare_all_param(all_param): all_param[['t_fast', 'N_fast', 't_slow', 'N_slow', 'expected transit time'] ] = all_param[['txy1', 'txy2', 'A1', 'A2', 'N (FCS)', 'sim']].apply( lambda x: sort_fit(x), axis=1, result_type='expand') all_param = pd.wide_to_long(all_param, stubnames=['t', 'N'], i=['name_of_plot', 'Diff_species', 'processing'], j='fit component', sep='_', suffix=r'\w+') all_param = all_param.reset_index() # if Diff_species is 1, there is only 1 component all_param = all_param[~((all_param['fit component'] == 'slow') & (all_param['Diff_species'] == 1))] all_param = all_param.reset_index() all_param['legend'] = all_param[['Diff_species', 'fit component']].apply( lambda x: sort_fit_legend(x), axis=1) print('before dropping NaNs') print('1 species fit: {}'.format(len( all_param[all_param["legend"] == "$\\tau_D$ from\n1 species fit"]))) print('slow sp of 2 sp fit: {}'.format(len( all_param[all_param["legend"] == "$\\tau_D$ from\nslow sp. of 2 sp. fit"]))) print('fast sp of 2 sp fit: {}'.format(len( all_param[all_param["legend"] == "$\\tau_D$ from\nfast sp. of 2 sp. fit"]))) all_param = all_param[~pd.isna(all_param['t'])] print('after dropping NaNs') print('1 species fit: {}'.format(len( all_param[all_param["legend"] == "$\\tau_D$ from\n1 species fit"]))) print('slow sp of 2 sp fit: {}'.format(len( all_param[all_param["legend"] == "$\\tau_D$ from\nslow sp. of 2 sp. fit"]))) print('fast sp of 2 sp fit: {}'.format(len( all_param[all_param["legend"] == "$\\tau_D$ from\nfast sp. of 2 sp. fit"]))) all_param = all_param[ ['legend', 't', 'N', 'expected transit time', 'sim', 'processing']] all_param.loc[:, ['t', 'N']] = all_param.loc[:, ['t', 'N']].apply(pd.to_numeric) return all_param def simplot(data, x, order, height, aspect, hue, xlim, kind='boxen', add_text='other'): if kind == 'violin': kwargs = dict(showfliers=True, scale='width', cut=0) elif kind == 'boxen': kwargs = dict(showfliers=False, scale='exponential') g = sns.catplot(data=data, x=x, y='processing', order=order, col='expected transit time', col_wrap=3, hue=hue, height=height, aspect=aspect, legend_out=True, kind=kind, sharex=True, **kwargs) if hue is not None: g._legend.remove() styles = ['--', ':', '-', '-.', (0, (3, 1, 1, 1, 1, 1)), (0, (3, 1, 1, 1, 1, 1, 1, 1))] for i, ax in enumerate(g.axes): tt = str(ax.title).split('= ') tt = tt[1].strip("')") tt = float(tt) clean = data[(data['processing'] == 'clean noc') & (data['expected transit time'] == tt)] median = clean[x].median() if x == 'N': line = ax.axvline(median, lw=4, label='', ls=styles[::-1][i]) line_legend = {f'\n$N{{exp}}={median:.2f}$' : line} else: line = ax.axvline(median, lw=4, label='', ls=styles[i]) median = np.round(10**clean[x].median(), decimals=2) line_legend = {f'\n$\\tau_{{exp}}={median:.2f}ms$' : line} g._legend_data.update(line_legend) g.add_legend(g._legend_data) if hue is None: dodge = False else: dodge = True if kind == 'boxen': g.map_dataframe(sns.stripplot, x=x, y='processing', order=order, hue=hue, dodge=dodge, palette=sns.color_palette(['0.3']), size=2, jitter=0.05, hue_order=['$\\tau_D$ from\n1 species fit', '$\\tau_D$ from\nfast sp. of 2 sp. fit', '$\\tau_D$ from\nslow sp. of 2 sp. fit']) g.fig.suptitle('', size=25) for ax in g.axes: # ax[0].set_title('') tt = str(ax.title).split('= ') tt = tt[1].strip("')") tt = float(tt) clean = data[(data['processing'] == 'clean noc') & (data['expected transit time'] == tt)] if x == 'N': median = clean[x].median() ax.set_title(f'$N_{{exp}}={median:.2f}$') else: median = np.round(10**clean[x].median(), decimals=2) ax.set_title(f'$\\tau_{{exp}}={median:.2f}ms$') if x == 't': plt.setp(g.axes, xlabel='log transit time $\\tau_{D}$ $[ms]$', ylabel='', xlim=xlim) else: plt.setp(g.axes, xlabel='particle number $N$', ylabel='', xlim=xlim) g.tight_layout() if x == 't': for i, ax in enumerate(g.axes): xlab = ax.get_xticklabels() # because seaborns violinplot does not support kde calculation # in log values, I have to do this manually, by first # log-transforming the data, now extracting the xticklabels # and manually transforming them xlab_power = [lab.get_position()[0] for lab in xlab] xlab_power = sorted(xlab_power) print(i, xlab_power) xlab_power = [10**lab for lab in xlab_power] xlab_power = [np.round(lab, decimals=4) for lab in xlab_power] print(xlab_power) ax.set_xticklabels(xlab_power) g.tight_layout() savefig = f'./data/exp-220316-publication1/jupyter/{add_text}' plt.savefig(f'{savefig}.pdf', dpi=300) os.system(f'pdf2svg {savefig}.pdf {savefig}.svg') plt.close('all')
- load simulated data (called
simulations-prepare-data
)col_per_example = 3 lab_thresh = 0.04 artifact = 0 model_type = 1 fwhm = 250 sim_path = Path('../drmed-collections/drmed-simexps/2020-11-FCS-peak-' 'artifacts-dataset-test-split') sim, _, nsamples, sim_params = isfc.import_from_csv( folder=sim_path, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None) diffrates = sim_params.loc[ 'diffusion rate of molecules in micrometer^2 / s'].astype(np.float32) nmols = sim_params.loc['number of fast molecules'].astype(np.float32) clusters = sim_params.loc[ 'diffusion rate of clusters in micrometer^2 / s'].astype(np.float32) sim_columns = [f'{d:.4}-{c:.4}' for d, c in zip( np.repeat(diffrates, nsamples[0]), np.repeat(clusters, nsamples[0]))] sim_sep = isfc.separate_data_and_labels(array=sim, nsamples=nsamples, col_per_example=col_per_example) sim_dirty = sim_sep['0'] sim_dirty.columns = sim_columns sim_labels = sim_sep['1'] sim_labels.columns = sim_columns sim_labbool = sim_labels > lab_thresh sim_labbool.columns = sim_columns sim_clean = sim_sep['2'] sim_clean.columns = sim_columns sim_dirty
import importlib importlib.reload(ppd) importlib.reload(isfc) importlib.reload(cfo)
2.7.11.1 Plot A: traces with labels
- call
jupyter-set-output-directory
,simulations-prepare-modules
andsimulations-prepare-data
./data/exp-220316-publication1/jupyter
/home/lex/Programme/drmed-git 2023-01-16 15:28:48.365303: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-01-16 15:28:48.365357: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 0.069-0.1 … 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 50.0-0.01 0 1187.467896 907.677734 480.048798 454.669403 466.063232 384.734467 543.981323 640.921509 795.946167 410.471893 … 1897.398193 2279.646484 3088.531006 2034.432495 2187.548584 2105.736084 1789.366577 2023.093994 2331.185791 2185.028076 1 1184.055176 945.760315 471.065216 458.392487 473.306152 395.165527 558.603088 622.421204 776.199402 409.149170 … 1499.969849 2199.652100 3207.333008 1650.523926 2122.935791 2791.281006 1661.286377 1111.879761 1853.699585 1926.844971 2 1191.848877 980.117798 459.479706 426.087982 482.370209 425.123413 551.536072 624.498535 778.671265 400.971954 … 1822.985229 2456.422607 2969.562500 1934.118286 1457.731812 2251.077393 1903.003662 2063.915527 2198.018066 2038.683105 3 1199.065918 974.313110 462.205566 444.041809 463.703125 434.186615 573.044128 626.252502 747.284058 393.178162 … 1741.839355 2467.149414 2588.980957 2136.627686 1930.263672 2323.700684 2133.313721 1638.169312 1926.058716 1815.259521 4 1221.957397 968.779175 464.918030 455.205292 474.615540 437.029419 586.489136 619.319092 781.954102 406.468018 … 2431.400879 2246.336670 3000.961182 1915.518066 2052.773682 2359.145508 1699.926147 1862.709595 2291.338379 1332.422241 … … … … … … … … … … … … … … … … … … … … … … 16379 506.409668 1012.403931 855.006226 674.470703 769.859192 2110.732178 799.565247 1981.221436 528.844604 483.055878 … 1512.586548 3212.712891 1491.119995 1843.866943 1748.956665 2048.602051 1662.244385 2593.879639 1921.427856 1664.831909 16380 536.809692 1022.029724 840.287720 671.095215 738.908997 2118.984863 807.995789 2624.343262 552.687012 479.768372 … 1661.331055 3190.809570 1770.193970 2081.854248 2164.372803 2295.646729 1846.683594 2038.272339 2222.708252 2122.753662 16381 570.668884 989.891235 839.180298 689.863586 695.739136 2033.681885 786.547852 3528.163574 572.166077 484.491211 … 1643.470337 2564.206787 2025.219971 2104.706787 1792.828613 2106.199463 2087.914062 1457.817871 1874.736938 1683.072021 16382 562.505310 977.029785 1005.927673 683.250183 661.608337 2566.123047 805.594116 3731.086426 566.710571 489.289673 … 1556.492188 2783.619385 1312.174561 2378.643311 2466.965576 2160.641357 1691.332520 2013.095093 1632.475708 1352.443237 16383 567.307373 1006.794067 982.376526 677.099854 657.040588 2545.080322 784.917969 3850.334717 570.241699 512.688232 … 2127.414551 2448.062012 1398.359253 1665.321167 2241.687256 1823.699829 1340.686035 1972.661743 1550.770142 1727.808228 16384 rows × 1500 columns
- define plotting functions
plot1_index = ['3.0-0.01', '3.0-0.1', '3.0-1.0', '0.2-0.01', '0.2-0.1', '0.2-1.0', '0.069-0.01', '0.069-0.1', '0.069-1.0'] plot1_traceno = [1, 1, 0, 5, 0, 0, 1, 1, 0] def get_tt(dr): dr = dr.removesuffix('-0.01').removesuffix('-0.1').removesuffix('-1.0') dr = float(dr) tt, _ = ans.convert_diffcoeff_to_transittimes(dr, 250) return f'\nsimulated trace\n$\\tau_{{sim}}={tt:.2f}ms$' def save_plot(filename, txt): plot_file = f'{filename}_{txt}'.replace(' ', '_').replace( '\n', '_').replace('"', '').replace('{', '').replace( '}', '').replace('$', '').replace('=', '-').replace('\\', '') plt.savefig(f'{plot_file}.pdf', bbox_inches='tight', dpi=300) os.system(f'pdf2svg {plot_file}.pdf {plot_file}.svg') os.system(f'rm {plot_file}.pdf') def plot_label_based_cut_and_shift_correction(filename): for i, (idx, t) in enumerate(zip(plot1_index, plot1_traceno)): fig = plt.figure() ax = plt.subplot(111) txt = get_tt(idx) ax.set_prop_cycle(color=[sns.color_palette()[4]]) sim_labbool_scaled = sim_dirty.loc[:, idx].iloc[ :, t].max() * sim_labbool.loc[:, idx].iloc[:, t] sns.lineplot(data=sim_labbool_scaled, alpha=0.5) plt.fill_between(x=sim_labbool.loc[:, idx].iloc[:, t].index, y1=sim_labbool_scaled, y2=0, alpha=0.5, label='label:\npeak artifacts') ax.set_prop_cycle(color=[sns.color_palette()[2]]) sim_invbool_scaled = sim_dirty.loc[:, idx].iloc[ :, t].max() * ~sim_labbool.loc[:, idx].iloc[:, t] plt.fill_between(x=sim_labbool.loc[:, idx].iloc[:, t].index, y1=sim_invbool_scaled, y2=0, alpha=0.5, label='\nlabel:\nno artifacts') ax.set_prop_cycle(color=[sns.color_palette()[0]]) sns.lineplot(data=sim_dirty.loc[:, idx].iloc[:, t], label=txt) plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0) plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'Intensity [a.u.]', title='') save_plot(filename, f'{txt}_{i}') plt.close('all')
- do the plotting
plot_label_based_cut_and_shift_correction('data/exp-220316-publication1/jupyter/plot2_labseg')
2.7.11.2 Plot B: transit times vs random cuts in clean
trace
- call
jupyter-set-output-directory
andsimulations-prepare-modules
./data/exp-220316-publication1/jupyter
/home/lex/Programme/drmed-git
- let’s load and plot cuts vs transit times from 3 different base molecule
speeds (varying molecule numbers): 0.069, 0.2, and 1.0 um2/s respectively.
path = Path('data/exp-220316-publication1/220714_sim-cutandshift') # slowest molecules odot069_0cuts_path = path / '0.069/0.069-all-results/0dot069_0-cuts_outputParam.csv' odot069_1cuts_path = path / '0.069/0.069-all-results/0dot069_1-cuts_outputParam.csv' odot069_2cuts_path = path / '0.069/0.069-all-results/0dot069_2-cuts_outputParam.csv' odot069_4cuts_path = path / '0.069/0.069-all-results/0dot069_4-cuts_outputParam.csv' odot069_8cuts_path = path / '0.069/0.069-all-results/0dot069_8-cuts_outputParam.csv' odot069_10cuts_path = path / '0.069/0.069-all-results/0dot069_10-cuts_outputParam.csv' odot069_20cuts_path = path / '0.069/0.069-all-results/0dot069_20-cuts_outputParam.csv' odot069_40cuts_path = path / '0.069/0.069-all-results/0dot069_40-cuts_outputParam.csv' odot069_80cuts_path = path / '0.069/0.069-all-results/0dot069_80-cuts_outputParam.csv' odot069_100cuts_path = path / '0.069/0.069-all-results/0dot069_100-cuts_outputParam.csv' odot069_200cuts_path = path / '0.069/0.069-all-results/0dot069_200-cuts_outputParam.csv' odot069_400cuts_path = path / '0.069/0.069-all-results/0dot069_400-cuts_outputParam.csv' odot069_800cuts_path = path / '0.069/0.069-all-results/0dot069_800-cuts_outputParam.csv' odot069_1000cuts_path = path / '0.069/0.069-all-results/0dot069_1000-cuts_outputParam.csv' odot069_10000cuts_path = path / '0.069/0.069-all-results/0dot069_10000-cuts_outputParam.csv' # medium molecules odot2_0cuts_path = path / '0.2/0.2-all-results/0dot2_0-cuts_outputParam.csv' odot2_1cuts_path = path / '0.2/0.2-all-results/0dot2_1-cuts_outputParam.csv' odot2_2cuts_path = path / '0.2/0.2-all-results/0dot2_2-cuts_outputParam.csv' odot2_4cuts_path = path / '0.2/0.2-all-results/0dot2_4-cuts_outputParam.csv' odot2_8cuts_path = path / '0.2/0.2-all-results/0dot2_8-cuts_outputParam.csv' odot2_10cuts_path = path / '0.2/0.2-all-results/0dot2_10-cuts_outputParam.csv' odot2_20cuts_path = path / '0.2/0.2-all-results/0dot2_20-cuts_outputParam.csv' odot2_40cuts_path = path / '0.2/0.2-all-results/0dot2_40-cuts_outputParam.csv' odot2_80cuts_path = path / '0.2/0.2-all-results/0dot2_80-cuts_outputParam.csv' odot2_100cuts_path = path / '0.2/0.2-all-results/0dot2_100-cuts_outputParam.csv' odot2_200cuts_path = path / '0.2/0.2-all-results/0dot2_200-cuts_outputParam.csv' odot2_400cuts_path = path / '0.2/0.2-all-results/0dot2_400-cuts_outputParam.csv' odot2_800cuts_path = path / '0.2/0.2-all-results/0dot2_800-cuts_outputParam.csv' odot2_1000cuts_path = path / '0.2/0.2-all-results/0dot2_1000-cuts_outputParam.csv' odot2_10000cuts_path = path / '0.2/0.2-all-results/0dot2_10000-cuts_outputParam.csv' # fast molecules # one_0cuts_path = path / '1.0/1.0-all-results/1dot0_0-cuts_outputParam.csv' # one_1cuts_path = path / '1.0/1.0-all-results/1dot0_1-cuts_outputParam.csv' # one_2cuts_path = path / '1.0/1.0-all-results/1dot0_2-cuts_outputParam.csv' # one_4cuts_path = path / '1.0/1.0-all-results/1dot0_4-cuts_outputParam.csv' # one_8cuts_path = path / '1.0/1.0-all-results/1dot0_8-cuts_outputParam.csv' # one_10cuts_path = path / '1.0/1.0-all-results/1dot0_10-cuts_outputParam.csv' # one_20cuts_path = path / '1.0/1.0-all-results/1dot0_20-cuts_outputParam.csv' # one_40cuts_path = path / '1.0/1.0-all-results/1dot0_40-cuts_outputParam.csv' # one_80cuts_path = path / '1.0/1.0-all-results/1dot0_80-cuts_outputParam.csv' # one_100cuts_path = path / '1.0/1.0-all-results/1dot0_100-cuts_outputParam.csv' # one_200cuts_path = path / '1.0/1.0-all-results/1dot0_200-cuts_outputParam.csv' # one_400cuts_path = path / '1.0/1.0-all-results/1dot0_400-cuts_outputParam.csv' # one_800cuts_path = path / '1.0/1.0-all-results/1dot0_800-cuts_outputParam.csv' # one_1000cuts_path = path / '1.0/1.0-all-results/1dot0_1000-cuts_outputParam.csv' # one_10000cuts_path = path / '1.0/1.0-all-results/1dot0_10000-cuts_outputParam.csv' # fastest molecules three_0cuts_path = path / '3.0/3.0-all-results/3dot0_0-cuts_outputParam.csv' three_1cuts_path = path / '3.0/3.0-all-results/3dot0_1-cuts_outputParam.csv' three_2cuts_path = path / '3.0/3.0-all-results/3dot0_2-cuts_outputParam.csv' three_4cuts_path = path / '3.0/3.0-all-results/3dot0_4-cuts_outputParam.csv' three_8cuts_path = path / '3.0/3.0-all-results/3dot0_8-cuts_outputParam.csv' three_10cuts_path = path / '3.0/3.0-all-results/3dot0_10-cuts_outputParam.csv' three_20cuts_path = path / '3.0/3.0-all-results/3dot0_20-cuts_outputParam.csv' three_40cuts_path = path / '3.0/3.0-all-results/3dot0_40-cuts_outputParam.csv' three_80cuts_path = path / '3.0/3.0-all-results/3dot0_80-cuts_outputParam.csv' three_100cuts_path = path / '3.0/3.0-all-results/3dot0_100-cuts_outputParam.csv' three_200cuts_path = path / '3.0/3.0-all-results/3dot0_200-cuts_outputParam.csv' three_400cuts_path = path / '3.0/3.0-all-results/3dot0_400-cuts_outputParam.csv' three_800cuts_path = path / '3.0/3.0-all-results/3dot0_800-cuts_outputParam.csv' three_1000cuts_path = path / '3.0/3.0-all-results/3dot0_1000-cuts_outputParam.csv' three_10000cuts_path = path / '3.0/3.0-all-results/3dot0_10000-cuts_outputParam.csv' # slowest molecules odot069_0cuts = pd.read_csv(odot069_0cuts_path, sep=',').assign(speed=300*[0.069,]) odot069_1cuts = pd.read_csv(odot069_1cuts_path, sep=',').assign(speed=300*[0.069,]) odot069_2cuts = pd.read_csv(odot069_2cuts_path, sep=',').assign(speed=300*[0.069,]) odot069_4cuts = pd.read_csv(odot069_4cuts_path, sep=',').assign(speed=300*[0.069,]) odot069_8cuts = pd.read_csv(odot069_8cuts_path, sep=',').assign(speed=300*[0.069,]) odot069_10cuts = pd.read_csv(odot069_10cuts_path, sep=',').assign(speed=300*[0.069,]) odot069_20cuts = pd.read_csv(odot069_20cuts_path, sep=',').assign(speed=300*[0.069,]) odot069_40cuts = pd.read_csv(odot069_40cuts_path, sep=',').assign(speed=300*[0.069,]) odot069_80cuts = pd.read_csv(odot069_80cuts_path, sep=',').assign(speed=300*[0.069,]) odot069_100cuts = pd.read_csv(odot069_100cuts_path, sep=',').assign(speed=300*[0.069,]) odot069_200cuts = pd.read_csv(odot069_200cuts_path, sep=',').assign(speed=300*[0.069,]) odot069_400cuts = pd.read_csv(odot069_400cuts_path, sep=',').assign(speed=300*[0.069,]) odot069_800cuts = pd.read_csv(odot069_800cuts_path, sep=',').assign(speed=300*[0.069,]) odot069_1000cuts = pd.read_csv(odot069_1000cuts_path, sep=',').assign(speed=300*[0.069,]) odot069_10000cuts = pd.read_csv(odot069_10000cuts_path, sep=',').assign(speed=300*[0.069,]) # medium speed molecules odot2_0cuts = pd.read_csv(odot2_0cuts_path, sep=',').assign(speed=300*[0.2,]) odot2_1cuts = pd.read_csv(odot2_1cuts_path, sep=',').assign(speed=300*[0.2,]) odot2_2cuts = pd.read_csv(odot2_2cuts_path, sep=',').assign(speed=300*[0.2,]) odot2_4cuts = pd.read_csv(odot2_4cuts_path, sep=',').assign(speed=300*[0.2,]) odot2_8cuts = pd.read_csv(odot2_8cuts_path, sep=',').assign(speed=300*[0.2,]) odot2_10cuts = pd.read_csv(odot2_10cuts_path, sep=',').assign(speed=300*[0.2,]) odot2_20cuts = pd.read_csv(odot2_20cuts_path, sep=',').assign(speed=300*[0.2,]) odot2_40cuts = pd.read_csv(odot2_40cuts_path, sep=',').assign(speed=300*[0.2,]) odot2_80cuts = pd.read_csv(odot2_80cuts_path, sep=',').assign(speed=300*[0.2,]) odot2_100cuts = pd.read_csv(odot2_100cuts_path, sep=',').assign(speed=300*[0.2,]) odot2_200cuts = pd.read_csv(odot2_200cuts_path, sep=',').assign(speed=300*[0.2,]) odot2_400cuts = pd.read_csv(odot2_400cuts_path, sep=',').assign(speed=300*[0.2,]) odot2_800cuts = pd.read_csv(odot2_800cuts_path, sep=',').assign(speed=300*[0.2,]) odot2_1000cuts = pd.read_csv(odot2_1000cuts_path, sep=',').assign(speed=300*[0.2,]) odot2_10000cuts = pd.read_csv(odot2_10000cuts_path, sep=',').assign(speed=300*[0.2,]) # faster molecules # one_0cuts = pd.read_csv(one_0cuts_path, sep=',').assign(speed=300*[1.0,]) # one_1cuts = pd.read_csv(one_1cuts_path, sep=',').assign(speed=300*[1.0,]) # one_2cuts = pd.read_csv(one_2cuts_path, sep=',').assign(speed=300*[1.0,]) # one_4cuts = pd.read_csv(one_4cuts_path, sep=',').assign(speed=300*[1.0,]) # one_8cuts = pd.read_csv(one_8cuts_path, sep=',').assign(speed=300*[1.0,]) # one_10cuts = pd.read_csv(one_10cuts_path, sep=',').assign(speed=300*[1.0,]) # one_20cuts = pd.read_csv(one_20cuts_path, sep=',').assign(speed=300*[1.0,]) # one_40cuts = pd.read_csv(one_40cuts_path, sep=',').assign(speed=300*[1.0,]) # one_80cuts = pd.read_csv(one_80cuts_path, sep=',').assign(speed=300*[1.0,]) # one_100cuts = pd.read_csv(one_100cuts_path, sep=',').assign(speed=300*[1.0,]) # one_200cuts = pd.read_csv(one_200cuts_path, sep=',').assign(speed=300*[1.0,]) # one_400cuts = pd.read_csv(one_400cuts_path, sep=',').assign(speed=300*[1.0,]) # one_800cuts = pd.read_csv(one_800cuts_path, sep=',').assign(speed=300*[1.0,]) # one_1000cuts = pd.read_csv(one_1000cuts_path, sep=',').assign(speed=300*[1.0,]) # one_10000cuts = pd.read_csv(one_10000cuts_path, sep=',').assign(speed=300*[1.0,]) # fastest molecules three_0cuts = pd.read_csv(three_0cuts_path, sep=',').assign(speed=300*[3.0,]) three_1cuts = pd.read_csv(three_1cuts_path, sep=',').assign(speed=300*[3.0,]) three_2cuts = pd.read_csv(three_2cuts_path, sep=',').assign(speed=300*[3.0,]) three_4cuts = pd.read_csv(three_4cuts_path, sep=',').assign(speed=300*[3.0,]) three_8cuts = pd.read_csv(three_8cuts_path, sep=',').assign(speed=300*[3.0,]) three_10cuts = pd.read_csv(three_10cuts_path, sep=',').assign(speed=300*[3.0,]) three_20cuts = pd.read_csv(three_20cuts_path, sep=',').assign(speed=300*[3.0,]) three_40cuts = pd.read_csv(three_40cuts_path, sep=',').assign(speed=300*[3.0,]) three_80cuts = pd.read_csv(three_80cuts_path, sep=',').assign(speed=300*[3.0,]) three_100cuts = pd.read_csv(three_100cuts_path, sep=',').assign(speed=300*[3.0,]) three_200cuts = pd.read_csv(three_200cuts_path, sep=',').assign(speed=300*[3.0,]) three_400cuts = pd.read_csv(three_400cuts_path, sep=',').assign(speed=300*[3.0,]) three_800cuts = pd.read_csv(three_800cuts_path, sep=',').assign(speed=300*[3.0,]) three_1000cuts = pd.read_csv(three_1000cuts_path, sep=',').assign(speed=300*[3.0,]) three_10000cuts = pd.read_csv(three_10000cuts_path, sep=',').assign(speed=300*[3.0,]) all_param = pd.concat([odot069_0cuts, odot069_1cuts, odot069_2cuts, odot069_4cuts, odot069_8cuts, odot069_10cuts, odot069_20cuts, odot069_40cuts, odot069_80cuts, odot069_100cuts, odot069_200cuts, odot069_400cuts, odot069_800cuts, odot069_1000cuts, # odot069_10000cuts, odot2_0cuts, odot2_1cuts, odot2_2cuts, odot2_4cuts, odot2_8cuts, odot2_10cuts, odot2_20cuts, odot2_40cuts, odot2_80cuts, odot2_100cuts, odot2_200cuts, odot2_400cuts, odot2_800cuts, odot2_1000cuts, # odot2_10000cuts, # one_0cuts, one_1cuts, one_2cuts, # one_4cuts, one_8cuts, one_10cuts, # one_20cuts, one_40cuts, one_80cuts, # one_100cuts, one_200cuts, one_400cuts, # one_800cuts, one_1000cuts, one_10000cuts, three_0cuts, three_1cuts, three_2cuts, three_4cuts, three_8cuts, three_10cuts, three_20cuts, three_40cuts, three_80cuts, three_100cuts, three_200cuts, three_400cuts, three_800cuts, three_1000cuts]) # , three_10000cuts]) def cuts_to_integer(param_ls): cuts = param_ls.replace('-cuts', '') return int(cuts) def add_transit_time_legend(param_ls): tt, _ = ans.convert_diffcoeff_to_transittimes(param_ls, fwhm=250) return tt all_param['cuts'] = all_param['parent_name'].apply( lambda x: cuts_to_integer(x)) all_param['legend'] = all_param['speed'].apply( lambda x: add_transit_time_legend(x)) all_param
def simcuts(data): g = sns.catplot(data=all_param, y='txy1', x='cuts', row='legend', height=5, aspect=2, legend_out=True, kind=kind, sharey=False, **kwargs) styles = ['--', ':', '-', '-.'] for i, ax in enumerate(g.axes): tt = str(ax[0].title).split('= ') tt = tt[1].strip("')") tt = float(tt) hline = ax[0].axhline(tt, lw=3, label='', ls=styles[i]) hline_legend = {f'\n$\\tau_{{sim}}={tt:.2f}ms$' : hline} g._legend_data.update(hline_legend) g.add_legend(g._legend_data) if kind == 'boxen': g.map_dataframe(sns.stripplot, y='txy1', x='cuts', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2) g.fig.suptitle('', size=25) for ax in g.axes: # ax[0].set_title('') tt = str(ax[0].title).split('= ') tt = tt[1].strip("')") tt = float(tt) ax[0].set_title(f'sim. trace $\\tau_{{sim}}={tt:.2f}ms$,\nno ' 'artifacts, $n=300$, $\\tau_D$ from 1 sp. fit') # g._legend.set_title('') # new_labels = ['424 traces of\nAlexaFluor488\n(no artifacts)\n$\\tau_D$ from\n1 species fit', # '440 traces of\nAF488 + DiO LUVs\n(peak artifacts)\n$\\tau_D$ from\nfast sp. of 2 sp. fit'] # for t, l in zip(g._legend.texts, new_labels): # t.set_text(l) for i, axes in enumerate(g.axes.flat): _ = axes.set_xticklabels(axes.get_xticklabels(), rotation=45) plt.setp(g.axes, yscale='log', xlabel='number of cuts', ylabel=r'log transit time $\tau_{D}$ $[ms]$') g.fig.align_ylabels() g.tight_layout() savefig = f'./data/exp-220316-publication1/jupyter/{add_text}' plt.savefig(f'{savefig}.pdf', bbox_inches='tight', dpi=300) os.system(f'pdf2svg {savefig}.pdf {savefig}.svg') plt.close('all')
- first version: boxen + strip plot
sns.set_theme(style="whitegrid", font_scale=2.4, palette='colorblind', context='paper') simcuts(all_param, add_text='plot2_transit-times-vs-cuts_BOXEN')
- second version: violin plot
sns.set_theme(style="whitegrid", font_scale=2.4, palette='colorblind', context='paper') simcuts(all_param, kind='violin', add_text='plot2_transit-times-vs-cuts')
2.7.11.3 Plot C: correction methods fit outcomes
- call
jupyter-set-output-directory
andsimulations-prepare-modules
./data/exp-220316-publication1/jupyter
/home/lex/Programme/drmed-git
- let’s compare correction methods on 3 different simulated base molecule
speeds (0.069, 0.2, and 3.0 um2/s; varying molecule numbers) and af488 vs
af488+LUV data and hs-pex5 vs tb-pex5 data
# dirty correlations - check out from branch exp-220227-unet path1 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-04-25_simulations/dirty') odot069_dirty_1comp_path = path1 / '0.069_results/dirty_0dot069-all_1comp_outputParam.csv' odot069_dirty_2comp_path = path1 / '0.069_results/dirty_0dot069-all_2comp_outputParam.csv' odot2_dirty_1comp_path = path1 / '0.2_results/dirty_0dot2-all_1comp_outputParam.csv' odot2_dirty_2comp_path = path1 / '0.2_results/dirty_0dot2-all_2comp_outputParam.csv' # one_dirty_1comp_path = path1 / '1.0_results/dirty_1dot0-all_1comp_outputParam.csv' # one_dirty_2comp_path = path1 / '1.0_results/dirty_1dot0-all_2comp_outputParam.csv' three_dirty_1comp_path = path1 / '3.0_results/dirty_3dot0-all_1comp_outputParam.csv' three_dirty_2comp_path = path1 / '3.0_results/dirty_3dot0-all_2comp_outputParam.csv' # clean correlations path2 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220719_threshold-prediction/threshold-all-results') odot069_clean_1comp_path = path2 / '0dot069_clean_1comp_outputParam.csv' odot2_clean_1comp_path = path2 / '0dot2_clean_1comp_outputParam.csv' # one_clean_1comp_path = path2 / '1dot0_clean_1comp_outputParam.csv' three_clean_1comp_path = path2 / '3dot0_clean_1comp_outputParam.csv' # # # control with prediction threshold # odot069_thresh2_1comp_path = path2 / '0dot069_robust_thresh2_1comp_outputParam.csv' # odot069_thresh2_2comp_path = path2 / '0dot069_robust_thresh2_2comp_outputParam.csv' # odot2_thresh2_1comp_path = path2 / '0dot2_robust_thresh2_1comp_outputParam.csv' # odot2_thresh2_2comp_path = path2 / '0dot2_robust_thresh2_2comp_outputParam.csv' # # one_thresh2_1comp_path = path2 / '1dot0_robust_thresh2_1comp_outputParam.csv' # # one_thresh2_2comp_path = path2 / '1dot0_robust_thresh2_2comp_outputParam.csv' # three_thresh2_1comp_path = path2 / '3dot0_robust_thresh2_1comp_outputParam.csv' # three_thresh2_2comp_path = path2 / '3dot0_robust_thresh2_2comp_outputParam.csv' # # fifty_thresh2_1comp_path = path2 / '50dot0_robust_thresh2_1comp_outputParam.csv' # load correction by label information as baseline path4 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220517_simulations/') odot069_labcas_1comp_path = path4 / '0.069-all-results/0dot069_lab_cas_1comp_outputParam.csv' odot069_labcas_2comp_path = path4 / '0.069-all-results/0dot069_lab_cas_2comp_outputParam.csv' odot2_labcas_1comp_path = path4 / '0.2-all-results/0dot2_lab_cas_1comp_outputParam.csv' odot2_labcas_2comp_path = path4 / '0.2-all-results/0dot2_lab_cas_2comp_outputParam.csv' three_labcas_1comp_path = path4 / '3.0-all-results/3dot0_lab_cas_1comp_outputParam.csv' three_labcas_2comp_path = path4 / '3.0-all-results/3dot0_lab_cas_2comp_outputParam.csv' odot069_labdel_1comp_path = path4 / '0.069-all-results/0dot069_lab_del_1comp_outputParam.csv' odot069_labdel_2comp_path = path4 / '0.069-all-results/0dot069_lab_del_2comp_outputParam.csv' odot2_labdel_1comp_path = path4 / '0.2-all-results/0dot2_lab_del_1comp_outputParam.csv' odot2_labdel_2comp_path = path4 / '0.2-all-results/0dot2_lab_del_2comp_outputParam.csv' three_labdel_1comp_path = path4 / '3.0-all-results/3dot0_lab_del_1comp_outputParam.csv' three_labdel_2comp_path = path4 / '3.0-all-results/3dot0_lab_del_2comp_outputParam.csv' path5 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/230103_avg-correction/') odot069_labavg_1comp_path = path5 / 'all-results/0dot069_lab_avg_1comp_outputParam.csv' odot069_labavg_2comp_path = path5 / 'all-results/0dot069_lab_avg_2comp_outputParam.csv' odot2_labavg_1comp_path = path5 / 'all-results/0dot2_lab_avg_1comp_outputParam.csv' odot2_labavg_2comp_path = path5 / 'all-results/0dot2_lab_avg_2comp_outputParam.csv' three_labavg_1comp_path = path5 / 'all-results/three_lab_avg_1comp_outputParam.csv' three_labavg_2comp_path = path5 / 'all-results/three_lab_avg_2comp_outputParam.csv' # prediction by best unet 0cd20 - check out from branch exp-220227-unet # path3 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-04-25_simulations/0cd20') # odot069_0cd20_1comp_path = path3 / '0.069_results/0cd20_0dot069-all_1comp_outputParam.csv' # odot069_0cd20_2comp_path = path3 / '0.069_results/0cd20_0dot069-all_2comp_outputParam.csv' # odot2_0cd20_1comp_path = path3 / '0.2_results/0cd20_0dot2-all_1comp_outputParam.csv' # odot2_0cd20_2comp_path = path3 / '0.2_results/0cd20_0dot2-all_2comp_outputParam.csv' # # one_0cd20_1comp_path = path3 / '1.0_results/0cd20_1dot0-all_1comp_outputParam.csv' # # one_0cd20_2comp_path = path3 / '1.0_results/0cd20_1dot0-all_2comp_outputParam.csv' # three_0cd20_1comp_path = path3 / '3.0_results/0cd20_3dot0-all_1comp_outputParam.csv' # three_0cd20_2comp_path = path3 / '3.0_results/0cd20_3dot0-all_2comp_outputParam.csv' # biological data - clean, dirty, cut and stitch path6 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-05-22_experimental-af488') af488_noc_1comp_path = path6 / 'clean-all-results/clean_no-correction_1comp_outputParam.csv' # af488_0cd20cas_1comp_path = path6 / 'clean-all-results/clean_0cd20_1comp_outputParam.csv' af488luv_noc_1comp_path = path6 / 'dirty-all-results/dirty_no-correction_1comp_outputParam.csv' af488luv_noc_2comp_path = path6 / 'dirty-all-results/dirty_no-correction_2comp_outputParam.csv' af488luv_0cd20cas_1comp_path = path6 / 'dirty-all-results/dirty_0cd20_1comp_outputParam.csv' af488luv_0cd20cas_2comp_path = path6 / 'dirty-all-results/dirty_0cd20_2comp_outputParam.csv' path7 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-06-02_experimental-pex5') hspex5_noc_1comp_path = path7 / 'clean-all-results/Hs-PEX5-eGFP_no-correction_1comp_outputParam.csv' # hspex5_0cd20cas_1comp_path = path7 / 'clean-all-results/Hs-PEX5-eGFP_no-correction_1comp_outputParam.csv' tbpex5_noc_1comp_path = path7 / 'dirty-all-results/Tb-PEX5-eGFP_no-correction_1comp_outputParam.csv' tbpex5_noc_2comp_path = path7 / 'dirty-all-results/Tb-PEX5-eGFP_no-correction_2comp_outputParam.csv' tbpex5_0cd20cas_1comp_path = path7 / 'dirty-all-results/Tb-PEX5-eGFP_0cd20_1comp_outputParam.csv' tbpex5_0cd20cas_2comp_path = path7 / 'dirty-all-results/Tb-PEX5-eGFP_0cd20_2comp_outputParam.csv' # biological data - averaging, set to zero path8 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2023-01-10_experimental-averaging-delete/all-results') # af488_0cd20avg_1comp_path = path8 / 'af488_0cd20_averaging_1comp_outputParam.csv' # af488_0cd20del_1comp_path = path8 / 'af488_0cd20_delete_1comp_outputParam.csv' af488luv_0cd20avg_1comp_path = path8 / 'af488luv_0cd20_averaging_1comp_outputParam.csv' af488luv_0cd20avg_2comp_path = path8 / 'af488luv_0cd20_averaging_2comp_outputParam.csv' af488luv_0cd20del_1comp_path = path8 / 'af488luv_0cd20_delete_1comp_outputParam.csv' af488luv_0cd20del_2comp_path = path8 / 'af488luv_0cd20_delete_2comp_outputParam.csv' # hspex5_0cd20avg_1comp_path = path8 / 'hspex5_0cd20_averaging_1comp_outputParam.csv' # hspex5_0cd20del_1comp_path = path8 / 'hspex5_0cd20_delete_1comp_outputParam.csv' tbpex5_0cd20avg_1comp_path = path8 / 'tbpex5_0cd20_averaging_1comp_outputParam.csv' tbpex5_0cd20avg_2comp_path = path8 / 'tbpex5_0cd20_averaging_2comp_outputParam.csv' tbpex5_0cd20del_1comp_path = path8 / 'tbpex5_0cd20_delete_1comp_outputParam.csv' tbpex5_0cd20del_2comp_path = path8 / 'tbpex5_0cd20_delete_2comp_outputParam.csv' # load data odot069_clean_1comp = pd.read_csv(odot069_clean_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['clean noc',]) odot2_clean_1comp = pd.read_csv(odot2_clean_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['clean noc',]) # one_clean_1comp = pd.read_csv(one_clean_1comp_path, sep=',').assign(sim=300*[1,], processing=300*['clean noc',]) three_clean_1comp = pd.read_csv(three_clean_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['clean noc',]) af488_1comp = pd.read_csv(af488_noc_1comp_path, sep=',').assign(sim=424*[280,], processing=424*['clean noc',]) hspex5_1comp = pd.read_csv(hspex5_noc_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['clean noc',]) odot069_dirty_1comp = pd.read_csv(odot069_dirty_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty noc',]) odot069_dirty_2comp = pd.read_csv(odot069_dirty_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty noc',]) odot2_dirty_1comp = pd.read_csv(odot2_dirty_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty noc',]) odot2_dirty_2comp = pd.read_csv(odot2_dirty_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty noc',]) # one_dirty_1comp = pd.read_csv(one_dirty_1comp_path, sep=',').assign(sim=300*[1,], processing=300*['dirty noc',]) # one_dirty_2comp = pd.read_csv(one_dirty_2comp_path, sep=',').assign(sim=300*[1,], processing=300*['dirty noc',]) three_dirty_1comp = pd.read_csv(three_dirty_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty noc',]) three_dirty_2comp = pd.read_csv(three_dirty_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty noc',]) af488luv_1comp = pd.read_csv(af488luv_noc_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty noc',]) af488luv_2comp = pd.read_csv(af488luv_noc_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty noc',]) tbpex5_1comp = pd.read_csv(tbpex5_noc_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty noc',]) tbpex5_2comp = pd.read_csv(tbpex5_noc_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty noc',]) # load correction by label information as baseline odot069_labdel_1comp = pd.read_csv(odot069_labdel_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty del',]) odot069_labdel_2comp = pd.read_csv(odot069_labdel_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty del',]) odot2_labdel_1comp = pd.read_csv(odot2_labdel_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty del',]) odot2_labdel_2comp = pd.read_csv(odot2_labdel_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty del',]) three_labdel_1comp = pd.read_csv(three_labdel_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty del',]) three_labdel_2comp = pd.read_csv(three_labdel_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty del',]) af488luv_0cd20del_1comp = pd.read_csv(af488luv_0cd20del_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty del']) af488luv_0cd20del_2comp = pd.read_csv(af488luv_0cd20del_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty del']) tbpex5_0cd20del_1comp = pd.read_csv(tbpex5_0cd20del_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty del']) tbpex5_0cd20del_2comp = pd.read_csv(tbpex5_0cd20del_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty del']) odot069_labcas_1comp = pd.read_csv(odot069_labcas_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty cas',]) odot069_labcas_2comp = pd.read_csv(odot069_labcas_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty cas',]) odot2_labcas_1comp = pd.read_csv(odot2_labcas_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty cas',]) odot2_labcas_2comp = pd.read_csv(odot2_labcas_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty cas',]) three_labcas_1comp = pd.read_csv(three_labcas_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty cas',]) three_labcas_2comp = pd.read_csv(three_labcas_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty cas',]) af488luv_0cd20cas_1comp = pd.read_csv(af488luv_0cd20cas_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty cas']) af488luv_0cd20cas_2comp = pd.read_csv(af488luv_0cd20cas_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty cas']) tbpex5_0cd20cas_1comp = pd.read_csv(tbpex5_0cd20cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty cas']) tbpex5_0cd20cas_2comp = pd.read_csv(tbpex5_0cd20cas_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty cas']) odot069_labavg_1comp = pd.read_csv(odot069_labavg_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty avg',]) odot069_labavg_2comp = pd.read_csv(odot069_labavg_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty avg',]) odot2_labavg_1comp = pd.read_csv(odot2_labavg_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty avg',]) odot2_labavg_2comp = pd.read_csv(odot2_labavg_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty avg',]) three_labavg_1comp = pd.read_csv(three_labavg_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty avg',]) three_labavg_2comp = pd.read_csv(three_labavg_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty avg',]) af488luv_0cd20avg_1comp = pd.read_csv(af488luv_0cd20avg_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty avg']) af488luv_0cd20avg_2comp = pd.read_csv(af488luv_0cd20avg_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty avg']) tbpex5_0cd20avg_1comp = pd.read_csv(tbpex5_0cd20avg_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty avg']) tbpex5_0cd20avg_2comp = pd.read_csv(tbpex5_0cd20avg_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty avg']) # # control with prediction threshold # odot069_thresh2_1comp = pd.read_csv(odot069_thresh2_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # odot069_thresh2_2comp = pd.read_csv(odot069_thresh2_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # odot2_thresh2_1comp = pd.read_csv(odot2_thresh2_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # odot2_thresh2_2comp = pd.read_csv(odot2_thresh2_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # # one_thresh2_1comp = pd.read_csv(one_thresh2_1comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # # one_thresh2_2comp = pd.read_csv(one_thresh2_2comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # three_thresh2_1comp = pd.read_csv(three_thresh2_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # three_thresh2_2comp = pd.read_csv(three_thresh2_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # # # pred. by best unet 0cd20 - check out from branch exp-220227-unet # odot069_0cd20_1comp = pd.read_csv(odot069_0cd20_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) # odot069_0cd20_2comp = pd.read_csv(odot069_0cd20_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) # odot2_0cd20_1comp = pd.read_csv(odot2_0cd20_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) # odot2_0cd20_2comp = pd.read_csv(odot2_0cd20_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) # # one_0cd20_1comp = pd.read_csv(one_0cd20_1comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) # # one_0cd20_2comp = pd.read_csv(one_0cd20_2comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) # three_0cd20_1comp = pd.read_csv(three_0cd20_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) # three_0cd20_2comp = pd.read_csv(three_0cd20_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) all_param = pd.concat([odot069_clean_1comp, odot2_clean_1comp, three_clean_1comp, af488_1comp, hspex5_1comp, odot069_dirty_1comp, odot2_dirty_1comp, three_dirty_1comp, odot069_dirty_2comp, odot2_dirty_2comp, three_dirty_2comp, af488luv_1comp, tbpex5_1comp, af488luv_2comp, tbpex5_2comp, odot069_labdel_1comp, odot2_labdel_1comp, three_labdel_1comp, odot069_labdel_2comp, odot2_labdel_2comp, three_labdel_2comp, af488luv_0cd20del_1comp, tbpex5_0cd20del_1comp, af488luv_0cd20del_2comp, tbpex5_0cd20del_2comp, odot069_labcas_1comp, odot2_labcas_1comp, three_labcas_1comp, odot069_labcas_2comp, odot2_labcas_2comp, three_labcas_2comp, af488luv_0cd20cas_1comp, tbpex5_0cd20cas_1comp, af488luv_0cd20cas_2comp, tbpex5_0cd20cas_2comp, odot069_labavg_1comp, odot2_labavg_1comp, three_labavg_1comp, odot069_labavg_2comp, odot2_labavg_2comp, three_labavg_2comp, af488luv_0cd20avg_1comp, tbpex5_0cd20avg_1comp, af488luv_0cd20avg_2comp, tbpex5_0cd20avg_2comp]) # odot069_thresh2_1comp, odot069_thresh2_2comp, odot2_thresh2_1comp, # odot2_thresh2_2comp, three_thresh2_1comp, three_thresh2_2comp, # odot069_0cd20_1comp, odot069_0cd20_2comp, odot2_0cd20_1comp, # odot2_0cd20_2comp, three_0cd20_1comp, three_0cd20_2comp]) # assert the following fit parameters assert set(all_param['Dimen']) == {'2D', '3D'} assert set(all_param[all_param['Dimen'] == '2D']['sim'] ) == {0.069, 0.2, 3.0} assert set(all_param[all_param['Dimen'] == '3D']['sim'] ) == {31.0, 280.0} assert set(all_param[(all_param['Dimen'] == '3D') & (all_param['sim'] == 31.0)]['AR1']) == {6.0} assert set(all_param[(all_param['Dimen'] == '3D') & (all_param['sim'] == 280.0)]['AR1']) == {5.0} assert set(all_param['Diff_eq']) == {'Equation 1A', 'Equation 1B'} assert set(all_param[all_param['Diff_eq'] == 'Equation 1A']['sim'] ) == {0.069, 0.2, 3.0} assert set(all_param[all_param['Diff_eq'] == 'Equation 1B']['sim'] ) == {31.0, 280.0} assert set(all_param['Triplet_eq']) == {'Triplet Eq 2B', 'no triplet'} assert set(all_param[all_param['Triplet_eq'] == 'no triplet']['sim'] ) == {0.069, 0.2, 3.0, 280.0} assert set(all_param[all_param['Triplet_eq'] == 'Triplet Eq 2B']['sim'] ) == {31.0} assert set(all_param['alpha1']) == {1.0} assert set(all_param['xmin']) == {0.001018, 1.0} assert set(all_param[all_param['xmin'] == 1.0]['sim'] ) == {0.069, 0.2, 3.0} assert set(all_param[all_param['xmin'] == 0.001018]['sim'] ) == {31.0, 280.0} assert set(all_param['xmax']) == {0.524282, 100.66329, 469.762042, 512.0, 896.0, 939.52409, 1024.0, 2048.0, 4096.0, 7168.0, 8192.0} # biological af488 correlations were fitted with xmax=500 for peak # artifacts, except xmax=0.5 for peak artifacts with averaging correction, # and xmax=100 for correlations without peak artifacts, assert set(all_param[all_param['xmax'] == 0.524282]['sim'] ) == {31.0, 280.0} assert set(all_param[all_param['xmax'] == 0.524282]['processing'] ) == {'dirty avg'} assert set(all_param[all_param['xmax'].isin( [100.66329, 469.762042])]['sim']) == {280.0} assert set(all_param[all_param['xmax'] == 100.66329]['processing'] ) == {'clean noc'} assert set(all_param[all_param['xmax'] == 469.762042]['processing'] ) == {'dirty cas', 'dirty del', 'dirty noc'} assert set(all_param[all_param['xmax'].isin( [512.0, 896.0, 1024.0, 2048.0, 4096.0, 7168.0, 8192.0])]['sim'] ) == {0.069, 0.2, 3.0} # simulated correlations with and without peak artifacts were fitted # with xmax=8192 (except see below) assert set(all_param[all_param['xmax'] == 8192.0]['processing'] ) == {'clean noc', 'dirty cas', 'dirty del', 'dirty noc'} # 294 of 300 correlations with peak artifacts and averaging correction # were fitted with xmax=1024, # this failed for 6 correlations which were too short and thus # automatically got xmax=512 or xmax=896.0 assert len(set(all_param[(all_param['xmax'] == 1024.0) & (all_param['processing'] == 'dirty avg')].index) ) == 294 assert set(all_param[all_param['xmax'].isin( [512.0, 896.0])]['processing']) == {'dirty avg'} assert len(set(all_param[all_param['xmax'].isin( [512.0, 896.0])].index)) == 6 # 279, 288, or 276 of 300 correlations with peak artifacts and cut and # stitch correction were fitted with xmax=8192 # (3 groups depending on simulated molecule speed) # this failed for 55 correlations which were too short and thus # automatically got xmax={1024, 2048, 4096, 7168} assert len(set(all_param[(all_param['xmax'] == 8192.0) & (all_param['processing'] == 'dirty cas') & (all_param['sim'] == 0.069)].index)) assert len(set(all_param[(all_param['xmax'] == 8192.0) & (all_param['processing'] == 'dirty cas') & (all_param['sim'] == 0.2)].index)) assert len(set(all_param[(all_param['xmax'] == 8192.0) & (all_param['processing'] == 'dirty cas') & (all_param['sim'] == 3.0)].index)) assert set(all_param[all_param['xmax'].isin( [2048.0, 4096.0, 7168.0])]['processing']) == {'dirty cas'} assert len(set(all_param[ (all_param['xmax'].isin([2048.0, 4096.0, 7168.0])) | ((all_param['xmax'] == 1024) & (all_param['processing'] == 'dirty cas'))].index)) == 55 pprint(all_param.keys()) all_param = all_param[['name_of_plot', 'Diff_species', 'N (FCS)', 'A1', 'txy1', 'sim', 'processing', 'A2', 'txy2']] with pd.option_context("max_colwidth", 1000): display(all_param)
Index(['name_of_plot', 'master_file', 'parent_name', 'parent_uqid', 'time of fit', 'Diff_eq', 'Diff_species', 'Triplet_eq', 'Triplet_species', 'Dimen', 'xmin', 'xmax', 'offset', 'stdev(offset)', 'GN0', 'stdev(GN0)', 'N (FCS)', 'cpm (kHz)', 'A1', 'stdev(A1)', 'txy1', 'stdev(txy1)', 'alpha1', 'stdev(alpha1)', 'N (mom)', 'bri (kHz)', 'above zero', 'sim', 'processing', 'AR1', 'stdev(AR1)', 'T1', 'stdev(T1)', 'tauT1', 'stdev(tauT1)', 'A2', 'stdev(A2)', 'txy2', 'stdev(txy2)', 'alpha2', 'stdev(alpha2)', 'AR2', 'stdev(AR2)'], dtype='object')
name_of_plot \ 0 2022-07-21_multipletau_clean_0dot069_0000_correlation-CH1_1 1 2022-07-21_multipletau_clean_0dot069_0001_correlation-CH1_1 2 2022-07-21_multipletau_clean_0dot069_0002_correlation-CH1_1 3 2022-07-21_multipletau_clean_0dot069_0003_correlation-CH1_1 4 2022-07-21_multipletau_clean_0dot069_0004_correlation-CH1_1 .. ... 245 2023-01-18_tttr2xfcs_with_averaging_CH2_BIN1dot0_TbPEX5EGFP 1-1000246_T5364s_1_correlation-CH2_2 246 2023-01-18_tttr2xfcs_with_averaging_CH2_BIN1dot0_TbPEX5EGFP 1-1000247_T5386s_1_correlation-CH2_2 247 2023-01-18_tttr2xfcs_with_averaging_CH2_BIN1dot0_TbPEX5EGFP 1-1000248_T5408s_1_correlation-CH2_2 248 2023-01-18_tttr2xfcs_with_averaging_CH2_BIN1dot0_TbPEX5EGFP 1-1000249_T5430s_1_correlation-CH2_2 249 2023-01-18_tttr2xfcs_with_averaging_CH2_BIN1dot0_TbPEX5EGFP 1-1000250_T5451s_1_correlation-CH2_2 Diff_species N (FCS) A1 txy1 sim processing \ 0 1 13.940974 1.000000 150.165642 0.069 clean noc 1 1 16.272292 1.000000 133.758850 0.069 clean noc 2 1 17.590156 1.000000 109.396491 0.069 clean noc 3 1 13.739355 1.000000 140.176075 0.069 clean noc 4 1 10.985121 1.000000 520.784146 0.069 clean noc .. ... ... ... ... ... ... 245 2 1.717779 0.554806 0.007325 31.000 dirty avg 246 2 1.717779 0.554806 0.007325 31.000 dirty avg 247 2 1.717779 0.554806 0.007325 31.000 dirty avg 248 2 1.717779 0.554806 0.007325 31.000 dirty avg 249 2 1.717779 0.554806 0.007325 31.000 dirty avg A2 txy2 0 NaN NaN 1 NaN NaN 2 NaN NaN 3 NaN NaN 4 NaN NaN .. ... ... 245 0.445194 0.34921 246 0.445194 0.34921 247 0.445194 0.34921 248 0.445194 0.34921 249 0.445194 0.34921 [14294 rows x 9 columns]
all_param = prepare_all_param(all_param) # with pd.option_context("max_colwidth", 1000): # display(all_param[['legend', 't', 'A', 'expected transit time', 'sim', 'processing']]) pub_cond1 = ((all_param['legend'] == '$\\tau_D$ from\n1 species fit') & ~((all_param['processing'].isin( ['dirty noc', 'dirty del', 'dirty cas'])) & (all_param['expected transit time'] == 0.040253767881946526)) & ~((all_param['processing'] == 'dirty avg') & (all_param['expected transit time'] == 0.36358241957887183))) pub_cond2 = ((all_param['legend'] == '$\\tau_D$ from\nfast sp. of 2 sp. fit') & ((all_param['processing'].isin( ['dirty noc', 'dirty del', 'dirty cas'])) & (all_param['expected transit time'] == 0.040253767881946526))) pub_cond3 = ((all_param['legend'] == "$\\tau_D$ from\nslow sp. of 2 sp. fit") & ((all_param['processing'] == 'dirty avg') & (all_param['expected transit time'] == 0.36358241957887183))) pub_param = all_param[pub_cond1 | pub_cond2 | pub_cond3] pub_param
before dropping NaNs 1 species fit: 7934 slow sp of 2 sp fit: 6360 fast sp of 2 sp fit: 6360 after dropping NaNs 1 species fit: 7934 slow sp of 2 sp fit: 5459 fast sp of 2 sp fit: 5812
legend t N \ 0 $\tau_D$ from\n1 species fit 150.165642 13.940974 1 $\tau_D$ from\n1 species fit 133.758850 16.272292 2 $\tau_D$ from\n1 species fit 109.396491 17.590156 3 $\tau_D$ from\n1 species fit 140.176075 13.739355 4 $\tau_D$ from\n1 species fit 520.784146 10.985121 ... ... ... ... 20645 $\tau_D$ from\nslow sp. of 2 sp. fit 0.349210 0.764745 20647 $\tau_D$ from\nslow sp. of 2 sp. fit 0.349210 0.764745 20649 $\tau_D$ from\nslow sp. of 2 sp. fit 0.349210 0.764745 20651 $\tau_D$ from\nslow sp. of 2 sp. fit 0.349210 0.764745 20653 $\tau_D$ from\nslow sp. of 2 sp. fit 0.349210 0.764745 expected transit time sim processing 0 163.348623 0.069 clean noc 1 163.348623 0.069 clean noc 2 163.348623 0.069 clean noc 3 163.348623 0.069 clean noc 4 163.348623 0.069 clean noc ... ... ... ... 20645 0.363582 31.000 dirty avg 20647 0.363582 31.000 dirty avg 20649 0.363582 31.000 dirty avg 20651 0.363582 31.000 dirty avg 20653 0.363582 31.000 dirty avg [7934 rows x 6 columns]
- the following constraints are given by the nanoletters template:
- one column: up to 240 points wide (3.33 in.)
- double-column: between 300 and 504 points (4.167 in. and 7 in.).
- maximum depth: 660 points (9.167 in.) including the caption (allow 12 pts. For each line of caption text)
- Lettering should be no smaller than 4.5 points in the final published format. The text should be legible when the graphic is viewed full-size. Helvetica or Arial fonts work well for lettering. Lines should be no thinner than 0.5 point.
- statistics simulated data
print(set(pub_param.sim)) print(set(pub_param.processing))
{0.069, 0.2, 3.0, 280.0, 31.0} {'dirty noc', 'dirty del', 'clean noc', 'dirty cas', 'dirty avg'}
- click the following for statistics using
pandas
pub_param.query('sim == 0.069 and processing == "clean noc"').describe()
t N expected transit time sim count 300.000000 300.000000 3.000000e+02 3.000000e+02 mean 201.730974 18.819845 1.633486e+02 6.900000e-02 std 144.719279 9.770235 2.846920e-14 1.390098e-17 min 65.930197 5.603608 1.633486e+02 6.900000e-02 25% 125.468166 11.323578 1.633486e+02 6.900000e-02 50% 166.004316 14.498767 1.633486e+02 6.900000e-02 75% 221.537952 27.449559 1.633486e+02 6.900000e-02 max 1599.606863 47.155710 1.633486e+02 6.900000e-02
pub_param.query('sim == 0.069 and processing == "dirty noc"').describe()
t N expected transit time sim count 300.000000 300.000000 3.000000e+02 3.000000e+02 mean 282.030509 4.816232 1.633486e+02 6.900000e-02 std 568.622322 9.009920 2.846920e-14 1.390098e-17 min 6.518842 0.455831 1.633486e+02 6.900000e-02 25% 15.071449 0.811827 1.633486e+02 6.900000e-02 50% 92.128805 1.243144 1.633486e+02 6.900000e-02 75% 224.452807 2.496275 1.633486e+02 6.900000e-02 max 3915.067003 42.282714 1.633486e+02 6.900000e-02
pub_param.query('sim == 0.069 and processing == "dirty cas"').describe()
t N expected transit time sim count 300.000000 300.000000 3.000000e+02 3.000000e+02 mean 199.035236 18.978114 1.633486e+02 6.900000e-02 std 224.025740 10.306636 2.846920e-14 1.390098e-17 min 29.507311 5.762238 1.633486e+02 6.900000e-02 25% 109.418713 11.317119 1.633486e+02 6.900000e-02 50% 144.247381 14.284064 1.633486e+02 6.900000e-02 75% 200.133375 26.790708 1.633486e+02 6.900000e-02 max 2853.319763 51.362164 1.633486e+02 6.900000e-02
pub_param.query('sim == 0.069 and processing == "dirty del"').describe()
t N expected transit time sim count 300.000000 300.000000 3.000000e+02 3.000000e+02 mean 386.812799 6.912346 1.633486e+02 6.900000e-02 std 731.629974 7.365161 2.846920e-14 1.390098e-17 min 31.333599 0.110818 1.633486e+02 6.900000e-02 25% 83.373890 2.773181 1.633486e+02 6.900000e-02 50% 136.948888 5.405113 1.633486e+02 6.900000e-02 75% 287.895504 7.654565 1.633486e+02 6.900000e-02 max 5740.894352 42.282635 1.633486e+02 6.900000e-02
pub_param.query('sim == 0.069 and processing == "dirty avg"').describe()
t N expected transit time sim count 300.000000 300.000000 3.000000e+02 3.000000e+02 mean 699.580346 21.083470 1.633486e+02 6.900000e-02 std 1716.200624 59.511588 2.846920e-14 1.390098e-17 min 15.751980 1.450327 1.633486e+02 6.900000e-02 25% 57.028273 4.260944 1.633486e+02 6.900000e-02 50% 104.906130 14.731348 1.633486e+02 6.900000e-02 75% 279.021688 23.955900 1.633486e+02 6.900000e-02 max 9999.999921 999.999978 1.633486e+02 6.900000e-02
pub_param.query('sim == 0.2 and processing == "clean noc"').describe()
t N expected transit time sim count 300.000000 300.000000 300.000000 3.000000e+02 mean 58.893184 28.932434 56.355275 2.000000e-01 std 21.552815 12.327634 0.000000 2.780195e-17 min 25.055875 10.564774 56.355275 2.000000e-01 25% 45.577125 15.250247 56.355275 2.000000e-01 50% 53.481307 28.536186 56.355275 2.000000e-01 75% 66.793896 40.569270 56.355275 2.000000e-01 max 170.467807 56.067450 56.355275 2.000000e-01
pub_param.query('sim == 0.2 and processing == "dirty noc"').describe()
t N expected transit time sim count 300.000000 300.000000 300.000000 3.000000e+02 mean 280.942172 7.664457 56.355275 2.000000e-01 std 638.964634 8.083462 0.000000 2.780195e-17 min 8.443209 0.486735 56.355275 2.000000e-01 25% 17.938976 1.224729 56.355275 2.000000e-01 50% 70.407443 5.117287 56.355275 2.000000e-01 75% 177.926211 10.815966 56.355275 2.000000e-01 max 6033.761312 33.153615 56.355275 2.000000e-01
pub_param.query('sim == 0.2 and processing == "dirty cas"').describe()
t N expected transit time sim count 300.000000 300.000000 300.000000 3.000000e+02 mean 58.064144 28.860908 56.355275 2.000000e-01 std 34.386274 12.506826 0.000000 2.780195e-17 min 22.407733 10.906952 56.355275 2.000000e-01 25% 42.273276 15.105780 56.355275 2.000000e-01 50% 51.379569 28.567553 56.355275 2.000000e-01 75% 63.970930 40.527620 56.355275 2.000000e-01 max 516.434581 55.139663 56.355275 2.000000e-01
pub_param.query('sim == 0.2 and processing == "dirty del"').describe()
t N expected transit time sim count 300.000000 300.000000 300.000000 3.000000e+02 mean 346.179473 8.259799 56.355275 2.000000e-01 std 818.221805 6.758370 0.000000 2.780195e-17 min 11.902476 0.201675 56.355275 2.000000e-01 25% 29.526389 3.292221 56.355275 2.000000e-01 50% 73.506942 7.185639 56.355275 2.000000e-01 75% 167.043540 11.138888 56.355275 2.000000e-01 max 5626.381686 33.153679 56.355275 2.000000e-01
pub_param.query('sim == 0.2 and processing == "dirty avg"').describe()
t N expected transit time sim count 300.000000 300.000000 300.000000 3.000000e+02 mean 541.982991 15.343520 56.355275 2.000000e-01 std 1600.009204 13.536181 0.000000 2.780195e-17 min 3.018830 1.633221 56.355275 2.000000e-01 25% 9.690143 4.907674 56.355275 2.000000e-01 50% 27.600092 11.873491 56.355275 2.000000e-01 75% 104.596235 19.946061 56.355275 2.000000e-01 max 9999.999993 62.084397 56.355275 2.000000e-01
pub_param.query('sim == 3.0 and processing == "clean noc"').describe()
t N expected transit time sim count 300.000000 300.000000 3.000000e+02 300.0 mean 3.456995 40.218462 3.757018e+00 3.0 std 0.545879 8.919564 8.896624e-16 0.0 min 2.220943 25.273087 3.757018e+00 3.0 25% 3.070289 28.830730 3.757018e+00 3.0 50% 3.442130 45.190401 3.757018e+00 3.0 75% 3.805593 47.026327 3.757018e+00 3.0 max 5.834915 52.537602 3.757018e+00 3.0
pub_param.query('sim == 3.0 and processing == "dirty noc"').describe()
t N expected transit time sim count 300.000000 300.000000 3.000000e+02 300.0 mean 254.276689 10.051766 3.757018e+00 3.0 std 502.659293 8.758858 8.896624e-16 0.0 min 2.674362 0.707357 3.757018e+00 3.0 25% 8.759164 3.881247 3.757018e+00 3.0 50% 55.200335 7.201136 3.757018e+00 3.0 75% 177.056184 12.252256 3.757018e+00 3.0 max 3297.756062 40.709815 3.757018e+00 3.0
pub_param.query('sim == 3.0 and processing == "dirty cas"').describe()
t N expected transit time sim count 300.000000 300.000000 3.000000e+02 300.0 mean 6.968229 40.681289 3.757018e+00 3.0 std 56.378906 8.239986 8.896624e-16 0.0 min 2.304519 15.199689 3.757018e+00 3.0 25% 3.079279 30.743552 3.757018e+00 3.0 50% 3.577223 44.797976 3.757018e+00 3.0 75% 4.045806 46.689409 3.757018e+00 3.0 max 980.098513 55.057712 3.757018e+00 3.0
pub_param.query('sim == 3.0 and processing == "dirty del"').describe()
t N expected transit time sim count 300.000000 300.000000 3.000000e+02 300.0 mean 404.846385 9.130129 3.757018e+00 3.0 std 901.841937 7.550757 8.896624e-16 0.0 min 2.674359 0.076923 3.757018e+00 3.0 25% 13.544493 2.861955 3.757018e+00 3.0 50% 89.152541 8.085497 3.757018e+00 3.0 75% 306.027597 12.373742 3.757018e+00 3.0 max 6998.470368 34.971443 3.757018e+00 3.0
pub_param.query('sim == 3.0 and processing == "dirty avg"').describe()
t N expected transit time sim count 300.000000 300.000000 3.000000e+02 300.0 mean 396.263460 17.599825 3.757018e+00 3.0 std 1249.550827 10.011633 8.896624e-16 0.0 min 0.000100 1.743806 3.757018e+00 3.0 25% 4.136277 10.961715 3.757018e+00 3.0 50% 10.418607 15.991130 3.757018e+00 3.0 75% 73.647793 23.380313 3.757018e+00 3.0 max 9320.774911 91.383366 3.757018e+00 3.0
- click the following for statistics using
- statistics application data
set(pub_param.sim)
0.069 0.2 3.0 31.0 280.0 - click the following for statistics with
pandas
pub_param.query('sim == 31.0 and processing == "clean noc"').describe()
t N expected transit time sim count 250.000000 250.000000 250.000000 250.0 mean 0.356892 1.184233 0.363582 31.0 std 0.017251 0.331666 0.000000 0.0 min 0.316204 0.626433 0.363582 31.0 25% 0.345597 0.901067 0.363582 31.0 50% 0.356176 1.251875 0.363582 31.0 75% 0.367787 1.446506 0.363582 31.0 max 0.422647 2.335207 0.363582 31.0
pub_param.query('sim == 31.0 and processing == "dirty noc"').describe()
t N expected transit time sim count 250.000000 250.000000 250.000000 250.0 mean 0.507154 0.865429 0.363582 31.0 std 0.229794 0.146621 0.000000 0.0 min 0.351314 0.240379 0.363582 31.0 25% 0.403647 0.802527 0.363582 31.0 50% 0.437270 0.871601 0.363582 31.0 75% 0.498338 0.942197 0.363582 31.0 max 2.429498 1.185128 0.363582 31.0
pub_param.query('sim == 31.0 and processing == "dirty cas"').describe()
t N expected transit time sim count 250.000000 250.000000 250.000000 250.0 mean 0.326603 1.034571 0.363582 31.0 std 0.027692 0.089300 0.000000 0.0 min 0.259626 0.831271 0.363582 31.0 25% 0.309170 0.979233 0.363582 31.0 50% 0.324881 1.020413 0.363582 31.0 75% 0.343199 1.071515 0.363582 31.0 max 0.429618 1.247246 0.363582 31.0
pub_param.query('sim == 31.0 and processing == "dirty del"').describe()
t N expected transit time sim count 250.000000 250.000000 250.000000 250.0 mean 0.366597 0.960330 0.363582 31.0 std 0.028811 0.087365 0.000000 0.0 min 0.295380 0.762634 0.363582 31.0 25% 0.347739 0.903386 0.363582 31.0 50% 0.366389 0.941637 0.363582 31.0 75% 0.383148 0.993536 0.363582 31.0 max 0.462216 1.190092 0.363582 31.0
pub_param.query('sim == 31.0 and processing == "dirty avg"').describe()
t N expected transit time sim count 250.000000 250.000000 250.000000 250.0 mean 0.348313 2.298929 0.363582 31.0 std 0.028811 22.341037 0.000000 0.0 min 0.139923 0.035053 0.363582 31.0 25% 0.349210 0.764745 0.363582 31.0 50% 0.349210 0.764745 0.363582 31.0 75% 0.349210 0.764745 0.363582 31.0 max 0.653701 352.797026 0.363582 31.0
pub_param.query('sim == 280 and processing == "clean noc"').describe()
t N expected transit time sim count 424.000000 424.000000 4.240000e+02 424.0 mean 0.039726 14.324938 4.025377e-02 280.0 std 0.001038 0.264089 1.389418e-17 0.0 min 0.037049 13.369703 4.025377e-02 280.0 25% 0.039010 14.194097 4.025377e-02 280.0 50% 0.039678 14.331944 4.025377e-02 280.0 75% 0.040445 14.503913 4.025377e-02 280.0 max 0.042681 14.925030 4.025377e-02 280.0
pub_param.query('sim == 280 and processing == "dirty noc"').describe()
t N expected transit time sim count 440.000000 440.000000 440.000000 440.0 mean 0.295129 1.115437 0.040254 280.0 std 0.823954 0.832436 0.000000 0.0 min 0.004885 0.111298 0.040254 280.0 25% 0.042516 0.497226 0.040254 280.0 50% 0.059671 0.928103 0.040254 280.0 75% 0.117828 1.475898 0.040254 280.0 max 9.785473 5.530194 0.040254 280.0
pub_param.query('sim == 280 and processing == "dirty cas"').describe()
t N expected transit time sim count 440.000000 440.000000 440.000000 440.0 mean 0.038934 15.106186 0.040254 280.0 std 0.005460 1.484036 0.000000 0.0 min 0.021356 6.267150 0.040254 280.0 25% 0.035229 14.334271 0.040254 280.0 50% 0.038763 15.248202 0.040254 280.0 75% 0.042262 16.039287 0.040254 280.0 max 0.062131 18.110889 0.040254 280.0
pub_param.query('sim == 280 and processing == "dirty del"').describe()
t N expected transit time sim count 440.000000 440.000000 440.000000 440.0 mean 0.150001 0.509272 0.040254 280.0 std 0.232081 0.161864 0.000000 0.0 min 0.035726 0.175117 0.040254 280.0 25% 0.073251 0.385334 0.040254 280.0 50% 0.102000 0.487138 0.040254 280.0 75% 0.151827 0.610576 0.040254 280.0 max 3.535464 1.108399 0.040254 280.0
pub_param.query('sim == 280 and processing == "dirty avg"').describe()
t N expected transit time sim count 440.000000 440.000000 440.000000 440.0 mean 0.084284 18.112860 0.040254 280.0 std 0.022509 1.615360 0.000000 0.0 min 0.039713 14.057908 0.040254 280.0 25% 0.069354 17.030536 0.040254 280.0 50% 0.082400 18.066652 0.040254 280.0 75% 0.096017 19.096856 0.040254 280.0 max 0.175513 24.030180 0.040254 280.0
- click the following for statistics with
- Plot C v1: boxen + strip plots
- the following was the first version of plots done with boxen plots and
overlayed strip plots. I later shifted to violin plots. I only archive one
of those plots just as an example.
- plot simulated data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(pub_param[~(pub_param['expected transit time'].isin([0.040253767881946526, 0.36358241957887183]))], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='t', height=3, aspect=3/3, hue=None, xlim=[1, 10000], kind='boxen', add_text='plot2_compare-correction-sim_transit-times')
- plot biological af488 data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='t', height=3, aspect=3/3, hue=None, xlim=None, kind='boxen', add_text='plot2_compare-correction-af488_transit-times')
- plot biological af488 data - particle numbers
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='N', height=3, aspect=3/3, hue=None, xlim=None, kind='boxen', add_text='plot2_compare-correction-af488_particle-numbers')
- plot biological pex5 data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(pub_param[(pub_param['expected transit time'] == 0.36358241957887183)], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='t', height=3, aspect=3/3, hue=None, xlim=[0.1, 10], kind='boxen', add_text='plot2_compare-correction-pex5_transit-times')
- plot biological pex5 data - particle numbers
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(pub_param[(pub_param['expected transit time'] == 0.36358241957887183)], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='N', height=3, aspect=3/3, hue=None, xlim=[0, 2], kind='boxen', add_text='plot2_compare-correction-pex5_particle-numbers')
- for supplementary, plot 1 and 2 species fits for every category for transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(all_param, order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='boxen', add_text='plot2_compare-correction-sim-bio-allfits')
- for supplementary, plot 1 and 2 species fits for simulated data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(all_param[~(all_param['expected transit time'].isin([0.040253767881946526, 0.36358241957887183]))], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='boxen', add_text='plot2_compare-correction-sim_transit-times-allfits')
- for supplementary, plot 1 and 2 species fits for af488 particle numbers
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(all_param[all_param['expected transit time'] == 0.040253767881946526], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='N', height=4, aspect=3/4, hue='legend', xlim=None, kind='boxen', add_text='plot2_compare-correction-af488_particle-numbers-allfits')
- for supplementary, plot 1 and 2 species fits for af488 transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(all_param[all_param['expected transit time'] == 0.040253767881946526], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='boxen', add_text='plot2_compare-correction-af488_transit-times-allfits')
- for supplementary, plot 1 and 2 species fits for pex5 transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='boxen', add_text='plot2_compare-correction-pex5_transit-times-allfits')
- for supplementary, plot 1 and 2 species fits for pex5 particle numbers
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='N', height=4, aspect=3/4, hue='legend', xlim=[0, 3], kind='boxen', add_text='plot2_compare-correction-pex5_particle-numbers-allfits')
- plot simulated data - transit times
- here is the example of the simulated transit times:
- the following was the first version of plots done with boxen plots and
overlayed strip plots. I later shifted to violin plots. I only archive one
of those plots just as an example.
- Plot C v2: violin plots
- try violin plots - first just take a look at the log values for different
tau values. because seaborns violinplot does not support kde calculation in
log values, I have to do this manually, by first log-transforming the data,
now extracting the xticklabels and manually transforming them
# for violin plots all_param.loc[:, 't'] = all_param.loc[:, 't'].apply(lambda x: np.log10(x)) pub_param.loc[:, 't'] = pub_param.loc[:, 't'].apply(lambda x: np.log10(x)) print(f'change xlim=0.1 to {np.log10(0.1)}') print(f'change xlim=1 to {np.log10(1)}') print(f'change xlim=2 to {np.log10(2)}') print(f'change xlim=3 to {np.log10(3)}') print(f'change xlim=10 to {np.log10(10)}') print(f'change xlim=10000 to {np.log10(10000)}')
change xlim=0.1 to -1.0 change xlim=1 to 0.0 change xlim=2 to 0.3010299956639812 change xlim=3 to 0.47712125471966244 change xlim=10 to 1.0 change xlim=10000 to 4.0
- plot simulated data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) g = simplot(pub_param[~(pub_param['expected transit time'].isin([0.040253767881946526, 0.36358241957887183]))], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='t', height=3, aspect=3/3, hue=None, xlim=None, kind='violin', add_text='plot2_compare-correction-sim_transit-times')
0 [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0] [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0] 1 [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0] [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0] 2 [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0] [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0] /tmp/ipykernel_15489/134815032.py:229: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels(xlab_power)
- plot biological af488 data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='t', height=3, aspect=3/3, hue=None, xlim=None, kind='violin', add_text='plotC_compare-correction-af488_transit-times')
- plot biological af488 data - particle numbers
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='N', height=3, aspect=3/3, hue=None, xlim=None, kind='violin', add_text='plotC_compare-correction-af488_particle-numbers')
- plot biological pex5 data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(pub_param[(pub_param['expected transit time'] == 0.36358241957887183)], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='t', height=2.5, aspect=2.5/3, hue=None, xlim=[-1, 0], kind='violin', add_text='plotC_compare-correction-pex5_transit-times')
0 [Text(-1.0, 0, '−1.00'), Text(-0.75, 0, '−0.75'), Text(-0.5, 0, '−0.50'), Text(-0.25, 0, '−0.25'), Text(0.0, 0, '0.00')] {0.1, 0.5623, 0.3162, 0.1778, 1.0} /tmp/ipykernel_38203/1869914210.py:86: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels(xlab_power)
- for supplementary, plot 1 and 2 species fits for every category for transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(all_param, order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='violin', add_text='plotC_compare-correction-sim-bio-allfits')
0 [] [] 1 [] [] 2 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4'), Text(6.0, 0, '6')] [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0] 3 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4'), Text(6.0, 0, '6')] [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0] 4 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4'), Text(6.0, 0, '6')] [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0] /tmp/ipykernel_25877/3410783254.py:84: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels(xlab_power)
- for supplementary, plot 1 and 2 species fits for simulated data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(all_param[~(all_param['expected transit time'] .isin([0.040253767881946526, 0.36358241957887183]))], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='violin', add_text='plotC_compare-correction-sim_transit-times-allfits')
0 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4'), Text(6.0, 0, '6')] [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0] 1 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4'), Text(6.0, 0, '6')] [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0] 2 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4'), Text(6.0, 0, '6')] [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0] /tmp/ipykernel_25877/1072788822.py:85: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels(xlab_power)
- for supplementary, plot 1 and 2 species fits for af488 particle numbers
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(all_param[all_param['expected transit time'] == 0.040253767881946526], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='N', height=4, aspect=3/4, hue='legend', xlim=None, kind='violin', add_text='plotC_compare-correction-af488_particle-numbers-allfits')
- for supplementary, plot 1 and 2 species fits for af488 transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) # here a version for the plot, but with corrupt xlabels simplot(all_param[all_param['expected transit time'] == 0.040253767881946526], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='violin', add_text='plot2_compare-correction-af488_transit-times-allfits') # here a version only to extract correct xlabels simplot(all_param[all_param['expected transit time'] == 0.040253767881946526], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='t', height=4, aspect=4/3, hue='legend', xlim=None, kind='violin', add_text='plotC_compare-correction-af488_transit-times-allfits_XLABELS')
0 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4'), Text(1.0, 0, '1'), Text(2.0, 0, '2'), Text(3.0, 0, '3'), Text(4.0, 0, '4')] [-6.0, -4.0, -2.0, 0.0, 1.0, 2.0, 2.0, 3.0, 4.0, 4.0] [0.0, 0.0001, 0.01, 1.0, 10.0, 100.0, 100.0, 1000.0, 10000.0, 10000.0] /tmp/ipykernel_38203/1673237170.py:87: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels(xlab_power) 0 [Text(-5.0, 0, '−5'), Text(-4.0, 0, '−4'), Text(-3.0, 0, '−3'), Text(-2.0, 0, '−2'), Text(-1.0, 0, '−1'), Text(0.0, 0, '0'), Text(1.0, 0, '1'), Text(2.0, 0, '2'), Text(3.0, 0, '3'), Text(4.0, 0, '4')] [-5.0, -4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0] [0.0, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, 10000.0] /tmp/ipykernel_38203/1673237170.py:87: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels(xlab_power)
- for supplementary, plot 1 and 2 species fits for pex5 transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='t', height=4, aspect=3/4, hue='legend', xlim=None, kind='violin', add_text='plotC_compare-correction-pex5_transit-times-allfits')
0 [Text(-6.0, 0, '−6'), Text(-4.0, 0, '−4'), Text(-2.0, 0, '−2'), Text(0.0, 0, '0'), Text(2.0, 0, '2'), Text(4.0, 0, '4')] [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0] [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0] /tmp/ipykernel_38203/1673237170.py:87: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels(xlab_power)
- for supplementary, plot 1 and 2 species fits for pex5 particle numbers
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) # setting a xlim becaues the figure is unreadable otherwise simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)], order=['clean noc', 'dirty noc', 'dirty cas', 'dirty del', 'dirty avg'], x='N', height=4, aspect=3/4, hue='legend', xlim=[0, 3], kind='violin', add_text='plotC_compare-correction-pex5_particle-numbers-allfits')
- try violin plots - first just take a look at the log values for different
tau values. because seaborns violinplot does not support kde calculation in
log values, I have to do this manually, by first log-transforming the data,
now extracting the xticklabels and manually transforming them
2.7.11.4 Plot D: prediction methods fit outcomes
- call
jupyter-set-output-directory
andsimulations-prepare-modules
./data/exp-220316-publication1/jupyter
/home/lex/Programme/drmed-git 2023-06-21 13:24:07.016300: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-06-21 13:24:07.016412: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
- let’s compare prediction methods on 3 different simulated base molecule
speeds (0.069, 0.2, and 3.0 um2/s; varying molecule numbers) and af488 vs
af488+LUV data and hs-pex5 vs tb-pex5 data
# dirty correlations - check out from branch exp-220227-unet path1 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-04-25_simulations/dirty') odot069_dirty_1comp_path = path1 / '0.069_results/dirty_0dot069-all_1comp_outputParam.csv' odot069_dirty_2comp_path = path1 / '0.069_results/dirty_0dot069-all_2comp_outputParam.csv' odot2_dirty_1comp_path = path1 / '0.2_results/dirty_0dot2-all_1comp_outputParam.csv' odot2_dirty_2comp_path = path1 / '0.2_results/dirty_0dot2-all_2comp_outputParam.csv' three_dirty_1comp_path = path1 / '3.0_results/dirty_3dot0-all_1comp_outputParam.csv' three_dirty_2comp_path = path1 / '3.0_results/dirty_3dot0-all_2comp_outputParam.csv' # clean correlations path2 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220719_threshold-prediction/threshold-all-results') odot069_clean_1comp_path = path2 / '0dot069_clean_1comp_outputParam.csv' odot2_clean_1comp_path = path2 / '0dot2_clean_1comp_outputParam.csv' three_clean_1comp_path = path2 / '3dot0_clean_1comp_outputParam.csv' # control with prediction threshold odot069_2cas_1comp_path = path2 / '0dot069_robust_thresh2_1comp_outputParam.csv' odot069_2cas_2comp_path = path2 / '0dot069_robust_thresh2_2comp_outputParam.csv' odot2_2cas_1comp_path = path2 / '0dot2_robust_thresh2_1comp_outputParam.csv' odot2_2cas_2comp_path = path2 / '0dot2_robust_thresh2_2comp_outputParam.csv' three_2cas_1comp_path = path2 / '3dot0_robust_thresh2_1comp_outputParam.csv' three_2cas_2comp_path = path2 / '3dot0_robust_thresh2_2comp_outputParam.csv' # prediction by best unet 0cd20 - check out from branch exp-220227-unet path3 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-04-25_simulations/0cd20') odot069_0cd20cas_1comp_path = path3 / '0.069_results/0cd20_0dot069-all_1comp_outputParam.csv' odot069_0cd20cas_2comp_path = path3 / '0.069_results/0cd20_0dot069-all_2comp_outputParam.csv' odot2_0cd20cas_1comp_path = path3 / '0.2_results/0cd20_0dot2-all_1comp_outputParam.csv' odot2_0cd20cas_2comp_path = path3 / '0.2_results/0cd20_0dot2-all_2comp_outputParam.csv' three_0cd20cas_1comp_path = path3 / '3.0_results/0cd20_3dot0-all_1comp_outputParam.csv' three_0cd20cas_2comp_path = path3 / '3.0_results/0cd20_3dot0-all_2comp_outputParam.csv' # biological data - af488 path6 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-05-22_experimental-af488') path7 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220726_bioexps/af488') path8 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220726_bioexps/af488+luvs/') af488_noc_1comp_path = path6 / 'clean-all-results/clean_no-correction_1comp_outputParam.csv' af488_0cd20cas_1comp_path = path6 / 'clean-all-results/clean_0cd20_1comp_outputParam.csv' af488_ff67bcas_1comp_path = path6 / 'clean-all-results/clean_ff67b_1comp_outputParam.csv' af488_1dot5cas_1comp_path = path7 / 'af488-all-results/af488_thresh-1.5_1comp_outputParam.csv' af488_2cas_1comp_path = path7 / 'af488-all-results/af488_thresh-2_1comp_outputParam.csv' af488_2dot5cas_1comp_path = path7 / 'af488-all-results/af488_thresh-2.5_1comp_outputParam.csv' af488luv_noc_1comp_path = path6 / 'dirty-all-results/dirty_no-correction_1comp_outputParam.csv' af488luv_noc_2comp_path = path6 / 'dirty-all-results/dirty_no-correction_2comp_outputParam.csv' af488luv_0cd20cas_1comp_path = path6 / 'dirty-all-results/dirty_0cd20_1comp_outputParam.csv' af488luv_0cd20cas_2comp_path = path6 / 'dirty-all-results/dirty_0cd20_2comp_outputParam.csv' af488luv_ff67bcas_1comp_path = path6 / 'dirty-all-results/dirty_ff67b_1comp_outputParam.csv' af488luv_ff67bcas_2comp_path = path6 / 'dirty-all-results/dirty_ff67b_2comp_outputParam.csv' af488luv_1dot5cas_1comp_path = path8 / 'af488+luvs-all-results/af488+luvs_thresh-1.5_1comp_outputParam.csv' af488luv_1dot5cas_2comp_path = path8 / 'af488+luvs-all-results/af488+luvs_thresh-1.5_2comp_outputParam.csv' af488luv_2cas_1comp_path = path8 / 'af488+luvs-all-results/af488+luvs_thresh-2_1comp_outputParam.csv' af488luv_2cas_2comp_path = path8 / 'af488+luvs-all-results/af488+luvs_thresh-2_2comp_outputParam.csv' af488luv_2dot5cas_1comp_path = path8 / 'af488+luvs-all-results/af488+luvs_thresh-2.5_1comp_outputParam.csv' af488luv_2dot5cas_2comp_path = path8 / 'af488+luvs-all-results/af488+luvs_thresh-2.5_2comp_outputParam.csv' # Hs-PEX5-eGFP (clean), only 1comp fits, with triplets fixed to 0.04ms (triplet fraction floating) # see https://www.sciencedirect.com/science/article/pii/S266707472200012X#bib35 for 0.04 reference path9 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-06-02_experimental-pex5') path10 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220726_bioexps/Hs-PEX5-eGFP') path11 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220726_bioexps/Tb-PEX5-eGFP/') hspex5_noc_1comp_path = path9 / 'clean-all-results/Hs-PEX5-eGFP_no-correction_1comp_outputParam.csv' hspex5_0cd20cas_1comp_path = path9 / 'clean-all-results/Hs-PEX5-eGFP_0cd20_1comp_outputParam.csv' hspex5_ff67bcas_1comp_path = path9 / 'clean-all-results/Hs-PEX5-eGFP_ff67b_1comp_outputParam.csv' hspex5_5cas_1comp_path = path10 / 'Hs-PEX5-eGFP-all-results/Hs-PEX5-eGFP_thresh-5_1comp_outputParam.csv' hspex5_7cas_1comp_path = path10 / 'Hs-PEX5-eGFP-all-results/Hs-PEX5-eGFP_thresh-7_1comp_outputParam.csv' hspex5_10cas_1comp_path = path10 / 'Hs-PEX5-eGFP-all-results/Hs-PEX5-eGFP_thresh-10_1comp_outputParam.csv' tbpex5_noc_1comp_path = path9 / 'dirty-all-results/Tb-PEX5-eGFP_no-correction_1comp_outputParam.csv' tbpex5_noc_2comp_path = path9 / 'dirty-all-results/Tb-PEX5-eGFP_no-correction_2comp_outputParam.csv' tbpex5_0cd20cas_1comp_path = path9 / 'dirty-all-results/Tb-PEX5-eGFP_0cd20_1comp_outputParam.csv' tbpex5_0cd20cas_2comp_path = path9 / 'dirty-all-results/Tb-PEX5-eGFP_0cd20_2comp_outputParam.csv' tbpex5_ff67bcas_1comp_path = path9 / 'dirty-all-results/Tb-PEX5-eGFP_ff67b_1comp_outputParam.csv' tbpex5_ff67bcas_2comp_path = path9 / 'dirty-all-results/Tb-PEX5-eGFP_ff67b_2comp_outputParam.csv' tbpex5_5cas_1comp_path = path11 / 'Tb-PEX5-eGFP-all-results/Tb-PEX5-eGFP_thresh-5_1comp_outputParam.csv' tbpex5_5cas_2comp_path = path11 / 'Tb-PEX5-eGFP-all-results/Tb-PEX5-eGFP_thresh-5_2comp_outputParam.csv' tbpex5_7cas_1comp_path = path11 / 'Tb-PEX5-eGFP-all-results/Tb-PEX5-eGFP_thresh-7_1comp_outputParam.csv' tbpex5_7cas_2comp_path = path11 / 'Tb-PEX5-eGFP-all-results/Tb-PEX5-eGFP_thresh-7_2comp_outputParam.csv' tbpex5_10cas_1comp_path = path11 / 'Tb-PEX5-eGFP-all-results/Tb-PEX5-eGFP_thresh-10_1comp_outputParam.csv' tbpex5_10cas_2comp_path = path11 / 'Tb-PEX5-eGFP-all-results/Tb-PEX5-eGFP_thresh-10_2comp_outputParam.csv' # hspex5_0cd20avg_1comp_path = path / 'hspex5_0cd20_averaging_1comp_outputParam.csv' # hspex5_0cd20del_1comp_path = path / 'hspex5_0cd20_delete_1comp_outputParam.csv' # tbpex5_0cd20avg_1comp_path = path / 'tbpex5_0cd20_averaging_1comp_outputParam.csv' # tbpex5_0cd20avg_2comp_path = path / 'tbpex5_0cd20_averaging_2comp_outputParam.csv' # tbpex5_0cd20del_1comp_path = path / 'tbpex5_0cd20_delete_1comp_outputParam.csv' # tbpex5_0cd20del_2comp_path = path / 'tbpex5_0cd20_delete_2comp_outputParam.csv' # load data odot069_clean_1comp = pd.read_csv(odot069_clean_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['clean noc',]) odot2_clean_1comp = pd.read_csv(odot2_clean_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['clean noc',]) three_clean_1comp = pd.read_csv(three_clean_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['clean noc',]) af488_1comp = pd.read_csv(af488_noc_1comp_path, sep=',').assign(sim=424*[280,], processing=424*['clean noc',]) af488_0cd20cas_1comp = pd.read_csv(af488_0cd20cas_1comp_path, sep=',').assign(sim=424*[280,], processing=424*['clean 0cd20',]) af488_ff67bcas_1comp = pd.read_csv(af488_ff67bcas_1comp_path, sep=',').assign(sim=424*[280,], processing=424*['clean ff67b',]) af488_1dot5cas_1comp = pd.read_csv(af488_1dot5cas_1comp_path, sep=',').assign(sim=422*[280,], processing=422*['clean thr1',]) af488_2cas_1comp = pd.read_csv(af488_2cas_1comp_path, sep=',').assign(sim=424*[280,], processing=424*['clean thr2',]) af488_2dot5cas_1comp = pd.read_csv(af488_2dot5cas_1comp_path, sep=',').assign(sim=424*[280,], processing=424*['clean thr3',]) hspex5_1comp = pd.read_csv(hspex5_noc_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['clean noc',]) hspex5_0cd20cas_1comp = pd.read_csv(hspex5_0cd20cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['clean 0cd20',]) hspex5_ff67bcas_1comp = pd.read_csv(hspex5_ff67bcas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['clean ff67b',]) hspex5_5cas_1comp = pd.read_csv(hspex5_5cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['clean thr1',]) hspex5_7cas_1comp = pd.read_csv(hspex5_7cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['clean thr2',]) hspex5_10cas_1comp = pd.read_csv(hspex5_10cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['clean thr3',]) odot069_dirty_1comp = pd.read_csv(odot069_dirty_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty noc',]) odot069_dirty_2comp = pd.read_csv(odot069_dirty_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty noc',]) odot2_dirty_1comp = pd.read_csv(odot2_dirty_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty noc',]) odot2_dirty_2comp = pd.read_csv(odot2_dirty_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty noc',]) three_dirty_1comp = pd.read_csv(three_dirty_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty noc',]) three_dirty_2comp = pd.read_csv(three_dirty_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty noc',]) af488luv_1comp = pd.read_csv(af488luv_noc_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty noc',]) af488luv_2comp = pd.read_csv(af488luv_noc_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty noc',]) tbpex5_1comp = pd.read_csv(tbpex5_noc_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty noc',]) tbpex5_2comp = pd.read_csv(tbpex5_noc_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty noc',]) odot069_dirty_0cd20cas_1comp = pd.read_csv(odot069_0cd20cas_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty 0cd20',]) odot069_dirty_0cd20cas_2comp = pd.read_csv(odot069_0cd20cas_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty 0cd20',]) odot2_dirty_0cd20cas_1comp = pd.read_csv(odot2_0cd20cas_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty 0cd20',]) odot2_dirty_0cd20cas_2comp = pd.read_csv(odot2_0cd20cas_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty 0cd20',]) three_dirty_0cd20cas_1comp = pd.read_csv(three_0cd20cas_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty 0cd20',]) three_dirty_0cd20cas_2comp = pd.read_csv(three_0cd20cas_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty 0cd20',]) odot069_dirty_2cas_1comp = pd.read_csv(odot069_2cas_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty thr1',]) odot069_dirty_2cas_2comp = pd.read_csv(odot069_2cas_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['dirty thr1',]) odot2_dirty_2cas_1comp = pd.read_csv(odot2_2cas_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty thr1',]) odot2_dirty_2cas_2comp = pd.read_csv(odot2_2cas_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['dirty thr1',]) three_dirty_2cas_1comp = pd.read_csv(three_2cas_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty thr1',]) three_dirty_2cas_2comp = pd.read_csv(three_2cas_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['dirty thr1',]) # load correction by label information as baseline af488luv_0cd20cas_1comp = pd.read_csv(af488luv_0cd20cas_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty 0cd20']) af488luv_0cd20cas_2comp = pd.read_csv(af488luv_0cd20cas_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty 0cd20']) af488luv_ff67bcas_1comp = pd.read_csv(af488luv_ff67bcas_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty ff67b']) af488luv_ff67bcas_2comp = pd.read_csv(af488luv_ff67bcas_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty ff67b']) af488luv_1dot5cas_1comp = pd.read_csv(af488luv_1dot5cas_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty thr1']) af488luv_1dot5cas_2comp = pd.read_csv(af488luv_1dot5cas_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty thr1']) af488luv_2cas_1comp = pd.read_csv(af488luv_2cas_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty thr2']) af488luv_2cas_2comp = pd.read_csv(af488luv_2cas_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty thr2']) af488luv_2dot5cas_1comp = pd.read_csv(af488luv_2dot5cas_1comp_path, sep=',').assign(sim=431*[280,], processing=431*['dirty thr3']) af488luv_2dot5cas_2comp = pd.read_csv(af488luv_2dot5cas_2comp_path, sep=',').assign(sim=431*[280,], processing=431*['dirty thr3']) tbpex5_0cd20cas_1comp = pd.read_csv(tbpex5_0cd20cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty 0cd20']) tbpex5_0cd20cas_2comp = pd.read_csv(tbpex5_0cd20cas_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty 0cd20']) tbpex5_ff67bcas_1comp = pd.read_csv(tbpex5_ff67bcas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty ff67b']) tbpex5_ff67bcas_2comp = pd.read_csv(tbpex5_ff67bcas_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty ff67b']) tbpex5_5cas_1comp = pd.read_csv(tbpex5_5cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty thr1']) tbpex5_5cas_2comp = pd.read_csv(tbpex5_5cas_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty thr1']) tbpex5_7cas_1comp = pd.read_csv(tbpex5_7cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty thr2']) tbpex5_7cas_2comp = pd.read_csv(tbpex5_7cas_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty thr2']) tbpex5_10cas_1comp = pd.read_csv(tbpex5_10cas_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty thr3']) tbpex5_10cas_2comp = pd.read_csv(tbpex5_10cas_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty thr3']) # af488luv_0cd20del_1comp = pd.read_csv(af488luv_0cd20del_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty del']) # af488luv_0cd20del_2comp = pd.read_csv(af488luv_0cd20del_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty del']) # tbpex5_0cd20del_1comp = pd.read_csv(tbpex5_0cd20del_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty del']) # tbpex5_0cd20del_2comp = pd.read_csv(tbpex5_0cd20del_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty del']) # # af488luv_0cd20avg_1comp = pd.read_csv(af488luv_0cd20avg_1comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty avg']) # af488luv_0cd20avg_2comp = pd.read_csv(af488luv_0cd20avg_2comp_path, sep=',').assign(sim=440*[280,], processing=440*['dirty avg']) # tbpex5_0cd20avg_1comp = pd.read_csv(tbpex5_0cd20avg_1comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty avg']) # tbpex5_0cd20avg_2comp = pd.read_csv(tbpex5_0cd20avg_2comp_path, sep=',').assign(sim=250*[31,], processing=250*['dirty avg']) # # control with prediction threshold # odot069_thresh2_1comp = pd.read_csv(odot069_thresh2_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # odot069_thresh2_2comp = pd.read_csv(odot069_thresh2_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # odot2_thresh2_1comp = pd.read_csv(odot2_thresh2_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # odot2_thresh2_2comp = pd.read_csv(odot2_thresh2_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # # one_thresh2_1comp = pd.read_csv(one_thresh2_1comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # # one_thresh2_2comp = pd.read_csv(one_thresh2_2comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # three_thresh2_1comp = pd.read_csv(three_thresh2_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # three_thresh2_2comp = pd.read_csv(three_thresh2_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nmanual thresh. pred.\n+ cut and shift corr.:\nscaler=robust\nthreshold=2',]) # # # pred. by best unet 0cd20 - check out from branch exp-220227-unet # odot069_0cd20_1comp = pd.read_csv(odot069_0cd20_1comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) # odot069_0cd20_2comp = pd.read_csv(odot069_0cd20_2comp_path, sep=',').assign(sim=300*[0.069,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) # odot2_0cd20_1comp = pd.read_csv(odot2_0cd20_1comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) # odot2_0cd20_2comp = pd.read_csv(odot2_0cd20_2comp_path, sep=',').assign(sim=300*[0.2,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) # # one_0cd20_1comp = pd.read_csv(one_0cd20_1comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) # # one_0cd20_2comp = pd.read_csv(one_0cd20_2comp_path, sep=',').assign(sim=300*[1,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) # three_0cd20_1comp = pd.read_csv(three_0cd20_1comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) # three_0cd20_2comp = pd.read_csv(three_0cd20_2comp_path, sep=',').assign(sim=300*[3,], processing=300*['Peak artifacts,\nautomatic U-Net pred.\n+ cut and shift corr.:\nscaler=quantile transf.,\nlarge model (200MB)',]) all_param = pd.concat([odot069_clean_1comp, odot2_clean_1comp, three_clean_1comp, af488_1comp, af488_0cd20cas_1comp, af488_ff67bcas_1comp, af488_1dot5cas_1comp, af488_2cas_1comp, af488_2dot5cas_1comp, hspex5_1comp, hspex5_0cd20cas_1comp, hspex5_ff67bcas_1comp, hspex5_5cas_1comp, hspex5_7cas_1comp, hspex5_10cas_1comp, odot069_dirty_1comp, odot2_dirty_1comp, three_dirty_1comp, odot069_dirty_2comp, odot2_dirty_2comp, three_dirty_2comp, odot069_dirty_0cd20cas_1comp, odot2_dirty_0cd20cas_1comp, three_dirty_0cd20cas_1comp, odot069_dirty_0cd20cas_2comp, odot2_dirty_0cd20cas_2comp, three_dirty_0cd20cas_2comp, odot069_dirty_2cas_1comp, odot2_dirty_2cas_1comp, three_dirty_2cas_1comp, odot069_dirty_2cas_2comp, odot2_dirty_2cas_2comp, three_dirty_2cas_2comp, af488luv_1comp, tbpex5_1comp, af488luv_2comp, tbpex5_2comp, af488luv_0cd20cas_1comp, tbpex5_0cd20cas_1comp, af488luv_0cd20cas_2comp, tbpex5_0cd20cas_2comp, af488luv_ff67bcas_1comp, tbpex5_ff67bcas_1comp, af488luv_ff67bcas_2comp, tbpex5_ff67bcas_2comp, af488luv_1dot5cas_1comp, tbpex5_5cas_1comp, af488luv_1dot5cas_2comp, tbpex5_5cas_2comp, af488luv_2cas_1comp, tbpex5_7cas_1comp, af488luv_2cas_2comp, tbpex5_7cas_2comp, af488luv_2dot5cas_1comp, tbpex5_10cas_1comp, af488luv_2dot5cas_2comp, tbpex5_10cas_2comp]) # assert the following fit parameters assert set(all_param['Dimen']) == {'2D', '3D'} assert set(all_param[all_param['Dimen'] == '2D']['sim'] ) == {0.069, 0.2, 3.0} assert set(all_param[all_param['Dimen'] == '3D']['sim'] ) == {31.0, 280.0} assert set(all_param[(all_param['Dimen'] == '3D') & (all_param['sim'] == 31.0)]['AR1']) == {6.0} assert set(all_param[(all_param['Dimen'] == '3D') & (all_param['sim'] == 280.0)]['AR1']) == {5.0} assert set(all_param['Diff_eq']) == {'Equation 1A', 'Equation 1B'} assert set(all_param[all_param['Diff_eq'] == 'Equation 1A']['sim'] ) == {0.069, 0.2, 3.0} assert set(all_param[all_param['Diff_eq'] == 'Equation 1B']['sim'] ) == {31.0, 280.0} assert set(all_param['Triplet_eq']) == {'Triplet Eq 2B', 'no triplet'} assert set(all_param[all_param['Triplet_eq'] == 'no triplet']['sim'] ) == {0.069, 0.2, 3.0, 280.0} assert set(all_param[all_param['Triplet_eq'] == 'Triplet Eq 2B']['sim'] ) == {31.0} assert set(all_param['alpha1']) == {1.0} assert set(all_param['xmin']) == {0.001018, 1.0} assert set(all_param[all_param['xmin'] == 1.0]['sim'] ) == {0.069, 0.2, 3.0} assert set(all_param[all_param['xmin'] == 0.001018]['sim'] ) == {31.0, 280.0} assert set(all_param['xmax']) == {100.66329, 469.762042, 939.52409, 3584.0, 4096.0, 7168.0, 8192.0} # biological pex5 correlations were fitted with xmax=1000 assert set(all_param[all_param['xmax'] == 939.52409]['sim']) == {31.0} # biological af488 correlations were fitted with xmax=500 for peak artifacts, # and xmax=100 for correlations without peak artifacts, assert set(all_param[all_param['xmax'].isin( [100.66329, 469.762042])]['sim']) == {280.0} assert set(all_param[all_param['xmax'] == 100.66329]['processing'] ) == {'clean 0cd20', 'clean ff67b', 'clean noc', 'clean thr1', 'clean thr2', 'clean thr3'} assert set(all_param[all_param['xmax'] == 469.762042]['processing'] ) == {'dirty 0cd20', 'dirty ff67b', 'dirty noc', 'dirty thr1', 'dirty thr2', 'dirty thr3'} # simulated correlations with and without peak artifacts were fitted with # xmax=8192 (except see below) assert set(all_param[all_param['xmax'].isin( [3584.0, 4096.0, 7168.0, 8192.0])]['sim']) == {0.069, 0.2, 3.0} assert set(all_param[all_param['xmax'] == 8192.0]['processing'] ) == {'clean noc', 'dirty 0cd20', 'dirty noc', 'dirty thr1'} # 283, 293, or 282 of 300 correlations with peak artifacts and 0cd20 # prediction and cut and stitch correction were fitted with xmax=8192 # (3 groups depending on simulated molecule speed) # this failed for 41 correlations which were too short and thus # automatically got xmax={3584, 4096, 7168} assert len(set(all_param[(all_param['xmax'] == 8192.0) & (all_param['processing'] == 'dirty 0cd20') & (all_param['sim'] == 0.069)].index)) == 283 assert len(set(all_param[(all_param['xmax'] == 8192.0) & (all_param['processing'] == 'dirty 0cd20') & (all_param['sim'] == 0.2)].index)) == 293 assert len(set(all_param[(all_param['xmax'] == 8192.0) & (all_param['processing'] == 'dirty 0cd20') & (all_param['sim'] == 3.0)].index)) == 282 assert set(all_param[all_param['xmax'].isin( [3584.0, 4096.0, 7168.0])]['processing']) == {'dirty 0cd20'} assert len(set(all_param[all_param['xmax'].isin( [3584.0, 4096.0, 7168.0])]['processing'].index)) == 41 pprint(all_param.keys()) all_param = all_param[['name_of_plot', 'Diff_species', 'N (FCS)', 'A1', 'txy1', 'sim', 'processing', 'A2', 'txy2']] with pd.option_context("max_colwidth", 1000): display(all_param)
all_param = prepare_all_param(all_param) # with pd.option_context("max_colwidth", 1000): # display(all_param[['legend', 't', 'A', 'expected transit time', 'sim', 'processing']]) pub_cond1 = ((all_param['legend'] == '$\\tau_D$ from\n1 species fit') & (all_param['processing'].isin( ['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc', 'dirty 0cd20', 'dirty thr2'])) & ~((all_param['processing'].isin( ['dirty noc', 'dirty 0cd20', 'dirty thr2'])) & (all_param['expected transit time'] == 0.040253767881946526))) pub_cond2 = ((all_param['legend'] == '$\\tau_D$ from\nfast sp. of 2 sp. fit') & ((all_param['processing'].isin( ['dirty noc', 'dirty 0cd20', 'dirty thr2'])) & (all_param['expected transit time'] == 0.040253767881946526))) pub_param = all_param[pub_cond1 | pub_cond2] pub_param
before dropping NaNs 1 species fit: 11773 slow sp of 2 sp fit: 6831 fast sp of 2 sp fit: 6831 after dropping NaNs 1 species fit: 11773 slow sp of 2 sp fit: 6228 fast sp of 2 sp fit: 6577
legend t N \ 0 $\tau_D$ from\n1 species fit 150.165642 13.940974 1 $\tau_D$ from\n1 species fit 133.758850 16.272292 2 $\tau_D$ from\n1 species fit 109.396491 17.590156 3 $\tau_D$ from\n1 species fit 140.176075 13.739355 4 $\tau_D$ from\n1 species fit 520.784146 10.985121 ... ... ... ... 22882 $\tau_D$ from\nfast sp. of 2 sp. fit 0.045014 10.206993 22884 $\tau_D$ from\nfast sp. of 2 sp. fit 0.053724 11.111890 22886 $\tau_D$ from\nfast sp. of 2 sp. fit 0.046132 10.239869 22888 $\tau_D$ from\nfast sp. of 2 sp. fit 0.039516 15.640813 22890 $\tau_D$ from\nfast sp. of 2 sp. fit 0.038100 14.548366 expected transit time sim processing 0 163.348623 0.069 clean noc 1 163.348623 0.069 clean noc 2 163.348623 0.069 clean noc 3 163.348623 0.069 clean noc 4 163.348623 0.069 clean noc ... ... ... ... 22882 0.040254 280.000 dirty thr2 22884 0.040254 280.000 dirty thr2 22886 0.040254 280.000 dirty thr2 22888 0.040254 280.000 dirty thr2 22890 0.040254 280.000 dirty thr2 [6792 rows x 6 columns]
list(set(all_param['expected transit time']))[::-1]
56.35527503472514 3.7570183356483424 163.34862328905834 0.040253767881946526 0.36358241957887183 - the following constraints are given by the nanoletters template:
- one column: up to 240 points wide (3.33 in.)
- double-column: between 300 and 504 points (4.167 in. and 7 in.).
- maximum depth: 660 points (9.167 in.) including the caption (allow 12 pts. For each line of caption text)
- Lettering should be no smaller than 4.5 points in the final published format. The text should be legible when the graphic is viewed full-size. Helvetica or Arial fonts work well for lettering. Lines should be no thinner than 0.5 point.
- statistics application data
- we have the following data
print(set(pub_param.sim)) print(set(pub_param.processing))
{0.069, 0.2, 3.0, 280.0, 31.0} {'dirty 0cd20', 'clean thr2', 'clean 0cd20', 'dirty thr2', 'dirty noc', 'clean noc'}
- we only look at the applied experiments (
sim in [31, 280]
). forclean noc
anddirty noc
of these see comparison of correction methods.pub_param.query('sim == 31.0 and processing == "clean thr2"').describe()
t N expected transit time sim count 250.000000 250.000000 250.000000 250.0 mean 0.340037 1.227446 0.363582 31.0 std 0.028890 0.286673 0.000000 0.0 min 0.243326 0.779710 0.363582 31.0 25% 0.326529 0.958762 0.363582 31.0 50% 0.347706 1.274026 0.363582 31.0 75% 0.360155 1.454889 0.363582 31.0 max 0.399503 2.335252 0.363582 31.0
pub_param.query('sim == 31.0 and processing == "clean 0cd20"').describe()
t N expected transit time sim count 250.000000 250.000000 250.000000 250.0 mean 0.320864 1.228129 0.363582 31.0 std 0.020821 0.315381 0.000000 0.0 min 0.249462 0.680973 0.363582 31.0 25% 0.308254 0.955120 0.363582 31.0 50% 0.323617 1.289567 0.363582 31.0 75% 0.335541 1.477269 0.363582 31.0 max 0.359334 2.354698 0.363582 31.0
pub_param.query('sim == 31.0 and processing == "dirty thr2"').describe()
t N expected transit time sim count 250.000000 250.000000 250.000000 250.0 mean 0.365504 1.041985 0.363582 31.0 std 0.030503 0.075999 0.000000 0.0 min 0.305025 0.878546 0.363582 31.0 25% 0.344342 0.989282 0.363582 31.0 50% 0.361656 1.021738 0.363582 31.0 75% 0.382897 1.085336 0.363582 31.0 max 0.554518 1.241418 0.363582 31.0
pub_param.query('sim == 31.0 and processing == "dirty 0cd20"').describe()
t N expected transit time sim count 250.000000 250.000000 250.000000 250.0 mean 0.326603 1.034571 0.363582 31.0 std 0.027692 0.089300 0.000000 0.0 min 0.259626 0.831271 0.363582 31.0 25% 0.309170 0.979233 0.363582 31.0 50% 0.324881 1.020413 0.363582 31.0 75% 0.343199 1.071515 0.363582 31.0 max 0.429618 1.247246 0.363582 31.0
pub_param.query('sim == 280 and processing == "clean thr2"').describe()
t N expected transit time sim count 424.000000 424.000000 4.240000e+02 424.0 mean 0.038106 14.453011 4.025377e-02 280.0 std 0.001021 0.268328 1.389418e-17 0.0 min 0.035056 13.466612 4.025377e-02 280.0 25% 0.037439 14.320043 4.025377e-02 280.0 50% 0.038121 14.468799 4.025377e-02 280.0 75% 0.038790 14.635632 4.025377e-02 280.0 max 0.040840 15.130011 4.025377e-02 280.0
pub_param.query('sim == 280 and processing == "clean 0cd20"').describe()
t N expected transit time sim count 424.000000 424.000000 4.240000e+02 424.0 mean 0.039574 14.335000 4.025377e-02 280.0 std 0.001040 0.263291 1.389418e-17 0.0 min 0.037191 13.412392 4.025377e-02 280.0 25% 0.038880 14.205747 4.025377e-02 280.0 50% 0.039576 14.341568 4.025377e-02 280.0 75% 0.040279 14.505898 4.025377e-02 280.0 max 0.042985 14.988332 4.025377e-02 280.0
pub_param.query('sim == 280 and processing == "dirty thr2"').describe()
t N expected transit time sim count 440.000000 440.000000 440.000000 440.0 mean 0.043988 11.886572 0.040254 280.0 std 0.004865 2.173709 0.000000 0.0 min 0.032468 4.292937 0.040254 280.0 25% 0.040648 10.296895 0.040254 280.0 50% 0.043329 11.979796 0.040254 280.0 75% 0.046810 13.531079 0.040254 280.0 max 0.065194 16.797951 0.040254 280.0
pub_param.query('sim == 280 and processing == "dirty 0cd20"').describe()
t N expected transit time sim count 440.000000 440.000000 440.000000 440.0 mean 0.038934 15.106186 0.040254 280.0 std 0.005460 1.484036 0.000000 0.0 min 0.021356 6.267150 0.040254 280.0 25% 0.035229 14.334271 0.040254 280.0 50% 0.038763 15.248202 0.040254 280.0 75% 0.042262 16.039287 0.040254 280.0 max 0.062131 18.110889 0.040254 280.0
- we have the following data
- Plot D v1: boxen + strip plots
- the following was the first version of plots done with boxen plots and
overlayed strip plots. I later shifted to violin plots. I only archive one
of those plots just as an example.
- plot biological af488 data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)], order=['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc', 'dirty 0cd20', 'dirty thr2'], x='t', height=3, aspect=3/3, hue=None, xlim=None, add_text='plot4_compare-prediction-af488_transit-times')
- plot biological af488 data - particle numbers
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)], order=['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc', 'dirty 0cd20', 'dirty thr2'], x='N', height=3, aspect=3/3, hue=None, xlim=None, add_text='plot4_compare-prediction-af488_particle-numbers')
- plot biological pex5 data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(pub_param[(pub_param['expected transit time'] == 0.36358241957887183)], order=['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc', 'dirty 0cd20', 'dirty thr2'], x='t', height=3, aspect=3/3, hue=None, xlim=[0.1, 10], add_text='plot4_compare-prediction-pex5_transit-times')
- for supplementary, plot 1 and 2 species fits, as well as additional
prediction methods, for biological af488 data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') simplot(all_param[(all_param['expected transit time'] == 0.040253767881946526)], order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1', 'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20', 'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'], x='t', height=5, aspect=3/5, hue='legend', xlim=None, add_text='plot4_compare-prediction-af488_transit-times_allfits')
- for supplementary, plot 1 and 2 species fits, as well as additional
prediction methods, for biological af488 data - particle numbers
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') simplot(all_param[(all_param['expected transit time'] == 0.040253767881946526)], order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1', 'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20', 'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'], x='N', height=5, aspect=3/5, hue='legend', xlim=None, add_text='plot4_compare-prediction-af488_particle-numbers_allfits')
- for supplementary, plot 1 and 2 species fits, as well as additional
prediction methods, for biological pex5 data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)], order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1', 'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20', 'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'], x='t', height=5, aspect=3/5, hue='legend', xlim=[0.1, 10], add_text='plot4_compare-prediction-pex5_transit-times_allfits')
- for supplementary, plot 1 and 2 species fits, as well as additional
prediction methods, for biological pex5 data - particle numbers
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)], order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1', 'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20', 'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'], x='N', height=5, aspect=3/5, hue='legend', xlim=None, add_text='plot4_compare-prediction-pex5_particle-numbers_allfits')
- for supplementary, plot 1 and 2 species fits, as well as additional
prediction methods, for simulated data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(all_param[~(all_param['expected transit time'].isin( [0.040253767881946526, 0.36358241957887183]))], x='t', height=5, aspect=3/5, hue='legend', xlim=[1, 10000], add_text='plot4_compare-prediction-sim_transit-times')
/home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/seaborn/categorical.py:1143: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison hue_mask = self.plot_hues[i] == hue_level /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/seaborn/categorical.py:1143: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison hue_mask = self.plot_hues[i] == hue_level /home/lex/Programme/miniconda3/envs/tf/lib/python3.9/site-packages/seaborn/categorical.py:1143: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison hue_mask = self.plot_hues[i] == hue_level
- plot biological af488 data - transit times
- the exemplary plot:
- the following was the first version of plots done with boxen plots and
overlayed strip plots. I later shifted to violin plots. I only archive one
of those plots just as an example.
- Plot D v2: violin plots
- plot biological af488 data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)], order=['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc', 'dirty 0cd20', 'dirty thr2'], x='t', height=3, aspect=3/3, hue=None, xlim=None, kind='violin', add_text='plot4_compare-prediction-af488_transit-times')
0 [-3.0, -2.0, -1.0, 0.0, 1.0, 2.0] [0.001, 0.01, 0.1, 1.0, 10.0, 100.0] /tmp/ipykernel_15333/2452455692.py:230: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels(xlab_power)
- plot biological af488 data - particle numbers
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') simplot(pub_param[(pub_param['expected transit time'] == 0.040253767881946526)], order=['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc', 'dirty 0cd20', 'dirty thr2'], x='N', height=3, aspect=3/3, hue=None, xlim=None, kind='violin', add_text='plot4_compare-prediction-af488_particle-numbers')
- plot biological pex5 data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) # one plot with the correct ratio simplot(pub_param[(pub_param['expected transit time'] == 0.36358241957887183)], order=['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc', 'dirty 0cd20', 'dirty thr2'], x='t', height=3, aspect=3/3, hue=None, xlim=[-1, 0], kind='violin', add_text='plot4_compare-prediction-pex5_transit-times') # one plot to extract xlabels label positions simplot(pub_param[(pub_param['expected transit time'] == 0.36358241957887183)], order=['clean noc', 'clean 0cd20', 'clean thr2', 'dirty noc', 'dirty 0cd20', 'dirty thr2'], x='t', height=2.5, aspect=2.5/3, hue=None, xlim=[-1, 0], kind='violin', add_text='plot4_compare-prediction-pex5_transit-times_XLABELS')
0 [-1.0, -0.8, -0.6, -0.3999999999999999, -0.19999999999999996, 0.0] [0.1, 0.1585, 0.2512, 0.3981, 0.631, 1.0] /tmp/ipykernel_15333/2452455692.py:230: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels(xlab_power) 0 [-1.0, -0.75, -0.5, -0.25, 0.0] [0.1, 0.1778, 0.3162, 0.5623, 1.0] /tmp/ipykernel_15333/2452455692.py:230: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels(xlab_power)
- for supplementary, plot 1 and 2 species fits, as well as additional
prediction methods, for biological af488 data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') simplot(all_param[(all_param['expected transit time'] == 0.040253767881946526)], order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1', 'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20', 'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'], x='t', height=5, aspect=3/5, hue='legend', xlim=None, kind='violin', add_text='plot4_compare-prediction-af488_transit-times_allfits')
0 [-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0] [0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, 10000.0] /tmp/ipykernel_15333/2452455692.py:230: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels(xlab_power)
- for supplementary, plot 1 and 2 species fits, as well as additional
prediction methods, for biological af488 data - particle numbers
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') simplot(all_param[(all_param['expected transit time'] == 0.040253767881946526)], order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1', 'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20', 'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'], x='N', height=5, aspect=3/5, hue='legend', xlim=None, kind='violin', add_text='plot4_compare-prediction-af488_particle-numbers_allfits')
- for supplementary, plot 1 and 2 species fits, as well as additional
prediction methods, for biological pex5 data - transit times
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)], order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1', 'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20', 'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'], x='t', height=5, aspect=3/5, hue='legend', xlim=None, kind='violin', add_text='plot4_compare-prediction-pex5_transit-times_allfits')
0 [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0] [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0] /tmp/ipykernel_15333/2452455692.py:230: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels(xlab_power)
- for supplementary, plot 1 and 2 species fits, as well as additional
prediction methods, for biological pex5 data - particle numbers
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') simplot(all_param[(all_param['expected transit time'] == 0.36358241957887183)], order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1', 'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20', 'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'], x='N', height=5, aspect=3/5, hue='legend', xlim=None, kind='violin', add_text='plot4_compare-prediction-pex5_particle-numbers_allfits')
- I decided not to use simulated plots for this figure, that’s why I stopped
doing the correlations midway. As can be seen be the incomplete data, the
automated and manual approaches worked in simulated data as well.
sns.set_theme(style="whitegrid", font_scale=1, palette='colorblind', context='paper') # sns.set(rc={'figure.figsize':(3.33, 7)}) simplot(all_param[~(all_param['expected transit time'] .isin([0.040253767881946526, 0.36358241957887183]))], order=['clean noc', 'clean 0cd20', 'clean ff67b', 'clean thr1', 'clean thr2', 'clean thr3', 'dirty noc', 'dirty 0cd20', 'dirty ff67b', 'dirty thr1', 'dirty thr2', 'dirty thr3'], x='t', height=5, aspect=3/5, hue='legend', xlim=None, kind='violin', add_text='plot4_compare-prediction-sim_transit-times')
0 [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0] [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0] 1 [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0] [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0] 2 [-6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0] [0.0, 0.0001, 0.01, 1.0, 100.0, 10000.0, 1000000.0] /tmp/ipykernel_15333/2452455692.py:230: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels(xlab_power)
- plot biological af488 data - transit times
2.7.11.5 Plot E: correction methods corr&fit examples
- call
jupyter-set-output-directory
andsimulations-prepare-modules
./data/exp-220316-publication1/jupyter
/home/lex/Programme/drmed-git 2023-01-19 16:29:03.924662: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-01-19 16:29:03.924767: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
- let’s load and plot 3 different base molecule speeds (varying molecule numbers): 0.069, 0.2, and 3.0 um2/s respectively.
- this time for supplementary plot of examples of individual correlations
and fits
# dirty correlations - check out from branch exp-220227-unet path1 = Path('/home/lex/Programme/drmed-git/data/exp-220227-unet/2022-04-25_simulations/') odot069_0dot01_dirty_1comp_ex_path = path1 / '0.069-all-results/0dot069_dirty_1comp_example-0dot01-2657_rawFitData.csv' odot069_0dot01_dirty_1comp_av_path = path1 / '0.069-all-results/0dot069_dirty_1comp_100curves-avg-0dot01_rawFitData.csv' odot069_0dot1_dirty_1comp_ex_path = path1 / '0.069-all-results/0dot069_dirty_1comp_example-0dot1-1614_rawFitData.csv' odot069_0dot1_dirty_1comp_av_path = path1 / '0.069-all-results/0dot069_dirty_1comp_100curves-avg-0dot1_rawFitData.csv' odot069_1dot0_dirty_1comp_ex_path = path1 / '0.069-all-results/0dot069_dirty_1comp_example-1dot0-0024_rawFitData.csv' odot069_1dot0_dirty_1comp_av_path = path1 / '0.069-all-results/0dot069_dirty_1comp_100curves-avg-1dot0_rawFitData.csv' odot2_0dot01_dirty_1comp_ex_path = path1 / '0.2-all-results/0dot2_dirty_1comp_example-0dot01-2219_rawFitData.csv' odot2_0dot01_dirty_1comp_av_path = path1 / '0.2-all-results/0dot2_dirty_1comp_100curves-avg-0dot01_rawFitData.csv' odot2_0dot1_dirty_1comp_ex_path = path1 / '0.2-all-results/0dot2_dirty_1comp_example-0dot1-0312_rawFitData.csv' odot2_0dot1_dirty_1comp_av_path = path1 / '0.2-all-results/0dot2_dirty_1comp_100curves-avg-0dot1_rawFitData.csv' odot2_1dot0_dirty_1comp_ex_path = path1 / '0.2-all-results/0dot2_dirty_1comp_example-1dot0-0700_rawFitData.csv' odot2_1dot0_dirty_1comp_av_path = path1 / '0.2-all-results/0dot2_dirty_1comp_100curves-avg-1dot0_rawFitData.csv' three_0dot01_dirty_1comp_ex_path = path1 / '3.0-all-results/3dot0_dirty_1comp_example-0dot01-0501_rawFitData.csv' three_0dot01_dirty_1comp_av_path = path1 / '3.0-all-results/3dot0_dirty_1comp_100curves-avg-0dot01_rawFitData.csv' three_0dot1_dirty_1comp_ex_path = path1 / '3.0-all-results/3dot0_dirty_1comp_example-0dot1-2408_rawFitData.csv' three_0dot1_dirty_1comp_av_path = path1 / '3.0-all-results/3dot0_dirty_1comp_100curves-avg-0dot1_rawFitData.csv' three_1dot0_dirty_1comp_ex_path = path1 / '3.0-all-results/3dot0_dirty_1comp_example-1dot0-0400_rawFitData.csv' three_1dot0_dirty_1comp_av_path = path1 / '3.0-all-results/3dot0_dirty_1comp_100curves-avg-1dot0_rawFitData.csv' # clean correlations path2 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220719_threshold-prediction/threshold-all-results') odot069_clean_1comp_ex_path = path2 / '0dot069_clean_1comp_example-0021_rawFitData.csv' odot069_clean_1comp_av_path = path2 / '0dot069_clean_1comp_300curves-avg_rawFitData.csv' odot2_clean_1comp_ex_path = path2 / '0dot2_clean_1comp_example-0001_rawFitData.csv' odot2_clean_1comp_av_path = path2 / '0dot2_clean_1comp_300curves-avg_rawFitData.csv' three_clean_1comp_ex_path = path2 / '3dot0_clean_1comp_example-0002_rawFitData.csv' three_clean_1comp_av_path = path2 / '3dot0_clean_1comp_300curves-avg_rawFitData.csv' # load correction methods for comparison - here segmentation is given by simulations path4 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/220517_simulations/') odot069_labcas_1comp_ex_path = path4 / '0.069-all-results/0dot069_lab_cas_1comp_example-1642_rawFitData.csv' odot069_labcas_1comp_av_path = path4 / '0.069-all-results/0dot069_lab_cas_1comp_300curves-avg_rawFitData.csv' odot2_labcas_1comp_ex_path = path4 / '0.2-all-results/0dot2_lab_cas_1comp_example-0304_rawFitData.csv' odot2_labcas_1comp_av_path = path4 / '0.2-all-results/0dot2_lab_cas_1comp_300curves-avg_rawFitData.csv' three_labcas_1comp_ex_path = path4 / '3.0-all-results/3dot0_lab_cas_1comp_example-0507_rawFitData.csv' three_labcas_1comp_av_path = path4 / '3.0-all-results/3dot0_lab_cas_1comp_300curves-avg_rawFitData.csv' odot069_labdel_1comp_ex_path = path4 / '0.069-all-results/0dot069_lab_del_1comp_example-2666_rawFitData.csv' odot069_labdel_1comp_av_path = path4 / '0.069-all-results/0dot069_lab_del_1comp_300curves-avg_rawFitData.csv' odot2_labdel_1comp_ex_path = path4 / '0.2-all-results/0dot2_lab_del_1comp_example-0304_rawFitData.csv' odot2_labdel_1comp_av_path = path4 / '0.2-all-results/0dot2_lab_del_1comp_300curves-avg_rawFitData.csv' three_labdel_1comp_ex_path = path4 / '3.0-all-results/3dot0_lab_del_1comp_example-2402_rawFitData.csv' three_labdel_1comp_av_path = path4 / '3.0-all-results/3dot0_lab_del_1comp_300curves-avg_rawFitData.csv' path5 = Path('/home/lex/Programme/drmed-git/data/exp-220316-publication1/230103_avg-correction/') odot069_labavg_1comp_ex_path = path5 / 'all-results/0dot069_lab_avg_1comp_example-0039_rawFitData.csv' odot069_labavg_1comp_av_path = path5 / 'all-results/0dot069_lab_avg_1comp_300curves-avg_rawFitData.csv' odot2_labavg_1comp_ex_path = path5 / 'all-results/0dot2_lab_avg_1comp_example-0006_rawFitData.csv' odot2_labavg_1comp_av_path = path5 / 'all-results/0dot2_lab_avg_1comp_300curves-avg_rawFitData.csv' three_labavg_1comp_ex_path = path5 / 'all-results/three_lab_avg_1comp_example-0002_rawFitData.csv' three_labavg_1comp_av_path = path5 / 'all-results/three_lab_avg_1comp_300curves-avg_rawFitData.csv' # load data - clean kwargs = dict(sep=',', usecols=[0, 1, 2], na_values=' ', header=0, names=['lag time [ms]', 'correlation', 'fit']) odot069_clean_1comp_ex = pd.read_csv(odot069_clean_1comp_ex_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Ex: No artifacts,\nno correction',]) odot069_clean_1comp_av = pd.read_csv(odot069_clean_1comp_av_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Avg: No artifacts,\nno correction',]) odot2_clean_1comp_ex = pd.read_csv(odot2_clean_1comp_ex_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Ex: No artifacts,\nno correction',]) odot2_clean_1comp_av = pd.read_csv(odot2_clean_1comp_av_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Avg: No artifacts,\nno correction',]) three_clean_1comp_ex = pd.read_csv(three_clean_1comp_ex_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Ex: No artifacts,\nno correction',]) three_clean_1comp_av = pd.read_csv(three_clean_1comp_av_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Avg: No artifacts,\nno correction',]) # load data - dirty odot069_0dot01_dirty_1comp_ex = pd.read_csv(odot069_0dot01_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Ex1: Peak artifacts,\nno correction',]) odot069_0dot1_dirty_1comp_ex = pd.read_csv(odot069_0dot1_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Ex2: Peak artifacts,\nno correction',]) odot069_1dot0_dirty_1comp_ex = pd.read_csv(odot069_1dot0_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Ex3: Peak artifacts,\nno correction',]) odot069_0dot01_dirty_1comp_av = pd.read_csv(odot069_0dot01_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Avg1: Peak artifacts,\nno correction',]) odot069_0dot1_dirty_1comp_av = pd.read_csv(odot069_0dot1_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Avg2: Peak artifacts,\nno correction',]) odot069_1dot0_dirty_1comp_av = pd.read_csv(odot069_1dot0_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Avg3: Peak artifacts,\nno correction',]) odot2_0dot01_dirty_1comp_ex = pd.read_csv(odot2_0dot01_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Ex1: Peak artifacts,\nno correction',]) odot2_0dot1_dirty_1comp_ex = pd.read_csv(odot2_0dot1_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Ex2: Peak artifacts,\nno correction',]) odot2_1dot0_dirty_1comp_ex = pd.read_csv(odot2_1dot0_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Ex3: Peak artifacts,\nno correction',]) odot2_0dot01_dirty_1comp_av = pd.read_csv(odot2_0dot01_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Avg1: Peak artifacts,\nno correction',]) odot2_0dot1_dirty_1comp_av = pd.read_csv(odot2_0dot1_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Avg2: Peak artifacts,\nno correction',]) odot2_1dot0_dirty_1comp_av = pd.read_csv(odot2_1dot0_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Avg3: Peak artifacts,\nno correction',]) three_0dot01_dirty_1comp_ex = pd.read_csv(three_0dot01_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Ex1: Peak artifacts,\nno correction',]) three_0dot1_dirty_1comp_ex = pd.read_csv(three_0dot1_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Ex2: Peak artifacts,\nno correction',]) three_1dot0_dirty_1comp_ex = pd.read_csv(three_1dot0_dirty_1comp_ex_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Ex3: Peak artifacts,\nno correction',]) three_0dot01_dirty_1comp_av = pd.read_csv(three_0dot01_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Avg1: Peak artifacts,\nno correction',]) three_0dot1_dirty_1comp_av = pd.read_csv(three_0dot1_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Avg2: Peak artifacts,\nno correction',]) three_1dot0_dirty_1comp_av = pd.read_csv(three_1dot0_dirty_1comp_av_path, **kwargs).T.assign(sim=3*[3.0,], processing=3*['Avg3: Peak artifacts,\nno correction',]) # load correction methods odot069_labcas_1comp_ex = pd.read_csv(odot069_labcas_1comp_ex_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Ex: Peak artifacts,\nsim.-based pred.\n+ cut and shift corr.',]) odot069_labcas_1comp_av = pd.read_csv(odot069_labcas_1comp_av_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Avg: Peak artifacts,\nsim.-based pred.\n+ cut and shift corr.',]) odot2_labcas_1comp_ex = pd.read_csv(odot2_labcas_1comp_ex_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Ex: Peak artifacts,\nsim.-based pred.\n+ cut and shift corr.',]) odot2_labcas_1comp_av = pd.read_csv(odot2_labcas_1comp_av_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Avg: Peak artifacts,\nsim.-based pred.\n+ cut and shift corr.',]) three_labcas_1comp_ex = pd.read_csv(three_labcas_1comp_ex_path, **kwargs).T.assign(sim=3*[3,], processing=3*['Ex: Peak artifacts,\nsim.-based pred.\n+ cut and shift corr.',]) three_labcas_1comp_av = pd.read_csv(three_labcas_1comp_av_path, **kwargs).T.assign(sim=3*[3,], processing=3*['Avg: Peak artifacts,\nsim.-based pred.\n+ cut and shift corr.',]) odot069_labdel_1comp_ex = pd.read_csv(odot069_labdel_1comp_ex_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Ex: Peak artifacts,\nsim.-based prediction\n+ weight=0 correction',]) odot069_labdel_1comp_av = pd.read_csv(odot069_labdel_1comp_av_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Avg: Peak artifacts,\nsim.-based prediction\n+ weight=0 correction',]) odot2_labdel_1comp_ex = pd.read_csv(odot2_labdel_1comp_ex_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Ex: Peak artifacts,\nsim.-based prediction\n+ weight=0 correction',]) odot2_labdel_1comp_av = pd.read_csv(odot2_labdel_1comp_av_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Avg: Peak artifacts,\nsim.-based prediction\n+ weight=0 correction',]) three_labdel_1comp_ex = pd.read_csv(three_labdel_1comp_ex_path, **kwargs).T.assign(sim=3*[3,], processing=3*['Ex: Peak artifacts,\nsim.-based prediction\n+ weight=0 correction',]) three_labdel_1comp_av = pd.read_csv(three_labdel_1comp_av_path, **kwargs).T.assign(sim=3*[3,], processing=3*['Avg: Peak artifacts,\nsim.-based prediction\n+ weight=0 correction',]) odot069_labavg_1comp_ex = pd.read_csv(odot069_labavg_1comp_ex_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Ex: Peak artifacts,\nsim.-based pred.\n+ averaging corr.',]) odot069_labavg_1comp_av = pd.read_csv(odot069_labavg_1comp_av_path, **kwargs).T.assign(sim=3*[0.069,], processing=3*['Avg: Peak artifacts,\nsim.-based pred.\n+ averaging corr.',]) odot2_labavg_1comp_ex = pd.read_csv(odot2_labavg_1comp_ex_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Ex: Peak artifacts,\nsim.-based pred.\n+ averaging corr.',]) odot2_labavg_1comp_av = pd.read_csv(odot2_labavg_1comp_av_path, **kwargs).T.assign(sim=3*[0.2,], processing=3*['Avg: Peak artifacts,\nsim.-based pred.\n+ averaging corr.',]) three_labavg_1comp_ex = pd.read_csv(three_labavg_1comp_ex_path, **kwargs).T.assign(sim=3*[3,], processing=3*['Ex: Peak artifacts,\nsim.-based pred.\n+ averaging corr.',]) three_labavg_1comp_av = pd.read_csv(three_labavg_1comp_av_path, **kwargs).T.assign(sim=3*[3,], processing=3*['Avg: Peak artifacts,\nsim.-based pred.\n+ averaging corr.',]) all_fit = pd.concat( [odot069_clean_1comp_ex, odot069_clean_1comp_av, odot2_clean_1comp_ex, odot2_clean_1comp_av, three_clean_1comp_ex, three_clean_1comp_av, odot069_0dot01_dirty_1comp_ex, odot069_0dot01_dirty_1comp_av, odot2_0dot01_dirty_1comp_ex, odot2_0dot01_dirty_1comp_av, three_0dot01_dirty_1comp_ex, three_0dot01_dirty_1comp_av, odot069_0dot1_dirty_1comp_ex, odot069_0dot1_dirty_1comp_av, odot2_0dot1_dirty_1comp_ex, odot2_0dot1_dirty_1comp_av, three_0dot1_dirty_1comp_ex, three_0dot1_dirty_1comp_av, odot069_1dot0_dirty_1comp_ex, odot069_1dot0_dirty_1comp_av, odot2_1dot0_dirty_1comp_ex, odot2_1dot0_dirty_1comp_av, three_1dot0_dirty_1comp_ex, three_1dot0_dirty_1comp_av, odot069_labdel_1comp_ex, odot069_labdel_1comp_av, odot2_labdel_1comp_ex, odot2_labdel_1comp_av, three_labdel_1comp_ex, three_labdel_1comp_av, odot069_labavg_1comp_ex, odot069_labavg_1comp_av, odot2_labavg_1comp_ex, odot2_labavg_1comp_av, three_labavg_1comp_ex, three_labavg_1comp_av, odot069_labcas_1comp_ex, odot069_labcas_1comp_av, odot2_labcas_1comp_ex, odot2_labcas_1comp_av, three_labcas_1comp_ex, three_labcas_1comp_av] ) first = set(all_fit.index) second = set(all_fit['sim']) third = set(all_fit['processing']) third_avg = set(['Avg1: Peak artifacts,\nno correction', 'Avg2: Peak artifacts,\nno correction', 'Avg3: Peak artifacts,\nno correction', 'Avg: No artifacts,\nno correction', 'Avg: Peak artifacts,\nsim.-based pred.\n+ averaging corr.', 'Avg: Peak artifacts,\nsim.-based prediction\n+ weight=0 correction', 'Avg: Peak artifacts,\nsim.-based pred.\n+ cut and shift corr.']) new_index = pd.MultiIndex.from_product( [first, second, third], names=['axis', 'sim', 'processing']) all_fit = all_fit.reset_index() all_fit = all_fit.set_index(['index', 'sim', 'processing']) all_fit = all_fit.reindex(new_index) # pprint(all_param.keys()) # all_param = all_param[['name_of_plot', 'Diff_species', 'A1', 'txy1', 'sim', 'processing', 'A2', 'txy2']] with pd.option_context("max_colwidth", 1000): display(all_fit)
- I am scaling the correlation and fit of the dirty data with the
sklearn.preprocessing.MaxAbsScaler
to make the final plot better readable. The relevant information is the difference in lag time. The particle number in the simulations was randomized, thus the amplitude of the correlation function does not yield reliable information anyway. - also, let’s compute the residuals of correlations and fits - I use the original data for all, not the scaled data
- here an examplary plot for 1 trace of the effect of scaling - notice the
difference when scaling the correlation and scaling the fit. That’s why I
compute residuals before and also only scale the dirty data with 3 lines in
one plot
fig = plt.figure(figsize=(14,4)) count = 0 for ind in all_fit.loc['fit'].index: if count < 2: count += 1 continue # lags = all_fit.loc[:, (('lag time [ms]',) + ind)] lag_idx = (('lag time [ms]',) + ind) corr_idx = (('correlation',) + ind) fit_idx = (('fit',) + ind) res_idx = (('residual',) + ind) fit = np.array(all_fit.loc[fit_idx]) corr = np.array(all_fit.loc[corr_idx]) residual = corr - fit fit_scaled = MaxAbsScaler().fit_transform(fit.reshape(-1, 1)).flatten() corr_scaled = MaxAbsScaler().fit_transform(corr.reshape(-1, 1)).flatten() residual_scaled = corr_scaled - fit_scaled plt.subplot(141, title='unscaled corr&fit') plt.semilogx(all_fit.loc[lag_idx], all_fit.loc[corr_idx], all_fit.loc[lag_idx], all_fit.loc[fit_idx]) plt.subplot(142, title='scaled corr&fit') plt.semilogx(all_fit.loc[lag_idx], corr_scaled, all_fit.loc[lag_idx], fit_scaled) plt.subplot(143, title='unscaled residuals') plt.semilogx(all_fit.loc[lag_idx], residual) plt.subplot(144, title='scaled residuals') plt.semilogx(all_fit.loc[lag_idx], residual_scaled) plt.tight_layout() plt.show() break
- now the computation of residuals and scaling
for ind in all_fit.loc['fit'].index: lag_idx = (('lag time [ms]',) + ind) corr_idx = (('correlation',) + ind) fit_idx = (('fit',) + ind) res_idx = (('residual',) + ind) fit = np.array(all_fit.loc[fit_idx]) corr = np.array(all_fit.loc[corr_idx]) residual = corr - fit if f'{ind[1]}' in list(third_avg) + ['Ex1: Peak artifacts,\nno correction', 'Ex2: Peak artifacts,\nno correction', 'Ex3: Peak artifacts,\nno correction']: fit_scaled = MaxAbsScaler().fit_transform(fit.reshape(-1, 1)).flatten() corr_scaled = MaxAbsScaler().fit_transform(corr.reshape(-1, 1)).flatten() all_fit.loc[fit_idx] = pd.Series(fit_scaled) all_fit.loc[corr_idx] = pd.Series(corr_scaled) all_fit.loc[res_idx] = pd.Series(residual)
- let’s first plot the residuals
fig, ax = plt.subplots(len(third-third_avg), len(second), figsize=(16, 15), sharex=True, sharey=False, tight_layout=True) for i, sim in enumerate(second): for j, proc in enumerate(third-third_avg): if proc in ['Ex1: Peak artifacts,\nno correction', 'Ex2: Peak artifacts,\nno correction', 'Ex3: Peak artifacts,\nno correction']: for k in range(3): sns.lineplot( x=all_fit.loc['lag time [ms]'].loc[ sim, f'Ex{k+1}: Peak artifacts,\nno correction'], y=all_fit.loc['residual'].loc[ sim, f'Ex{k+1}: Peak artifacts,\nno correction'], color=sns.color_palette()[k+3], # marker=['o', 'v', 's'][k], markersize=5, ax=ax[j, i], lw=5).set(title=f'{sim}-{proc}') else: lag_idx = (('lag time [ms]',) + (sim,) + (proc,)) res_idx = (('residual',) + (sim,) + (proc,)) sns.lineplot(x=all_fit.loc[lag_idx], y=all_fit.loc[res_idx], color=sns.color_palette()[3], # marker='o', markersize=10, ax=ax[j, i], lw=5).set( title=f'{sim}-{proc}') plt.setp(ax, xscale='log', xlabel=r'lag time $\tau$ $[ms]$', ylabel=r'') # Correlation $G(\tau)$ $[ms]$ savefig = f'./data/exp-220316-publication1/jupyter/plotE_sim-correlations-fits_residuals' plt.savefig(f'{savefig}.pdf', dpi=300) # os.system(f'pdf2svg {savefig}.pdf {savefig}.svg') plt.close('all')
- now plot the single correlations and plots
fig, ax = plt.subplots(len(third-third_avg), len(second), figsize=(16, 30), sharex=True, sharey=False, tight_layout=True) for i, sim in enumerate(second): for j, proc in enumerate(third-third_avg): if proc in ['Ex1: Peak artifacts,\nno correction', 'Ex2: Peak artifacts,\nno correction', 'Ex3: Peak artifacts,\nno correction']: for k in range(3): sns.lineplot( x=all_fit.loc['lag time [ms]'].loc[ sim, f'Ex{k+1}: Peak artifacts,\nno correction'], y=all_fit.loc['correlation'].loc[ sim, f'Ex{k+1}: Peak artifacts,\nno correction'], color=sns.color_palette()[k], lw=4, marker=['o', 'v', 's'][k], markersize=10, ax=ax[j, i]).set(title=f'{sim}-{proc}') sns.lineplot( x=all_fit.loc['lag time [ms]'].loc[ (sim, f'Ex{k+1}: Peak artifacts,\nno correction')], y=all_fit.loc['fit'].loc[ (sim, f'Ex{k+1}: Peak artifacts,\nno correction')], color=sns.color_palette()[k+3], lw=5, ax=ax[j, i]) else: lag_idx = (('lag time [ms]',) + (sim,) + (proc,)) corr_idx = (('correlation',) + (sim,) + (proc,)) fit_idx = (('fit',) + (sim,) + (proc,)) sns.lineplot(x=all_fit.loc[lag_idx], y=all_fit.loc[corr_idx], color=sns.color_palette()[0], lw=4, marker='o', markersize=10, ax=ax[j, i]).set( title=f'{sim}-{proc}') sns.lineplot(x=all_fit.loc[lag_idx], y=all_fit.loc[fit_idx], color=sns.color_palette()[3], lw=5, ax=ax[j, i]) plt.setp(ax, xscale='log', xlabel=r'lag time $\tau$ $[ms]$', ylabel=r'', yticklabels=[]) # Correlation $G(\tau)$ $[ms]$ savefig = f'./data/exp-220316-publication1/jupyter/plotE_sim-correlations-fits_plots' plt.savefig(f'{savefig}.pdf', dpi=300) os.system(f'pdf2svg {savefig}.pdf {savefig}.svg') plt.close('all')
- as an inset, I want the average correlations over 100 traces (for dirty) or 300
traces (for clean, and corrections). First the code:
sns.set_theme(style="darkgrid", font_scale=2, palette='colorblind', context='paper') fig, ax = plt.subplots(len(third_avg), len(second), figsize=(8, 20), sharex=True, sharey=False, tight_layout=True) for i, sim in enumerate(second): for j, proc in enumerate(third_avg): if proc in ['Avg1: Peak artifacts,\nno correction', 'Avg2: Peak artifacts,\nno correction', 'Avg3: Peak artifacts,\nno correction']: for k in range(3): sns.lineplot( x=all_fit.loc['lag time [ms]'].loc[ sim, f'Avg{k+1}: Peak artifacts,\nno correction'], y=all_fit.loc['correlation'].loc[ sim, f'Avg{k+1}: Peak artifacts,\nno correction'], color=sns.color_palette()[k], lw=4, ax=ax[j, i]).set(title=f'{sim}-{proc}') else: lag_idx = (('lag time [ms]',) + (sim,) + (proc,)) corr_idx = (('correlation',) + (sim,) + (proc,)) sns.lineplot(x=all_fit.loc[lag_idx], y=all_fit.loc[corr_idx], color=sns.color_palette()[0], lw=4, ax=ax[j, i]).set( title=f'{sim}-{proc}') plt.setp(ax, xscale='log', xlabel=r'', ylabel=r'') #, yticklabels=[]) # Correlation $G(\tau)$ $[ms]$ savefig = f'./data/exp-220316-publication1/jupyter/plotE_sim-correlations-fits_inset' plt.savefig(f'{savefig}.pdf', dpi=300) os.system(f'pdf2svg {savefig}.pdf {savefig}.svg') plt.close('all')
- here the plot:
2.7.11.6 Plot F: Unused further traces
- First - exemplary plots of the simulated traces (only) and the label
information including the label threshold (only)
plot1_index = ['3.0-0.01', '3.0-0.1', '3.0-1.0', '0.2-0.01', '0.2-0.1', '0.2-1.0', '0.069-0.01', '0.069-0.1', '0.069-1.0'] plot1_traceno = [1, 1, 0, 5, 0, 0, 1, 1, 0] plot1_titles = ['fast molecules and slow clusters:\nsimulations', 'fast molecules and medium clusters:\nsimulations', 'fast molecules and fast clusters:\nsimulations', 'medium molecules and slow clusters:\nsimulations', 'medium molecules and medium clusters:\nsimulations', 'medium molecules and fast clusters:\nsimulations', 'slow molecules and slow clusters:\nsimulations', 'slow molecules and medium clusters:\nsimulations', 'slow molecules and fast clusters:\nsimulations'] for txt, idx, t in zip(plot1_titles, plot1_index, plot1_traceno): fig = plt.figure() ax = plt.subplot(111) ax.set_prop_cycle(color=[sns.color_palette()[0]]) sns.lineplot(data=sim_dirty.loc[:, idx].iloc[:, t], label='trace') plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0) plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'Intensity [$a.u.$]', title=txt) plot1_file = f'data/exp-220316-publication1/jupyter/plotF_{txt}'.replace(' ', '_').replace('\n', '_') plt.savefig(f'{plot1_file}.pdf', bbox_inches='tight', dpi=300) os.system(f'pdf2svg {plot1_file}.pdf {plot1_file}.svg') os.system(f'rm {plot1_file}.pdf')
plot1_index = ['3.0-0.01', '3.0-0.1', '3.0-1.0', '0.2-0.01', '0.2-0.1', '0.2-1.0', '0.069-0.01', '0.069-0.1', '0.069-1.0'] plot1_traceno = [1, 1, 0, 5, 0, 0, 1, 1, 0] plot1_titles1 = ['fast molecules:\nslow cluster labels', 'fast molecules:\nmedium cluster labels', 'fast molecules:\nfast cluster labels', 'medium molecules:\nslow cluster labels', 'medium molecules:\nmedium cluster labels', 'medium molecules:\nfast cluster labels', 'slow molecules:\nslow cluster labels', 'slow molecules:\nmedium cluster labels', 'slow molecules:\nfast cluster labels'] for txt, idx, t in zip(plot1_titles1, plot1_index, plot1_traceno): fig = plt.figure() ax = plt.subplot(111) ax.set_prop_cycle(color=[sns.color_palette()[4]]) sns.lineplot(data=sim_labels.loc[:, idx].iloc[:, t], label='cluster\ntrace') plt.axhline(y=0.04, xmin=0, xmax=1, label='label\nthreshold', color=sns.color_palette()[7], linestyle='--') plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0) plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'Intensity [$a.u.$]', title=txt) plot1_file = f'data/exp-220316-publication1/jupyter/plotF_{txt}'.replace(' ', '_').replace('\n', '_') plt.savefig(f'{plot1_file}.pdf', bbox_inches='tight', dpi=300) os.system(f'pdf2svg {plot1_file}.pdf {plot1_file}.svg') os.system(f'rm {plot1_file}.pdf')
- and here are the plots
2.7.11.7 Plot G: bio example traces
- call
jupyter-set-output-directory
and load necessary modules./data/exp-220316-publication1/jupyter
import os import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker import pandas as pd import seaborn as sns from pathlib import Path from pprint import pprint sns.set_theme(style="whitegrid", font_scale=2, palette='colorblind', context='paper') model_ls = [ 'ff67be0b68e540a9a29a36a2d0c7a5be', '347669d050f344ad9fb9e480c814f727', '714af8cd12c1441eac4ca980e8c20070', '34a6d207ac594035b1009c330fb67a65', '484af471c61943fa90e5f78e78a229f0', '0cd2023eeaf745aca0d3e8ad5e1fc653', 'fe81d71c52404ed790b3a32051258da9', '19e3e786e1bc4e2b93856f5dc9de8216', 'c1204e3a8a1e4c40a35b5b7b1922d1ce'] model_name_ls = [f'{s:.5}' for s in model_ls] pred_thresh = 0.5
- I generated 3 files for these exemplary plots, but only kept the one which I used for the publication.
- first, load data
output_path = Path('./data/exp-220316-publication1/220323_bioexps') corr_af488 = pd.read_csv( Path(output_path) / 'clean_nocorrection_3D-AR5_1spec_rawFitData.csv', index_col=0, usecols=[0, 1, 3, 5], na_values=' ') fit_af488 = pd.read_csv( Path(output_path) / 'clean_nocorrection_3D-AR5_1spec_rawFitData.csv', index_col=0, usecols=[0, 2, 4, 6], na_values=' ') param_af488 = pd.read_csv( Path(output_path) / 'clean_nocorrection_3D-AR5_1spec_outputParam.csv', index_col=0) preds_af488 = pd.read_csv( Path(output_path) / 'clean_subsample_preds.csv', index_col=0) predtraces_af488 = pd.read_csv( Path(output_path) / 'clean_subsample_predtraces.csv', index_col=0) traces_af488 = pd.read_csv(Path( output_path) / 'clean_subsample_traces.csv', index_col=0) corrtraces_af488 = pd.read_csv( Path(output_path) / 'clean_subsample_corrtraces.csv', index_col=0) corr_noc_af488luv = pd.read_csv( Path(output_path) / 'dirty_nocorrection_3D-AR5_2spec_rawFitData.csv', index_col=0, usecols=[0, 1, 3, 5], na_values=' ') fit_noc_af488luv = pd.read_csv( Path(output_path) / 'dirty_nocorrection_3D-AR5_2spec_rawFitData.csv', index_col=0, usecols=[0, 2, 4, 6], na_values=' ') param_noc_af488luv = pd.read_csv( Path(output_path) / 'dirty_nocorrection_3D-AR5_2spec_outputParam.csv', index_col=0) corr_cas_af488luv = pd.read_csv( Path(output_path) / 'dirty_cutandshift_3D-AR5_2spec_rawFitData.csv', index_col=0, usecols=[0, 1, 3, 5], na_values=' ') fit_cas_af488luv = pd.read_csv( Path(output_path) / 'dirty_cutandshift_3D-AR5_2spec_rawFitData.csv', index_col=0, usecols=[0, 2, 4, 6], na_values=' ') param_cas_af488luv = pd.read_csv( Path(output_path) / 'dirty_cutandshift_3D-AR5_2spec_outputParam.csv', index_col=0) preds_af488luv = pd.read_csv( Path(output_path) / 'dirty_subsample_preds.csv', index_col=0) predtraces_af488luv = pd.read_csv( Path(output_path) / 'dirty_subsample_predtraces.csv', index_col=0) traces_af488luv = pd.read_csv( Path(output_path) / 'dirty_subsample_traces.csv', index_col=0) corrtraces_af488luv = pd.read_csv( Path(output_path) / 'dirty_subsample_corrtraces.csv', index_col=0) preds_hspex5 = pd.read_csv( Path(output_path) / 'HsPEX5EGFP_1-100001_3of250_preds.csv', index_col=0) predtraces_hspex5 = pd.read_csv( Path(output_path) / 'HsPEX5EGFP_1-100001_3of250_predtraces.csv', index_col=0) traces_hspex5 = pd.read_csv( Path(output_path) / 'HsPEX5EGFP_1-100001_3of250_traces.csv', index_col=0) corrtraces_hspex5 = pd.read_csv( Path(output_path) / 'HsPEX5EGFP_1-100001_3of250_corrtraces.csv', index_col=0) preds_tbpex5 = pd.read_csv( Path(output_path) / 'TbPEX5EGFP_1-10002_3of250_preds.csv', index_col=0) predtraces_tbpex5 = pd.read_csv( Path(output_path) / 'TbPEX5EGFP_1-10002_3of250_predtraces.csv', index_col=0) traces_tbpex5 = pd.read_csv( Path(output_path) / 'TbPEX5EGFP_1-10002_3of250_traces.csv', index_col=0) corrtraces_tbpex5 = pd.read_csv( Path(output_path) / 'TbPEX5EGFP_1-10002_3of250_corrtraces.csv', index_col=0) all_af488_corr = pd.read_csv( Path(output_path) / 'af488noc_af488luv-noc_af488luv-0cd20_af488luv-thr-2_2comp_rawFitData.csv', index_col=0, usecols=[0, 1, 3, 5, 7], na_values=' ') all_af488_param = pd.read_csv( Path(output_path) / 'af488noc_af488luv-noc_af488luv-0cd20_af488luv-thr-2_2comp_outputParam.csv', index_col=0) all_pex5_corr = pd.read_csv( Path(output_path) / 'hs-pex5-noc_tb-pex5-noc_tb-pex5-0cd20_tb-pex5-thr-7_triplet-0.04_1comp_rawFitData.csv', index_col=0, usecols=[0, 1, 3, 5, 7], na_values=' ') all_pex5_param = pd.read_csv( Path(output_path) / 'hs-pex5-noc_tb-pex5-noc_tb-pex5-0cd20_tb-pex5-thr-7_triplet-0.04_1comp_outputParam.csv', index_col=0)
- define plotting functions
def plot_bio_traces(df, txt): for i, t in enumerate(df.items()): t = t[1] fig = plt.figure() ax = plt.subplot(111) ax.set_prop_cycle(color=[sns.color_palette()[0]]) sns.lineplot(data=t, label=txt) plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0) plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'Intensity [a.u.]', title='') plot1_file = f'data/exp-220316-publication1/jupyter/plotG_{txt}_{i}'.replace( ' ', '_').replace('\n', '_').replace('(', '').replace(')', '').replace('"', '') plt.savefig(f'{plot1_file}.pdf', bbox_inches='tight', dpi=300) os.system(f'pdf2svg {plot1_file}.pdf {plot1_file}.svg') os.system(f'rm {plot1_file}.pdf') plt.close('all') def plot_bio_cluster_prediction(df, txt): for i, col in enumerate(df.columns): fig = plt.figure() ax = plt.subplot(111) ax.set_prop_cycle(color=[sns.color_palette()[3]]) sns.lineplot(data=df.loc[:, col], label='prediction') plt.axhline(y=pred_thresh, xmin=0, xmax=1, label='prediction\nthreshold', color=sns.color_palette()[7], linestyle='--') plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0) plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'artifact probability', title=txt, ylim=[0, 1]) plot1_file = f'data/exp-220316-publication1/jupyter/plotG_{txt}_preds_{i}'.replace( ' ', '_').replace('\n', '_').replace('(', '').replace(')', '') plt.savefig(f'{plot1_file}.pdf', bbox_inches='tight', dpi=300) os.system(f'pdf2svg {plot1_file}.pdf {plot1_file}.svg') os.system(f'rm {plot1_file}.pdf') plt.close('all') def plot_bio_prediction_based_segmentation(traces_df, pred_df, txt): for i, (t, p) in enumerate(zip(traces_df.items(), pred_df.items())): t = t[1] p = p[1] > pred_thresh p = p[:t.size] p_bool = t.max() * p p_invbool = t.max() * ~p fig = plt.figure() ax = plt.subplot(111) ax.set_prop_cycle(color=[sns.color_palette()[3]]) sns.lineplot(data=p_bool, alpha=0.5) plt.fill_between( x=p_bool.index, y1=p_bool, y2=0, alpha=0.5, label='prediction:\npeak artifacts') ax.set_prop_cycle(color=[sns.color_palette()[2]]) plt.fill_between( x=p_invbool.index, y1=p_invbool, y2=0, alpha=0.5, label='\nprediction\nno artifacts') ax.set_prop_cycle(color=[sns.color_palette()[0]]) sns.lineplot(data=t, label=txt) plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0) plt.setp(ax, xlabel=r'Time [$ms$]', ylabel=r'Intensity [a.u.]', title='') plot1_file = f'data/exp-220316-publication1/jupyter/plotG_{txt}_seg_{i}'.replace( ' ', '_').replace('\n', '_').replace('(', '').replace(')', '') plt.savefig(f'{plot1_file}.pdf', bbox_inches='tight', dpi=300) os.system(f'pdf2svg {plot1_file}.pdf {plot1_file}.svg') os.system(f'rm {plot1_file}.pdf') plt.close('all') def plot_bio_clean_corr_and_fit(corr_df, fit_df, param_df, txt): for i, (c, f, param) in enumerate(zip(corr_df.items(), fit_df.items(), param_df.T.items())): c = c[1] f = f[1] txy = param[1].loc['txy1'] f_xmin = f.dropna().index[0] f_xmax = f.dropna().index[-1] xlims = [f_xmin - 0.5*f_xmin, f_xmax + f_xmax] ylims = [f.dropna().iloc[-1] - 0.01, f.dropna().iloc[0] + 0.01] fig = plt.figure() ax = plt.subplot(111) ax.set_prop_cycle(color=[sns.color_palette()[0]]) plt.semilogx(c.index, c, '.', label='Correlation') ax.set_prop_cycle(color=[sns.color_palette()[2]]) plt.semilogx(f.index, f, '-', lw=3.0, label='Fit\n'+rf'$\tau_D=${txy:.3f}') plt.axvline(x=txy, color=sns.color_palette()[2]) plt.setp(ax, xlim=xlims, ylim=ylims, title=txt, xlabel=r'$\tau$ (ms)', ylabel=r'Correlation G($\tau$)') ax.grid(False) plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0) plot1_file = f'data/exp-220316-publication1/jupyter/plotG_{txt}_{i}'.replace( ' ', '_').replace('\n', '_').replace('(', '').replace(')', '') plt.savefig(f'{plot1_file}.pdf', bbox_inches='tight', dpi=300) os.system(f'pdf2svg {plot1_file}.pdf {plot1_file}.svg') os.system(f'rm {plot1_file}.pdf') plt.close('all') def plot_bio_corrs_and_fits(corr_df1, corr_df2, fit_df1, fit_df2, param_df1, param_df2, txt): for i, (c1, c2, f1, f2, param1, param2) in enumerate(zip(corr_df1.items(), corr_df2.items(), fit_df1.items(), fit_df2.items(), param_df1.T.items(), param_df2.T.items())): c1, c2 = c1[1], c2[1] f1, f2 = f1[1], f2[1] txy11, txy12 = param1[1].loc['txy1'], param2[1].loc['txy1'] txy21, txy22 = param1[1].loc['txy2'], param2[1].loc['txy2'] f_xmin = np.min([f1.dropna().index[0], f2.dropna().index[0]]) f_xmax = np.max([f1.dropna().index[-1], f2.dropna().index[-1]]) f_ymin1, f_ymin2 = f1.dropna().iloc[-1], f2.dropna().iloc[-1] f_ymax1, f_ymax2 = f1.dropna().iloc[0], f2.dropna().iloc[0] xlims = [f_xmin - 0.5*f_xmin, f_xmax + f_xmax] ylims1 = [f_ymin1 - np.abs(2*f_ymin1), f_ymax1 + 0.1*f_ymax1] ylims2= [f_ymin2 - np.abs(2*f_ymin2), f_ymax2 + 0.1*f_ymax2] fig = plt.figure() ax1 = plt.subplot(111) ax1.set_prop_cycle(color=[sns.color_palette()[0]]) p1, = ax1.semilogx(c1.index, c1, '.', label='Correlation\n(no correction)') ax1.set_prop_cycle(color=[sns.color_palette()[2]]) f1_label = 'Fit (no correction)\n'+r'$\tau_{D,1}=$'+f'{txy11:.3f}\n'+r'$\tau_{D,2}=$'+f'{txy21:.3f}' p2, = ax1.semilogx(f1.index, f1, '-', lw=3.0, label=f1_label) ax2 = ax1.twinx() ax2.set_prop_cycle(color=[sns.color_palette()[1]]) p3, = ax2.semilogx(c2.index, c2, '.', label='Correlation\n(cut and shift)') ax2.set_prop_cycle(color=[sns.color_palette()[3]]) f2_label = 'Fit (cut and shift)\n'+r'$\tau_{D,1}=$'+f'{txy12:.3f}\n'+r'$\tau_{D,2}=$'+f'{txy22:.3f}' p4, = ax2.semilogx(f2.index, f2, '-', lw=3.0, label=f2_label) plt.axvline(x=txy11, color=sns.color_palette()[2]) plt.axvline(x=txy12, color=sns.color_palette()[3]) plt.axvline(x=txy21, color=sns.color_palette()[2]) plt.axvline(x=txy22, color=sns.color_palette()[3]) plt.setp(ax1, xlim=xlims, ylim=ylims1, title=txt, xlabel=r'$\tau$ (ms)', ylabel=r'Normalized $G(\tau)$', yticklabels=[], yticks=[]) ax1.grid(False) plt.setp(ax2, xlim=xlims, ylim=ylims2, title=txt, xlabel=r'$\tau$ (ms)', yticklabels=[], yticks=[]) ax2.grid(False) plt.legend(handles=[p1, p3, p2, p4], bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0) plot1_file = f'data/exp-220316-publication1/jupyter/plotG_{txt}_{i}'.replace( ' ', '_').replace('\n', '_').replace('(', '').replace(')', '') plt.savefig(f'{plot1_file}.pdf', bbox_inches='tight', dpi=300) os.system(f'pdf2svg {plot1_file}.pdf {plot1_file}.svg') os.system(f'rm {plot1_file}.pdf') plt.close('all') def plot_all_bio_corrs(corr_df, param_df, bio): if bio == 'af488': legend = ['AlexaFluor488\n(n=424,\nno correction)', '\nAF488 + DiO\nLUVs(n=440,\nno correction)', '\nAF488 + DiO\nLUVs(n=440,\nautom. corr.)', '\nAF488 + DiO\nLUVs(n=440,\nmanual corr.)'] elif bio == 'pex5': legend = ['Hs-PEX5-eGFP\n(n=250,\nno correction)', '\nTb-PEX5-eGFP\n(n=250,\nno correction)', '\nTb-PEX5-eGFP\n(n=250,\nautom. corr.)', '\nTb-PEX5-eGFP\n(n=250,\nmanual corr.)'] sns.set_theme(style="whitegrid", font_scale=3.5, palette='colorblind', context='paper') xmin = min(param_df['xmin']) xmax = max(param_df['xmax']) ymin = min(param_df['offset']) ymax = max(param_df['GN0']) xlims = [xmin - 0.5*xmin, xmax + xmax] ylims = [ymin - np.abs(5*ymin), ymax + 0.1*ymax] fig = plt.figure(figsize=(16,9)) ax1 = plt.subplot(111) lines = sns.lineplot(data=corr_df, lw=6, ls=':', legend=False) plt.legend(legend, loc = 2, bbox_to_anchor = (1,1)) plt.setp(ax1, xlim=xlims, ylim=ylims, xscale='log', xlabel=r'$\tau [ms]$', ylabel=r'Avg correlation $G(\tau)$ [a.u.]') plt.tight_layout() plot_file = f'plotG_bioexps_{bio}_avg-correlations' savefig = f'./data/exp-220316-publication1/jupyter/{plot_file}' plt.savefig(f'{savefig}.pdf', bbox_inches='tight', dpi=300) os.system(f'pdf2svg {savefig}.pdf {savefig}.svg') # os.system(f'rm {plot1_file}.pdf') plt.close('all')
- now the plots
plot_bio_traces(traces_af488, txt='AlexaFluor488\n(n=1,\nno artifacts,\nno correction)') plot_bio_traces(traces_af488luv, txt='AF488 + DiO\nLUVs (n=1,\npeak artifacts,\nno correction)') plot_bio_traces(traces_hspex5, txt='Hs-PEX5-eGFP\n(n=1,\nno artifacts,\nno correction)') plot_bio_traces(traces_tbpex5, txt='Tb-PEX5-eGFP\n(n=1,\npeak artifacts,\nno correction)') plot_bio_traces(corrtraces_af488, txt='AlexaFluor488\n(n=1,\nno artifacts,\nautom. corr.)') plot_bio_traces(corrtraces_af488luv, txt='AF488 + DiO\nLUVs (n=1,\npeak artifacts,\nautom. corr.)') plot_bio_traces(corrtraces_hspex5, txt='Hs-PEX5-eGFP\n(n=1,\nno artifacts,\nautom. corr.)') plot_bio_traces(corrtraces_tbpex5, txt='Tb-PEX5-eGFP\n(n=1,\npeak artifacts,\nautom. corr.)')
- AlexaFluor 488 in solution (used for publication):
- AF488 + DiO-LUVs (used for publication):
- Hs-PEX5-eGFP (used for publication):
- Tb-PEX5-eGFP (used for publication):
- AlexaFluor488 in solution, automated correction pipeline was used (U-Net prediction and cut and stitch correction). Not used in publication.
- AF488 + DiO-LUVs, automated correction pipeline was used (U-Net prediction and cut and stitch correction). Not used in publication.
- Hs-PEX5-eGFP, automated correction pipeline was used (U-Net prediction and cut and stitch correction). Not used in publication.
- Tb-PEX5-eGFP, automated correction pipeline was used (U-Net prediction and cut and stitch correction). Not used in publication.
plot_bio_cluster_prediction( preds_af488, txt='AlexaFluor 488 in solution (clean):\nLUV prediction') plot_bio_cluster_prediction( preds_af488luv, txt='AlexaFluor 488 + DiO LUVs in solution (dirty):\nLUV prediction')
- Output of U-Net model when applied to AlexaFluor 488 in solution + the prediction threshold used for all correlation analyses
- Output of U-Net model when applied to AF488 + DiO-LUVs + the prediction threshold used for all correlation analyses
plot_bio_prediction_based_segmentation( traces_af488luv, preds_af488luv, txt='\nAF488 + DiO\nLUVs (n=1,\npeak artifacts,\nno correction)') plot_bio_prediction_based_segmentation( traces_af488, preds_af488, txt='\nAlexaFluor488\n(n=1,\nno artifacts,\nno correction)') plot_bio_prediction_based_segmentation( traces_hspex5, preds_hspex5, txt='\nHs-PEX5-eGFP\n(n=1,\nno artifacts,\nno correction)') plot_bio_prediction_based_segmentation( traces_tbpex5, preds_tbpex5, txt='\nTb-PEX5-eGFP\n(n=1,\npeak artifacts,\nno correction)')
- Segmentation based on U-Net model (+ fixed 0.5 thresholding) when applied to AlexaFluor 488 in solution
- Segmentation based on U-Net model (+ fixed 0.5 thresholding) when applied to AF488 + DiO-LUVs. Here 2 versions, because I used both:
- Segmentation based on U-Net model (+ fixed 0.5 thresholding) when applied to Hs-PEX5-eGFP
- Segmentation based on U-Net model (+ fixed 0.5 thresholding) when applied to Tb-PEX5-eGFP
plot_bio_clean_corr_and_fit( corr_af488, fit_af488, param_af488, txt='AlexaFluor 488 in solution (clean):\nCorrelation and 1-component Fit') plot_bio_corrs_and_fits( corr_noc_af488luv, corr_cas_af488luv, fit_noc_af488luv, fit_cas_af488luv, param_noc_af488luv, param_cas_af488luv, txt='AlexaFluor 488 + DiO LUVs in solution (dirty):\nCorrelations and 2-component Fits')
- 1-component correlation and fit of AlexaFluor 488 in solution
- 2-component correlation and fit of AF488 + DiO-LUVs
plot_all_bio_corrs(all_af488_corr, all_af488_param, 'af488') plot_all_bio_corrs(all_pex5_corr, all_pex5_param, 'pex5')
- Comparison of averged correlations of AF488 (no correction, automated correction) and AF488 in solution (no correction, automated correction)
- Comparison of averaged correlations of Hs-PEX5-eGFP (no correction, automated correction) and Tb-PEX5-eGFP (no correction, automated correction)
2.7.12 Plots: inkscape
- I changed these plots a lot during the process, but did not keep all the intermediates, that is why numbers are missing
2.7.12.1 Fig 1: graphical TOC
- the graphical table of contents was mainly done by me in inkscape, including the sketch of simulations and the U-Net
- the correlated trace was taken from Plot E: correction methods corr&fit examples (specifically, from the “insets”)
- the segmented time-series was taken from Plot G: bio example traces (a cropped version)
- here is the plot:
2.7.12.2 Fig 2: cut and stitch viz
- using data from Exp: bioexps - example traces, I created a small visualization of how cut and stitch works with TCSPC data:
2.7.12.3 Fig 6: prediction methods
- done by myself in inkscape.
- the correlated traces were taken from Plot E: correction methods corr&fit examples (specifically, from the “insets”)
- the segmented time-series was probably taken from Plot G: bio example traces or Plot F: Unused further traces and cropped, although I can’t piece together which one it was exactly.
- the “zero values” in set to zero and overlaying the segmentation over the trace in cut and stitch and averaging were done in inkscape.
- here is the plot:
2.7.12.4 Fig 7: prediction methods
- done by myself in inkscape. Only the time-series and segmentation vector are taken from Plot F: Unused further traces (specifically, a cropped, segmented version of “fast molecules and fast clusters”)
- here is the plot:
2.7.12.5 Fig 9: simexps for publication
- a combination of plots of simulated data from Plot A: traces with labels and Plot C v2: violin plots
- the sketches were done by myself in inkscape
- the text parts were also re-done by myself in inkscape to get the figure-size-to-text-size proportions correct
- here is the figure:
2.7.12.6 Fig 10: AF488 for publication
- a combination of AF488 jupyter plots from Plot C v2: violin plots, Plot D v2: violin plots, Plot G: bio example traces
- the sketches were done by myself in inkscape
- the text parts were also re-done by myself in inkscape to get the figure-size-to-text-size proportions correct
- here is the figure:
2.7.12.7 Fig 11: PEX5 for publication
- a combination of PEX5 jupyter plots from Plot C v2: violin plots, Plot D v2: violin plots, Plot G: bio example traces
- the sketches were done by myself in inkscape
- the text parts were also re-done by myself in inkscape to get the figure-size-to-text-size proportions correct
- here is the figure:
2.7.12.8 Supp Fig 1: corr&fit examples
- This combines plots from Plot E: correction methods corr&fit examples into one figure in inkscape:
2.7.12.9 Supp Fig 2: stitching artifacts
- This combines plots from
Plot B: transit times vs random cuts in
clean
trace into one figure in inkscape:
2.7.12.10 Supp Fig 4: compare corrections
- This combines plots from Plot C v2: violin plots into one figure in inkscape:
2.7.12.11 Supp Fig 5: compare predictions
- This combines plots from Plot D v2: violin plots into one figure in inkscape:
2.7.13 some additional useful computations and notes
2.7.13.1 the trained models
- all metrics after 100th epoch with hparams
run valauc valf1 0.5 valprec 0.5 valrecall 0.5 model size hpbatchsize hpfirstfilters hpinputsize hplrpower hplrstart hpnlevels hppoolsize hpscaler 484af471c61943fa90e5f78e78a229f0 0.9814 0.9187 0.9091 0.9285 275 MB 26 44 16384 (here: 14000) 1 0.0136170138242663 7 2 standard 0cd2023eeaf745aca0d3e8ad5e1fc653 0.9818 0.9069 0.8955 0.9185 200 MB 15 23 16384 (here: 14000) 7 0.0305060808685107 6 4 quantg fe81d71c52404ed790b3a32051258da9 0.9849 0.9260 0.9184 0.9338 186 MB 20 78 16384 (here: 14000) 4 0.0584071108418767 4 4 standard ff67be0b68e540a9a29a36a2d0c7a5be + 0.9859 0.9298 0.9230 0.9367 14 MB 28 6 16384 (here: 14000) 1 0.0553313915596308 5 4 minmax 19e3e786e1bc4e2b93856f5dc9de8216 0.9595 0.8911 0.8983 0.8839 172 MB 20 128 16384 (here: 14000) 1 0.043549707353273 3 4 standard 347669d050f344ad9fb9e480c814f727 + 0.9848 0.9246 0.9254 0.9238 73 MB 10 16 8192 (here: 14000) 1 0.0627676336651573 5 4 robust c1204e3a8a1e4c40a35b5b7b1922d1ce 0.9858 0.9207 0.9179 0.9234 312 MB 14 16 16384 (here: 14000) 5 0.0192390310290551 9 2 robust 714af8cd12c1441eac4ca980e8c20070 + 0.9843 0.9304 0.9257 0.9352 234 MB 9 64 4096 (here: 14000) 1 0.0100697459464075 5 4 maxabs 34a6d207ac594035b1009c330fb67a65 + 0.9652 0.8613 0.8598 0.8629 7 MB 17 16 16384 (here: 14000) 5 0.0101590069352232 3 4 l2
2.7.13.2 simulated diffrates to transittimes
- to interprete the correlations correctly, let’s plot the underlying
experimental data.
%cd ~/Programme/drmed-git
/home/lex/Programme/drmed-git
import sys FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.simulations.analyze_simulations import convert_diffcoeff_to_transittimes diffcoeffs = [0.01, 0.069, 0.08, 0.1, 0.2, 0.4, 0.5, 0.6, 1.0, 1.5, 2, 2.5, 3.0, 3.5, 4, 4.5, 5, 10, 50] for i in diffcoeffs: tt, _ = convert_diffcoeff_to_transittimes(i, 250) print(f'{i} um^2 / s -> {tt:.2f} ms') print('----------') diffcoeff, _ = convert_diffcoeff_to_transittimes(0.04, 250) print(f'af488: {0.04} ms -> {diffcoeff:.2f} um^2 / s') diffcoeff, _ = convert_diffcoeff_to_transittimes(0.36, 250) print(f'hspex5: {0.36} ms -> {diffcoeff:.2f} um^2 / s')
0.01 um^2 / s -> 1127.11 ms 0.069 um^2 / s -> 163.35 ms 0.08 um^2 / s -> 140.89 ms 0.1 um^2 / s -> 112.71 ms 0.2 um^2 / s -> 56.36 ms 0.4 um^2 / s -> 28.18 ms 0.5 um^2 / s -> 22.54 ms 0.6 um^2 / s -> 18.79 ms 1.0 um^2 / s -> 11.27 ms 1.5 um^2 / s -> 7.51 ms 2 um^2 / s -> 5.64 ms 2.5 um^2 / s -> 4.51 ms 3.0 um^2 / s -> 3.76 ms 3.5 um^2 / s -> 3.22 ms 4 um^2 / s -> 2.82 ms 4.5 um^2 / s -> 2.50 ms 5 um^2 / s -> 2.25 ms 10 um^2 / s -> 1.13 ms 50 um^2 / s -> 0.23 ms ---------- af488: 0.04 ms -> 281.78 um^2 / s hspex5: 0.36 ms -> 31.31 um^2 / s
2.7.13.3 notes on data publishing
- I decided to contact the
ZeroCostDL4Mic
team. There, I can present the whole workflow in an interactive Colab Notebook (similar to Jupyter notebooks, hosted by Google, free access to computation power including GPUs). This facilitates:- easy model sharing
- re-training of model
- own simulations
- applying the correction method after prediction
- for the data repository I chose Zonodo. There are different Zenodo uploads
planned:
- one for the whole Github repository at the state of submission
- one for simulated time-series with and without peak artifacts:
https://doi.org/10.5281/zenodo.8074408
- For publishing, I renamed the following folders (and zipped them):
firstartifact_Nov2020_test
→2020-11-FCS-peak-artifacts-dataset-test-split.zip
firstartifact_Nov2020_train_max2sets
→2020-11-FCS-peak-artifacts-dataset-train-split.zip
firstartifact_Nov2020_val_max2sets_SORTEDIN
→2020-11-FCS-peak-artifacts-dataset-validation-split.zip
- For publishing, I renamed the following folders (and zipped them):
- one for applied AF488 data with and without peak artifacts:
https://doi.org/10.5281/zenodo.8082558
- For publishing, I renamed and combined the following folders (and
zipped them):
1911DD_atto+LUVs/clean_ptu_part1
+1911DD_atto+LUVs/clean_ptu_part2
→2019-11-FCS-TCSPC-no-artifacts-AF488-primary-data.zip
1911DD_atto+LUVs/dirty_ptu_part1
+1911DD_atto+LUVs/dirty_ptu_part2
→2019-11-FCS-TCSPC-peak-artifacts-AF488-and-DiO-LUVs-primary-data.zip
- additionally, I added secondary data, which was taken by Pablo
(
.pqres
files from the PicoQuant microscope). I did not use this data in any of these analyses.2019-11-FCS-TCSPC-no-artifacts-AF488-secondary-data.zip
2019-11-FCS-TCSPC-peak-artifacts-AF488-and-DiO-LUVs-secondary-data.zip
- For publishing, I renamed and combined the following folders (and
zipped them):
- one for applied PEX5 data with and without peak artifacts
https://doi.org/10.5281/zenodo.8109282
- For publishing, I renamed the following folders (and zipped them):
191113_Pex5_2_structured/HsPEX5EGFP 1-100001
→2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data.zip
191113_Pex5_2_structured/TbPEX5EGFP 1-10002
→2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data.zip
- additionally, I added secondary data, which was taken by Pablo
(
.pqres
files from the PicoQuant microscope). I did not use this data in any of these analyses.2019-11-FCS-TCSPC-no-artifacts-AF488-secondary-data.zip
2019-11-FCS-TCSPC-peak-artifacts-AF488-and-DiO-LUVs-secondary-data.zip
- For publishing, I renamed the following folders (and zipped them):
- the mlflow models of
exp-220227-unet
were partly larger than 100MB and thus reached Github’s file size limit. They are archived here: https://doi.org/10.5281/zenodo.8137129- this is a
.zip
file with themlruns
directory with only experiment10
(=exp-220227-unet
) and there the experiments0cd20
,34163
,714af
,34766
,fe81d
,ff67b
and the10
folder with all it’s contents should be put indata/mlruns
to load the models as done in e.g.exp-220227-unet
- this is a
- move and rename PEX5 folders for Zenodo upload
cd ~/Programme/drmed-collections/drmed-bioexps/brightbursts/191113_Pex5_2_structured/ mkdir 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data mkdir 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data mkdir 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data mkdir 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data mv HsPEX5EGFP\ 1-100001/*.ptu 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data mv HsPEX5EGFP\ 1-100001/*.pqres 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data mv TbPEX5EGFP\ 1-10002/*.ptu 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data mv TbPEX5EGFP\ 1-10002/*.pqres 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data
- check number of files. Primary data should be 250 (
.ptu
files), secondary data should be 750 (for each record one*_OFCS.pqres
,*_OTCSPC.pqres
,*_OTrace.pqres
)ls 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data | wc -l ls 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data | wc -l ls 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data | wc -l ls 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data | wc -l
250 750 250 750
- zip these folders for the Zotero upload. Cave: these commands might take
some minutes…
zip -r 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data.zip 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data
adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/ (stored 0%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000151_T3283s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000099_T2142s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000152_T3305s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000134_T2911s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000086_T1858s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000172_T3742s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000063_T1356s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000071_T1531s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000120_T2605s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000032_T679s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000234_T5097s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000181_T3939s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000071_T1531s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000180_T3917s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000155_T3371s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000070_T1509s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000030_T635s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000183_T3983s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000098_T2121s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000077_T1662s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000242_T5272s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000136_T2955s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000045_T963s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000185_T4027s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000195_T4245s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000162_T3524s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000165_T3589s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000056_T1203s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000166_T3611s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000213_T4638s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000127_T2758s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000110_T2385s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000109_T2363s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000112_T2429s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000149_T3240s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000032_T679s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000020_T418s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000138_T2998s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000239_T5207s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000083_T1793s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000068_T1466s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000169_T3676s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000022_T461s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000103_T2230s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000173_T3764s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000035_T745s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000205_T4463s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000038_T810s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000102_T2208s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000113_T2452s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000145_T3152s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000135_T2933s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000042_T898s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000177_T3851s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000197_T4288s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000217_T4726s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000147_T3196s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000134_T2911s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000172_T3742s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000025_T527s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000105_T2275s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000194_T4223s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000118_T2561s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000013_T266s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000123_T2671s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000247_T5381s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000246_T5360s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000126_T2736s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000088_T1902s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000090_T1946s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000075_T1618s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000187_T4070s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000131_T2845s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000165_T3589s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000094_T2033s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000190_T4136s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000073_T1574s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000170_T3698s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000056_T1203s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000098_T2121s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000205_T4463s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000130_T2823s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000013_T266s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000237_T5163s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000202_T4398s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000247_T5381s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000012_T244s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000078_T1684s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000128_T2780s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000191_T4157s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000021_T440s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000076_T1640s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000137_T2977s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000059_T1269s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000221_T4813s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000119_T2584s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000190_T4136s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000079_T1705s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000186_T4049s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000213_T4638s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000011_T221s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000089_T1923s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000230_T5010s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000139_T3021s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000190_T4136s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000092_T1989s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000147_T3196s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000113_T2452s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000096_T2077s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000155_T3371s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000141_T3064s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000051_T1094s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000201_T4376s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000244_T5316s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000126_T2736s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000094_T2033s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000127_T2758s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000219_T4769s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000229_T4988s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100003_T46s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000061_T1313s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100005_T89s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000102_T2208s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000195_T4245s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000223_T4857s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000074_T1596s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000223_T4857s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000125_T2714s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000112_T2429s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000114_T2474s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000189_T4114s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000085_T1836s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000148_T3218s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000117_T2539s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000227_T4945s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000075_T1618s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000156_T3393s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000026_T548s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000237_T5163s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000081_T1749s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000047_T1007s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000095_T2055s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000183_T3983s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000249_T5425s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000097_T2098s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000231_T5032s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000079_T1705s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000019_T396s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000249_T5425s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000194_T4223s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000248_T5403s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000046_T985s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000197_T4288s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000062_T1335s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100006_T111s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000167_T3633s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000202_T4398s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000196_T4266s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000245_T5338s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000199_T4332s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000051_T1094s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000129_T2801s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000060_T1291s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000081_T1749s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000200_T4354s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000073_T1574s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000123_T2671s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000064_T1378s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000225_T4900s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000213_T4638s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000116_T2517s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000077_T1662s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000086_T1858s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000233_T5075s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000110_T2385s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000232_T5054s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000218_T4747s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000058_T1246s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000045_T963s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000115_T2496s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000225_T4900s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000133_T2889s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000096_T2077s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000195_T4245s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100001_T0s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000016_T331s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000189_T4114s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000161_T3502s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000065_T1400s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000084_T1814s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000141_T3064s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000116_T2517s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000114_T2474s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000014_T287s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000145_T3152s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000129_T2801s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000046_T985s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000229_T4988s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000149_T3240s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000211_T4595s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000184_T4005s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000023_T483s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000170_T3698s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000100_T2164s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000020_T418s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000215_T4682s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000052_T1116s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000081_T1749s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000028_T592s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000078_T1684s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000024_T505s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000235_T5119s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000083_T1793s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000025_T527s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000214_T4660s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000019_T396s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000131_T2845s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000107_T2319s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000089_T1923s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000106_T2297s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000164_T3567s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000176_T3829s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000112_T2429s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000121_T2627s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000155_T3371s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000132_T2867s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000151_T3283s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000032_T679s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000047_T1007s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000070_T1509s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000063_T1356s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100004_T67s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000158_T3437s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000028_T592s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000070_T1509s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000068_T1466s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000069_T1488s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000175_T3807s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000168_T3655s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000189_T4114s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000015_T309s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000227_T4945s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000171_T3720s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000194_T4223s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000121_T2627s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000218_T4747s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000123_T2671s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000144_T3130s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000142_T3086s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000122_T2649s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000066_T1422s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000016_T331s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000171_T3720s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000062_T1335s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000224_T4878s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000078_T1684s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000031_T657s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000180_T3917s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000122_T2649s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000168_T3655s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000107_T2319s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000052_T1116s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000188_T4092s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000104_T2252s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000196_T4266s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000066_T1422s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000048_T1028s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000080_T1727s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100006_T111s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000241_T5250s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000174_T3786s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000082_T1771s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000219_T4769s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000095_T2055s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000232_T5054s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000058_T1246s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000041_T876s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000033_T701s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000030_T635s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000067_T1444s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000201_T4376s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000041_T876s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000144_T3130s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000111_T2407s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000010_T199s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000186_T4049s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000205_T4463s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000017_T353s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000124_T2693s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000193_T4201s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000015_T309s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000136_T2955s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000065_T1400s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000237_T5163s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000133_T2889s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000050_T1072s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000152_T3305s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000203_T4419s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000080_T1727s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000244_T5316s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000044_T941s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100002_T24s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000139_T3021s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000217_T4726s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000191_T4157s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000091_T1968s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000029_T614s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000210_T4573s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000231_T5032s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000137_T2977s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000103_T2230s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000027_T570s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000240_T5229s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000089_T1923s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000221_T4813s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000012_T244s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000211_T4595s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000121_T2627s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000050_T1072s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100008_T156s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000043_T919s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000120_T2605s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000219_T4769s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000214_T4660s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000206_T4485s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000050_T1072s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000222_T4835s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000068_T1466s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000040_T854s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000141_T3064s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000208_T4529s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000224_T4878s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000207_T4507s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000163_T3546s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000019_T396s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000183_T3983s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000071_T1531s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000142_T3086s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000029_T614s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000085_T1836s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000011_T221s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000072_T1553s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000158_T3437s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000167_T3633s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000117_T2539s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000069_T1488s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000039_T832s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000230_T5010s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000125_T2714s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000199_T4332s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100004_T67s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000053_T1138s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000163_T3546s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000076_T1640s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000215_T4682s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000232_T5054s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000231_T5032s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000150_T3262s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000221_T4813s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000160_T3480s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000095_T2055s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000153_T3328s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000016_T331s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000243_T5294s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000100_T2164s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000241_T5250s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000090_T1946s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000035_T745s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000069_T1488s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000124_T2693s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000198_T4310s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000132_T2867s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000206_T4485s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000154_T3349s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000037_T789s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000118_T2561s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000247_T5381s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000105_T2275s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100007_T133s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000174_T3786s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000040_T854s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000087_T1880s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000054_T1159s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000027_T570s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000198_T4310s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000049_T1051s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000212_T4616s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000150_T3262s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000241_T5250s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000240_T5229s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000223_T4857s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000114_T2474s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000023_T483s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000216_T4704s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000092_T1989s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000159_T3458s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000055_T1181s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000135_T2933s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000169_T3676s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000085_T1836s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000161_T3502s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000018_T375s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000017_T353s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000220_T4791s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000140_T3042s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000092_T1989s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000118_T2561s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000178_T3873s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000036_T766s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000152_T3305s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000226_T4922s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000234_T5097s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000020_T418s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000025_T527s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000226_T4922s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100001_T0s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000052_T1116s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000238_T5185s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000191_T4157s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000177_T3851s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000088_T1902s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100002_T24s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000057_T1225s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000166_T3611s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000181_T3939s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000055_T1181s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000043_T919s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000182_T3961s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100005_T89s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000125_T2714s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000034_T723s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000140_T3042s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000250_T5447s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000209_T4551s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000014_T287s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000059_T1269s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000145_T3152s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000177_T3851s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000250_T5447s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100007_T133s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000199_T4332s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100003_T46s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000244_T5316s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000196_T4266s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000236_T5141s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000012_T244s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000088_T1902s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000162_T3524s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000198_T4310s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000111_T2407s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000115_T2496s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000098_T2121s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000159_T3458s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000072_T1553s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000130_T2823s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100002_T24s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000163_T3546s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000220_T4791s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000076_T1640s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000104_T2252s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000153_T3328s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000184_T4005s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000059_T1269s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000048_T1028s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000203_T4419s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000137_T2977s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000214_T4660s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000051_T1094s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000082_T1771s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000039_T832s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000014_T287s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000233_T5075s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000075_T1618s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000185_T4027s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000146_T3174s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000147_T3196s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000148_T3218s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000126_T2736s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000153_T3328s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000146_T3174s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000136_T2955s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000239_T5207s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000179_T3895s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000010_T199s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000130_T2823s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000209_T4551s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000033_T701s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000015_T309s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000058_T1246s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000060_T1291s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000204_T4441s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000049_T1051s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000249_T5425s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000210_T4573s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000162_T3524s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000021_T440s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000169_T3676s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000192_T4179s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000119_T2584s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000083_T1793s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100009_T177s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000018_T375s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000063_T1356s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000227_T4945s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000096_T2077s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000228_T4966s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000102_T2208s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000108_T2341s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000143_T3107s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000044_T941s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000181_T3939s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000074_T1596s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000115_T2496s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000164_T3567s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000216_T4704s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000106_T2297s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000091_T1968s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000093_T2011s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000144_T3130s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000158_T3437s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000202_T4398s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000026_T548s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000113_T2452s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000185_T4027s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000220_T4791s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100001_T0s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000086_T1858s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000236_T5141s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000036_T766s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000072_T1553s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000128_T2780s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100009_T177s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000037_T789s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000168_T3655s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000107_T2319s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000235_T5119s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000090_T1946s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000093_T2011s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000224_T4878s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000182_T3961s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000039_T832s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000154_T3349s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000166_T3611s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000160_T3480s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000234_T5097s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000248_T5403s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000192_T4179s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000182_T3961s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000091_T1968s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000159_T3458s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000064_T1378s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000054_T1159s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000065_T1400s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000193_T4201s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000250_T5447s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000208_T4529s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000100_T2164s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000242_T5272s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000134_T2911s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000034_T723s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000110_T2385s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000197_T4288s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000239_T5207s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000024_T505s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000056_T1203s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000192_T4179s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000150_T3262s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000140_T3042s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000117_T2539s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000053_T1138s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000222_T4835s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000101_T2186s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000023_T483s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100004_T67s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000043_T919s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000157_T3415s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000037_T789s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000067_T1444s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000204_T4441s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000173_T3764s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000212_T4616s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000235_T5119s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000243_T5294s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000230_T5010s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000142_T3086s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000204_T4441s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000217_T4726s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000200_T4354s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000193_T4201s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000128_T2780s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000018_T375s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000207_T4507s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000082_T1771s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000061_T1313s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000064_T1378s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000109_T2363s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000154_T3349s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000057_T1225s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000049_T1051s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000035_T745s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000054_T1159s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000010_T199s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000176_T3829s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000207_T4507s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000099_T2142s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000156_T3393s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000170_T3698s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000186_T4049s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000243_T5294s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000160_T3480s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000228_T4966s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000053_T1138s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000066_T1422s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000067_T1444s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000157_T3415s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000179_T3895s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000028_T592s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000048_T1028s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000246_T5360s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000061_T1313s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000031_T657s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000104_T2252s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000175_T3807s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000184_T4005s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000094_T2033s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000021_T440s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100008_T156s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000017_T353s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000038_T810s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000044_T941s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000138_T2998s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000022_T461s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000240_T5229s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000248_T5403s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000176_T3829s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000080_T1727s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000038_T810s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000222_T4835s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000175_T3807s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000215_T4682s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000101_T2186s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000187_T4070s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000157_T3415s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000042_T898s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000135_T2933s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000013_T266s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000208_T4529s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000146_T3174s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000040_T854s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000087_T1880s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000233_T5075s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000122_T2649s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000238_T5185s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000236_T5141s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000138_T2998s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000229_T4988s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000024_T505s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000074_T1596s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000161_T3502s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000238_T5185s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000108_T2341s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000172_T3742s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000105_T2275s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000132_T2867s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000218_T4747s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000033_T701s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000084_T1814s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000149_T3240s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000173_T3764s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000242_T5272s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000165_T3589s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000047_T1007s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000178_T3873s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000226_T4922s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000225_T4900s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000148_T3218s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000108_T2341s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100009_T177s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000097_T2098s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000245_T5338s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000097_T2098s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000228_T4966s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000201_T4376s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000200_T4354s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000057_T1225s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000246_T5360s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000111_T2407s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000245_T5338s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000093_T2011s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100003_T46s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000045_T963s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000212_T4616s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000131_T2845s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000188_T4092s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000143_T3107s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000030_T635s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000084_T1814s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000087_T1880s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000027_T570s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000046_T985s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000179_T3895s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100006_T111s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000211_T4595s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000026_T548s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000180_T3917s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000164_T3567s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000042_T898s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000187_T4070s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000156_T3393s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000079_T1705s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000216_T4704s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000210_T4573s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000171_T3720s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000022_T461s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000133_T2889s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000167_T3633s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000129_T2801s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000011_T221s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000127_T2758s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000139_T3021s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000174_T3786s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100005_T89s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000073_T1574s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000209_T4551s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000151_T3283s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000109_T2363s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000031_T657s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100007_T133s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000036_T766s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000106_T2297s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000119_T2584s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000178_T3873s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000103_T2230s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000188_T4092s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000124_T2693s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000062_T1335s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000099_T2142s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000029_T614s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000116_T2517s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000206_T4485s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000041_T876s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000143_T3107s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000034_T723s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000120_T2605s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000203_T4419s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000060_T1291s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-100008_T156s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000077_T1662s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-10000101_T2186s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-secondary-data/HsPEX5EGFP 1-1000055_T1181s_1_OFCS.pqres (deflated 66%)
zip -r 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data.zip 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data
adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/ (stored 0%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100013_T264s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100092_T1990s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000130_T2822s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100047_T1007s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000149_T3238s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000145_T3151s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100083_T1793s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100015_T308s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000235_T5123s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100066_T1422s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100064_T1378s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000230_T5013s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000197_T4290s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000115_T2494s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000227_T4948s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100084_T1815s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100056_T1204s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000158_T3434s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100053_T1139s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100080_T1728s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100063_T1356s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000203_T4421s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000172_T3742s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100059_T1269s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100069_T1488s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100014_T286s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100034_T723s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000176_T3830s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100041_T876s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100059_T1269s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000171_T3720s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000241_T5255s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000219_T4772s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100036_T767s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100066_T1422s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100050_T1073s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000226_T4925s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000178_T3874s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100019_T395s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000144_T3129s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100032_T680s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000199_T4333s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100017_T352s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100046_T985s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000182_T3961s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100091_T1968s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100086_T1859s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000145_T3151s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000133_T2888s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000122_T2647s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10002_T24s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000113_T2450s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100096_T2077s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10005_T90s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000167_T3632s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100017_T352s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000103_T2231s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100097_T2100s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000120_T2604s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100055_T1182s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000205_T4465s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000138_T2997s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100061_T1313s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000189_T4114s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000207_T4509s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000248_T5408s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100032_T680s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000124_T2691s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000243_T5299s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100079_T1706s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100020_T417s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100035_T745s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10003_T46s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000156_T3390s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000125_T2713s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000237_T5167s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100023_T483s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100018_T374s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000144_T3129s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000220_T4793s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100082_T1771s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000131_T2844s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000149_T3238s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10007_T134s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000155_T3368s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000183_T3983s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100058_T1247s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100014_T286s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000173_T3764s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000135_T2932s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100024_T505s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000155_T3368s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10004_T68s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100054_T1160s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000249_T5430s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100078_T1684s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100061_T1313s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000221_T4815s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100016_T330s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100042_T898s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000195_T4246s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000132_T2866s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000240_T5233s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000109_T2362s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000118_T2560s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000246_T5364s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000116_T2516s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000137_T2976s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000142_T3085s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100093_T2012s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000141_T3063s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000229_T4991s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000148_T3216s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100064_T1378s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100058_T1247s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000214_T4662s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100036_T767s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000123_T2669s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000248_T5408s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000143_T3107s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100057_T1226s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100035_T745s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100040_T854s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000231_T5035s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100021_T439s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100054_T1160s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100034_T723s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10004_T68s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000218_T4750s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000202_T4399s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100060_T1291s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000114_T2473s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10001_T0s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100012_T242s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000133_T2888s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000112_T2429s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000134_T2910s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000111_T2407s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000120_T2604s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000129_T2800s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000203_T4421s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100065_T1400s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000104_T2253s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100029_T614s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000116_T2516s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000224_T4882s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100094_T2034s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000179_T3895s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000124_T2691s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100037_T789s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000244_T5321s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000193_T4202s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000160_T3479s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000196_T4268s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100030_T636s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100025_T527s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000210_T4574s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000228_T4969s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000147_T3194s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000132_T2866s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100048_T1029s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100093_T2012s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10001_T0s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100072_T1553s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100015_T308s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000244_T5321s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000122_T2647s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000187_T4071s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000165_T3588s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100083_T1793s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000164_T3566s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000101_T2188s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000231_T5035s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100062_T1335s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100011_T221s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000139_T3019s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000134_T2910s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000204_T4443s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000225_T4903s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000204_T4443s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000201_T4377s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100010_T199s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000199_T4333s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000149_T3238s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000161_T3500s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100056_T1204s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100094_T2034s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000128_T2778s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100070_T1510s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100024_T505s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000177_T3852s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000141_T3063s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000227_T4948s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000189_T4114s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000216_T4706s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100079_T1706s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100065_T1400s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000120_T2604s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000109_T2362s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000226_T4925s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000238_T5189s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100074_T1597s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000218_T4750s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000228_T4969s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000206_T4487s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000240_T5233s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000205_T4465s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000215_T4683s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000172_T3742s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000121_T2625s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000142_T3085s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000230_T5013s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000143_T3107s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000102_T2209s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100074_T1597s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000241_T5255s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100089_T1924s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100067_T1444s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100034_T723s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000156_T3390s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100083_T1793s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000110_T2384s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100084_T1815s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000222_T4837s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000232_T5057s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000170_T3698s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000157_T3412s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000242_T5277s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100038_T811s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100095_T2056s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000194_T4224s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100029_T614s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000190_T4137s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000155_T3368s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100044_T942s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000179_T3895s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100098_T2122s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000217_T4728s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100082_T1771s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100055_T1182s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100050_T1073s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100073_T1575s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000236_T5145s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000100_T2166s_1_OTrace.pqres (deflated 67%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000217_T4728s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000131_T2844s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000196_T4268s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000213_T4640s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000137_T2976s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000182_T3961s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000235_T5123s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10003_T46s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100088_T1902s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000234_T5101s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000126_T2734s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000151_T3282s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000245_T5343s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10006_T112s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100050_T1073s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000121_T2625s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100056_T1204s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100054_T1160s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100013_T264s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000178_T3874s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10006_T112s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100068_T1466s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000188_T4093s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100026_T549s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10005_T90s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000233_T5079s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100096_T2077s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100065_T1400s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000153_T3325s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10004_T68s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100028_T592s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100010_T199s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000192_T4180s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000159_T3456s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000245_T5343s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000152_T3303s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100027_T571s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000239_T5211s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100095_T2056s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000180_T3917s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000190_T4137s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100073_T1575s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100057_T1226s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10001_T0s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000236_T5145s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000231_T5035s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100091_T1968s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100039_T833s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100026_T549s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000188_T4093s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000173_T3764s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000186_T4049s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100067_T1444s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100051_T1095s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100036_T767s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000157_T3412s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100076_T1641s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000183_T3983s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100090_T1946s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000178_T3874s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100010_T199s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000124_T2691s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100022_T461s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100099_T2144s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000224_T4882s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000101_T2188s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000102_T2209s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000146_T3173s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10002_T24s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000114_T2473s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000214_T4662s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000181_T3939s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000161_T3500s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000152_T3303s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000101_T2188s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100052_T1117s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100061_T1313s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000171_T3720s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000232_T5057s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000166_T3610s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000110_T2384s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000245_T5343s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000130_T2822s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000229_T4991s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000147_T3194s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000118_T2560s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000154_T3347s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100080_T1728s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000147_T3194s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000145_T3151s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000215_T4683s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000223_T4859s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000100_T2166s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000117_T2538s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000200_T4356s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000248_T5408s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100092_T1990s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000200_T4356s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000201_T4377s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000146_T3173s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000119_T2582s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100087_T1881s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000184_T4005s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000103_T2231s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100021_T439s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100040_T854s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100060_T1291s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000166_T3610s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100042_T898s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000127_T2756s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000234_T5101s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100081_T1750s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000128_T2778s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100084_T1815s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000169_T3676s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000123_T2669s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000115_T2494s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000213_T4640s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000107_T2319s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000168_T3654s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000104_T2253s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100015_T308s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000209_T4553s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000116_T2516s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000105_T2275s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000246_T5364s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000191_T4158s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100028_T592s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000179_T3895s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000106_T2297s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000206_T4487s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100045_T964s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000210_T4574s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000162_T3522s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000110_T2384s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000194_T4224s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000208_T4531s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000157_T3412s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100094_T2034s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000126_T2734s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000184_T4005s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100032_T680s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100087_T1881s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000216_T4706s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100031_T658s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000187_T4071s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000117_T2538s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000150_T3260s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000106_T2297s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100074_T1597s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000194_T4224s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000211_T4596s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100096_T2077s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000112_T2429s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000200_T4356s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100079_T1706s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000159_T3456s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100072_T1553s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000247_T5386s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000238_T5189s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000102_T2209s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100037_T789s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000105_T2275s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000197_T4290s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000208_T4531s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100073_T1575s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000185_T4027s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100051_T1095s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000131_T2844s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000186_T4049s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000175_T3808s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000223_T4859s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000121_T2625s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000163_T3544s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000237_T5167s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000128_T2778s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10007_T134s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000222_T4837s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000144_T3129s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100047_T1007s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100095_T2056s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000215_T4683s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000165_T3588s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000250_T5451s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10002_T24s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100089_T1924s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100019_T395s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000193_T4202s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100099_T2144s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10009_T177s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000161_T3500s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000198_T4312s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000164_T3566s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000235_T5123s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000238_T5189s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000158_T3434s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000184_T4005s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100023_T483s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000176_T3830s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100076_T1641s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000171_T3720s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000225_T4903s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100011_T221s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000174_T3786s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100048_T1029s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000202_T4399s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100053_T1139s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000170_T3698s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100060_T1291s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100089_T1924s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000108_T2340s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100058_T1247s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000217_T4728s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000173_T3764s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100081_T1750s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000113_T2450s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100070_T1510s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000227_T4948s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000221_T4815s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000175_T3808s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100082_T1771s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100041_T876s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000232_T5057s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100078_T1684s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100049_T1051s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000177_T3852s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100020_T417s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10003_T46s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000174_T3786s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100097_T2100s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100031_T658s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100081_T1750s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100097_T2100s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000234_T5101s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000239_T5211s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100087_T1881s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000151_T3282s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000170_T3698s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000168_T3654s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000136_T2954s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000138_T2997s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000104_T2253s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100027_T571s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100024_T505s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100029_T614s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100085_T1837s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100052_T1117s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000185_T4027s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100067_T1444s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000160_T3479s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000214_T4662s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000191_T4158s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000177_T3852s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000247_T5386s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000210_T4574s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100033_T702s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000197_T4290s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100091_T1968s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100070_T1510s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10007_T134s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000107_T2319s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000224_T4882s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000103_T2231s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100068_T1466s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100049_T1051s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100046_T985s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000205_T4465s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000139_T3019s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000239_T5211s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000193_T4202s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000242_T5277s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100062_T1335s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000204_T4443s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000162_T3522s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000108_T2340s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100088_T1902s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100077_T1662s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100086_T1859s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000212_T4618s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000138_T2997s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000187_T4071s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000243_T5299s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000201_T4377s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000228_T4969s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100077_T1662s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100039_T833s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000237_T5167s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000148_T3216s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000220_T4793s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000176_T3830s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100062_T1335s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100085_T1837s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000153_T3325s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100025_T527s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000196_T4268s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000230_T5013s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000223_T4859s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100022_T461s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100039_T833s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10008_T155s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000127_T2756s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000117_T2538s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100080_T1728s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100020_T417s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100064_T1378s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000111_T2407s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100063_T1356s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000185_T4027s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000188_T4093s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000174_T3786s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000111_T2407s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000139_T3019s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100043_T920s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000172_T3742s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100077_T1662s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000135_T2932s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000250_T5451s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10008_T155s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000203_T4421s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100085_T1837s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100016_T330s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000130_T2822s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100098_T2122s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000134_T2910s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000220_T4793s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100066_T1422s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000211_T4596s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000207_T4509s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000113_T2450s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000180_T3917s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000219_T4772s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000169_T3676s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000189_T4114s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10009_T177s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000164_T3566s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100044_T942s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100045_T964s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000192_T4180s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100093_T2012s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000107_T2319s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100031_T658s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000206_T4487s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100030_T636s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100022_T461s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000216_T4706s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000126_T2734s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000246_T5364s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000212_T4618s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100043_T920s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000222_T4837s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000137_T2976s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000209_T4553s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000140_T3041s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000233_T5079s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000154_T3347s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000129_T2800s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000132_T2866s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000225_T4903s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000148_T3216s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100046_T985s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100059_T1269s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000123_T2669s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000192_T4180s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000244_T5321s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000168_T3654s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100071_T1532s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000156_T3390s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100026_T549s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000106_T2297s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100019_T395s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000142_T3085s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100025_T527s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100042_T898s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100045_T964s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000219_T4772s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100028_T592s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000167_T3632s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100018_T374s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000212_T4618s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100078_T1684s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100092_T1990s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000202_T4399s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100021_T439s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000150_T3260s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000198_T4312s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100063_T1356s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100018_T374s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000105_T2275s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000249_T5430s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000119_T2582s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100017_T352s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000127_T2756s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000190_T4137s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000122_T2647s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000162_T3522s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100043_T920s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000140_T3041s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000160_T3479s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000163_T3544s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000141_T3063s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000195_T4246s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000195_T4246s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000165_T3588s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000243_T5299s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000100_T2166s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100012_T242s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100027_T571s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100090_T1946s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000140_T3041s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10009_T177s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000167_T3632s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000211_T4596s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000208_T4531s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000166_T3610s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100041_T876s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100068_T1466s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000109_T2362s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000182_T3961s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000135_T2932s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000241_T5255s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000136_T2954s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000118_T2560s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100013_T264s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100051_T1095s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100075_T1619s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000169_T3676s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000115_T2494s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100037_T789s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000247_T5386s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000133_T2888s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000181_T3939s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000233_T5079s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100090_T1946s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100055_T1182s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000183_T3983s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100012_T242s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100075_T1619s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100053_T1139s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100099_T2144s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100035_T745s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000242_T5277s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000153_T3325s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000191_T4158s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000158_T3434s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100033_T702s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000250_T5451s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000114_T2473s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000125_T2713s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000236_T5145s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000151_T3282s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000175_T3808s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100016_T330s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100038_T811s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000249_T5430s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000146_T3173s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100072_T1553s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100098_T2122s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000181_T3939s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000163_T3544s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000226_T4925s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100033_T702s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100014_T286s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100047_T1007s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100040_T854s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000198_T4312s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000129_T2800s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100030_T636s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000240_T5233s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000154_T3347s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000108_T2340s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100069_T1488s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100069_T1488s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10005_T90s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000186_T4049s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100075_T1619s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100088_T1902s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100038_T811s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100057_T1226s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000213_T4640s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000159_T3456s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10008_T155s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-10006_T112s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100044_T942s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100071_T1532s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000152_T3303s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000207_T4509s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100023_T483s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000209_T4553s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000229_T4991s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000125_T2713s_1_OTCSPC.pqres (deflated 81%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100076_T1641s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000199_T4333s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100048_T1029s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100071_T1532s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100052_T1117s_1_OFCS.pqres (deflated 65%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100049_T1051s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000150_T3260s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000221_T4815s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000143_T3107s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000218_T4750s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000180_T3917s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100086_T1859s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000112_T2429s_1_OFCS.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000119_T2582s_1_OTCSPC.pqres (deflated 80%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-1000136_T2954s_1_OTrace.pqres (deflated 66%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-secondary-data/TbPEX5EGFP 1-100011_T221s_1_OTCSPC.pqres (deflated 80%)
zip -r 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data.zip 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data
adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/ (stored 0%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10009_T177s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000229_T4991s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000181_T3939s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000110_T2384s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000143_T3107s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000129_T2800s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100064_T1378s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000162_T3522s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100051_T1095s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000205_T4465s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000156_T3390s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100072_T1553s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100092_T1990s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100046_T985s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100011_T221s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000201_T4377s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000214_T4662s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100052_T1117s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000135_T2932s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100065_T1400s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000240_T5233s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000172_T3742s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100043_T920s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000231_T5035s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100013_T264s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100040_T854s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100028_T592s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100082_T1771s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100055_T1182s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000173_T3764s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000139_T3019s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100080_T1728s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100063_T1356s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100099_T2144s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000235_T5123s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100086_T1859s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100089_T1924s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000228_T4969s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000202_T4399s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000117_T2538s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100014_T286s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000142_T3085s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000150_T3260s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000157_T3412s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100032_T680s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100056_T1204s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000242_T5277s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100083_T1793s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000200_T4356s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000192_T4180s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000131_T2844s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000127_T2756s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100042_T898s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100037_T789s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000193_T4202s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000183_T3983s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000161_T3500s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000159_T3456s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000165_T3588s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100029_T614s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000149_T3238s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000105_T2275s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100030_T636s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100031_T658s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000184_T4005s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100057_T1226s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100039_T833s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100035_T745s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100088_T1902s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000236_T5145s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100016_T330s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100071_T1532s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000203_T4421s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100061_T1313s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10008_T155s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000246_T5364s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10003_T46s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100048_T1029s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000137_T2976s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000190_T4137s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000170_T3698s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000111_T2407s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000153_T3325s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000158_T3434s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100017_T352s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100025_T527s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100075_T1619s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000219_T4772s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000115_T2494s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000174_T3786s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100024_T505s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000166_T3610s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000211_T4596s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000168_T3654s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100067_T1444s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100041_T876s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000118_T2560s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000250_T5451s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100060_T1291s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000237_T5167s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000152_T3303s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000207_T4509s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000238_T5189s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10002_T24s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000102_T2209s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000126_T2734s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000163_T3544s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100066_T1422s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000179_T3895s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100069_T1488s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100074_T1597s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000119_T2582s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000171_T3720s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100050_T1073s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100094_T2034s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000178_T3874s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100019_T395s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000206_T4487s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100091_T1968s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000130_T2822s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100022_T461s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000245_T5343s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000144_T3129s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100010_T199s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000175_T3808s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100045_T964s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000120_T2604s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000196_T4268s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000244_T5321s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000185_T4027s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10005_T90s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000210_T4574s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100093_T2012s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000223_T4859s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100090_T1946s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100070_T1510s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100097_T2100s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100096_T2077s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100078_T1684s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000222_T4837s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000114_T2473s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100077_T1662s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000220_T4793s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000198_T4312s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000160_T3479s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000124_T2691s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000212_T4618s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10006_T112s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100084_T1815s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100062_T1335s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100058_T1247s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100044_T942s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10001_T0s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000167_T3632s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000249_T5430s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000199_T4333s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000121_T2625s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000106_T2297s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100012_T242s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100026_T549s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000141_T3063s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000155_T3368s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100021_T439s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000216_T4706s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000187_T4071s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000107_T2319s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000197_T4290s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000247_T5386s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000218_T4750s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100023_T483s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000123_T2669s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000194_T4224s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000217_T4728s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000230_T5013s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100053_T1139s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000138_T2997s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100034_T723s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100033_T702s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000116_T2516s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100038_T811s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000234_T5101s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000241_T5255s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000188_T4093s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000248_T5408s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000112_T2429s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000213_T4640s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000122_T2647s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000100_T2166s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000233_T5079s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000151_T3282s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000140_T3041s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000128_T2778s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000133_T2888s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000243_T5299s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100015_T308s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100027_T571s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000103_T2231s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100020_T417s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000226_T4925s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100098_T2122s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100085_T1837s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000191_T4158s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000145_T3151s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000227_T4948s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000109_T2362s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100036_T767s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100049_T1051s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000164_T3566s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000176_T3830s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000101_T2188s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000113_T2450s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000177_T3852s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000146_T3173s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000232_T5057s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000134_T2910s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000169_T3676s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000186_T4049s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100087_T1881s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100095_T2056s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100073_T1575s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000204_T4443s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10007_T134s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000180_T3917s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000108_T2340s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000209_T4553s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000132_T2866s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000189_T4114s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100079_T1706s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100054_T1160s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000104_T2253s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100047_T1007s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000225_T4903s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000221_T4815s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000182_T3961s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000147_T3194s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000148_T3216s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000136_T2954s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000125_T2713s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-10004_T68s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100081_T1750s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000154_T3347s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100076_T1641s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100059_T1269s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000224_T4882s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100018_T374s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000208_T4531s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000239_T5211s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000215_T4683s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-1000195_T4246s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-peak-artifacts-PEX5-primary-data/TbPEX5EGFP 1-100068_T1466s_1.ptu (deflated 46%) org_babel_sh_prompt>
zip -r 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data.zip 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data
adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/ (stored 0%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000091_T1968s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000130_T2823s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000167_T3633s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000168_T3655s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000058_T1246s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000128_T2780s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000105_T2275s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100004_T67s_1.ptu (deflated 44%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000226_T4922s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000029_T614s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000225_T4900s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000154_T3349s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000127_T2758s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000224_T4878s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000036_T766s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000035_T745s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000222_T4835s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000196_T4266s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000012_T244s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000076_T1640s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000100_T2164s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000144_T3130s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000124_T2693s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000092_T1989s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000104_T2252s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000126_T2736s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000236_T5141s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000017_T353s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000166_T3611s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000155_T3371s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000045_T963s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000015_T309s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000117_T2539s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000200_T4354s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000055_T1181s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100003_T46s_1.ptu (deflated 43%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000025_T527s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000163_T3546s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000111_T2407s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000189_T4114s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000046_T985s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000138_T2998s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000215_T4682s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000072_T1553s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000197_T4288s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000171_T3720s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000182_T3961s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000237_T5163s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000149_T3240s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000075_T1618s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000087_T1880s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000065_T1400s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000079_T1705s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000239_T5207s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000031_T657s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000146_T3174s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000202_T4398s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000148_T3218s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000192_T4179s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000078_T1684s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000108_T2341s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000053_T1138s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000223_T4857s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000107_T2319s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000230_T5010s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000131_T2845s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000095_T2055s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000077_T1662s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000139_T3021s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000201_T4376s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000209_T4551s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000227_T4945s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000188_T4092s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000242_T5272s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000093_T2011s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000064_T1378s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000229_T4988s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000135_T2933s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000027_T570s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000228_T4966s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000214_T4660s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000213_T4638s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000247_T5381s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000241_T5250s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000243_T5294s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000112_T2429s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000028_T592s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000052_T1116s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000044_T941s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000070_T1509s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000250_T5447s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000061_T1313s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000248_T5403s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000142_T3086s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000176_T3829s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000098_T2121s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000172_T3742s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000206_T4485s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000086_T1858s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000113_T2452s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000062_T1335s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000101_T2186s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000218_T4747s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000068_T1466s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000134_T2911s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000205_T4463s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100006_T111s_1.ptu (deflated 44%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000233_T5075s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100008_T156s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100005_T89s_1.ptu (deflated 44%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000057_T1225s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000054_T1159s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000220_T4791s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000140_T3042s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000122_T2649s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000198_T4310s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000063_T1356s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000040_T854s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000137_T2977s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000069_T1488s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000034_T723s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000021_T440s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000047_T1007s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000150_T3262s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100001_T0s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000221_T4813s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000216_T4704s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000231_T5032s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000165_T3589s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000244_T5316s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000097_T2098s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000204_T4441s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000174_T3786s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000073_T1574s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000080_T1727s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000109_T2363s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000151_T3283s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000090_T1946s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000103_T2230s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000022_T461s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000183_T3983s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000212_T4616s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000164_T3567s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100009_T177s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000023_T483s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000074_T1596s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000013_T266s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000181_T3939s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000118_T2561s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000249_T5425s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000193_T4201s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000043_T919s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000132_T2867s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000141_T3064s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000106_T2297s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000185_T4027s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000050_T1072s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000085_T1836s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000125_T2714s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000037_T789s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000116_T2517s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000161_T3502s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000219_T4769s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000194_T4223s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000207_T4507s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000067_T1444s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000143_T3107s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000245_T5338s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000020_T418s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000157_T3415s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000114_T2474s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000059_T1269s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000160_T3480s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000084_T1814s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000203_T4419s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000042_T898s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000136_T2955s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000175_T3807s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000038_T810s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000186_T4049s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000178_T3873s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000016_T331s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000173_T3764s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000169_T3676s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000060_T1291s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000011_T221s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000156_T3393s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000014_T287s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000217_T4726s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000051_T1094s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000056_T1203s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000238_T5185s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000026_T548s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000096_T2077s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000234_T5097s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000018_T375s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000041_T876s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000039_T832s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000190_T4136s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000024_T505s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000180_T3917s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000121_T2627s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000066_T1422s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000184_T4005s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000133_T2889s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000187_T4070s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000235_T5119s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000115_T2496s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000049_T1051s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000232_T5054s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000158_T3437s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000152_T3305s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000153_T3328s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000145_T3152s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000179_T3895s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000147_T3196s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000081_T1749s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000032_T679s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000129_T2801s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000191_T4157s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000082_T1771s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000030_T635s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000083_T1793s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000010_T199s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000094_T2033s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000123_T2671s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000120_T2605s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000119_T2584s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000071_T1531s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000246_T5360s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000210_T4573s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000088_T1902s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000019_T396s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100007_T133s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000199_T4332s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000033_T701s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000211_T4595s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000240_T5229s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000195_T4245s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-100002_T24s_1.ptu (deflated 44%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000099_T2142s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000110_T2385s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000170_T3698s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000162_T3524s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000102_T2208s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000048_T1028s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000208_T4529s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-1000089_T1923s_1.ptu (deflated 46%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000159_T3458s_1.ptu (deflated 45%) adding: 2019-11-FCS-TCSPC-no-artifacts-PEX5-primary-data/HsPEX5EGFP 1-10000177_T3851s_1.ptu (deflated 45%)
- I performed the sorting and zipping manually for the simulation folders and
the
AF488
experiments inDolphin 23.04.1
, the standard file manager in Manjaro Linux. - After manual sorting, I wanted to check for unmatching primary and
secondary data. There were some unmatching samples, where the secondary
data (
.pqres
files from the PicoQuant machine) didn’t match the primary data (.ptu
files). They were few, and I did not use the secondary data myself and am only archiving what I got from Pablo. Thus, I did leave them as-is.%cd ~/Programme/drmed-collections/drmed-bioexps/brightbursts/1911DD_alexafluor488+LUVs/
/home/lex/Programme/drmed-collections/drmed-bioexps/brightbursts/1911DD_alexafluor488+LUVs
import sys import pandas as pd from pathlib import Path FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.simulations.analyze_simulations import convert_diffcoeff_to_transittimes primary = Path('./2019-11-FCS-TCSPC-no-artifacts-AF488-primary-data').rglob('*.ptu') primary = [p.stem for p in primary] print('examples primary:', primary[:5]) secondary = Path('./2019-11-FCS-TCSPC-no-artifacts-AF488-secondary-data').rglob('*.pqres') secondary = [p.stem.strip('_OFCS').strip('_OTCSPC') for p in secondary] print('examples secondary:', secondary[:5]) print('only in primary:', set(primary) - set(secondary)) print('only in secondary:', set(secondary) - set(primary))
- I renamed files from simulations. Here is the code I used for the
photobleaching simulations I did (which are not archived in this labbook,
because this was in September 2019, just before I started using this
LabBook.org
file)%cd ~/Programme/drmed-collections/drmed-simexps/thirdartefact_Sep2019/
import sys import pandas as pd from pathlib import Path FLUOTRACIFY_PATH = '/home/lex/Programme/drmed-git/src/' sys.path.append(FLUOTRACIFY_PATH) from fluotracify.simulations.analyze_simulations import convert_diffcoeff_to_transittimes paths = Path('.').rglob('*.csv') for p in paths: set = p.stem.split('_')[-1] set = set.split('-')[-1] metadata = pd.read_csv(p, delimiter=',', nrows=11, header=None, index_col=0) drate = float(metadata.loc['diffusion rate of molecules'].values[0]) tau, _ = convert_diffcoeff_to_transittimes(drate, 250) tau = round(tau, 2) nmol = int(float(metadata.loc['number of fast molecules'].values[0])) dir = Path(f'tau-{tau}ms-equals-d-{drate}'.replace('.', 'p')) fname = f'2019-09-photobleaching-d-{drate}-n-{nmol}-{set}.csv' dir.mkdir(exist_ok=True) p_new = dir / fname p.rename(p_new) print(p_new)