Lab book Fluotracify
1 Technical Notes
1.1 README
1.1.1 General:
- This file corresponds to my lab book for my doctoral thesis tackling artifact correction in Fluorescence Correlation Spectroscopy (FCS) measurements using Deep Neural Networks. It also contains notes taken during the process of setting up this workflow for reproducible research.
- This file contains explanations of how things are organized, of the workflow for doing experiments, changes made to the code, and the observed behavior in the "* Data" section.
- The branching model used is described in this paper. Therefore: if you
are interested in the "* Data" section, you have to
git clone
the data branch of the repository. The main branch is clean from any results, it contains only source code and the analysis. - This project is my take on Open-notebook science. The idea was postulated in
a blog post in 2006:
… there is a URL to a laboratory notebook that is freely available and indexed on common search engines. It does not necessarily have to look like a paper notebook but it is essential that all of the information available to the researchers to make their conclusions is equally available to the rest of the world —Jean-Claude Bradley
- Proposal on how to deal with truly private data (e.g. notes from a confidential meeting with a colleague), which might otherwise be noted in a normal Lab notebook: do not include them here. Only notes relevant to the current project should be taken
1.1.2 Code block languages used in this document
# This is a sh block for shell / bash scripting. In the context of this file, # these blocks are mainly used for operations on my local computer. # In the LabBook.html rendering of this document, these blocks will have a # light green colour (#F0FBE9)
# This block can open and access tmux sessions, used for shell scripting on # remote computing clusters. # In the LabBook.html rendering of this document, these blocks will have a # distinct light green colour (#E1EED8)
# This is a python block. In the context of this file, it is seldomly used # (only for examplary scripts.) # In the LabBook.html rendering of this document, these blocks will have a # light blue colour (#E6EDF4)
# This is a jupyter-python block. The code is sent to a jupyter kernel running # on a remote high performance computing cluster. Most of my jupyter code is # executed this way. # In the LabBook.html rendering of this document, these blocks will have a # light orange colour (#FAEAE1)
;; This is a emacs-lisp block, the language used to customize Emacs, which is ;; sometimes necessary, since the reproducible workflow of this LabBook is ;; tightly integrated with Emacs and org-mode. ;; In the LabBook.html rendering of this document, these blocks will have a ;; light violet colour (#F7ECFB)
This is a literal example block. It can be used very flexibly - in the context of this document the output of most code blocks is displayed this way. In the LabBook.html rendering of this document, these blocks will have a light yellow colour (#FBFBBF)
This is a literal example block enclosed in a details block. This is useful to make the page more readable by collapsing large amounts of output. In the Labbook.html rendering of this document, the details block will have a light grey colour (#f0f0f0) and a pink color when hovering above it.
1.1.3 Experiments workflow:
- Create a new branch from
main
- Print out the git log from the latest commit and the metadata
- Call the analysis scripts, follow the principles outlined in Organization of code
- All machine learning runs are saved in
data/mlruns
, all other data indata/#experiment-name
- Add a
** exp-<date>-<name>
" section to this file under Data - Commit/push the results of this separate branch
- Merge this new branch with the remote
data
branch
1.1.4 Example for experimental setup procedure
1.1.5 tools used (notes)
1.1.5.1 Emacs magit
gitflow-avh
(magit-flow
) to follow the flow- possibly https://github.com/magit/magit-annex for large files. Follow this: https://git-annex.branchable.com/walkthrough/
- maybe check out git-toolbelt at some point https://github.com/nvie/git-toolbelt#readme with https://nvie.com/posts/git-power-tools/
1.1.5.2 jupyter
- emacs jupyter for running and connecting to kernel on server: https://github.com/dzop/emacs-jupyter
- if I actually still would use .ipynb files, these might come handy:
- jupytext: https://github.com/mwouts/jupytext
- nbstripout: https://github.com/kynan/nbstripout
1.1.5.3 mlflow
1.1.5.4 tensorflow
1.2 Template for data entry and setup notes:
1.2.1 exp-#date-#title
1.2.1.1 git:
git log -1
1.2.1.2 System Metadata:
import os import pprint ramlist = os.popen('free -th').readlines()[-1].split()[1:] print('No of CPUs in system:', os.cpu_count()) print('No of CPUs the current process can use:', len(os.sched_getaffinity(0))) print('load average:', os.getloadavg()) print('os.uname(): ', os.uname()) print('PID of process:', os.getpid()) print('RAM total: {}, RAM used: {}, RAM free: {}'.format( ramlist[0], ramlist[1], ramlist[2])) !echo the current directory: $PWD !echo My disk usage: !df -h if _long: %conda list pprint.pprint(dict(os.environ), sort_dicts=False)
1.2.1.3 Tmux setup and scripts
rm ~/.tmux-local-socket-remote-machine REMOTE_SOCKET=$(ssh ara 'tmux ls -F "#{socket_path}"' | head -1) echo $REMOTE_SOCKET ssh ara -tfN \ -L ~/.tmux-local-socket-remote-machine:$REMOTE_SOCKET
rm: | cannot | remove | 'home/lex.tmux-local-socket-remote-machine': | No | such | file | or | directory |
ye53nis@ara-login01.rz.uni-jena.de's | password: | |||||||
/tmp/tmux-67339/default | ||||||||
> | ye53nis@ara-login01.rz.uni-jena.de's | password: |
1.2.1.4 SSH tunneling
Different applications can be run on the remote compute node. If I want to access them at the local machine, and open them with the browser, I use this tunneling script.
ssh -t -t ara -L $port:localhost:$port ssh $node -L $port:Localhost:$port
Apps I use that way:
- Jupyter lab for running Python 3-Kernels
- TensorBoard
- Mlflow ui
1.2.1.5 jupyter scripts
Starting a jupyter instance on a server where the necessary libraries are installed is easy using this script:
conda activate tf export PORT=9999 export XDG_RUNTIME_DIR='' export XDG_RUNTIME_DIR="" jupyter lab --no-browser --port=$PORT
On the compute node of the HPC, the users' environment is managed through
module files using the system Lmod. The export XDG_RUNTIME_DIR
statements
are needed because of a jupyter bug which did not let it start. Right now,
ob-tmux
does not support a :var
header like normal org-babel
does. So
the $port
variable has to be set here in the template.
Now this port has to be tunnelled on our local computer (See SSH tunneling). While the tmux session above keeps running, no matter if Emacs is running or not, this following ssh tunnel needs to be active locally to connect to the notebook. If you close Emacs, it would need to be reestablished
1.2.2 Setup notes
1.2.2.1 Setting up a tmux connection from using ob-tmux
in org-babel
- prerequisite: tmux versions need to be the same locally and on the server.
Let's verify that now.
- the local tmux version:
tmux -V
tmux 3.0a
- the remote tmux version:
ssh ara tmux -V
ye53nis@ara-login01.rz.uni-jena.de's password: tmux 3.0a
- the local tmux version:
- as is described in the ob-tmux readme, the following code snippet creates
a socket on the remote machine and forwards this socket to the local
machine (note that
socket_path
was introduced in tmux version 2.2)REMOTE_SOCKET=$(ssh ara 'tmux ls -F "#{socket_path}"' | head -1) echo $REMOTE_SOCKET ssh ara -tfN \ -L ~/.tmux-local-socket-remote-machine:$REMOTE_SOCKET
ye53nis@ara-login01.rz.uni-jena.de's password: /tmp/tmux-67339/default > ye53nis@ara-login01.rz.uni-jena.de's password: - now a new tmux session with name
ob-NAME
is created when using a code block which looks like this:#+BEGIN_SRC tmux :socket ~/.tmux-local-socket-remote-machine :session NAME
- Commands can be sent now to the remote tmux session, BUT note that the output is not printed yet
- there is a workaround for getting output back to our LabBook.org: A script
which allows to print the output from the tmux session in an
#+begin_example
-Block below the tmux block by pressingC-c C-o
orC-c C-v C-o
when the pointer is inside the tmux block.
1.2.2.2 emacs-jupyter
Setup
Emacs-jupyter
aims to be an API for a lot of functionalities of the
jupyter
project. The documentation can be found on GitHub.
- For the whole document: connect to a running jupyter instance
M-x jupyter-server-list-kernels
- set server URL, e.g.
http://localhost:8889
- set websocket URL, e.g.
http://localhost:8889
- set server URL, e.g.
- two possibilities
- kernel already exists \(\to\) list of kernels and
kernel-ID
is displayed - kernel does not exist \(\to\) prompt asks if you want to start one \(\to\)
yes \(\to\) type kernel you want to start, e.g.
Python 3
- kernel already exists \(\to\) list of kernels and
- In the subtree where you want to use
jupyter-python
blocks withorg babel
- set the
:header-args:jupyter-python :session /jpy:localhost#kernel:8889-ID
- customize the output folder using the following org-mode variable:
(setq org-babel-jupyter-resource-directory "./data/exp-test/plots")
./data/exp-test/plots
- set the
- For each individual block, the following customizations might be useful
- jupyter kernels can return multiple kinds of rich output (images,
html, …) or scalar data (plain text, numbers, lists, …). To force
a plain output, use
:results scalar
. To show the output in the minibuffer only, use:results silent
- to change the priority of different rich outputs, use
:display
header argument, e.g.:display text/plain text/html
prioritizes plain text over html. All supported mimetypes in default order:- text/org
- image/svg+xml, image/jpeg, image/png
- text/html
- text/markdown
- text/latex
- text/plain
- We can set jupyter to output pandas DataFrames as org tables
automatically using the source block header argument
:pandoc t
- useful keybindings
M-i
to open the documentation for wherever your pointer is (like pressingShift-TAB
in Jupyter notebooks)C-c C-i
to interrupt the kernel,C-c C-r
to restart the kernel
- jupyter kernels can return multiple kinds of rich output (images,
html, …) or scalar data (plain text, numbers, lists, …). To force
a plain output, use
1.2.3 Notes on archiving
1.2.3.1 Exporting the LabBook.org to html in a twbs style
- I am partial to the twitter bootstrap theme of html, since I like it's simple design, but clear structure with a nice table of contents at the side → the following org mode extension supports a seemless export to twitter bootstrap html: https://github.com/marsmining/ox-twbs
- when installed, the export can be triggered via the command
(org-twbs-export-as-html)
or via the keyboard shortcut for exportC-c C-e
followed byw
for Twitter bootstrap andh
for saving the .html - Things to configure:
- in general, there are multiple export options: https://orgmode.org/manual/Export-Settings.html
- E.g. I set 2
#+OPTIONS
keywords at the begin of the file:toc:4
andH:4
which make sure that in my export my sidebar table of contents will show numbered headings till a depth of 4. - I configured my code blocks so that they will not be evaluated when
exporting (I would recommend this especially if you only export for
archiving) and that both the code block and the output will be exported
with the keyword:
#+PROPERTY: header-args :eval never-export :exports both
- To discriminate between code blocks for different languages I gave each
of them a distinct colour using
#+HTML_HEAD_EXTRA: <style...
(see above) - I had to configure a style for
table
, so that thedisplay: block; overflow-x: auto;
gets the table to be restricted to the width of the text and if it is larger, activates scrollingwhite-space: nowrap;
makes it that there is no wrap in a column, so it might be broader, but better readable if you have scrolling anyway
- Things to do before exporting / Troubleshooting while exporting:
- when using a dark theme for you emacs, the export of the code blocks
might show some ugly dark backgrounds from the theme. If this becomes
an issue, change to a light theme for the export with
M-x (load-theme)
and choosesolarized-light
- only in the
data
branch you set the git tags after merging. If you want to show them here, execute the corresponding function in Git TAGs - make sure your file links work properly! I recommend referencing your files relatively (e.g. [ [ f ile:./data/exp-XXXXXX-test/test.png]] without spaces). Otherwise there will be errors in your Messages buffer
- There might be errors with your code blocks
- e.g. the export function expects you to assign a default variable to your functions
- if you call a function via the
#+CALL
mechanism, it wants you to include two parentheses for the function, e.g.#+CALL: test()
- check indentation of code blocks inside lists
- add a
details
block around large output cells. This makes them expandable. I added some#+HTML_HEAD_EXTRA: <style...
inspired by alhassy. That's how thedetails
block looks like:#+begin_details #+end_details
- If you reference a parameter with an underscore in the name, use the
org markdown tricks to style them like code (
==
or~~
), otherwise the part after the underscore will be rendered like a subscript:under_score
vs underscore
- when using a dark theme for you emacs, the export of the code blocks
might show some ugly dark backgrounds from the theme. If this becomes
an issue, change to a light theme for the export with
- Things to do after exporting:
- In my workflow, the exported
LabBook.html
with the overview of all experiments is in thedata
folder. If you move the file, you will have to fix the file links for the new location, e.g. via "Find and replace"M-%
:- if you move the org file → in the org file find
[[file:./data/
and replace with[[file:./
→ then export withC-c C-e w h
- if you export first with
C-c C-e w h
and move the html file todata
→ in the html file find./data
and replace with.
- if you move the org file → in the org file find
- In my workflow, the exported
1.3 Organization of git
1.3.1 remote/origin/main branch:
- contains all the source code in folder src/ which is used for experiments.
- contains the LabBook.org template
- contains setup- and metadata files such as MLproject or conda.yaml
- the log contains only lasting alterations on the folders and files mentioned above, which are e.g. used for conducting experiments or which introduce new features. Day-to-day changes in code
1.3.2 remote/origin/exp### branches:
- if an experiment is done, the code and templates will be branched out from main in an #experiment-name branch, ### meaning some meaningful descriptor.
- all data generated during the experiment (e.g. .csv files, plots, images, etc), is stored in a folder with the name data/#experiment-name, except machine learning-specific data and metadata from `mlflow` runs, which are saved under data/mlruns (this allows easily comparing machine learning runs with different experimental settings)
- The LabBook.org file is essential
- If possible, all code is executed from inside this file (meaning analysis scripts or calling the code from the scr/ directory).
- All other steps taken during an experiment are noted down, as well as conclusions or my thought process while conducting the experiment
- Provenance data, such as metadata about the environment the code was executed in, the command line output of the code, and some plots
1.3.3 remote/origin/develop branch:
- this is the branch I use for day to day work on features and exploration. All of my current activity can be followed here.
1.3.4 remote/origin/data branch:
- contains a full cronicle of the whole research process
- all #experiment-name branches are merged here. Afterwards the original branch is deleted and on the data branch there is a Git tag which shows the merge commit to make accessing single experiments easy.
- the develop branch is merged here as well.
1.3.5 Git TAGs
1.3.5.1 Stable versions:
1.3.5.2 All tags from git:
git push origin --tags git tag -n1
exp-200402-test Merge branch 'exp-200402-test' into data exp-200520-unet Merge branch 'exp-310520-unet' into data exp-200531-unet Merge branch 'heads/exp-310520-unet' into data exp-201231-clustsim exp-201231-clustsim exp-210204-unet Add exp-210204-unet LabBook part 3 exp-310520-unet move exp-310520-unet to data branch manually
1.4 Organization of code
1.4.1 scripts:
1.4.2 src/
1.4.2.1 fluotracify/
- imports/
- simulations/
- training/
- applications/
- doc/
- use Sphinx
- follow this: https://daler.github.io/sphinxdoc-test/includeme.html
- evtl export org-mode Readme to rst via https://github.com/msnoigrs/ox-rst
- possibly heavily use http://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
- for examples sphinx-galleries could be useful https://sphinx-gallery.github.io/stable/getting_started.html
- use Sphinx
1.4.2.2 nanosimpy/
- cloned from dwaithe with refactoring for Python 3-compatibility
1.5 Changes in this repository (without "* Data" in this file)
1.5.1 Changes in LabBook.org (without "* Data")
1.5.1.1 2022-02-19
- Add
#+HTML_HEAD_EXTRA: <style...
fortable
to enable scrolling if the table overflows
1.5.1.2 2021-12-16
- Add
details
blocks, corresponding#+HTML_HEAD_EXTRA: <style...
and documentation in Notes on archiving
1.5.1.3 2021-08-05
- Rename
master
branch tomain
branch
1.5.1.4 2021-04-04
- Add
#+OPTIONS: H:4
and#+OPTIONS: toc:4
to show up to 4 levels of depth in the html (twbs) export of this LabBook in the table of contents at the side - I added Notes on archiving
1.5.1.5 2020-11-04
- update "jupyter scripts" in Template for data entry and setup notes:
for new conda environment on server (now
conda activate tf-nightly
)
1.5.1.6 2020-05-31
- extend general documentation in README
- Add code block examples
- extend documentation on experiment workflow
- move setup notes from README to "Template for data entry and setup notes"
- remove emacs-lisp code for custom tmux block functions (not relevant enough)
- change named "jpt-tmux" from starting a jupyter notebook to starting
jupyter lab. Load a conda environment instead of using Lmod's
module load
1.5.1.7 2020-05-07
- extend documentation on git model
- extend documentation on jupyter setup
1.5.1.8 2020-04-22
- added parts of README which describe the experimental process
- added templates for system metadata, tmux, jupyter setup
- added organization of code
1.5.1.9 2020-03-30
- set up lab book and form git repo accoring to setup by Luka Stanisic et al
1.5.2 Changes in src/fluotracify
2 Data
2.1 exp-210204-unet
2.1.1 Connect
2.1.1.1 Node for script execution
- Setup Tmux
#+CALL: setup-tmux[:session local2]()
rm: cannot remove 'home/lex.tmux-local-socket-remote-machine': No such file or directory ye53nis@ara-login01.rz.uni-jena.de's password: /tmp/tmux-67339/default > ye53nis@ara-login01.rz.uni-jena.de's password: - Request a compute node from Ara cluster
cd / srun -p b_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
(base) [ye53nis@node117 /]$
- Make sure you are on the desired branch (exp-210104-unet)
cd /beegfs/ye53nis/drmed-git git status
(base) [ye53nis@node221 /]$ cd /beegfs/ye53nis/drmed-git (base) [ye53nis@node221 drmed-git]$ git status # On branch exp-210104-unet no changes added to commit (use "git add" and/or "git commit -a") (base) [ye53nis@node221 drmed-git]$
2.1.1.2 Node for running Jupyter
- Setup Tmux (if we haven't done it before)
sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de's password: > ye53nis@ara-login01.rz.uni-jena.de's password: - Request compute node from Ara cluster
cd / srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
- Start Jupyter Lab
(base) [ye53nis@login01 /]$ srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash (base) [ye53nis@node302 /]$ conda activate tf-nightly (tf-nightly) [ye53nis@node302 /]$ export PORT=9999 (tf-nightly) [ye53nis@node302 /]$ export XDG_RUNTIME_DIR='' (tf-nightly) [ye53nis@node302 /]$ export XDG_RUNTIME_DIR="" (tf-nightly) [ye53nis@node302 /]$ jupyter lab --no-browser --port=$PORT [I 21:13:32.358 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/jupyterlab [I 21:13:32.358 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf-nightly/share/jupyter/lab [I 21:13:32.382 LabApp] Serving notebooks from local directory: / [I 21:13:32.382 LabApp] Jupyter Notebook 6.2.0 is running at: [I 21:13:32.383 LabApp] http://localhost:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4 [I 21:13:32.383 LabApp] or http://127.0.0.1:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4 [I 21:13:32.383 LabApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 21:13:32.418 LabApp] To access the notebook, open this file in a browser: file:///home/ye53nis/.local/share/jupyter/runtime/nbserver-124120-open.html Or copy and paste one of these URLs: http://localhost:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4 or http://127.0.0.1:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4
- Tunnel the remote jupyter to the local computer
sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de's password: ye53nis@node302's password: Last login: Fri Apr 2 19:25:33 2021 from login01.ara - Start Python 3 kernel using
jupyter-server-list-kernels
. Then copy the kernel ID to the:PROPERTIES:
drawer for any subtree where you want to use itpython3 f26207a6-d326-45bb-b432-63d05a573ade in a few seconds starting 0
- any files generated using the
:file
header of org-mode source blocks will be saved here(setq org-babel-jupyter-resource-directory "./data/exp-210204-unet")
./data/exp-210204-unet
2.1.1.3 Node for running Mlflow UI
conda activate tf-nightly mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns
(tf-nightly) [ye53nis@login01 data]$ mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns [2021-02-08 11:55:44 +0100] [19566] [INFO] Starting gunicorn 20.0.4 [2021-02-08 11:55:44 +0100] [19566] [INFO] Listening at: http://127.0.0.1:5000 (19566) [2021-02-08 11:55:44 +0100] [19566] [INFO] Using worker: sync [2021-02-08 11:55:44 +0100] [19572] [INFO] Booting worker with pid: 19572
sh-5.1$ | sh-5.1$ | ye53nis@ara-login01.rz.uni-jena.de's | password: | |||||
ye53nis@login01's | password: | |||||||
bind: | Address | already | in | use | ||||
Last | login: | Fri | Apr | 2 | 22:54:20 | 2021 | from | 10.231.191.246 |
2.1.2 Run 1 - full dataset
2.1.2.1 Record metadata
- current directory
%cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
- git log
!git log -3
commit bc590b22329ea0dad425a040bb23370b3e9de3d4 Author: Apoplex <oligolex@vivaldi.net> Date: Thu Feb 4 20:40:13 2021 +0100 Increase readability in html export commit bb78ded17807e0ad259440f4ae4624d1576cbba5 Author: Apoplex <oligolex@vivaldi.net> Date: Mon Feb 1 21:44:15 2021 +0100 Add changes from unet branch like unet prepro commit 06186e40f8d4d1aa786e9268651160e96ead2223 Author: Apoplex <oligolex@vivaldi.net> Date: Mon Feb 1 21:16:42 2021 +0100 Add these updates to ptu_utils from unet code
- Metadata of environment
#+CALL: jp-metadata(_long='True)
No of CPUs in system: 72 No of CPUs the current process can use: 24 load average: (16.0, 16.0, 16.05) os.uname(): posix.uname_result(sysname='Linux', nodename='node221', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64') PID of process: 231630 RAM total: 199G, RAM used: 21G, RAM free: 138G the current directory: /beegfs/ye53nis/drmed-git My disk usage: Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 3.2G 47G 7% / devtmpfs 94G 0 94G 0% /dev tmpfs 94G 302M 94G 1% /dev/shm tmpfs 94G 131M 94G 1% /run tmpfs 94G 0 94G 0% /sys/fs/cgroup nfs03-ib:/pool/work 100T 78T 23T 78% /nfsdata nfs01-ib:/cluster 2.0T 412G 1.6T 21% /cluster nfs01-ib:/home 80T 64T 17T 80% /home nfs02-ib:/data01 88T 70T 19T 80% /data01 /dev/sda6 169G 33M 169G 1% /local /dev/sda5 2.0G 34M 2.0G 2% /tmp /dev/sda3 6.0G 295M 5.8G 5% /var beegfs_nodev 524T 277T 248T 53% /beegfs tmpfs 19G 0 19G 0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf-nightly: # # Name Version Build Channel _libgcc_mutex 0.1 main absl-py 0.11.0 pypi_0 pypi alembic 1.4.1 py_0 conda-forge/label/main appdirs 1.4.4 pyh9f0ad1d_0 conda-forge/label/main argon2-cffi 20.1.0 py38h7b6447c_1 asn1crypto 1.4.0 pyh9f0ad1d_0 conda-forge/label/main asteval 0.9.16 pyh5ca1d4c_0 conda-forge/label/main astunparse 1.6.3 pypi_0 pypi async_generator 1.10 pyhd3eb1b0_0 attrs 20.3.0 pyhd3eb1b0_0 azure-core 1.10.0 pyhd8ed1ab_0 conda-forge/label/main azure-storage-blob 12.7.1 pyh44b312d_0 conda-forge/label/main backcall 0.2.0 pyhd3eb1b0_0 blas 1.0 mkl bleach 3.2.3 pyhd3eb1b0_0 blinker 1.4 py_1 conda-forge/label/main blosc 1.20.1 hd408876_0 brotli 1.0.9 he6710b0_2 brotlipy 0.7.0 py38h27cfd23_1003 brunsli 0.1 h2531618_0 bzip2 1.0.8 h7b6447c_0 ca-certificates 2020.12.5 ha878542_0 conda-forge/label/main cachetools 4.2.1 pypi_0 pypi certifi 2020.12.5 py38h578d9bd_1 conda-forge/label/main cffi 1.14.4 py38h261ae71_0 chardet 4.0.0 py38h06a4308_1003 charls 2.1.0 he6710b0_2 click 7.1.2 pyh9f0ad1d_0 conda-forge/label/main cloudpickle 1.6.0 py_0 conda-forge/label/main configparser 5.0.1 py_0 conda-forge/label/main cryptography 3.3.1 py38h3c74f83_0 cycler 0.10.0 py38_0 databricks-cli 0.9.1 py_0 conda-forge/label/main dbus 1.13.18 hb2f20db_0 decorator 4.4.2 pyhd3eb1b0_0 defusedxml 0.6.0 py_0 docker-py 4.4.1 py38h578d9bd_1 conda-forge/label/main docker-pycreds 0.4.0 py_0 conda-forge/label/main entrypoints 0.3 py38_0 expat 2.2.10 he6710b0_2 fcsfiles 2020.9.18 pypi_0 pypi flask 1.1.2 pyh9f0ad1d_0 conda-forge/label/main flatbuffers 1.12 pypi_0 pypi fontconfig 2.13.0 h9420a91_0 freetype 2.10.4 h5ab3b9f_0 future 0.18.2 py38h578d9bd_3 conda-forge/label/main gast 0.4.0 pypi_0 pypi giflib 5.1.4 h14c3975_1 gitdb 4.0.5 py_0 conda-forge/label/main gitpython 3.1.12 pyhd8ed1ab_0 conda-forge/label/main glib 2.66.1 h92f7085_0 google-auth 1.24.0 pypi_0 pypi google-auth-oauthlib 0.4.2 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi gorilla 0.3.0 py_0 conda-forge/label/main grpcio 1.34.1 pypi_0 pypi gst-plugins-base 1.14.0 h8213a91_2 gstreamer 1.14.0 h28cd5cc_2 gunicorn 20.0.4 py38h578d9bd_3 conda-forge/label/main h5py 3.1.0 pypi_0 pypi icu 58.2 he6710b0_3 idna 2.10 pyhd3eb1b0_0 imagecodecs 2021.1.11 py38h581e88b_1 importlib-metadata 2.0.0 py_1 importlib_metadata 2.0.0 1 intel-openmp 2020.2 254 ipykernel 5.3.4 py38h5ca1d4c_0 ipython 7.19.0 py38hb070fc8_1 ipython_genutils 0.2.0 pyhd3eb1b0_1 isodate 0.6.0 py_1 conda-forge/label/main itsdangerous 1.1.0 py_0 conda-forge/label/main jedi 0.17.0 py38_0 jinja2 2.11.2 pyhd3eb1b0_0 jpeg 9b h024ee3a_2 json5 0.9.5 py_0 jsonschema 3.2.0 py_2 jupyter_client 6.1.7 py_0 jupyter_core 4.7.0 py38h06a4308_0 jupyterlab 2.2.6 py_0 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 1.2.0 py_0 jxrlib 1.1 h7b6447c_2 keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.0 py38h2531618_0 lcms2 2.11 h396b838_0 ld_impl_linux-64 2.33.1 h53a641e_7 lerc 2.2.1 h2531618_0 libaec 1.0.4 he6710b0_1 libdeflate 1.7 h27cfd23_5 libedit 3.1.20191231 h14c3975_1 libffi 3.3 he6710b0_2 libgcc-ng 9.1.0 hdf63c60_0 libgfortran-ng 7.3.0 hdf63c60_0 libpng 1.6.37 hbc83047_0 libprotobuf 3.13.0.1 h8b12597_0 conda-forge/label/main libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.1.0 hdf63c60_0 libtiff 4.1.0 h2733197_1 libuuid 1.0.3 h1bed415_2 libwebp 1.0.1 h8e7db2f_0 libxcb 1.14 h7b6447c_0 libxml2 2.9.10 hb55368b_3 libzopfli 1.0.3 he6710b0_0 lmfit 1.0.1 py_1 conda-forge/label/main lz4-c 1.9.3 h2531618_0 mako 1.1.4 pyh44b312d_0 conda-forge/label/main markdown 3.3.3 pypi_0 pypi markupsafe 1.1.1 py38h7b6447c_0 matplotlib 3.3.2 h06a4308_0 matplotlib-base 3.3.2 py38h817c723_0 mistune 0.8.4 py38h7b6447c_1000 mkl 2020.2 256 mkl-service 2.3.0 py38he904b0f_0 mkl_fft 1.2.0 py38h23d657b_0 mkl_random 1.1.1 py38h0573a6f_0 mlflow 1.13.1 py38h578d9bd_2 conda-forge/label/main msrest 0.6.21 pyh44b312d_0 conda-forge/label/main multipletau 0.3.3 pypi_0 pypi nbclient 0.5.1 py_0 nbconvert 6.0.7 py38_0 nbformat 5.1.2 pyhd3eb1b0_1 ncurses 6.2 he6710b0_1 nest-asyncio 1.4.3 pyhd3eb1b0_0 notebook 6.2.0 py38h06a4308_0 numpy 1.19.2 py38h54aff64_0 numpy-base 1.19.2 py38hfa32c7d_0 oauthlib 3.0.1 py_0 conda-forge/label/main olefile 0.46 py_0 openjpeg 2.3.0 h05c96fa_1 openssl 1.1.1i h27cfd23_0 opt-einsum 3.3.0 pypi_0 pypi packaging 20.9 pyhd3eb1b0_0 pandas 1.2.1 py38ha9443f7_0 pandoc 2.11 hb0f4dca_0 pandocfilters 1.4.3 py38h06a4308_1 parso 0.8.1 pyhd3eb1b0_0 pcre 8.44 he6710b0_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 8.1.0 py38he98fc37_0 pip 20.3.3 py38h06a4308_0 prometheus_client 0.9.0 pyhd3eb1b0_0 prometheus_flask_exporter 0.18.1 pyh9f0ad1d_0 conda-forge/label/main prompt-toolkit 3.0.8 py_0 protobuf 3.13.0.1 py38hadf7658_1 conda-forge/label/main ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.20 py_2 pygments 2.7.4 pyhd3eb1b0_0 pyjwt 2.0.1 pyhd8ed1ab_0 conda-forge/label/main pyopenssl 20.0.1 pyhd3eb1b0_1 pyparsing 2.4.7 pyhd3eb1b0_0 pyqt 5.9.2 py38h05f1152_4 pyrsistent 0.17.3 py38h7b6447c_0 pysocks 1.7.1 py38h06a4308_0 python 3.8.5 h7579374_1 python-dateutil 2.8.1 pyhd3eb1b0_0 python-editor 1.0.4 py_0 conda-forge/label/main python_abi 3.8 1_cp38 conda-forge/label/main pytz 2020.5 pyhd3eb1b0_0 pyyaml 5.3.1 py38h8df0ef7_1 conda-forge/label/main pyzmq 20.0.0 py38h2531618_1 qt 5.9.7 h5867ecd_1 querystring_parser 1.2.4 py_0 conda-forge/label/main readline 8.1 h27cfd23_0 requests 2.25.1 pyhd3eb1b0_0 requests-oauthlib 1.3.0 pyh9f0ad1d_0 conda-forge/label/main rsa 4.7 pypi_0 pypi scipy 1.5.2 py38h0b6359f_0 seaborn 0.11.1 pyhd3eb1b0_0 send2trash 1.5.0 pyhd3eb1b0_1 setuptools 52.0.0 py38h06a4308_0 sip 4.19.13 py38he6710b0_0 six 1.15.0 py38h06a4308_0 smmap 4.0.0 pyh44b312d_0 conda-forge/label/main snappy 1.1.8 he6710b0_0 sqlalchemy 1.3.20 py38h1e0a361_0 conda-forge/label/main sqlite 3.33.0 h62c20be_0 sqlparse 0.4.1 pyh9f0ad1d_0 conda-forge/label/main tabulate 0.8.7 pyh9f0ad1d_0 conda-forge/label/main tb-nightly 2.5.0a20210130 pypi_0 pypi tensorboard-plugin-wit 1.8.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.2 py38h06a4308_0 testpath 0.4.4 pyhd3eb1b0_0 tf-estimator-nightly 2.5.0.dev2021020101 pypi_0 pypi tf-nightly 2.5.0.dev20210130 pypi_0 pypi tifffile 2021.1.14 pyhd3eb1b0_1 tk 8.6.10 hbc83047_0 tornado 6.1 py38h27cfd23_0 traitlets 5.0.5 pyhd3eb1b0_0 typing-extensions 3.7.4.3 pypi_0 pypi uncertainties 3.1.5 pyhd8ed1ab_0 conda-forge/label/main urllib3 1.26.3 pyhd3eb1b0_0 wcwidth 0.2.5 py_0 webencodings 0.5.1 py38_1 websocket-client 0.57.0 py38h578d9bd_4 conda-forge/label/main werkzeug 1.0.1 pyh9f0ad1d_0 conda-forge/label/main wheel 0.36.2 pyhd3eb1b0_0 wrapt 1.12.1 pypi_0 pypi xz 5.2.5 h7b6447c_0 yaml 0.2.5 h516909a_0 conda-forge/label/main zeromq 4.3.3 he6710b0_3 zfp 0.5.5 h2531618_4 zipp 3.4.0 pyhd3eb1b0_0 zlib 1.2.11 h7b6447c_3 zstd 1.4.5 h9ceee32_0 Note: you may need to restart the kernel to use updated packages. {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint', 'SLURM_NODELIST': 'node221', 'SLURM_JOB_NAME': 'bash', 'XDG_SESSION_ID': '595', 'SLURMD_NODENAME': 'node221', 'SLURM_TOPOLOGY_ADDR': 'node221', 'SLURM_NTASKS_PER_NODE': '24', 'HOSTNAME': 'login01', 'SLURM_PRIO_PROCESS': '0', 'SLURM_SRUN_COMM_PORT': '33255', 'SHELL': '/bin/bash', 'TERM': 'xterm-color', 'SLURM_JOB_QOS': 'qstand', 'SLURM_PTY_WIN_ROW': '24', 'HISTSIZE': '1000', 'TMPDIR': '/tmp', 'SLURM_TOPOLOGY_ADDR_PATTERN': 'node', 'SSH_CLIENT': '10.231.182.213 44428 22', 'CONDA_SHLVL': '2', 'CONDA_PROMPT_MODIFIER': '(tf-nightly) ', 'QTDIR': '/usr/lib64/qt-3.3', 'QTINC': '/usr/lib64/qt-3.3/include', 'SSH_TTY': '/dev/pts/2', 'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24', 'QT_GRAPHICSSYSTEM_CHECKED': '1', 'SLURM_NNODES': '1', 'USER': 'ye53nis', 'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:', 'CONDA_EXE': '/cluster/miniconda3/bin/conda', 'SLURM_STEP_NUM_NODES': '1', 'SLURM_JOBID': '618588', 'SRUN_DEBUG': '3', 'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_NTASKS': '24', 'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5', 'SLURM_STEP_ID': '0', 'TMUX': '/tmp/tmux-67339/default,43792,2', '_CE_CONDA': '', 'CONDA_PREFIX_1': '/cluster/miniconda3', 'SLURM_STEP_LAUNCHER_PORT': '33255', 'SLURM_TASKS_PER_NODE': '24', 'MAIL': '/var/spool/mail/ye53nis', 'PATH': '/home/ye53nis/.conda/envs/tf-nightly/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin', 'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448', 'SLURM_JOB_ID': '618588', 'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf-nightly', 'SLURM_JOB_USER': 'ye53nis', 'SLURM_STEPID': '0', 'PWD': '/', 'SLURM_SRUN_COMM_HOST': '192.168.192.5', 'LANG': 'en_US.UTF-8', 'SLURM_PTY_WIN_COL': '80', 'SLURM_UMASK': '0022', 'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles', 'SLURM_JOB_UID': '67339', 'LOADEDMODULES': '', 'SLURM_NODEID': '0', 'TMUX_PANE': '%2', 'SLURM_SUBMIT_DIR': '/', 'SLURM_TASK_PID': '75179', 'SLURM_NPROCS': '24', 'SLURM_CPUS_ON_NODE': '24', 'SLURM_DISTRIBUTION': 'block', 'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_PROCID': '0', 'HISTCONTROL': 'ignoredups', '_CE_M': '', 'SLURM_JOB_NODELIST': 'node221', 'SLURM_PTY_PORT': '41588', 'HOME': '/home/ye53nis', 'SHLVL': '3', 'SLURM_LOCALID': '0', 'SLURM_JOB_GID': '13280', 'SLURM_JOB_CPUS_PER_NODE': '24', 'SLURM_CLUSTER_NAME': 'hpc', 'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24', 'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23', 'SLURM_SUBMIT_HOST': 'login01', 'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_JOB_PARTITION': 's_standard', 'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3', 'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python', 'LOGNAME': 'ye53nis', 'SLURM_STEP_NUM_TASKS': '24', 'QTLIB': '/usr/lib64/qt-3.3/lib', 'SLURM_JOB_ACCOUNT': 'iaob', 'SLURM_JOB_NUM_NODES': '1', 'MODULESHOME': '/usr/share/Modules', 'CONDA_DEFAULT_ENV': 'tf-nightly', 'LESSOPEN': '||/usr/bin/lesspipe.sh %s', 'SLURM_STEP_TASKS_PER_NODE': '24', 'PORT': '9999','SLURM_STEP_NODELIST': 'node221', 'DISPLAY': ':0', 'XDG_RUNTIME_DIR': '', 'XAUTHORITY': '/home/lex/.Xauthority', 'BASH_FUNC_module()': '() { eval `/usr/bin/modulecmd bash $*`\n}', '_': '/home/ye53nis/.conda/envs/tf-nightly/bin/jupyter', 'JPY_PARENT_PID': '94022', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
2.1.2.2 Set mlflow variables
- mlflow environment variables
conda activate tf-nightly cd /beegfs/ye53nis/drmed-git export MLFLOW_EXPERIMENT_NAME=exp-210204-unet export MLFLOW_TRACKING_URI=file:./data/mlruns mkdir data/exp-210204-unet
(tf-nightly) [ye53nis@node221 drmed-git]$
2.1.2.3 run mlflow
- Use whole dataset (6400 training, 1600 validation, 2000 test), but during
training, use only 1/5th of it per epoch
mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Nov2020 -P steps_per_epoch=1280 -P validation_steps=320
(tf-nightly) [ye53nis@node221 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Nov2020 -P steps_per_epoch=1280 -P validation_ steps=320 INFO: 'exp-210104-unet' does not exist. Creating a new experiment 2021/02/05 18:23:53 INFO mlflow.projects.utils: === Created directory /tmp/tmptojz254v for downloading remote URIs passed to arguments of type 'path' === 2021/02/05 18:23:53 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c 1>&2 && python src/fluotracify/training/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 50 /beegfs/ye53nis/saves/firstartifact_Nov2020 3 1280 320' in run with ID 'b9935d1e554c423fb2852242f4c4504c' === 2021-02-05 18:24:11.505650: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2021-02-05 18:24:11.505734: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. 2.5.0-dev20210130 2021-02-05 18:24:48.480544: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2021-02-05 18:24:48.480629: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] failed call to cuInit: UNKNOWN ERROR (303) 2021-02-05 18:24:48.480678: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node221): /proc/driver/nvidia/version does not exist GPUs: [] train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set007.csv train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set002.csv train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set003.csv train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set003.csv train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set006.csv train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set009.csv train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set007.csv train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set010.csv train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set007.csv train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set006.csv train 10 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set007.csv train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set007.csv train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set002.csv train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set004.csv train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set008.csv train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set001.csv train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set003.csv train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set005.csv train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set004.csv train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set009.csv train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set004.csv train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set009.csv train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set004.csv train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set005.csv train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set003.csv train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set006.csv train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set007.csv train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set007.csv train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set005.csv train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set010.csv train 30 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set004.csv train 31 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set008.csv train 32 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set001.csv train 33 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set002.csv train 34 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set004.csv train 35 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set008.csv train 36 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set009.csv train 37 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set010.csv train 38 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set010.csv train 39 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set001.csv train 40 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set004.csv train 41 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D3.0_set004.csv train 42 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set002.csv train 43 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set007.csv train 44 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set003.csv train 45 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set002.csv train 46 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set005.csv train 47 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set006.csv train 48 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set008.csv train 49 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set001.csv train 50 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set009.csv train 51 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set006.csv train 52 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set006.csv train 53 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set005.csv train 54 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set001.csv train 55 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set005.csv train 56 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set009.csv train 57 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set006.csv train 58 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set001.csv train 59 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set002.csv train 60 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set006.csv train 61 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set004.csv train 62 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set003.csv train 63 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set001.csv train 64 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set002.csv train 65 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set009.csv train 66 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set008.csv train 67 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set001.csv train 68 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set002.csv train 69 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set003.csv train 70 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set005.csv train 71 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set005.csv train 72 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set004.csv train 73 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set010.csv train 74 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set010.csv train 75 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set010.csv train 76 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D0.2_set002.csv train 77 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D1.0_set003.csv train 78 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set010.csv train 79 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set001.csv train 80 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set009.csv train 81 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set003.csv train 82 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set008.csv test 83 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set006.csv test 84 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set008.csv test 85 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set002.csv test 86 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set007.csv test 87 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set010.csv test 88 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set006.csv test 89 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set009.csv test 90 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set003.csv test 91 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set003.csv test 92 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set009.csv test 93 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set001.csv test 94 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set008.csv test 95 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set007.csv test 96 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set002.csv test 97 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set004.csv test 98 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set010.csv test 99 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D0.069_set001.csv test 100 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set008.csv test 101 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set005.csv test 102 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set008.csv test 103 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set005.csv The given DataFrame was split into 3 parts with shapes: [(16384, 8300), (16384, 8300), (16384, 8300)] The given DataFrame was split into 3 parts with shapes: [(16384, 2100), (16384, 2100), (16384, 2100)] for each 16384 timestap trace there are the following numbers of corrupted timesteps: label001_1 5916 label002_1 7367 label003_1 954 label004_1 2965 label005_1 0 dtype: int64 2021-02-05 18:31:32.060731: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. number of training examples: 6640, number of validation examples: 1660 ------------------------ number of test examples: 2100 input - shape: (None, 16384, 1) output - shape: (None, 16384, 1) 2021-02-05 18:31:38.503252: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing. 2021-02-05 18:31:38.503297: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started. 2021-02-05 18:31:38.503361: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down. 2021/02/05 18:31:38 INFO mlflow.utils.autologging_utils: tensorflow autologging will track hyperparameters, performance metrics, model artifacts, and lineage information for the current tensorflow workflow to the MLflow run with ID 'b9935d1e554c423fb2852242f4c4504c' 2021/02/05 18:31:38 WARNING mlflow.utils.autologging_utils: MLflow issued a warning during tensorflow autologging: "/home/ye53nis/.conda/envs/mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:86: UserWarning: Logging to MLflow failed: Changing param values is not allowed. Param with key='batch_size' was already logged with value='5' for run ID='b9935d1e554c423fb2852242f4c4504c'. Attempted logging new value 'None'." Epoch 1/50 2021-02-05 18:31:49.433599: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:145] None of the MLIR Optimization Passes are enabled (registered 2) 2021-02-05 18:31:49.686354: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2300000000 Hz 2021-02-05 18:31:57.757621: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing. 2021-02-05 18:31:57.757684: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started. 2021-02-05 18:31:59.478997: I tensorflow/core/profiler/lib/profiler_session.cc:66] Profiler session collecting data. 2021-02-05 18:31:59.513272: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down. 2021-02-05 18:31:59.547737: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_02_05_18_31_59 2021-02-05 18:31:59.563056: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.trace.json.gz 2021-02-05 18:31:59.600514: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_02_05_18_31_59 2021-02-05 18:31:59.600709: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.memory_profile.json.gz 2021-02-05 18:31:59.604669: I tensorflow/core/profiler/rpc/client/capture_profile.cc:251] Creating directory: /tmp/tb/train/plugins/profile/2021_02_05_18_31_59Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.xplane.pb Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.overview_page.pb Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.input_pipeline.pb Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.tensorflow_stats.pb Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.kernel_stats.pb 1280/1280 [==============================] - 2294s 2s/step - loss: 0.9535 - tp0.1: 7533469.6347 - fp0.1: 15687196.0695 - tn0.1: 28384947.3810 - fn0.1: 905043.5777 - precision0.1: 0.3192 - recall0.1: 0.8847 - tp0.3: 5299550.3950 - fp0.3 : 6318015.6128 - tn0.3: 37754137.8610 - fn0.3: 3138962.8173 - precision0.3: 0.4501 - recall0.3: 0.6250 - tp0.5: 3326666.3817 - fp0.5: 1645942.8673 - tn0.5: 42426193.8962 - fn0.5: 5111846.8306 - precision0.5: 0.6413 - recall0.5: 0.3856 - tp0.7: 2414052.7869 - fp0.7: 649878.6245 - tn0.7: 43422251.9945 - fn0.7: 6024460.4254 - precision0.7: 0.7630 - recall0.7: 0.2684 - tp0.9: 1333571.2881 - fp0.9: 122667.3622 - tn0.9: 43949483.5308 - fn0.9: 7104941.9243 - precision0.9: 0.8933 - recall0.9: 0.1421 - accuracy: 0.8665 - auc: 0.8370 - val_loss: 4.5065 - val_tp0.1: 3953260.0000 - val_fp0.1: 22248736.0000 - val_tn0.1: 11977.0000 - val_fn0.1: 433.0000 - val_precision0.1: 0.1509 - val_recall0.1: 0.9999 - val_ tp0.3: 3952790.0000 - val_fp0.3: 22240896.0000 - val_tn0.3: 19810.0000 - val_fn0.3: 903.0000 - val_precision0.3: 0.1509 - val_recall0.3: 0.9998 - val_tp0.5: 3932309.0000 - val_fp0.5: 18000460.0000 - val_tn0.5: 4260247.0000 - val_fn0.5: 21384.0000 - val_precision0.5: 0.1793 - val_recall0.5: 0.9946 - val_tp0.7: 3907763.0000 - val_fp0.7: 15479875.0000 - val_tn0.7: 6780832.0000 - val_fn0.7: 45930.0000 - val_precision0.7: 0.2016 - val_recall0.7: 0.9884 - val_tp0.9: 38181 41.0000 - val_fp0.9: 10776068.0000 - val_tn0.9: 11484639.0000 - val_fn0.9: 135552.0000 - val_precision0.9: 0.2616 - val_recall0.9: 0.9657 - val_accuracy: 0.3125 - val_auc: 0.8388 Epoch 2/50 1280/1280 [==============================] - 2266s 2s/step - loss: 0.7086 - tp0.1: 7408524.6518 - fp0.1: 9777539.1296 - tn0.1: 34354079.2826 - fn0.1: 970517.5371 - precision0.1: 0.4242 - recall0.1: 0.8837 - tp0.3: 6604603.1468 - fp0.3: 5177327.2397 - tn0.3: 38954289.9594 - fn0.3: 1774439.0422 - precision0.3: 0.5497 - recall0.3: 0.7873 - tp0.5: 4795568.8735 - fp0.5: 1588506.0874 - tn0.5: 42543101.8407 - fn0.5: 3583473.3154 - precision0.5: 0.7554 - recall0.5: 0.5523 - tp0.7: 3842322.5410 - fp0.7: 585624.8493 - tn0.7: 43545999.7440 - fn0.7: 4536719.6479 - precision0.7: 0.8722 - recall0.7: 0.4455 - tp0.9: 2664836.5355 - fp0.9: 183975.7455 - tn0.9: 43947648.4012 - fn0.9: 5714205.6534 - precision0.9: 0 .9372 - recall0.9: 0.3066 - accuracy: 0.9005 - auc: 0.8983 - val_loss: 8.8910 - val_tp0.1: 4309704.0000 - val_fp0.1: 21433558.0000 - val_tn0.1: 466616.0000 - val_fn0.1: 4509.0000 - val_precision0.1: 0.1674 - val_recall0.1: 0.9990 - val _tp0.3: 4304770.0000 - val_fp0.3: 20572086.0000 - val_tn0.3: 1328101.0000 - val_fn0.3: 9443.0000 - val_precision0.3: 0.1730 - val_recall0.3: 0.9978 - val_tp0.5: 4291421.0000 - val_fp0.5: 18429908.0000 - val_tn0.5: 3470280.0000 - val_fn 0.5: 22792.0000 - val_precision0.5: 0.1889 - val_recall0.5: 0.9947 - val_tp0.7: 4286245.0000 - val_fp0.7: 17960968.0000 - val_tn0.7: 3939218.0000 - val_fn0.7: 27968.0000 - val_precision0.7: 0.1927 - val_recall0.7: 0.9935 - val_tp0.9: 4 275720.0000 - val_fp0.9: 17168184.0000 - val_tn0.9: 4732003.0000 - val_fn0.9: 38493.0000 - val_precision0.9: 0.1994 - val_recall0.9: 0.9911 - val_accuracy: 0.2961 - val_auc: 0.6353 Epoch 3/50 1280/1280 [==============================] - 2269s 2s/step - loss: 0.4737 - tp0.1: 8043601.5324 - fp0.1: 6567924.1288 - tn0.1: 37316662.9188 - fn0.1: 582465.5137 - precision0.1: 0.5472 - recall0.1: 0.9292 - tp0.3: 7343577.1382 - fp0.3: 2667019.8610 - tn0.3: 41217565.9859 - fn0.3: 1282489.9079 - precision0.3: 0.7338 - recall0.3: 0.8450 - tp0.5: 6431038.6987 - fp0.5: 1096394.8681 - tn0.5: 42788211.8212 - fn0.5: 2195028.3474 - precision0.5: 0.8653 - recall0.5: 0.7272 - tp0.7: 5761648.7400 - fp0.7: 554569.4169 - tn0.7: 43330028.4895 - fn0.7: 2864418.3060 - precision0.7: 0.9155 - recall0.7: 0.6553 - tp0.9: 4604418.9586 - fp0.9: 201930.2724 - tn0.9: 43682665.5402 - fn0.9: 4021648.0874 - precision0.9: 0 .9590 - recall0.9: 0.5232 - accuracy: 0.9363 - auc: 0.9445 - val_loss: 0.6077 - val_tp0.1: 3651028.0000 - val_fp0.1: 3375728.0000 - val_tn0.1: 18695272.0000 - val_fn0.1: 492376.0000 - val_precision0.1: 0.5196 - val_recall0.1: 0.8812 - val_tp0.3: 3024227.0000 - val_fp0.3: 1523943.0000 - val_tn0.3: 20547044.0000 - val_fn0.3: 1119177.0000 - val_precision0.3: 0.6649 - val_recall0.3: 0.7299 - val_tp0.5: 2511712.0000 - val_fp0.5: 734684.0000 - val_tn0.5: 21336306.0000 - v al_fn0.5: 1631692.0000 - val_precision0.5: 0.7737 - val_recall0.5: 0.6062 - val_tp0.7: 2014285.0000 - val_fp0.7: 342510.0000 - val_tn0.7: 21728484.0000 - val_fn0.7: 2129119.0000 - val_precision0.7: 0.8547 - val_recall0.7: 0.4861 - val_ tp0.9: 1375650.0000 - val_fp0.9: 83494.0000 - val_tn0.9: 21987508.0000 - val_fn0.9: 2767754.0000 - val_precision0.9: 0.9428 - val_recall0.9: 0.3320 - val_accuracy: 0.9097 - val_auc: 0.9057 Epoch 4/50 1280/1280 [==============================] - 2269s 2s/step - loss: 0.4104 - tp0.1: 8058950.6292 - fp0.1: 5549150.7541 - tn0.1: 38382155.2373 - fn0.1: 520398.2319 - precision0.1: 0.5890 - recall0.1: 0.9388 - tp0.3: 7465362.4442 - fp0.3: 2368717.0968 - tn0.3: 41562596.7416 - fn0.3: 1113986.4169 - precision0.3: 0.7555 - recall0.3: 0.8690 - tp0.5: 6948225.4496 - fp0.5: 1288524.5277 - tn0.5: 42642762.4083 - fn0.5: 1631123.4114 - precision0.5: 0.8408 - recall0.5: 0.8075 - tp0.7: 6012711.4176 - fp0.7: 481306.9664 - tn0.7: 43449995.4871 - fn0.7: 2566637.4434 - precision0.7: 0.9250 - recall0.7: 0.6949 - tp0.9: 4953486.9508 - fp0.9: 170919.6136 - tn0.9: 43760406.4403 - fn0.9: 3625861.9102 - precision0.9: 0 .9659 - recall0.9: 0.5674 - accuracy: 0.9430 - auc: 0.9540 - val_loss: 0.7360 - val_tp0.1: 3518565.0000 - val_fp0.1: 2418501.0000 - val_tn0.1: 19514842.0000 - val_fn0.1: 762498.0000 - val_precision0.1: 0.5926 - val_recall0.1: 0.8219 - val_tp0.3: 2934643.0000 - val_fp0.3: 1727197.0000 - val_tn0.3: 20206140.0000 - val_fn0.3: 1346420.0000 - val_precision0.3: 0.6295 - val_recall0.3: 0.6855 - val_tp0.5: 2401516.0000 - val_fp0.5: 1120115.0000 - val_tn0.5: 20813218.0000 - val_fn0.5: 1879547.0000 - val_precision0.5: 0.6819 - val_recall0.5: 0.5610 - val_tp0.7: 1995881.0000 - val_fp0.7: 587480.0000 - val_tn0.7: 21345854.0000 - val_fn0.7: 2285182.0000 - val_precision0.7: 0.7726 - val_recall0.7: 0.4662 - val _tp0.9: 1458232.0000 - val_fp0.9: 213624.0000 - val_tn0.9: 21719718.0000 - val_fn0.9: 2822831.0000 - val_precision0.9: 0.8722 - val_recall0.9: 0.3406 - val_accuracy: 0.8856 - val_auc: 0.8746 Epoch 5/50 1280/1280 [==============================] - 2256s 2s/step - loss: 0.3330 - tp0.1: 7934527.3903 - fp0.1: 4492667.3357 - tn0.1: 39650554.1023 - fn0.1: 432898.7760 - precision0.1: 0.6303 - recall0.1: 0.9481 - tp0.3: 7499415.2927 - fp0.3: 1967988.6995 - tn0.3: 42175278.8080 - fn0.3: 868010.8735 - precision0.3: 0.7854 - recall0.3: 0.8951 - tp0.5: 7067133.4980 - fp0.5: 1049951.0960 - tn0.5: 43093262.6339 - fn0.5: 1300292.6682 - precision0.5: 0.8642 - recall0.5: 0.8435 - tp0.7: 6367827.1046 - fp0.7: 438987.0765 - tn0.7: 43704237.3872 - fn0.7: 1999599.0617 - precision0.7: 0.9322 - recall0.7: 0.7564 - tp0.9: 5357606.0351 - fp0.9: 138722.6315 - tn0.9: 44004504.8205 - fn0.9: 3009820.1311 - precision0.9: 0. 9715 - recall0.9: 0.6358 - accuracy: 0.9541 - auc: 0.9638 - val_loss: 0.7327 - val_tp0.1: 3649063.0000 - val_fp0.1: 3036718.0000 - val_tn0.1: 18938916.0000 - val_fn0.1: 589701.0000 - val_precision0.1: 0.5458 - val_recall0.1: 0.8609 - v al_tp0.3: 3283999.0000 - val_fp0.3: 2440985.0000 - val_tn0.3: 19534644.0000 - val_fn0.3: 954765.0000 - val_precision0.3: 0.5736 - val_recall0.3: 0.7748 - val_tp0.5: 2951063.0000 - val_fp0.5: 2094966.0000 - val_tn0.5: 19880668.0000 - va l_fn0.5: 1287701.0000 - val_precision0.5: 0.5848 - val_recall0.5: 0.6962 - val_tp0.7: 2702547.0000 - val_fp0.7: 1708012.0000 - val_tn0.7: 20267626.0000 - val_fn0.7: 1536217.0000 - val_precision0.7: 0.6127 - val_recall0.7: 0.6376 - val_ tp0.9: 2269870.0000 - val_fp0.9: 882080.0000 - val_tn0.9: 21093558.0000 - val_fn0.9: 1968894.0000 - val_precision0.9: 0.7201 - val_recall0.9: 0.5355 - val_accuracy: 0.8710 - val_auc: 0.8874 Epoch 6/50 1280/1280 [==============================] - 2267s 2s/step - loss: 0.3148 - tp0.1: 8107422.3794 - fp0.1: 4149459.1678 - tn0.1: 39840764.2201 - fn0.1: 412995.5535 - precision0.1: 0.6568 - recall0.1: 0.9505 - tp0.3: 7702537.1499 - fp0.3: 1842434.6089 - tn0.3: 42147804.7213 - fn0.3: 817880.7830 - precision0.3: 0.8055 - recall0.3: 0.9021 - tp0.5: 7257172.3966 - fp0.5: 947340.6534 - tn0.5: 43042899.9469 - fn0.5: 1263245.5363 - precision0.5: 0.8838 - recall0.5: 0.8495 - t p0.7: 6767789.5652 - fp0.7: 485240.0351 - tn0.7: 43504992.3216 - fn0.7: 1752628.3677 - precision0.7: 0.9324 - recall0.7: 0.7924 - tp0.9: 5789730.9688 - fp0.9: 133595.3934 - tn0.9: 43856655.0180 - fn0.9: 2730686.9641 - precision0.9: 0.9 771 - recall0.9: 0.6757 - accuracy: 0.9572 - auc: 0.9671 - val_loss: 0.5438 - val_tp0.1: 3469770.0000 - val_fp0.1: 1783021.0000 - val_tn0.1: 20362438.0000 - val_fn0.1: 599169.0000 - val_precision0.1: 0.6606 - val_recall0.1: 0.8527 - va l_tp0.3: 2981687.0000 - val_fp0.3: 776413.0000 - val_tn0.3: 21369044.0000 - val_fn0.3: 1087252.0000 - val_precision0.3: 0.7934 - val_recall0.3: 0.7328 - val_tp0.5: 2491815.0000 - val_fp0.5: 326150.0000 - val_tn0.5: 21819316.0000 - val_ fn0.5: 1577124.0000 - val_precision0.5: 0.8843 - val_recall0.5: 0.6124 - val_tp0.7: 2092865.0000 - val_fp0.7: 128692.0000 - val_tn0.7: 22016760.0000 - val_fn0.7: 1976074.0000 - val_precision0.7: 0.9421 - val_recall0.7: 0.5144 - val_tp0 .9: 1584013.0000 - val_fp0.9: 18793.0000 - val_tn0.9: 22126662.0000 - val_fn0.9: 2484926.0000 - val_precision0.9: 0.9883 - val_recall0.9: 0.3893 - val_accuracy: 0.9274 - val_auc: 0.9112 Epoch 7/50 1280/1280 [==============================] - 2250s 2s/step - loss: 0.2752 - tp0.1: 8215921.6979 - fp0.1: 3662051.7354 - tn0.1: 40263427.6151 - fn0.1: 369255.7354 - precision0.1: 0.6930 - recall0.1: 0.9578 - tp0.3: 7873789.5113 - fp0.3: 1775915.5043 - tn0.3: 42149585.2553 - fn0.3: 711387.9219 - precision0.3: 0.8180 - recall0.3: 0.9178 - tp0.5: 7421898.0468 - fp0.5: 864234.9992 - tn0.5: 43061238.2006 - fn0.5: 1163279.3864 - precision0.5: 0.8970 - recall0.5: 0.8653 - t p0.7: 6899341.9555 - fp0.7: 403014.4684 - tn0.7: 43522441.7424 - fn0.7: 1685835.4778 - precision0.7: 0.9455 - recall0.7: 0.8048 - tp0.9: 6047520.0070 - fp0.9: 123672.6019 - tn0.9: 43801830.9766 - fn0.9: 2537657.4262 - precision0.9: 0.9 803 - recall0.9: 0.7036 - accuracy: 0.9616 - auc: 0.9725 - val_loss: 0.5870 - val_tp0.1: 3992712.0000 - val_fp0.1: 3100961.0000 - val_tn0.1: 18785236.0000 - val_fn0.1: 335494.0000 - val_precision0.1: 0.5629 - val_recall0.1: 0.9225 - va l_tp0.3: 3697613.0000 - val_fp0.3: 2362999.0000 - val_tn0.3: 19523192.0000 - val_fn0.3: 630593.0000 - val_precision0.3: 0.6101 - val_recall0.3: 0.8543 - val_tp0.5: 3356073.0000 - val_fp0.5: 1926159.0000 - val_tn0.5: 19960034.0000 - val _fn0.5: 972133.0000 - val_precision0.5: 0.6354 - val_recall0.5: 0.7754 - val_tp0.7: 3025256.0000 - val_fp0.7: 1584253.0000 - val_tn0.7: 20301946.0000 - val_fn0.7: 1302950.0000 - val_precision0.7: 0.6563 - val_recall0.7: 0.6990 - val_tp 0.9: 2583002.0000 - val_fp0.9: 1016388.0000 - val_tn0.9: 20869810.0000 - val_fn0.9: 1745204.0000 - val_precision0.9: 0.7176 - val_recall0.9: 0.5968 - val_accuracy: 0.8894 - val_auc: 0.9219 Epoch 8/50 1280/1280 [==============================] - 2264s 2s/step - loss: 0.2659 - tp0.1: 8145147.1616 - fp0.1: 3529957.8525 - tn0.1: 40486117.0164 - fn0.1: 349436.3614 - precision0.1: 0.6977 - recall0.1: 0.9588 - tp0.3: 7816330.9524 - fp0.3: 1688486.8493 - tn0.3: 42327603.8790 - fn0.3: 678252.5706 - precision0.3: 0.8221 - recall0.3: 0.9201 - tp0.5: 7396513.9524 - fp0.5: 842774.1983 - tn0.5: 43173300.2077 - fn0.5: 1098069.5706 - precision0.5: 0.8972 - recall0.5: 0.8704 - t p0.7: 6908332.2162 - fp0.7: 399714.5441 - tn0.7: 43616338.9617 - fn0.7: 1586251.3068 - precision0.7: 0.9448 - recall0.7: 0.8128 - tp0.9: 6106920.7744 - fp0.9: 123699.0000 - tn0.9: 43892389.6027 - fn0.9: 2387662.7486 - precision0.9: 0.9 796 - recall0.9: 0.7174 - accuracy: 0.9627 - auc: 0.9735 - val_loss: 0.5059 - val_tp0.1: 3832991.0000 - val_fp0.1: 2975127.0000 - val_tn0.1: 19105348.0000 - val_fn0.1: 300933.0000 - val_precision0.1: 0.5630 - val_recall0.1: 0.9272 - va l_tp0.3: 3565080.0000 - val_fp0.3: 2148056.0000 - val_tn0.3: 19932426.0000 - val_fn0.3: 568844.0000 - val_precision0.3: 0.6240 - val_recall0.3: 0.8624 - val_tp0.5: 3244053.0000 - val_fp0.5: 1637048.0000 - val_tn0.5: 20443428.0000 - val _fn0.5: 889871.0000 - val_precision0.5: 0.6646 - val_recall0.5: 0.7847 - val_tp0.7: 2923895.0000 - val_fp0.7: 1240875.0000 - val_tn0.7: 20839598.0000 - val_fn0.7: 1210029.0000 - val_precision0.7: 0.7021 - val_recall0.7: 0.7073 - val_tp 0.9: 2501710.0000 - val_fp0.9: 630185.0000 - val_tn0.9: 21450288.0000 - val_fn0.9: 1632214.0000 - val_precision0.9: 0.7988 - val_recall0.9: 0.6052 - val_accuracy: 0.9036 - val_auc: 0.9333 Epoch 9/50 1280/1280 [==============================] - 2265s 2s/step - loss: 0.2721 - tp0.1: 8177633.5020 - fp0.1: 3535203.1725 - tn0.1: 40418482.1335 - fn0.1: 379327.7697 - precision0.1: 0.7002 - recall0.1: 0.9554 - tp0.3: 7847088.7190 - fp0.3: 1695397.4301 - tn0.3: 42258294.9282 - fn0.3: 709872.5527 - precision0.3: 0.8241 - recall0.3: 0.9169 - tp0.5: 7427192.4395 - fp0.5: 834997.2678 - tn0.5: 43118702.8587 - fn0.5: 1129768.8322 - precision0.5: 0.9006 - recall0.5: 0.8679 - t p0.7: 6938678.2849 - fp0.7: 395857.1007 - tn0.7: 43557853.7744 - fn0.7: 1618282.9867 - precision0.7: 0.9471 - recall0.7: 0.8106 - tp0.9: 6133368.2951 - fp0.9: 120955.7010 - tn0.9: 43832745.2506 - fn0.9: 2423592.9766 - precision0.9: 0.9 811 - recall0.9: 0.7170 - accuracy: 0.9631 - auc: 0.9718 - val_loss: 0.5832 - val_tp0.1: 3893714.0000 - val_fp0.1: 3303616.0000 - val_tn0.1: 18681092.0000 - val_fn0.1: 335977.0000 - val_precision0.1: 0.5410 - val_recall0.1: 0.9206 - va l_tp0.3: 3627551.0000 - val_fp0.3: 2498540.0000 - val_tn0.3: 19486168.0000 - val_fn0.3: 602140.0000 - val_precision0.3: 0.5921 - val_recall0.3: 0.8576 - val_tp0.5: 3322248.0000 - val_fp0.5: 1987125.0000 - val_tn0.5: 19997588.0000 - val _fn0.5: 907443.0000 - val_precision0.5: 0.6257 - val_recall0.5: 0.7855 - val_tp0.7: 3013599.0000 - val_fp0.7: 1581768.0000 - val_tn0.7: 20402948.0000 - val_fn0.7: 1216092.0000 - val_precision0.7: 0.6558 - val_recall0.7: 0.7125 - val_tp 0.9: 2613832.0000 - val_fp0.9: 924572.0000 - val_tn0.9: 21060124.0000 - val_fn0.9: 1615859.0000 - val_precision0.9: 0.7387 - val_recall0.9: 0.6180 - val_accuracy: 0.8896 - val_auc: 0.9233 Epoch 10/50 1280/1280 [==============================] - 2167s 2s/step - loss: 0.2587 - tp0.1: 8173202.1491 - fp0.1: 3419344.5308 - tn0.1: 40568773.3271 - fn0.1: 349346.8673 - precision0.1: 0.7050 - recall0.1: 0.9592 - tp0.3: 7845280.8431 - fp0.3: 1633368.1054 - tn0.3: 42354746.7455 - fn0.3: 677268.1733 - precision0.3: 0.8274 - recall0.3: 0.9210 - tp0.5: 7444574.4614 - fp0.5: 808848.8946 - tn0.5: 43179274.2358 - fn0.5: 1077974.5550 - precision0.5: 0.9017 - recall0.5: 0.8744 - t p0.7: 6974399.5706 - fp0.7: 382341.6963 - tn0.7: 43605795.4044 - fn0.7: 1548149.4457 - precision0.7: 0.9478 - recall0.7: 0.8197 - tp0.9: 6212727.7385 - fp0.9: 117973.7447 - tn0.9: 43870128.1835 - fn0.9: 2309821.2779 - precision0.9: 0.9 813 - recall0.9: 0.7300 - accuracy: 0.9641 - auc: 0.9742 - val_loss: 0.6408 - val_tp0.1: 3921454.0000 - val_fp0.1: 3165544.0000 - val_tn0.1: 18831180.0000 - val_fn0.1: 296224.0000 - val_precision0.1: 0.5533 - val_recall0.1: 0.9298 - va l_tp0.3: 3674710.0000 - val_fp0.3: 2541189.0000 - val_tn0.3: 19455532.0000 - val_fn0.3: 542968.0000 - val_precision0.3: 0.5912 - val_recall0.3: 0.8713 - val_tp0.5: 3370841.0000 - val_fp0.5: 2184413.0000 - val_tn0.5: 19812308.0000 - val _fn0.5: 846837.0000 - val_precision0.5: 0.6068 - val_recall0.5: 0.7992 - val_tp0.7: 3057156.0000 - val_fp0.7: 1929320.0000 - val_tn0.7: 20067408.0000 - val_fn0.7: 1160522.0000 - val_precision0.7: 0.6131 - val_recall0.7: 0.7248 - val_tp 0.9: 2691235.0000 - val_fp0.9: 1545100.0000 - val_tn0.9: 20451626.0000 - val_fn0.9: 1526443.0000 - val_precision0.9: 0.6353 - val_recall0.9: 0.6381 - val_accuracy: 0.8844 - val_auc: 0.9185 Epoch 11/50 1280/1280 [==============================] - 2195s 2s/step - loss: 0.2597 - tp0.1: 8080787.5496 - fp0.1: 3464173.5402 - tn0.1: 40607994.5691 - fn0.1: 357720.7119 - precision0.1: 0.6992 - recall0.1: 0.9583 - tp0.3: 7754354.7728 - fp0.3: 1652487.9594 - tn0.3: 42419634.1717 - fn0.3: 684153.4887 - precision0.3: 0.8245 - recall0.3: 0.9197 - tp0.5: 7350582.6308 - fp0.5: 814018.4028 - tn0.5: 43258092.7291 - fn0.5: 1087925.6308 - precision0.5: 0.9008 - recall0.5: 0.8720 - t p0.7: 6874278.2834 - fp0.7: 383492.2842 - tn0.7: 43688666.7549 - fn0.7: 1564229.9781 - precision0.7: 0.9477 - recall0.7: 0.8158 - tp0.9: 6117529.6448 - fp0.9: 121059.4980 - tn0.9: 43951099.9110 - fn0.9: 2320978.6167 - precision0.9: 0.9 810 - recall0.9: 0.7266 - accuracy: 0.9642 - auc: 0.9736 - val_loss: 0.6007 - val_tp0.1: 3926588.0000 - val_fp0.1: 3104163.0000 - val_tn0.1: 18816186.0000 - val_fn0.1: 367465.0000 - val_precision0.1: 0.5585 - val_recall0.1: 0.9144 - va l_tp0.3: 3638712.0000 - val_fp0.3: 2431931.0000 - val_tn0.3: 19488412.0000 - val_fn0.3: 655341.0000 - val_precision0.3: 0.5994 - val_recall0.3: 0.8474 - val_tp0.5: 3274020.0000 - val_fp0.5: 1937942.0000 - val_tn0.5: 19982404.0000 - val _fn0.5: 1020033.0000 - val_precision0.5: 0.6282 - val_recall0.5: 0.7625 - val_tp0.7: 2918102.0000 - val_fp0.7: 1553208.0000 - val_tn0.7: 20367136.0000 - val_fn0.7: 1375951.0000 - val_precision0.7: 0.6526 - val_recall0.7: 0.6796 - val_t p0.9: 2486914.0000 - val_fp0.9: 949847.0000 - val_tn0.9: 20970500.0000 - val_fn0.9: 1807139.0000 - val_precision0.9: 0.7236 - val_recall0.9: 0.5792 - val_accuracy: 0.8872 - val_auc: 0.9170 Epoch 12/50 1280/1280 [==============================] - 2210s 2s/step - loss: 0.2529 - tp0.1: 8177778.9118 - fp0.1: 3446344.3888 - tn0.1: 40554141.6956 - fn0.1: 332395.2459 - precision0.1: 0.7024 - recall0.1: 0.9615 - tp0.3: 7866160.7268 - fp0.3: 1663533.3247 - tn0.3: 42336942.1569 - fn0.3: 644013.4309 - precision0.3: 0.8244 - recall0.3: 0.9251 - tp0.5: 7468651.7650 - fp0.5: 826902.3630 - tn0.5: 43173597.9063 - fn0.5: 1041522.3927 - precision0.5: 0.8996 - recall0.5: 0.8783 - t p0.7: 6982137.1124 - fp0.7: 384836.8439 - tn0.7: 43615637.7978 - fn0.7: 1528037.0453 - precision0.7: 0.9473 - recall0.7: 0.8206 - tp0.9: 6215436.7151 - fp0.9: 115782.2108 - tn0.9: 43884692.7596 - fn0.9: 2294737.4426 - precision0.9: 0.9 816 - recall0.9: 0.7291 - accuracy: 0.9644 - auc: 0.9753 - val_loss: 0.5433 - val_tp0.1: 3996675.0000 - val_fp0.1: 3049375.0000 - val_tn0.1: 18853738.0000 - val_fn0.1: 314612.0000 - val_precision0.1: 0.5672 - val_recall0.1: 0.9270 - va l_tp0.3: 3730606.0000 - val_fp0.3: 2336826.0000 - val_tn0.3: 19566286.0000 - val_fn0.3: 580681.0000 - val_precision0.3: 0.6149 - val_recall0.3: 0.8653 - val_tp0.5: 3416555.0000 - val_fp0.5: 1856264.0000 - val_tn0.5: 20046848.0000 - val _fn0.5: 894732.0000 - val_precision0.5: 0.6480 - val_recall0.5: 0.7925 - val_tp0.7: 3097348.0000 - val_fp0.7: 1461441.0000 - val_tn0.7: 20441664.0000 - val_fn0.7: 1213939.0000 - val_precision0.7: 0.6794 - val_recall0.7: 0.7184 - val_tp 0.9: 2698173.0000 - val_fp0.9: 854641.0000 - val_tn0.9: 21048466.0000 - val_fn0.9: 1613114.0000 - val_precision0.9: 0.7594 - val_recall0.9: 0.6258 - val_accuracy: 0.8951 - val_auc: 0.9303 Epoch 13/50 1280/1280 [==============================] - 2209s 2s/step - loss: 0.2538 - tp0.1: 8165544.5761 - fp0.1: 3360321.7119 - tn0.1: 40640034.6550 - fn0.1: 344752.3396 - precision0.1: 0.7106 - recall0.1: 0.9599 - tp0.3: 7853592.0312 - fp0.3: 1646282.5488 - tn0.3: 42354071.1335 - fn0.3: 656704.8845 - precision0.3: 0.8279 - recall0.3: 0.9236 - tp0.5: 7458424.3138 - fp0.5: 826341.5082 - tn0.5: 43174017.1226 - fn0.5: 1051872.6019 - precision0.5: 0.9009 - recall0.5: 0.8775 - t p0.7: 6979820.3271 - fp0.7: 395956.8899 - tn0.7: 43604407.7775 - fn0.7: 1530476.5886 - precision0.7: 0.9468 - recall0.7: 0.8215 - tp0.9: 6232427.8197 - fp0.9: 129181.2912 - tn0.9: 43871195.4387 - fn0.9: 2277869.0960 - precision0.9: 0.9 799 - recall0.9: 0.7346 - accuracy: 0.9644 - auc: 0.9747 - val_loss: 0.5485 - val_tp0.1: 3997124.0000 - val_fp0.1: 3403162.0000 - val_tn0.1: 18545812.0000 - val_fn0.1: 268302.0000 - val_precision0.1: 0.5401 - val_recall0.1: 0.9371 - va l_tp0.3: 3749177.0000 - val_fp0.3: 2616473.0000 - val_tn0.3: 19332510.0000 - val_fn0.3: 516249.0000 - val_precision0.3: 0.5890 - val_recall0.3: 0.8790 - val_tp0.5: 3440083.0000 - val_fp0.5: 2075288.0000 - val_tn0.5: 19873688.0000 - val _fn0.5: 825343.0000 - val_precision0.5: 0.6237 - val_recall0.5: 0.8065 - val_tp0.7: 3117260.0000 - val_fp0.7: 1623393.0000 - val_tn0.7: 20325572.0000 - val_fn0.7: 1148166.0000 - val_precision0.7: 0.6576 - val_recall0.7: 0.7308 - val_tp 0.9: 2708258.0000 - val_fp0.9: 926738.0000 - val_tn0.9: 21022226.0000 - val_fn0.9: 1557168.0000 - val_precision0.9: 0.7451 - val_recall0.9: 0.6349 - val_accuracy: 0.8894 - val_auc: 0.9322 Epoch 14/50 1280/1280 [==============================] - 2223s 2s/step - loss: 0.2483 - tp0.1: 8105005.2256 - fp0.1: 3301412.7728 - tn0.1: 40770974.7994 - fn0.1: 333249.2350 - precision0.1: 0.7102 - recall0.1: 0.9606 - tp0.3: 7797681.4614 - fp0.3: 1632480.2381 - tn0.3: 42439931.4738 - fn0.3: 640572.9992 - precision0.3: 0.8273 - recall0.3: 0.9241 - tp0.5: 7399965.9297 - fp0.5: 804918.4660 - tn0.5: 43267490.8134 - fn0.5: 1038288.5308 - precision0.5: 0.9020 - recall0.5: 0.8772 - t p0.7: 6921871.3716 - fp0.7: 370916.4372 - tn0.7: 43701494.4621 - fn0.7: 1516383.0890 - precision0.7: 0.9493 - recall0.7: 0.8208 - tp0.9: 6187238.5597 - fp0.9: 114174.0468 - tn0.9: 43958233.5792 - fn0.9: 2251015.9009 - precision0.9: 0.9 819 - recall0.9: 0.7337 - accuracy: 0.9651 - auc: 0.9752 - val_loss: 0.4990 - val_tp0.1: 3920222.0000 - val_fp0.1: 2895972.0000 - val_tn0.1: 19106396.0000 - val_fn0.1: 291803.0000 - val_precision0.1: 0.5751 - val_recall0.1: 0.9307 - va l_tp0.3: 3647799.0000 - val_fp0.3: 2161341.0000 - val_tn0.3: 19841040.0000 - val_fn0.3: 564226.0000 - val_precision0.3: 0.6279 - val_recall0.3: 0.8660 - val_tp0.5: 3322418.0000 - val_fp0.5: 1638347.0000 - val_tn0.5: 20364020.0000 - val _fn0.5: 889607.0000 - val_precision0.5: 0.6697 - val_recall0.5: 0.7888 - val_tp0.7: 2985353.0000 - val_fp0.7: 1222889.0000 - val_tn0.7: 20779488.0000 - val_fn0.7: 1226672.0000 - val_precision0.7: 0.7094 - val_recall0.7: 0.7088 - val_tp 0.9: 2563095.0000 - val_fp0.9: 657853.0000 - val_tn0.9: 21344516.0000 - val_fn0.9: 1648930.0000 - val_precision0.9: 0.7958 - val_recall0.9: 0.6085 - val_accuracy: 0.9036 - val_auc: 0.9356 Epoch 15/50 1280/1280 [==============================] - 2223s 2s/step - loss: 0.2505 - tp0.1: 8129718.4130 - fp0.1: 3285117.6674 - tn0.1: 40755981.7447 - fn0.1: 339847.1585 - precision0.1: 0.7126 - recall0.1: 0.9599 - tp0.3: 7829732.9274 - fp0.3: 1632416.1491 - tn0.3: 42408661.6440 - fn0.3: 639832.6440 - precision0.3: 0.8279 - recall0.3: 0.9244 - tp0.5: 7437810.6112 - fp0.5: 808981.5230 - tn0.5: 43232126.9953 - fn0.5: 1031754.9602 - precision0.5: 0.9024 - recall0.5: 0.8777 - t p0.7: 6957910.6557 - fp0.7: 373871.2498 - tn0.7: 43667250.3630 - fn0.7: 1511654.9157 - precision0.7: 0.9493 - recall0.7: 0.8208 - tp0.9: 6212919.2295 - fp0.9: 115091.8977 - tn0.9: 43925968.1874 - fn0.9: 2256646.3419 - precision0.9: 0.9 817 - recall0.9: 0.7317 - accuracy: 0.9649 - auc: 0.9750 - val_loss: 0.5413 - val_tp0.1: 3929730.0000 - val_fp0.1: 3234417.0000 - val_tn0.1: 18748682.0000 - val_fn0.1: 301573.0000 - val_precision0.1: 0.5485 - val_recall0.1: 0.9287 - va l_tp0.3: 3652364.0000 - val_fp0.3: 2547235.0000 - val_tn0.3: 19435862.0000 - val_fn0.3: 578939.0000 - val_precision0.3: 0.5891 - val_recall0.3: 0.8632 - val_tp0.5: 3294284.0000 - val_fp0.5: 1952001.0000 - val_tn0.5: 20031108.0000 - val _fn0.5: 937019.0000 - val_precision0.5: 0.6279 - val_recall0.5: 0.7786 - val_tp0.7: 2934269.0000 - val_fp0.7: 1461182.0000 - val_tn0.7: 20521920.0000 - val_fn0.7: 1297034.0000 - val_precision0.7: 0.6676 - val_recall0.7: 0.6935 - val_tp 0.9: 2494237.0000 - val_fp0.9: 748300.0000 - val_tn0.9: 21234804.0000 - val_fn0.9: 1737066.0000 - val_precision0.9: 0.7692 - val_recall0.9: 0.5895 - val_accuracy: 0.8898 - val_auc: 0.9282 Epoch 16/50 1280/1280 [==============================] - 2215s 2s/step - loss: 0.2478 - tp0.1: 8105796.2350 - fp0.1: 3240299.5347 - tn0.1: 40826166.4356 - fn0.1: 338386.8126 - precision0.1: 0.7132 - recall0.1: 0.9597 - tp0.3: 7813940.3685 - fp0.3: 1622845.5285 - tn0.3: 42443650.8525 - fn0.3: 630242.6792 - precision0.3: 0.8274 - recall0.3: 0.9252 - tp0.5: 7422996.8228 - fp0.5: 793661.0414 - tn0.5: 43272824.2966 - fn0.5: 1021186.2248 - precision0.5: 0.9030 - recall0.5: 0.8785 - t p0.7: 6948059.6292 - fp0.7: 366674.7080 - tn0.7: 43699824.9578 - fn0.7: 1496123.4184 - precision0.7: 0.9495 - recall0.7: 0.8219 - tp0.9: 6225846.1991 - fp0.9: 114013.1436 - tn0.9: 43952461.9219 - fn0.9: 2218336.8486 - precision0.9: 0.9 817 - recall0.9: 0.7370 - accuracy: 0.9654 - auc: 0.9750 - val_loss: 0.5514 - val_tp0.1: 3985944.0000 - val_fp0.1: 3204062.0000 - val_tn0.1: 18714132.0000 - val_fn0.1: 310258.0000 - val_precision0.1: 0.5544 - val_recall0.1: 0.9278 - va l_tp0.3: 3706293.0000 - val_fp0.3: 2449108.0000 - val_tn0.3: 19469088.0000 - val_fn0.3: 589909.0000 - val_precision0.3: 0.6021 - val_recall0.3: 0.8627 - val_tp0.5: 3369179.0000 - val_fp0.5: 1882360.0000 - val_tn0.5: 20035840.0000 - val _fn0.5: 927023.0000 - val_precision0.5: 0.6416 - val_recall0.5: 0.7842 - val_tp0.7: 3033922.0000 - val_fp0.7: 1434846.0000 - val_tn0.7: 20483356.0000 - val_fn0.7: 1262280.0000 - val_precision0.7: 0.6789 - val_recall0.7: 0.7062 - val_tp 0.9: 2621404.0000 - val_fp0.9: 840233.0000 - val_tn0.9: 21077966.0000 - val_fn0.9: 1674798.0000 - val_precision0.9: 0.7573 - val_recall0.9: 0.6102 - val_accuracy: 0.8928 - val_auc: 0.9287 Epoch 17/50 1280/1280 [==============================] - 2214s 2s/step - loss: 0.2484 - tp0.1: 8227665.5144 - fp0.1: 3202591.7237 - tn0.1: 40740266.8517 - fn0.1: 340122.5121 - precision0.1: 0.7214 - recall0.1: 0.9603 - tp0.3: 7941320.1460 - fp0.3: 1633513.9258 - tn0.3: 42309362.5909 - fn0.3: 626467.8806 - precision0.3: 0.8301 - recall0.3: 0.9272 - tp0.5: 7558350.9258 - fp0.5: 804203.6698 - tn0.5: 43138639.2201 - fn0.5: 1009437.1007 - precision0.5: 0.9041 - recall0.5: 0.8831 - t p0.7: 7083529.7642 - fp0.7: 372694.8454 - tn0.7: 43570150.8829 - fn0.7: 1484258.2623 - precision0.7: 0.9501 - recall0.7: 0.8284 - tp0.9: 6341241.1249 - fp0.9: 113794.4754 - tn0.9: 43829043.6105 - fn0.9: 2226546.9016 - precision0.9: 0.9 824 - recall0.9: 0.7414 - accuracy: 0.9652 - auc: 0.9756 - val_loss: 0.5142 - val_tp0.1: 3628279.0000 - val_fp0.1: 2753615.0000 - val_tn0.1: 19485962.0000 - val_fn0.1: 346542.0000 - val_precision0.1: 0.5685 - val_recall0.1: 0.9128 - va l_tp0.3: 3324088.0000 - val_fp0.3: 2056425.0000 - val_tn0.3: 20183156.0000 - val_fn0.3: 650733.0000 - val_precision0.3: 0.6178 - val_recall0.3: 0.8363 - val_tp0.5: 2972065.0000 - val_fp0.5: 1467191.0000 - val_tn0.5: 20772396.0000 - val _fn0.5: 1002756.0000 - val_precision0.5: 0.6695 - val_recall0.5: 0.7477 - val_tp0.7: 2650974.0000 - val_fp0.7: 1083574.0000 - val_tn0.7: 21156004.0000 - val_fn0.7: 1323847.0000 - val_precision0.7: 0.7099 - val_recall0.7: 0.6669 - val_t p0.9: 2300149.0000 - val_fp0.9: 585684.0000 - val_tn0.9: 21653888.0000 - val_fn0.9: 1674672.0000 - val_precision0.9: 0.7970 - val_recall0.9: 0.5787 - val_accuracy: 0.9058 - val_auc: 0.9268 Epoch 18/50 1280/1280 [==============================] - 2223s 2s/step - loss: 0.2451 - tp0.1: 8257483.8283 - fp0.1: 3209709.3536 - tn0.1: 40707026.2334 - fn0.1: 336440.2756 - precision0.1: 0.7174 - recall0.1: 0.9618 - tp0.3: 7972148.5215 - fp0.3: 1611985.2998 - tn0.3: 42304753.9649 - fn0.3: 621775.5824 - precision0.3: 0.8295 - recall0.3: 0.9289 - tp0.5: 7592991.5839 - fp0.5: 801375.8977 - tn0.5: 43115384.3333 - fn0.5: 1000932.5199 - precision0.5: 0.9027 - recall0.5: 0.8847 - t p0.7: 7121459.2779 - fp0.7: 371705.6339 - tn0.7: 43545020.0328 - fn0.7: 1472464.8259 - precision0.7: 0.9492 - recall0.7: 0.8297 - tp0.9: 6381060.6097 - fp0.9: 111751.2303 - tn0.9: 43804981.0523 - fn0.9: 2212863.4941 - precision0.9: 0.9 823 - recall0.9: 0.7435 - accuracy: 0.9654 - auc: 0.9764 - val_loss: 0.5303 - val_tp0.1: 3950393.0000 - val_fp0.1: 2825498.0000 - val_tn0.1: 19094474.0000 - val_fn0.1: 344035.0000 - val_precision0.1: 0.5830 - val_recall0.1: 0.9199 - va l_tp0.3: 3645339.0000 - val_fp0.3: 2077885.0000 - val_tn0.3: 19842076.0000 - val_fn0.3: 649089.0000 - val_precision0.3: 0.6369 - val_recall0.3: 0.8489 - val_tp0.5: 3283330.0000 - val_fp0.5: 1558246.0000 - val_tn0.5: 20361722.0000 - val _fn0.5: 1011098.0000 - val_precision0.5: 0.6782 - val_recall0.5: 0.7646 - val_tp0.7: 2947342.0000 - val_fp0.7: 1176365.0000 - val_tn0.7: 20743604.0000 - val_fn0.7: 1347086.0000 - val_precision0.7: 0.7147 - val_recall0.7: 0.6863 - val_t p0.9: 2536959.0000 - val_fp0.9: 698850.0000 - val_tn0.9: 21221120.0000 - val_fn0.9: 1757469.0000 - val_precision0.9: 0.7840 - val_recall0.9: 0.5908 - val_accuracy: 0.9020 - val_auc: 0.9295 Epoch 19/50 1280/1280 [==============================] - 2211s 2s/step - loss: 0.2463 - tp0.1: 8262233.3575 - fp0.1: 3162400.5699 - tn0.1: 40752275.6565 - fn0.1: 333748.0101 - precision0.1: 0.7238 - recall0.1: 0.9607 - tp0.3: 7976781.4278 - fp0.3: 1621499.8923 - tn0.3: 42293181.6620 - fn0.3: 619199.9399 - precision0.3: 0.8316 - recall0.3: 0.9269 - tp0.5: 7600963.2264 - fp0.5: 819732.1842 - tn0.5: 43094936.0523 - fn0.5: 995018.1413 - precision0.5: 0.9028 - recall0.5: 0.8828 - tp 0.7: 7125748.6019 - fp0.7: 384384.1327 - tn0.7: 43530286.4083 - fn0.7: 1470232.7658 - precision0.7: 0.9489 - recall0.7: 0.8275 - tp0.9: 6355596.0687 - fp0.9: 116562.7260 - tn0.9: 43798125.0718 - fn0.9: 2240385.2990 - precision0.9: 0.98 20 - recall0.9: 0.7377 - accuracy: 0.9650 - auc: 0.9759 - val_loss: 0.5854 - val_tp0.1: 3832029.0000 - val_fp0.1: 3030240.0000 - val_tn0.1: 18976838.0000 - val_fn0.1: 375292.0000 - val_precision0.1: 0.5584 - val_recall0.1: 0.9108 - val _tp0.3: 3499789.0000 - val_fp0.3: 2341510.0000 - val_tn0.3: 19665576.0000 - val_fn0.3: 707532.0000 - val_precision0.3: 0.5991 - val_recall0.3: 0.8318 - val_tp0.5: 3162666.0000 - val_fp0.5: 1856596.0000 - val_tn0.5: 20150478.0000 - val_ fn0.5: 1044655.0000 - val_precision0.5: 0.6301 - val_recall0.5: 0.7517 - val_tp0.7: 2854187.0000 - val_fp0.7: 1428102.0000 - val_tn0.7: 20578972.0000 - val_fn0.7: 1353134.0000 - val_precision0.7: 0.6665 - val_recall0.7: 0.6784 - val_tp 0.9: 2488186.0000 - val_fp0.9: 879408.0000 - val_tn0.9: 21127672.0000 - val_fn0.9: 1719135.0000 - val_precision0.9: 0.7389 - val_recall0.9: 0.5914 - val_accuracy: 0.8893 - val_auc: 0.9201 Epoch 20/50 1280/1280 [==============================] - 2220s 2s/step - loss: 0.2304 - tp0.1: 8074195.9617 - fp0.1: 2966270.8033 - tn0.1: 41146339.4450 - fn0.1: 323842.2264 - precision0.1: 0.7319 - recall0.1: 0.9616 - tp0.3: 7805955.5699 - fp0.3: 1533470.4364 - tn0.3: 42579145.3279 - fn0.3: 592082.6183 - precision0.3: 0.8364 - recall0.3: 0.9297 - tp0.5: 7448954.0062 - fp0.5: 779671.7213 - tn0.5: 43332921.9258 - fn0.5: 949084.1819 - precision0.5: 0.9056 - recall0.5: 0.8873 - tp 0.7: 6997774.1819 - fp0.7: 363044.1397 - tn0.7: 43749575.7775 - fn0.7: 1400264.0062 - precision0.7: 0.9510 - recall0.7: 0.8336 - tp0.9: 6267801.5144 - fp0.9: 107614.1304 - tn0.9: 44004989.1429 - fn0.9: 2130236.6737 - precision0.9: 0.98 33 - recall0.9: 0.7471 - accuracy: 0.9673 - auc: 0.9771 - val_loss: 0.5968 - val_tp0.1: 3918274.0000 - val_fp0.1: 3250251.0000 - val_tn0.1: 18736068.0000 - val_fn0.1: 309803.0000 - val_precision0.1: 0.5466 - val_recall0.1: 0.9267 - val _tp0.3: 3617081.0000 - val_fp0.3: 2559029.0000 - val_tn0.3: 19427288.0000 - val_fn0.3: 610996.0000 - val_precision0.3: 0.5857 - val_recall0.3: 0.8555 - val_tp0.5: 3277656.0000 - val_fp0.5: 2084096.0000 - val_tn0.5: 19902236.0000 - val_ fn0.5: 950421.0000 - val_precision0.5: 0.6113 - val_recall0.5: 0.7752 - val_tp0.7: 2954727.0000 - val_fp0.7: 1696039.0000 - val_tn0.7: 20290280.0000 - val_fn0.7: 1273350.0000 - val_precision0.7: 0.6353 - val_recall0.7: 0.6988 - val_tp0 .9: 2580804.0000 - val_fp0.9: 1147305.0000 - val_tn0.9: 20839018.0000 - val_fn0.9: 1647273.0000 - val_precision0.9: 0.6923 - val_recall0.9: 0.6104 - val_accuracy: 0.8842 - val_auc: 0.9226 Epoch 21/50 1280/1280 [==============================] - 2204s 2s/step - loss: 0.2384 - tp0.1: 8140617.7596 - fp0.1: 3066144.5098 - tn0.1: 40972600.1975 - fn0.1: 331283.3044 - precision0.1: 0.7253 - recall0.1: 0.9608 - tp0.3: 7870474.5457 - fp0.3: 1553244.6440 - tn0.3: 42485524.1530 - fn0.3: 601426.5183 - precision0.3: 0.8351 - recall0.3: 0.9289 - tp0.5: 7506928.4785 - fp0.5: 777322.4692 - tn0.5: 43261445.7369 - fn0.5: 964972.5855 - precision0.5: 0.9063 - recall0.5: 0.8856 - tp 0.7: 7045491.5386 - fp0.7: 357699.5441 - tn0.7: 43681060.9094 - fn0.7: 1426409.5254 - precision0.7: 0.9516 - recall0.7: 0.8307 - tp0.9: 6309047.4247 - fp0.9: 104611.4294 - tn0.9: 43934120.4317 - fn0.9: 2162853.6393 - precision0.9: 0.98 35 - recall0.9: 0.7429 - accuracy: 0.9668 - auc: 0.9764 - val_loss: 0.5731 - val_tp0.1: 3942096.0000 - val_fp0.1: 2995461.0000 - val_tn0.1: 18887014.0000 - val_fn0.1: 389824.0000 - val_precision0.1: 0.5682 - val_recall0.1: 0.9100 - val _tp0.3: 3599028.0000 - val_fp0.3: 2149008.0000 - val_tn0.3: 19733476.0000 - val_fn0.3: 732892.0000 - val_precision0.3: 0.6261 - val_recall0.3: 0.8308 - val_tp0.5: 3252555.0000 - val_fp0.5: 1599632.0000 - val_tn0.5: 20282852.0000 - val_ fn0.5: 1079365.0000 - val_precision0.5: 0.6703 - val_recall0.5: 0.7508 - val_tp0.7: 2923628.0000 - val_fp0.7: 1191800.0000 - val_tn0.7: 20690680.0000 - val_fn0.7: 1408292.0000 - val_precision0.7: 0.7104 - val_recall0.7: 0.6749 - val_tp 0.9: 2521604.0000 - val_fp0.9: 728892.0000 - val_tn0.9: 21153588.0000 - val_fn0.9: 1810316.0000 - val_precision0.9: 0.7758 - val_recall0.9: 0.5821 - val_accuracy: 0.8978 - val_auc: 0.9225 Epoch 22/50 1280/1280 [==============================] - 2202s 2s/step - loss: 0.2325 - tp0.1: 8142655.7533 - fp0.1: 2988317.6230 - tn0.1: 41059668.6183 - fn0.1: 320016.3560 - precision0.1: 0.7319 - recall0.1: 0.9621 - tp0.3: 7871852.7736 - fp0.3: 1506270.7799 - tn0.3: 42541714.4848 - fn0.3: 590819.3357 - precision0.3: 0.8406 - recall0.3: 0.9295 - tp0.5: 7524881.3895 - fp0.5: 772793.9836 - tn0.5: 43275195.0945 - fn0.5: 937790.7198 - precision0.5: 0.9075 - recall0.5: 0.8882 - tp 0.7: 7077438.3216 - fp0.7: 364340.6877 - tn0.7: 43683658.4301 - fn0.7: 1385233.7877 - precision0.7: 0.9513 - recall0.7: 0.8352 - tp0.9: 6339229.0827 - fp0.9: 109004.6729 - tn0.9: 43938973.3130 - fn0.9: 2123443.0265 - precision0.9: 0.98 30 - recall0.9: 0.7477 - accuracy: 0.9672 - auc: 0.9774 - val_loss: 0.5088 - val_tp0.1: 4052314.0000 - val_fp0.1: 2813624.0000 - val_tn0.1: 18998480.0000 - val_fn0.1: 349977.0000 - val_precision0.1: 0.5902 - val_recall0.1: 0.9205 - val _tp0.3: 3687682.0000 - val_fp0.3: 1991405.0000 - val_tn0.3: 19820706.0000 - val_fn0.3: 714609.0000 - val_precision0.3: 0.6493 - val_recall0.3: 0.8377 - val_tp0.5: 3320706.0000 - val_fp0.5: 1380622.0000 - val_tn0.5: 20431490.0000 - val_ fn0.5: 1081585.0000 - val_precision0.5: 0.7063 - val_recall0.5: 0.7543 - val_tp0.7: 2967625.0000 - val_fp0.7: 953933.0000 - val_tn0.7: 20858176.0000 - val_fn0.7: 1434666.0000 - val_precision0.7: 0.7567 - val_recall0.7: 0.6741 - val_tp0 .9: 2531957.0000 - val_fp0.9: 497718.0000 - val_tn0.9: 21314390.0000 - val_fn0.9: 1870334.0000 - val_precision0.9: 0.8357 - val_recall0.9: 0.5751 - val_accuracy: 0.9061 - val_auc: 0.9328 Epoch 23/50 1280/1280 [==============================] - 2222s 2s/step - loss: 0.2366 - tp0.1: 8347653.8970 - fp0.1: 3081670.7681 - tn0.1: 40757305.4309 - fn0.1: 324014.3521 - precision0.1: 0.7290 - recall0.1: 0.9623 - tp0.3: 8070883.3950 - fp0.3: 1575587.0781 - tn0.3: 42263394.8119 - fn0.3: 600784.8540 - precision0.3: 0.8352 - recall0.3: 0.9305 - tp0.5: 7717891.5347 - fp0.5: 814813.8595 - tn0.5: 43024150.6456 - fn0.5: 953776.7143 - precision0.5: 0.9036 - recall0.5: 0.8895 - tp 0.7: 7268612.4356 - fp0.7: 391109.7408 - tn0.7: 43447878.6557 - fn0.7: 1403055.8134 - precision0.7: 0.9483 - recall0.7: 0.8378 - tp0.9: 6489543.3856 - fp0.9: 111622.6698 - tn0.9: 43727379.5621 - fn0.9: 2182124.8634 - precision0.9: 0.98 31 - recall0.9: 0.7476 - accuracy: 0.9663 - auc: 0.9772 - val_loss: 0.6052 - val_tp0.1: 3963049.0000 - val_fp0.1: 3225080.0000 - val_tn0.1: 18705446.0000 - val_fn0.1: 320823.0000 - val_precision0.1: 0.5513 - val_recall0.1: 0.9251 - val _tp0.3: 3674699.0000 - val_fp0.3: 2561181.0000 - val_tn0.3: 19369346.0000 - val_fn0.3: 609173.0000 - val_precision0.3: 0.5893 - val_recall0.3: 0.8578 - val_tp0.5: 3373791.0000 - val_fp0.5: 2127280.0000 - val_tn0.5: 19803252.0000 - val_ fn0.5: 910081.0000 - val_precision0.5: 0.6133 - val_recall0.5: 0.7876 - val_tp0.7: 3068979.0000 - val_fp0.7: 1731571.0000 - val_tn0.7: 20198960.0000 - val_fn0.7: 1214893.0000 - val_precision0.7: 0.6393 - val_recall0.7: 0.7164 - val_tp0 .9: 2716240.0000 - val_fp0.9: 1223118.0000 - val_tn0.9: 20707410.0000 - val_fn0.9: 1567632.0000 - val_precision0.9: 0.6895 - val_recall0.9: 0.6341 - val_accuracy: 0.8841 - val_auc: 0.9237 Epoch 24/50 1280/1280 [==============================] - 2204s 2s/step - loss: 0.2289 - tp0.1: 8179279.4356 - fp0.1: 3005191.0726 - tn0.1: 41009950.9407 - fn0.1: 316225.4254 - precision0.1: 0.7325 - recall0.1: 0.9631 - tp0.3: 7901240.7315 - fp0.3: 1504773.7026 - tn0.3: 42510372.7838 - fn0.3: 594264.1296 - precision0.3: 0.8407 - recall0.3: 0.9307 - tp0.5: 7554121.0180 - fp0.5: 777848.4996 - tn0.5: 43237301.8970 - fn0.5: 941383.8431 - precision0.5: 0.9069 - recall0.5: 0.8901 - tp 0.7: 7115199.6105 - fp0.7: 370807.8002 - tn0.7: 43644327.6066 - fn0.7: 1380305.2506 - precision0.7: 0.9505 - recall0.7: 0.8385 - tp0.9: 6375731.2256 - fp0.9: 109566.7822 - tn0.9: 43905607.9274 - fn0.9: 2119773.6354 - precision0.9: 0.98 30 - recall0.9: 0.7519 - accuracy: 0.9674 - auc: 0.9780 - val_loss: 0.5914 - val_tp0.1: 4024334.0000 - val_fp0.1: 3404652.0000 - val_tn0.1: 18506274.0000 - val_fn0.1: 279143.0000 - val_precision0.1: 0.5417 - val_recall0.1: 0.9351 - val _tp0.3: 3754317.0000 - val_fp0.3: 2715350.0000 - val_tn0.3: 19195568.0000 - val_fn0.3: 549160.0000 - val_precision0.3: 0.5803 - val_recall0.3: 0.8724 - val_tp0.5: 3470133.0000 - val_fp0.5: 2252806.0000 - val_tn0.5: 19658116.0000 - val_ fn0.5: 833344.0000 - val_precision0.5: 0.6064 - val_recall0.5: 0.8064 - val_tp0.7: 3161773.0000 - val_fp0.7: 1777262.0000 - val_tn0.7: 20133664.0000 - val_fn0.7: 1141704.0000 - val_precision0.7: 0.6402 - val_recall0.7: 0.7347 - val_tp0 .9: 2787618.0000 - val_fp0.9: 1197991.0000 - val_tn0.9: 20712926.0000 - val_fn0.9: 1515859.0000 - val_precision0.9: 0.6994 - val_recall0.9: 0.6478 - val_accuracy: 0.8823 - val_auc: 0.9283 Epoch 25/50 1280/1280 [==============================] - 2226s 2s/step - loss: 0.2252 - tp0.1: 8291979.4137 - fp0.1: 2984606.2982 - tn0.1: 40931178.3692 - fn0.1: 302890.0656 - precision0.1: 0.7344 - recall0.1: 0.9653 - tp0.3: 8019589.6370 - fp0.3: 1494741.8806 - tn0.3: 42421057.4286 - fn0.3: 575279.8423 - precision0.3: 0.8422 - recall0.3: 0.9335 - tp0.5: 7686923.1866 - fp0.5: 778234.4176 - tn0.5: 43137535.1632 - fn0.5: 907946.2927 - precision0.5: 0.9079 - recall0.5: 0.8947 - tp 0.7: 7250107.4707 - fp0.7: 372459.3240 - tn0.7: 43543354.1975 - fn0.7: 1344762.0086 - precision0.7: 0.9509 - recall0.7: 0.8437 - tp0.9: 6493233.8290 - fp0.9: 107705.5613 - tn0.9: 43808088.1733 - fn0.9: 2101635.6503 - precision0.9: 0.98 38 - recall0.9: 0.7548 - accuracy: 0.9677 - auc: 0.9792 - val_loss: 0.5570 - val_tp0.1: 3995650.0000 - val_fp0.1: 3060009.0000 - val_tn0.1: 18836932.0000 - val_fn0.1: 321813.0000 - val_precision0.1: 0.5663 - val_recall0.1: 0.9255 - val _tp0.3: 3674821.0000 - val_fp0.3: 2374036.0000 - val_tn0.3: 19522900.0000 - val_fn0.3: 642642.0000 - val_precision0.3: 0.6075 - val_recall0.3: 0.8512 - val_tp0.5: 3346516.0000 - val_fp0.5: 1900974.0000 - val_tn0.5: 19995958.0000 - val_ fn0.5: 970947.0000 - val_precision0.5: 0.6377 - val_recall0.5: 0.7751 - val_tp0.7: 3018485.0000 - val_fp0.7: 1460209.0000 - val_tn0.7: 20436728.0000 - val_fn0.7: 1298978.0000 - val_precision0.7: 0.6740 - val_recall0.7: 0.6991 - val_tp0 .9: 2609054.0000 - val_fp0.9: 880392.0000 - val_tn0.9: 21016544.0000 - val_fn0.9: 1708409.0000 - val_precision0.9: 0.7477 - val_recall0.9: 0.6043 - val_accuracy: 0.8904 - val_auc: 0.9280 Epoch 26/50 1280/1280 [==============================] - 2216s 2s/step - loss: 0.2287 - tp0.1: 8319398.9969 - fp0.1: 2952438.8306 - tn0.1: 40921029.8501 - fn0.1: 317787.0890 - precision0.1: 0.7394 - recall0.1: 0.9635 - tp0.3: 8049496.8860 - fp0.3: 1491537.2982 - tn0.3: 42381938.1233 - fn0.3: 587689.1998 - precision0.3: 0.8439 - recall0.3: 0.9326 - tp0.5: 7714917.0734 - fp0.5: 782715.8696 - tn0.5: 43090766.7041 - fn0.5: 922269.0125 - precision0.5: 0.9077 - recall0.5: 0.8941 - tp 0.7: 7279420.8743 - fp0.7: 371072.6573 - tn0.7: 43502429.9672 - fn0.7: 1357765.2116 - precision0.7: 0.9513 - recall0.7: 0.8438 - tp0.9: 6527109.8852 - fp0.9: 103689.7635 - tn0.9: 43769772.2685 - fn0.9: 2110076.2006 - precision0.9: 0.98 45 - recall0.9: 0.7564 - accuracy: 0.9674 - auc: 0.9783 - val_loss: 0.5787 - val_tp0.1: 3910190.0000 - val_fp0.1: 3250030.0000 - val_tn0.1: 18794728.0000 - val_fn0.1: 259453.0000 - val_precision0.1: 0.5461 - val_recall0.1: 0.9378 - val _tp0.3: 3639624.0000 - val_fp0.3: 2570780.0000 - val_tn0.3: 19473980.0000 - val_fn0.3: 530019.0000 - val_precision0.3: 0.5861 - val_recall0.3: 0.8729 - val_tp0.5: 3361012.0000 - val_fp0.5: 2146148.0000 - val_tn0.5: 19898600.0000 - val_ fn0.5: 808631.0000 - val_precision0.5: 0.6103 - val_recall0.5: 0.8061 - val_tp0.7: 3051142.0000 - val_fp0.7: 1790049.0000 - val_tn0.7: 20254708.0000 - val_fn0.7: 1118501.0000 - val_precision0.7: 0.6302 - val_recall0.7: 0.7318 - val_tp0 .9: 2683794.0000 - val_fp0.9: 1283960.0000 - val_tn0.9: 20760796.0000 - val_fn0.9: 1485849.0000 - val_precision0.9: 0.6764 - val_recall0.9: 0.6437 - val_accuracy: 0.8873 - val_auc: 0.9297 Epoch 27/50 1280/1280 [==============================] - 2202s 2s/step - loss: 0.2301 - tp0.1: 8107973.9399 - fp0.1: 2902140.6105 - tn0.1: 41182030.2319 - fn0.1: 318498.9274 - precision0.1: 0.7370 - recall0.1: 0.9620 - tp0.3: 7841754.6401 - fp0.3: 1478702.1952 - tn0.3: 42605477.3365 - fn0.3: 584718.2272 - precision0.3: 0.8414 - recall0.3: 0.9300 - tp0.5: 7511893.1749 - fp0.5: 775511.8610 - tn0.5: 43308683.9024 - fn0.5: 914579.6924 - precision0.5: 0.9061 - recall0.5: 0.8905 - tp 0.7: 7075173.0062 - fp0.7: 368300.9977 - tn0.7: 43715881.6714 - fn0.7: 1351299.8610 - precision0.7: 0.9500 - recall0.7: 0.8385 - tp0.9: 6326135.5004 - fp0.9: 105903.6909 - tn0.9: 43978285.1374 - fn0.9: 2100337.3669 - precision0.9: 0.98 29 - recall0.9: 0.7495 - accuracy: 0.9673 - auc: 0.9774 - val_loss: 0.5563 - val_tp0.1: 3973953.0000 - val_fp0.1: 3033629.0000 - val_tn0.1: 18923208.0000 - val_fn0.1: 283603.0000 - val_precision0.1: 0.5671 - val_recall0.1: 0.9334 - val _tp0.3: 3702270.0000 - val_fp0.3: 2375708.0000 - val_tn0.3: 19581140.0000 - val_fn0.3: 555286.0000 - val_precision0.3: 0.6091 - val_recall0.3: 0.8696 - val_tp0.5: 3427641.0000 - val_fp0.5: 1972155.0000 - val_tn0.5: 19984684.0000 - val_ fn0.5: 829915.0000 - val_precision0.5: 0.6348 - val_recall0.5: 0.8051 - val_tp0.7: 3124472.0000 - val_fp0.7: 1581643.0000 - val_tn0.7: 20375196.0000 - val_fn0.7: 1133084.0000 - val_precision0.7: 0.6639 - val_recall0.7: 0.7339 - val_tp0 .9: 2757974.0000 - val_fp0.9: 1109127.0000 - val_tn0.9: 20847720.0000 - val_fn0.9: 1499582.0000 - val_precision0.9: 0.7132 - val_recall0.9: 0.6478 - val_accuracy: 0.8931 - val_auc: 0.9321 Epoch 28/50 1280/1280 [==============================] - 2087s 2s/step - loss: 0.2197 - tp0.1: 8160795.8228 - fp0.1: 2901034.4309 - tn0.1: 41142814.8181 - fn0.1: 306021.3466 - precision0.1: 0.7381 - recall0.1: 0.9644 - tp0.3: 7892365.4137 - fp0.3: 1440828.1148 - tn0.3: 42603028.9719 - fn0.3: 574451.7557 - precision0.3: 0.8461 - recall0.3: 0.9326 - tp0.5: 7566706.5480 - fp0.5: 755226.4699 - tn0.5: 43288602.1678 - fn0.5: 900110.6214 - precision0.5: 0.9096 - recall0.5: 0.8942 - tp 0.7: 7138328.0726 - fp0.7: 359169.3607 - tn0.7: 43684677.2763 - fn0.7: 1328489.0968 - precision0.7: 0.9523 - recall0.7: 0.8435 - tp0.9: 6407064.9711 - fp0.9: 100987.8735 - tn0.9: 43942848.2186 - fn0.9: 2059752.1983 - precision0.9: 0.98 47 - recall0.9: 0.7566 - accuracy: 0.9687 - auc: 0.9791 - val_loss: 0.4500 - val_tp0.1: 3927337.0000 - val_fp0.1: 2709904.0000 - val_tn0.1: 19279502.0000 - val_fn0.1: 297660.0000 - val_precision0.1: 0.5917 - val_recall0.1: 0.9295 - val _tp0.3: 3622327.0000 - val_fp0.3: 1934449.0000 - val_tn0.3: 20054960.0000 - val_fn0.3: 602670.0000 - val_precision0.3: 0.6519 - val_recall0.3: 0.8574 - val_tp0.5: 3304686.0000 - val_fp0.5: 1267577.0000 - val_tn0.5: 20721824.0000 - val_ fn0.5: 920311.0000 - val_precision0.5: 0.7228 - val_recall0.5: 0.7822 - val_tp0.7: 2969971.0000 - val_fp0.7: 803372.0000 - val_tn0.7: 21186032.0000 - val_fn0.7: 1255026.0000 - val_precision0.7: 0.7871 - val_recall0.7: 0.7030 - val_tp0. 9: 2545450.0000 - val_fp0.9: 373527.0000 - val_tn0.9: 21615866.0000 - val_fn0.9: 1679547.0000 - val_precision0.9: 0.8720 - val_recall0.9: 0.6025 - val_accuracy: 0.9165 - val_auc: 0.9426 Epoch 29/50 1280/1280 [==============================] - 1968s 2s/step - loss: 0.2223 - tp0.1: 8375369.2490 - fp0.1: 2828068.0578 - tn0.1: 41000432.9828 - fn0.1: 306798.1413 - precision0.1: 0.7500 - recall0.1: 0.9648 - tp0.3: 8117816.3411 - fp0.3: 1454670.2927 - tn0.3: 42373821.8306 - fn0.3: 564351.0492 - precision0.3: 0.8489 - recall0.3: 0.9354 - tp0.5: 7795654.3497 - fp0.5: 777398.3349 - tn0.5: 43051103.4832 - fn0.5: 886513.0406 - precision0.5: 0.9098 - recall0.5: 0.8987 - tp 0.7: 7368227.7635 - fp0.7: 376034.1069 - tn0.7: 43452466.5371 - fn0.7: 1313939.6269 - precision0.7: 0.9517 - recall0.7: 0.8498 - tp0.9: 6617754.3536 - fp0.9: 111597.3193 - tn0.9: 43716853.5761 - fn0.9: 2064413.0367 - precision0.9: 0.98 35 - recall0.9: 0.7637 - accuracy: 0.9681 - auc: 0.9792 - val_loss: 0.5416 - val_tp0.1: 3960357.0000 - val_fp0.1: 3230144.0000 - val_tn0.1: 18775996.0000 - val_fn0.1: 247899.0000 - val_precision0.1: 0.5508 - val_recall0.1: 0.9411 - val _tp0.3: 3709415.0000 - val_fp0.3: 2490342.0000 - val_tn0.3: 19515800.0000 - val_fn0.3: 498841.0000 - val_precision0.3: 0.5983 - val_recall0.3: 0.8815 - val_tp0.5: 3451033.0000 - val_fp0.5: 2038241.0000 - val_tn0.5: 19967904.0000 - val_ fn0.5: 757223.0000 - val_precision0.5: 0.6287 - val_recall0.5: 0.8201 - val_tp0.7: 3148179.0000 - val_fp0.7: 1621294.0000 - val_tn0.7: 20384850.0000 - val_fn0.7: 1060077.0000 - val_precision0.7: 0.6601 - val_recall0.7: 0.7481 - val_tp0 .9: 2788544.0000 - val_fp0.9: 1101598.0000 - val_tn0.9: 20904542.0000 - val_fn0.9: 1419712.0000 - val_precision0.9: 0.7168 - val_recall0.9: 0.6626 - val_accuracy: 0.8934 - val_auc: 0.9369 Epoch 30/50 1280/1280 [==============================] - 1987s 2s/step - loss: 0.2171 - tp0.1: 8237924.9360 - fp0.1: 2817507.8111 - tn0.1: 41152156.1608 - fn0.1: 303072.4856 - precision0.1: 0.7480 - recall0.1: 0.9644 - tp0.3: 7981439.7697 - fp0.3: 1425495.2022 - tn0.3: 42544167.9969 - fn0.3: 559557.6518 - precision0.3: 0.8500 - recall0.3: 0.9347 - tp0.5: 7663120.4309 - fp0.5: 752759.7705 - tn0.5: 43216900.0492 - fn0.5: 877876.9906 - precision0.5: 0.9116 - recall0.5: 0.8978 - tp 0.7: 7238382.6721 - fp0.7: 357392.6354 - tn0.7: 43612263.4215 - fn0.7: 1302614.7494 - precision0.7: 0.9538 - recall0.7: 0.8481 - tp0.9: 6495143.9938 - fp0.9: 101203.1015 - tn0.9: 43868469.8891 - fn0.9: 2045853.4278 - precision0.9: 0.98 52 - recall0.9: 0.7605 - accuracy: 0.9692 - auc: 0.9793 - val_loss: 0.5477 - val_tp0.1: 4026668.0000 - val_fp0.1: 3118480.0000 - val_tn0.1: 18786898.0000 - val_fn0.1: 282350.0000 - val_precision0.1: 0.5636 - val_recall0.1: 0.9345 - val _tp0.3: 3769431.0000 - val_fp0.3: 2411082.0000 - val_tn0.3: 19494304.0000 - val_fn0.3: 539587.0000 - val_precision0.3: 0.6099 - val_recall0.3: 0.8748 - val_tp0.5: 3496580.0000 - val_fp0.5: 1951231.0000 - val_tn0.5: 19954152.0000 - val_ fn0.5: 812438.0000 - val_precision0.5: 0.6418 - val_recall0.5: 0.8115 - val_tp0.7: 3175729.0000 - val_fp0.7: 1538001.0000 - val_tn0.7: 20367384.0000 - val_fn0.7: 1133289.0000 - val_precision0.7: 0.6737 - val_recall0.7: 0.7370 - val_tp0 .9: 2769656.0000 - val_fp0.9: 1014413.0000 - val_tn0.9: 20890968.0000 - val_fn0.9: 1539362.0000 - val_precision0.9: 0.7319 - val_recall0.9: 0.6428 - val_accuracy: 0.8946 - val_auc: 0.9332 Epoch 31/50 1280/1280 [==============================] - 1975s 2s/step - loss: 0.2140 - tp0.1: 8254893.9524 - fp0.1: 2820541.8767 - tn0.1: 41143836.3778 - fn0.1: 291401.7947 - precision0.1: 0.7449 - recall0.1: 0.9663 - tp0.3: 8001833.3880 - fp0.3: 1415982.6237 - tn0.3: 42548340.3044 - fn0.3: 544462.3591 - precision0.3: 0.8490 - recall0.3: 0.9370 - tp0.5: 7689740.5105 - fp0.5: 749876.5176 - tn0.5: 43214484.3458 - fn0.5: 856555.2365 - precision0.5: 0.9104 - recall0.5: 0.9008 - tp 0.7: 7273005.2974 - fp0.7: 357730.3216 - tn0.7: 43606618.3302 - fn0.7: 1273290.4496 - precision0.7: 0.9525 - recall0.7: 0.8527 - tp0.9: 6528857.1772 - fp0.9: 101215.2264 - tn0.9: 43863149.4848 - fn0.9: 2017438.5699 - precision0.9: 0.98 45 - recall0.9: 0.7661 - accuracy: 0.9694 - auc: 0.9801 - val_loss: 0.6223 - val_tp0.1: 3930460.0000 - val_fp0.1: 3394464.0000 - val_tn0.1: 18612148.0000 - val_fn0.1: 277327.0000 - val_precision0.1: 0.5366 - val_recall0.1: 0.9341 - val _tp0.3: 3651274.0000 - val_fp0.3: 2652264.0000 - val_tn0.3: 19354352.0000 - val_fn0.3: 556513.0000 - val_precision0.3: 0.5792 - val_recall0.3: 0.8677 - val_tp0.5: 3363770.0000 - val_fp0.5: 2181393.0000 - val_tn0.5: 19825220.0000 - val_ fn0.5: 844017.0000 - val_precision0.5: 0.6066 - val_recall0.5: 0.7994 - val_tp0.7: 3042185.0000 - val_fp0.7: 1805943.0000 - val_tn0.7: 20200670.0000 - val_fn0.7: 1165602.0000 - val_precision0.7: 0.6275 - val_recall0.7: 0.7230 - val_tp0 .9: 2649971.0000 - val_fp0.9: 1376978.0000 - val_tn0.9: 20629630.0000 - val_fn0.9: 1557816.0000 - val_precision0.9: 0.6581 - val_recall0.9: 0.6298 - val_accuracy: 0.8846 - val_auc: 0.9230 Epoch 32/50 1280/1280 [==============================] - 1985s 2s/step - loss: 0.2162 - tp0.1: 8168329.4106 - fp0.1: 2823874.2186 - tn0.1: 41219292.6159 - fn0.1: 299147.5254 - precision0.1: 0.7416 - recall0.1: 0.9648 - tp0.3: 7902494.5543 - fp0.3: 1406775.2030 - tn0.3: 42636384.1311 - fn0.3: 564982.3817 - precision0.3: 0.8486 - recall0.3: 0.9329 - tp0.5: 7587653.1304 - fp0.5: 746883.7400 - tn0.5: 43296303.4005 - fn0.5: 879823.8056 - precision0.5: 0.9100 - recall0.5: 0.8957 - tp 0.7: 7172023.5183 - fp0.7: 358490.8813 - tn0.7: 43684701.1390 - fn0.7: 1295453.4176 - precision0.7: 0.9519 - recall0.7: 0.8466 - tp0.9: 6440127.4231 - fp0.9: 99619.9977 - tn0.9: 43943567.7978 - fn0.9: 2027349.5129 - precision0.9: 0.984 4 - recall0.9: 0.7605 - accuracy: 0.9691 - auc: 0.9792 - val_loss: 0.5922 - val_tp0.1: 4021661.0000 - val_fp0.1: 3341968.0000 - val_tn0.1: 18581152.0000 - val_fn0.1: 269622.0000 - val_precision0.1: 0.5462 - val_recall0.1: 0.9372 - val_ tp0.3: 3723109.0000 - val_fp0.3: 2641493.0000 - val_tn0.3: 19281632.0000 - val_fn0.3: 568174.0000 - val_precision0.3: 0.5850 - val_recall0.3: 0.8676 - val_tp0.5: 3417861.0000 - val_fp0.5: 2185964.0000 - val_tn0.5: 19737154.0000 - val_f n0.5: 873422.0000 - val_precision0.5: 0.6099 - val_recall0.5: 0.7965 - val_tp0.7: 3082813.0000 - val_fp0.7: 1779173.0000 - val_tn0.7: 20143952.0000 - val_fn0.7: 1208470.0000 - val_precision0.7: 0.6341 - val_recall0.7: 0.7184 - val_tp0. 9: 2687718.0000 - val_fp0.9: 1223941.0000 - val_tn0.9: 20699176.0000 - val_fn0.9: 1603565.0000 - val_precision0.9: 0.6871 - val_recall0.9: 0.6263 - val_accuracy: 0.8833 - val_auc: 0.9267 Epoch 33/50 1280/1280 [==============================] - 1990s 2s/step - loss: 0.2153 - tp0.1: 8159566.2951 - fp0.1: 2769324.2404 - tn0.1: 41293176.3880 - fn0.1: 288608.7385 - precision0.1: 0.7434 - recall0.1: 0.9660 - tp0.3: 7912034.2069 - fp0.3: 1418334.3794 - tn0.3: 42644140.5886 - fn0.3: 536140.8267 - precision0.3: 0.8451 - recall0.3: 0.9365 - tp0.5: 7606237.6534 - fp0.5: 760974.3443 - tn0.5: 43301518.3575 - fn0.5: 841937.3802 - precision0.5: 0.9067 - recall0.5: 0.9000 - tp 0.7: 7188970.2584 - fp0.7: 368072.7486 - tn0.7: 43694407.5129 - fn0.7: 1259204.7752 - precision0.7: 0.9494 - recall0.7: 0.8501 - tp0.9: 6447265.7268 - fp0.9: 106096.6183 - tn0.9: 43956391.5020 - fn0.9: 2000909.3068 - precision0.9: 0.98 25 - recall0.9: 0.7622 - accuracy: 0.9690 - auc: 0.9797 - val_loss: 0.6103 - val_tp0.1: 4142693.0000 - val_fp0.1: 3021502.0000 - val_tn0.1: 18751128.0000 - val_fn0.1: 299079.0000 - val_precision0.1: 0.5782 - val_recall0.1: 0.9327 - val _tp0.3: 3873213.0000 - val_fp0.3: 2448264.0000 - val_tn0.3: 19324360.0000 - val_fn0.3: 568559.0000 - val_precision0.3: 0.6127 - val_recall0.3: 0.8720 - val_tp0.5: 3610020.0000 - val_fp0.5: 2106610.0000 - val_tn0.5: 19666014.0000 - val_ fn0.5: 831752.0000 - val_precision0.5: 0.6315 - val_recall0.5: 0.8127 - val_tp0.7: 3302152.0000 - val_fp0.7: 1796893.0000 - val_tn0.7: 19975734.0000 - val_fn0.7: 1139620.0000 - val_precision0.7: 0.6476 - val_recall0.7: 0.7434 - val_tp0 .9: 2940645.0000 - val_fp0.9: 1387374.0000 - val_tn0.9: 20385260.0000 - val_fn0.9: 1501127.0000 - val_precision0.9: 0.6794 - val_recall0.9: 0.6620 - val_accuracy: 0.8879 - val_auc: 0.9267 Epoch 34/50 1280/1280 [==============================] - 1975s 2s/step - loss: 0.2140 - tp0.1: 8354952.6027 - fp0.1: 2805323.7728 - tn0.1: 41057643.9641 - fn0.1: 292731.8275 - precision0.1: 0.7496 - recall0.1: 0.9661 - tp0.3: 8100316.4520 - fp0.3: 1408795.9087 - tn0.3: 42454187.0320 - fn0.3: 547367.9781 - precision0.3: 0.8514 - recall0.3: 0.9370 - tp0.5: 7794247.9141 - fp0.5: 754289.6760 - tn0.5: 43108644.9532 - fn0.5: 853436.5160 - precision0.5: 0.9115 - recall0.5: 0.9017 - tp 0.7: 7381753.1905 - fp0.7: 366912.4387 - tn0.7: 43496065.3107 - fn0.7: 1265931.2397 - precision0.7: 0.9524 - recall0.7: 0.8539 - tp0.9: 6643385.3435 - fp0.9: 104367.8337 - tn0.9: 43758580.2849 - fn0.9: 2004299.0867 - precision0.9: 0.98 45 - recall0.9: 0.7683 - accuracy: 0.9694 - auc: 0.9801 - val_loss: 0.6624 - val_tp0.1: 3856354.0000 - val_fp0.1: 3145321.0000 - val_tn0.1: 18842388.0000 - val_fn0.1: 370344.0000 - val_precision0.1: 0.5508 - val_recall0.1: 0.9124 - val _tp0.3: 3549372.0000 - val_fp0.3: 2542341.0000 - val_tn0.3: 19445350.0000 - val_fn0.3: 677326.0000 - val_precision0.3: 0.5827 - val_recall0.3: 0.8398 - val_tp0.5: 3241294.0000 - val_fp0.5: 2119984.0000 - val_tn0.5: 19867720.0000 - val_ fn0.5: 985404.0000 - val_precision0.5: 0.6046 - val_recall0.5: 0.7669 - val_tp0.7: 2930029.0000 - val_fp0.7: 1781338.0000 - val_tn0.7: 20206368.0000 - val_fn0.7: 1296669.0000 - val_precision0.7: 0.6219 - val_recall0.7: 0.6932 - val_tp0 .9: 2550993.0000 - val_fp0.9: 1347073.0000 - val_tn0.9: 20640632.0000 - val_fn0.9: 1675705.0000 - val_precision0.9: 0.6544 - val_recall0.9: 0.6035 - val_accuracy: 0.8815 - val_auc: 0.9118 Epoch 35/50 1280/1280 [==============================] - 1979s 2s/step - loss: 0.2136 - tp0.1: 8121225.3489 - fp0.1: 2767519.3271 - tn0.1: 41328977.4340 - fn0.1: 292944.1897 - precision0.1: 0.7441 - recall0.1: 0.9648 - tp0.3: 7867775.7931 - fp0.3: 1380664.7354 - tn0.3: 42715785.1093 - fn0.3: 546393.7455 - precision0.3: 0.8496 - recall0.3: 0.9344 - tp0.5: 7568656.2834 - fp0.5: 741064.5824 - tn0.5: 43355403.8126 - fn0.5: 845513.2553 - precision0.5: 0.9099 - recall0.5: 0.8989 - tp 0.7: 7163273.2842 - fp0.7: 355917.4442 - tn0.7: 43740534.9688 - fn0.7: 1250896.2545 - precision0.7: 0.9521 - recall0.7: 0.8507 - tp0.9: 6427745.3263 - fp0.9: 99399.9547 - tn0.9: 43997102.2342 - fn0.9: 1986424.2123 - precision0.9: 0.984 3 - recall0.9: 0.7629 - accuracy: 0.9697 - auc: 0.9794 - val_loss: 0.6109 - val_tp0.1: 3805391.0000 - val_fp0.1: 3155702.0000 - val_tn0.1: 18859740.0000 - val_fn0.1: 393569.0000 - val_precision0.1: 0.5467 - val_recall0.1: 0.9063 - val_ tp0.3: 3505616.0000 - val_fp0.3: 2482634.0000 - val_tn0.3: 19532808.0000 - val_fn0.3: 693344.0000 - val_precision0.3: 0.5854 - val_recall0.3: 0.8349 - val_tp0.5: 3205095.0000 - val_fp0.5: 1968560.0000 - val_tn0.5: 20046874.0000 - val_f n0.5: 993865.0000 - val_precision0.5: 0.6195 - val_recall0.5: 0.7633 - val_tp0.7: 2889262.0000 - val_fp0.7: 1535981.0000 - val_tn0.7: 20479460.0000 - val_fn0.7: 1309698.0000 - val_precision0.7: 0.6529 - val_recall0.7: 0.6881 - val_tp0. 9: 2477042.0000 - val_fp0.9: 982485.0000 - val_tn0.9: 21032952.0000 - val_fn0.9: 1721918.0000 - val_precision0.9: 0.7160 - val_recall0.9: 0.5899 - val_accuracy: 0.8870 - val_auc: 0.9160 Epoch 36/50 1280/1280 [==============================] - 1979s 2s/step - loss: 0.2059 - tp0.1: 8126280.0625 - fp0.1: 2646687.9227 - tn0.1: 41454888.0211 - fn0.1: 282807.8095 - precision0.1: 0.7538 - recall0.1: 0.9656 - tp0.3: 7878883.7135 - fp0.3: 1323333.3552 - tn0.3: 42778233.2834 - fn0.3: 530204.1585 - precision0.3: 0.8559 - recall0.3: 0.9362 - tp0.5: 7591944.3318 - fp0.5: 712271.5222 - tn0.5: 43389291.7783 - fn0.5: 817143.5402 - precision0.5: 0.9140 - recall0.5: 0.9022 - tp 0.7: 7203686.0226 - fp0.7: 343437.4106 - tn0.7: 43758143.1655 - fn0.7: 1205401.8493 - precision0.7: 0.9542 - recall0.7: 0.8564 - tp0.9: 6507343.4036 - fp0.9: 97816.8470 - tn0.9: 44003797.8345 - fn0.9: 1901744.4684 - precision0.9: 0.985 0 - recall0.9: 0.7738 - accuracy: 0.9709 - auc: 0.9801 - val_loss: 0.5870 - val_tp0.1: 4142690.0000 - val_fp0.1: 3187548.0000 - val_tn0.1: 18594374.0000 - val_fn0.1: 289788.0000 - val_precision0.1: 0.5652 - val_recall0.1: 0.9346 - val_ tp0.3: 3873916.0000 - val_fp0.3: 2590674.0000 - val_tn0.3: 19191250.0000 - val_fn0.3: 558562.0000 - val_precision0.3: 0.5993 - val_recall0.3: 0.8740 - val_tp0.5: 3589951.0000 - val_fp0.5: 2186008.0000 - val_tn0.5: 19595906.0000 - val_f n0.5: 842527.0000 - val_precision0.5: 0.6215 - val_recall0.5: 0.8099 - val_tp0.7: 3248583.0000 - val_fp0.7: 1758534.0000 - val_tn0.7: 20023388.0000 - val_fn0.7: 1183895.0000 - val_precision0.7: 0.6488 - val_recall0.7: 0.7329 - val_tp0. 9: 2813690.0000 - val_fp0.9: 1197675.0000 - val_tn0.9: 20584246.0000 - val_fn0.9: 1618788.0000 - val_precision0.9: 0.7014 - val_recall0.9: 0.6348 - val_accuracy: 0.8845 - val_auc: 0.9275 Epoch 37/50 1280/1280 [==============================] - 1993s 2s/step - loss: 0.2130 - tp0.1: 8244281.2553 - fp0.1: 2777623.1632 - tn0.1: 41197305.6495 - fn0.1: 291461.3638 - precision0.1: 0.7465 - recall0.1: 0.9665 - tp0.3: 7992234.6581 - fp0.3: 1376180.9282 - tn0.3: 42598749.7158 - fn0.3: 543507.9610 - precision0.3: 0.8514 - recall0.3: 0.9375 - tp0.5: 7696124.9321 - fp0.5: 737935.7494 - tn0.5: 43236985.3677 - fn0.5: 839617.6870 - precision0.5: 0.9113 - recall0.5: 0.9031 - tp 0.7: 7289915.6175 - fp0.7: 354145.8751 - tn0.7: 43620781.5706 - fn0.7: 1245827.0016 - precision0.7: 0.9529 - recall0.7: 0.8559 - tp0.9: 6568139.6253 - fp0.9: 99108.1030 - tn0.9: 43875848.4980 - fn0.9: 1967602.9938 - precision0.9: 0.985 0 - recall0.9: 0.7707 - accuracy: 0.9697 - auc: 0.9803 - val_loss: 0.6359 - val_tp0.1: 3972718.0000 - val_fp0.1: 2970398.0000 - val_tn0.1: 18895362.0000 - val_fn0.1: 375917.0000 - val_precision0.1: 0.5722 - val_recall0.1: 0.9136 - val_ tp0.3: 3696968.0000 - val_fp0.3: 2407542.0000 - val_tn0.3: 19458224.0000 - val_fn0.3: 651667.0000 - val_precision0.3: 0.6056 - val_recall0.3: 0.8501 - val_tp0.5: 3418831.0000 - val_fp0.5: 2053387.0000 - val_tn0.5: 19812380.0000 - val_f n0.5: 929804.0000 - val_precision0.5: 0.6248 - val_recall0.5: 0.7862 - val_tp0.7: 3101481.0000 - val_fp0.7: 1742891.0000 - val_tn0.7: 20122868.0000 - val_fn0.7: 1247154.0000 - val_precision0.7: 0.6402 - val_recall0.7: 0.7132 - val_tp0. 9: 2727270.0000 - val_fp0.9: 1316358.0000 - val_tn0.9: 20549408.0000 - val_fn0.9: 1621365.0000 - val_precision0.9: 0.6745 - val_recall0.9: 0.6272 - val_accuracy: 0.8862 - val_auc: 0.9173 Epoch 38/50 1280/1280 [==============================] - 1988s 2s/step - loss: 0.2095 - tp0.1: 8322547.4973 - fp0.1: 2736467.1725 - tn0.1: 41169366.0554 - fn0.1: 282238.6792 - precision0.1: 0.7515 - recall0.1: 0.9670 - tp0.3: 8066398.6003 - fp0.3: 1365148.2873 - tn0.3: 42540740.5316 - fn0.3: 538387.5761 - precision0.3: 0.8549 - recall0.3: 0.9365 - tp0.5: 7770556.2529 - fp0.5: 735978.7931 - tn0.5: 43169885.3575 - fn0.5: 834229.9235 - precision0.5: 0.9132 - recall0.5: 0.9022 - tp 0.7: 7368501.9875 - fp0.7: 354363.2201 - tn0.7: 43551529.7572 - fn0.7: 1236284.1889 - precision0.7: 0.9541 - recall0.7: 0.8557 - tp0.9: 6640326.0984 - fp0.9: 97963.4192 - tn0.9: 43807909.1975 - fn0.9: 1964460.0781 - precision0.9: 0.985 5 - recall0.9: 0.7709 - accuracy: 0.9698 - auc: 0.9806 - val_loss: 0.5532 - val_tp0.1: 4070077.0000 - val_fp0.1: 3091837.0000 - val_tn0.1: 18834880.0000 - val_fn0.1: 217612.0000 - val_precision0.1: 0.5683 - val_recall0.1: 0.9492 - val_ tp0.3: 3841354.0000 - val_fp0.3: 2343330.0000 - val_tn0.3: 19583380.0000 - val_fn0.3: 446335.0000 - val_precision0.3: 0.6211 - val_recall0.3: 0.8959 - val_tp0.5: 3610309.0000 - val_fp0.5: 1940937.0000 - val_tn0.5: 19985782.0000 - val_f n0.5: 677380.0000 - val_precision0.5: 0.6504 - val_recall0.5: 0.8420 - val_tp0.7: 3328203.0000 - val_fp0.7: 1620408.0000 - val_tn0.7: 20306288.0000 - val_fn0.7: 959486.0000 - val_precision0.7: 0.6726 - val_recall0.7: 0.7762 - val_tp0.9 : 2957699.0000 - val_fp0.9: 1252356.0000 - val_tn0.9: 20674356.0000 - val_fn0.9: 1329990.0000 - val_precision0.9: 0.7025 - val_recall0.9: 0.6898 - val_accuracy: 0.9001 - val_auc: 0.9387 Epoch 39/50 1280/1280 [==============================] - 1983s 2s/step - loss: 0.2144 - tp0.1: 8366575.3263 - fp0.1: 2766167.9742 - tn0.1: 41080636.4215 - fn0.1: 297288.0242 - precision0.1: 0.7524 - recall0.1: 0.9656 - tp0.3: 8113164.2248 - fp0.3: 1368911.6565 - tn0.3: 42477877.7752 - fn0.3: 550699.1257 - precision0.3: 0.8555 - recall0.3: 0.9368 - tp0.5: 7813941.1093 - fp0.5: 738235.6479 - tn0.5: 43108568.5925 - fn0.5: 849922.2412 - precision0.5: 0.9133 - recall0.5: 0.9025 - tp 0.7: 7408230.3068 - fp0.7: 358148.5066 - tn0.7: 43488651.3341 - fn0.7: 1255633.0437 - precision0.7: 0.9536 - recall0.7: 0.8560 - tp0.9: 6668979.4731 - fp0.9: 100667.4668 - tn0.9: 43746134.9883 - fn0.9: 1994883.8774 - precision0.9: 0.98 51 - recall0.9: 0.7710 - accuracy: 0.9697 - auc: 0.9798 - val_loss: 0.5509 - val_tp0.1: 3928121.0000 - val_fp0.1: 3362312.0000 - val_tn0.1: 18683104.0000 - val_fn0.1: 240862.0000 - val_precision0.1: 0.5388 - val_recall0.1: 0.9422 - val _tp0.3: 3683700.0000 - val_fp0.3: 2630754.0000 - val_tn0.3: 19414668.0000 - val_fn0.3: 485283.0000 - val_precision0.3: 0.5834 - val_recall0.3: 0.8836 - val_tp0.5: 3409649.0000 - val_fp0.5: 2123677.0000 - val_tn0.5: 19921740.0000 - val_ fn0.5: 759334.0000 - val_precision0.5: 0.6162 - val_recall0.5: 0.8179 - val_tp0.7: 3082747.0000 - val_fp0.7: 1673717.0000 - val_tn0.7: 20371692.0000 - val_fn0.7: 1086236.0000 - val_precision0.7: 0.6481 - val_recall0.7: 0.7394 - val_tp0 .9: 2675367.0000 - val_fp0.9: 1106165.0000 - val_tn0.9: 20939250.0000 - val_fn0.9: 1493616.0000 - val_precision0.9: 0.7075 - val_recall0.9: 0.6417 - val_accuracy: 0.8900 - val_auc: 0.9336 Epoch 40/50 1280/1280 [==============================] - 1983s 2s/step - loss: 0.1969 - tp0.1: 8112039.9274 - fp0.1: 2648956.8977 - tn0.1: 41481438.0515 - fn0.1: 268231.5964 - precision0.1: 0.7550 - recall0.1: 0.9682 - tp0.3: 7868925.6425 - fp0.3: 1315040.1202 - tn0.3: 42815365.2927 - fn0.3: 511345.8813 - precision0.3: 0.8571 - recall0.3: 0.9396 - tp0.5: 7584341.2420 - fp0.5: 709881.4247 - tn0.5: 43420518.9040 - fn0.5: 795930.2818 - precision0.5: 0.9147 - recall0.5: 0.9057 - tp 0.7: 7193185.0031 - fp0.7: 342578.8923 - tn0.7: 43787824.5191 - fn0.7: 1187086.5207 - precision0.7: 0.9550 - recall0.7: 0.8587 - tp0.9: 6494738.0343 - fp0.9: 97088.4145 - tn0.9: 44033315.7065 - fn0.9: 1885533.4895 - precision0.9: 0.985 6 - recall0.9: 0.7753 - accuracy: 0.9718 - auc: 0.9815 - val_loss: 0.5690 - val_tp0.1: 3846468.0000 - val_fp0.1: 3007369.0000 - val_tn0.1: 19101806.0000 - val_fn0.1: 258769.0000 - val_precision0.1: 0.5612 - val_recall0.1: 0.9370 - val_ tp0.3: 3613817.0000 - val_fp0.3: 2397217.0000 - val_tn0.3: 19711954.0000 - val_fn0.3: 491420.0000 - val_precision0.3: 0.6012 - val_recall0.3: 0.8803 - val_tp0.5: 3367535.0000 - val_fp0.5: 2008822.0000 - val_tn0.5: 20100340.0000 - val_f n0.5: 737702.0000 - val_precision0.5: 0.6264 - val_recall0.5: 0.8203 - val_tp0.7: 3076985.0000 - val_fp0.7: 1689883.0000 - val_tn0.7: 20419284.0000 - val_fn0.7: 1028252.0000 - val_precision0.7: 0.6455 - val_recall0.7: 0.7495 - val_tp0. 9: 2719452.0000 - val_fp0.9: 1280160.0000 - val_tn0.9: 20829004.0000 - val_fn0.9: 1385785.0000 - val_precision0.9: 0.6799 - val_recall0.9: 0.6624 - val_accuracy: 0.8952 - val_auc: 0.9311 Epoch 41/50 1280/1280 [==============================] - 1978s 2s/step - loss: 0.2044 - tp0.1: 8119761.2217 - fp0.1: 2626596.4067 - tn0.1: 41483268.4879 - fn0.1: 281035.5894 - precision0.1: 0.7571 - recall0.1: 0.9663 - tp0.3: 7878864.4973 - fp0.3: 1320586.7525 - tn0.3: 42789243.0968 - fn0.3: 521932.3138 - precision0.3: 0.8575 - recall0.3: 0.9377 - tp0.5: 7590439.7557 - fp0.5: 709361.4364 - tn0.5: 43400490.0500 - fn0.5: 810357.0554 - precision0.5: 0.9153 - recall0.5: 0.9035 - tp 0.7: 7196681.5800 - fp0.7: 343281.3755 - tn0.7: 43766582.6877 - fn0.7: 1204115.2311 - precision0.7: 0.9549 - recall0.7: 0.8569 - tp0.9: 6477320.2436 - fp0.9: 94404.4832 - tn0.9: 44015438.6300 - fn0.9: 1923476.5675 - precision0.9: 0.985 7 - recall0.9: 0.7709 - accuracy: 0.9710 - auc: 0.9804 - val_loss: 0.7317 - val_tp0.1: 3916023.0000 - val_fp0.1: 3484452.0000 - val_tn0.1: 18565136.0000 - val_fn0.1: 248781.0000 - val_precision0.1: 0.5292 - val_recall0.1: 0.9403 - val_ tp0.3: 3708159.0000 - val_fp0.3: 2970626.0000 - val_tn0.3: 19078970.0000 - val_fn0.3: 456645.0000 - val_precision0.3: 0.5552 - val_recall0.3: 0.8904 - val_tp0.5: 3475102.0000 - val_fp0.5: 2669322.0000 - val_tn0.5: 19380278.0000 - val_f n0.5: 689702.0000 - val_precision0.5: 0.5656 - val_recall0.5: 0.8344 - val_tp0.7: 3188450.0000 - val_fp0.7: 2414665.0000 - val_tn0.7: 19634936.0000 - val_fn0.7: 976354.0000 - val_precision0.7: 0.5690 - val_recall0.7: 0.7656 - val_tp0.9 : 2847371.0000 - val_fp0.9: 2085317.0000 - val_tn0.9: 19964284.0000 - val_fn0.9: 1317433.0000 - val_precision0.9: 0.5772 - val_recall0.9: 0.6837 - val_accuracy: 0.8719 - val_auc: 0.9139 Epoch 42/50 1280/1280 [==============================] - 1987s 2s/step - loss: 0.1985 - tp0.1: 8084262.2818 - fp0.1: 2648823.0039 - tn0.1: 41506455.0390 - fn0.1: 271123.8985 - precision0.1: 0.7515 - recall0.1: 0.9676 - tp0.3: 7842478.2342 - fp0.3: 1315040.6995 - tn0.3: 42840230.2826 - fn0.3: 512907.9461 - precision0.3: 0.8555 - recall0.3: 0.9387 - tp0.5: 7555647.0101 - fp0.5: 708480.3888 - tn0.5: 43446801.7198 - fn0.5: 799739.1702 - precision0.5: 0.9137 - recall0.5: 0.9044 - tp 0.7: 7164901.3419 - fp0.7: 337266.9789 - tn0.7: 43818009.3770 - fn0.7: 1190484.8384 - precision0.7: 0.9549 - recall0.7: 0.8575 - tp0.9: 6464041.4738 - fp0.9: 94869.2607 - tn0.9: 44060414.4278 - fn0.9: 1891344.7065 - precision0.9: 0.985 5 - recall0.9: 0.7739 - accuracy: 0.9716 - auc: 0.9811 - val_loss: 0.5958 - val_tp0.1: 3933554.0000 - val_fp0.1: 2955615.0000 - val_tn0.1: 18990420.0000 - val_fn0.1: 334809.0000 - val_precision0.1: 0.5710 - val_recall0.1: 0.9216 - val_ tp0.3: 3653243.0000 - val_fp0.3: 2331195.0000 - val_tn0.3: 19614844.0000 - val_fn0.3: 615120.0000 - val_precision0.3: 0.6105 - val_recall0.3: 0.8559 - val_tp0.5: 3388864.0000 - val_fp0.5: 1939453.0000 - val_tn0.5: 20006580.0000 - val_f n0.5: 879499.0000 - val_precision0.5: 0.6360 - val_recall0.5: 0.7939 - val_tp0.7: 3079796.0000 - val_fp0.7: 1608320.0000 - val_tn0.7: 20337718.0000 - val_fn0.7: 1188567.0000 - val_precision0.7: 0.6569 - val_recall0.7: 0.7215 - val_tp0. 9: 2715008.0000 - val_fp0.9: 1171919.0000 - val_tn0.9: 20774120.0000 - val_fn0.9: 1553355.0000 - val_precision0.9: 0.6985 - val_recall0.9: 0.6361 - val_accuracy: 0.8925 - val_auc: 0.9240 Epoch 43/50 1280/1280 [==============================] - 1955s 2s/step - loss: 0.1987 - tp0.1: 8221268.6706 - fp0.1: 2670843.3326 - tn0.1: 41354847.4762 - fn0.1: 263685.1889 - precision0.1: 0.7553 - recall0.1: 0.9689 - tp0.3: 7974364.6284 - fp0.3: 1305978.7268 - tn0.3: 42719745.8759 - fn0.3: 510589.2311 - precision0.3: 0.8607 - recall0.3: 0.9397 - tp0.5: 7690894.8962 - fp0.5: 703492.0546 - tn0.5: 43322229.0648 - fn0.5: 794058.9633 - precision0.5: 0.9176 - recall0.5: 0.9062 - tp 0.7: 7300427.2842 - fp0.7: 340590.7377 - tn0.7: 43685101.9196 - fn0.7: 1184526.5753 - precision0.7: 0.9563 - recall0.7: 0.8599 - tp0.9: 6589497.3521 - fp0.9: 94983.5316 - tn0.9: 43930710.3302 - fn0.9: 1895456.5074 - precision0.9: 0.986 2 - recall0.9: 0.7761 - accuracy: 0.9717 - auc: 0.9819 - val_loss: 0.6235 - val_tp0.1: 3909308.0000 - val_fp0.1: 3193225.0000 - val_tn0.1: 18785172.0000 - val_fn0.1: 326693.0000 - val_precision0.1: 0.5504 - val_recall0.1: 0.9229 - val_ tp0.3: 3626074.0000 - val_fp0.3: 2618929.0000 - val_tn0.3: 19359480.0000 - val_fn0.3: 609927.0000 - val_precision0.3: 0.5806 - val_recall0.3: 0.8560 - val_tp0.5: 3338230.0000 - val_fp0.5: 2236986.0000 - val_tn0.5: 19741408.0000 - val_f n0.5: 897771.0000 - val_precision0.5: 0.5988 - val_recall0.5: 0.7881 - val_tp0.7: 2996830.0000 - val_fp0.7: 1846715.0000 - val_tn0.7: 20131684.0000 - val_fn0.7: 1239171.0000 - val_precision0.7: 0.6187 - val_recall0.7: 0.7075 - val_tp0. 9: 2591293.0000 - val_fp0.9: 1332148.0000 - val_tn0.9: 20646248.0000 - val_fn0.9: 1644708.0000 - val_precision0.9: 0.6605 - val_recall0.9: 0.6117 - val_accuracy: 0.8804 - val_auc: 0.9182 Epoch 44/50 1280/1280 [==============================] - 1965s 2s/step - loss: 0.1994 - tp0.1: 8332024.2139 - fp0.1: 2677627.7361 - tn0.1: 41232032.9399 - fn0.1: 268956.1819 - precision0.1: 0.7573 - recall0.1: 0.9690 - tp0.3: 8088072.3755 - fp0.3: 1334673.8392 - tn0.3: 42575000.3903 - fn0.3: 512908.0203 - precision0.3: 0.8587 - recall0.3: 0.9411 - tp0.5: 7804018.2927 - fp0.5: 727991.3505 - tn0.5: 43181681.2311 - fn0.5: 796962.1030 - precision0.5: 0.9148 - recall0.5: 0.9085 - tp 0.7: 7411774.5628 - fp0.7: 351151.7166 - tn0.7: 43558520.9914 - fn0.7: 1189205.8329 - precision0.7: 0.9548 - recall0.7: 0.8632 - tp0.9: 6689648.7783 - fp0.9: 96689.1569 - tn0.9: 43812989.9953 - fn0.9: 1911331.6175 - precision0.9: 0.985 8 - recall0.9: 0.7794 - accuracy: 0.9712 - auc: 0.9819 - val_loss: 0.5577 - val_tp0.1: 3767211.0000 - val_fp0.1: 2896593.0000 - val_tn0.1: 19207012.0000 - val_fn0.1: 343594.0000 - val_precision0.1: 0.5653 - val_recall0.1: 0.9164 - val_ tp0.3: 3483824.0000 - val_fp0.3: 2230299.0000 - val_tn0.3: 19873292.0000 - val_fn0.3: 626981.0000 - val_precision0.3: 0.6097 - val_recall0.3: 0.8475 - val_tp0.5: 3200515.0000 - val_fp0.5: 1719966.0000 - val_tn0.5: 20383632.0000 - val_f n0.5: 910290.0000 - val_precision0.5: 0.6504 - val_recall0.5: 0.7786 - val_tp0.7: 2881571.0000 - val_fp0.7: 1322038.0000 - val_tn0.7: 20781552.0000 - val_fn0.7: 1229234.0000 - val_precision0.7: 0.6855 - val_recall0.7: 0.7010 - val_tp0. 9: 2488169.0000 - val_fp0.9: 864656.0000 - val_tn0.9: 21238940.0000 - val_fn0.9: 1622636.0000 - val_precision0.9: 0.7421 - val_recall0.9: 0.6053 - val_accuracy: 0.8997 - val_auc: 0.9249 Epoch 45/50 1280/1280 [==============================] - 1967s 2s/step - loss: 0.2054 - tp0.1: 8039884.9914 - fp0.1: 2657730.7822 - tn0.1: 41537257.0453 - fn0.1: 275776.4333 - precision0.1: 0.7479 - recall0.1: 0.9656 - tp0.3: 7799006.9430 - fp0.3: 1331880.2607 - tn0.3: 42863099.0406 - fn0.3: 516654.4817 - precision0.3: 0.8527 - recall0.3: 0.9360 - tp0.5: 7508282.6300 - fp0.5: 716584.7447 - tn0.5: 43478405.7619 - fn0.5: 807378.7947 - precision0.5: 0.9120 - recall0.5: 0.9006 - tp 0.7: 7111748.2311 - fp0.7: 345919.2553 - tn0.7: 43849114.1967 - fn0.7: 1203913.1936 - precision0.7: 0.9530 - recall0.7: 0.8525 - tp0.9: 6406401.2319 - fp0.9: 97963.5379 - tn0.9: 44097016.4520 - fn0.9: 1909260.1928 - precision0.9: 0.984 7 - recall0.9: 0.7671 - accuracy: 0.9708 - auc: 0.9799 - val_loss: 0.5755 - val_tp0.1: 3947505.0000 - val_fp0.1: 3387487.0000 - val_tn0.1: 18700156.0000 - val_fn0.1: 179254.0000 - val_precision0.1: 0.5382 - val_recall0.1: 0.9566 - val_ tp0.3: 3738020.0000 - val_fp0.3: 2730917.0000 - val_tn0.3: 19356726.0000 - val_fn0.3: 388739.0000 - val_precision0.3: 0.5778 - val_recall0.3: 0.9058 - val_tp0.5: 3505678.0000 - val_fp0.5: 2359050.0000 - val_tn0.5: 19728584.0000 - val_f n0.5: 621081.0000 - val_precision0.5: 0.5978 - val_recall0.5: 0.8495 - val_tp0.7: 3196056.0000 - val_fp0.7: 1989619.0000 - val_tn0.7: 20098016.0000 - val_fn0.7: 930703.0000 - val_precision0.7: 0.6163 - val_recall0.7: 0.7745 - val_tp0.9 : 2807022.0000 - val_fp0.9: 1495603.0000 - val_tn0.9: 20592028.0000 - val_fn0.9: 1319737.0000 - val_precision0.9: 0.6524 - val_recall0.9: 0.6802 - val_accuracy: 0.8863 - val_auc: 0.9356 Epoch 46/50 1280/1280 [==============================] - 1954s 2s/step - loss: 0.2006 - tp0.1: 8213399.9953 - fp0.1: 2647494.8681 - tn0.1: 41382018.9024 - fn0.1: 267742.8033 - precision0.1: 0.7532 - recall0.1: 0.9684 - tp0.3: 7974876.2194 - fp0.3: 1321606.3544 - tn0.3: 42707910.7440 - fn0.3: 506266.5792 - precision0.3: 0.8563 - recall0.3: 0.9401 - tp0.5: 7686530.4450 - fp0.5: 705127.5909 - tn0.5: 43324387.6230 - fn0.5: 794612.3536 - precision0.5: 0.9155 - recall0.5: 0.9060 - tp 0.7: 7293262.6581 - fp0.7: 337606.6417 - tn0.7: 43691898.0304 - fn0.7: 1187880.1405 - precision0.7: 0.9556 - recall0.7: 0.8595 - tp0.9: 6593016.1983 - fp0.9: 93813.7900 - tn0.9: 43935696.6682 - fn0.9: 1888126.6003 - precision0.9: 0.985 9 - recall0.9: 0.7775 - accuracy: 0.9713 - auc: 0.9815 - val_loss: 0.5779 - val_tp0.1: 3847918.0000 - val_fp0.1: 3630042.0000 - val_tn0.1: 18523056.0000 - val_fn0.1: 213382.0000 - val_precision0.1: 0.5146 - val_recall0.1: 0.9475 - val_ tp0.3: 3624637.0000 - val_fp0.3: 2927247.0000 - val_tn0.3: 19225848.0000 - val_fn0.3: 436663.0000 - val_precision0.3: 0.5532 - val_recall0.3: 0.8925 - val_tp0.5: 3387759.0000 - val_fp0.5: 2442181.0000 - val_tn0.5: 19710918.0000 - val_f n0.5: 673541.0000 - val_precision0.5: 0.5811 - val_recall0.5: 0.8342 - val_tp0.7: 3093355.0000 - val_fp0.7: 1959305.0000 - val_tn0.7: 20193798.0000 - val_fn0.7: 967945.0000 - val_precision0.7: 0.6122 - val_recall0.7: 0.7617 - val_tp0.9 : 2709194.0000 - val_fp0.9: 1315902.0000 - val_tn0.9: 20837192.0000 - val_fn0.9: 1352106.0000 - val_precision0.9: 0.6731 - val_recall0.9: 0.6671 - val_accuracy: 0.8811 - val_auc: 0.9327 Epoch 47/50 1280/1280 [==============================] - 1945s 2s/step - loss: 0.1969 - tp0.1: 8300923.1351 - fp0.1: 2610298.6073 - tn0.1: 41331766.4083 - fn0.1: 267669.1296 - precision0.1: 0.7642 - recall0.1: 0.9694 - tp0.3: 8061644.4340 - fp0.3: 1313054.2631 - tn0.3: 42629006.5870 - fn0.3: 506947.8306 - precision0.3: 0.8611 - recall0.3: 0.9422 - tp0.5: 7779027.9711 - fp0.5: 711910.2787 - tn0.5: 43230141.7112 - fn0.5: 789564.2935 - precision0.5: 0.9166 - recall0.5: 0.9097 - tp 0.7: 7390637.0796 - fp0.7: 345621.5621 - tn0.7: 43596452.1616 - fn0.7: 1177955.1850 - precision0.7: 0.9553 - recall0.7: 0.8650 - tp0.9: 6688557.9680 - fp0.9: 97298.4106 - tn0.9: 43844794.7112 - fn0.9: 1880034.2966 - precision0.9: 0.985 5 - recall0.9: 0.7835 - accuracy: 0.9714 - auc: 0.9821 - val_loss: 0.6259 - val_tp0.1: 3930823.0000 - val_fp0.1: 3136289.0000 - val_tn0.1: 18868696.0000 - val_fn0.1: 278584.0000 - val_precision0.1: 0.5562 - val_recall0.1: 0.9338 - val_ tp0.3: 3682497.0000 - val_fp0.3: 2597221.0000 - val_tn0.3: 19407772.0000 - val_fn0.3: 526910.0000 - val_precision0.3: 0.5864 - val_recall0.3: 0.8748 - val_tp0.5: 3429169.0000 - val_fp0.5: 2237642.0000 - val_tn0.5: 19767344.0000 - val_f n0.5: 780238.0000 - val_precision0.5: 0.6051 - val_recall0.5: 0.8146 - val_tp0.7: 3114765.0000 - val_fp0.7: 1889104.0000 - val_tn0.7: 20115888.0000 - val_fn0.7: 1094642.0000 - val_precision0.7: 0.6225 - val_recall0.7: 0.7400 - val_tp0. 9: 2710793.0000 - val_fp0.9: 1416123.0000 - val_tn0.9: 20588868.0000 - val_fn0.9: 1498614.0000 - val_precision0.9: 0.6569 - val_recall0.9: 0.6440 - val_accuracy: 0.8849 - val_auc: 0.9224 Epoch 48/50 1280/1280 [==============================] - 1953s 2s/step - loss: 0.1928 - tp0.1: 8105003.8283 - fp0.1: 2580803.4801 - tn0.1: 41568825.8158 - fn0.1: 256048.8673 - precision0.1: 0.7573 - recall0.1: 0.9697 - tp0.3: 7868496.5355 - fp0.3: 1297144.6347 - tn0.3: 42852437.2209 - fn0.3: 492556.1600 - precision0.3: 0.8575 - recall0.3: 0.9414 - tp0.5: 7589914.3154 - fp0.5: 704118.4832 - tn0.5: 43445489.9368 - fn0.5: 771138.3802 - precision0.5: 0.9146 - recall0.5: 0.9080 - tp 0.7: 7204444.4348 - fp0.7: 338098.1210 - tn0.7: 43811497.8689 - fn0.7: 1156608.2607 - precision0.7: 0.9549 - recall0.7: 0.8617 - tp0.9: 6516177.3638 - fp0.9: 93695.1686 - tn0.9: 44055912.6136 - fn0.9: 1844875.3318 - precision0.9: 0.985 8 - recall0.9: 0.7794 - accuracy: 0.9719 - auc: 0.9822 - val_loss: 0.5549 - val_tp0.1: 3956721.0000 - val_fp0.1: 3232246.0000 - val_tn0.1: 18771428.0000 - val_fn0.1: 254013.0000 - val_precision0.1: 0.5504 - val_recall0.1: 0.9397 - val_ tp0.3: 3708830.0000 - val_fp0.3: 2603884.0000 - val_tn0.3: 19399780.0000 - val_fn0.3: 501904.0000 - val_precision0.3: 0.5875 - val_recall0.3: 0.8808 - val_tp0.5: 3455265.0000 - val_fp0.5: 2129156.0000 - val_tn0.5: 19874504.0000 - val_f n0.5: 755469.0000 - val_precision0.5: 0.6187 - val_recall0.5: 0.8206 - val_tp0.7: 3150570.0000 - val_fp0.7: 1691047.0000 - val_tn0.7: 20312616.0000 - val_fn0.7: 1060164.0000 - val_precision0.7: 0.6507 - val_recall0.7: 0.7482 - val_tp0. 9: 2734733.0000 - val_fp0.9: 1128005.0000 - val_tn0.9: 20875662.0000 - val_fn0.9: 1476001.0000 - val_precision0.9: 0.7080 - val_recall0.9: 0.6495 - val_accuracy: 0.8900 - val_auc: 0.9326 Epoch 49/50 1280/1280 [==============================] - 1952s 2s/step - loss: 0.1904 - tp0.1: 8205918.2201 - fp0.1: 2597375.0523 - tn0.1: 41463883.8283 - fn0.1: 243494.6815 - precision0.1: 0.7596 - recall0.1: 0.9713 - tp0.3: 7967288.4333 - fp0.3: 1294707.1905 - tn0.3: 42766530.0679 - fn0.3: 482124.4684 - precision0.3: 0.8602 - recall0.3: 0.9426 - tp0.5: 7690726.4028 - fp0.5: 706852.2178 - tn0.5: 43354411.7049 - fn0.5: 758686.4988 - precision0.5: 0.9160 - recall0.5: 0.9099 - tp 0.7: 7310265.9742 - fp0.7: 341418.8126 - tn0.7: 43719824.0367 - fn0.7: 1139146.9274 - precision0.7: 0.9557 - recall0.7: 0.8651 - tp0.9: 6619945.5667 - fp0.9: 95254.3942 - tn0.9: 43965990.5909 - fn0.9: 1829467.3349 - precision0.9: 0.986 3 - recall0.9: 0.7836 - accuracy: 0.9719 - auc: 0.9831 - val_loss: 0.7113 - val_tp0.1: 3891189.0000 - val_fp0.1: 3192765.0000 - val_tn0.1: 18774752.0000 - val_fn0.1: 355695.0000 - val_precision0.1: 0.5493 - val_recall0.1: 0.9162 - val_ tp0.3: 3627202.0000 - val_fp0.3: 2690459.0000 - val_tn0.3: 19277064.0000 - val_fn0.3: 619682.0000 - val_precision0.3: 0.5741 - val_recall0.3: 0.8541 - val_tp0.5: 3369672.0000 - val_fp0.5: 2384023.0000 - val_tn0.5: 19583492.0000 - val_f n0.5: 877212.0000 - val_precision0.5: 0.5857 - val_recall0.5: 0.7934 - val_tp0.7: 3076485.0000 - val_fp0.7: 2107024.0000 - val_tn0.7: 19860492.0000 - val_fn0.7: 1170399.0000 - val_precision0.7: 0.5935 - val_recall0.7: 0.7244 - val_tp0. 9: 2710033.0000 - val_fp0.9: 1728311.0000 - val_tn0.9: 20239206.0000 - val_fn0.9: 1536851.0000 - val_precision0.9: 0.6106 - val_recall0.9: 0.6381 - val_accuracy: 0.8756 - val_auc: 0.9085 Epoch 50/50 1280/1280 [==============================] - 1959s 2s/step - loss: 0.1904 - tp0.1: 8168142.8899 - fp0.1: 2531078.8610 - tn0.1: 41557584.1272 - fn0.1: 253833.5800 - precision0.1: 0.7637 - recall0.1: 0.9699 - tp0.3: 7935448.9009 - fp0.3: 1268230.0484 - tn0.3: 42820446.9766 - fn0.3: 486527.5691 - precision0.3: 0.8629 - recall0.3: 0.9420 - tp0.5: 7667088.7853 - fp0.5: 699134.4457 - tn0.5: 43389534.5613 - fn0.5: 754887.6846 - precision0.5: 0.9167 - recall0.5: 0.9102 - tp 0.7: 7290487.3372 - fp0.7: 342110.9336 - tn0.7: 43746573.7869 - fn0.7: 1131489.1327 - precision0.7: 0.9553 - recall0.7: 0.8655 - tp0.9: 6585906.2607 - fp0.9: 97053.1694 - tn0.9: 43991631.9688 - fn0.9: 1836070.2092 - precision0.9: 0.985 5 - recall0.9: 0.7818 - accuracy: 0.9724 - auc: 0.9826 - val_loss: 0.5552 - val_tp0.1: 3972788.0000 - val_fp0.1: 3022431.0000 - val_tn0.1: 18950448.0000 - val_fn0.1: 268737.0000 - val_precision0.1: 0.5679 - val_recall0.1: 0.9366 - val_ tp0.3: 3744205.0000 - val_fp0.3: 2467134.0000 - val_tn0.3: 19505742.0000 - val_fn0.3: 497320.0000 - val_precision0.3: 0.6028 - val_recall0.3: 0.8827 - val_tp0.5: 3515241.0000 - val_fp0.5: 2098091.0000 - val_tn0.5: 19874784.0000 - val_f n0.5: 726284.0000 - val_precision0.5: 0.6262 - val_recall0.5: 0.8288 - val_tp0.7: 3227939.0000 - val_fp0.7: 1707258.0000 - val_tn0.7: 20265616.0000 - val_fn0.7: 1013586.0000 - val_precision0.7: 0.6541 - val_recall0.7: 0.7610 - val_tp0. 9: 2849341.0000 - val_fp0.9: 1228067.0000 - val_tn0.9: 20744808.0000 - val_fn0.9: 1392184.0000 - val_precision0.9: 0.6988 - val_recall0.9: 0.6718 - val_accuracy: 0.8923 - val_auc: 0.9339 420/420 [==============================] - 126s 300ms/step - loss: 0.5623 - tp0.1: 4784751.0000 - fp0.1: 3873965.0000 - tn0.1: 25422992.0000 - fn0.1: 324680.0000 - precision0.1: 0.5526 - recall0.1: 0.9365 - tp0.3: 4514069.0000 - fp0.3: 3235942.0000 - tn0.3: 26061030.0000 - fn0.3: 595362.0000 - precision0.3: 0.5825 - recall0.3: 0.8835 - tp0.5: 4242444.0000 - fp0.5: 2843465.0000 - tn0.5: 26453508.0000 - fn0.5: 866987.0000 - precision0.5: 0.5987 - recall0.5: 0.8303 - t p0.7: 3892738.0000 - fp0.7: 2409415.0000 - tn0.7: 26887552.0000 - fn0.7: 1216693.0000 - precision0.7: 0.6177 - recall0.7: 0.7619 - tp0.9: 3413153.0000 - fp0.9: 1853895.0000 - tn0.9: 27443078.0000 - fn0.9: 1696278.0000 - precision0.9: 0 .6480 - recall0.9: 0.6680 - accuracy: 0.8922 - auc: 0.9306 2021/02/06 23:57:14 INFO mlflow.projects: === Run (ID 'b9935d1e554c423fb2852242f4c4504c') succeeded === (tf-nightly) [ye53nis@node221 drmed-git]$
2.1.3 Read out logs of Run 1
2.1.3.1 test dataset statistics
- test data is not saved out automatically, but can be copied from the log
above
420/420 [==============================] - 126s 300ms/step - loss: 0.5623
… 0.1 0.3 0.5 0.7 0.9 tp 4784751.0000 4514069.0000 4242444.0000 3892738.0000 3413153.0000 fp 3873965.0000 3235942.0000 2843465.0000 2409415.0000 1853895.0000 fn 324680.0000 595362.0000 866987.0000 1216693.0000 1696278.0000 tn 25422992.0000 26061030.0000 26453508.0000 26887552.0000 27443078.0000 all 34,406,388 34,406,403 34,406,404 34,406,398 34,406,404 precision 0.5526 0.5825 0.5987 0.6177 0.6480 recall 0.9365 0.8835 0.8303 0.7619 0.6680 accuracy: 0.8922 - auc: 0.9306
0.1 actual positive actual negative pred positive 0.13906577 0.11259435 Prec: 0.5526 pred negative 9.4345271e-3 0.73890325 Recall: 0.9365 F1: 0.69506400 0.3 actual positive actual negative pred positive 0.13119852 0.094050575 Prec: 0.5825 pred negative 0.017303814 0.75744709 Recall: 0.8835 F1: 0.70209925 0.5 actual positive actual negative pred positive 0.12330391 0.082643481 Prec: 0.5987 pred negative 0.025198419 0.76885419 Recall: 0.8303 F1: 0.69573213 0.7 actual positive actual negative pred positive 0.11313995 0.070028109 Prec: 0.6177 pred negative 0.035362406 0.78146954 Recall: 0.7619 F1: 0.68226389 0.9 actual positive actual negative pred positive 0.099201096 0.053882266 Prec: 0.6480 pred negative 0.049301229 0.79761541 Recall: 0.6680 F1: 0.65784802
2.1.3.2 prediction plots after each epoch
after epoch 1: epoch 2: epoch 3: epoch 4: epoch 5: epoch 10: epoch 20: epoch 30: epoch 40: epoch 50:
2.1.3.3 Git log after some code additions
!git log -10
commit a070d3b531725e0fb37688dde80e990083ccf1cc Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 15 21:48:01 2021 +0100 Fix photon count bin metadata 2 commit 86bcbfe13f4026f9b554ba8f0c7e3b9360090331 Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 15 21:40:47 2021 +0100 Fix photon count bin metadata commit 1c7ca995b2e550f6b6cb71dca647f170bbd9982d Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 15 19:10:01 2021 +0100 Fix correction by list of prediction thresholds commit 61cbc69dc8be177a754afab9dfea82ab6cd1086e Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 15 19:03:07 2021 +0100 Add correction by different prediction thresholds commit 58aa20f75747c43056ebe56831395b01c0535842 Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 15 11:04:31 2021 +0100 Fix column name \tau commit 01c14384c452ac4106263d088e0587ddf4ebc379 Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 8 18:33:48 2021 +0100 Add FileNotFoundError checks to import functions commit 28640d1360ca77aaa633de04e3349da6f12b208c Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 8 17:45:33 2021 +0100 Fix if ntraces=None commit 5e493d6c826ca24b425a3b11c0b07d31aac8af1a Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 8 17:17:42 2021 +0100 Add correction function for ptu files + csv export commit 61f076ecec76dd1f7c0323feb2b9e48f60368582 Author: Apoplex <oligolex@vivaldi.net> Date: Sat Feb 20 23:43:15 2021 +0100 Fix concatenation order, add missing traces note commit ed974cb634e7e1c47b730b136fbd09d9ee20535f Author: Apoplex <oligolex@vivaldi.net> Date: Sat Feb 20 22:35:14 2021 +0100 Fix np.repeat, remove nfiles, print no of traces
2.1.3.4 Application 1 - load modules, set parameters
- Load the required modules
%cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
from pathlib import Path import sys import mlflow import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns mlflow.version.VERSION
1.13.1
sys.path.append('src/') from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, ) from fluotracify.training import build_model as bm, preprocess_data as ppd from fluotracify.applications import correlate, plots, correction from fluotracify.imports import ptu_utils as ptu
import importlib importlib.reload(correction)
<module 'fluotracify.applications.correction' from 'src/fluotracify/applications/correction.py'>
folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/' col_per_example = 3 lab_thresh = 0.04 pred_thresh = 0.5 xunit = 1 artifact = 0 model_type = 1 fwhm = 250 run_id = 'b9935d1e554c423fb2852242f4c4504c' length_delimiter = 2**14
- now load the trained model
mlflow.set_tracking_uri('file:///beegfs/ye53nis/drmed-git/data/mlruns') client = mlflow.tracking.MlflowClient(tracking_uri=mlflow.get_tracking_uri()) model_path = client.download_artifacts(run_id=run_id, path='model') model_keras = mlflow.keras.load_model(model_uri=model_path, custom_objects={'binary_ce_dice':bm.binary_ce_dice_loss()}) print(model_path, '\n', model_keras)
/beegfs/ye53nis/drmed-git/data/mlruns/3/b9935d1e554c423fb2852242f4c4504c/artifacts/model <tensorflow.python.keras.engine.functional.Functional object at 0x2ae3e21c2d60>
2.1.3.5 Application 2 - test data
- I copied the test data which was randomly sampled in the mlflow run (See
docs above) in an extra directory. Next time, train and test data will be
split beforehand.
dataset, _, nsamples, experiment_params = isfc.import_from_csv( folder=folder, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None) experiment_params
train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set009.csv train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.08_set003.csv train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D50_set003.csv train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.4_set007.csv train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.6_set009.csv train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set008.csv train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.2_set010.csv train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D1.0_set008.csv train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.2_set007.csv train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.1_set002.csvtrain 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.2_set008.csv train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D10_set001.csv train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.4_set008.csv train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.4_set005.csv train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set004.csv train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D1.0_set005.csv train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.1_set006.csv train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.069_set010.csv train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set002.csv train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D1.0_set006.csv
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 unique identifier 340ad302-cf12-4224-addf-9455009bc9b3 b85aeec3-5e79-444f-b0c5-5ba7057fad8c b2b78a0f-278b-4b7d-82a3-5e625fbc91de 32d6e80c-92af-48c2-a756-1eee94d17c74 87d9374a-3ae4-4dfb-8dc3-ec401df4961d 90ec2bbf-d308-4895-b5fd-1974c0b3390d 5c310958-a0cc-4d1d-b721-f8652afd9707 b5d1537c-4113-4f13-a1ca-65664181f8cc 33ee5002-7064-4882-88de-79c773d741cd 9a2f89bd-c64e-4324-910c-46a5b8a657ba 71894018-b950-4672-a182-653d59f3b7db 6a3c00e3-24e6-4758-9c6d-f2a9dc23f7d9 20f0a9df-2c4d-409f-86de-ceda40d1aafe eb3f3035-955f-4e86-bfbd-16421eede63f cf57c545-933f-41b8-bcfe-19723d79b7bf 84116b56-7264-4f63-833a-2fa1af968288 55e826c0-a09a-4f1e-8f57-ddc113715aaf bebf4d6b-0ffe-4dcf-be78-93bfa70dd04c f2dcf7ee-f180-4b26-9706-526ceb6b9fe6 c1a85eb4-f202-40f7-8bce-cd3fd3a843dc path and file name /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/50… /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/1…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/10… /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/1…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/1…. FWHMs of excitation PSFs used in nm [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] Extent of simulated PSF (distance to center of Gaussian) in nm 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 total simulation time in ms 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 time step in ms 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 number of fast molecules 2422 856 2561 2887 1296 766 1247 3300 895 2975 1239 1376 1724 560 1785 2059 2060 679 2900 1357 diffusion rate of molecules in micrometer\2 / s 3.0 0.08 50 0.4 0.6 3.0 0.2 1.0 0.2 0.1 0.2 10 0.4 0.4 3.0 1.0 0.1 0.069 3.0 1.0 width of the simulation in nm 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 height of the simulation in nm 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 number of slow clusters 3 7 7 3 3 10 3 3 7 10 7 7 10 3 10 3 10 3 3 10 diffusion rate of clusters in micrometer\2 / s 1.0 0.1 0.1 1.0 1.0 0.01 1.0 1.0 0.1 0.01 0.1 0.1 0.01 1.0 0.01 1.0 0.01 1.0 1.0 0.01 trace001 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 diffrates = experiment_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32) nmols = experiment_params.loc['number of fast molecules'].astype(np.float32) clusters = experiment_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32) dataset_sep = isfc.separate_data_and_labels(array=dataset, nsamples=nsamples, col_per_example=col_per_example) features = dataset_sep['0'] labels_artifact = dataset_sep['1'] labels_artifact_bool = labels_artifact > lab_thresh labels_puretrace = dataset_sep['2']
The given DataFrame was split into 3 parts with shapes: [(16384, 2000), (16384, 2000), (16384, 2000)]
- First attempt: look at distribution of all correlated diffrates by each
simulated diffusion rate. The following function was thus executed for each
simulated diffusion time and the box plots put together in inkscape by hand.
pred_thresh = 0.5 diffrate_of_interest = 50 transit_time_expected = ((float(fwhm) / 1000)**2 * 1000) / ( diffrate_of_interest * 8 * np.log(2.0)) upper_bin = np.ceil(4*transit_time_expected) xunit_bins = np.arange(0, upper_bin, upper_bin / 50) out = plots.plot_distribution_of_correlations_corrected_by_prediction( diffrate_of_interest=diffrate_of_interest, model=model_keras, lab_thresh=lab_thresh, pred_thresh=pred_thresh, xunit=xunit, artifact=artifact, model_type=model_type, xunit_bins=xunit_bins, experiment_params=experiment_params, nsamples=nsamples, features=features, labels_artifact=labels_artifact, labels_puretrace=labels_puretrace, number_of_traces=100)
- We see some interesting results in the corrupted data without
correction (first box, in blue), can they be explained by the test data?
speed of clusters 0.01 0.1 1.0 0.069 test run1 10 0.08 test run1 3 0.1 test run1 2, 6 0.2 test run1 7, 8 10 0.4 test run1 8 5, 7 0.6 test run1 9 1.0 test run1 6 5, 8 3.0 test run1 4, 8 2, 9 10 test run1 1 50 test run1 3 - subsets which look like the bright clusters lead to a shift in the
correlation curves towards their own transit time:
- 0.069=163.35ms: cluster speed 1.0=11.27ms, median correlated speed 11.6ms
- 0.08=140.89ms: cluster speed 0.1=112.71ms, median correlated speed 100.5ms
- 0.6=18.79ms: cluster speed 1.0=11.27ms, median correlated speed 12.10ms
- 10=1.13ms: cluster speed 0.1=112.71ms, median correlated speed 92.1ms
- 50=0.23ms: cluster speed 0.1=112.71ms, median correlated speed 96.5ms
- subsets which fall out of the pattern where I have to take a closer
look:
- 0.1=112.71ms: cluster speed 0.01=1127ms, median correlated speed 346.6ms → possible explanation: it is a rule of thumb in the FCS community, that you need around 2-3 orders of magnitude of measurement time longer than transit times you want to measure. For speeds of 1.13s that means measurement times of 113-1130s, where we are far away from with our simulated ~16s of trace.
- 0.2=56.36ms: cluster speed 0.1=112.71ms AND 1.0=11.27ms, median correlated speed 73ms → possible explanation: there seem to be two maxima in the distribution, one around 10ms, one around 70-110ms, which kind of fits to the two kinds of clusters in these traces. → another strange thing: it has a quite long tail of transit times, way over 200ms, which does not seem related to the direct cluster speeds.
- 0.4=28.18ms, 1.0=11.27ms and 3.0=3.76ms: cluster speed 0.01=1127ms
AND 1.0=11.27ms, median correlated speed 14.4ms → strange case, since
the traces with the slower 0.01 clusters do not show up in the
distribution! The log of
isfc.import_from_csv
shows, that the respective files were loaded and used for these plots.
- subsets which look like the bright clusters lead to a shift in the
correlation curves towards their own transit time:
- Looking at the predictions (and controls)
- subsets which look fine, as in: predictions ~ controls
- 0.069, 0.08, 0.2, 0.6
- subsets where there seem to be a subsubset of traces where the
prediction fails:
- 0.1: median is fine, but the distribution is a lot wider, including a considerable left-ward skew, which does not show in either of the other distributions (corrupted or controls)
- 0.4: median is fine, distribution is also okay, but a subset of traces gets very low transit times after correlation → have to figure out which subset this is
- 1.0, 3.0: median is fine, but distribution has a considerable left-ward skew, and quite some outliers on the right
- 10, 50: median and distribution are okay, BUT here there is quite a difference between the distribution in predictions, label control and pure control → here, most clearly in 50, it seems artifacts are introduced through the correction method.
- subsets which look fine, as in: predictions ~ controls
corr_out = ans.correlate_simulations_corrected_by_prediction( model=model_keras, lab_thresh=lab_thresh, pred_thresh=pred_thresh, artifact=artifact, model_type=model_type, experiment_params=experiment_params, nsamples=nsamples, features=features, labels_artifact=labels_artifact, labels_puretrace=labels_puretrace, save_as_csv=True) corr_out
processed correlation of 2000 traces with correction by label processed correlation of 1999 traces with correction by prediction processed correlation of 2000 traces without correction processed correlation of pure 2000 traces
Simulated \(D\) | Simulated \(D\_{{clust}}\) | nmol | \(D\) in \(\frac{{\mu m\^2}}{{s}}\) | \(\tau\_{{D}}\) in \(ms\) | Trace lengths | Traces used | |
---|---|---|---|---|---|---|---|
0 | 3.0 | 1.0 | 2422.0 | 1.260146 | 8.944242 | 16384 | corrupted without correction |
1 | 3.0 | 1.0 | 2422.0 | 1.156435 | 9.746384 | 16384 | corrupted without correction |
2 | 3.0 | 1.0 | 2422.0 | 1.716206 | 6.567426 | 16384 | corrupted without correction |
3 | 3.0 | 1.0 | 2422.0 | 0.999673 | 11.274746 | 16384 | corrupted without correction |
4 | 3.0 | 1.0 | 2422.0 | 1.040372 | 10.833679 | 16384 | corrupted without correction |
… | … | … | … | … | … | … | … |
7995 | 1.0 | 0.01 | 1357.0 | 0.706696 | 15.94895 | 14933 | corrected by prediction |
7996 | 1.0 | 0.01 | 1357.0 | 0.765425 | 14.725227 | 11550 | corrected by prediction |
7997 | 1.0 | 0.01 | 1357.0 | 2.033196 | 5.543517 | 1250 | corrected by prediction |
7998 | 1.0 | 0.01 | 1357.0 | 3.744989 | 3.009636 | 261 | corrected by prediction |
7999 | 1.0 | 0.01 | 1357.0 | None | None | None | corrected by prediction |
8000 rows × 7 columns
corr_out = pd.read_csv(filepath_or_buffer='data/exp-210204-unet/2021-02-20_correlations.csv') corr_out
Simulated \(D\) | Simulated \(D\_{{clust}}\) | nmol | \(D\) in \(\frac{{\mu m\^2}}{{s}}\) | \(\tau\_{{D}}\) in \(ms\) | Trace lengths | Traces used | |
---|---|---|---|---|---|---|---|
0 | 3.0 | 1.00 | 2422.0 | 1.260146 | 8.944242 | 16384.0 | corrupted without correction |
1 | 3.0 | 1.00 | 2422.0 | 1.156435 | 9.746384 | 16384.0 | corrupted without correction |
2 | 3.0 | 1.00 | 2422.0 | 1.716206 | 6.567426 | 16384.0 | corrupted without correction |
3 | 3.0 | 1.00 | 2422.0 | 0.999673 | 11.274746 | 16384.0 | corrupted without correction |
4 | 3.0 | 1.00 | 2422.0 | 1.040372 | 10.833679 | 16384.0 | corrupted without correction |
… | … | … | … | … | … | … | … |
7995 | 1.0 | 0.01 | 1357.0 | 0.706696 | 15.948950 | 14933.0 | corrected by prediction |
7996 | 1.0 | 0.01 | 1357.0 | 0.765425 | 14.725227 | 11550.0 | corrected by prediction |
7997 | 1.0 | 0.01 | 1357.0 | 2.033196 | 5.543517 | 1250.0 | corrected by prediction |
7998 | 1.0 | 0.01 | 1357.0 | 3.744989 | 3.009636 | 261.0 | corrected by prediction |
7999 | 1.0 | 0.01 | 1357.0 | NaN | NaN | NaN | corrected by prediction |
8000 rows × 7 columns
Awesome! Now let's try categorical plotting to examine the results in a more
structured manner. For the following 3 plots, I just changed the x
value.
ax = sns.catplot(data=corr_out, kind='strip', x='$D$ in $\\frac{{\mu m^2}}{{s}}$', y='Traces used', hue='Simulated $D_{{clust}}$', col='Simulated $D$', col_wrap=3, orient='h', dodge=True, sharex=False) plt.show()
Trace lengths: Transit times: Diffusion rates:
I have the theory, that trace lengths have quite an impact on transit times and diffusion rates. Let's try to do a big plot of transittimes vs trace lengths and diffusion rates against trace lengths.
2.1.3.6 Application 3 - experimental data
Here I used the code in a jupyter notebook to produce this plot:
- There is a problem with the UNet, if it has to classify features
different than the training size (1, 16384, 1) for the first time. It
gives the following error:
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-7-4c721240eb1b> in <module> 3 length_delimiter = 2**13 # for U-Net 4 bin_for_correlation = 1e5 ----> 5 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction( 6 path_list=[path_tb_pex5_egfp], 7 model=model_keras, /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_experimental_traces_from_ptu_by_unet_prediction(path_list, model, pred_thresh, photon_count_bin, ntraces, save_as_csv) 405 print('Processing correlation with correction by prediction ' 406 'of dataset {}'.format(i + 1)) --> 407 data['{}-pred'.format(i)] = correct_correlation_by_unet_prediction( 408 ntraces=ntraces, 409 traces_of_interest=ptu_1ms.astype(np.float64), /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_correlation_by_unet_prediction(ntraces, traces_of_interest, model, pred_thresh, fwhm, length_delimiter, traces_for_correlation, bin_for_correlation, verbose) 215 ntraces_index=ntraces_index) 216 --> 217 predictions = model.predict(features_prepro, verbose=0) 218 predictions = predictions.flatten() 219 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py in predict(self, x, batch_size, verbose, steps, callbacks, max_queue_size, workers, use_multiprocessing) 1661 for step in data_handler.steps(): 1662 callbacks.on_predict_batch_begin(step) -> 1663 tmp_batch_outputs = self.predict_function(iterator) 1664 if data_handler.should_sync: 1665 context.async_wait() ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds) 816 tracing_count = self.experimental_get_tracing_count() 817 with trace.Trace(self._name) as tm: --> 818 result = self._call(*args, **kwds) 819 compiler = "xla" if self._jit_compile else "nonXla" 820 new_tracing_count = self.experimental_get_tracing_count() ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds) 860 # This is the first call of __call__, so we have to initialize. 861 initializers = [] --> 862 self._initialize(args, kwds, add_initializers_to=initializers) 863 finally: 864 # At this point we know that the initialization is complete (or less ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to) 701 self._graph_deleter = FunctionDeleter(self._lifted_initializer_graph) 702 self._concrete_stateful_fn = ( --> 703 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access 704 *args, **kwds)) 705 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs) 3018 args, kwargs = None, None 3019 with self._lock: -> 3020 graph_function, _ = self._maybe_define_function(args, kwargs) 3021 return graph_function 3022 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs) 3412 3413 self._function_cache.missed.add(call_context_key) -> 3414 graph_function = self._create_graph_function(args, kwargs) 3415 self._function_cache.primary[cache_key] = graph_function 3416 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes) 3247 arg_names = base_arg_names + missing_arg_names 3248 graph_function = ConcreteFunction( -> 3249 func_graph_module.func_graph_from_py_func( 3250 self._name, 3251 self._python_function, ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes) 996 _, original_func = tf_decorator.unwrap(python_func) 997 --> 998 func_outputs = python_func(*func_args, **func_kwargs) 999 1000 # invariant: `func_outputs` contains only Tensors, CompositeTensors, ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds) 610 xla_context.Exit() 611 else: --> 612 out = weak_wrapped_fn().__wrapped__(*args, **kwds) 613 return out 614 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs) 983 except Exception as e: # pylint:disable=broad-except 984 if hasattr(e, "ag_error_metadata"): --> 985 raise e.ag_error_metadata.to_exception(e) 986 else: 987 raise ValueError: in user code: /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1512 predict_function * return step_function(self, iterator) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1502 step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:1262 run return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:2734 call_for_each_replica return self._call_for_each_replica(fn, args, kwargs) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:3423 _call_for_each_replica return fn(*args, **kwargs) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1495 run_step ** outputs = model.predict_step(data) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1468 predict_step return self(x, training=False) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py:1018 __call__ input_spec.assert_input_compatibility(self.input_spec, inputs, self.name) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/input_spec.py:271 assert_input_compatibility raise ValueError('Input ' + str(input_index) + ValueError: Input 0 is incompatible with layer model: expected shape=(None, 16384, 1), found shape=(None, 8192, 1)
So how do we solve this? I did not find the real cause, but a workaround is, to let the loaded model first predict a dummy input with the training size:
test_features = np.zeros((2**14)) test_features = np.reshape(test_features, (1, -1, 1)) print(test_features.shape) predictions = model_keras.predict(test_features, verbose=0) predictions = predictions.flatten() predictions
(1, 16384, 1) array([2.7520498e-08, 7.7272375e-09, 5.2612198e-10, ..., 9.8416812e-08, 8.9488267e-08, 3.5880134e-07], dtype=float32)
- Test the algorithm: here it can be seen, that in the ideal case, the
metadata from the single files is joined to each computation. For the
computation of all traces, this will probably not be possible, because
of traces, which get omitted before correlation, because their trace
lengths shrank below 32 time steps after correction. This small traces
can't be handled by multipletau.
path_tb_pex5_egfp = '/beegfs/ye53nis/data/Pablo_structured_experiment' pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9] length_delimiter = 2**13 # for U-Net bin_for_correlation = 1e5 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction( path_list=path_tb_pex5_egfp, model=model_keras, pred_thresh=pred_thresh, photon_count_bin=bin_for_correlation, ntraces=None, save_as_csv=True) out
Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment with bin=1e6. This can take a while... 1 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu 2 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu Different binning was chosen for correlation. Loading dataset 1 with bin=100000.0. This can take a while... Processing correlation of unprocessed dataset 1 Processing correlation with correction by prediction of dataset 1
\(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\) File\GUID File\CreatingTime Measurement\SubMode File\Comment TTResult\StopReason … MeasDesc\GlobalResolution TTResult\NumberOfRecords MeasDesc\AcquisitionTime TTResult\MDescWarningFlags TTResult\StopAfter TTResultFormat\TTTRRecType TTResultFormat\BitsPerRecord UsrPowerDiode Header\End Number of Channels 0 0.87156 12.932046 8192.0 0-orig 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0 0 … 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1 1 0.091734 122.866229 8192.0 0-orig 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0 0 … 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1 2 3.181256 3.542957 6413.0 0-pred-0.1 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0 0 … 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1 3 1.968434 5.725899 7132.0 0-pred-0.1 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0 0 … 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1 4 0.534267 21.096303 6903.0 0-pred-0.3 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0 0 … 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1 5 0.760655 14.817573 7490.0 0-pred-0.3 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0 0 … 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1 6 0.219843 51.268582 7178.0 0-pred-0.5 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0 0 … 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1 7 0.453877 24.832866 7659.0 0-pred-0.5 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0 0 … 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1 8 0.144134 78.198714 7407.0 0-pred-0.7 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0 0 … 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1 9 0.350758 32.133387 7785.0 0-pred-0.7 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0 0 … 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1 10 0.092882 121.348056 7692.0 0-pred-0.9 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0 0 … 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1 11 0.281531 40.03487 7937.0 0-pred-0.9 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0 0 … 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1 12 rows × 94 columns
- Run correction for all experimental traces
path_pex5_exp = ['/beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu', '/beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu'] pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9] length_delimiter = 2**13 # for U-Net bin_for_correlation = 1e5 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction( path_list=path_pex5_exp, model=model_keras, pred_thresh=pred_thresh, photon_count_bin=bin_for_correlation, ntraces=400, save_as_csv=True) out
Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu with bin=1e6. This can take a while... 1 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1082s_1.ptu 2 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1537s_1.ptu 3 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488210_T2505s_1.ptu 4 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488199_T2375s_1.ptu 5 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2040s_1.ptu 6 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488229_T2733s_1.ptu 7 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1070s_1.ptu 8 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1352s_1.ptu 9 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T986s_1.ptu10 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488227_T2709s_1.ptu 11 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2088s_1.ptu 12 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1214s_1.ptu 13 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1561s_1.ptu 14 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T302s_1.ptu 15 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1932s_1.ptu 16 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2267s_1.ptu 17 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2255s_1.ptu 18 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488208_T2481s_1.ptu 19 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T314s_1.ptu 20 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488221_T2637s_1.ptu 21 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1834s_1.ptu 22 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1883s_1.ptu 23 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488197_T2351s_1.ptu 24 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T254s_1.ptu 25 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48816_T182s_1.ptu 26 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2148s_1.ptu 27 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1238s_1.ptu 28 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T833s_1.ptu 29 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T676s_1.ptu 30 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1496s_1.ptu 31 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T459s_1.ptu 32 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1610s_1.ptu 33 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T592s_1.ptu 34 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1907s_1.ptu 35 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T604s_1.ptu 36 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1895s_1.ptu 37 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T926s_1.ptu 38 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T447s_1.ptu 39 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T821s_1.ptu 40 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48834_T399s_1.ptu 41 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T506s_1.ptu 42 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1076s_1.ptu 43 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2209s_1.ptu 44 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T748s_1.ptu 45 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1232s_1.ptu 46 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2159s_1.ptu 47 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T698s_1.ptu 48 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T855s_1.ptu 49 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1789s_1.ptu 50 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488241_T2877s_1.ptu 51 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488204_T2434s_1.ptu 52 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T918s_1.ptu 53 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2147s_1.ptu 54 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2197s_1.ptu 55 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1908s_1.ptu 56 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488238_T2842s_1.ptu 57 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1968s_1.ptu 58 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488234_T2793s_1.ptu 59 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T979s_1.ptu 60 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1148s_1.ptu 61 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1280s_1.ptu 62 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1654s_1.ptu 63 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1484s_1.ptu 64 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2245s_1.ptu 65 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T879s_1.ptu 66 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1896s_1.ptu 67 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2124s_1.ptu 68 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1328s_1.ptu 69 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T867s_1.ptu 70 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T962s_1.ptu 71 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T628s_1.ptu 72 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48842_T496s_1.ptu 73 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T590s_1.ptu 74 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1184s_1.ptu 75 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488196_T2339s_1.ptu 76 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1956s_1.ptu 77 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488217_T2589s_1.ptu 78 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488218_T2601s_1.ptu 79 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1418s_1.ptu 80 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488206_T2458s_1.ptu 81 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T785s_1.ptu 82 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1226s_1.ptu 83 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T278s_1.ptu 84 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4887_T74s_1.ptu 85 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2099s_1.ptu 86 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48817_T194s_1.ptu 87 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1346s_1.ptu 88 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T688s_1.ptu 89 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488211_T2517s_1.ptu 90 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T712s_1.ptu 91 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48833_T387s_1.ptu 92 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T686s_1.ptu 93 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48813_T146s_1.ptu 94 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488126_T1502s_1.ptu 95 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1118s_1.ptu 96 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1316s_1.ptu 97 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2243s_1.ptu 98 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1430s_1.ptu 99 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488219_T2613s_1.ptu 100 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1646s_1.ptu 101 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2231s_1.ptu 102 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488146_T1742s_1.ptu 103 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488155_T1859s_1.ptu 104 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2075s_1.ptu 105 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1884s_1.ptu 106 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488244_T2914s_1.ptu 107 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4886_T62s_1.ptu 108 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1015s_1.ptu 109 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1979s_1.ptu 110 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T674s_1.ptu 111 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2279s_1.ptu 112 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2183s_1.ptu 113 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1689s_1.ptu 114 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2269s_1.ptu 115 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T266s_1.ptu 116 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488209_T2493s_1.ptu 117 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1630s_1.ptu 118 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488185_T2221s_1.ptu 119 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2135s_1.ptu 120 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T782s_1.ptu 121 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1472s_1.ptu 122 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1919s_1.ptu 123 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T664s_1.ptu 124 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T351s_1.ptu 125 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T375s_1.ptu 126 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T700s_1.ptu 127 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1545s_1.ptu 128 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1714s_1.ptu 129 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1022s_1.ptu 130 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1754s_1.ptu 131 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488193_T2303s_1.ptu 132 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1250s_1.ptu 133 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488228_T2721s_1.ptu 134 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1088s_1.ptu 135 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2040s_1.ptu 136 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48835_T411s_1.ptu 137 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1046s_1.ptu 138 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1466s_1.ptu 139 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T906s_1.ptu 140 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T255s_1.ptu 141 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1730s_1.ptu 142 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1358s_1.ptu 143 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T279s_1.ptu 144 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T638s_1.ptu 145 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2949s_1.ptu 146 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T519s_1.ptu 147 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T482s_1.ptu 148 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T327s_1.ptu 149 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T471s_1.ptu 150 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488225_T2685s_1.ptu 151 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T362s_1.ptu 152 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T578s_1.ptu 153 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T722s_1.ptu 154 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T614s_1.ptu 155 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T616s_1.ptu 156 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1778s_1.ptu 157 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2028s_1.ptu 158 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4883_T26s_1.ptu 159 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T966s_1.ptu 160 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T435s_1.ptu 161 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1666s_1.ptu 162 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2315s_1.ptu 163 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488205_T2446s_1.ptu 164 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48818_T206s_1.ptu 165 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1533s_1.ptu 166 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T602s_1.ptu 167 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488116_T1388s_1.ptu 168 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2196s_1.ptu 169 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1394s_1.ptu 170 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T818s_1.ptu 171 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1130s_1.ptu 172 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2076s_1.ptu 173 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1262s_1.ptu 174 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2993s_1.ptu 175 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1063s_1.ptu 176 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48845_T531s_1.ptu 177 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1400s_1.ptu 178 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488192_T2291s_1.ptu 179 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1992s_1.ptu 180 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1142s_1.ptu 181 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1124s_1.ptu 182 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2111s_1.ptu 183 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48862_T736s_1.ptu 184 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1412s_1.ptu 185 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1100s_1.ptu 186 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T555s_1.ptu 187 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488223_T2661s_1.ptu 188 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T626s_1.ptu 189 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1622s_1.ptu 190 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1810s_1.ptu 191 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2925s_1.ptu 192 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T942s_1.ptu 193 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1448s_1.ptu 194 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T809s_1.ptu 195 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488201_T2398s_1.ptu 196 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1670s_1.ptu 197 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488250_T3006s_1.ptu 198 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4884_T38s_1.ptu 199 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1514s_1.ptu 200 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1244s_1.ptu 201 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2172s_1.ptu 202 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1370s_1.ptu 203 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1678s_1.ptu 204 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T652s_1.ptu 205 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T1003s_1.ptu 206 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T544s_1.ptu 207 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1569s_1.ptu 208 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488236_T2817s_1.ptu 209 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2123s_1.ptu 210 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T869s_1.ptu 211 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1968s_1.ptu 212 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2973s_1.ptu 213 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1801s_1.ptu 214 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488235_T2805s_1.ptu 215 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2028s_1.ptu 216 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2160s_1.ptu 217 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1618s_1.ptu 218 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2281s_1.ptu 219 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T758s_1.ptu 220 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T794s_1.ptu 221 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T891s_1.ptu 222 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T842s_1.ptu 223 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488213_T2541s_1.ptu 224 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2184s_1.ptu 225 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T484s_1.ptu 226 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2052s_1.ptu 227 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1825s_1.ptu 228 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1581s_1.ptu 229 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1762s_1.ptu 230 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1310s_1.ptu 231 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1010s_1.ptu 232 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T290s_1.ptu 233 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488168_T2004s_1.ptu 234 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48820_T230s_1.ptu 235 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1944s_1.ptu 236 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488203_T2422s_1.ptu 237 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488152_T1822s_1.ptu 238 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T243s_1.ptu 239 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T2004s_1.ptu 240 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T436s_1.ptu 241 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1980s_1.ptu 242 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488200_T2386s_1.ptu 243 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1454s_1.ptu 244 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T508s_1.ptu 245 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1220s_1.ptu 246 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T773s_1.ptu 247 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1920s_1.ptu 248 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T267s_1.ptu 249 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T746s_1.ptu 250 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1573s_1.ptu 251 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T797s_1.ptu 252 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1726s_1.ptu 253 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1738s_1.ptu 254 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2016s_1.ptu 255 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1058s_1.ptu 256 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T710s_1.ptu 257 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T363s_1.ptu 258 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488215_T2565s_1.ptu 259 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T930s_1.ptu 260 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T770s_1.ptu 261 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T830s_1.ptu 262 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1364s_1.ptu 263 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488148_T1774s_1.ptu 264 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488224_T2673s_1.ptu 265 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488172_T2052s_1.ptu 266 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T1992s_1.ptu 267 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488100_T1190s_1.ptu 268 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T242s_1.ptu 269 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488240_T2865s_1.ptu 270 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1701s_1.ptu 271 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1549s_1.ptu 272 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T520s_1.ptu 273 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T724s_1.ptu 274 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48814_T158s_1.ptu 275 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1956s_1.ptu 276 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2064s_1.ptu 277 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4885_T50s_1.ptu 278 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T580s_1.ptu 279 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T472s_1.ptu 280 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T991s_1.ptu 281 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2969s_1.ptu 282 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1798s_1.ptu 283 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T566s_1.ptu 284 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1160s_1.ptu 285 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1406s_1.ptu 286 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4889_T98s_1.ptu 287 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T134s_1.ptu 288 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488222_T2649s_1.ptu 289 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1039s_1.ptu 290 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T938s_1.ptu 291 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1051s_1.ptu 292 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T902s_1.ptu 293 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48819_T218s_1.ptu 294 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1112s_1.ptu 295 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1442s_1.ptu 296 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488101_T1208s_1.ptu 297 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488109_T1304s_1.ptu 298 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1526s_1.ptu 299 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488207_T2470s_1.ptu 300 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2937s_1.ptu 301 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488242_T2890s_1.ptu 302 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T640s_1.ptu 303 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T554s_1.ptu 304 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1292s_1.ptu 305 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1597s_1.ptu 306 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4888_T86s_1.ptu 307 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T857s_1.ptu 308 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1786s_1.ptu 309 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T291s_1.ptu 310 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2171s_1.ptu 311 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1871s_1.ptu 312 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488220_T2624s_1.ptu 313 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2981s_1.ptu 314 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1154s_1.ptu 315 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T568s_1.ptu 316 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2100s_1.ptu 317 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1847s_1.ptu 318 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2945s_1.ptu 319 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1658s_1.ptu 320 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T350s_1.ptu 321 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2087s_1.ptu 322 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T662s_1.ptu 323 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488230_T2745s_1.ptu 324 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T894s_1.ptu 325 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1521s_1.ptu 326 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488195_T2327s_1.ptu 327 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T998s_1.ptu 328 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2219s_1.ptu 329 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T974s_1.ptu 330 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1606s_1.ptu 331 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1286s_1.ptu 332 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T315s_1.ptu 333 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488214_T2553s_1.ptu 334 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1944s_1.ptu 335 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T460s_1.ptu 336 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2233s_1.ptu 337 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488243_T2902s_1.ptu 338 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1642s_1.ptu 339 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1861s_1.ptu 340 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4882_T14s_1.ptu 341 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1694s_1.ptu 342 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T123s_1.ptu 343 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2961s_1.ptu 344 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1136s_1.ptu 345 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T303s_1.ptu 346 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2293s_1.ptu 347 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1634s_1.ptu 348 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488133_T1585s_1.ptu 349 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488216_T2577s_1.ptu 350 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1274s_1.ptu 351 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1557s_1.ptu 352 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1436s_1.ptu 353 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T806s_1.ptu 354 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1490s_1.ptu 355 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T374s_1.ptu 356 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1424s_1.ptu 357 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T914s_1.ptu 358 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2257s_1.ptu 359 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48836_T423s_1.ptu 360 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2112s_1.ptu 361 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488112_T1334s_1.ptu 362 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48815_T170s_1.ptu 363 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T448s_1.ptu 364 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2136s_1.ptu 365 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488198_T2363s_1.ptu 366 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T650s_1.ptu 367 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1178s_1.ptu 368 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1931s_1.ptu 369 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2957s_1.ptu 370 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488231_T2757s_1.ptu 371 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1460s_1.ptu 372 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1873s_1.ptu 373 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2329s_1.ptu 374 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T542s_1.ptu 375 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1718s_1.ptu 376 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1322s_1.ptu 377 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1705s_1.ptu 378 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T882s_1.ptu 379 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1478s_1.ptu 380 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1268s_1.ptu 381 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1094s_1.ptu 382 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1376s_1.ptu 383 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T761s_1.ptu 384 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488239_T2853s_1.ptu 385 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1106s_1.ptu 386 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1837s_1.ptu 387 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1256s_1.ptu 388 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48829_T338s_1.ptu 389 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T845s_1.ptu 390 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1172s_1.ptu 391 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48880_T954s_1.ptu 392 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T122s_1.ptu 393 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1682s_1.ptu 394 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488237_T2829s_1.ptu 395 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48810_T110s_1.ptu 396 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1166s_1.ptu 397 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T135s_1.ptu 398 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1034s_1.ptu 399 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488202_T2410s_1.ptu 400 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T326s_1.ptu 401 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1027s_1.ptu Different binning was chosen for correlation. Loading dataset 1 with bin=100000.0. This can take a while... Processing correlation of unprocessed dataset 1 Processing correlation with correction by prediction of dataset 1 Loading dataset 2 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu with bin=1e6. This can take a while... 1 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48869_T825s_1.ptu 2 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488196_T2359s_1.ptu 3 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488146_T1755s_1.ptu 4 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488227_T2733s_1.ptu 5 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T287s_1.ptu 6 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T342s_1.ptu 7 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488194_T2334s_1.ptu 8 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48851_T607s_1.ptu 9 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488210_T2528s_1.ptu 10 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488234_T2818s_1.ptu 11 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48882_T982s_1.ptu 12 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488251_T3022s_1.ptu 13 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T610s_1.ptu 14 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488160_T1924s_1.ptu 15 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T584s_1.ptu 16 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488268_T3227s_1.ptu 17 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T268s_1.ptu 18 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48832_T378s_1.ptu 19 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488241_T2902s_1.ptu 20 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488198_T2383s_1.ptu 21 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48869_T823s_1.ptu 22 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48895_T1139s_1.ptu 23 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48878_T934s_1.ptu 24 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488100_T1197s_1.ptu 25 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488155_T1864s_1.ptu 26 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488132_T1585s_1.ptu 27 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48866_T787s_1.ptu 28 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48877_T922s_1.ptu 29 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48861_T728s_1.ptu 30 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488129_T1548s_1.ptu 31 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T292s_1.ptu 32 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488205_T2468s_1.ptu 33 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4889_T106s_1.ptu 34 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T474s_1.ptu 35 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T546s_1.ptu 36 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48887_T1042s_1.ptu 37 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488116_T1391s_1.ptu 38 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4884_T39s_1.ptu 39 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488110_T1318s_1.ptu 40 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488218_T2625s_1.ptu 41 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48870_T834s_1.ptu 42 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488270_T3251s_1.ptu 43 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488177_T2129s_1.ptu 44 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488136_T1633s_1.ptu 45 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T521s_1.ptu 46 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T341s_1.ptu 47 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T75s_1.ptu 48 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T497s_1.ptu 49 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488291_T3505s_1.ptu 50 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488117_T1403s_1.ptu 51 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T159s_1.ptu 52 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488215_T2589s_1.ptu 53 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488128_T1536s_1.ptu 54 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488135_T1621s_1.ptu 55 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48870_T837s_1.ptu 56 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488239_T2878s_1.ptu 57 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T317s_1.ptu 58 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488231_T2781s_1.ptu 59 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488294_T3541s_1.ptu 60 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488247_T2974s_1.ptu 61 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488226_T2721s_1.ptu 62 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488182_T2189s_1.ptu 63 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488248_T2986s_1.ptu 64 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488216_T2601s_1.ptu 65 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T282s_1.ptu 66 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488152_T1827s_1.ptu 67 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48868_T811s_1.ptu 68 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488112_T1342s_1.ptu 69 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T123s_1.ptu 70 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488185_T2225s_1.ptu 71 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T330s_1.ptu 72 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488232_T2793s_1.ptu 73 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488293_T3529s_1.ptu 74 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T294s_1.ptu 75 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4886_T66s_1.ptu 76 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu 77 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48889_T1067s_1.ptu 78 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T183s_1.ptu 79 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48879_T946s_1.ptu 80 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48876_T910s_1.ptu 81 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T507s_1.ptu 82 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T583s_1.ptu 83 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T595s_1.ptu 84 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T257s_1.ptu 85 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488184_T2213s_1.ptu 86 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T148s_1.ptu 87 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488121_T1452s_1.ptu 88 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488254_T3059s_1.ptu 89 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T171s_1.ptu 90 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T581s_1.ptu 91 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488122_T1464s_1.ptu 92 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488153_T1839s_1.ptu 93 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48851_T605s_1.ptu 94 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T222s_1.ptu 95 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488104_T1246s_1.ptu 96 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488179_T2153s_1.ptu 97 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488130_T1560s_1.ptu 98 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48874_T885s_1.ptu 99 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488115_T1379s_1.ptu 100 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488282_T3397s_1.ptu 101 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488259_T3119s_1.ptu 102 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48858_T690s_1.ptu 103 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T244s_1.ptu 104 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T313s_1.ptu 105 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48861_T726s_1.ptu 106 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T196s_1.ptu 107 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488265_T3191s_1.ptu 108 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48834_T400s_1.ptu 109 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48854_T643s_1.ptu 110 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48873_T873s_1.ptu 111 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48857_T678s_1.ptu 112 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488208_T2504s_1.ptu 113 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4884_T41s_1.ptu 114 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T120s_1.ptu 115 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48873_T870s_1.ptu 116 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48872_T859s_1.ptu 117 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488180_T2165s_1.ptu 118 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T328s_1.ptu 119 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488224_T2697s_1.ptu 120 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488167_T2009s_1.ptu 121 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488237_T2854s_1.ptu 122 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488258_T3107s_1.ptu 123 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488222_T2673s_1.ptu 124 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T534s_1.ptu 125 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488280_T3373s_1.ptu 126 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T569s_1.ptu 127 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T145s_1.ptu 128 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T522s_1.ptu 129 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T351s_1.ptu 130 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488173_T2081s_1.ptu 131 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48893_T1115s_1.ptu 132 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48865_T774s_1.ptu 133 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48862_T740s_1.ptu 134 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488187_T2250s_1.ptu 135 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T136s_1.ptu 136 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48853_T631s_1.ptu 137 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T509s_1.ptu 138 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48880_T955s_1.ptu 139 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T535s_1.ptu 140 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488133_T1597s_1.ptu 141 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48836_T426s_1.ptu 142 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488138_T1658s_1.ptu 143 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488235_T2830s_1.ptu 144 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488111_T1330s_1.ptu 145 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488156_T1876s_1.ptu 146 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48855_T655s_1.ptu 147 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T80s_1.ptu 148 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T365s_1.ptu 149 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48854_T642s_1.ptu 150 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48872_T861s_1.ptu 151 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488107_T1282s_1.ptu 152 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T280s_1.ptu 153 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488256_T3083s_1.ptu 154 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488204_T2456s_1.ptu 155 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488197_T2371s_1.ptu 156 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48852_T619s_1.ptu 157 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488176_T2117s_1.ptu 158 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488229_T2757s_1.ptu 159 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T498s_1.ptu 160 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T305s_1.ptu 161 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48864_T762s_1.ptu 162 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488289_T3481s_1.ptu 163 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T624s_1.ptu 164 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488249_T2998s_1.ptu 165 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T184s_1.ptu 166 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T197s_1.ptu 167 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48884_T1006s_1.ptu 168 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488178_T2141s_1.ptu 169 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48855_T654s_1.ptu 170 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T158s_1.ptu 171 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488118_T1415s_1.ptu 172 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488127_T1524s_1.ptu 173 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48836_T425s_1.ptu 174 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T352s_1.ptu 175 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T340s_1.ptu 176 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488261_T3143s_1.ptu 177 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48837_T468s_1.ptu 178 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T354s_1.ptu 179 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T220s_1.ptu 180 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488236_T2842s_1.ptu 181 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488257_T3095s_1.ptu 182 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T219s_1.ptu 183 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488253_T3047s_1.ptu 184 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T485s_1.ptu 185 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T377s_1.ptu 186 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488201_T2420s_1.ptu 187 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T412s_1.ptu 188 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488269_T3239s_1.ptu 189 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T545s_1.ptu 190 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T416s_1.ptu 191 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T461s_1.ptu 192 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T637s_1.ptu 193 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488276_T3324s_1.ptu 194 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488286_T3445s_1.ptu 195 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488181_T2177s_1.ptu 196 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488199_T2395s_1.ptu 197 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488244_T2938s_1.ptu 198 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488101_T1209s_1.ptu 199 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48881_T970s_1.ptu 200 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488126_T1512s_1.ptu 201 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488223_T2685s_1.ptu 202 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T557s_1.ptu 203 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488158_T1900s_1.ptu 204 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488139_T1670s_1.ptu 205 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T281s_1.ptu 206 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48859_T702s_1.ptu 207 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T546s_1.ptu 208 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488267_T3215s_1.ptu 209 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4883_T28s_1.ptu 210 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T318s_1.ptu 211 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T232s_1.ptu 212 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48860_T716s_1.ptu 213 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4882_T15s_1.ptu 214 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48896_T1151s_1.ptu 215 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T353s_1.ptu 216 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488262_T3155s_1.ptu 217 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48899_T1187s_1.ptu 218 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488209_T2516s_1.ptu 219 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488150_T1803s_1.ptu 220 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488147_T1767s_1.ptu 221 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488134_T1609s_1.ptu 222 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48815_T171s_1.ptu 223 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488264_T3179s_1.ptu 224 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488298_T3590s_1.ptu 225 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488193_T2322s_1.ptu 226 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4888_T87s_1.ptu 227 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488106_T1270s_1.ptu 228 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488284_T3421s_1.ptu 229 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488145_T1743s_1.ptu 230 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T329s_1.ptu 231 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488183_T2201s_1.ptu 232 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48856_T668s_1.ptu 233 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4888_T93s_1.ptu 234 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4889_T100s_1.ptu 235 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T222s_1.ptu 236 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T442s_1.ptu 237 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488175_T2105s_1.ptu 238 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T486s_1.ptu 239 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T390s_1.ptu 240 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488245_T2950s_1.ptu 241 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488195_T2347s_1.ptu 242 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48867_T799s_1.ptu 243 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T494s_1.ptu 244 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T195s_1.ptu 245 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488105_T1258s_1.ptu 246 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48897_T1163s_1.ptu 247 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T413s_1.ptu 248 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T248s_1.ptu 249 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T520s_1.ptu 250 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4881_T0s_1.ptu 251 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488165_T1984s_1.ptu 252 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48887_T1040s_1.ptu 253 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T210s_1.ptu 254 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4883_T27s_1.ptu 255 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48891_T1091s_1.ptu 256 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488233_T2806s_1.ptu 257 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T132s_1.ptu 258 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48876_T906s_1.ptu 259 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T462s_1.ptu 260 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488109_T1306s_1.ptu 261 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488162_T1948s_1.ptu 262 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48858_T692s_1.ptu 263 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488151_T1815s_1.ptu 264 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488203_T2444s_1.ptu 265 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48815_T184s_1.ptu 266 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T366s_1.ptu 267 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48883_T991s_1.ptu 268 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48881_T967s_1.ptu 269 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488287_T3457s_1.ptu 270 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48884_T1003s_1.ptu 271 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48886_T1031s_1.ptu 272 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T234s_1.ptu 273 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T533s_1.ptu 274 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488100_T1199s_1.ptu 275 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488214_T2577s_1.ptu 276 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T571s_1.ptu 277 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48856_T666s_1.ptu 278 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488172_T2069s_1.ptu 279 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48837_T438s_1.ptu 280 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T256s_1.ptu 281 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488243_T2926s_1.ptu 282 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488240_T2890s_1.ptu 283 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488206_T2480s_1.ptu 284 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T208s_1.ptu 285 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48866_T788s_1.ptu 286 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48863_T752s_1.ptu 287 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488238_T2866s_1.ptu 288 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488260_T3131s_1.ptu 289 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T210s_1.ptu 290 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48892_T1103s_1.ptu 291 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T147s_1.ptu 292 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48834_T402s_1.ptu 293 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48853_T630s_1.ptu 294 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488114_T1367s_1.ptu 295 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488300_T3614s_1.ptu 296 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488119_T1427s_1.ptu 297 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48868_T813s_1.ptu 298 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488157_T1888s_1.ptu 299 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488188_T2262s_1.ptu 300 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488212_T2552s_1.ptu 301 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T388s_1.ptu 302 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48864_T764s_1.ptu 303 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T269s_1.ptu 304 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488252_T3035s_1.ptu 305 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488169_T2032s_1.ptu 306 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48890_T1079s_1.ptu 307 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48871_T847s_1.ptu 308 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488137_T1646s_1.ptu 309 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488166_T1997s_1.ptu 310 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488283_T3409s_1.ptu 311 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488279_T3360s_1.ptu 312 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488125_T1500s_1.ptu 313 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488200_T2408s_1.ptu 314 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48882_T979s_1.ptu 315 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488281_T3385s_1.ptu 316 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T124s_1.ptu 317 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488102_T1221s_1.ptu 318 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T293s_1.ptu 319 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488186_T2237s_1.ptu 320 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488274_T3299s_1.ptu 321 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T450s_1.ptu 322 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T304s_1.ptu 323 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488163_T1960s_1.ptu 324 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488174_T2093s_1.ptu 325 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488250_T3010s_1.ptu 326 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488255_T3071s_1.ptu 327 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T597s_1.ptu 328 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488288_T3469s_1.ptu 329 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488103_T1234s_1.ptu 330 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488164_T1972s_1.ptu 331 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48885_T1018s_1.ptu 332 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T246s_1.ptu 333 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T135s_1.ptu 334 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488242_T2914s_1.ptu 335 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488142_T1706s_1.ptu 336 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488159_T1912s_1.ptu 337 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T76s_1.ptu 338 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48886_T1028s_1.ptu 339 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488263_T3167s_1.ptu 340 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T299s_1.ptu 341 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488113_T1354s_1.ptu 342 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488108_T1294s_1.ptu 343 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T197s_1.ptu 344 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48863_T750s_1.ptu 345 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488140_T1682s_1.ptu 346 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488230_T2769s_1.ptu 347 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488131_T1573s_1.ptu 348 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488220_T2649s_1.ptu 349 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T449s_1.ptu 350 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488154_T1852s_1.ptu 351 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T481s_1.ptu 352 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488120_T1439s_1.ptu 353 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488207_T2492s_1.ptu 354 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488171_T2056s_1.ptu 355 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488190_T2286s_1.ptu 356 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T558s_1.ptu 357 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48898_T1175s_1.ptu 358 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48862_T738s_1.ptu 359 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T186s_1.ptu 360 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488299_T3602s_1.ptu 361 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488219_T2637s_1.ptu 362 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T111s_1.ptu 363 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488278_T3348s_1.ptu 364 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488189_T2274s_1.ptu 365 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48859_T704s_1.ptu 366 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48832_T376s_1.ptu 367 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48865_T776s_1.ptu 368 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488225_T2709s_1.ptu 369 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48871_T849s_1.ptu 370 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48883_T994s_1.ptu 371 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T390s_1.ptu 372 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488272_T3276s_1.ptu 373 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488148_T1779s_1.ptu 374 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48875_T898s_1.ptu 375 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T532s_1.ptu 376 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488290_T3493s_1.ptu 377 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48877_T918s_1.ptu 378 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488297_T3578s_1.ptu 379 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488191_T2298s_1.ptu 380 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T160s_1.ptu 381 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T558s_1.ptu 382 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488221_T2661s_1.ptu 383 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488211_T2540s_1.ptu 384 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu 385 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488123_T1475s_1.ptu 386 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48852_T617s_1.ptu 387 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488149_T1791s_1.ptu 388 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488141_T1694s_1.ptu 389 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T338s_1.ptu 390 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488217_T2613s_1.ptu 391 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T571s_1.ptu 392 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4886_T63s_1.ptu 393 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T510s_1.ptu 394 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T112s_1.ptu 395 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488124_T1488s_1.ptu 396 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488271_T3263s_1.ptu 397 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T473s_1.ptu 398 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T306s_1.ptu 399 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4885_T54s_1.ptu 400 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T316s_1.ptu 401 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T593s_1.ptu Different binning was chosen for correlation. Loading dataset 2 with bin=100000.0. This can take a while... Processing correlation of unprocessed dataset 2 Processing correlation with correction by prediction of dataset 2 src/fluotracify/applications/correction.py:508: UserWarning: Metadata is not saved with data. Reason: the correlation algorithm failed for one or more traces which were shorter than 32 time steps after correction.Since metadata is loaded in the beginning, it is not sure, which correlation is missing to ensure proper joining of data and metadata. 'correlation algorithm failed for one or more traces '
\(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\) 0 19.078159 0.590783 8192.0 0-orig 100000.0 1 20.314897 0.554817 8192.0 0-orig 100000.0 2 21.007772 0.536518 8192.0 0-orig 100000.0 3 22.716317 0.496166 8192.0 0-orig 100000.0 4 24.089236 0.467888 8192.0 0-orig 100000.0 … … … … … … 4697 0.006707 1680.558197 7719.0 1-pred-0.9 100000.0 4698 0.071281 158.122526 7592.0 1-pred-0.9 100000.0 4699 1.228636 9.173635 7876.0 1-pred-0.9 100000.0 4700 0.258008 43.684844 7830.0 1-pred-0.9 100000.0 4701 0.436051 25.848023 7974.0 1-pred-0.9 100000.0 4702 rows × 5 columns
2.1.4 learnings from run 1
- while loading data, the subsample folder was loaded even though it should not have been → move it out of the main folder.
- in the end, 3 folders would be good:
Nov2020-train
,Nov2020-test
,Nov2020-subsample
(subsample is used for quick prototyping) - also, I will need 3 .csv files per simulated diffusion rate, because I want to test the algo on each of the 3 different cluster speeds
- I created
firstartifact_Nov2020_test
andfirstartifact_Nov2020_train
:0.01 0.1 1.0 0.069 train 2, 3, 6, 7, 8 9 0.08 train 7 2, 6, 8, 10 4, 9 0.1 train 4, 6, 8, 9, 10 3, 7 0.2 train 3 1, 4, 6, 8 9, 10 0.4 train 4, 10 2, 3, 9 6, 7 0.6 train 10 4, 5, 6, 7 1, 2 1.0 train 10 4, 7, 9 1, 2, 8 3.0 train 5, 6, 8 10 1, 3, 9 10 train 3, 4, 8, 9 6, 7 10 50 train 6 9, 10 4, 5, 7, 8 0.069 test 5 1 10 0.08 test 5 3 1 0.1 test 2 5 1 0.2 test 2 7 5 0.4 test 8 1 5 0.6 test 8 3 9 1.0 test 6 3 5 3.0 test 4 7 2 10 test 2 1 5 50 test 2 3 1 - NOTE: I accidentally deleted set004 (0.01) from 0.069 test file. That means the only remaining simulated file with D=0.01 has to be taken for test (set009) and there is NO training set for 0.01 cluster speed at 0.069 molecule speed. Also, there is no training set for 0.1 clusters and 0.1 molecules (sad!), because there was only one simulated one.
2.1.5 Run 2 - full dataset
2.1.5.1 Record metadata, git log
- current directory
%cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
- git log
!git log -3
commit fa530079f3d8bdbba1eaa4c6bd3eed6a24789d84 Author: Apoplex <oligolex@vivaldi.net> Date: Tue Mar 16 22:20:39 2021 +0100 update mlproject for separate train and test files commit c9dd5f025bbd95e58f8f34796be36bcdb8c1a253 Author: Apoplex <oligolex@vivaldi.net> Date: Tue Mar 16 22:13:35 2021 +0100 Update train for separate train and test paths commit a070d3b531725e0fb37688dde80e990083ccf1cc Author: Apoplex <oligolex@vivaldi.net> Date: Mon Mar 15 21:48:01 2021 +0100 Fix photon count bin metadata 2
- Metadata of environment
No of CPUs in system: 72 No of CPUs the current process can use: 24 load average: (29.05, 36.29, 43.21) os.uname(): posix.uname_result(sysname='Linux', nodename='node260', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64') PID of process: 41375 RAM total: 199G, RAM used: 7.3G, RAM free: 116G the current directory: /beegfs/ye53nis/drmed-git My disk usage: Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 3.3G 47G 7% / devtmpfs 94G 0 94G 0% /dev tmpfs 94G 133M 94G 1% /dev/shm tmpfs 94G 19M 94G 1% /run tmpfs 94G 0 94G 0% /sys/fs/cgroup nfs02-ib:/data01 88T 69T 19T 79% /data01 nfs01-ib:/home 80T 66T 15T 82% /home nfs01-ib:/cluster 2.0T 417G 1.6T 21% /cluster nfs03-ib:/pool/work 100T 78T 23T 78% /nfsdata /dev/sda5 2.0G 66M 2.0G 4% /tmp /dev/sda6 169G 3.0G 166G 2% /local /dev/sda3 6.0G 397M 5.7G 7% /var beegfs_nodev 524T 303T 222T 58% /beegfs tmpfs 19G 0 19G 0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf-nightly: # # Name Version Build Channel _libgcc_mutex 0.1 main absl-py 0.11.0 pypi_0 pypi alembic 1.4.1 py_0 conda-forge/label/main appdirs 1.4.4 pyh9f0ad1d_0 conda-forge/label/main argon2-cffi 20.1.0 py38h7b6447c_1 asn1crypto 1.4.0 pyh9f0ad1d_0 conda-forge/label/main asteval 0.9.16 pyh5ca1d4c_0 conda-forge/label/main astunparse 1.6.3 pypi_0 pypi async_generator 1.10 pyhd3eb1b0_0 attrs 20.3.0 pyhd3eb1b0_0 azure-core 1.10.0 pyhd8ed1ab_0 conda-forge/label/main azure-storage-blob 12.7.1 pyh44b312d_0 conda-forge/label/main backcall 0.2.0 pyhd3eb1b0_0 blas 1.0 mkl bleach 3.2.3 pyhd3eb1b0_0 blinker 1.4 py_1 conda-forge/label/main blosc 1.20.1 hd408876_0 brotli 1.0.9 he6710b0_2 brotlipy 0.7.0 py38h27cfd23_1003 brunsli 0.1 h2531618_0 bzip2 1.0.8 h7b6447c_0 ca-certificates 2020.12.5 ha878542_0 conda-forge/label/main cachetools 4.2.1 pypi_0 pypi certifi 2020.12.5 py38h578d9bd_1 conda-forge/label/main cffi 1.14.4 py38h261ae71_0 chardet 4.0.0 py38h06a4308_1003 charls 2.1.0 he6710b0_2 click 7.1.2 pyh9f0ad1d_0 conda-forge/label/main cloudpickle 1.6.0 py_0 conda-forge/label/main configparser 5.0.1 py_0 conda-forge/label/main cryptography 3.3.1 py38h3c74f83_0 cycler 0.10.0 py38_0 databricks-cli 0.9.1 py_0 conda-forge/label/main dbus 1.13.18 hb2f20db_0 decorator 4.4.2 pyhd3eb1b0_0 defusedxml 0.6.0 py_0 docker-py 4.4.1 py38h578d9bd_1 conda-forge/label/main docker-pycreds 0.4.0 py_0 conda-forge/label/main entrypoints 0.3 py38_0 expat 2.2.10 he6710b0_2 fcsfiles 2020.9.18 pypi_0 pypi flask 1.1.2 pyh9f0ad1d_0 conda-forge/label/main flatbuffers 1.12 pypi_0 pypi fontconfig 2.13.0 h9420a91_0 freetype 2.10.4 h5ab3b9f_0 future 0.18.2 py38h578d9bd_3 conda-forge/label/main gast 0.4.0 pypi_0 pypi giflib 5.1.4 h14c3975_1 gitdb 4.0.5 py_0 conda-forge/label/main gitpython 3.1.12 pyhd8ed1ab_0 conda-forge/label/main glib 2.66.1 h92f7085_0 google-auth 1.24.0 pypi_0 pypi google-auth-oauthlib 0.4.2 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi gorilla 0.3.0 py_0 conda-forge/label/main grpcio 1.34.1 pypi_0 pypi gst-plugins-base 1.14.0 h8213a91_2 gstreamer 1.14.0 h28cd5cc_2 gunicorn 20.0.4 py38h578d9bd_3 conda-forge/label/main h5py 3.1.0 pypi_0 pypi icu 58.2 he6710b0_3 idna 2.10 pyhd3eb1b0_0 imagecodecs 2021.1.11 py38h581e88b_1 importlib-metadata 2.0.0 py_1 importlib_metadata 2.0.0 1 intel-openmp 2020.2 254 ipykernel 5.3.4 py38h5ca1d4c_0 ipython 7.19.0 py38hb070fc8_1 ipython_genutils 0.2.0 pyhd3eb1b0_1 isodate 0.6.0 py_1 conda-forge/label/main itsdangerous 1.1.0 py_0 conda-forge/label/main jedi 0.17.0 py38_0 jinja2 2.11.2 pyhd3eb1b0_0 jpeg 9b h024ee3a_2 json5 0.9.5 py_0 jsonschema 3.2.0 py_2 jupyter_client 6.1.7 py_0 jupyter_core 4.7.0 py38h06a4308_0 jupyterlab 2.2.6 py_0 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 1.2.0 py_0 jxrlib 1.1 h7b6447c_2 keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.0 py38h2531618_0 lcms2 2.11 h396b838_0 ld_impl_linux-64 2.33.1 h53a641e_7 lerc 2.2.1 h2531618_0 libaec 1.0.4 he6710b0_1 libdeflate 1.7 h27cfd23_5 libedit 3.1.20191231 h14c3975_1 libffi 3.3 he6710b0_2 libgcc-ng 9.1.0 hdf63c60_0 libgfortran-ng 7.3.0 hdf63c60_0 libpng 1.6.37 hbc83047_0 libprotobuf 3.13.0.1 h8b12597_0 conda-forge/label/main libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 9.1.0 hdf63c60_0 libtiff 4.1.0 h2733197_1 libuuid 1.0.3 h1bed415_2 libwebp 1.0.1 h8e7db2f_0 libxcb 1.14 h7b6447c_0 libxml2 2.9.10 hb55368b_3 libzopfli 1.0.3 he6710b0_0 lmfit 1.0.1 py_1 conda-forge/label/main lz4-c 1.9.3 h2531618_0 mako 1.1.4 pyh44b312d_0 conda-forge/label/main markdown 3.3.3 pypi_0 pypi markupsafe 1.1.1 py38h7b6447c_0 matplotlib 3.3.2 h06a4308_0 matplotlib-base 3.3.2 py38h817c723_0 mistune 0.8.4 py38h7b6447c_1000 mkl 2020.2 256 mkl-service 2.3.0 py38he904b0f_0 mkl_fft 1.2.0 py38h23d657b_0 mkl_random 1.1.1 py38h0573a6f_0 mlflow 1.13.1 py38h578d9bd_2 conda-forge/label/main msrest 0.6.21 pyh44b312d_0 conda-forge/label/main multipletau 0.3.3 pypi_0 pypi nbclient 0.5.1 py_0 nbconvert 6.0.7 py38_0 nbformat 5.1.2 pyhd3eb1b0_1 ncurses 6.2 he6710b0_1 nest-asyncio 1.4.3 pyhd3eb1b0_0 notebook 6.2.0 py38h06a4308_0 numpy 1.19.2 py38h54aff64_0 numpy-base 1.19.2 py38hfa32c7d_0 oauthlib 3.0.1 py_0 conda-forge/label/main olefile 0.46 py_0 openjpeg 2.3.0 h05c96fa_1 openssl 1.1.1i h27cfd23_0 opt-einsum 3.3.0 pypi_0 pypi packaging 20.9 pyhd3eb1b0_0 pandas 1.2.1 py38ha9443f7_0 pandoc 2.11 hb0f4dca_0 pandocfilters 1.4.3 py38h06a4308_1 parso 0.8.1 pyhd3eb1b0_0 pcre 8.44 he6710b0_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 8.1.0 py38he98fc37_0 pip 20.3.3 py38h06a4308_0 prometheus_client 0.9.0 pyhd3eb1b0_0 prometheus_flask_exporter 0.18.1 pyh9f0ad1d_0 conda-forge/label/main prompt-toolkit 3.0.8 py_0 protobuf 3.13.0.1 py38hadf7658_1 conda-forge/label/main ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.20 py_2 pygments 2.7.4 pyhd3eb1b0_0 pyjwt 2.0.1 pyhd8ed1ab_0 conda-forge/label/main pyopenssl 20.0.1 pyhd3eb1b0_1 pyparsing 2.4.7 pyhd3eb1b0_0 pyqt 5.9.2 py38h05f1152_4 pyrsistent 0.17.3 py38h7b6447c_0 pysocks 1.7.1 py38h06a4308_0 python 3.8.5 h7579374_1 python-dateutil 2.8.1 pyhd3eb1b0_0 python-editor 1.0.4 py_0 conda-forge/label/main python_abi 3.8 1_cp38 conda-forge/label/main pytz 2020.5 pyhd3eb1b0_0 pyyaml 5.3.1 py38h8df0ef7_1 conda-forge/label/main pyzmq 20.0.0 py38h2531618_1 qt 5.9.7 h5867ecd_1 querystring_parser 1.2.4 py_0 conda-forge/label/main readline 8.1 h27cfd23_0 requests 2.25.1 pyhd3eb1b0_0 requests-oauthlib 1.3.0 pyh9f0ad1d_0 conda-forge/label/main rsa 4.7 pypi_0 pypi scipy 1.5.2 py38h0b6359f_0 seaborn 0.11.1 pyhd3eb1b0_0 send2trash 1.5.0 pyhd3eb1b0_1 setuptools 52.0.0 py38h06a4308_0 sip 4.19.13 py38he6710b0_0 six 1.15.0 py38h06a4308_0 smmap 4.0.0 pyh44b312d_0 conda-forge/label/main snappy 1.1.8 he6710b0_0 sqlalchemy 1.3.20 py38h1e0a361_0 conda-forge/label/main sqlite 3.33.0 h62c20be_0 sqlparse 0.4.1 pyh9f0ad1d_0 conda-forge/label/main tabulate 0.8.7 pyh9f0ad1d_0 conda-forge/label/main tb-nightly 2.5.0a20210130 pypi_0 pypi tensorboard-plugin-wit 1.8.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.9.2 py38h06a4308_0 testpath 0.4.4 pyhd3eb1b0_0 tf-estimator-nightly 2.5.0.dev2021020101 pypi_0 pypi tf-nightly 2.5.0.dev20210130 pypi_0 pypi tifffile 2021.1.14 pyhd3eb1b0_1 tk 8.6.10 hbc83047_0 tornado 6.1 py38h27cfd23_0 traitlets 5.0.5 pyhd3eb1b0_0 typing-extensions 3.7.4.3 pypi_0 pypi uncertainties 3.1.5 pyhd8ed1ab_0 conda-forge/label/main urllib3 1.26.3 pyhd3eb1b0_0 wcwidth 0.2.5 py_0 webencodings 0.5.1 py38_1 websocket-client 0.57.0 py38h578d9bd_4 conda-forge/label/main werkzeug 1.0.1 pyh9f0ad1d_0 conda-forge/label/main wheel 0.36.2 pyhd3eb1b0_0 wrapt 1.12.1 pypi_0 pypi xz 5.2.5 h7b6447c_0 yaml 0.2.5 h516909a_0 conda-forge/label/main zeromq 4.3.3 he6710b0_3 zfp 0.5.5 h2531618_4 zipp 3.4.0 pyhd3eb1b0_0 zlib 1.2.11 h7b6447c_3 zstd 1.4.5 h9ceee32_0 Note: you may need to restart the kernel to use updated packages. {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint', 'SLURM_NODELIST': 'node260', 'SLURM_JOB_NAME': 'bash', 'XDG_SESSION_ID': '595', 'SLURMD_NODENAME': 'node260', 'SLURM_TOPOLOGY_ADDR': 'node260', 'SLURM_NTASKS_PER_NODE': '24', 'HOSTNAME': 'login01', 'SLURM_PRIO_PROCESS': '0', 'SLURM_SRUN_COMM_PORT': '39229', 'SHELL': '/bin/bash', 'TERM': 'xterm-color', 'SLURM_JOB_QOS': 'qstand', 'SLURM_PTY_WIN_ROW': '39', 'HISTSIZE': '1000', 'TMPDIR': '/tmp', 'SLURM_TOPOLOGY_ADDR_PATTERN': 'node', 'SSH_CLIENT': '10.231.182.213 44428 22', 'CONDA_SHLVL': '2', 'CONDA_PROMPT_MODIFIER': '(tf-nightly) ', 'QTDIR': '/usr/lib64/qt-3.3', 'QTINC': '/usr/lib64/qt-3.3/include', 'SSH_TTY': '/dev/pts/2', 'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24', 'QT_GRAPHICSSYSTEM_CHECKED': '1', 'SLURM_NNODES': '1', 'USER': 'ye53nis', 'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:', 'CONDA_EXE': '/cluster/miniconda3/bin/conda', 'SLURM_STEP_NUM_NODES': '1', 'SLURM_JOBID': '652176', 'SRUN_DEBUG': '3', 'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_NTASKS': '24', 'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5', 'SLURM_STEP_ID': '0', 'TMUX': '/tmp/tmux-67339/default,43792,2', '_CE_CONDA': '', 'CONDA_PREFIX_1': '/cluster/miniconda3', 'SLURM_STEP_LAUNCHER_PORT': '39229','SLURM_TASKS_PER_NODE': '24', 'MAIL': '/var/spool/mail/ye53nis', 'PATH': '/home/ye53nis/.conda/envs/tf-nightly/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin', 'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448', 'SLURM_JOB_ID': '652176', 'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf-nightly', 'SLURM_JOB_USER': 'ye53nis', 'SLURM_STEPID': '0', 'PWD': '/', 'SLURM_SRUN_COMM_HOST': '192.168.192.5', 'LANG': 'en_US.UTF-8', 'SLURM_PTY_WIN_COL': '205', 'SLURM_UMASK': '0022', 'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles', 'SLURM_JOB_UID': '67339', 'LOADEDMODULES': '', 'SLURM_NODEID': '0', 'TMUX_PANE': '%2', 'SLURM_SUBMIT_DIR': '/', 'SLURM_TASK_PID': '167340', 'SLURM_NPROCS': '24', 'SLURM_CPUS_ON_NODE': '24', 'SLURM_DISTRIBUTION': 'block', 'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_PROCID': '0', 'HISTCONTROL': 'ignoredups', '_CE_M': '', 'SLURM_JOB_NODELIST': 'node260', 'SLURM_PTY_PORT': '33620', 'HOME': '/home/ye53nis', 'SHLVL': '3', 'SLURM_LOCALID': '0', 'SLURM_JOB_GID': '13280', 'SLURM_JOB_CPUS_PER_NODE': '24', 'SLURM_CLUSTER_NAME': 'hpc', 'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24', 'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23', 'SLURM_SUBMIT_HOST': 'login01', 'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128', 'SLURM_JOB_PARTITION': 's_standard', 'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3', 'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python', 'LOGNAME': 'ye53nis', 'SLURM_STEP_NUM_TASKS': '24', 'QTLIB': '/usr/lib64/qt-3.3/lib', 'SLURM_JOB_ACCOUNT': 'iaob', 'SLURM_JOB_NUM_NODES': '1', 'MODULESHOME': '/usr/share/Modules', 'CONDA_DEFAULT_ENV': 'tf-nightly', 'LESSOPEN': '||/usr/bin/lesspipe.sh %s', 'SLURM_STEP_TASKS_PER_NODE': '24', 'PORT': '9999', 'SLURM_STEP_NODELIST': 'node260', 'DISPLAY': ':0', 'XDG_RUNTIME_DIR': '', 'XAUTHORITY': '/home/lex/.Xauthority', 'BASH_FUNC_module()': '() { eval `/usr/bin/modulecmd bash $*`\n}', '_': '/home/ye53nis/.conda/envs/tf-nightly/bin/jupyter', 'JPY_PARENT_PID': '446797', 'CLICOLOR': '1', 'PAGER': 'cat', 'GIT_PAGER': 'cat', 'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
2.1.5.2 Set mlflow variables
- mlflow environment variables
conda activate tf-nightly cd /beegfs/ye53nis/drmed-git export MLFLOW_EXPERIMENT_NAME=exp-210204-unet export MLFLOW_TRACKING_URI=file:./data/mlruns mkdir data/exp-210204-unet
(tf-nightly) [ye53nis@node117 drmed-git]$
2.1.5.3 run mlflow
- Use whole dataset (6400 training, 1600 validation, 2000 test), but during
training, use only 1/5th of it per epoch - but this time with more
balanced test set.
mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train -P csv_path_test=/beegfs/ye53nis/saves/firstartifact_Nov2020_test -P steps_per_epoch=1280 -P validation_steps=320
(tf-nightly) [ye53nis@node117 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train -P csv_path_test=/beegfs/y e53nis/saves/firstartifact_Nov2020_test -P steps_per_epoch=1280 -P validation_steps=320 WARNING:root:Malformed experiment '1'. Detailed error Yaml file './data/mlruns/1/meta.yaml' does not exist. Traceback (most recent call last): File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 237, in list_experiments experiment = self._get_experiment(exp_id, view_type) File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 311, in _get_experiment meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME) File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 170, in read_yaml raise MissingConfigException("Yaml file '%s' does not exist." % file_path) mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/1/meta.yaml' does not exist. WARNING:root:Malformed experiment '0'. Detailed error Yaml file './data/mlruns/0/meta.yaml' does not exist. Traceback (most recent call last): File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 237, in list_experiments experiment = self._get_experiment(exp_id, view_type) File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 311, in _get_experiment meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME) File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 170, in read_yaml raise MissingConfigException("Yaml file '%s' does not exist." % file_path) mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/0/meta.yaml' does not exist. 2021/03/16 22:26:14 INFO mlflow.projects.utils: === Created directory /tmp/tmp4e89kbom for downloading remote URIs passed to arguments of type 'path' === 2021/03/16 22:26:14 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c 1>&2 && python src/fluotracify/trai ning/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 50 /beegfs/ye53nis/saves/firstartifact_Nov2020_train /beegfs/ye53nis/saves/firstartifact_Nov2020_test 3 1280 320' in run with ID '3cec3f26ed2d4004978c4ec37c00fba0' === 2021-03-16 22:26:31.835407: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2021-03-16 22:26:31.835484: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. 2.5.0-dev20210130 2021-03-16 22:27:03.495143: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2021-03-16 22:27:03.495217: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] failed call to cuInit: UNKNOWN ERROR (303) 2021-03-16 22:27:03.495359: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist GPUs: [] train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set005.csv train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set001.csv train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set005.csv train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set008.csv train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set004.csv train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set004.csv train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set004.csv train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set004.csv train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set009.csv train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set001.csv train 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set002.csv train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set006.csv train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set010.csv train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set007.csv train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set004.csv train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set008.csv train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set009.csv train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set002.csv train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set008.csv train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set010.csv train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set003.csv train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set006.csv train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set010.csv train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set009.csv train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set007.csv train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set009.csv train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set010.csv train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set008.csv train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set010.csv train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set003.csv train 30 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set008.csv train 31 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set003.csv train 32 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set009.csv train 33 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set004.csv train 34 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set001.csv train 35 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set010.csv train 36 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set004.csv train 37 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set007.csv train 38 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set002.csv train 39 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set009.csv train 40 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set002.csv train 41 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set006.csv train 42 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set009.csv train 43 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set007.csv train 44 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set001.csv train 45 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set007.csv train 46 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set006.csv train 47 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set003.csv train 48 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set009.csv train 49 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set005.csv train 50 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set008.csv train 51 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set006.csv train 52 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set009.csv train 53 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set010.csv train 54 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set007.csv train 55 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set006.csv train 56 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set003.csv train 57 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set010.csv train 58 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set008.csv train 59 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set008.csv train 60 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set002.csv train 61 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set006.csv train 62 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set004.csv train 63 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set006.csv train 64 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set003.csv train 65 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set007.csv train 66 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set006.csv train 67 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set010.csv train 68 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set007.csv train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set010.csv train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set002.csv train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set005.csv train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set005.csv train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set007.csv train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set002.csv train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set001.csv train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set007.csv train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set009.csv train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set002.csv train 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set005.csv train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set008.csv train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set005.csv train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set008.csv train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set005.csv train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set006.csv train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set005.csv train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set003.csv train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set001.csv train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set003.csv train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set003.csv train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set005.csv train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set002.csv train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set002.csv train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set004.csv train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set001.csv train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set001.csv train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set001.csv train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set003.csv train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set001.csv The given DataFrame was split into 3 parts with shapes: [(16384, 6900), (16384, 6900), (16384, 6900)] The given DataFrame was split into 3 parts with shapes: [(16384, 3000), (16384, 3000), (16384, 3000)] for each 16384 timestap trace there are the following numbers of corrupted timesteps: label001_1 1916 label002_1 1004 label003_1 1476 label004_1 1154 label005_1 1454 dtype: int64 2021-03-16 22:34:23.544689: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operati ons: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. number of training examples: 5520, number of validation examples: 1380 ------------------------ number of test examples: 3000 input - shape: (None, 16384, 1) output - shape: (None, 16384, 1) 2021-03-16 22:34:30.005739: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing. 2021-03-16 22:34:30.005803: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started. 2021-03-16 22:34:30.005880: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down. 2021/03/16 22:34:30 INFO mlflow.utils.autologging_utils: tensorflow autologging will track hyperparameters, performance metrics, model artifacts, and lineage information for the current tensorflow workflow to the MLflow run with ID '3c ec3f26ed2d4004978c4ec37c00fba0' 2021/03/16 22:34:30 WARNING mlflow.utils.autologging_utils: MLflow issued a warning during tensorflow autologging: "/home/ye53nis/.conda/envs/mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c/lib/python3.8/site-packages/mlflow/utils/auto logging_utils.py:86: UserWarning: Logging to MLflow failed: Changing param values is not allowed. Param with key='batch_size' was already logged with value='5' for run ID='3cec3f26ed2d4004978c4ec37c00fba0'. Attempted logging new value 'None'." Epoch 1/50 2021-03-16 22:34:43.027454: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:145] None of the MLIR Optimization Passes are enabled (registered 2) 2021-03-16 22:34:43.259103: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2194880000 Hz 1/1280 [..............................] - ETA: 7:06:43 - loss: 1.7012 - tp0.1: 11443.0000 - fp0.1: 69168.0000 - tn0.1: 50.0000 - fn0.1: 1259.0000 - precision0.1: 0.1420 - recall0.1: 0.9009 - tp0.3: 9371.0000 - fp0.3: 67996.0000 - tn 0.3: 1222.0000 - fn0.3: 3331.0000 - precision0.3: 0.1211 - recall0.3: 0.7378 - tp0.5: 5565.0000 - fp0.5: 37117.0000 - tn0.5: 32101.0000 - fn0.5: 7137.0000 - precision0.5: 0.1304 - recall0.5: 0.4381 - tp0.7: 1504.0000 - fp0.7: 2293.0000 - tn0.7: 66925.0000 - fn0.7: 11198.0000 - precision0.7: 0.3961 - recall0.7: 0.1184 - tp0.9: 284.0000 - fp0.9: 114.0000 - tn0.9: 69104.0000 - fn0.9: 12418.0000 - precision0.9: 0.7136 - recall0.9: 0.0224 - accuracy: 0.4598 - auc: 0.4176 2021-03-16 22:34:50.791836: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing. 2021-03-16 22:34:50.791935: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started. 2/1280 [..............................] - ETA: 55:09 - loss: 1.5706 - tp0.1: 15933.5000 - fp0.1: 91410.0000 - tn0.1: 14176.5000 - fn0.1: 1360.0000 - precision0.1: 0.1471 - recall0.1: 0.9171 - tp0.3: 11355.0000 - fp0.3: 68009.0000 - tn0.3: 37577.5000 - fn0.3: 5938.5000 - precision0.3: 0.1425 - recall0.3: 0.6736 - tp0.5: 7264.0000 - fp0.5: 37126.5000 - tn0.5: 68460.0000 - fn0.5: 10029.5000 - precision0.5: 0.1624 - recall0.5: 0.4238 - tp0.7: 2845.0000 - fp0.7: 2300. 0000 - tn0.7: 103286.5000 - fn0.7: 14448.5000 - precision0.7: 0.5204 - recall0.7: 0.1548 - tp0.9: 1306.5000 - fp0.9: 119.0000 - tn0.9: 105467.5000 - fn0.9: 15987.0000 - precision0.9: 0.8315 - recall0.9: 0.0644 - accuracy: 0.5771 - auc: 0.53722021-03-16 22:34:53.384001: I tensorflow/core/profiler/lib/profiler_session.cc:66] Profiler session collecting data. 2021-03-16 22:34:53.414299: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down. 2021-03-16 22:34:53.449110: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_03_16_22_34_53 2021-03-16 22:34:53.468888: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.trace.json.gz 2021-03-16 22:34:53.498618: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_03_16_22_34_53 2021-03-16 22:34:53.498775: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.memory_profile.json.gz 2021-03-16 22:34:53.501218: I tensorflow/core/profiler/rpc/client/capture_profile.cc:251] Creating directory: /tmp/tb/train/plugins/profile/2021_03_16_22_34_53Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2021_03_16_2 2_34_53/node117.xplane.pb Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.overview_page.pb Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.input_pipeline.pb Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.tensorflow_stats.pb Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.kernel_stats.pb 1280/1280 [==============================] - 3356s 3s/step - loss: 0.9438 - tp0.1: 7090847.5004 - fp0.1: 12587220.8876 - tn0.1: 31719449.0960 - fn0.1: 1113141.3841 - precision0.1: 0.3522 - recall0.1: 0.8539 - tp0.3: 5944647.5215 - fp0. 3: 7704502.4426 - tn0.3: 36602146.0117 - fn0.3: 2259341.3630 - precision0.3: 0.4254 - recall0.3: 0.6980 - tp0.5: 3390349.7166 - fp0.5: 2172177.0687 - tn0.5: 42134502.0273 - fn0.5: 4813639.1678 - precision0.5: 0.5845 - recall0.5: 0.4054 - tp0.7: 2075799.0164 - fp0.7: 570841.5262 - tn0.7: 43735856.3763 - fn0.7: 6128189.8681 - precision0.7: 0.7474 - recall0.7: 0.2354 - tp0.9: 1317276.8236 - fp0.9: 157422.0055 - tn0.9: 44149241.1343 - fn0.9: 6886712.0609 - precision0.9: 0.8734 - recall0.9: 0.1441 - accuracy: 0.8611 - auc: 0.8419 - val_loss: 1.7438 - val_tp0.1: 1858818.0000 - val_fp0.1: 1751074.0000 - val_tn0.1: 20297196.0000 - val_fn0.1: 2307317.0000 - val_precision0.1: 0.5149 - val_recall0.1: 0.4462 - val_tp0.3: 1147351.0000 - val_fp0.3: 857162.0000 - val_tn0.3: 21191096.0000 - val_fn0.3: 3018784.0000 - val_precision0.3: 0.5724 - val_recall0.3: 0.2754 - val_tp0.5: 22832.0000 - val_fp0.5: 2666.0000 - val_tn0.5: 22045600.0000 - val _fn0.5: 4143303.0000 - val_precision0.5: 0.8954 - val_recall0.5: 0.0055 - val_tp0.7: 0.0000e+00 - val_fp0.7: 0.0000e+00 - val_tn0.7: 22048264.0000 - val_fn0.7: 4166135.0000 - val_precision0.7: 0.0000e+00 - val_recall0.7: 0.0000e+00 - v al_tp0.9: 0.0000e+00 - val_fp0.9: 0.0000e+00 - val_tn0.9: 22048264.0000 - val_fn0.9: 4166135.0000 - val_precision0.9: 0.0000e+00 - val_recall0.9: 0.0000e+00 - val_accuracy: 0.8418 - val_auc: 0.7129 Epoch 2/50 1280/1280 [==============================] - 3273s 3s/step - loss: 0.7454 - tp0.1: 7319058.9383 - fp0.1: 12182101.0671 - tn0.1: 32209636.0234 - fn0.1: 799871.6300 - precision0.1: 0.3732 - recall0.1: 0.9003 - tp0.3: 6349950.7744 - fp0.3 : 7864965.2303 - tn0.3: 36526747.8587 - fn0.3: 1768979.7939 - precision0.3: 0.4426 - recall0.3: 0.7794 - tp0.5: 3304850.4598 - fp0.5: 1018320.5308 - tn0.5: 43373388.4637 - fn0.5: 4814080.1085 - precision0.5: 0.7573 - recall0.5: 0.4070 - tp0.7: 2713284.5909 - fp0.7: 370786.4668 - tn0.7: 44020933.5667 - fn0.7: 5405645.9774 - precision0.7: 0.8821 - recall0.7: 0.3298 - tp0.9: 2048963.3240 - fp0.9: 143660.5839 - tn0.9: 44248083.9859 - fn0.9: 6069967.2443 - precision0.9: 0.9325 - recall0.9: 0.2463 - accuracy: 0.8888 - auc: 0.8781 - val_loss: 1.8629 - val_tp0.1: 1696755.0000 - val_fp0.1: 1369278.0000 - val_tn0.1: 20627520.0000 - val_fn0.1: 2520850.0000 - val_precision0.1: 0.5534 - val_recall0.1: 0.4023 - val_tp0.3: 1177823.0000 - val_fp0.3: 724329.0000 - val_tn0.3: 21272468.0000 - val_fn0.3: 3039782.0000 - val_precision0.3: 0.6192 - val_recall0.3: 0.2793 - val_tp0.5: 726105.0000 - val_fp0.5: 220632.0000 - val_tn0.5: 21776148.0000 - v al_fn0.5: 3491500.0000 - val_precision0.5: 0.7670 - val_recall0.5: 0.1722 - val_tp0.7: 622624.0000 - val_fp0.7: 149383.0000 - val_tn0.7: 21847414.0000 - val_fn0.7: 3594981.0000 - val_precision0.7: 0.8065 - val_recall0.7: 0.1476 - val_t p0.9: 478068.0000 - val_fp0.9: 78711.0000 - val_tn0.9: 21918088.0000 - val_fn0.9: 3739537.0000 - val_precision0.9: 0.8586 - val_recall0.9: 0.1134 - val_accuracy: 0.8584 - val_auc: 0.6881 Epoch 3/50 1280/1280 [==============================] - 3268s 3s/step - loss: 0.6401 - tp0.1: 7574454.9469 - fp0.1: 10689439.2311 - tn0.1: 33573907.5972 - fn0.1: 672847.0898 - precision0.1: 0.4156 - recall0.1: 0.9171 - tp0.3: 6542181.5066 - fp0.3 : 5029903.7557 - tn0.3: 39233452.5995 - fn0.3: 1705120.5301 - precision0.3: 0.5571 - recall0.3: 0.7912 - tp0.5: 4316700.4192 - fp0.5: 813585.7369 - tn0.5: 43449769.7229 - fn0.5: 3930601.6175 - precision0.5: 0.8494 - recall0.5: 0.5079 - tp0.7: 3862233.1499 - fp0.7: 434886.9867 - tn0.7: 43828435.6581 - fn0.7: 4385068.8868 - precision0.7: 0.9012 - recall0.7: 0.4570 - tp0.9: 3000635.4949 - fp0.9: 146691.9102 - tn0.9: 44116668.4348 - fn0.9: 5246666.5418 - precision0.9: 0 .9538 - recall0.9: 0.3597 - accuracy: 0.9073 - auc: 0.9113 - val_loss: 1.2681 - val_tp0.1: 2112447.0000 - val_fp0.1: 1372411.0000 - val_tn0.1: 20688214.0000 - val_fn0.1: 2041318.0000 - val_precision0.1: 0.6062 - val_recall0.1: 0.5086 - val_tp0.3: 1459147.0000 - val_fp0.3: 526021.0000 - val_tn0.3: 21534608.0000 - val_fn0.3: 2694618.0000 - val_precision0.3: 0.7350 - val_recall0.3: 0.3513 - val_tp0.5: 1206684.0000 - val_fp0.5: 343698.0000 - val_tn0.5: 21716924.0000 - v al_fn0.5: 2947081.0000 - val_precision0.5: 0.7783 - val_recall0.5: 0.2905 - val_tp0.7: 926901.0000 - val_fp0.7: 212441.0000 - val_tn0.7: 21848180.0000 - val_fn0.7: 3226864.0000 - val_precision0.7: 0.8135 - val_recall0.7: 0.2231 - val_t p0.9: 701556.0000 - val_fp0.9: 119958.0000 - val_tn0.9: 21940680.0000 - val_fn0.9: 3452209.0000 - val_precision0.9: 0.8540 - val_recall0.9: 0.1689 - val_accuracy: 0.8745 - val_auc: 0.7587 Epoch 4/50 1280/1280 [==============================] - 3266s 3s/step - loss: 0.5483 - tp0.1: 7577427.0859 - fp0.1: 8351943.7939 - tn0.1: 35940757.2381 - fn0.1: 640533.9243 - precision0.1: 0.4704 - recall0.1: 0.9241 - tp0.3: 6848424.7369 - fp0.3: 4027475.1538 - tn0.3: 40265212.3185 - fn0.3: 1369536.2732 - precision0.3: 0.6241 - recall0.3: 0.8352 - tp0.5: 6060996.3591 - fp0.5: 2313256.1897 - tn0.5: 41979441.1702 - fn0.5: 2156964.6511 - precision0.5: 0.7177 - recall0.5: 0.7389 - tp0.7: 4556251.4965 - fp0.7: 542255.6714 - tn0.7: 43750437.9961 - fn0.7: 3661709.5137 - precision0.7: 0.8912 - recall0.7: 0.5511 - tp0.9: 3395492.4715 - fp0.9: 154251.2139 - tn0.9: 44138439.1054 - fn0.9: 4822468.5386 - precision0.9: 0 .9548 - recall0.9: 0.4106 - accuracy: 0.9134 - auc: 0.9349 - val_loss: 1.5831 - val_tp0.1: 3220872.0000 - val_fp0.1: 3814830.0000 - val_tn0.1: 18497596.0000 - val_fn0.1: 681105.0000 - val_precision0.1: 0.4578 - val_recall0.1: 0.8254 - val_tp0.3: 2365990.0000 - val_fp0.3: 2561983.0000 - val_tn0.3: 19750440.0000 - val_fn0.3: 1535987.0000 - val_precision0.3: 0.4801 - val_recall0.3: 0.6064 - val_tp0.5: 1952532.0000 - val_fp0.5: 2291714.0000 - val_tn0.5: 20020708.0000 - val_fn0.5: 1949445.0000 - val_precision0.5: 0.4600 - val_recall0.5: 0.5004 - val_tp0.7: 1618270.0000 - val_fp0.7: 2113505.0000 - val_tn0.7: 20198920.0000 - val_fn0.7: 2283707.0000 - val_precision0.7: 0.4336 - val_recall0.7: 0.4147 - va l_tp0.9: 1467404.0000 - val_fp0.9: 1996280.0000 - val_tn0.9: 20316148.0000 - val_fn0.9: 2434573.0000 - val_precision0.9: 0.4237 - val_recall0.9: 0.3761 - val_accuracy: 0.8382 - val_auc: 0.8531 Epoch 5/50 1280/1280 [==============================] - 3259s 3s/step - loss: 0.4575 - tp0.1: 7563591.0968 - fp0.1: 6166461.2155 - tn0.1: 38207695.0180 - fn0.1: 572899.0141 - precision0.1: 0.5449 - recall0.1: 0.9269 - tp0.3: 6976500.9703 - fp0.3: 2853572.8470 - tn0.3: 41520584.7908 - fn0.3: 1159989.1405 - precision0.3: 0.7064 - recall0.3: 0.8492 - tp0.5: 6358931.4910 - fp0.5: 1545188.1085 - tn0.5: 42828968.9243 - fn0.5: 1777558.6198 - precision0.5: 0.8010 - recall0.5: 0.7718 - tp0.7: 5171541.8845 - fp0.7: 510104.5824 - tn0.7: 43864075.8119 - fn0.7: 2964948.2264 - precision0.7: 0.9101 - recall0.7: 0.6254 - tp0.9: 3989419.1991 - fp0.9: 146867.6534 - tn0.9: 44227286.8977 - fn0.9: 4147070.9118 - precision0.9: 0 .9658 - recall0.9: 0.4744 - accuracy: 0.9360 - auc: 0.9496 - val_loss: 1.0113 - val_tp0.1: 2745883.0000 - val_fp0.1: 1806365.0000 - val_tn0.1: 20277030.0000 - val_fn0.1: 1385129.0000 - val_precision0.1: 0.6032 - val_recall0.1: 0.6647 - val_tp0.3: 1898747.0000 - val_fp0.3: 1004741.0000 - val_tn0.3: 21078656.0000 - val_fn0.3: 2232265.0000 - val_precision0.3: 0.6540 - val_recall0.3: 0.4596 - val_tp0.5: 1378572.0000 - val_fp0.5: 684339.0000 - val_tn0.5: 21399046.0000 - val_fn0.5: 2752440.0000 - val_precision0.5: 0.6683 - val_recall0.5: 0.3337 - val_tp0.7: 1058802.0000 - val_fp0.7: 422419.0000 - val_tn0.7: 21660976.0000 - val_fn0.7: 3072210.0000 - val_precision0.7: 0.7148 - val_recall0.7: 0.2563 - val _tp0.9: 633251.0000 - val_fp0.9: 145724.0000 - val_tn0.9: 21937676.0000 - val_fn0.9: 3497761.0000 - val_precision0.9: 0.8129 - val_recall0.9: 0.1533 - val_accuracy: 0.8689 - val_auc: 0.8229 Epoch 6/50 1280/1280 [==============================] - 3293s 3s/step - loss: 0.3999 - tp0.1: 7670968.6714 - fp0.1: 5321303.1358 - tn0.1: 38997617.0039 - fn0.1: 520751.9563 - precision0.1: 0.5842 - recall0.1: 0.9342 - tp0.3: 7188663.1733 - fp0.3: 2542544.6495 - tn0.3: 41776414.2037 - fn0.3: 1003057.4543 - precision0.3: 0.7341 - recall0.3: 0.8729 - tp0.5: 6622211.5550 - fp0.5: 1333118.7088 - tn0.5: 42985778.1749 - fn0.5: 1569509.0726 - precision0.5: 0.8305 - recall0.5: 0.8017 - tp0.7: 5590775.7127 - fp0.7: 478800.2568 - tn0.7: 43840116.4879 - fn0.7: 2600944.9149 - precision0.7: 0.9198 - recall0.7: 0.6746 - tp0.9: 4639602.3575 - fp0.9: 154184.4598 - tn0.9: 44164751.2225 - fn0.9: 3552118.2701 - precision0.9: 0 .9678 - recall0.9: 0.5580 - accuracy: 0.9436 - auc: 0.9557 - val_loss: 0.7256 - val_tp0.1: 3301232.0000 - val_fp0.1: 2777637.0000 - val_tn0.1: 19396900.0000 - val_fn0.1: 738630.0000 - val_precision0.1: 0.5431 - val_recall0.1: 0.8172 - val_tp0.3: 2789396.0000 - val_fp0.3: 1963405.0000 - val_tn0.3: 20211132.0000 - val_fn0.3: 1250466.0000 - val_precision0.3: 0.5869 - val_recall0.3: 0.6905 - val_tp0.5: 2332065.0000 - val_fp0.5: 1478069.0000 - val_tn0.5: 20696466.0000 - val_fn0.5: 1707797.0000 - val_precision0.5: 0.6121 - val_recall0.5: 0.5773 - val_tp0.7: 1949962.0000 - val_fp0.7: 1076978.0000 - val_tn0.7: 21097560.0000 - val_fn0.7: 2089900.0000 - val_precision0.7: 0.6442 - val_recall0.7: 0.4827 - va l_tp0.9: 1380432.0000 - val_fp0.9: 492826.0000 - val_tn0.9: 21681716.0000 - val_fn0.9: 2659430.0000 - val_precision0.9: 0.7369 - val_recall0.9: 0.3417 - val_accuracy: 0.8785 - val_auc: 0.8740 Epoch 7/50 1280/1280 [==============================] - 3286s 3s/step - loss: 0.3597 - tp0.1: 7890232.5785 - fp0.1: 4953542.9781 - tn0.1: 39218777.5909 - fn0.1: 448103.7330 - precision0.1: 0.6178 - recall0.1: 0.9465 - tp0.3: 7467308.2701 - fp0.3: 2391275.9922 - tn0.3: 41781019.9024 - fn0.3: 871028.0414 - precision0.3: 0.7613 - recall0.3: 0.8946 - tp0.5: 6988139.4286 - fp0.5: 1302055.8244 - tn0.5: 42870220.7486 - fn0.5: 1350196.8829 - precision0.5: 0.8451 - recall0.5: 0.8377 - tp0.7: 5947552.7845 - fp0.7: 472146.9633 - tn0.7: 43700160.4223 - fn0.7: 2390783.5269 - precision0.7: 0.9259 - recall0.7: 0.7138 - tp0.9: 4968978.2139 - fp0.9: 143981.8579 - tn0.9: 44028364.7588 - fn0.9: 3369358.0976 - precision0.9: 0. 9713 - recall0.9: 0.5953 - accuracy: 0.9493 - auc: 0.9636 - val_loss: 0.7770 - val_tp0.1: 3234726.0000 - val_fp0.1: 2249439.0000 - val_tn0.1: 19829152.0000 - val_fn0.1: 901082.0000 - val_precision0.1: 0.5898 - val_recall0.1: 0.7821 - v al_tp0.3: 2554897.0000 - val_fp0.3: 1502825.0000 - val_tn0.3: 20575758.0000 - val_fn0.3: 1580911.0000 - val_precision0.3: 0.6296 - val_recall0.3: 0.6178 - val_tp0.5: 1992390.0000 - val_fp0.5: 1136809.0000 - val_tn0.5: 20941788.0000 - v al_fn0.5: 2143418.0000 - val_precision0.5: 0.6367 - val_recall0.5: 0.4817 - val_tp0.7: 1526404.0000 - val_fp0.7: 689435.0000 - val_tn0.7: 21389156.0000 - val_fn0.7: 2609404.0000 - val_precision0.7: 0.6889 - val_recall0.7: 0.3691 - val_ tp0.9: 847679.0000 - val_fp0.9: 133403.0000 - val_tn0.9: 21945180.0000 - val_fn0.9: 3288129.0000 - val_precision0.9: 0.8640 - val_recall0.9: 0.2050 - val_accuracy: 0.8749 - val_auc: 0.8627 Epoch 8/50 1280/1280 [==============================] - 3289s 3s/step - loss: 0.3339 - tp0.1: 7747141.5660 - fp0.1: 4489700.9196 - tn0.1: 39841447.7486 - fn0.1: 432355.7814 - precision0.1: 0.6332 - recall0.1: 0.9472 - tp0.3: 7357958.1397 - fp0.3: 2241207.2966 - tn0.3: 42089942.4052 - fn0.3: 821539.2077 - precision0.3: 0.7676 - recall0.3: 0.9001 - tp0.5: 6904184.2022 - fp0.5: 1214222.3841 - tn0.5: 43116930.9828 - fn0.5: 1275313.1452 - precision0.5: 0.8526 - recall0.5: 0.8448 - tp0.7: 5918119.9930 - fp0.7: 436485.9844 - tn0.7: 43894677.5480 - fn0.7: 2261377.3544 - precision0.7: 0.9324 - recall0.7: 0.7243 - tp0.9: 4978028.0929 - fp0.9: 136413.7908 - tn0.9: 44194744.8298 - fn0.9: 3201469.2545 - precision0.9: 0. 9737 - recall0.9: 0.6094 - accuracy: 0.9533 - auc: 0.9664 - val_loss: 0.7192 - val_tp0.1: 3266754.0000 - val_fp0.1: 2261077.0000 - val_tn0.1: 19887774.0000 - val_fn0.1: 798799.0000 - val_precision0.1: 0.5910 - val_recall0.1: 0.8035 - v al_tp0.3: 2594715.0000 - val_fp0.3: 1533904.0000 - val_tn0.3: 20614936.0000 - val_fn0.3: 1470838.0000 - val_precision0.3: 0.6285 - val_recall0.3: 0.6382 - val_tp0.5: 2022214.0000 - val_fp0.5: 1204526.0000 - val_tn0.5: 20944316.0000 - v al_fn0.5: 2043339.0000 - val_precision0.5: 0.6267 - val_recall0.5: 0.4974 - val_tp0.7: 1633266.0000 - val_fp0.7: 893751.0000 - val_tn0.7: 21255104.0000 - val_fn0.7: 2432287.0000 - val_precision0.7: 0.6463 - val_recall0.7: 0.4017 - val_ tp0.9: 1072066.0000 - val_fp0.9: 366453.0000 - val_tn0.9: 21782404.0000 - val_fn0.9: 2993487.0000 - val_precision0.9: 0.7453 - val_recall0.9: 0.2637 - val_accuracy: 0.8761 - val_auc: 0.8749 Epoch 9/50 1280/1280 [==============================] - 3297s 3s/step - loss: 0.3316 - tp0.1: 7830543.1632 - fp0.1: 4449068.0055 - tn0.1: 39786384.2771 - fn0.1: 444679.2272 - precision0.1: 0.6389 - recall0.1: 0.9467 - tp0.3: 7430622.2623 - fp0.3: 2239407.0976 - tn0.3: 41996012.4926 - fn0.3: 844600.1280 - precision0.3: 0.7686 - recall0.3: 0.8983 - tp0.5: 6975903.1639 - fp0.5: 1214978.6417 - tn0.5: 43020456.3084 - fn0.5: 1299319.2264 - precision0.5: 0.8518 - recall0.5: 0.8438 - tp0.7: 6015111.5628 - fp0.7: 439544.0406 - tn0.7: 43795920.7791 - fn0.7: 2260110.8275 - precision0.7: 0.9325 - recall0.7: 0.7281 - tp0.9: 5071827.3482 - fp0.9: 135401.1327 - tn0.9: 44100020.3169 - fn0.9: 3203395.0422 - precision0.9: 0. 9746 - recall0.9: 0.6139 - accuracy: 0.9520 - auc: 0.9664 - val_loss: 0.7987 - val_tp0.1: 3338155.0000 - val_fp0.1: 2467457.0000 - val_tn0.1: 19568284.0000 - val_fn0.1: 840502.0000 - val_precision0.1: 0.5750 - val_recall0.1: 0.7989 - v al_tp0.3: 2683614.0000 - val_fp0.3: 1892638.0000 - val_tn0.3: 20143100.0000 - val_fn0.3: 1495043.0000 - val_precision0.3: 0.5864 - val_recall0.3: 0.6422 - val_tp0.5: 2192750.0000 - val_fp0.5: 1587985.0000 - val_tn0.5: 20447752.0000 - v al_fn0.5: 1985907.0000 - val_precision0.5: 0.5800 - val_recall0.5: 0.5247 - val_tp0.7: 1808320.0000 - val_fp0.7: 1284650.0000 - val_tn0.7: 20751092.0000 - val_fn0.7: 2370337.0000 - val_precision0.7: 0.5847 - val_recall0.7: 0.4328 - val _tp0.9: 1198897.0000 - val_fp0.9: 618524.0000 - val_tn0.9: 21417220.0000 - val_fn0.9: 2979760.0000 - val_precision0.9: 0.6597 - val_recall0.9: 0.2869 - val_accuracy: 0.8637 - val_auc: 0.8621 Epoch 10/50 1280/1280 [==============================] - 3281s 3s/step - loss: 0.3275 - tp0.1: 7792627.5020 - fp0.1: 4279949.3427 - tn0.1: 40001537.3630 - fn0.1: 436537.2279 - precision0.1: 0.6422 - recall0.1: 0.9472 - tp0.3: 7406705.6987 - fp0.3: 2160243.7174 - tn0.3: 42121245.1132 - fn0.3: 822459.0312 - precision0.3: 0.7727 - recall0.3: 0.8998 - tp0.5: 6961682.1405 - fp0.5: 1207985.9984 - tn0.5: 43073509.1913 - fn0.5: 1267482.5894 - precision0.5: 0.8511 - recall0.5: 0.8457 - tp0.7: 5977782.7900 - fp0.7: 441395.7190 - tn0.7: 43840082.2201 - fn0.7: 2251381.9399 - precision0.7: 0.9300 - recall0.7: 0.7245 - tp0.9: 5047421.8314 - fp0.9: 138119.9415 - tn0.9: 44143384.7346 - fn0.9: 3181742.8985 - precision0.9: 0. 9728 - recall0.9: 0.6102 - accuracy: 0.9528 - auc: 0.9660 - val_loss: 0.8271 - val_tp0.1: 3497398.0000 - val_fp0.1: 2613010.0000 - val_tn0.1: 19230938.0000 - val_fn0.1: 873051.0000 - val_precision0.1: 0.5724 - val_recall0.1: 0.8002 - v al_tp0.3: 2805297.0000 - val_fp0.3: 1928525.0000 - val_tn0.3: 19915426.0000 - val_fn0.3: 1565152.0000 - val_precision0.3: 0.5926 - val_recall0.3: 0.6419 - val_tp0.5: 2250608.0000 - val_fp0.5: 1602046.0000 - val_tn0.5: 20241908.0000 - v al_fn0.5: 2119841.0000 - val_precision0.5: 0.5842 - val_recall0.5: 0.5150 - val_tp0.7: 1873937.0000 - val_fp0.7: 1289178.0000 - val_tn0.7: 20554764.0000 - val_fn0.7: 2496512.0000 - val_precision0.7: 0.5924 - val_recall0.7: 0.4288 - val _tp0.9: 1282739.0000 - val_fp0.9: 663370.0000 - val_tn0.9: 21180588.0000 - val_fn0.9: 3087710.0000 - val_precision0.9: 0.6591 - val_recall0.9: 0.2935 - val_accuracy: 0.8580 - val_auc: 0.8595 Epoch 11/50 1280/1280 [==============================] - 3284s 3s/step - loss: 0.3131 - tp0.1: 7805750.0211 - fp0.1: 4180231.1202 - tn0.1: 40107131.8431 - fn0.1: 417539.0390 - precision0.1: 0.6527 - recall0.1: 0.9499 - tp0.3: 7439055.2615 - fp0.3: 2100484.2233 - tn0.3: 42186897.5113 - fn0.3: 784233.7986 - precision0.3: 0.7813 - recall0.3: 0.9065 - tp0.5: 7021029.5238 - fp0.5: 1158430.3731 - tn0.5: 43128929.4192 - fn0.5: 1202259.5363 - precision0.5: 0.8590 - recall0.5: 0.8568 - tp0.7: 6113168.1468 - fp0.7: 426487.4707 - tn0.7: 43860880.4848 - fn0.7: 2110120.9133 - precision0.7: 0.9352 - recall0.7: 0.7472 - tp0.9: 5208463.6464 - fp0.9: 134634.9001 - tn0.9: 44152728.1069 - fn0.9: 3014825.4137 - precision0.9: 0. 9752 - recall0.9: 0.6369 - accuracy: 0.9554 - auc: 0.9685 - val_loss: 0.8179 - val_tp0.1: 3171244.0000 - val_fp0.1: 2428671.0000 - val_tn0.1: 19710012.0000 - val_fn0.1: 904466.0000 - val_precision0.1: 0.5663 - val_recall0.1: 0.7781 - v al_tp0.3: 2577226.0000 - val_fp0.3: 1780010.0000 - val_tn0.3: 20358686.0000 - val_fn0.3: 1498484.0000 - val_precision0.3: 0.5915 - val_recall0.3: 0.6323 - val_tp0.5: 2103216.0000 - val_fp0.5: 1506964.0000 - val_tn0.5: 20631718.0000 - v al_fn0.5: 1972494.0000 - val_precision0.5: 0.5826 - val_recall0.5: 0.5160 - val_tp0.7: 1740648.0000 - val_fp0.7: 1184962.0000 - val_tn0.7: 20953724.0000 - val_fn0.7: 2335062.0000 - val_precision0.7: 0.5950 - val_recall0.7: 0.4271 - val _tp0.9: 1152892.0000 - val_fp0.9: 479364.0000 - val_tn0.9: 21659326.0000 - val_fn0.9: 2922818.0000 - val_precision0.9: 0.7063 - val_recall0.9: 0.2829 - val_accuracy: 0.8673 - val_auc: 0.8530 Epoch 12/50 1280/1280 [==============================] - 3297s 3s/step - loss: 0.3231 - tp0.1: 7673586.0687 - fp0.1: 4254414.5621 - tn0.1: 40148103.3286 - fn0.1: 434544.6292 - precision0.1: 0.6426 - recall0.1: 0.9456 - tp0.3: 7286525.1889 - fp0.3: 2133646.5324 - tn0.3: 42268881.5730 - fn0.3: 821605.5090 - precision0.3: 0.7727 - recall0.3: 0.8978 - tp0.5: 6849781.8283 - fp0.5: 1164265.2397 - tn0.5: 43238255.9961 - fn0.5: 1258348.8696 - precision0.5: 0.8542 - recall0.5: 0.8438 - tp0.7: 5967163.4153 - fp0.7: 423410.0211 - tn0.7: 43979128.0921 - fn0.7: 2140967.2826 - precision0.7: 0.9348 - recall0.7: 0.7339 - tp0.9: 5093586.0039 - fp0.9: 136848.5098 - tn0.9: 44265710.3138 - fn0.9: 3014544.6940 - precision0.9: 0. 9745 - recall0.9: 0.6262 - accuracy: 0.9537 - auc: 0.9657 - val_loss: 0.7042 - val_tp0.1: 3495859.0000 - val_fp0.1: 2855125.0000 - val_tn0.1: 19280112.0000 - val_fn0.1: 583301.0000 - val_precision0.1: 0.5504 - val_recall0.1: 0.8570 - v al_tp0.3: 2938637.0000 - val_fp0.3: 2173835.0000 - val_tn0.3: 19961412.0000 - val_fn0.3: 1140523.0000 - val_precision0.3: 0.5748 - val_recall0.3: 0.7204 - val_tp0.5: 2404430.0000 - val_fp0.5: 1820758.0000 - val_tn0.5: 20314484.0000 - v al_fn0.5: 1674730.0000 - val_precision0.5: 0.5691 - val_recall0.5: 0.5894 - val_tp0.7: 2024378.0000 - val_fp0.7: 1527093.0000 - val_tn0.7: 20608140.0000 - val_fn0.7: 2054782.0000 - val_precision0.7: 0.5700 - val_recall0.7: 0.4963 - val _tp0.9: 1381535.0000 - val_fp0.9: 912692.0000 - val_tn0.9: 21222556.0000 - val_fn0.9: 2697625.0000 - val_precision0.9: 0.6022 - val_recall0.9: 0.3387 - val_accuracy: 0.8667 - val_auc: 0.8805 Epoch 13/50 1280/1280 [==============================] - 3321s 3s/step - loss: 0.3169 - tp0.1: 7909004.5371 - fp0.1: 4146765.2818 - tn0.1: 40030494.6401 - fn0.1: 424405.8938 - precision0.1: 0.6543 - recall0.1: 0.9500 - tp0.3: 7536643.9977 - fp0.3: 2085465.0749 - tn0.3: 42091771.2584 - fn0.3: 796766.4333 - precision0.3: 0.7808 - recall0.3: 0.9063 - tp0.5: 7106355.0859 - fp0.5: 1146387.5933 - tn0.5: 43030851.5699 - fn0.5: 1227055.3450 - precision0.5: 0.8590 - recall0.5: 0.8551 - tp0.7: 6229305.1702 - fp0.7: 429169.7603 - tn0.7: 43748120.6526 - fn0.7: 2104105.2607 - precision0.7: 0.9350 - recall0.7: 0.7476 - tp0.9: 5365662.5207 - fp0.9: 142482.5558 - tn0.9: 44034765.0882 - fn0.9: 2967747.9102 - precision0.9: 0. 9736 - recall0.9: 0.6436 - accuracy: 0.9544 - auc: 0.9678 - val_loss: 0.8398 - val_tp0.1: 3245885.0000 - val_fp0.1: 2536432.0000 - val_tn0.1: 19519276.0000 - val_fn0.1: 912810.0000 - val_precision0.1: 0.5613 - val_recall0.1: 0.7805 - v al_tp0.3: 2564525.0000 - val_fp0.3: 1814112.0000 - val_tn0.3: 20241596.0000 - val_fn0.3: 1594170.0000 - val_precision0.3: 0.5857 - val_recall0.3: 0.6167 - val_tp0.5: 2015465.0000 - val_fp0.5: 1451082.0000 - val_tn0.5: 20604624.0000 - v al_fn0.5: 2143230.0000 - val_precision0.5: 0.5814 - val_recall0.5: 0.4846 - val_tp0.7: 1621561.0000 - val_fp0.7: 1053037.0000 - val_tn0.7: 21002666.0000 - val_fn0.7: 2537134.0000 - val_precision0.7: 0.6063 - val_recall0.7: 0.3899 - val _tp0.9: 1065568.0000 - val_fp0.9: 460390.0000 - val_tn0.9: 21595312.0000 - val_fn0.9: 3093127.0000 - val_precision0.9: 0.6983 - val_recall0.9: 0.2562 - val_accuracy: 0.8629 - val_auc: 0.8493 Epoch 14/50 1280/1280 [==============================] - 3314s 3s/step - loss: 0.3076 - tp0.1: 7765395.1202 - fp0.1: 4130752.8431 - tn0.1: 40213352.2810 - fn0.1: 401143.6737 - precision0.1: 0.6501 - recall0.1: 0.9503 - tp0.3: 7389168.6144 - fp0.3: 2041484.8189 - tn0.3: 42302624.6870 - fn0.3: 777370.1795 - precision0.3: 0.7825 - recall0.3: 0.9030 - tp0.5: 6961617.5222 - fp0.5: 1091504.5597 - tn0.5: 43252606.1101 - fn0.5: 1204921.2717 - precision0.5: 0.8642 - recall0.5: 0.8492 - tp0.7: 6118152.3286 - fp0.7: 416044.1280 - tn0.7: 43928097.5558 - fn0.7: 2048386.4653 - precision0.7: 0.9364 - recall0.7: 0.7464 - tp0.9: 5275694.6081 - fp0.9: 131773.3169 - tn0.9: 44212345.9774 - fn0.9: 2890844.1858 - precision0.9: 0. 9759 - recall0.9: 0.6429 - accuracy: 0.9559 - auc: 0.9681 - val_loss: 0.7646 - val_tp0.1: 3394116.0000 - val_fp0.1: 2434359.0000 - val_tn0.1: 19620386.0000 - val_fn0.1: 765541.0000 - val_precision0.1: 0.5823 - val_recall0.1: 0.8160 - v al_tp0.3: 2854698.0000 - val_fp0.3: 1867547.0000 - val_tn0.3: 20187194.0000 - val_fn0.3: 1304959.0000 - val_precision0.3: 0.6045 - val_recall0.3: 0.6863 - val_tp0.5: 2392164.0000 - val_fp0.5: 1600876.0000 - val_tn0.5: 20453860.0000 - v al_fn0.5: 1767493.0000 - val_precision0.5: 0.5991 - val_recall0.5: 0.5751 - val_tp0.7: 2014352.0000 - val_fp0.7: 1325938.0000 - val_tn0.7: 20728804.0000 - val_fn0.7: 2145305.0000 - val_precision0.7: 0.6030 - val_recall0.7: 0.4843 - val _tp0.9: 1382581.0000 - val_fp0.9: 710524.0000 - val_tn0.9: 21344216.0000 - val_fn0.9: 2777076.0000 - val_precision0.9: 0.6605 - val_recall0.9: 0.3324 - val_accuracy: 0.8715 - val_auc: 0.8680 Epoch 15/50 1280/1280 [==============================] - 3321s 3s/step - loss: 0.3012 - tp0.1: 7918202.5168 - fp0.1: 3944007.1944 - tn0.1: 40234677.5113 - fn0.1: 413802.1538 - precision0.1: 0.6678 - recall0.1: 0.9509 - tp0.3: 7545589.1913 - fp0.3: 1942385.4692 - tn0.3: 42236259.0687 - fn0.3: 786415.4793 - precision0.3: 0.7966 - recall0.3: 0.9059 - tp0.5: 7139685.9657 - fp0.5: 1075216.9391 - tn0.5: 43103450.5808 - fn0.5: 1192318.7049 - precision0.5: 0.8712 - recall0.5: 0.8570 - tp0.7: 6377161.2748 - fp0.7: 450450.9469 - tn0.7: 43728240.0265 - fn0.7: 1954843.3958 - precision0.7: 0.9369 - recall0.7: 0.7641 - tp0.9: 5506362.6120 - fp0.9: 143446.8002 - tn0.9: 44035203.3466 - fn0.9: 2825642.0585 - precision0.9: 0. 9752 - recall0.9: 0.6625 - accuracy: 0.9571 - auc: 0.9692 - val_loss: 0.7740 - val_tp0.1: 3355047.0000 - val_fp0.1: 2511597.0000 - val_tn0.1: 19571600.0000 - val_fn0.1: 776157.0000 - val_precision0.1: 0.5719 - val_recall0.1: 0.8121 - v al_tp0.3: 2793785.0000 - val_fp0.3: 1928920.0000 - val_tn0.3: 20154280.0000 - val_fn0.3: 1337419.0000 - val_precision0.3: 0.5916 - val_recall0.3: 0.6763 - val_tp0.5: 2272116.0000 - val_fp0.5: 1578770.0000 - val_tn0.5: 20504436.0000 - v al_fn0.5: 1859088.0000 - val_precision0.5: 0.5900 - val_recall0.5: 0.5500 - val_tp0.7: 1883335.0000 - val_fp0.7: 1254872.0000 - val_tn0.7: 20828326.0000 - val_fn0.7: 2247869.0000 - val_precision0.7: 0.6001 - val_recall0.7: 0.4559 - val _tp0.9: 1294491.0000 - val_fp0.9: 656247.0000 - val_tn0.9: 21426948.0000 - val_fn0.9: 2836713.0000 - val_precision0.9: 0.6636 - val_recall0.9: 0.3133 - val_accuracy: 0.8689 - val_auc: 0.8643 Epoch 16/50 1280/1280 [==============================] - 3322s 3s/step - loss: 0.2996 - tp0.1: 7939368.5972 - fp0.1: 3969169.3778 - tn0.1: 40211699.6347 - fn0.1: 390406.3911 - precision0.1: 0.6606 - recall0.1: 0.9528 - tp0.3: 7573992.7580 - fp0.3: 1993073.9243 - tn0.3: 42187811.5020 - fn0.3: 755782.2303 - precision0.3: 0.7866 - recall0.3: 0.9074 - tp0.5: 7177194.8970 - fp0.5: 1109584.0390 - tn0.5: 43071285.9805 - fn0.5: 1152580.0913 - precision0.5: 0.8632 - recall0.5: 0.8586 - tp0.7: 6618657.6151 - fp0.7: 578836.1054 - tn0.7: 43602043.0445 - fn0.7: 1711117.3731 - precision0.7: 0.9188 - recall0.7: 0.7896 - tp0.9: 5482513.6440 - fp0.9: 141140.2100 - tn0.9: 44039753.1483 - fn0.9: 2847261.3443 - precision0.9: 0. 9744 - recall0.9: 0.6538 - accuracy: 0.9565 - auc: 0.9693 - val_loss: 0.8054 - val_tp0.1: 3345481.0000 - val_fp0.1: 2254991.0000 - val_tn0.1: 19696408.0000 - val_fn0.1: 917515.0000 - val_precision0.1: 0.5974 - val_recall0.1: 0.7848 - v al_tp0.3: 2726884.0000 - val_fp0.3: 1640058.0000 - val_tn0.3: 20311344.0000 - val_fn0.3: 1536112.0000 - val_precision0.3: 0.6244 - val_recall0.3: 0.6397 - val_tp0.5: 2263115.0000 - val_fp0.5: 1402171.0000 - val_tn0.5: 20549236.0000 - v al_fn0.5: 1999881.0000 - val_precision0.5: 0.6174 - val_recall0.5: 0.5309 - val_tp0.7: 1906416.0000 - val_fp0.7: 1106825.0000 - val_tn0.7: 20844576.0000 - val_fn0.7: 2356580.0000 - val_precision0.7: 0.6327 - val_recall0.7: 0.4472 - val _tp0.9: 1297258.0000 - val_fp0.9: 495212.0000 - val_tn0.9: 21456192.0000 - val_fn0.9: 2965738.0000 - val_precision0.9: 0.7237 - val_recall0.9: 0.3043 - val_accuracy: 0.8702 - val_auc: 0.8614 Epoch 17/50 1280/1280 [==============================] - 3281s 3s/step - loss: 0.2900 - tp0.1: 7724454.9820 - fp0.1: 3793475.2631 - tn0.1: 40600766.8860 - fn0.1: 391947.2693 - precision0.1: 0.6695 - recall0.1: 0.9516 - tp0.3: 7368504.9789 - fp0.3: 1879500.1913 - tn0.3: 42514764.5855 - fn0.3: 747897.2724 - precision0.3: 0.7960 - recall0.3: 0.9078 - tp0.5: 6984976.5464 - fp0.5: 1046817.2740 - tn0.5: 43347456.7892 - fn0.5: 1131425.7049 - precision0.5: 0.8690 - recall0.5: 0.8606 - tp0.7: 6474243.4176 - fp0.7: 552184.5105 - tn0.7: 43842053.0726 - fn0.7: 1642158.8337 - precision0.7: 0.9206 - recall0.7: 0.7983 - tp0.9: 5438164.0788 - fp0.9: 137406.8056 - tn0.9: 44256829.4044 - fn0.9: 2678238.1725 - precision0.9: 0. 9752 - recall0.9: 0.6718 - accuracy: 0.9584 - auc: 0.9698 - val_loss: 0.8475 - val_tp0.1: 3212091.0000 - val_fp0.1: 2556630.0000 - val_tn0.1: 19565418.0000 - val_fn0.1: 880263.0000 - val_precision0.1: 0.5568 - val_recall0.1: 0.7849 - v al_tp0.3: 2676698.0000 - val_fp0.3: 1975975.0000 - val_tn0.3: 20146070.0000 - val_fn0.3: 1415656.0000 - val_precision0.3: 0.5753 - val_recall0.3: 0.6541 - val_tp0.5: 2228667.0000 - val_fp0.5: 1724443.0000 - val_tn0.5: 20397608.0000 - v al_fn0.5: 1863687.0000 - val_precision0.5: 0.5638 - val_recall0.5: 0.5446 - val_tp0.7: 1876988.0000 - val_fp0.7: 1421139.0000 - val_tn0.7: 20700906.0000 - val_fn0.7: 2215366.0000 - val_precision0.7: 0.5691 - val_recall0.7: 0.4587 - val _tp0.9: 1318523.0000 - val_fp0.9: 744640.0000 - val_tn0.9: 21377414.0000 - val_fn0.9: 2773831.0000 - val_precision0.9: 0.6391 - val_recall0.9: 0.3222 - val_accuracy: 0.8631 - val_auc: 0.8479 Epoch 18/50 1280/1280 [==============================] - 3291s 3s/step - loss: 0.2960 - tp0.1: 7878258.3583 - fp0.1: 3966414.4723 - tn0.1: 40266792.8720 - fn0.1: 399191.5441 - precision0.1: 0.6660 - recall0.1: 0.9518 - tp0.3: 7519728.0133 - fp0.3: 1997387.8189 - tn0.3: 42235815.4325 - fn0.3: 757721.8891 - precision0.3: 0.7910 - recall0.3: 0.9083 - tp0.5: 7117268.5543 - fp0.5: 1103594.4309 - tn0.5: 43129603.3357 - fn0.5: 1160181.3482 - precision0.5: 0.8660 - recall0.5: 0.8598 - tp0.7: 6559720.6885 - fp0.7: 569817.0601 - tn0.7: 43663373.8767 - fn0.7: 1717729.2139 - precision0.7: 0.9203 - recall0.7: 0.7929 - tp0.9: 5460392.9578 - fp0.9: 133811.0039 - tn0.9: 44099404.8353 - fn0.9: 2817056.9446 - precision0.9: 0. 9765 - recall0.9: 0.6620 - accuracy: 0.9569 - auc: 0.9692 - val_loss: 2.4700 - val_tp0.1: 3478680.0000 - val_fp0.1: 2735141.0000 - val_tn0.1: 19398832.0000 - val_fn0.1: 601742.0000 - val_precision0.1: 0.5598 - val_recall0.1: 0.8525 - v al_tp0.3: 2990828.0000 - val_fp0.3: 2147854.0000 - val_tn0.3: 19986120.0000 - val_fn0.3: 1089594.0000 - val_precision0.3: 0.5820 - val_recall0.3: 0.7330 - val_tp0.5: 2523597.0000 - val_fp0.5: 1960329.0000 - val_tn0.5: 20173640.0000 - v al_fn0.5: 1556825.0000 - val_precision0.5: 0.5628 - val_recall0.5: 0.6185 - val_tp0.7: 2211753.0000 - val_fp0.7: 1837061.0000 - val_tn0.7: 20296910.0000 - val_fn0.7: 1868669.0000 - val_precision0.7: 0.5463 - val_recall0.7: 0.5420 - val _tp0.9: 1781271.0000 - val_fp0.9: 1591848.0000 - val_tn0.9: 20542120.0000 - val_fn0.9: 2299151.0000 - val_precision0.9: 0.5281 - val_recall0.9: 0.4365 - val_accuracy: 0.8658 - val_auc: 0.8707 Epoch 19/50 1280/1280 [==============================] - 3287s 3s/step - loss: 0.2909 - tp0.1: 7989303.7198 - fp0.1: 3862557.4653 - tn0.1: 40273532.0609 - fn0.1: 385255.3396 - precision0.1: 0.6759 - recall0.1: 0.9542 - tp0.3: 7630793.7799 - fp0.3: 1926931.7330 - tn0.3: 42209171.3419 - fn0.3: 743765.2795 - precision0.3: 0.7994 - recall0.3: 0.9113 - tp0.5: 7240582.7869 - fp0.5: 1067331.3224 - tn0.5: 43068761.2030 - fn0.5: 1133976.2724 - precision0.5: 0.8729 - recall0.5: 0.8645 - tp0.7: 6700153.0500 - fp0.7: 553561.1038 - tn0.7: 43582525.7065 - fn0.7: 1674406.0094 - precision0.7: 0.9247 - recall0.7: 0.7993 - tp0.9: 5619106.6877 - fp0.9: 138913.2576 - tn0.9: 43997191.2326 - fn0.9: 2755452.3716 - precision0.9: 0. 9761 - recall0.9: 0.6706 - accuracy: 0.9580 - auc: 0.9708 - val_loss: 0.8749 - val_tp0.1: 3092711.0000 - val_fp0.1: 2067604.0000 - val_tn0.1: 20017088.0000 - val_fn0.1: 1036989.0000 - val_precision0.1: 0.5993 - val_recall0.1: 0.7489 - val_tp0.3: 2486761.0000 - val_fp0.3: 1549670.0000 - val_tn0.3: 20535032.0000 - val_fn0.3: 1642939.0000 - val_precision0.3: 0.6161 - val_recall0.3: 0.6022 - val_tp0.5: 2068354.0000 - val_fp0.5: 1334103.0000 - val_tn0.5: 20750600.0000 - val_fn0.5: 2061346.0000 - val_precision0.5: 0.6079 - val_recall0.5: 0.5008 - val_tp0.7: 1728814.0000 - val_fp0.7: 1041223.0000 - val_tn0.7: 21043472.0000 - val_fn0.7: 2400886.0000 - val_precision0.7: 0.6241 - val_recall0.7: 0.4186 - va l_tp0.9: 1199934.0000 - val_fp0.9: 520759.0000 - val_tn0.9: 21563940.0000 - val_fn0.9: 2929766.0000 - val_precision0.9: 0.6974 - val_recall0.9: 0.2906 - val_accuracy: 0.8705 - val_auc: 0.8436 Epoch 20/50 1280/1280 [==============================] - 3278s 3s/step - loss: 0.2874 - tp0.1: 7845801.3482 - fp0.1: 3747571.3029 - tn0.1: 40520331.9508 - fn0.1: 396960.4161 - precision0.1: 0.6782 - recall0.1: 0.9514 - tp0.3: 7499855.0742 - fp0.3: 1875299.3388 - tn0.3: 42392596.7424 - fn0.3: 742906.6901 - precision0.3: 0.8017 - recall0.3: 0.9098 - tp0.5: 7121660.4918 - fp0.5: 1042386.0788 - tn0.5: 43225501.8384 - fn0.5: 1121101.2724 - precision0.5: 0.8739 - recall0.5: 0.8640 - tp0.7: 6592531.3404 - fp0.7: 538088.3911 - tn0.7: 43729809.0500 - fn0.7: 1650230.4239 - precision0.7: 0.9254 - recall0.7: 0.8003 - tp0.9: 5543415.5105 - fp0.9: 131938.6378 - tn0.9: 44135942.6190 - fn0.9: 2699346.2537 - precision0.9: 0. 9770 - recall0.9: 0.6728 - accuracy: 0.9592 - auc: 0.9698 - val_loss: 0.9565 - val_tp0.1: 2943258.0000 - val_fp0.1: 2086336.0000 - val_tn0.1: 20045976.0000 - val_fn0.1: 1138833.0000 - val_precision0.1: 0.5852 - val_recall0.1: 0.7210 - val_tp0.3: 2419480.0000 - val_fp0.3: 1662989.0000 - val_tn0.3: 20469314.0000 - val_fn0.3: 1662611.0000 - val_precision0.3: 0.5927 - val_recall0.3: 0.5927 - val_tp0.5: 2018052.0000 - val_fp0.5: 1478186.0000 - val_tn0.5: 20654124.0000 - val_fn0.5: 2064039.0000 - val_precision0.5: 0.5772 - val_recall0.5: 0.4944 - val_tp0.7: 1715248.0000 - val_fp0.7: 1231354.0000 - val_tn0.7: 20900956.0000 - val_fn0.7: 2366843.0000 - val_precision0.7: 0.5821 - val_recall0.7: 0.4202 - va l_tp0.9: 1245570.0000 - val_fp0.9: 677868.0000 - val_tn0.9: 21454434.0000 - val_fn0.9: 2836521.0000 - val_precision0.9: 0.6476 - val_recall0.9: 0.3051 - val_accuracy: 0.8649 - val_auc: 0.8275 Epoch 21/50 1280/1280 [==============================] - 3290s 3s/step - loss: 0.2804 - tp0.1: 7821343.4738 - fp0.1: 3664726.1171 - tn0.1: 40657232.2397 - fn0.1: 367350.5347 - precision0.1: 0.6815 - recall0.1: 0.9542 - tp0.3: 7489144.7580 - fp0.3: 1868735.6292 - tn0.3: 42453227.8447 - fn0.3: 699549.2506 - precision0.3: 0.8010 - recall0.3: 0.9132 - tp0.5: 7115665.6729 - fp0.5: 1043113.8876 - tn0.5: 43278844.9688 - fn0.5: 1073028.3357 - precision0.5: 0.8724 - recall0.5: 0.8679 - tp0.7: 6602597.8665 - fp0.7: 551623.0804 - tn0.7: 43770320.6628 - fn0.7: 1586096.1421 - precision0.7: 0.9226 - recall0.7: 0.8053 - tp0.9: 5554093.7018 - fp0.9: 134091.5519 - tn0.9: 44187854.0671 - fn0.9: 2634600.3068 - precision0.9: 0. 9763 - recall0.9: 0.6772 - accuracy: 0.9595 - auc: 0.9714 - val_loss: 0.8160 - val_tp0.1: 3192064.0000 - val_fp0.1: 2182394.0000 - val_tn0.1: 19900398.0000 - val_fn0.1: 939537.0000 - val_precision0.1: 0.5939 - val_recall0.1: 0.7726 - v al_tp0.3: 2628251.0000 - val_fp0.3: 1676252.0000 - val_tn0.3: 20406544.0000 - val_fn0.3: 1503350.0000 - val_precision0.3: 0.6106 - val_recall0.3: 0.6361 - val_tp0.5: 2262964.0000 - val_fp0.5: 1459711.0000 - val_tn0.5: 20623092.0000 - v al_fn0.5: 1868637.0000 - val_precision0.5: 0.6079 - val_recall0.5: 0.5477 - val_tp0.7: 1912004.0000 - val_fp0.7: 1114695.0000 - val_tn0.7: 20968108.0000 - val_fn0.7: 2219597.0000 - val_precision0.7: 0.6317 - val_recall0.7: 0.4628 - val _tp0.9: 1266412.0000 - val_fp0.9: 537157.0000 - val_tn0.9: 21545640.0000 - val_fn0.9: 2865189.0000 - val_precision0.9: 0.7022 - val_recall0.9: 0.3065 - val_accuracy: 0.8730 - val_auc: 0.8570 Epoch 22/50 1280/1280 [==============================] - 3337s 3s/step - loss: 0.2695 - tp0.1: 7964599.1304 - fp0.1: 3487980.5644 - tn0.1: 40692123.6760 - fn0.1: 365971.2584 - precision0.1: 0.6952 - recall0.1: 0.9559 - tp0.3: 7639300.1928 - fp0.3: 1768977.4333 - tn0.3: 42411101.8767 - fn0.3: 691270.1959 - precision0.3: 0.8119 - recall0.3: 0.9169 - tp0.5: 7283022.7681 - fp0.5: 1008769.9313 - tn0.5: 43171283.5621 - fn0.5: 1047547.6206 - precision0.5: 0.8781 - recall0.5: 0.8740 - tp0.7: 6797706.8946 - fp0.7: 543031.7963 - tn0.7: 43637044.5636 - fn0.7: 1532863.4941 - precision0.7: 0.9257 - recall0.7: 0.8158 - tp0.9: 5748924.9516 - fp0.9: 136050.2350 - tn0.9: 44044056.0921 - fn0.9: 2581645.4372 - precision0.9: 0. 9771 - recall0.9: 0.6893 - accuracy: 0.9609 - auc: 0.9731 - val_loss: 0.8131 - val_tp0.1: 3187368.0000 - val_fp0.1: 2205558.0000 - val_tn0.1: 19939310.0000 - val_fn0.1: 882169.0000 - val_precision0.1: 0.5910 - val_recall0.1: 0.7832 - v al_tp0.3: 2568349.0000 - val_fp0.3: 1630822.0000 - val_tn0.3: 20514044.0000 - val_fn0.3: 1501188.0000 - val_precision0.3: 0.6116 - val_recall0.3: 0.6311 - val_tp0.5: 2132479.0000 - val_fp0.5: 1391371.0000 - val_tn0.5: 20753492.0000 - v al_fn0.5: 1937058.0000 - val_precision0.5: 0.6052 - val_recall0.5: 0.5240 - val_tp0.7: 1724396.0000 - val_fp0.7: 1052743.0000 - val_tn0.7: 21092120.0000 - val_fn0.7: 2345141.0000 - val_precision0.7: 0.6209 - val_recall0.7: 0.4237 - val _tp0.9: 1088044.0000 - val_fp0.9: 509365.0000 - val_tn0.9: 21635508.0000 - val_fn0.9: 2981493.0000 - val_precision0.9: 0.6811 - val_recall0.9: 0.2674 - val_accuracy: 0.8730 - val_auc: 0.8564 Epoch 23/50 1280/1280 [==============================] - 3288s 3s/step - loss: 0.2689 - tp0.1: 7750995.1733 - fp0.1: 3597605.4887 - tn0.1: 40799177.1624 - fn0.1: 362898.6737 - precision0.1: 0.6830 - recall0.1: 0.9562 - tp0.3: 7415912.0773 - fp0.3: 1777617.9633 - tn0.3: 42619150.5051 - fn0.3: 697981.7697 - precision0.3: 0.8063 - recall0.3: 0.9146 - tp0.5: 7059667.4192 - fp0.5: 992741.5051 - tn0.5: 43404008.9727 - fn0.5: 1054226.4278 - precision0.5: 0.8769 - recall0.5: 0.8705 - t p0.7: 6579822.4957 - fp0.7: 525915.9500 - tn0.7: 43870813.2443 - fn0.7: 1534071.3513 - precision0.7: 0.9263 - recall0.7: 0.8112 - tp0.9: 5573469.2935 - fp0.9: 125489.0593 - tn0.9: 44271266.5379 - fn0.9: 2540424.5535 - precision0.9: 0.9 785 - recall0.9: 0.6878 - accuracy: 0.9612 - auc: 0.9727 - val_loss: 0.8991 - val_tp0.1: 3067116.0000 - val_fp0.1: 2378685.0000 - val_tn0.1: 19772492.0000 - val_fn0.1: 996109.0000 - val_precision0.1: 0.5632 - val_recall0.1: 0.7548 - va l_tp0.3: 2525982.0000 - val_fp0.3: 1869663.0000 - val_tn0.3: 20281514.0000 - val_fn0.3: 1537243.0000 - val_precision0.3: 0.5747 - val_recall0.3: 0.6217 - val_tp0.5: 2090818.0000 - val_fp0.5: 1570273.0000 - val_tn0.5: 20580908.0000 - va l_fn0.5: 1972407.0000 - val_precision0.5: 0.5711 - val_recall0.5: 0.5146 - val_tp0.7: 1691191.0000 - val_fp0.7: 1177904.0000 - val_tn0.7: 20973274.0000 - val_fn0.7: 2372034.0000 - val_precision0.7: 0.5895 - val_recall0.7: 0.4162 - val_ tp0.9: 1101527.0000 - val_fp0.9: 574543.0000 - val_tn0.9: 21576624.0000 - val_fn0.9: 2961698.0000 - val_precision0.9: 0.6572 - val_recall0.9: 0.2711 - val_accuracy: 0.8649 - val_auc: 0.8377 Epoch 24/50 1280/1280 [==============================] - 3284s 3s/step - loss: 0.2805 - tp0.1: 7918656.6589 - fp0.1: 3592495.9235 - tn0.1: 40635399.4606 - fn0.1: 364123.3185 - precision0.1: 0.6839 - recall0.1: 0.9541 - tp0.3: 7581799.2061 - fp0.3: 1810020.2311 - tn0.3: 42417852.9594 - fn0.3: 700980.7713 - precision0.3: 0.8032 - recall0.3: 0.9122 - tp0.5: 7211523.7502 - fp0.5: 1027547.9930 - tn0.5: 43200324.1296 - fn0.5: 1071256.2272 - precision0.5: 0.8718 - recall0.5: 0.8665 - tp0.7: 6727091.3692 - fp0.7: 558955.8712 - tn0.7: 43668944.4075 - fn0.7: 1555688.6081 - precision0.7: 0.9209 - recall0.7: 0.8072 - tp0.9: 5696121.9555 - fp0.9: 142622.7455 - tn0.9: 44085280.0343 - fn0.9: 2586658.0219 - precision0.9: 0. 9746 - recall0.9: 0.6826 - accuracy: 0.9591 - auc: 0.9708 - val_loss: 0.9386 - val_tp0.1: 2779932.0000 - val_fp0.1: 1939286.0000 - val_tn0.1: 20344936.0000 - val_fn0.1: 1150243.0000 - val_precision0.1: 0.5891 - val_recall0.1: 0.7073 - val_tp0.3: 2181594.0000 - val_fp0.3: 1457307.0000 - val_tn0.3: 20826908.0000 - val_fn0.3: 1748581.0000 - val_precision0.3: 0.5995 - val_recall0.3: 0.5551 - val_tp0.5: 1772386.0000 - val_fp0.5: 1197130.0000 - val_tn0.5: 21087092.0000 - val_fn0.5: 2157789.0000 - val_precision0.5: 0.5969 - val_recall0.5: 0.4510 - val_tp0.7: 1397374.0000 - val_fp0.7: 840833.0000 - val_tn0.7: 21443384.0000 - val_fn0.7: 2532801.0000 - val_precision0.7: 0.6243 - val_recall0.7: 0.3556 - val _tp0.9: 891892.0000 - val_fp0.9: 338054.0000 - val_tn0.9: 21946184.0000 - val_fn0.9: 3038283.0000 - val_precision0.9: 0.7251 - val_recall0.9: 0.2269 - val_accuracy: 0.8720 - val_auc: 0.8227 Epoch 25/50 1280/1280 [==============================] - 3312s 3s/step - loss: 0.2614 - tp0.1: 7920216.7338 - fp0.1: 3526618.6542 - tn0.1: 40723751.9001 - fn0.1: 340058.4512 - precision0.1: 0.6948 - recall0.1: 0.9594 - tp0.3: 7591746.0851 - fp0.3: 1770255.0687 - tn0.3: 42480125.7884 - fn0.3: 668529.0999 - precision0.3: 0.8133 - recall0.3: 0.9199 - tp0.5: 7232148.8064 - fp0.5: 1004410.7486 - tn0.5: 43245980.8556 - fn0.5: 1028126.3786 - precision0.5: 0.8800 - recall0.5: 0.8766 - tp0.7: 6751684.1514 - fp0.7: 540161.4325 - tn0.7: 43710214.4629 - fn0.7: 1508591.0336 - precision0.7: 0.9275 - recall0.7: 0.8179 - tp0.9: 5682987.5933 - fp0.9: 133426.7330 - tn0.9: 44116927.1835 - fn0.9: 2577287.5917 - precision0.9: 0. 9781 - recall0.9: 0.6873 - accuracy: 0.9617 - auc: 0.9742 - val_loss: 0.7990 - val_tp0.1: 3208335.0000 - val_fp0.1: 2291707.0000 - val_tn0.1: 19888704.0000 - val_fn0.1: 825651.0000 - val_precision0.1: 0.5833 - val_recall0.1: 0.7953 - v al_tp0.3: 2646324.0000 - val_fp0.3: 1812815.0000 - val_tn0.3: 20367606.0000 - val_fn0.3: 1387662.0000 - val_precision0.3: 0.5935 - val_recall0.3: 0.6560 - val_tp0.5: 2184535.0000 - val_fp0.5: 1449172.0000 - val_tn0.5: 20731252.0000 - v al_fn0.5: 1849451.0000 - val_precision0.5: 0.6012 - val_recall0.5: 0.5415 - val_tp0.7: 1700807.0000 - val_fp0.7: 1059055.0000 - val_tn0.7: 21121356.0000 - val_fn0.7: 2333179.0000 - val_precision0.7: 0.6163 - val_recall0.7: 0.4216 - val _tp0.9: 1000799.0000 - val_fp0.9: 603281.0000 - val_tn0.9: 21577132.0000 - val_fn0.9: 3033187.0000 - val_precision0.9: 0.6239 - val_recall0.9: 0.2481 - val_accuracy: 0.8742 - val_auc: 0.8559 Epoch 26/50 1280/1280 [==============================] - 3292s 3s/step - loss: 0.2564 - tp0.1: 7951938.6698 - fp0.1: 3507608.0250 - tn0.1: 40722855.8618 - fn0.1: 328256.7658 - precision0.1: 0.6956 - recall0.1: 0.9610 - tp0.3: 7628245.6300 - fp0.3: 1764444.8579 - tn0.3: 42466010.5285 - fn0.3: 651949.8056 - precision0.3: 0.8130 - recall0.3: 0.9222 - tp0.5: 7277018.4473 - fp0.5: 993563.1429 - tn0.5: 43236890.8002 - fn0.5: 1003176.9883 - precision0.5: 0.8801 - recall0.5: 0.8802 - t p0.7: 6809211.9329 - fp0.7: 538938.6565 - tn0.7: 43691507.5847 - fn0.7: 1470983.5027 - precision0.7: 0.9271 - recall0.7: 0.8247 - tp0.9: 5778468.3435 - fp0.9: 130088.7877 - tn0.9: 44100381.7361 - fn0.9: 2501727.0921 - precision0.9: 0.9 783 - recall0.9: 0.7006 - accuracy: 0.9620 - auc: 0.9752 - val_loss: 0.9080 - val_tp0.1: 2917153.0000 - val_fp0.1: 2217207.0000 - val_tn0.1: 20036056.0000 - val_fn0.1: 1043985.0000 - val_precision0.1: 0.5682 - val_recall0.1: 0.7364 - v al_tp0.3: 2324132.0000 - val_fp0.3: 1709552.0000 - val_tn0.3: 20543718.0000 - val_fn0.3: 1637006.0000 - val_precision0.3: 0.5762 - val_recall0.3: 0.5867 - val_tp0.5: 1885949.0000 - val_fp0.5: 1373092.0000 - val_tn0.5: 20880176.0000 - v al_fn0.5: 2075189.0000 - val_precision0.5: 0.5787 - val_recall0.5: 0.4761 - val_tp0.7: 1470934.0000 - val_fp0.7: 951612.0000 - val_tn0.7: 21301648.0000 - val_fn0.7: 2490204.0000 - val_precision0.7: 0.6072 - val_recall0.7: 0.3713 - val_ tp0.9: 925487.0000 - val_fp0.9: 440991.0000 - val_tn0.9: 21812280.0000 - val_fn0.9: 3035651.0000 - val_precision0.9: 0.6773 - val_recall0.9: 0.2336 - val_accuracy: 0.8685 - val_auc: 0.8286 Epoch 27/50 1280/1280 [==============================] - 3294s 3s/step - loss: 0.2645 - tp0.1: 8005473.6409 - fp0.1: 3575769.4098 - tn0.1: 40581931.1319 - fn0.1: 347472.6667 - precision0.1: 0.6907 - recall0.1: 0.9587 - tp0.3: 7670517.9243 - fp0.3: 1798604.7674 - tn0.3: 42359111.5941 - fn0.3: 682428.3833 - precision0.3: 0.8108 - recall0.3: 0.9185 - tp0.5: 7312500.5558 - fp0.5: 1024504.0812 - tn0.5: 43133203.4434 - fn0.5: 1040445.7518 - precision0.5: 0.8784 - recall0.5: 0.8764 - tp0.7: 6846122.2201 - fp0.7: 554274.4294 - tn0.7: 43603409.3521 - fn0.7: 1506824.0874 - precision0.7: 0.9264 - recall0.7: 0.8215 - tp0.9: 5804102.2420 - fp0.9: 127947.9672 - tn0.9: 44029764.9969 - fn0.9: 2548844.0656 - precision0.9: 0. 9789 - recall0.9: 0.6991 - accuracy: 0.9613 - auc: 0.9737 - val_loss: 0.7467 - val_tp0.1: 3265250.0000 - val_fp0.1: 2199966.0000 - val_tn0.1: 19968754.0000 - val_fn0.1: 780424.0000 - val_precision0.1: 0.5975 - val_recall0.1: 0.8071 - v al_tp0.3: 2595986.0000 - val_fp0.3: 1569977.0000 - val_tn0.3: 20598752.0000 - val_fn0.3: 1449688.0000 - val_precision0.3: 0.6231 - val_recall0.3: 0.6417 - val_tp0.5: 2090775.0000 - val_fp0.5: 1320764.0000 - val_tn0.5: 20847968.0000 - v al_fn0.5: 1954899.0000 - val_precision0.5: 0.6129 - val_recall0.5: 0.5168 - val_tp0.7: 1610859.0000 - val_fp0.7: 895071.0000 - val_tn0.7: 21273662.0000 - val_fn0.7: 2434815.0000 - val_precision0.7: 0.6428 - val_recall0.7: 0.3982 - val_ tp0.9: 934620.0000 - val_fp0.9: 380349.0000 - val_tn0.9: 21788384.0000 - val_fn0.9: 3111054.0000 - val_precision0.9: 0.7108 - val_recall0.9: 0.2310 - val_accuracy: 0.8750 - val_auc: 0.8659 Epoch 28/50 1280/1280 [==============================] - 3286s 3s/step - loss: 0.2563 - tp0.1: 7900461.9563 - fp0.1: 3575374.1405 - tn0.1: 40711544.3599 - fn0.1: 323306.9867 - precision0.1: 0.6896 - recall0.1: 0.9612 - tp0.3: 7567966.7549 - fp0.3: 1768843.2389 - tn0.3: 42518056.5605 - fn0.3: 655802.1881 - precision0.3: 0.8113 - recall0.3: 0.9206 - tp0.5: 7202561.9477 - fp0.5: 988935.1319 - tn0.5: 43297946.7713 - fn0.5: 1021206.9953 - precision0.5: 0.8795 - recall0.5: 0.8766 - t p0.7: 6725537.1077 - fp0.7: 525482.0679 - tn0.7: 43761380.4372 - fn0.7: 1498231.8353 - precision0.7: 0.9278 - recall0.7: 0.8191 - tp0.9: 5729492.5956 - fp0.9: 139279.5152 - tn0.9: 44147595.4887 - fn0.9: 2494276.3474 - precision0.9: 0.9 761 - recall0.9: 0.7005 - accuracy: 0.9620 - auc: 0.9747 - val_loss: 0.9282 - val_tp0.1: 3074924.0000 - val_fp0.1: 2026526.0000 - val_tn0.1: 20054118.0000 - val_fn0.1: 1058829.0000 - val_precision0.1: 0.6028 - val_recall0.1: 0.7439 - v al_tp0.3: 2384857.0000 - val_fp0.3: 1512374.0000 - val_tn0.3: 20568268.0000 - val_fn0.3: 1748896.0000 - val_precision0.3: 0.6119 - val_recall0.3: 0.5769 - val_tp0.5: 1874790.0000 - val_fp0.5: 1177108.0000 - val_tn0.5: 20903548.0000 - v al_fn0.5: 2258963.0000 - val_precision0.5: 0.6143 - val_recall0.5: 0.4535 - val_tp0.7: 1433826.0000 - val_fp0.7: 875539.0000 - val_tn0.7: 21205108.0000 - val_fn0.7: 2699927.0000 - val_precision0.7: 0.6209 - val_recall0.7: 0.3469 - val_ tp0.9: 876571.0000 - val_fp0.9: 463067.0000 - val_tn0.9: 21617596.0000 - val_fn0.9: 3257182.0000 - val_precision0.9: 0.6543 - val_recall0.9: 0.2121 - val_accuracy: 0.8689 - val_auc: 0.8345 Epoch 29/50 1280/1280 [==============================] - 3301s 3s/step - loss: 0.2631 - tp0.1: 7928634.4387 - fp0.1: 3499371.4231 - tn0.1: 40746977.2912 - fn0.1: 335655.7486 - precision0.1: 0.6931 - recall0.1: 0.9590 - tp0.3: 7590846.6565 - fp0.3: 1745234.9133 - tn0.3: 42501135.9079 - fn0.3: 673443.5308 - precision0.3: 0.8123 - recall0.3: 0.9172 - tp0.5: 7228004.8962 - fp0.5: 987598.6276 - tn0.5: 43258775.8423 - fn0.5: 1036285.2912 - precision0.5: 0.8797 - recall0.5: 0.8722 - t p0.7: 6751780.5855 - fp0.7: 528906.3060 - tn0.7: 43717457.8899 - fn0.7: 1512509.6019 - precision0.7: 0.9276 - recall0.7: 0.8149 - tp0.9: 5739049.2662 - fp0.9: 134220.8212 - tn0.9: 44112121.8931 - fn0.9: 2525240.9212 - precision0.9: 0.9 773 - recall0.9: 0.6932 - accuracy: 0.9610 - auc: 0.9735 - val_loss: 0.9733 - val_tp0.1: 2953631.0000 - val_fp0.1: 2097398.0000 - val_tn0.1: 20016580.0000 - val_fn0.1: 1146781.0000 - val_precision0.1: 0.5848 - val_recall0.1: 0.7203 - v al_tp0.3: 2295553.0000 - val_fp0.3: 1572391.0000 - val_tn0.3: 20541608.0000 - val_fn0.3: 1804859.0000 - val_precision0.3: 0.5935 - val_recall0.3: 0.5598 - val_tp0.5: 1907607.0000 - val_fp0.5: 1337407.0000 - val_tn0.5: 20776580.0000 - v al_fn0.5: 2192805.0000 - val_precision0.5: 0.5879 - val_recall0.5: 0.4652 - val_tp0.7: 1521536.0000 - val_fp0.7: 1008010.0000 - val_tn0.7: 21105980.0000 - val_fn0.7: 2578876.0000 - val_precision0.7: 0.6015 - val_recall0.7: 0.3711 - val _tp0.9: 972957.0000 - val_fp0.9: 483731.0000 - val_tn0.9: 21630266.0000 - val_fn0.9: 3127455.0000 - val_precision0.9: 0.6679 - val_recall0.9: 0.2373 - val_accuracy: 0.8653 - val_auc: 0.8217 Epoch 30/50 1280/1280 [==============================] - 3328s 3s/step - loss: 0.2476 - tp0.1: 7928433.5863 - fp0.1: 3472550.0773 - tn0.1: 40794809.0422 - fn0.1: 314855.4317 - precision0.1: 0.6960 - recall0.1: 0.9627 - tp0.3: 7601842.5277 - fp0.3: 1687439.2631 - tn0.3: 42579912.0640 - fn0.3: 641446.4902 - precision0.3: 0.8211 - recall0.3: 0.9228 - tp0.5: 7249994.1311 - fp0.5: 954111.0289 - tn0.5: 43313245.2014 - fn0.5: 993294.8868 - precision0.5: 0.8862 - recall0.5: 0.8801 - tp 0.7: 6788340.7728 - fp0.7: 512779.7322 - tn0.7: 43754579.6230 - fn0.7: 1454948.2451 - precision0.7: 0.9317 - recall0.7: 0.8242 - tp0.9: 5804142.8977 - fp0.9: 135882.9547 - tn0.9: 44131491.4426 - fn0.9: 2439146.1202 - precision0.9: 0.97 77 - recall0.9: 0.7071 - accuracy: 0.9638 - auc: 0.9759 - val_loss: 0.9000 - val_tp0.1: 3155596.0000 - val_fp0.1: 2364539.0000 - val_tn0.1: 19719286.0000 - val_fn0.1: 974987.0000 - val_precision0.1: 0.5717 - val_recall0.1: 0.7640 - val _tp0.3: 2555024.0000 - val_fp0.3: 1820537.0000 - val_tn0.3: 20263286.0000 - val_fn0.3: 1575559.0000 - val_precision0.3: 0.5839 - val_recall0.3: 0.6186 - val_tp0.5: 2171845.0000 - val_fp0.5: 1530813.0000 - val_tn0.5: 20553012.0000 - val _fn0.5: 1958738.0000 - val_precision0.5: 0.5866 - val_recall0.5: 0.5258 - val_tp0.7: 1696953.0000 - val_fp0.7: 1088079.0000 - val_tn0.7: 20995736.0000 - val_fn0.7: 2433630.0000 - val_precision0.7: 0.6093 - val_recall0.7: 0.4108 - val_t p0.9: 986911.0000 - val_fp0.9: 596529.0000 - val_tn0.9: 21487282.0000 - val_fn0.9: 3143672.0000 - val_precision0.9: 0.6233 - val_recall0.9: 0.2389 - val_accuracy: 0.8669 - val_auc: 0.8372 Epoch 31/50 1280/1280 [==============================] - 3327s 3s/step - loss: 0.2474 - tp0.1: 7893463.6916 - fp0.1: 3376652.6175 - tn0.1: 40920762.5230 - fn0.1: 319751.0945 - precision0.1: 0.6988 - recall0.1: 0.9618 - tp0.3: 7584152.9766 - fp0.3: 1687559.6604 - tn0.3: 42609861.8407 - fn0.3: 629061.8095 - precision0.3: 0.8167 - recall0.3: 0.9246 - tp0.5: 7249654.8931 - fp0.5: 952218.5824 - tn0.5: 43345227.1788 - fn0.5: 963559.8931 - precision0.5: 0.8832 - recall0.5: 0.8838 - tp 0.7: 6813905.7268 - fp0.7: 516513.1452 - tn0.7: 43780937.7900 - fn0.7: 1399309.0593 - precision0.7: 0.9292 - recall0.7: 0.8309 - tp0.9: 5825876.9290 - fp0.9: 123739.9094 - tn0.9: 44173704.9789 - fn0.9: 2387337.8571 - precision0.9: 0.97 94 - recall0.9: 0.7105 - accuracy: 0.9638 - auc: 0.9755 - val_loss: 1.0137 - val_tp0.1: 2843857.0000 - val_fp0.1: 2045215.0000 - val_tn0.1: 20132800.0000 - val_fn0.1: 1192532.0000 - val_precision0.1: 0.5817 - val_recall0.1: 0.7046 - va l_tp0.3: 2207535.0000 - val_fp0.3: 1595385.0000 - val_tn0.3: 20582624.0000 - val_fn0.3: 1828854.0000 - val_precision0.3: 0.5805 - val_recall0.3: 0.5469 - val_tp0.5: 1835971.0000 - val_fp0.5: 1390695.0000 - val_tn0.5: 20787306.0000 - va l_fn0.5: 2200418.0000 - val_precision0.5: 0.5690 - val_recall0.5: 0.4549 - val_tp0.7: 1407052.0000 - val_fp0.7: 1033277.0000 - val_tn0.7: 21144740.0000 - val_fn0.7: 2629337.0000 - val_precision0.7: 0.5766 - val_recall0.7: 0.3486 - val_ tp0.9: 786994.0000 - val_fp0.9: 502079.0000 - val_tn0.9: 21675932.0000 - val_fn0.9: 3249395.0000 - val_precision0.9: 0.6105 - val_recall0.9: 0.1950 - val_accuracy: 0.8630 - val_auc: 0.8121 Epoch 32/50 1280/1280 [==============================] - 3314s 3s/step - loss: 0.2529 - tp0.1: 7921204.5262 - fp0.1: 3486226.5160 - tn0.1: 40787447.0554 - fn0.1: 315795.7416 - precision0.1: 0.6929 - recall0.1: 0.9624 - tp0.3: 7593409.2264 - fp0.3: 1719995.1319 - tn0.3: 42553646.5496 - fn0.3: 643591.0414 - precision0.3: 0.8139 - recall0.3: 0.9227 - tp0.5: 7240041.4294 - fp0.5: 971849.9313 - tn0.5: 43301829.9984 - fn0.5: 996958.8384 - precision0.5: 0.8807 - recall0.5: 0.8794 - tp 0.7: 6782718.2459 - fp0.7: 527577.0203 - tn0.7: 43746081.8454 - fn0.7: 1454282.0219 - precision0.7: 0.9273 - recall0.7: 0.8235 - tp0.9: 5780993.2069 - fp0.9: 137794.4926 - tn0.9: 44135860.1952 - fn0.9: 2456007.0609 - precision0.9: 0.97 62 - recall0.9: 0.7029 - accuracy: 0.9623 - auc: 0.9755 - val_loss: 0.9139 - val_tp0.1: 2984184.0000 - val_fp0.1: 1853144.0000 - val_tn0.1: 20302900.0000 - val_fn0.1: 1074177.0000 - val_precision0.1: 0.6169 - val_recall0.1: 0.7353 - va l_tp0.3: 2282389.0000 - val_fp0.3: 1253127.0000 - val_tn0.3: 20902908.0000 - val_fn0.3: 1775972.0000 - val_precision0.3: 0.6456 - val_recall0.3: 0.5624 - val_tp0.5: 1856088.0000 - val_fp0.5: 1008268.0000 - val_tn0.5: 21147768.0000 - va l_fn0.5: 2202273.0000 - val_precision0.5: 0.6480 - val_recall0.5: 0.4573 - val_tp0.7: 1412568.0000 - val_fp0.7: 746394.0000 - val_tn0.7: 21409650.0000 - val_fn0.7: 2645793.0000 - val_precision0.7: 0.6543 - val_recall0.7: 0.3481 - val_t p0.9: 859420.0000 - val_fp0.9: 382687.0000 - val_tn0.9: 21773356.0000 - val_fn0.9: 3198941.0000 - val_precision0.9: 0.6919 - val_recall0.9: 0.2118 - val_accuracy: 0.8775 - val_auc: 0.8374 Epoch 33/50 1280/1280 [==============================] - 3327s 3s/step - loss: 0.2503 - tp0.1: 8047970.1561 - fp0.1: 3391824.5386 - tn0.1: 40757551.3286 - fn0.1: 313307.7994 - precision0.1: 0.7045 - recall0.1: 0.9628 - tp0.3: 7729505.2756 - fp0.3: 1696243.9040 - tn0.3: 42453121.2498 - fn0.3: 631772.6799 - precision0.3: 0.8217 - recall0.3: 0.9244 - tp0.5: 7388192.9508 - fp0.5: 982075.0718 - tn0.5: 43167288.1382 - fn0.5: 973085.0047 - precision0.5: 0.8838 - recall0.5: 0.8830 - tp 0.7: 6931423.2888 - fp0.7: 537102.3271 - tn0.7: 43612270.6479 - fn0.7: 1429854.6667 - precision0.7: 0.9287 - recall0.7: 0.8280 - tp0.9: 5907919.1241 - fp0.9: 136823.9852 - tn0.9: 44012543.5980 - fn0.9: 2453358.8314 - precision0.9: 0.97 77 - recall0.9: 0.7060 - accuracy: 0.9628 - auc: 0.9760 - val_loss: 1.0074 - val_tp0.1: 3175440.0000 - val_fp0.1: 2183311.0000 - val_tn0.1: 19707500.0000 - val_fn0.1: 1148150.0000 - val_precision0.1: 0.5926 - val_recall0.1: 0.7344 - va l_tp0.3: 2561350.0000 - val_fp0.3: 1772975.0000 - val_tn0.3: 20117834.0000 - val_fn0.3: 1762240.0000 - val_precision0.3: 0.5909 - val_recall0.3: 0.5924 - val_tp0.5: 2236272.0000 - val_fp0.5: 1567765.0000 - val_tn0.5: 20323044.0000 - va l_fn0.5: 2087318.0000 - val_precision0.5: 0.5879 - val_recall0.5: 0.5172 - val_tp0.7: 1860628.0000 - val_fp0.7: 1235466.0000 - val_tn0.7: 20655340.0000 - val_fn0.7: 2462962.0000 - val_precision0.7: 0.6010 - val_recall0.7: 0.4303 - val_ tp0.9: 1296792.0000 - val_fp0.9: 704030.0000 - val_tn0.9: 21186792.0000 - val_fn0.9: 3026798.0000 - val_precision0.9: 0.6481 - val_recall0.9: 0.2999 - val_accuracy: 0.8606 - val_auc: 0.8254 Epoch 34/50 1280/1280 [==============================] - 3324s 3s/step - loss: 0.2507 - tp0.1: 7911580.4098 - fp0.1: 3345203.1913 - tn0.1: 40931131.7447 - fn0.1: 322742.2100 - precision0.1: 0.7028 - recall0.1: 0.9609 - tp0.3: 7599881.2022 - fp0.3: 1647150.7923 - tn0.3: 42629169.7291 - fn0.3: 634441.4176 - precision0.3: 0.8220 - recall0.3: 0.9223 - tp0.5: 7270919.3005 - fp0.5: 951517.5379 - tn0.5: 43324815.6550 - fn0.5: 963403.3193 - precision0.5: 0.8843 - recall0.5: 0.8819 - tp 0.7: 6834573.1491 - fp0.7: 523079.1390 - tn0.7: 43753256.2943 - fn0.7: 1399749.4707 - precision0.7: 0.9292 - recall0.7: 0.8288 - tp0.9: 5841839.3435 - fp0.9: 132340.8064 - tn0.9: 44144004.1702 - fn0.9: 2392483.2763 - precision0.9: 0.97 80 - recall0.9: 0.7081 - accuracy: 0.9633 - auc: 0.9751 - val_loss: 0.9237 - val_tp0.1: 3263836.0000 - val_fp0.1: 1919441.0000 - val_tn0.1: 19948316.0000 - val_fn0.1: 1082810.0000 - val_precision0.1: 0.6297 - val_recall0.1: 0.7509 - va l_tp0.3: 2560242.0000 - val_fp0.3: 1398314.0000 - val_tn0.3: 20469446.0000 - val_fn0.3: 1786404.0000 - val_precision0.3: 0.6468 - val_recall0.3: 0.5890 - val_tp0.5: 2148456.0000 - val_fp0.5: 1146771.0000 - val_tn0.5: 20720984.0000 - va l_fn0.5: 2198190.0000 - val_precision0.5: 0.6520 - val_recall0.5: 0.4943 - val_tp0.7: 1663813.0000 - val_fp0.7: 806718.0000 - val_tn0.7: 21061036.0000 - val_fn0.7: 2682833.0000 - val_precision0.7: 0.6735 - val_recall0.7: 0.3828 - val_t p0.9: 979165.0000 - val_fp0.9: 394579.0000 - val_tn0.9: 21473184.0000 - val_fn0.9: 3367481.0000 - val_precision0.9: 0.7128 - val_recall0.9: 0.2253 - val_accuracy: 0.8724 - val_auc: 0.8405 Epoch 35/50 1280/1280 [==============================] - 3310s 3s/step - loss: 0.2614 - tp0.1: 7937448.7291 - fp0.1: 3421955.0578 - tn0.1: 40822462.2030 - fn0.1: 328785.1717 - precision0.1: 0.6999 - recall0.1: 0.9579 - tp0.3: 7621030.6534 - fp0.3: 1703065.0414 - tn0.3: 42541374.6472 - fn0.3: 645203.2475 - precision0.3: 0.8174 - recall0.3: 0.9200 - tp0.5: 7279229.2404 - fp0.5: 977595.1093 - tn0.5: 43266832.8696 - fn0.5: 987004.6604 - precision0.5: 0.8809 - recall0.5: 0.8792 - tp 0.7: 6838107.3216 - fp0.7: 536670.7908 - tn0.7: 43707710.4473 - fn0.7: 1428126.5792 - precision0.7: 0.9261 - recall0.7: 0.8262 - tp0.9: 5811902.2927 - fp0.9: 135171.2490 - tn0.9: 44109247.1507 - fn0.9: 2454331.6081 - precision0.9: 0.97 71 - recall0.9: 0.7018 - accuracy: 0.9620 - auc: 0.9732 - val_loss: 0.8013 - val_tp0.1: 3284754.0000 - val_fp0.1: 2344554.0000 - val_tn0.1: 19771954.0000 - val_fn0.1: 813139.0000 - val_precision0.1: 0.5835 - val_recall0.1: 0.8016 - val _tp0.3: 2575560.0000 - val_fp0.3: 1777769.0000 - val_tn0.3: 20338744.0000 - val_fn0.3: 1522333.0000 - val_precision0.3: 0.5916 - val_recall0.3: 0.6285 - val_tp0.5: 2179640.0000 - val_fp0.5: 1496577.0000 - val_tn0.5: 20619926.0000 - val _fn0.5: 1918253.0000 - val_precision0.5: 0.5929 - val_recall0.5: 0.5319 - val_tp0.7: 1701082.0000 - val_fp0.7: 1053012.0000 - val_tn0.7: 21063498.0000 - val_fn0.7: 2396811.0000 - val_precision0.7: 0.6177 - val_recall0.7: 0.4151 - val_t p0.9: 989696.0000 - val_fp0.9: 527144.0000 - val_tn0.9: 21589364.0000 - val_fn0.9: 3108197.0000 - val_precision0.9: 0.6525 - val_recall0.9: 0.2415 - val_accuracy: 0.8697 - val_auc: 0.8572 Epoch 36/50 1280/1280 [==============================] - 3341s 3s/step - loss: 0.2585 - tp0.1: 7873502.4785 - fp0.1: 3351134.0312 - tn0.1: 40955766.1046 - fn0.1: 330264.3185 - precision0.1: 0.6971 - recall0.1: 0.9588 - tp0.3: 7549771.1140 - fp0.3: 1661219.6745 - tn0.3: 42645646.7143 - fn0.3: 653995.6831 - precision0.3: 0.8162 - recall0.3: 0.9183 - tp0.5: 7211353.4215 - fp0.5: 964176.2467 - tn0.5: 43342703.0515 - fn0.5: 992413.3755 - precision0.5: 0.8793 - recall0.5: 0.8765 - tp 0.7: 6769812.5121 - fp0.7: 536905.1553 - tn0.7: 43770008.0851 - fn0.7: 1433954.2849 - precision0.7: 0.9245 - recall0.7: 0.8228 - tp0.9: 5783984.8657 - fp0.9: 143730.5753 - tn0.9: 44163162.1390 - fn0.9: 2419781.9313 - precision0.9: 0.97 52 - recall0.9: 0.7042 - accuracy: 0.9619 - auc: 0.9736 - val_loss: 0.7459 - val_tp0.1: 3472629.0000 - val_fp0.1: 2432774.0000 - val_tn0.1: 19591824.0000 - val_fn0.1: 717165.0000 - val_precision0.1: 0.5880 - val_recall0.1: 0.8288 - val _tp0.3: 2809063.0000 - val_fp0.3: 1835029.0000 - val_tn0.3: 20189584.0000 - val_fn0.3: 1380731.0000 - val_precision0.3: 0.6049 - val_recall0.3: 0.6705 - val_tp0.5: 2315959.0000 - val_fp0.5: 1490932.0000 - val_tn0.5: 20533678.0000 - val _fn0.5: 1873835.0000 - val_precision0.5: 0.6084 - val_recall0.5: 0.5528 - val_tp0.7: 1776363.0000 - val_fp0.7: 1094378.0000 - val_tn0.7: 20930232.0000 - val_fn0.7: 2413431.0000 - val_precision0.7: 0.6188 - val_recall0.7: 0.4240 - val_t p0.9: 1035383.0000 - val_fp0.9: 541763.0000 - val_tn0.9: 21482840.0000 - val_fn0.9: 3154411.0000 - val_precision0.9: 0.6565 - val_recall0.9: 0.2471 - val_accuracy: 0.8716 - val_auc: 0.8687 Epoch 37/50 1280/1280 [==============================] - 3295s 3s/step - loss: 0.2437 - tp0.1: 8016183.8337 - fp0.1: 3307100.4614 - tn0.1: 40879834.5652 - fn0.1: 307556.7455 - precision0.1: 0.7070 - recall0.1: 0.9629 - tp0.3: 7712574.3755 - fp0.3: 1659818.0539 - tn0.3: 42527102.4731 - fn0.3: 611166.2037 - precision0.3: 0.8224 - recall0.3: 0.9270 - tp0.5: 7388699.9188 - fp0.5: 964567.5652 - tn0.5: 43222331.7237 - fn0.5: 935040.6604 - precision0.5: 0.8843 - recall0.5: 0.8884 - tp 0.7: 6943361.7510 - fp0.7: 525733.5105 - tn0.7: 43661155.2553 - fn0.7: 1380378.8283 - precision0.7: 0.9294 - recall0.7: 0.8349 - tp0.9: 5919522.7244 - fp0.9: 126122.8407 - tn0.9: 44060797.3005 - fn0.9: 2404217.8548 - precision0.9: 0.97 90 - recall0.9: 0.7122 - accuracy: 0.9641 - auc: 0.9762 - val_loss: 0.8760 - val_tp0.1: 3352442.0000 - val_fp0.1: 2392549.0000 - val_tn0.1: 19544092.0000 - val_fn0.1: 925309.0000 - val_precision0.1: 0.5835 - val_recall0.1: 0.7837 - val _tp0.3: 2658571.0000 - val_fp0.3: 1872790.0000 - val_tn0.3: 20063866.0000 - val_fn0.3: 1619180.0000 - val_precision0.3: 0.5867 - val_recall0.3: 0.6215 - val_tp0.5: 2313864.0000 - val_fp0.5: 1697140.0000 - val_tn0.5: 20239508.0000 - val _fn0.5: 1963887.0000 - val_precision0.5: 0.5769 - val_recall0.5: 0.5409 - val_tp0.7: 1882798.0000 - val_fp0.7: 1331096.0000 - val_tn0.7: 20605548.0000 - val_fn0.7: 2394953.0000 - val_precision0.7: 0.5858 - val_recall0.7: 0.4401 - val_t p0.9: 1104516.0000 - val_fp0.9: 586104.0000 - val_tn0.9: 21350548.0000 - val_fn0.9: 3173235.0000 - val_precision0.9: 0.6533 - val_recall0.9: 0.2582 - val_accuracy: 0.8603 - val_auc: 0.8446 Epoch 38/50 1280/1280 [==============================] - 3369s 3s/step - loss: 0.2413 - tp0.1: 7956859.0180 - fp0.1: 3276078.4895 - tn0.1: 40979600.7861 - fn0.1: 298124.8735 - precision0.1: 0.7090 - recall0.1: 0.9634 - tp0.3: 7646937.8517 - fp0.3: 1590794.5269 - tn0.3: 42664873.7775 - fn0.3: 608046.0398 - precision0.3: 0.8280 - recall0.3: 0.9258 - tp0.5: 7313832.8025 - fp0.5: 911027.5652 - tn0.5: 43344624.5683 - fn0.5: 941151.0890 - precision0.5: 0.8894 - recall0.5: 0.8851 - tp 0.7: 6881091.8657 - fp0.7: 495880.5730 - tn0.7: 43759809.8337 - fn0.7: 1373892.0258 - precision0.7: 0.9331 - recall0.7: 0.8326 - tp0.9: 5927602.7518 - fp0.9: 127784.9633 - tn0.9: 44127895.0578 - fn0.9: 2327381.1397 - precision0.9: 0.97 90 - recall0.9: 0.7159 - accuracy: 0.9644 - auc: 0.9765 - val_loss: 4.9077 - val_tp0.1: 3486973.0000 - val_fp0.1: 2850284.0000 - val_tn0.1: 19285722.0000 - val_fn0.1: 591422.0000 - val_precision0.1: 0.5502 - val_recall0.1: 0.8550 - val _tp0.3: 2787062.0000 - val_fp0.3: 2180072.0000 - val_tn0.3: 19955928.0000 - val_fn0.3: 1291333.0000 - val_precision0.3: 0.5611 - val_recall0.3: 0.6834 - val_tp0.5: 2371435.0000 - val_fp0.5: 2041150.0000 - val_tn0.5: 20094856.0000 - val _fn0.5: 1706960.0000 - val_precision0.5: 0.5374 - val_recall0.5: 0.5815 - val_tp0.7: 2052507.0000 - val_fp0.7: 1911080.0000 - val_tn0.7: 20224928.0000 - val_fn0.7: 2025888.0000 - val_precision0.7: 0.5178 - val_recall0.7: 0.5033 - val_t p0.9: 1593600.0000 - val_fp0.9: 1598028.0000 - val_tn0.9: 20537976.0000 - val_fn0.9: 2484795.0000 - val_precision0.9: 0.4993 - val_recall0.9: 0.3907 - val_accuracy: 0.8570 - val_auc: 0.8622 Epoch 39/50 1280/1280 [==============================] - 3380s 3s/step - loss: 0.2414 - tp0.1: 7803821.4372 - fp0.1: 3354269.5839 - tn0.1: 41052380.7252 - fn0.1: 300171.4941 - precision0.1: 0.6956 - recall0.1: 0.9633 - tp0.3: 7497167.4637 - fp0.3: 1643206.8829 - tn0.3: 42763432.2763 - fn0.3: 606825.4676 - precision0.3: 0.8198 - recall0.3: 0.9250 - tp0.5: 7161284.4465 - fp0.5: 930784.7471 - tn0.5: 43475886.7112 - fn0.5: 942708.4848 - precision0.5: 0.8867 - recall0.5: 0.8828 - tp 0.7: 6716037.1132 - fp0.7: 498289.9742 - tn0.7: 43908382.7361 - fn0.7: 1387955.8181 - precision0.7: 0.9325 - recall0.7: 0.8275 - tp0.9: 5745482.9321 - fp0.9: 129539.1460 - tn0.9: 44277093.8798 - fn0.9: 2358509.9992 - precision0.9: 0.97 87 - recall0.9: 0.7074 - accuracy: 0.9647 - auc: 0.9763 - val_loss: 0.8416 - val_tp0.1: 3152764.0000 - val_fp0.1: 1979016.0000 - val_tn0.1: 20133118.0000 - val_fn0.1: 949499.0000 - val_precision0.1: 0.6144 - val_recall0.1: 0.7685 - val _tp0.3: 2438228.0000 - val_fp0.3: 1470054.0000 - val_tn0.3: 20642072.0000 - val_fn0.3: 1664035.0000 - val_precision0.3: 0.6239 - val_recall0.3: 0.5944 - val_tp0.5: 1977683.0000 - val_fp0.5: 1217609.0000 - val_tn0.5: 20894528.0000 - val _fn0.5: 2124580.0000 - val_precision0.5: 0.6189 - val_recall0.5: 0.4821 - val_tp0.7: 1503343.0000 - val_fp0.7: 862897.0000 - val_tn0.7: 21249240.0000 - val_fn0.7: 2598920.0000 - val_precision0.7: 0.6353 - val_recall0.7: 0.3665 - val_tp 0.9: 896812.0000 - val_fp0.9: 377234.0000 - val_tn0.9: 21734904.0000 - val_fn0.9: 3205451.0000 - val_precision0.9: 0.7039 - val_recall0.9: 0.2186 - val_accuracy: 0.8725 - val_auc: 0.8477 Epoch 40/50 1280/1280 [==============================] - 3386s 3s/step - loss: 0.2375 - tp0.1: 8019265.8907 - fp0.1: 3238880.4543 - tn0.1: 40953284.0133 - fn0.1: 299240.1600 - precision0.1: 0.7138 - recall0.1: 0.9637 - tp0.3: 7719720.4668 - fp0.3: 1605122.1085 - tn0.3: 42587020.9703 - fn0.3: 598785.5839 - precision0.3: 0.8287 - recall0.3: 0.9280 - tp0.5: 7396785.5230 - fp0.5: 927286.7697 - tn0.5: 43264845.8103 - fn0.5: 921720.5277 - precision0.5: 0.8890 - recall0.5: 0.8895 - tp 0.7: 6965247.9297 - fp0.7: 501804.8829 - tn0.7: 43690323.6995 - fn0.7: 1353258.1210 - precision0.7: 0.9328 - recall0.7: 0.8383 - tp0.9: 5960658.1421 - fp0.9: 123056.3981 - tn0.9: 44069097.9461 - fn0.9: 2357847.9087 - precision0.9: 0.97 98 - recall0.9: 0.7181 - accuracy: 0.9649 - auc: 0.9769 - val_loss: 0.7336 - val_tp0.1: 3398410.0000 - val_fp0.1: 2457064.0000 - val_tn0.1: 19690942.0000 - val_fn0.1: 667979.0000 - val_precision0.1: 0.5804 - val_recall0.1: 0.8357 - val _tp0.3: 2749737.0000 - val_fp0.3: 1843797.0000 - val_tn0.3: 20304204.0000 - val_fn0.3: 1316652.0000 - val_precision0.3: 0.5986 - val_recall0.3: 0.6762 - val_tp0.5: 2345968.0000 - val_fp0.5: 1609916.0000 - val_tn0.5: 20538100.0000 - val _fn0.5: 1720421.0000 - val_precision0.5: 0.5930 - val_recall0.5: 0.5769 - val_tp0.7: 1892495.0000 - val_fp0.7: 1225411.0000 - val_tn0.7: 20922604.0000 - val_fn0.7: 2173894.0000 - val_precision0.7: 0.6070 - val_recall0.7: 0.4654 - val_t p0.9: 1133144.0000 - val_fp0.9: 662854.0000 - val_tn0.9: 21485156.0000 - val_fn0.9: 2933245.0000 - val_precision0.9: 0.6309 - val_recall0.9: 0.2787 - val_accuracy: 0.8730 - val_auc: 0.8721 Epoch 41/50 1280/1280 [==============================] - 3385s 3s/step - loss: 0.2342 - tp0.1: 7776741.3099 - fp0.1: 3289425.7650 - tn0.1: 41160217.6448 - fn0.1: 284258.4153 - precision0.1: 0.7028 - recall0.1: 0.9655 - tp0.3: 7475615.4660 - fp0.3: 1607131.3685 - tn0.3: 42842547.8212 - fn0.3: 585384.2592 - precision0.3: 0.8230 - recall0.3: 0.9281 - tp0.5: 7146650.6237 - fp0.5: 908662.7939 - tn0.5: 43541000.6799 - fn0.5: 914349.1015 - precision0.5: 0.8871 - recall0.5: 0.8872 - tp 0.7: 6711653.7861 - fp0.7: 487381.3060 - tn0.7: 43962279.2373 - fn0.7: 1349345.9391 - precision0.7: 0.9322 - recall0.7: 0.8330 - tp0.9: 5745993.2186 - fp0.9: 124517.9758 - tn0.9: 44325130.4988 - fn0.9: 2315006.5066 - precision0.9: 0.97 85 - recall0.9: 0.7118 - accuracy: 0.9651 - auc: 0.9776 - val_loss: 0.9870 - val_tp0.1: 3053092.0000 - val_fp0.1: 1964937.0000 - val_tn0.1: 20015960.0000 - val_fn0.1: 1180406.0000 - val_precision0.1: 0.6084 - val_recall0.1: 0.7212 - va l_tp0.3: 2284036.0000 - val_fp0.3: 1477236.0000 - val_tn0.3: 20503676.0000 - val_fn0.3: 1949462.0000 - val_precision0.3: 0.6073 - val_recall0.3: 0.5395 - val_tp0.5: 1899487.0000 - val_fp0.5: 1256383.0000 - val_tn0.5: 20724524.0000 - va l_fn0.5: 2334011.0000 - val_precision0.5: 0.6019 - val_recall0.5: 0.4487 - val_tp0.7: 1422839.0000 - val_fp0.7: 921281.0000 - val_tn0.7: 21059624.0000 - val_fn0.7: 2810659.0000 - val_precision0.7: 0.6070 - val_recall0.7: 0.3361 - val_t p0.9: 829426.0000 - val_fp0.9: 481727.0000 - val_tn0.9: 21499180.0000 - val_fn0.9: 3404072.0000 - val_precision0.9: 0.6326 - val_recall0.9: 0.1959 - val_accuracy: 0.8630 - val_auc: 0.8226 Epoch 42/50 1280/1280 [==============================] - 3315s 3s/step - loss: 0.2346 - tp0.1: 8105380.3060 - fp0.1: 3217998.5480 - tn0.1: 40897704.3310 - fn0.1: 289593.6690 - precision0.1: 0.7181 - recall0.1: 0.9656 - tp0.3: 7802382.4910 - fp0.3: 1604270.8267 - tn0.3: 42511413.2233 - fn0.3: 592591.4840 - precision0.3: 0.8318 - recall0.3: 0.9298 - tp0.5: 7475287.1304 - fp0.5: 928889.2771 - tn0.5: 43186785.4551 - fn0.5: 919686.8447 - precision0.5: 0.8906 - recall0.5: 0.8917 - tp 0.7: 7046455.8064 - fp0.7: 507457.0898 - tn0.7: 43608208.9945 - fn0.7: 1348518.1686 - precision0.7: 0.9334 - recall0.7: 0.8413 - tp0.9: 6058878.7190 - fp0.9: 128713.2311 - tn0.9: 43986958.0468 - fn0.9: 2336095.2560 - precision0.9: 0.97 95 - recall0.9: 0.7240 - accuracy: 0.9650 - auc: 0.9779 - val_loss: 0.7327 - val_tp0.1: 3402300.0000 - val_fp0.1: 2653288.0000 - val_tn0.1: 19553712.0000 - val_fn0.1: 605094.0000 - val_precision0.1: 0.5618 - val_recall0.1: 0.8490 - val _tp0.3: 2812815.0000 - val_fp0.3: 2101002.0000 - val_tn0.3: 20106008.0000 - val_fn0.3: 1194579.0000 - val_precision0.3: 0.5724 - val_recall0.3: 0.7019 - val_tp0.5: 2455006.0000 - val_fp0.5: 1878473.0000 - val_tn0.5: 20328530.0000 - val _fn0.5: 1552388.0000 - val_precision0.5: 0.5665 - val_recall0.5: 0.6126 - val_tp0.7: 2074881.0000 - val_fp0.7: 1530207.0000 - val_tn0.7: 20676798.0000 - val_fn0.7: 1932513.0000 - val_precision0.7: 0.5755 - val_recall0.7: 0.5178 - val_t p0.9: 1484583.0000 - val_fp0.9: 913417.0000 - val_tn0.9: 21293592.0000 - val_fn0.9: 2522811.0000 - val_precision0.9: 0.6191 - val_recall0.9: 0.3705 - val_accuracy: 0.8691 - val_auc: 0.8751 Epoch 43/50 1280/1280 [==============================] - 3323s 3s/step - loss: 0.2312 - tp0.1: 7991710.0656 - fp0.1: 3249384.0929 - tn0.1: 40992411.0070 - fn0.1: 277145.7760 - precision0.1: 0.7097 - recall0.1: 0.9664 - tp0.3: 7693901.7158 - fp0.3: 1595395.2670 - tn0.3: 42646409.5269 - fn0.3: 574954.1257 - precision0.3: 0.8268 - recall0.3: 0.9305 - tp0.5: 7373192.4247 - fp0.5: 917265.3872 - tn0.5: 43324540.4536 - fn0.5: 895663.4169 - precision0.5: 0.8882 - recall0.5: 0.8913 - tp 0.7: 6950466.7244 - fp0.7: 497989.1148 - tn0.7: 43743813.0945 - fn0.7: 1318389.1171 - precision0.7: 0.9326 - recall0.7: 0.8395 - tp0.9: 5981119.6440 - fp0.9: 128545.2209 - tn0.9: 44113239.2467 - fn0.9: 2287736.1975 - precision0.9: 0.97 92 - recall0.9: 0.7218 - accuracy: 0.9653 - auc: 0.9783 - val_loss: 0.9647 - val_tp0.1: 2876343.0000 - val_fp0.1: 1660425.0000 - val_tn0.1: 20507034.0000 - val_fn0.1: 1170598.0000 - val_precision0.1: 0.6340 - val_recall0.1: 0.7107 - va l_tp0.3: 2209087.0000 - val_fp0.3: 1251945.0000 - val_tn0.3: 20915512.0000 - val_fn0.3: 1837854.0000 - val_precision0.3: 0.6383 - val_recall0.3: 0.5459 - val_tp0.5: 1778622.0000 - val_fp0.5: 995657.0000 - val_tn0.5: 21171812.0000 - val _fn0.5: 2268319.0000 - val_precision0.5: 0.6411 - val_recall0.5: 0.4395 - val_tp0.7: 1307626.0000 - val_fp0.7: 702184.0000 - val_tn0.7: 21465282.0000 - val_fn0.7: 2739315.0000 - val_precision0.7: 0.6506 - val_recall0.7: 0.3231 - val_tp 0.9: 721015.0000 - val_fp0.9: 304685.0000 - val_tn0.9: 21862786.0000 - val_fn0.9: 3325926.0000 - val_precision0.9: 0.7029 - val_recall0.9: 0.1782 - val_accuracy: 0.8755 - val_auc: 0.8252 Epoch 44/50 1280/1280 [==============================] - 3324s 3s/step - loss: 0.2316 - tp0.1: 7993553.5519 - fp0.1: 3116269.6425 - tn0.1: 41108883.5878 - fn0.1: 291939.1897 - precision0.1: 0.7205 - recall0.1: 0.9644 - tp0.3: 7697513.5496 - fp0.3: 1532368.8548 - tn0.3: 42692802.8033 - fn0.3: 587979.1920 - precision0.3: 0.8347 - recall0.3: 0.9284 - tp0.5: 7391393.2475 - fp0.5: 891003.0500 - tn0.5: 43334168.9118 - fn0.5: 894099.4941 - precision0.5: 0.8927 - recall0.5: 0.8916 - tp 0.7: 6972420.4403 - fp0.7: 485629.1991 - tn0.7: 43739548.5152 - fn0.7: 1313072.3013 - precision0.7: 0.9351 - recall0.7: 0.8406 - tp0.9: 6005577.5371 - fp0.9: 125956.1194 - tn0.9: 44099185.2194 - fn0.9: 2279915.2045 - precision0.9: 0.97 93 - recall0.9: 0.7244 - accuracy: 0.9660 - auc: 0.9775 - val_loss: 0.7395 - val_tp0.1: 3516454.0000 - val_fp0.1: 2931698.0000 - val_tn0.1: 19145124.0000 - val_fn0.1: 621132.0000 - val_precision0.1: 0.5453 - val_recall0.1: 0.8499 - val _tp0.3: 2802624.0000 - val_fp0.3: 2096050.0000 - val_tn0.3: 19980764.0000 - val_fn0.3: 1334962.0000 - val_precision0.3: 0.5721 - val_recall0.3: 0.6774 - val_tp0.5: 2395920.0000 - val_fp0.5: 1817727.0000 - val_tn0.5: 20259092.0000 - val _fn0.5: 1741666.0000 - val_precision0.5: 0.5686 - val_recall0.5: 0.5791 - val_tp0.7: 1884999.0000 - val_fp0.7: 1378065.0000 - val_tn0.7: 20698756.0000 - val_fn0.7: 2252587.0000 - val_precision0.7: 0.5777 - val_recall0.7: 0.4556 - val_t p0.9: 983346.0000 - val_fp0.9: 679335.0000 - val_tn0.9: 21397474.0000 - val_fn0.9: 3154240.0000 - val_precision0.9: 0.5914 - val_recall0.9: 0.2377 - val_accuracy: 0.8642 - val_auc: 0.8683 Epoch 45/50 1280/1280 [==============================] - 3312s 3s/step - loss: 0.2330 - tp0.1: 7970480.2670 - fp0.1: 3209589.4871 - tn0.1: 41051845.7307 - fn0.1: 278741.1163 - precision0.1: 0.7127 - recall0.1: 0.9666 - tp0.3: 7675031.2553 - fp0.3: 1589895.0429 - tn0.3: 42671527.8275 - fn0.3: 574190.1280 - precision0.3: 0.8279 - recall0.3: 0.9311 - tp0.5: 7351503.7557 - fp0.5: 918595.6940 - tn0.5: 43342860.1577 - fn0.5: 897717.6276 - precision0.5: 0.8886 - recall0.5: 0.8921 - tp 0.7: 6925182.0765 - fp0.7: 503433.8673 - tn0.7: 43758011.1593 - fn0.7: 1324039.3068 - precision0.7: 0.9318 - recall0.7: 0.8413 - tp0.9: 5948949.5558 - fp0.9: 139165.2740 - tn0.9: 44122272.1593 - fn0.9: 2300271.8275 - precision0.9: 0.97 68 - recall0.9: 0.7246 - accuracy: 0.9651 - auc: 0.9781 - val_loss: 0.7183 - val_tp0.1: 3462944.0000 - val_fp0.1: 2547992.0000 - val_tn0.1: 19584976.0000 - val_fn0.1: 618487.0000 - val_precision0.1: 0.5761 - val_recall0.1: 0.8485 - val _tp0.3: 2757155.0000 - val_fp0.3: 1916541.0000 - val_tn0.3: 20216436.0000 - val_fn0.3: 1324276.0000 - val_precision0.3: 0.5899 - val_recall0.3: 0.6755 - val_tp0.5: 2406562.0000 - val_fp0.5: 1766897.0000 - val_tn0.5: 20366082.0000 - val _fn0.5: 1674869.0000 - val_precision0.5: 0.5766 - val_recall0.5: 0.5896 - val_tp0.7: 2083375.0000 - val_fp0.7: 1557338.0000 - val_tn0.7: 20575626.0000 - val_fn0.7: 1998056.0000 - val_precision0.7: 0.5722 - val_recall0.7: 0.5105 - val_t p0.9: 1330037.0000 - val_fp0.9: 696335.0000 - val_tn0.9: 21436634.0000 - val_fn0.9: 2751394.0000 - val_precision0.9: 0.6564 - val_recall0.9: 0.3259 - val_accuracy: 0.8687 - val_auc: 0.8762 Epoch 46/50 1280/1280 [==============================] - 3307s 3s/step - loss: 0.2304 - tp0.1: 7916214.3216 - fp0.1: 3181145.9766 - tn0.1: 41127786.5941 - fn0.1: 285496.9227 - precision0.1: 0.7125 - recall0.1: 0.9651 - tp0.3: 7621058.9899 - fp0.3: 1584443.6526 - tn0.3: 42724483.9516 - fn0.3: 580652.2545 - precision0.3: 0.8279 - recall0.3: 0.9291 - tp0.5: 7291826.7104 - fp0.5: 896453.6901 - tn0.5: 43412477.0523 - fn0.5: 909884.5340 - precision0.5: 0.8906 - recall0.5: 0.8889 - tp 0.7: 6852507.8103 - fp0.7: 474238.7486 - tn0.7: 43834734.6058 - fn0.7: 1349203.4340 - precision0.7: 0.9355 - recall0.7: 0.8352 - tp0.9: 5907297.4052 - fp0.9: 120870.0991 - tn0.9: 44188071.7377 - fn0.9: 2294413.8392 - precision0.9: 0.98 03 - recall0.9: 0.7195 - accuracy: 0.9658 - auc: 0.9776 - val_loss: 0.8308 - val_tp0.1: 2925415.0000 - val_fp0.1: 999631.0000 - val_tn0.1: 21181596.0000 - val_fn0.1: 1107748.0000 - val_precision0.1: 0.7453 - val_recall0.1: 0.7253 - val _tp0.3: 2129554.0000 - val_fp0.3: 432959.0000 - val_tn0.3: 21748276.0000 - val_fn0.3: 1903609.0000 - val_precision0.3: 0.8310 - val_recall0.3: 0.5280 - val_tp0.5: 1616477.0000 - val_fp0.5: 255434.0000 - val_tn0.5: 21925804.0000 - val_f n0.5: 2416686.0000 - val_precision0.5: 0.8635 - val_recall0.5: 0.4008 - val_tp0.7: 1160120.0000 - val_fp0.7: 159480.0000 - val_tn0.7: 22021744.0000 - val_fn0.7: 2873043.0000 - val_precision0.7: 0.8791 - val_recall0.7: 0.2876 - val_tp0. 9: 660411.0000 - val_fp0.9: 58454.0000 - val_tn0.9: 22122774.0000 - val_fn0.9: 3372752.0000 - val_precision0.9: 0.9187 - val_recall0.9: 0.1637 - val_accuracy: 0.8981 - val_auc: 0.8530 Epoch 47/50 1280/1280 [==============================] - 3373s 3s/step - loss: 0.2224 - tp0.1: 7905453.9578 - fp0.1: 3088525.5402 - tn0.1: 41239482.1889 - fn0.1: 277215.0070 - precision0.1: 0.7202 - recall0.1: 0.9667 - tp0.3: 7625498.5870 - fp0.3: 1552664.1967 - tn0.3: 42775315.1663 - fn0.3: 557170.3778 - precision0.3: 0.8312 - recall0.3: 0.9328 - tp0.5: 7314136.2771 - fp0.5: 889383.1952 - tn0.5: 43438616.4731 - fn0.5: 868532.6877 - precision0.5: 0.8918 - recall0.5: 0.8950 - tp 0.7: 6893069.8415 - fp0.7: 475384.9407 - tn0.7: 43852616.7221 - fn0.7: 1289599.1233 - precision0.7: 0.9360 - recall0.7: 0.8437 - tp0.9: 5954104.8665 - fp0.9: 121730.6745 - tn0.9: 44206239.8525 - fn0.9: 2228564.0984 - precision0.9: 0.98 04 - recall0.9: 0.7290 - accuracy: 0.9667 - auc: 0.9788 - val_loss: 1.0397 - val_tp0.1: 2921669.0000 - val_fp0.1: 1566454.0000 - val_tn0.1: 20378636.0000 - val_fn0.1: 1347646.0000 - val_precision0.1: 0.6510 - val_recall0.1: 0.6843 - va l_tp0.3: 2142218.0000 - val_fp0.3: 1055434.0000 - val_tn0.3: 20889652.0000 - val_fn0.3: 2127097.0000 - val_precision0.3: 0.6699 - val_recall0.3: 0.5018 - val_tp0.5: 1695622.0000 - val_fp0.5: 805323.0000 - val_tn0.5: 21139764.0000 - val _fn0.5: 2573693.0000 - val_precision0.5: 0.6780 - val_recall0.5: 0.3972 - val_tp0.7: 1240483.0000 - val_fp0.7: 547415.0000 - val_tn0.7: 21397672.0000 - val_fn0.7: 3028832.0000 - val_precision0.7: 0.6938 - val_recall0.7: 0.2906 - val_tp 0.9: 699052.0000 - val_fp0.9: 209226.0000 - val_tn0.9: 21735862.0000 - val_fn0.9: 3570263.0000 - val_precision0.9: 0.7696 - val_recall0.9: 0.1637 - val_accuracy: 0.8711 - val_auc: 0.8155 Epoch 48/50 1280/1280 [==============================] - 3304s 3s/step - loss: 0.2335 - tp0.1: 7940859.5363 - fp0.1: 3183249.2857 - tn0.1: 41099674.0820 - fn0.1: 286865.7822 - precision0.1: 0.7138 - recall0.1: 0.9650 - tp0.3: 7641716.9641 - fp0.3: 1582103.0671 - tn0.3: 42700833.3349 - fn0.3: 586008.3544 - precision0.3: 0.8288 - recall0.3: 0.9284 - tp0.5: 7316574.1686 - fp0.5: 906813.2022 - tn0.5: 43376114.1671 - fn0.5: 911151.1499 - precision0.5: 0.8900 - recall0.5: 0.8886 - tp 0.7: 6893099.7447 - fp0.7: 495988.3950 - tn0.7: 43786957.1632 - fn0.7: 1334625.5738 - precision0.7: 0.9332 - recall0.7: 0.8372 - tp0.9: 5936967.9602 - fp0.9: 132958.7853 - tn0.9: 44149966.0359 - fn0.9: 2290757.3583 - precision0.9: 0.97 82 - recall0.9: 0.7212 - accuracy: 0.9651 - auc: 0.9775 - val_loss: 0.8885 - val_tp0.1: 3090482.0000 - val_fp0.1: 1927063.0000 - val_tn0.1: 20147076.0000 - val_fn0.1: 1049776.0000 - val_precision0.1: 0.6159 - val_recall0.1: 0.7464 - va l_tp0.3: 2402659.0000 - val_fp0.3: 1358720.0000 - val_tn0.3: 20715420.0000 - val_fn0.3: 1737599.0000 - val_precision0.3: 0.6388 - val_recall0.3: 0.5803 - val_tp0.5: 2026443.0000 - val_fp0.5: 1121590.0000 - val_tn0.5: 20952544.0000 - va l_fn0.5: 2113815.0000 - val_precision0.5: 0.6437 - val_recall0.5: 0.4894 - val_tp0.7: 1587666.0000 - val_fp0.7: 757043.0000 - val_tn0.7: 21317100.0000 - val_fn0.7: 2552592.0000 - val_precision0.7: 0.6771 - val_recall0.7: 0.3835 - val_t p0.9: 946633.0000 - val_fp0.9: 302967.0000 - val_tn0.9: 21771180.0000 - val_fn0.9: 3193625.0000 - val_precision0.9: 0.7575 - val_recall0.9: 0.2286 - val_accuracy: 0.8766 - val_auc: 0.8420 Epoch 49/50 1280/1280 [==============================] - 3305s 3s/step - loss: 0.2225 - tp0.1: 7979679.4473 - fp0.1: 3114299.9914 - tn0.1: 41145497.0710 - fn0.1: 271189.6027 - precision0.1: 0.7186 - recall0.1: 0.9674 - tp0.3: 7686659.5777 - fp0.3: 1542401.8501 - tn0.3: 42717409.8704 - fn0.3: 564209.4723 - precision0.3: 0.8334 - recall0.3: 0.9319 - tp0.5: 7371634.7557 - fp0.5: 895979.9727 - tn0.5: 43363790.1265 - fn0.5: 879234.2943 - precision0.5: 0.8923 - recall0.5: 0.8937 - tp 0.7: 6947267.2155 - fp0.7: 481955.5433 - tn0.7: 43777844.2342 - fn0.7: 1303601.8345 - precision0.7: 0.9356 - recall0.7: 0.8420 - tp0.9: 6003926.6534 - fp0.9: 121081.5886 - tn0.9: 44138712.2896 - fn0.9: 2246942.3966 - precision0.9: 0.98 05 - recall0.9: 0.7264 - accuracy: 0.9665 - auc: 0.9792 - val_loss: 0.9566 - val_tp0.1: 2861835.0000 - val_fp0.1: 1548477.0000 - val_tn0.1: 20587614.0000 - val_fn0.1: 1216470.0000 - val_precision0.1: 0.6489 - val_recall0.1: 0.7017 - va l_tp0.3: 2113828.0000 - val_fp0.3: 1067547.0000 - val_tn0.3: 21068548.0000 - val_fn0.3: 1964477.0000 - val_precision0.3: 0.6644 - val_recall0.3: 0.5183 - val_tp0.5: 1718632.0000 - val_fp0.5: 841787.0000 - val_tn0.5: 21294304.0000 - val _fn0.5: 2359673.0000 - val_precision0.5: 0.6712 - val_recall0.5: 0.4214 - val_tp0.7: 1302909.0000 - val_fp0.7: 555088.0000 - val_tn0.7: 21581000.0000 - val_fn0.7: 2775396.0000 - val_precision0.7: 0.7012 - val_recall0.7: 0.3195 - val_tp 0.9: 773038.0000 - val_fp0.9: 218091.0000 - val_tn0.9: 21918012.0000 - val_fn0.9: 3305267.0000 - val_precision0.9: 0.7800 - val_recall0.9: 0.1895 - val_accuracy: 0.8779 - val_auc: 0.8265 Epoch 50/50 1280/1280 [==============================] - 3294s 3s/step - loss: 0.2301 - tp0.1: 8047942.4426 - fp0.1: 3082506.1288 - tn0.1: 41101922.8275 - fn0.1: 278310.9493 - precision0.1: 0.7219 - recall0.1: 0.9663 - tp0.3: 7760370.9899 - fp0.3: 1521186.0101 - tn0.3: 42663221.2100 - fn0.3: 565882.4020 - precision0.3: 0.8352 - recall0.3: 0.9315 - tp0.5: 7453452.6776 - fp0.5: 892538.5199 - tn0.5: 43291840.9251 - fn0.5: 872800.7143 - precision0.5: 0.8922 - recall0.5: 0.8941 - tp 0.7: 7032066.8470 - fp0.7: 486059.3411 - tn0.7: 43698327.0984 - fn0.7: 1294186.5449 - precision0.7: 0.9348 - recall0.7: 0.8430 - tp0.9: 6085441.6674 - fp0.9: 123868.2233 - tn0.9: 44060549.1827 - fn0.9: 2240811.7244 - precision0.9: 0.98 05 - recall0.9: 0.7278 - accuracy: 0.9656 - auc: 0.9784 - val_loss: 0.7966 - val_tp0.1: 3023429.0000 - val_fp0.1: 1958644.0000 - val_tn0.1: 20321072.0000 - val_fn0.1: 911248.0000 - val_precision0.1: 0.6069 - val_recall0.1: 0.7684 - val _tp0.3: 2293385.0000 - val_fp0.3: 1327982.0000 - val_tn0.3: 20951742.0000 - val_fn0.3: 1641292.0000 - val_precision0.3: 0.6333 - val_recall0.3: 0.5829 - val_tp0.5: 1893004.0000 - val_fp0.5: 1112093.0000 - val_tn0.5: 21167626.0000 - val _fn0.5: 2041673.0000 - val_precision0.5: 0.6299 - val_recall0.5: 0.4811 - val_tp0.7: 1460348.0000 - val_fp0.7: 748911.0000 - val_tn0.7: 21530808.0000 - val_fn0.7: 2474329.0000 - val_precision0.7: 0.6610 - val_recall0.7: 0.3711 - val_tp 0.9: 871307.0000 - val_fp0.9: 277884.0000 - val_tn0.9: 22001836.0000 - val_fn0.9: 3063370.0000 - val_precision0.9: 0.7582 - val_recall0.9: 0.2214 - val_accuracy: 0.8797 - val_auc: 0.8508 600/600 [==============================] - 317s 527ms/step - loss: 0.9377 - tp0.1: 5542504.0000 - fp0.1: 4670897.0000 - tn0.1: 36924880.0000 - fn0.1: 2013729.0000 - precision0.1: 0.5427 - recall0.1: 0.7335 - tp0.3: 4216657.0000 - fp0.3 : 3293157.0000 - tn0.3: 38302600.0000 - fn0.3: 3339576.0000 - precision0.3: 0.5615 - recall0.3: 0.5580 - tp0.5: 3498904.0000 - fp0.5: 2765631.0000 - tn0.5: 38830152.0000 - fn0.5: 4057329.0000 - precision0.5: 0.5585 - recall0.5: 0.4630 - tp0.7: 2661409.0000 - fp0.7: 1815115.0000 - tn0.7: 39780628.0000 - fn0.7: 4894824.0000 - precision0.7: 0.5945 - recall0.7: 0.3522 - tp0.9: 1573540.0000 - fp0.9: 592773.0000 - tn0.9: 41002980.0000 - fn0.9: 5982693.0000 - precision0.9: 0.7264 - recall0.9: 0.2082 - accuracy: 0.8612 - auc: 0.8217 2021/03/18 20:42:08 INFO mlflow.projects: === Run (ID '3cec3f26ed2d4004978c4ec37c00fba0') succeeded === (tf-nightly) [ye53nis@node117 drmed-git]$
2.1.6 Read out logs of Run 2
2.1.6.1 test dataset statistics
- test data is not saved out automatically, but can be copied from the log
above
600/600 [==============================] - 317s 527ms/step - loss: 0.9377
… 0.1 0.3 0.5 0.7 0.9 tp 5542504.0000 4216657.0000 3498904.0000 2661409.0000 1573540.0000 fp 4670897.0000 3293157.0000 2765631.0000 1815115.0000 592773.0000 fn 2013729.0000 3339576.0000 4057329.0000 4894824.0000 5982693.0000 tn 36924880.0000 38302600.0000 38830152.0000 39780628.0000 41002980.0000 all 49152010 49151990 49152016 49151976 49151986 precision 0.5427 0.5615 0.5585 0.5945 0.7264 recall 0.7335 0.5580 0.4630 0.3522 0.2082 accuracy: 0.8612 auc: 0.8217
0.1 actual positive actual negative pred positive 0.11276251 0.095029623 Prec: 0.5427 pred negative 0.040969413 0.75123845 Recall: 0.7335 F1: 0.62383709 0.3 actual positive actual negative pred positive 0.085788124 0.066999464 Prec: 0.5615 pred negative 0.067943861 0.77926855 Recall: 0.5580 F1: 0.55974453 0.5 actual positive actual negative pred positive 0.071185361 0.056266888 Prec: 0.5585 pred negative 0.082546543 0.79000121 Recall: 0.4630 F1: 0.50628585 0.7 actual positive actual negative pred positive 0.054146531 0.036928627 Prec: 0.5945 pred negative 0.099585498 0.80933934 Recall: 0.3522 F1: 0.44234266 0.9 actual positive actual negative pred positive 0.032013762 0.012060001 Prec: 0.7264 pred negative 0.12171824 0.83420800 Recall: 0.2082 F1: 0.32363895
- looks like
pred_thresh=0.1
leads to the best results (Best F1 score)
2.1.6.2 prediction plots after each epoch
sadly, the random sample traces were not very useful, since the spikes were quite small…
2.1.6.3 Application 1 - git log, load modules, set parameters
- Git log, because some more code changes were made
!git log -5
commit 6586965ec900669bd641d69f85b4999050122502 Author: Apoplex <oligolex@vivaldi.net> Date: Tue Mar 23 20:26:11 2021 +0100 Fix management of correlation failing 2 commit ccdb3fb0887cce929987ef04408133917c02ce58 Author: Apoplex <oligolex@vivaldi.net> Date: Tue Mar 23 17:57:39 2021 +0100 Merge plot_simulations and analyze_simulations 2 commit 7951d725c9d53bbffd18c3fca8ccad05d528a368 Author: Apoplex <oligolex@vivaldi.net> Date: Sun Mar 21 12:49:47 2021 +0100 Fix management of correlation failing; return nan commit 6c2146df58ba0af6a148745e7fafc7ff01a2e1b4 Author: Apoplex <oligolex@vivaldi.net> Date: Sun Mar 21 10:43:04 2021 +0100 New management of correlation failing; return nan commit 940df93d2dacdb9c1951b6d8a8aa92f2c6043695 Author: Apoplex <oligolex@vivaldi.net> Date: Sat Mar 20 19:54:01 2021 +0100 Merge plot_simulations and analyze_simulations
%cd /beegfs/ye53nis/drmed-git
/beegfs/ye53nis/drmed-git
from pathlib import Path import sys import mlflow import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns mlflow.version.VERSION
1.13.1
sys.path.append('src/') from fluotracify.simulations import ( import_simulation_from_csv as isfc, analyze_simulations as ans, ) from fluotracify.training import build_model as bm, preprocess_data as ppd from fluotracify.applications import correlate, plots, correction from fluotracify.imports import ptu_utils as ptu
import importlib importlib.reload(correction)
<module 'fluotracify.applications.correction' from 'src/fluotracify/applications/correction.py'>
folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020_test' col_per_example = 3 lab_thresh = 0.04 pred_thresh = 0.1 xunit = 1 artifact = 0 model_type = 1 fwhm = 250 run_id = '3cec3f26ed2d4004978c4ec37c00fba0' length_delimiter = 2**14
- now load the trained model
mlflow.set_tracking_uri('file:///beegfs/ye53nis/drmed-git/data/mlruns') client = mlflow.tracking.MlflowClient(tracking_uri=mlflow.get_tracking_uri()) model_path = client.download_artifacts(run_id=run_id, path='model') model_keras = mlflow.keras.load_model(model_uri=model_path, custom_objects={'binary_ce_dice':bm.binary_ce_dice_loss()}) print(model_path, '\n', model_keras)
/beegfs/ye53nis/drmed-git/3cec3f26ed2d4004978c4ec37c00fba0/artifacts/model <tensorflow.python.keras.engine.functional.Functional object at 0x2acdc9893190>
2.1.6.4 Application 2 - test data
- test and train data were separated beforehand. Now, I only load test data.
folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020_test' dataset, _, nsamples, experiment_params = isfc.import_from_csv( folder=folder, header=12, frac_train=1, col_per_example=col_per_example, dropindex=None, dropcolumns=None) experiment_params
train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set010.csv train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set002.csv train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set005.csv train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set005.csv train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set007.csv train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set002.csv train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set001.csv train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set007.csv train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set009.csv train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set002.csvtrain 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set005.csv train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set008.csv train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set005.csv train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set008.csv train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set005.csv train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set006.csv train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set005.csv train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set003.csv train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set001.csv train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set003.csv train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set003.csv train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set005.csv train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set002.csv train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set002.csv train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set004.csv train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set001.csv train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set001.csv train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set001.csv train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set003.csv train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set001.csv
diffrates = experiment_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32) nmols = experiment_params.loc['number of fast molecules'].astype(np.float32) clusters = experiment_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32) dataset_sep = isfc.separate_data_and_labels(array=dataset, nsamples=nsamples, col_per_example=col_per_example) features = dataset_sep['0'] labels_artifact = dataset_sep['1'] labels_artifact_bool = labels_artifact > lab_thresh labels_puretrace = dataset_sep['2']
The given DataFrame was split into 3 parts with shapes: [(16384, 3000), (16384, 3000), (16384, 3000)]
- Let's correct the traces with the new model and correlate them!
corr_out = ans.correlate_simulations_corrected_by_prediction( model=model_keras, lab_thresh=lab_thresh, pred_thresh=pred_thresh, artifact=artifact, model_type=model_type, experiment_params=experiment_params, nsamples=nsamples, features=features, labels_artifact=labels_artifact, labels_puretrace=labels_puretrace, save_as_csv=True) corr_out
processed correlation of 3000 traces with correction by label processed correlation of 3000 traces with correction by prediction processed correlation of 3000 traces without correction processed correlation of pure 3000 traces
Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used 0 0.069 1.0 679.0 1.037836 10.860146 16384 corrupted without correction 1 0.069 1.0 679.0 0.81403 13.846002 16384 corrupted without correction 2 0.069 1.0 679.0 1.053716 10.696482 16384 corrupted without correction 3 0.069 1.0 679.0 0.897022 12.564974 16384 corrupted without correction 4 0.069 1.0 679.0 1.083577 10.401707 16384 corrupted without correction … … … … … … … … 11995 0.4 0.1 1939.0 0.658104 17.126562 11187 corrected by prediction 11996 0.4 0.1 1939.0 0.336804 33.464773 15720 corrected by prediction 11997 0.4 0.1 1939.0 0.456482 24.691128 15292 corrected by prediction 11998 0.4 0.1 1939.0 0.411872 27.365437 12516 corrected by prediction 11999 0.4 0.1 1939.0 0.244884 46.026059 12986 corrected by prediction 12000 rows × 7 columns
corr_out = pd.read_csv(filepath_or_buffer='data/exp-210204-unet/2021-03-21_correlations.csv') corr_out[corr_out['$D$ in $\\frac{{\mu m^2}}{{s}}$'].isna()]
Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used 9109 50.0 0.01 2323.0 NaN NaN 1 corrected by prediction 9118 50.0 0.01 2323.0 NaN NaN 6 corrected by prediction 9131 50.0 0.01 2323.0 NaN NaN 26 corrected by prediction 9134 50.0 0.01 2323.0 NaN NaN 3 corrected by prediction 9141 50.0 0.01 2323.0 NaN NaN 6 corrected by prediction 9144 50.0 0.01 2323.0 NaN NaN 17 corrected by prediction 9163 50.0 0.01 2323.0 NaN NaN 24 corrected by prediction 9170 50.0 0.01 2323.0 NaN NaN 27 corrected by prediction 9171 50.0 0.01 2323.0 NaN NaN 30 corrected by prediction 9174 50.0 0.01 2323.0 NaN NaN 8 corrected by prediction 9183 50.0 0.01 2323.0 NaN NaN 13 corrected by prediction 9187 50.0 0.01 2323.0 NaN NaN 29 corrected by prediction 9199 50.0 0.01 2323.0 NaN NaN 18 corrected by prediction 9909 10.0 0.01 1396.0 NaN NaN 24 corrected by prediction 9922 10.0 0.01 1396.0 NaN NaN 7 corrected by prediction 9931 10.0 0.01 1396.0 NaN NaN 16 corrected by prediction 9978 10.0 0.01 1396.0 NaN NaN 31 corrected by prediction 9998 10.0 0.01 1396.0 NaN NaN 9 corrected by prediction - We loaded the correlation results from the saved out .csv file and looked at
where it failed. All the cases where basically all the trace was
(wrongfully) removed, was at a very slow simulated cluster speed (0.01) and
a rather high simulated speed of the molecules we are interested in (10
and 50).
Awesome! Now let's try categorical plotting to examine the results in a more structured manner. First, plot the trace lengths.
x = 'Trace lengths' g = sns.FacetGrid(data=corr_out, col='Simulated $D$', col_wrap=2, sharex=True, aspect=1.5, height=5, legend_out=True) g.map_dataframe(sns.boxplot, x=x, y='Traces used', hue='Simulated $D_{{clust}}$', palette='colorblind', showfliers=False) g.add_legend(title='Simulated $D_{{clust}}$') g.map_dataframe(sns.stripplot, x=x, y='Traces used', hue='Simulated $D_{{clust}}$', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2) g.set_xlabels(x) g.tight_layout() plt.show()
- Then, plot the diffusion rates and transit times. Since they follow a log
normal distribution, use a log scale.
# '$D$ in $\\frac{{\mu m^2}}{{s}}$' # '$\\tau_{{D}}$ in $ms$' x = '$\\tau_{{D}}$ in $ms$' g = sns.FacetGrid(data=corr_out, col='Simulated $D$', col_wrap=2, sharex=False, # False for x=D or x=tau, True for x=Trace lengths aspect=1.5, height=5, legend_out=True) g.map_dataframe(sns.boxplot, x=x, y='Traces used', hue='Simulated $D_{{clust}}$', palette='colorblind', showfliers=False).set(xscale = 'log') g.add_legend(title='Simulated $D_{{clust}}$') g.map_dataframe(sns.stripplot, x=x, y='Traces used', hue='Simulated $D_{{clust}}$', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2).set(xscale = 'log') g.set_xlabels(x) g.tight_layout() plt.show()
- Now let's look at the corrections a little closer.
corr_scatter = corr_out[corr_out['Traces used'].isin(['corrected by labels (control)', 'corrected by prediction'])] corr_scatter
Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used 6000 0.069 1.0 679.0 0.051680 218.095043 14468 corrected by labels (control) 6001 0.069 1.0 679.0 0.050863 221.596899 15380 corrected by labels (control) 6002 0.069 1.0 679.0 0.060130 187.443486 14908 corrected by labels (control) 6003 0.069 1.0 679.0 0.087759 128.431237 15230 corrected by labels (control) 6004 0.069 1.0 679.0 0.144906 77.781595 14930 corrected by labels (control) … … … … … … … … 11995 0.400 0.1 1939.0 0.658104 17.126562 11187 corrected by prediction 11996 0.400 0.1 1939.0 0.336804 33.464773 15720 corrected by prediction 11997 0.400 0.1 1939.0 0.456482 24.691128 15292 corrected by prediction 11998 0.400 0.1 1939.0 0.411872 27.365437 12516 corrected by prediction 11999 0.400 0.1 1939.0 0.244884 46.026059 12986 corrected by prediction 6000 rows × 7 columns
- This scatterplot shows Diffusion rates / transit times against trace
lengths.
# '$D$ in $\\frac{{\mu m^2}}{{s}}$' # '$\\tau_{{D}}$ in $ms$' x = '$\\tau_{{D}}$ in $ms$' g = sns.FacetGrid(data=corr_scatter, row='Simulated $D$', col='Traces used', sharex='row', aspect=1, height=4, legend_out=True, margin_titles=True) g.map_dataframe(sns.scatterplot, x=x, y='Trace lengths', hue='Simulated $D_{{clust}}$', palette='colorblind').set(xscale = 'log') g.add_legend(title='Simulated $D_{{clust}}$') g.set_xlabels(x) g.tight_layout() plt.show()
- I concatenated the resulting 2 plots into 1 (left diffusion rates, right transit times). Here it can be nicely seen, that they are just two representations of the same dynamic phenomenon.
2.1.6.5 Application 3 - experimental data
- Workaround for the model prediction problem.
test_features = np.zeros((2**14)).reshape(1, -1, 1) print(test_features.shape) predictions = model_keras.predict(test_features, verbose=0).flatten() predictions
(1, 16384, 1) array([3.3430334e-15, 1.2115031e-08, 5.5057057e-09, ..., 3.8589034e-09, 8.7170475e-09, 9.7742303e-14], dtype=float32)
test_features = np.zeros((2**13)).reshape(1, -1, 1) print(test_features.shape) predictions = model_keras.predict(test_features, verbose=0).flatten() predictions
(1, 8192, 1) array([3.3430334e-15, 1.2115031e-08, 5.5057057e-09, ..., 3.8588959e-09, 8.7170475e-09, 9.7742493e-14], dtype=float32)
path_tb_pex5_egfp = '/beegfs/ye53nis/data/Pablo_structured_experiment' pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9] length_delimiter = 2**13 # for U-Net bin_for_correlation = 1e6 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction( path_list=path_tb_pex5_egfp, model=model_keras, pred_thresh=pred_thresh, photon_count_bin=bin_for_correlation, ntraces=None, save_as_csv=True) out
Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment with bin=1e6. This can take a while... 1 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu 2 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu Processing correlation of unprocessed dataset 1 Processing correlation with correction by prediction of dataset 1
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-186-8ad0b763f87d> in <module> 3 length_delimiter = 2**13 # for U-Net 4 bin_for_correlation = 1e6 ----> 5 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction( 6 path_list=path_tb_pex5_egfp, 7 model=model_keras, /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_experimental_traces_from_ptu_by_unet_prediction(path_list, model, pred_thresh, photon_count_bin, ntraces, save_as_csv) 413 for thr in pred_thresh: 414 data['{}-pred-{}'.format( --> 415 i, thr)] = correct_correlation_by_unet_prediction( 416 ntraces=ntraces, 417 traces_of_interest=ptu_1ms.astype(np.float64), /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_correlation_by_unet_prediction(ntraces, traces_of_interest, model, pred_thresh, fwhm, length_delimiter, traces_for_correlation, bin_for_correlation, verbose) 215 ntraces_index=ntraces_index) 216 --> 217 predictions = model.predict(features_prepro, verbose=0) 218 predictions = predictions.flatten() 219 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py in predict(self, x, batch_size, verbose, steps, callbacks, max_queue_size, workers, use_multiprocessing) 1661 for step in data_handler.steps(): 1662 callbacks.on_predict_batch_begin(step) -> 1663 tmp_batch_outputs = self.predict_function(iterator) 1664 if data_handler.should_sync: 1665 context.async_wait() ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds) 816 tracing_count = self.experimental_get_tracing_count() 817 with trace.Trace(self._name) as tm: --> 818 result = self._call(*args, **kwds) 819 compiler = "xla" if self._jit_compile else "nonXla" 820 new_tracing_count = self.experimental_get_tracing_count() ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds) 851 # In this case we have not created variables on the first call. So we can 852 # run the first trace but we should fail if variables are created. --> 853 results = self._stateful_fn(*args, **kwds) 854 if self._created_variables: 855 raise ValueError("Creating variables on a non-first call to a function" ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs) 2990 with self._lock: 2991 (graph_function, -> 2992 filtered_flat_args) = self._maybe_define_function(args, kwargs) 2993 return graph_function._call_flat( 2994 filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs) 3408 self.input_signature is None and 3409 call_context_key in self._function_cache.missed): -> 3410 return self._define_function_with_shape_relaxation( 3411 args, kwargs, flat_args, filtered_flat_args, cache_key_context) 3412 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _define_function_with_shape_relaxation(self, args, kwargs, flat_args, filtered_flat_args, cache_key_context) 3330 expand_composites=True) 3331 -> 3332 graph_function = self._create_graph_function( 3333 args, kwargs, override_flat_arg_shapes=relaxed_arg_shapes) 3334 self._function_cache.arg_relaxed[rank_only_cache_key] = graph_function ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes) 3247 arg_names = base_arg_names + missing_arg_names 3248 graph_function = ConcreteFunction( -> 3249 func_graph_module.func_graph_from_py_func( 3250 self._name, 3251 self._python_function, ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes) 996 _, original_func = tf_decorator.unwrap(python_func) 997 --> 998 func_outputs = python_func(*func_args, **func_kwargs) 999 1000 # invariant: `func_outputs` contains only Tensors, CompositeTensors, ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds) 610 xla_context.Exit() 611 else: --> 612 out = weak_wrapped_fn().__wrapped__(*args, **kwds) 613 return out 614 ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs) 983 except Exception as e: # pylint:disable=broad-except 984 if hasattr(e, "ag_error_metadata"): --> 985 raise e.ag_error_metadata.to_exception(e) 986 else: 987 raise ValueError: in user code: /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1512 predict_function * return step_function(self, iterator) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1502 step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:1262 run return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:2734 call_for_each_replica return self._call_for_each_replica(fn, args, kwargs) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:3423 _call_for_each_replica return fn(*args, **kwargs) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1495 run_step ** outputs = model.predict_step(data) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1468 predict_step return self(x, training=False) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py:1018 __call__ input_spec.assert_input_compatibility(self.input_spec, inputs, self.name) /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/input_spec.py:271 assert_input_compatibility raise ValueError('Input ' + str(input_index) + ValueError: Input 0 is incompatible with layer model: expected shape=(None, 16384, 1), found shape=(None, 8192, 1)
- Run correction for all experimental traces
path_pex5_exp = ['/beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu', '/beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu'] pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9] length_delimiter = 2**13 # for U-Net bin_for_correlation = 1e5 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction( path_list=path_pex5_exp, model=model_keras, pred_thresh=pred_thresh, photon_count_bin=bin_for_correlation, ntraces=400, save_as_csv=True) out
Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu with bin=1e6. This can take a while... 1 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1082s_1.ptu 2 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1537s_1.ptu 3 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488210_T2505s_1.ptu 4 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488199_T2375s_1.ptu 5 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2040s_1.ptu 6 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488229_T2733s_1.ptu 7 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1070s_1.ptu 8 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1352s_1.ptu 9 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T986s_1.ptu10 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488227_T2709s_1.ptu 11 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2088s_1.ptu 12 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1214s_1.ptu 13 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1561s_1.ptu 14 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T302s_1.ptu 15 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1932s_1.ptu 16 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2267s_1.ptu 17 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2255s_1.ptu 18 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488208_T2481s_1.ptu 19 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T314s_1.ptu 20 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488221_T2637s_1.ptu 21 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1834s_1.ptu 22 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1883s_1.ptu 23 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488197_T2351s_1.ptu 24 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T254s_1.ptu 25 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48816_T182s_1.ptu 26 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2148s_1.ptu 27 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1238s_1.ptu 28 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T833s_1.ptu 29 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T676s_1.ptu 30 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1496s_1.ptu 31 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T459s_1.ptu 32 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1610s_1.ptu 33 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T592s_1.ptu 34 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1907s_1.ptu 35 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T604s_1.ptu 36 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1895s_1.ptu 37 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T926s_1.ptu 38 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T447s_1.ptu 39 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T821s_1.ptu 40 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48834_T399s_1.ptu 41 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T506s_1.ptu 42 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1076s_1.ptu 43 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2209s_1.ptu 44 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T748s_1.ptu 45 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1232s_1.ptu 46 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2159s_1.ptu 47 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T698s_1.ptu 48 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T855s_1.ptu 49 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1789s_1.ptu 50 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488241_T2877s_1.ptu 51 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488204_T2434s_1.ptu 52 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T918s_1.ptu 53 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2147s_1.ptu 54 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2197s_1.ptu 55 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1908s_1.ptu 56 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488238_T2842s_1.ptu 57 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1968s_1.ptu 58 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488234_T2793s_1.ptu 59 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T979s_1.ptu 60 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1148s_1.ptu 61 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1280s_1.ptu 62 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1654s_1.ptu 63 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1484s_1.ptu 64 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2245s_1.ptu 65 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T879s_1.ptu 66 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1896s_1.ptu 67 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2124s_1.ptu 68 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1328s_1.ptu 69 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T867s_1.ptu 70 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T962s_1.ptu 71 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T628s_1.ptu 72 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48842_T496s_1.ptu 73 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T590s_1.ptu 74 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1184s_1.ptu 75 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488196_T2339s_1.ptu 76 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1956s_1.ptu 77 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488217_T2589s_1.ptu 78 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488218_T2601s_1.ptu 79 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1418s_1.ptu 80 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488206_T2458s_1.ptu 81 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T785s_1.ptu 82 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1226s_1.ptu 83 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T278s_1.ptu 84 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4887_T74s_1.ptu 85 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2099s_1.ptu 86 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48817_T194s_1.ptu 87 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1346s_1.ptu 88 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T688s_1.ptu 89 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488211_T2517s_1.ptu 90 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T712s_1.ptu 91 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48833_T387s_1.ptu 92 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T686s_1.ptu 93 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48813_T146s_1.ptu 94 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488126_T1502s_1.ptu 95 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1118s_1.ptu 96 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1316s_1.ptu 97 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2243s_1.ptu 98 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1430s_1.ptu 99 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488219_T2613s_1.ptu 100 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1646s_1.ptu 101 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2231s_1.ptu 102 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488146_T1742s_1.ptu 103 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488155_T1859s_1.ptu 104 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2075s_1.ptu 105 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1884s_1.ptu 106 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488244_T2914s_1.ptu 107 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4886_T62s_1.ptu 108 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1015s_1.ptu 109 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1979s_1.ptu 110 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T674s_1.ptu 111 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2279s_1.ptu 112 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2183s_1.ptu 113 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1689s_1.ptu 114 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2269s_1.ptu 115 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T266s_1.ptu 116 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488209_T2493s_1.ptu 117 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1630s_1.ptu 118 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488185_T2221s_1.ptu 119 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2135s_1.ptu 120 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T782s_1.ptu 121 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1472s_1.ptu 122 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1919s_1.ptu 123 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T664s_1.ptu 124 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T351s_1.ptu 125 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T375s_1.ptu 126 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T700s_1.ptu 127 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1545s_1.ptu 128 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1714s_1.ptu 129 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1022s_1.ptu 130 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1754s_1.ptu 131 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488193_T2303s_1.ptu 132 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1250s_1.ptu 133 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488228_T2721s_1.ptu 134 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1088s_1.ptu 135 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2040s_1.ptu 136 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48835_T411s_1.ptu 137 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1046s_1.ptu 138 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1466s_1.ptu 139 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T906s_1.ptu 140 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T255s_1.ptu 141 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1730s_1.ptu 142 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1358s_1.ptu 143 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T279s_1.ptu 144 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T638s_1.ptu 145 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2949s_1.ptu 146 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T519s_1.ptu 147 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T482s_1.ptu 148 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T327s_1.ptu 149 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T471s_1.ptu 150 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488225_T2685s_1.ptu 151 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T362s_1.ptu 152 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T578s_1.ptu 153 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T722s_1.ptu 154 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T614s_1.ptu 155 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T616s_1.ptu 156 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1778s_1.ptu 157 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2028s_1.ptu 158 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4883_T26s_1.ptu 159 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T966s_1.ptu 160 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T435s_1.ptu 161 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1666s_1.ptu 162 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2315s_1.ptu 163 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488205_T2446s_1.ptu 164 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48818_T206s_1.ptu 165 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1533s_1.ptu 166 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T602s_1.ptu 167 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488116_T1388s_1.ptu 168 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2196s_1.ptu 169 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1394s_1.ptu 170 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T818s_1.ptu 171 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1130s_1.ptu 172 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2076s_1.ptu 173 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1262s_1.ptu 174 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2993s_1.ptu 175 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1063s_1.ptu 176 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48845_T531s_1.ptu 177 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1400s_1.ptu 178 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488192_T2291s_1.ptu 179 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1992s_1.ptu 180 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1142s_1.ptu 181 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1124s_1.ptu 182 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2111s_1.ptu 183 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48862_T736s_1.ptu 184 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1412s_1.ptu 185 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1100s_1.ptu 186 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T555s_1.ptu 187 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488223_T2661s_1.ptu 188 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T626s_1.ptu 189 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1622s_1.ptu 190 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1810s_1.ptu 191 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2925s_1.ptu 192 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T942s_1.ptu 193 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1448s_1.ptu 194 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T809s_1.ptu 195 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488201_T2398s_1.ptu 196 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1670s_1.ptu 197 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488250_T3006s_1.ptu 198 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4884_T38s_1.ptu 199 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1514s_1.ptu 200 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1244s_1.ptu 201 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2172s_1.ptu 202 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1370s_1.ptu 203 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1678s_1.ptu 204 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T652s_1.ptu 205 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T1003s_1.ptu 206 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T544s_1.ptu 207 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1569s_1.ptu 208 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488236_T2817s_1.ptu 209 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2123s_1.ptu 210 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T869s_1.ptu 211 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1968s_1.ptu 212 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2973s_1.ptu 213 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1801s_1.ptu 214 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488235_T2805s_1.ptu 215 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2028s_1.ptu 216 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2160s_1.ptu 217 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1618s_1.ptu 218 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2281s_1.ptu 219 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T758s_1.ptu 220 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T794s_1.ptu 221 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T891s_1.ptu 222 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T842s_1.ptu 223 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488213_T2541s_1.ptu 224 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2184s_1.ptu 225 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T484s_1.ptu 226 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2052s_1.ptu 227 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1825s_1.ptu 228 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1581s_1.ptu 229 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1762s_1.ptu 230 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1310s_1.ptu 231 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1010s_1.ptu 232 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T290s_1.ptu 233 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488168_T2004s_1.ptu 234 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48820_T230s_1.ptu 235 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1944s_1.ptu 236 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488203_T2422s_1.ptu 237 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488152_T1822s_1.ptu 238 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T243s_1.ptu 239 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T2004s_1.ptu 240 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T436s_1.ptu 241 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1980s_1.ptu 242 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488200_T2386s_1.ptu 243 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1454s_1.ptu 244 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T508s_1.ptu 245 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1220s_1.ptu 246 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T773s_1.ptu 247 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1920s_1.ptu 248 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T267s_1.ptu 249 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T746s_1.ptu 250 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1573s_1.ptu 251 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T797s_1.ptu 252 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1726s_1.ptu 253 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1738s_1.ptu 254 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2016s_1.ptu 255 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1058s_1.ptu 256 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T710s_1.ptu 257 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T363s_1.ptu 258 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488215_T2565s_1.ptu 259 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T930s_1.ptu 260 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T770s_1.ptu 261 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T830s_1.ptu 262 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1364s_1.ptu 263 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488148_T1774s_1.ptu 264 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488224_T2673s_1.ptu 265 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488172_T2052s_1.ptu 266 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T1992s_1.ptu 267 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488100_T1190s_1.ptu 268 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T242s_1.ptu 269 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488240_T2865s_1.ptu 270 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1701s_1.ptu 271 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1549s_1.ptu 272 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T520s_1.ptu 273 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T724s_1.ptu 274 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48814_T158s_1.ptu 275 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1956s_1.ptu 276 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2064s_1.ptu 277 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4885_T50s_1.ptu 278 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T580s_1.ptu 279 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T472s_1.ptu 280 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T991s_1.ptu 281 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2969s_1.ptu 282 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1798s_1.ptu 283 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T566s_1.ptu 284 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1160s_1.ptu 285 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1406s_1.ptu 286 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4889_T98s_1.ptu 287 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T134s_1.ptu 288 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488222_T2649s_1.ptu 289 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1039s_1.ptu 290 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T938s_1.ptu 291 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1051s_1.ptu 292 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T902s_1.ptu 293 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48819_T218s_1.ptu 294 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1112s_1.ptu 295 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1442s_1.ptu 296 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488101_T1208s_1.ptu 297 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488109_T1304s_1.ptu 298 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1526s_1.ptu 299 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488207_T2470s_1.ptu 300 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2937s_1.ptu 301 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488242_T2890s_1.ptu 302 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T640s_1.ptu 303 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T554s_1.ptu 304 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1292s_1.ptu 305 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1597s_1.ptu 306 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4888_T86s_1.ptu 307 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T857s_1.ptu 308 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1786s_1.ptu 309 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T291s_1.ptu 310 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2171s_1.ptu 311 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1871s_1.ptu 312 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488220_T2624s_1.ptu 313 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2981s_1.ptu 314 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1154s_1.ptu 315 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T568s_1.ptu 316 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2100s_1.ptu 317 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1847s_1.ptu 318 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2945s_1.ptu 319 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1658s_1.ptu 320 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T350s_1.ptu 321 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2087s_1.ptu 322 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T662s_1.ptu 323 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488230_T2745s_1.ptu 324 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T894s_1.ptu 325 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1521s_1.ptu 326 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488195_T2327s_1.ptu 327 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T998s_1.ptu 328 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2219s_1.ptu 329 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T974s_1.ptu 330 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1606s_1.ptu 331 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1286s_1.ptu 332 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T315s_1.ptu 333 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488214_T2553s_1.ptu 334 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1944s_1.ptu 335 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T460s_1.ptu 336 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2233s_1.ptu 337 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488243_T2902s_1.ptu 338 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1642s_1.ptu 339 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1861s_1.ptu 340 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4882_T14s_1.ptu 341 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1694s_1.ptu 342 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T123s_1.ptu 343 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2961s_1.ptu 344 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1136s_1.ptu 345 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T303s_1.ptu 346 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2293s_1.ptu 347 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1634s_1.ptu 348 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488133_T1585s_1.ptu 349 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488216_T2577s_1.ptu 350 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1274s_1.ptu 351 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1557s_1.ptu 352 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1436s_1.ptu 353 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T806s_1.ptu 354 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1490s_1.ptu 355 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T374s_1.ptu 356 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1424s_1.ptu 357 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T914s_1.ptu 358 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2257s_1.ptu 359 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48836_T423s_1.ptu 360 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2112s_1.ptu 361 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488112_T1334s_1.ptu 362 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48815_T170s_1.ptu 363 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T448s_1.ptu 364 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2136s_1.ptu 365 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488198_T2363s_1.ptu 366 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T650s_1.ptu 367 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1178s_1.ptu 368 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1931s_1.ptu 369 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2957s_1.ptu 370 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488231_T2757s_1.ptu 371 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1460s_1.ptu 372 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1873s_1.ptu 373 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2329s_1.ptu 374 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T542s_1.ptu 375 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1718s_1.ptu 376 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1322s_1.ptu 377 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1705s_1.ptu 378 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T882s_1.ptu 379 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1478s_1.ptu 380 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1268s_1.ptu 381 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1094s_1.ptu 382 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1376s_1.ptu 383 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T761s_1.ptu 384 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488239_T2853s_1.ptu 385 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1106s_1.ptu 386 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1837s_1.ptu 387 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1256s_1.ptu 388 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48829_T338s_1.ptu 389 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T845s_1.ptu 390 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1172s_1.ptu 391 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48880_T954s_1.ptu 392 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T122s_1.ptu 393 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1682s_1.ptu 394 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488237_T2829s_1.ptu 395 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48810_T110s_1.ptu 396 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1166s_1.ptu 397 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T135s_1.ptu 398 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1034s_1.ptu 399 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488202_T2410s_1.ptu 400 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T326s_1.ptu 401 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1027s_1.ptu Different binning was chosen for correlation. Loading dataset 1 with bin=100000.0. This can take a while... Processing correlation of unprocessed dataset 1 Processing correlation with correction by prediction of dataset 1
- Not all of the log was saved (e.g. loading folder alldirtyptu). Load CSV
corr_out = pd.read_csv(filepath_or_buffer='data/exp-210204-unet/2021-03-24_correlations.csv') corr_out
\(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\) 0 19.078159 0.590783 8192.0 0-orig 100000.0 1 20.314897 0.554817 8192.0 0-orig 100000.0 2 21.007772 0.536518 8192.0 0-orig 100000.0 3 22.716317 0.496166 8192.0 0-orig 100000.0 4 24.089236 0.467888 8192.0 0-orig 100000.0 … … … … … … 4795 0.062475 180.409905 8017.0 1-pred-0.9 100000.0 4796 0.054750 205.864659 7976.0 1-pred-0.9 100000.0 4797 0.265582 42.439007 8060.0 1-pred-0.9 100000.0 4798 0.148929 75.680566 8077.0 1-pred-0.9 100000.0 4799 0.331785 33.970940 8091.0 1-pred-0.9 100000.0 4800 rows × 5 columns
looks good! Open question: why were metadata not saved? Since I started handling multipletau failures better (they now return np.nan values for the correlations instead of just skipping the correlation) the shapes of metadata and data should match…
- Check out nan values
corr_out[corr_out['$D$ in $\\frac{{\mu m^2}}{{s}}$'].isna()]
\(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\) 402 NaN NaN 3.0 0-pred-0.1 100000.0 410 NaN NaN 3.0 0-pred-0.1 100000.0 428 NaN NaN 0.0 0-pred-0.1 100000.0 481 NaN NaN 3.0 0-pred-0.1 100000.0 527 NaN NaN 3.0 0-pred-0.1 100000.0 530 NaN NaN 1.0 0-pred-0.1 100000.0 534 NaN NaN 0.0 0-pred-0.1 100000.0 552 NaN NaN 1.0 0-pred-0.1 100000.0 553 NaN NaN 1.0 0-pred-0.1 100000.0 557 NaN NaN 2.0 0-pred-0.1 100000.0 558 NaN NaN 2.0 0-pred-0.1 100000.0 563 NaN NaN 2.0 0-pred-0.1 100000.0 568 NaN NaN 1.0 0-pred-0.1 100000.0 572 NaN NaN 0.0 0-pred-0.1 100000.0 578 NaN NaN 1.0 0-pred-0.1 100000.0 589 NaN NaN 2.0 0-pred-0.1 100000.0 623 NaN NaN 3.0 0-pred-0.1 100000.0 634 NaN NaN 1.0 0-pred-0.1 100000.0 638 NaN NaN 1.0 0-pred-0.1 100000.0 651 NaN NaN 2.0 0-pred-0.1 100000.0 655 NaN NaN 3.0 0-pred-0.1 100000.0 656 NaN NaN 0.0 0-pred-0.1 100000.0 660 NaN NaN 0.0 0-pred-0.1 100000.0 691 NaN NaN 0.0 0-pred-0.1 100000.0 694 NaN NaN 0.0 0-pred-0.1 100000.0 699 NaN NaN 2.0 0-pred-0.1 100000.0 715 NaN NaN 2.0 0-pred-0.1 100000.0 721 NaN NaN 0.0 0-pred-0.1 100000.0 725 NaN NaN 1.0 0-pred-0.1 100000.0 764 NaN NaN 2.0 0-pred-0.1 100000.0 799 NaN NaN 1.0 0-pred-0.1 100000.0 We see, that all of the 31 NaNs happened in the "clean" dataset with a prediction threshold of 0.1 and all were presumably caused by the insufficient trace length, since multipletau needs in this case 32 time steps to correlate the trace.
- Refactor folder-idtraces-used into 2 columns
corr_out['folder_id-traces_used']
0 0-orig 1 0-orig 2 0-orig 3 0-orig 4 0-orig ... 4795 1-pred-0.9 4796 1-pred-0.9 4797 1-pred-0.9 4798 1-pred-0.9 4799 1-pred-0.9 Name: folder_id-traces_used, Length: 4800, dtype: object
corr_out[['Folder ID', 'Traces used']] = corr_out['folder_id-traces_used'].str.split(pat='-', n=1, expand=True)
corr_out
\(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\) Folder ID Traces used 0 19.078159 0.590783 8192.0 0-orig 100000.0 0 orig 1 20.314897 0.554817 8192.0 0-orig 100000.0 0 orig 2 21.007772 0.536518 8192.0 0-orig 100000.0 0 orig 3 22.716317 0.496166 8192.0 0-orig 100000.0 0 orig 4 24.089236 0.467888 8192.0 0-orig 100000.0 0 orig … … … … … … … … 4795 0.062475 180.409905 8017.0 1-pred-0.9 100000.0 1 pred-0.9 4796 0.054750 205.864659 7976.0 1-pred-0.9 100000.0 1 pred-0.9 4797 0.265582 42.439007 8060.0 1-pred-0.9 100000.0 1 pred-0.9 4798 0.148929 75.680566 8077.0 1-pred-0.9 100000.0 1 pred-0.9 4799 0.331785 33.970940 8091.0 1-pred-0.9 100000.0 1 pred-0.9 4800 rows × 7 columns
- plots
x = 'Trace lengths' g = sns.FacetGrid(data=corr_out, col='Folder ID', col_wrap=1, sharex=True, aspect=1.5, height=5, legend_out=True) g.map_dataframe(sns.boxplot, x=x, y='Traces used', palette='colorblind', showfliers=False) g.map_dataframe(sns.stripplot, x=x, y='Traces used', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2) g.set_xlabels(x) g.tight_layout() plt.show()
Trace lengths:
# '$D$ in $\\frac{{\mu m^2}}{{s}}$' # '$\\tau_{{D}}$ in $ms$' x = '$D$ in $\\frac{{\mu m^2}}{{s}}$' g = sns.FacetGrid(data=corr_out, col='Folder ID', col_wrap=1, sharex=True, aspect=1.5, height=5, legend_out=True) g.map_dataframe(sns.boxplot, x=x, y='Traces used', palette='colorblind', showfliers=False).set(xscale = 'log') g.map_dataframe(sns.stripplot, x=x, y='Traces used', dodge=True, palette=sns.color_palette(['0.3']), size=4, jitter=0.2).set(xscale = 'log') g.set_xlabels(x) g.tight_layout() plt.show()
D: tau:
This scatterplot shows Diffusion rates / transit times against trace lengths. I used a subsample to avoid overplotting.
# '$D$ in $\\frac{{\mu m^2}}{{s}}$' # '$\\tau_{{D}}$ in $ms$' x = '$\\tau_{{D}}$ in $ms$' g = sns.FacetGrid(data=corr_out, row='Traces used', col='Folder ID', hue='Traces used', sharex=True, sharey=True, aspect=1.5, height=3.5, margin_titles=True, legend_out=True) g.map_dataframe(sns.scatterplot, x=x, y='Trace lengths', palette='colorblind').set(xscale = 'log') g.add_legend(title='Traces used') g.set_xlabels(x) g.tight_layout() plt.show()
# '$D$ in $\\frac{{\mu m^2}}{{s}}$' # '$\\tau_{{D}}$ in $ms$' x = '$\\tau_{{D}}$ in $ms$' g = sns.FacetGrid(data=corr_out.sample(1000), row='Folder ID', hue='Traces used', hue_order=['orig', 'pred-0.1', 'pred-0.3', 'pred-0.5', 'pred-0.7', 'pred-0.9'], sharex=True, sharey=True, aspect=1.5, height=4, margin_titles=True, legend_out=True) g.map_dataframe(sns.scatterplot, x=x, y='Trace lengths', palette='colorblind').set(xscale = 'log') g.add_legend(title='Traces used') g.set_xlabels(x) g.tight_layout() plt.show()
Scatterplot on subsample: Scatterplot on full dataset, but categorical:
2.1.7 use MLFLOW to compare run 1 and run 2
- get the experiment ID
conda activate tf-nightly cd Programme/drmed-git export MLFLOW_EXPERIMENT_NAME=exp-210204-unet
export MLFLOW_TRACKING_URI=file:/data/mlruns mlflow experiments list
Experiment Id Name Artifact Location --------------- --------------- ------------------- 2 exp-210124-test file:. 3 exp-210204-unet file:.
mlflow runs list --experiment-id 3
Date Name ID ----------------------- ------ -------------------------------- 2021-03-16 22:26:12 CET 3cec3f26ed2d4004978c4ec37c00fba0 2021-02-05 18:23:50 CET b9935d1e554c423fb2852242f4c4504c
- start tensorboard for the runs
export EXP1=b9935d1e554c423fb2852242f4c4504c export EXP2=3cec3f26ed2d4004978c4ec37c00fba0 tensorboard --logdir=data/mlruns/3/$EXP2/artifacts/tensorboard_logs
sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de's password: ye53nis@login01's password: bind: Address already in use Last login: Fri Apr 2 23:45:47 2021 from 10.231.191.246
auc and val-auc:
loss and val-loss:
run 1 distribution and histogram of final layer
run 2 distribution and histogram of final layer