Lab book Fluotracify

1 Technical Notes

1.1 README

1.1.1 General:

  • This file corresponds to my lab book for my doctoral thesis tackling artifact correction in Fluorescence Correlation Spectroscopy (FCS) measurements using Deep Neural Networks. It also contains notes taken during the process of setting up this workflow for reproducible research.
  • This file contains explanations of how things are organized, of the workflow for doing experiments, changes made to the code, and the observed behavior in the "* Data" section.
  • The branching model used is described in this paper. Therefore: if you are interested in the "* Data" section, you have to git clone the data branch of the repository. The main branch is clean from any results, it contains only source code and the analysis.
  • This project is my take on Open-notebook science. The idea was postulated in a blog post in 2006:

    … there is a URL to a laboratory notebook that is freely available and indexed on common search engines. It does not necessarily have to look like a paper notebook but it is essential that all of the information available to the researchers to make their conclusions is equally available to the rest of the world —Jean-Claude Bradley

  • Proposal on how to deal with truly private data (e.g. notes from a confidential meeting with a colleague), which might otherwise be noted in a normal Lab notebook: do not include them here. Only notes relevant to the current project should be taken

1.1.2 Code block languages used in this document

# This is a sh block for shell / bash scripting. In the context of this file,
# these blocks are mainly used for operations on my local computer.
# In the LabBook.html rendering of this document, these blocks will have a
# light green colour (#F0FBE9)
# This block can open and access tmux sessions, used for shell scripting on
# remote computing clusters.
# In the LabBook.html rendering of this document, these blocks will have a
# distinct light green colour (#E1EED8)
# This is a python block. In the context of this file, it is seldomly used
# (only for examplary scripts.)
# In the LabBook.html rendering of this document, these blocks will have a
# light blue colour (#E6EDF4)
# This is a jupyter-python block. The code is sent to a jupyter kernel running
# on a remote high performance computing cluster. Most of my jupyter code is
# executed this way.
# In the LabBook.html rendering of this document, these blocks will have a
# light orange colour (#FAEAE1)
;; This is a emacs-lisp block, the language used to customize Emacs, which is
;; sometimes necessary, since the reproducible workflow of this LabBook is
;; tightly integrated with Emacs and org-mode.
;; In the LabBook.html rendering of this document, these blocks will have a
;; light violet colour (#F7ECFB)
This is a literal example block. It can be used very flexibly - in the context
of this document the output of most code blocks is displayed this way.
In the LabBook.html rendering of this document, these blocks will have a light
yellow colour (#FBFBBF)
This is a literal example block enclosed in a details block. This is useful to
make the page more readable by collapsing large amounts of output.
In the Labbook.html rendering of this document, the details block will have a
light grey colour (#f0f0f0) and a pink color when hovering above it.

1.1.3 Experiments workflow:

  1. Create a new branch from main
  2. Print out the git log from the latest commit and the metadata
  3. Call the analysis scripts, follow the principles outlined in Organization of code
  4. All machine learning runs are saved in data/mlruns, all other data in data/#experiment-name
  5. Add a ** exp-<date>-<name>" section to this file under Data
  6. Commit/push the results of this separate branch
  7. Merge this new branch with the remote data branch

1.1.4 Example for experimental setup procedure

1.1.4.1 Setting starting a jupyter kernel from a remote jupyter session using emacs-jupyter in org babel

1.1.5 tools used (notes)

1.1.5.1 Emacs magit
1.1.5.2 jupyter

1.2 Template for data entry and setup notes:

1.2.1 exp-#date-#title

1.2.1.1 git:
git log -1
1.2.1.2 System Metadata:
import os
import pprint

ramlist = os.popen('free -th').readlines()[-1].split()[1:]

print('No of CPUs in system:', os.cpu_count())
print('No of CPUs the current process can use:',
      len(os.sched_getaffinity(0)))
print('load average:', os.getloadavg())
print('os.uname(): ', os.uname())
print('PID of process:', os.getpid())
print('RAM total: {}, RAM used: {}, RAM free: {}'.format(
    ramlist[0], ramlist[1], ramlist[2]))

!echo the current directory: $PWD
!echo My disk usage:
!df -h
if _long:
    %conda list
    pprint.pprint(dict(os.environ), sort_dicts=False)

1.2.1.3 Tmux setup and scripts
rm ~/.tmux-local-socket-remote-machine
REMOTE_SOCKET=$(ssh ara 'tmux ls -F "#{socket_path}"' | head -1)
echo $REMOTE_SOCKET
ssh ara -tfN \
    -L ~/.tmux-local-socket-remote-machine:$REMOTE_SOCKET
rm: cannot remove 'home/lex.tmux-local-socket-remote-machine': No such file or directory
ye53nis@ara-login01.rz.uni-jena.de's password:              
/tmp/tmux-67339/default                
> ye53nis@ara-login01.rz.uni-jena.de's password:            
1.2.1.4 SSH tunneling

Different applications can be run on the remote compute node. If I want to access them at the local machine, and open them with the browser, I use this tunneling script.

ssh -t -t ara -L $port:localhost:$port ssh $node -L $port:Localhost:$port

Apps I use that way:

  • Jupyter lab for running Python 3-Kernels
  • TensorBoard
  • Mlflow ui
1.2.1.5 jupyter scripts

Starting a jupyter instance on a server where the necessary libraries are installed is easy using this script:

conda activate tf
export PORT=9999
export XDG_RUNTIME_DIR=''
export XDG_RUNTIME_DIR=""
jupyter lab --no-browser --port=$PORT

On the compute node of the HPC, the users' environment is managed through module files using the system Lmod. The export XDG_RUNTIME_DIR statements are needed because of a jupyter bug which did not let it start. Right now, ob-tmux does not support a :var header like normal org-babel does. So the $port variable has to be set here in the template.

Now this port has to be tunnelled on our local computer (See SSH tunneling). While the tmux session above keeps running, no matter if Emacs is running or not, this following ssh tunnel needs to be active locally to connect to the notebook. If you close Emacs, it would need to be reestablished

1.2.2 Setup notes

1.2.2.1 Setting up a tmux connection from using ob-tmux in org-babel
  • prerequisite: tmux versions need to be the same locally and on the server. Let's verify that now.
    • the local tmux version:
      tmux -V
      
      tmux 3.0a
      
    • the remote tmux version:
      ssh ara tmux -V
      
      ye53nis@ara-login01.rz.uni-jena.de's password:
      tmux 3.0a
  • as is described in the ob-tmux readme, the following code snippet creates a socket on the remote machine and forwards this socket to the local machine (note that socket_path was introduced in tmux version 2.2)
    REMOTE_SOCKET=$(ssh ara 'tmux ls -F "#{socket_path}"' | head -1)
    echo $REMOTE_SOCKET
    ssh ara -tfN \
        -L ~/.tmux-local-socket-remote-machine:$REMOTE_SOCKET
    
    ye53nis@ara-login01.rz.uni-jena.de's password:  
    /tmp/tmux-67339/default    
    > ye53nis@ara-login01.rz.uni-jena.de's password:
  • now a new tmux session with name ob-NAME is created when using a code block which looks like this: #+BEGIN_SRC tmux :socket ~/.tmux-local-socket-remote-machine :session NAME
  • Commands can be sent now to the remote tmux session, BUT note that the output is not printed yet
  • there is a workaround for getting output back to our LabBook.org: A script which allows to print the output from the tmux session in an #+begin_example-Block below the tmux block by pressing C-c C-o or C-c C-v C-o when the pointer is inside the tmux block.
1.2.2.2 emacs-jupyter Setup

Emacs-jupyter aims to be an API for a lot of functionalities of the jupyter project. The documentation can be found on GitHub.

  1. For the whole document: connect to a running jupyter instance
    1. M-x jupyter-server-list-kernels
      1. set server URL, e.g. http://localhost:8889
      2. set websocket URL, e.g. http://localhost:8889
    2. two possibilities
      1. kernel already exists \(\to\) list of kernels and kernel-ID is displayed
      2. kernel does not exist \(\to\) prompt asks if you want to start one \(\to\) yes \(\to\) type kernel you want to start, e.g. Python 3
  2. In the subtree where you want to use jupyter-python blocks with org babel
    1. set the :header-args:jupyter-python :session /jpy:localhost#kernel:8889-ID
    2. customize the output folder using the following org-mode variable:
      (setq org-babel-jupyter-resource-directory "./data/exp-test/plots")
      
      ./data/exp-test/plots
      
  3. For each individual block, the following customizations might be useful
    1. jupyter kernels can return multiple kinds of rich output (images, html, …) or scalar data (plain text, numbers, lists, …). To force a plain output, use :results scalar. To show the output in the minibuffer only, use :results silent
    2. to change the priority of different rich outputs, use :display header argument, e.g. :display text/plain text/html prioritizes plain text over html. All supported mimetypes in default order:
      1. text/org
      2. image/svg+xml, image/jpeg, image/png
      3. text/html
      4. text/markdown
      5. text/latex
      6. text/plain
    3. We can set jupyter to output pandas DataFrames as org tables automatically using the source block header argument :pandoc t
    4. useful keybindings
      • M-i to open the documentation for wherever your pointer is (like pressing Shift-TAB in Jupyter notebooks)
      • C-c C-i to interrupt the kernel, C-c C-r to restart the kernel

1.2.3 Notes on archiving

1.2.3.1 Exporting the LabBook.org to html in a twbs style
  • I am partial to the twitter bootstrap theme of html, since I like it's simple design, but clear structure with a nice table of contents at the side → the following org mode extension supports a seemless export to twitter bootstrap html: https://github.com/marsmining/ox-twbs
  • when installed, the export can be triggered via the command (org-twbs-export-as-html) or via the keyboard shortcut for export C-c C-e followed by w for Twitter bootstrap and h for saving the .html
  • Things to configure:
    • in general, there are multiple export options: https://orgmode.org/manual/Export-Settings.html
    • E.g. I set 2 #+OPTIONS keywords at the begin of the file: toc:4 and H:4 which make sure that in my export my sidebar table of contents will show numbered headings till a depth of 4.
    • I configured my code blocks so that they will not be evaluated when exporting (I would recommend this especially if you only export for archiving) and that both the code block and the output will be exported with the keyword: #+PROPERTY: header-args :eval never-export :exports both
    • To discriminate between code blocks for different languages I gave each of them a distinct colour using #+HTML_HEAD_EXTRA: <style... (see above)
    • I had to configure a style for table, so that the
      • display: block; overflow-x: auto; gets the table to be restricted to the width of the text and if it is larger, activates scrolling
      • white-space: nowrap; makes it that there is no wrap in a column, so it might be broader, but better readable if you have scrolling anyway
  • Things to do before exporting / Troubleshooting while exporting:
    • when using a dark theme for you emacs, the export of the code blocks might show some ugly dark backgrounds from the theme. If this becomes an issue, change to a light theme for the export with M-x (load-theme) and choose solarized-light
    • only in the data branch you set the git tags after merging. If you want to show them here, execute the corresponding function in Git TAGs
    • make sure your file links work properly! I recommend referencing your files relatively (e.g. [ [ f ile:./data/exp-XXXXXX-test/test.png]] without spaces). Otherwise there will be errors in your Messages buffer
    • There might be errors with your code blocks
      • e.g. the export function expects you to assign a default variable to your functions
      • if you call a function via the #+CALL mechanism, it wants you to include two parentheses for the function, e.g. #+CALL: test()
    • check indentation of code blocks inside lists
    • add a details block around large output cells. This makes them expandable. I added some #+HTML_HEAD_EXTRA: <style... inspired by alhassy. That's how the details block looks like:
      #+begin_details
      
      #+end_details
      
    • If you reference a parameter with an underscore in the name, use the org markdown tricks to style them like code (== or ~~), otherwise the part after the underscore will be rendered like a subscript: under_score vs underscore
  • Things to do after exporting:
    • In my workflow, the exported LabBook.html with the overview of all experiments is in the data folder. If you move the file, you will have to fix the file links for the new location, e.g. via "Find and replace" M-%:
      • if you move the org file → in the org file find [[file:./data/ and replace with [[file:./ → then export with C-c C-e w h
      • if you export first with C-c C-e w h and move the html file to data → in the html file find ./data and replace with .

1.3 Organization of git

1.3.1 remote/origin/main branch:

  • contains all the source code in folder src/ which is used for experiments.
  • contains the LabBook.org template
  • contains setup- and metadata files such as MLproject or conda.yaml
  • the log contains only lasting alterations on the folders and files mentioned above, which are e.g. used for conducting experiments or which introduce new features. Day-to-day changes in code

1.3.2 remote/origin/exp### branches:

  • if an experiment is done, the code and templates will be branched out from main in an #experiment-name branch, ### meaning some meaningful descriptor.
  • all data generated during the experiment (e.g. .csv files, plots, images, etc), is stored in a folder with the name data/#experiment-name, except machine learning-specific data and metadata from `mlflow` runs, which are saved under data/mlruns (this allows easily comparing machine learning runs with different experimental settings)
  • The LabBook.org file is essential
    • If possible, all code is executed from inside this file (meaning analysis scripts or calling the code from the scr/ directory).
    • All other steps taken during an experiment are noted down, as well as conclusions or my thought process while conducting the experiment
    • Provenance data, such as metadata about the environment the code was executed in, the command line output of the code, and some plots

1.3.3 remote/origin/develop branch:

  • this is the branch I use for day to day work on features and exploration. All of my current activity can be followed here.

1.3.4 remote/origin/data branch:

  • contains a full cronicle of the whole research process
  • all #experiment-name branches are merged here. Afterwards the original branch is deleted and on the data branch there is a Git tag which shows the merge commit to make accessing single experiments easy.
  • the develop branch is merged here as well.

1.3.5 Git TAGs

1.3.5.1 Stable versions:
1.3.5.2 All tags from git:
git push origin --tags
git tag -n1
exp-200402-test Merge branch 'exp-200402-test' into data
exp-200520-unet Merge branch 'exp-310520-unet' into data
exp-200531-unet Merge branch 'heads/exp-310520-unet' into data
exp-201231-clustsim exp-201231-clustsim
exp-210204-unet Add exp-210204-unet LabBook part 3
exp-310520-unet move exp-310520-unet to data branch manually

1.4 Organization of code

1.4.1 scripts:

1.4.2 src/

1.4.2.1 fluotracify/
  1. imports/
  2. simulations/
  3. training/
  4. applications/
  5. doc/
1.4.2.2 nanosimpy/
  • cloned from dwaithe with refactoring for Python 3-compatibility

1.5 Changes in this repository (without "* Data" in this file)

1.5.1 Changes in LabBook.org (without "* Data")

1.5.1.1 2022-02-19
  • Add #+HTML_HEAD_EXTRA: <style... for table to enable scrolling if the table overflows
1.5.1.2 2021-12-16
  • Add details blocks, corresponding #+HTML_HEAD_EXTRA: <style... and documentation in Notes on archiving
1.5.1.3 2021-08-05
  • Rename master branch to main branch
1.5.1.4 2021-04-04
  • Add #+OPTIONS: H:4 and #+OPTIONS: toc:4 to show up to 4 levels of depth in the html (twbs) export of this LabBook in the table of contents at the side
  • I added Notes on archiving
1.5.1.5 2020-11-04
1.5.1.6 2020-05-31
  • extend general documentation in README
  • Add code block examples
  • extend documentation on experiment workflow
  • move setup notes from README to "Template for data entry and setup notes"
  • remove emacs-lisp code for custom tmux block functions (not relevant enough)
  • change named "jpt-tmux" from starting a jupyter notebook to starting jupyter lab. Load a conda environment instead of using Lmod's module load
1.5.1.7 2020-05-07
  • extend documentation on git model
  • extend documentation on jupyter setup
1.5.1.8 2020-04-22
  • added parts of README which describe the experimental process
  • added templates for system metadata, tmux, jupyter setup
  • added organization of code
1.5.1.9 2020-03-30
  • set up lab book and form git repo accoring to setup by Luka Stanisic et al

1.5.2 Changes in src/fluotracify

2 Data

2.1 exp-210204-unet

2.1.1 Connect

2.1.1.1 Node for script execution
  1. Setup Tmux #+CALL: setup-tmux[:session local2]()
    rm: cannot remove 'home/lex.tmux-local-socket-remote-machine': No such file or directory
    ye53nis@ara-login01.rz.uni-jena.de's password:              
    /tmp/tmux-67339/default                
    > ye53nis@ara-login01.rz.uni-jena.de's password:            
  2. Request a compute node from Ara cluster
    cd /
    srun -p b_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
    
    (base) [ye53nis@node117 /]$
    
  3. Make sure you are on the desired branch (exp-210104-unet)
    cd /beegfs/ye53nis/drmed-git
    git status
    
    (base) [ye53nis@node221 /]$ cd /beegfs/ye53nis/drmed-git
    (base) [ye53nis@node221 drmed-git]$ git status
    # On branch exp-210104-unet
    no changes added to commit (use "git add" and/or "git commit -a")
    (base) [ye53nis@node221 drmed-git]$
    
2.1.1.2 Node for running Jupyter
  1. Setup Tmux (if we haven't done it before)
         
    sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de's password:
    > ye53nis@ara-login01.rz.uni-jena.de's password:
  2. Request compute node from Ara cluster
    cd /
    srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
    
  3. Start Jupyter Lab
    (base) [ye53nis@login01 /]$ srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
    (base) [ye53nis@node302 /]$ conda activate tf-nightly
    (tf-nightly) [ye53nis@node302 /]$ export PORT=9999
    (tf-nightly) [ye53nis@node302 /]$ export XDG_RUNTIME_DIR=''
    (tf-nightly) [ye53nis@node302 /]$ export XDG_RUNTIME_DIR=""
    (tf-nightly) [ye53nis@node302 /]$ jupyter lab --no-browser --port=$PORT
    [I 21:13:32.358 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/jupyterlab
    [I 21:13:32.358 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tf-nightly/share/jupyter/lab
    [I 21:13:32.382 LabApp] Serving notebooks from local directory: /
    [I 21:13:32.382 LabApp] Jupyter Notebook 6.2.0 is running at:
    [I 21:13:32.383 LabApp] http://localhost:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4
    [I 21:13:32.383 LabApp]  or http://127.0.0.1:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4
    [I 21:13:32.383 LabApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
    [C 21:13:32.418 LabApp]
    
        To access the notebook, open this file in a browser:
            file:///home/ye53nis/.local/share/jupyter/runtime/nbserver-124120-open.html
        Or copy and paste one of these URLs:
            http://localhost:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4
         or http://127.0.0.1:9999/?token=6f337c6b506799f0172382fc6a042886ebe3b00cd2a487e4
    
  4. Tunnel the remote jupyter to the local computer
                     
    sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de's password:          
    ye53nis@node302's password:              
    Last login: Fri Apr 2 19:25:33 2021 from login01.ara
  5. Start Python 3 kernel using jupyter-server-list-kernels. Then copy the kernel ID to the :PROPERTIES: drawer for any subtree where you want to use it
    python3           f26207a6-d326-45bb-b432-63d05a573ade   in a few seconds     starting   0
    
  6. any files generated using the :file header of org-mode source blocks will be saved here
    (setq org-babel-jupyter-resource-directory "./data/exp-210204-unet")
    
    ./data/exp-210204-unet
    
2.1.1.3 Node for running Mlflow UI
conda activate tf-nightly
mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns
(tf-nightly) [ye53nis@login01 data]$ mlflow ui --backend-store-uri file:///beegfs/ye53nis/drmed-git/data/mlruns
[2021-02-08 11:55:44 +0100] [19566] [INFO] Starting gunicorn 20.0.4
[2021-02-08 11:55:44 +0100] [19566] [INFO] Listening at: http://127.0.0.1:5000 (19566)
[2021-02-08 11:55:44 +0100] [19566] [INFO] Using worker: sync
[2021-02-08 11:55:44 +0100] [19572] [INFO] Booting worker with pid: 19572
                 
sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de's password:          
ye53nis@login01's password:              
bind: Address already in use        
Last login: Fri Apr 2 22:54:20 2021 from 10.231.191.246

2.1.2 Run 1 - full dataset

2.1.2.1 Record metadata
  1. current directory
    %cd /beegfs/ye53nis/drmed-git
    
    /beegfs/ye53nis/drmed-git
    
  2. git log
    !git log -3
    
    commit bc590b22329ea0dad425a040bb23370b3e9de3d4
    Author: Apoplex <oligolex@vivaldi.net>
    Date:   Thu Feb 4 20:40:13 2021 +0100
    
        Increase readability in html export
    
    commit bb78ded17807e0ad259440f4ae4624d1576cbba5
    Author: Apoplex <oligolex@vivaldi.net>
    Date:   Mon Feb 1 21:44:15 2021 +0100
    
        Add changes from unet branch like unet prepro
    commit 06186e40f8d4d1aa786e9268651160e96ead2223
    Author: Apoplex <oligolex@vivaldi.net>
    Date:   Mon Feb 1 21:16:42 2021 +0100
    
        Add these updates to ptu_utils from unet code
    
  3. Metadata of environment #+CALL: jp-metadata(_long='True)
    No of CPUs in system: 72
    No of CPUs the current process can use: 24
    load average: (16.0, 16.0, 16.05)
    os.uname():  posix.uname_result(sysname='Linux', nodename='node221', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64')
    PID of process: 231630
    RAM total: 199G, RAM used: 21G, RAM free: 138G
    the current directory: /beegfs/ye53nis/drmed-git
    My disk usage:
    Filesystem           Size  Used Avail Use% Mounted on
    /dev/sda1             50G  3.2G   47G   7% /
    devtmpfs              94G     0   94G   0% /dev
    tmpfs                 94G  302M   94G   1% /dev/shm
    tmpfs                 94G  131M   94G   1% /run
    tmpfs                 94G     0   94G   0% /sys/fs/cgroup
    nfs03-ib:/pool/work  100T   78T   23T  78% /nfsdata
    nfs01-ib:/cluster    2.0T  412G  1.6T  21% /cluster
    nfs01-ib:/home        80T   64T   17T  80% /home
    nfs02-ib:/data01      88T   70T   19T  80% /data01
    /dev/sda6            169G   33M  169G   1% /local
    /dev/sda5            2.0G   34M  2.0G   2% /tmp
    /dev/sda3            6.0G  295M  5.8G   5% /var
    beegfs_nodev         524T  277T  248T  53% /beegfs
    tmpfs                 19G     0   19G   0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf-nightly:
    #
    # Name                    Version                   Build  Channel
    _libgcc_mutex             0.1                        main
    absl-py                   0.11.0                   pypi_0    pypi
    alembic                   1.4.1                      py_0    conda-forge/label/main
    appdirs                   1.4.4              pyh9f0ad1d_0    conda-forge/label/main
    argon2-cffi               20.1.0           py38h7b6447c_1
    asn1crypto                1.4.0              pyh9f0ad1d_0    conda-forge/label/main
    asteval                   0.9.16             pyh5ca1d4c_0    conda-forge/label/main
    astunparse                1.6.3                    pypi_0    pypi
    async_generator           1.10               pyhd3eb1b0_0
    attrs                     20.3.0             pyhd3eb1b0_0
    azure-core                1.10.0             pyhd8ed1ab_0    conda-forge/label/main
    azure-storage-blob        12.7.1             pyh44b312d_0    conda-forge/label/main
    backcall                  0.2.0              pyhd3eb1b0_0
    blas                      1.0                         mkl
    bleach                    3.2.3              pyhd3eb1b0_0
    blinker                   1.4                        py_1    conda-forge/label/main
    blosc                     1.20.1               hd408876_0
    brotli                    1.0.9                he6710b0_2
    brotlipy                  0.7.0           py38h27cfd23_1003
    brunsli                   0.1                  h2531618_0
    bzip2                     1.0.8                h7b6447c_0
    ca-certificates           2020.12.5            ha878542_0    conda-forge/label/main
    cachetools                4.2.1                    pypi_0    pypi
    certifi                   2020.12.5        py38h578d9bd_1    conda-forge/label/main
    cffi                      1.14.4           py38h261ae71_0
    chardet                   4.0.0           py38h06a4308_1003
    charls                    2.1.0                he6710b0_2
    click                     7.1.2              pyh9f0ad1d_0    conda-forge/label/main
    cloudpickle               1.6.0                      py_0    conda-forge/label/main
    configparser              5.0.1                      py_0    conda-forge/label/main
    cryptography              3.3.1            py38h3c74f83_0
    cycler                    0.10.0                   py38_0
    databricks-cli            0.9.1                      py_0    conda-forge/label/main
    dbus                      1.13.18              hb2f20db_0
    decorator                 4.4.2              pyhd3eb1b0_0
    defusedxml                0.6.0                      py_0
    docker-py                 4.4.1            py38h578d9bd_1    conda-forge/label/main
    docker-pycreds            0.4.0                      py_0    conda-forge/label/main
    entrypoints               0.3                      py38_0
    expat                     2.2.10               he6710b0_2
    fcsfiles                  2020.9.18                pypi_0    pypi
    flask                     1.1.2              pyh9f0ad1d_0    conda-forge/label/main
    flatbuffers               1.12                     pypi_0    pypi
    fontconfig                2.13.0               h9420a91_0
    freetype                  2.10.4               h5ab3b9f_0
    future                    0.18.2           py38h578d9bd_3    conda-forge/label/main
    gast                      0.4.0                    pypi_0    pypi
    giflib                    5.1.4                h14c3975_1
    gitdb                     4.0.5                      py_0    conda-forge/label/main
    gitpython                 3.1.12             pyhd8ed1ab_0    conda-forge/label/main
    glib                      2.66.1               h92f7085_0
    google-auth               1.24.0                   pypi_0    pypi
    google-auth-oauthlib      0.4.2                    pypi_0    pypi
    google-pasta              0.2.0                    pypi_0    pypi
    gorilla                   0.3.0                      py_0    conda-forge/label/main
    grpcio                    1.34.1                   pypi_0    pypi
    gst-plugins-base          1.14.0               h8213a91_2
    gstreamer                 1.14.0               h28cd5cc_2
    gunicorn                  20.0.4           py38h578d9bd_3    conda-forge/label/main
    h5py                      3.1.0                    pypi_0    pypi
    icu                       58.2                 he6710b0_3
    idna                      2.10               pyhd3eb1b0_0
    imagecodecs               2021.1.11        py38h581e88b_1
    importlib-metadata        2.0.0                      py_1
    importlib_metadata        2.0.0                         1
    intel-openmp              2020.2                      254
    ipykernel                 5.3.4            py38h5ca1d4c_0
    ipython                   7.19.0           py38hb070fc8_1
    ipython_genutils          0.2.0              pyhd3eb1b0_1
    isodate                   0.6.0                      py_1    conda-forge/label/main
    itsdangerous              1.1.0                      py_0    conda-forge/label/main
    jedi                      0.17.0                   py38_0
    jinja2                    2.11.2             pyhd3eb1b0_0
    jpeg                      9b                   h024ee3a_2
    json5                     0.9.5                      py_0
    jsonschema                3.2.0                      py_2
    jupyter_client            6.1.7                      py_0
    jupyter_core              4.7.0            py38h06a4308_0
    jupyterlab                2.2.6                      py_0
    jupyterlab_pygments       0.1.2                      py_0
    jupyterlab_server         1.2.0                      py_0
    jxrlib                    1.1                  h7b6447c_2
    keras-preprocessing       1.1.2                    pypi_0    pypi
    kiwisolver                1.3.0            py38h2531618_0
    lcms2                     2.11                 h396b838_0
    ld_impl_linux-64          2.33.1               h53a641e_7
    lerc                      2.2.1                h2531618_0
    libaec                    1.0.4                he6710b0_1
    libdeflate                1.7                  h27cfd23_5
    libedit                   3.1.20191231         h14c3975_1
    libffi                    3.3                  he6710b0_2
    libgcc-ng                 9.1.0                hdf63c60_0
    libgfortran-ng            7.3.0                hdf63c60_0
    libpng                    1.6.37               hbc83047_0
    libprotobuf               3.13.0.1             h8b12597_0    conda-forge/label/main
    libsodium                 1.0.18               h7b6447c_0
    libstdcxx-ng              9.1.0                hdf63c60_0
    libtiff                   4.1.0                h2733197_1
    libuuid                   1.0.3                h1bed415_2
    libwebp                   1.0.1                h8e7db2f_0
    libxcb                    1.14                 h7b6447c_0
    libxml2                   2.9.10               hb55368b_3
    libzopfli                 1.0.3                he6710b0_0
    lmfit                     1.0.1                      py_1    conda-forge/label/main
    lz4-c                     1.9.3                h2531618_0
    mako                      1.1.4              pyh44b312d_0    conda-forge/label/main
    markdown                  3.3.3                    pypi_0    pypi
    markupsafe                1.1.1            py38h7b6447c_0
    matplotlib                3.3.2                h06a4308_0
    matplotlib-base           3.3.2            py38h817c723_0
    mistune                   0.8.4           py38h7b6447c_1000
    mkl                       2020.2                      256
    mkl-service               2.3.0            py38he904b0f_0
    mkl_fft                   1.2.0            py38h23d657b_0
    mkl_random                1.1.1            py38h0573a6f_0
    mlflow                    1.13.1           py38h578d9bd_2    conda-forge/label/main
    msrest                    0.6.21             pyh44b312d_0    conda-forge/label/main
    multipletau               0.3.3                    pypi_0    pypi
    nbclient                  0.5.1                      py_0
    nbconvert                 6.0.7                    py38_0
    nbformat                  5.1.2              pyhd3eb1b0_1
    ncurses                   6.2                  he6710b0_1
    nest-asyncio              1.4.3              pyhd3eb1b0_0
    notebook                  6.2.0            py38h06a4308_0
    numpy                     1.19.2           py38h54aff64_0
    numpy-base                1.19.2           py38hfa32c7d_0
    oauthlib                  3.0.1                      py_0    conda-forge/label/main
    olefile                   0.46                       py_0
    openjpeg                  2.3.0                h05c96fa_1
    openssl                   1.1.1i               h27cfd23_0
    opt-einsum                3.3.0                    pypi_0    pypi
    packaging                 20.9               pyhd3eb1b0_0
    pandas                    1.2.1            py38ha9443f7_0
    pandoc                    2.11                 hb0f4dca_0
    pandocfilters             1.4.3            py38h06a4308_1
    parso                     0.8.1              pyhd3eb1b0_0
    pcre                      8.44                 he6710b0_0
    pexpect                   4.8.0              pyhd3eb1b0_3
    pickleshare               0.7.5           pyhd3eb1b0_1003
    pillow                    8.1.0            py38he98fc37_0
    pip                       20.3.3           py38h06a4308_0
    prometheus_client         0.9.0              pyhd3eb1b0_0
    prometheus_flask_exporter 0.18.1             pyh9f0ad1d_0    conda-forge/label/main
    prompt-toolkit            3.0.8                      py_0
    protobuf                  3.13.0.1         py38hadf7658_1    conda-forge/label/main
    ptyprocess                0.7.0              pyhd3eb1b0_2
    pyasn1                    0.4.8                    pypi_0    pypi
    pyasn1-modules            0.2.8                    pypi_0    pypi
    pycparser                 2.20                       py_2
    pygments                  2.7.4              pyhd3eb1b0_0
    pyjwt                     2.0.1              pyhd8ed1ab_0    conda-forge/label/main
    pyopenssl                 20.0.1             pyhd3eb1b0_1
    pyparsing                 2.4.7              pyhd3eb1b0_0
    pyqt                      5.9.2            py38h05f1152_4
    pyrsistent                0.17.3           py38h7b6447c_0
    pysocks                   1.7.1            py38h06a4308_0
    python                    3.8.5                h7579374_1
    python-dateutil           2.8.1              pyhd3eb1b0_0
    python-editor             1.0.4                      py_0    conda-forge/label/main
    python_abi                3.8                      1_cp38    conda-forge/label/main
    pytz                      2020.5             pyhd3eb1b0_0
    pyyaml                    5.3.1            py38h8df0ef7_1    conda-forge/label/main
    pyzmq                     20.0.0           py38h2531618_1
    qt                        5.9.7                h5867ecd_1
    querystring_parser        1.2.4                      py_0    conda-forge/label/main
    readline                  8.1                  h27cfd23_0
    requests                  2.25.1             pyhd3eb1b0_0
    requests-oauthlib         1.3.0              pyh9f0ad1d_0    conda-forge/label/main
    rsa                       4.7                      pypi_0    pypi
    scipy                     1.5.2            py38h0b6359f_0
    seaborn                   0.11.1             pyhd3eb1b0_0
    send2trash                1.5.0              pyhd3eb1b0_1
    setuptools                52.0.0           py38h06a4308_0
    sip                       4.19.13          py38he6710b0_0
    six                       1.15.0           py38h06a4308_0
    smmap                     4.0.0              pyh44b312d_0    conda-forge/label/main
    snappy                    1.1.8                he6710b0_0
    sqlalchemy                1.3.20           py38h1e0a361_0    conda-forge/label/main
    sqlite                    3.33.0               h62c20be_0
    sqlparse                  0.4.1              pyh9f0ad1d_0    conda-forge/label/main
    tabulate                  0.8.7              pyh9f0ad1d_0    conda-forge/label/main
    tb-nightly                2.5.0a20210130           pypi_0    pypi
    tensorboard-plugin-wit    1.8.0                    pypi_0    pypi
    termcolor                 1.1.0                    pypi_0    pypi
    terminado                 0.9.2            py38h06a4308_0
    testpath                  0.4.4              pyhd3eb1b0_0
    tf-estimator-nightly      2.5.0.dev2021020101          pypi_0    pypi
    tf-nightly                2.5.0.dev20210130          pypi_0    pypi
    tifffile                  2021.1.14          pyhd3eb1b0_1
    tk                        8.6.10               hbc83047_0
    tornado                   6.1              py38h27cfd23_0
    traitlets                 5.0.5              pyhd3eb1b0_0
    typing-extensions         3.7.4.3                  pypi_0    pypi
    uncertainties             3.1.5              pyhd8ed1ab_0    conda-forge/label/main
    urllib3                   1.26.3             pyhd3eb1b0_0
    wcwidth                   0.2.5                      py_0
    webencodings              0.5.1                    py38_1
    websocket-client          0.57.0           py38h578d9bd_4    conda-forge/label/main
    werkzeug                  1.0.1              pyh9f0ad1d_0    conda-forge/label/main
    wheel                     0.36.2             pyhd3eb1b0_0
    wrapt                     1.12.1                   pypi_0    pypi
    xz                        5.2.5                h7b6447c_0
    yaml                      0.2.5                h516909a_0    conda-forge/label/main
    zeromq                    4.3.3                he6710b0_3
    zfp                       0.5.5                h2531618_4
    zipp                      3.4.0              pyhd3eb1b0_0
    zlib                      1.2.11               h7b6447c_3
    zstd                      1.4.5                h9ceee32_0
    
    Note: you may need to restart the kernel to use updated packages.
    {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint',
     'SLURM_NODELIST': 'node221',
     'SLURM_JOB_NAME': 'bash',
     'XDG_SESSION_ID': '595',
     'SLURMD_NODENAME': 'node221',
     'SLURM_TOPOLOGY_ADDR': 'node221',
     'SLURM_NTASKS_PER_NODE': '24',
     'HOSTNAME': 'login01',
     'SLURM_PRIO_PROCESS': '0',
     'SLURM_SRUN_COMM_PORT': '33255',
     'SHELL': '/bin/bash',
     'TERM': 'xterm-color',
     'SLURM_JOB_QOS': 'qstand',
     'SLURM_PTY_WIN_ROW': '24',
     'HISTSIZE': '1000',
     'TMPDIR': '/tmp',
     'SLURM_TOPOLOGY_ADDR_PATTERN': 'node',
     'SSH_CLIENT': '10.231.182.213 44428 22',
     'CONDA_SHLVL': '2',
     'CONDA_PROMPT_MODIFIER': '(tf-nightly) ',
     'QTDIR': '/usr/lib64/qt-3.3',
     'QTINC': '/usr/lib64/qt-3.3/include',
     'SSH_TTY': '/dev/pts/2',
     'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24',
     'QT_GRAPHICSSYSTEM_CHECKED': '1',
     'SLURM_NNODES': '1',
     'USER': 'ye53nis',
     'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
     'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:',
     'CONDA_EXE': '/cluster/miniconda3/bin/conda',
     'SLURM_STEP_NUM_NODES': '1',
     'SLURM_JOBID': '618588',
     'SRUN_DEBUG': '3',
     'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
     'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
     'SLURM_NTASKS': '24',
     'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5',
     'SLURM_STEP_ID': '0',
     'TMUX': '/tmp/tmux-67339/default,43792,2',
     '_CE_CONDA': '',
     'CONDA_PREFIX_1': '/cluster/miniconda3',
     'SLURM_STEP_LAUNCHER_PORT': '33255',
     'SLURM_TASKS_PER_NODE': '24',
     'MAIL': '/var/spool/mail/ye53nis',
     'PATH': '/home/ye53nis/.conda/envs/tf-nightly/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin',
     'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448',
     'SLURM_JOB_ID': '618588',
     'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf-nightly',
     'SLURM_JOB_USER': 'ye53nis',
     'SLURM_STEPID': '0',
     'PWD': '/',
     'SLURM_SRUN_COMM_HOST': '192.168.192.5',
     'LANG': 'en_US.UTF-8',
     'SLURM_PTY_WIN_COL': '80',
     'SLURM_UMASK': '0022',
     'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles',
     'SLURM_JOB_UID': '67339',
     'LOADEDMODULES': '',
     'SLURM_NODEID': '0',
     'TMUX_PANE': '%2',
     'SLURM_SUBMIT_DIR': '/',
     'SLURM_TASK_PID': '75179',
     'SLURM_NPROCS': '24',
     'SLURM_CPUS_ON_NODE': '24',
     'SLURM_DISTRIBUTION': 'block',
     'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
     'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
     'SLURM_PROCID': '0',
     'HISTCONTROL': 'ignoredups',
     '_CE_M': '',
     'SLURM_JOB_NODELIST': 'node221',
     'SLURM_PTY_PORT': '41588',
     'HOME': '/home/ye53nis',
     'SHLVL': '3',
     'SLURM_LOCALID': '0',
     'SLURM_JOB_GID': '13280',
     'SLURM_JOB_CPUS_PER_NODE': '24',
     'SLURM_CLUSTER_NAME': 'hpc',
     'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24',
     'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23',
     'SLURM_SUBMIT_HOST': 'login01',
     'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
     'SLURM_JOB_PARTITION': 's_standard',
     'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3',
     'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python',
     'LOGNAME': 'ye53nis',
     'SLURM_STEP_NUM_TASKS': '24',
     'QTLIB': '/usr/lib64/qt-3.3/lib',
     'SLURM_JOB_ACCOUNT': 'iaob',
     'SLURM_JOB_NUM_NODES': '1',
     'MODULESHOME': '/usr/share/Modules',
     'CONDA_DEFAULT_ENV': 'tf-nightly',
     'LESSOPEN': '||/usr/bin/lesspipe.sh %s',
     'SLURM_STEP_TASKS_PER_NODE': '24',
     'PORT': '9999','SLURM_STEP_NODELIST': 'node221',
    'DISPLAY': ':0',
    'XDG_RUNTIME_DIR': '',
    'XAUTHORITY': '/home/lex/.Xauthority',
    'BASH_FUNC_module()': '() {  eval `/usr/bin/modulecmd bash $*`\n}',
    '_': '/home/ye53nis/.conda/envs/tf-nightly/bin/jupyter',
    'JPY_PARENT_PID': '94022',
    'CLICOLOR': '1',
    'PAGER': 'cat',
    'GIT_PAGER': 'cat',
    'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
    
2.1.2.2 Set mlflow variables
  • mlflow environment variables
    conda activate tf-nightly
    cd /beegfs/ye53nis/drmed-git
    export MLFLOW_EXPERIMENT_NAME=exp-210204-unet
    export MLFLOW_TRACKING_URI=file:./data/mlruns
    mkdir data/exp-210204-unet
    
    (tf-nightly) [ye53nis@node221 drmed-git]$
    
2.1.2.3 run mlflow
  • Use whole dataset (6400 training, 1600 validation, 2000 test), but during training, use only 1/5th of it per epoch
    mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Nov2020 -P steps_per_epoch=1280 -P validation_steps=320
    
    (tf-nightly) [ye53nis@node221 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Nov2020 -P steps_per_epoch=1280 -P validation_
    steps=320
    
    INFO: 'exp-210104-unet' does not exist. Creating a new experiment
    
    2021/02/05 18:23:53 INFO mlflow.projects.utils: === Created directory /tmp/tmptojz254v for downloading remote URIs passed to arguments of type 'path' ===
    
    2021/02/05 18:23:53 INFO mlflow.projects.backend.local:
    === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c 1>&2
    && python src/fluotracify/training/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 50 /beegfs/ye53nis/saves/firstartifact_Nov2020 3 1280 320'
    in run with ID 'b9935d1e554c423fb2852242f4c4504c' ===
    
    2021-02-05 18:24:11.505650: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2021-02-05 18:24:11.505734: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. 2.5.0-dev20210130
    2021-02-05 18:24:48.480544: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2021-02-05 18:24:48.480629: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] failed call to cuInit: UNKNOWN ERROR (303)
    2021-02-05 18:24:48.480678: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node221): /proc/driver/nvidia/version does not exist
    GPUs:  []
    
    train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set007.csv
    train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set002.csv
    train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set003.csv
    train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set003.csv
    train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set006.csv
    train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set009.csv
    train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set007.csv
    train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set010.csv
    train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set007.csv
    train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set006.csv
    train 10 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set007.csv
    train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set007.csv
    train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set002.csv
    train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set004.csv
    train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set008.csv
    train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set001.csv
    train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set003.csv
    train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set005.csv
    train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set004.csv
    train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set009.csv
    train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set004.csv
    train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set009.csv
    train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set004.csv
    train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set005.csv
    train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set003.csv
    train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set006.csv
    train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set007.csv
    train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set007.csv
    train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set005.csv
    train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set010.csv
    train 30 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set004.csv
    train 31 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set008.csv
    train 32 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set001.csv
    train 33 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set002.csv
    train 34 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set004.csv
    train 35 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set008.csv
    train 36 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set009.csv
    train 37 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set010.csv
    train 38 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set010.csv
    train 39 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set001.csv
    train 40 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set004.csv
    train 41 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D3.0_set004.csv
    train 42 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set002.csv
    train 43 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set007.csv
    train 44 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set003.csv
    train 45 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set002.csv
    train 46 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set005.csv
    train 47 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set006.csv
    train 48 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set008.csv
    train 49 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set001.csv
    train 50 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set009.csv
    train 51 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set006.csv
    train 52 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set006.csv
    train 53 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set005.csv
    train 54 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set001.csv
    train 55 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set005.csv
    train 56 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set009.csv
    train 57 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set006.csv
    train 58 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set001.csv
    train 59 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set002.csv
    train 60 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set006.csv
    train 61 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set004.csv
    train 62 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set003.csv
    train 63 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set001.csv
    train 64 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set002.csv
    train 65 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set009.csv
    train 66 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set008.csv
    train 67 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set001.csv
    train 68 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set002.csv
    train 69 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set003.csv
    train 70 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set005.csv
    train 71 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set005.csv
    train 72 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set004.csv
    train 73 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set010.csv
    train 74 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set010.csv
    train 75 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set010.csv
    train 76 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D0.2_set002.csv
    train 77 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D1.0_set003.csv
    train 78 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set010.csv
    train 79 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set001.csv
    train 80 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set009.csv
    train 81 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set003.csv
    train 82 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set008.csv
    test 83 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set006.csv
    test 84 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set008.csv
    test 85 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set002.csv
    test 86 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set007.csv
    test 87 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set010.csv
    test 88 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set006.csv
    test 89 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.6/traces_brightclust_Nov2020_D0.6_set009.csv
    test 90 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.08/traces_brightclust_Nov2020_D0.08_set003.csv
    test 91 /beegfs/ye53nis/saves/firstartifact_Nov2020/50/traces_brightclust_Nov2020_D50_set003.csv
    test 92 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set009.csv
    test 93 /beegfs/ye53nis/saves/firstartifact_Nov2020/10/traces_brightclust_Nov2020_D10_set001.csv
    test 94 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set008.csv
    test 95 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.2/traces_brightclust_Nov2020_D0.2_set007.csv
    test 96 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.1/traces_brightclust_Nov2020_D0.1_set002.csv
    test 97 /beegfs/ye53nis/saves/firstartifact_Nov2020/3.0/traces_brightclust_Nov2020_D3.0_set004.csv
    test 98 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.069/traces_brightclust_Nov2020_D0.069_set010.csv
    test 99 /beegfs/ye53nis/saves/firstartifact_Nov2020/subsample/traces_brightclust_Nov2020_D0.069_set001.csv
    test 100 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set008.csv
    test 101 /beegfs/ye53nis/saves/firstartifact_Nov2020/1.0/traces_brightclust_Nov2020_D1.0_set005.csv
    test 102 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set008.csv
    test 103 /beegfs/ye53nis/saves/firstartifact_Nov2020/0.4/traces_brightclust_Nov2020_D0.4_set005.csv
    
    The given DataFrame was split into 3 parts with shapes: [(16384, 8300), (16384, 8300), (16384, 8300)]
    The given DataFrame was split into 3 parts with shapes: [(16384, 2100), (16384, 2100), (16384, 2100)]
    
    for each 16384 timestap trace there are the following numbers of corrupted timesteps:
    label001_1    5916
    label002_1    7367
    label003_1     954
    label004_1    2965
    label005_1       0
    dtype: int64
    
    2021-02-05 18:31:32.060731: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    
    number of training examples: 6640, number of validation examples: 1660
    
    ------------------------
    number of test examples: 2100
    
    input - shape:   (None, 16384, 1)
    output - shape:  (None, 16384, 1)
    
    2021-02-05 18:31:38.503252: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing.
    2021-02-05 18:31:38.503297: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started.
    2021-02-05 18:31:38.503361: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down.
    2021/02/05 18:31:38 INFO mlflow.utils.autologging_utils: tensorflow autologging will track hyperparameters, performance metrics, model artifacts, and lineage information for the current tensorflow workflow to the MLflow run with ID 'b9935d1e554c423fb2852242f4c4504c'
    2021/02/05 18:31:38 WARNING mlflow.utils.autologging_utils: MLflow issued a warning during tensorflow autologging: "/home/ye53nis/.conda/envs/mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:86:
    UserWarning: Logging to MLflow failed: Changing param values is not allowed. Param with key='batch_size' was already logged with value='5' for run ID='b9935d1e554c423fb2852242f4c4504c'. Attempted logging new value 'None'."
    
    Epoch 1/50
    
    2021-02-05 18:31:49.433599: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:145] None of the MLIR Optimization Passes are enabled (registered 2)
    2021-02-05 18:31:49.686354: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2300000000 Hz
    2021-02-05 18:31:57.757621: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing.
    2021-02-05 18:31:57.757684: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started.
    2021-02-05 18:31:59.478997: I tensorflow/core/profiler/lib/profiler_session.cc:66] Profiler session collecting data.
    2021-02-05 18:31:59.513272: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down.
    2021-02-05 18:31:59.547737: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_02_05_18_31_59
    2021-02-05 18:31:59.563056: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.trace.json.gz
    2021-02-05 18:31:59.600514: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_02_05_18_31_59
    2021-02-05 18:31:59.600709: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.memory_profile.json.gz
    2021-02-05 18:31:59.604669: I tensorflow/core/profiler/rpc/client/capture_profile.cc:251] Creating directory: /tmp/tb/train/plugins/profile/2021_02_05_18_31_59Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.xplane.pb
    Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.overview_page.pb
    Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.input_pipeline.pb
    Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.tensorflow_stats.pb
    Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2021_02_05_18_31_59/node221.kernel_stats.pb
    
    1280/1280 [==============================] - 2294s 2s/step - loss: 0.9535 - tp0.1: 7533469.6347 - fp0.1: 15687196.0695 - tn0.1: 28384947.3810 - fn0.1: 905043.5777 - precision0.1: 0.3192 - recall0.1: 0.8847 - tp0.3: 5299550.3950 - fp0.3
    : 6318015.6128 - tn0.3: 37754137.8610 - fn0.3: 3138962.8173 - precision0.3: 0.4501 - recall0.3: 0.6250 - tp0.5: 3326666.3817 - fp0.5: 1645942.8673 - tn0.5: 42426193.8962 - fn0.5: 5111846.8306 - precision0.5: 0.6413 - recall0.5: 0.3856
    - tp0.7: 2414052.7869 - fp0.7: 649878.6245 - tn0.7: 43422251.9945 - fn0.7: 6024460.4254 - precision0.7: 0.7630 - recall0.7: 0.2684 - tp0.9: 1333571.2881 - fp0.9: 122667.3622 - tn0.9: 43949483.5308 - fn0.9: 7104941.9243 - precision0.9:
    0.8933 - recall0.9: 0.1421 - accuracy: 0.8665 - auc: 0.8370 - val_loss: 4.5065 - val_tp0.1: 3953260.0000 - val_fp0.1: 22248736.0000 - val_tn0.1: 11977.0000 - val_fn0.1: 433.0000 - val_precision0.1: 0.1509 - val_recall0.1: 0.9999 - val_
    tp0.3: 3952790.0000 - val_fp0.3: 22240896.0000 - val_tn0.3: 19810.0000 - val_fn0.3: 903.0000 - val_precision0.3: 0.1509 - val_recall0.3: 0.9998 - val_tp0.5: 3932309.0000 - val_fp0.5: 18000460.0000 - val_tn0.5: 4260247.0000 - val_fn0.5:
     21384.0000 - val_precision0.5: 0.1793 - val_recall0.5: 0.9946 - val_tp0.7: 3907763.0000 - val_fp0.7: 15479875.0000 - val_tn0.7: 6780832.0000 - val_fn0.7: 45930.0000 - val_precision0.7: 0.2016 - val_recall0.7: 0.9884 - val_tp0.9: 38181
    41.0000 - val_fp0.9: 10776068.0000 - val_tn0.9: 11484639.0000 - val_fn0.9: 135552.0000 - val_precision0.9: 0.2616 - val_recall0.9: 0.9657 - val_accuracy: 0.3125 - val_auc: 0.8388
    Epoch 2/50
    1280/1280 [==============================] - 2266s 2s/step - loss: 0.7086 - tp0.1: 7408524.6518 - fp0.1: 9777539.1296 - tn0.1: 34354079.2826 - fn0.1: 970517.5371 - precision0.1: 0.4242 - recall0.1: 0.8837 - tp0.3: 6604603.1468 - fp0.3:
     5177327.2397 - tn0.3: 38954289.9594 - fn0.3: 1774439.0422 - precision0.3: 0.5497 - recall0.3: 0.7873 - tp0.5: 4795568.8735 - fp0.5: 1588506.0874 - tn0.5: 42543101.8407 - fn0.5: 3583473.3154 - precision0.5: 0.7554 - recall0.5: 0.5523 -
     tp0.7: 3842322.5410 - fp0.7: 585624.8493 - tn0.7: 43545999.7440 - fn0.7: 4536719.6479 - precision0.7: 0.8722 - recall0.7: 0.4455 - tp0.9: 2664836.5355 - fp0.9: 183975.7455 - tn0.9: 43947648.4012 - fn0.9: 5714205.6534 - precision0.9: 0
    .9372 - recall0.9: 0.3066 - accuracy: 0.9005 - auc: 0.8983 - val_loss: 8.8910 - val_tp0.1: 4309704.0000 - val_fp0.1: 21433558.0000 - val_tn0.1: 466616.0000 - val_fn0.1: 4509.0000 - val_precision0.1: 0.1674 - val_recall0.1: 0.9990 - val
    _tp0.3: 4304770.0000 - val_fp0.3: 20572086.0000 - val_tn0.3: 1328101.0000 - val_fn0.3: 9443.0000 - val_precision0.3: 0.1730 - val_recall0.3: 0.9978 - val_tp0.5: 4291421.0000 - val_fp0.5: 18429908.0000 - val_tn0.5: 3470280.0000 - val_fn
    0.5: 22792.0000 - val_precision0.5: 0.1889 - val_recall0.5: 0.9947 - val_tp0.7: 4286245.0000 - val_fp0.7: 17960968.0000 - val_tn0.7: 3939218.0000 - val_fn0.7: 27968.0000 - val_precision0.7: 0.1927 - val_recall0.7: 0.9935 - val_tp0.9: 4
    275720.0000 - val_fp0.9: 17168184.0000 - val_tn0.9: 4732003.0000 - val_fn0.9: 38493.0000 - val_precision0.9: 0.1994 - val_recall0.9: 0.9911 - val_accuracy: 0.2961 - val_auc: 0.6353
    Epoch 3/50
    1280/1280 [==============================] - 2269s 2s/step - loss: 0.4737 - tp0.1: 8043601.5324 - fp0.1: 6567924.1288 - tn0.1: 37316662.9188 - fn0.1: 582465.5137 - precision0.1: 0.5472 - recall0.1: 0.9292 - tp0.3: 7343577.1382 - fp0.3:
     2667019.8610 - tn0.3: 41217565.9859 - fn0.3: 1282489.9079 - precision0.3: 0.7338 - recall0.3: 0.8450 - tp0.5: 6431038.6987 - fp0.5: 1096394.8681 - tn0.5: 42788211.8212 - fn0.5: 2195028.3474 - precision0.5: 0.8653 - recall0.5: 0.7272 -
     tp0.7: 5761648.7400 - fp0.7: 554569.4169 - tn0.7: 43330028.4895 - fn0.7: 2864418.3060 - precision0.7: 0.9155 - recall0.7: 0.6553 - tp0.9: 4604418.9586 - fp0.9: 201930.2724 - tn0.9: 43682665.5402 - fn0.9: 4021648.0874 - precision0.9: 0
    .9590 - recall0.9: 0.5232 - accuracy: 0.9363 - auc: 0.9445 - val_loss: 0.6077 - val_tp0.1: 3651028.0000 - val_fp0.1: 3375728.0000 - val_tn0.1: 18695272.0000 - val_fn0.1: 492376.0000 - val_precision0.1: 0.5196 - val_recall0.1: 0.8812 -
    val_tp0.3: 3024227.0000 - val_fp0.3: 1523943.0000 - val_tn0.3: 20547044.0000 - val_fn0.3: 1119177.0000 - val_precision0.3: 0.6649 - val_recall0.3: 0.7299 - val_tp0.5: 2511712.0000 - val_fp0.5: 734684.0000 - val_tn0.5: 21336306.0000 - v
    al_fn0.5: 1631692.0000 - val_precision0.5: 0.7737 - val_recall0.5: 0.6062 - val_tp0.7: 2014285.0000 - val_fp0.7: 342510.0000 - val_tn0.7: 21728484.0000 - val_fn0.7: 2129119.0000 - val_precision0.7: 0.8547 - val_recall0.7: 0.4861 - val_
    tp0.9: 1375650.0000 - val_fp0.9: 83494.0000 - val_tn0.9: 21987508.0000 - val_fn0.9: 2767754.0000 - val_precision0.9: 0.9428 - val_recall0.9: 0.3320 - val_accuracy: 0.9097 - val_auc: 0.9057
    Epoch 4/50
    1280/1280 [==============================] - 2269s 2s/step - loss: 0.4104 - tp0.1: 8058950.6292 - fp0.1: 5549150.7541 - tn0.1: 38382155.2373 - fn0.1: 520398.2319 - precision0.1: 0.5890 - recall0.1: 0.9388 - tp0.3: 7465362.4442 - fp0.3:
     2368717.0968 - tn0.3: 41562596.7416 - fn0.3: 1113986.4169 - precision0.3: 0.7555 - recall0.3: 0.8690 - tp0.5: 6948225.4496 - fp0.5: 1288524.5277 - tn0.5: 42642762.4083 - fn0.5: 1631123.4114 - precision0.5: 0.8408 - recall0.5: 0.8075 -
     tp0.7: 6012711.4176 - fp0.7: 481306.9664 - tn0.7: 43449995.4871 - fn0.7: 2566637.4434 - precision0.7: 0.9250 - recall0.7: 0.6949 - tp0.9: 4953486.9508 - fp0.9: 170919.6136 - tn0.9: 43760406.4403 - fn0.9: 3625861.9102 - precision0.9: 0
    .9659 - recall0.9: 0.5674 - accuracy: 0.9430 - auc: 0.9540 - val_loss: 0.7360 - val_tp0.1: 3518565.0000 - val_fp0.1: 2418501.0000 - val_tn0.1: 19514842.0000 - val_fn0.1: 762498.0000 - val_precision0.1: 0.5926 - val_recall0.1: 0.8219 -
    val_tp0.3: 2934643.0000 - val_fp0.3: 1727197.0000 - val_tn0.3: 20206140.0000 - val_fn0.3: 1346420.0000 - val_precision0.3: 0.6295 - val_recall0.3: 0.6855 - val_tp0.5: 2401516.0000 - val_fp0.5: 1120115.0000 - val_tn0.5: 20813218.0000 -
    val_fn0.5: 1879547.0000 - val_precision0.5: 0.6819 - val_recall0.5: 0.5610 - val_tp0.7: 1995881.0000 - val_fp0.7: 587480.0000 - val_tn0.7: 21345854.0000 - val_fn0.7: 2285182.0000 - val_precision0.7: 0.7726 - val_recall0.7: 0.4662 - val
    _tp0.9: 1458232.0000 - val_fp0.9: 213624.0000 - val_tn0.9: 21719718.0000 - val_fn0.9: 2822831.0000 - val_precision0.9: 0.8722 - val_recall0.9: 0.3406 - val_accuracy: 0.8856 - val_auc: 0.8746
    Epoch 5/50
    1280/1280 [==============================] - 2256s 2s/step - loss: 0.3330 - tp0.1: 7934527.3903 - fp0.1: 4492667.3357 - tn0.1: 39650554.1023 - fn0.1: 432898.7760 - precision0.1: 0.6303 - recall0.1: 0.9481 - tp0.3: 7499415.2927 - fp0.3:
     1967988.6995 - tn0.3: 42175278.8080 - fn0.3: 868010.8735 - precision0.3: 0.7854 - recall0.3: 0.8951 - tp0.5: 7067133.4980 - fp0.5: 1049951.0960 - tn0.5: 43093262.6339 - fn0.5: 1300292.6682 - precision0.5: 0.8642 - recall0.5: 0.8435 -
    tp0.7: 6367827.1046 - fp0.7: 438987.0765 - tn0.7: 43704237.3872 - fn0.7: 1999599.0617 - precision0.7: 0.9322 - recall0.7: 0.7564 - tp0.9: 5357606.0351 - fp0.9: 138722.6315 - tn0.9: 44004504.8205 - fn0.9: 3009820.1311 - precision0.9: 0.
    9715 - recall0.9: 0.6358 - accuracy: 0.9541 - auc: 0.9638 - val_loss: 0.7327 - val_tp0.1: 3649063.0000 - val_fp0.1: 3036718.0000 - val_tn0.1: 18938916.0000 - val_fn0.1: 589701.0000 - val_precision0.1: 0.5458 - val_recall0.1: 0.8609 - v
    al_tp0.3: 3283999.0000 - val_fp0.3: 2440985.0000 - val_tn0.3: 19534644.0000 - val_fn0.3: 954765.0000 - val_precision0.3: 0.5736 - val_recall0.3: 0.7748 - val_tp0.5: 2951063.0000 - val_fp0.5: 2094966.0000 - val_tn0.5: 19880668.0000 - va
    l_fn0.5: 1287701.0000 - val_precision0.5: 0.5848 - val_recall0.5: 0.6962 - val_tp0.7: 2702547.0000 - val_fp0.7: 1708012.0000 - val_tn0.7: 20267626.0000 - val_fn0.7: 1536217.0000 - val_precision0.7: 0.6127 - val_recall0.7: 0.6376 - val_
    tp0.9: 2269870.0000 - val_fp0.9: 882080.0000 - val_tn0.9: 21093558.0000 - val_fn0.9: 1968894.0000 - val_precision0.9: 0.7201 - val_recall0.9: 0.5355 - val_accuracy: 0.8710 - val_auc: 0.8874
    Epoch 6/50
    1280/1280 [==============================] - 2267s 2s/step - loss: 0.3148 - tp0.1: 8107422.3794 - fp0.1: 4149459.1678 - tn0.1: 39840764.2201 - fn0.1: 412995.5535 - precision0.1: 0.6568 - recall0.1: 0.9505 - tp0.3: 7702537.1499 - fp0.3:
     1842434.6089 - tn0.3: 42147804.7213 - fn0.3: 817880.7830 - precision0.3: 0.8055 - recall0.3: 0.9021 - tp0.5: 7257172.3966 - fp0.5: 947340.6534 - tn0.5: 43042899.9469 - fn0.5: 1263245.5363 - precision0.5: 0.8838 - recall0.5: 0.8495 - t
    p0.7: 6767789.5652 - fp0.7: 485240.0351 - tn0.7: 43504992.3216 - fn0.7: 1752628.3677 - precision0.7: 0.9324 - recall0.7: 0.7924 - tp0.9: 5789730.9688 - fp0.9: 133595.3934 - tn0.9: 43856655.0180 - fn0.9: 2730686.9641 - precision0.9: 0.9
    771 - recall0.9: 0.6757 - accuracy: 0.9572 - auc: 0.9671 - val_loss: 0.5438 - val_tp0.1: 3469770.0000 - val_fp0.1: 1783021.0000 - val_tn0.1: 20362438.0000 - val_fn0.1: 599169.0000 - val_precision0.1: 0.6606 - val_recall0.1: 0.8527 - va
    l_tp0.3: 2981687.0000 - val_fp0.3: 776413.0000 - val_tn0.3: 21369044.0000 - val_fn0.3: 1087252.0000 - val_precision0.3: 0.7934 - val_recall0.3: 0.7328 - val_tp0.5: 2491815.0000 - val_fp0.5: 326150.0000 - val_tn0.5: 21819316.0000 - val_
    fn0.5: 1577124.0000 - val_precision0.5: 0.8843 - val_recall0.5: 0.6124 - val_tp0.7: 2092865.0000 - val_fp0.7: 128692.0000 - val_tn0.7: 22016760.0000 - val_fn0.7: 1976074.0000 - val_precision0.7: 0.9421 - val_recall0.7: 0.5144 - val_tp0
    .9: 1584013.0000 - val_fp0.9: 18793.0000 - val_tn0.9: 22126662.0000 - val_fn0.9: 2484926.0000 - val_precision0.9: 0.9883 - val_recall0.9: 0.3893 - val_accuracy: 0.9274 - val_auc: 0.9112
    Epoch 7/50
    1280/1280 [==============================] - 2250s 2s/step - loss: 0.2752 - tp0.1: 8215921.6979 - fp0.1: 3662051.7354 - tn0.1: 40263427.6151 - fn0.1: 369255.7354 - precision0.1: 0.6930 - recall0.1: 0.9578 - tp0.3: 7873789.5113 - fp0.3:
     1775915.5043 - tn0.3: 42149585.2553 - fn0.3: 711387.9219 - precision0.3: 0.8180 - recall0.3: 0.9178 - tp0.5: 7421898.0468 - fp0.5: 864234.9992 - tn0.5: 43061238.2006 - fn0.5: 1163279.3864 - precision0.5: 0.8970 - recall0.5: 0.8653 - t
    p0.7: 6899341.9555 - fp0.7: 403014.4684 - tn0.7: 43522441.7424 - fn0.7: 1685835.4778 - precision0.7: 0.9455 - recall0.7: 0.8048 - tp0.9: 6047520.0070 - fp0.9: 123672.6019 - tn0.9: 43801830.9766 - fn0.9: 2537657.4262 - precision0.9: 0.9
    803 - recall0.9: 0.7036 - accuracy: 0.9616 - auc: 0.9725 - val_loss: 0.5870 - val_tp0.1: 3992712.0000 - val_fp0.1: 3100961.0000 - val_tn0.1: 18785236.0000 - val_fn0.1: 335494.0000 - val_precision0.1: 0.5629 - val_recall0.1: 0.9225 - va
    l_tp0.3: 3697613.0000 - val_fp0.3: 2362999.0000 - val_tn0.3: 19523192.0000 - val_fn0.3: 630593.0000 - val_precision0.3: 0.6101 - val_recall0.3: 0.8543 - val_tp0.5: 3356073.0000 - val_fp0.5: 1926159.0000 - val_tn0.5: 19960034.0000 - val
    _fn0.5: 972133.0000 - val_precision0.5: 0.6354 - val_recall0.5: 0.7754 - val_tp0.7: 3025256.0000 - val_fp0.7: 1584253.0000 - val_tn0.7: 20301946.0000 - val_fn0.7: 1302950.0000 - val_precision0.7: 0.6563 - val_recall0.7: 0.6990 - val_tp
    0.9: 2583002.0000 - val_fp0.9: 1016388.0000 - val_tn0.9: 20869810.0000 - val_fn0.9: 1745204.0000 - val_precision0.9: 0.7176 - val_recall0.9: 0.5968 - val_accuracy: 0.8894 - val_auc: 0.9219
    Epoch 8/50
    1280/1280 [==============================] - 2264s 2s/step - loss: 0.2659 - tp0.1: 8145147.1616 - fp0.1: 3529957.8525 - tn0.1: 40486117.0164 - fn0.1: 349436.3614 - precision0.1: 0.6977 - recall0.1: 0.9588 - tp0.3: 7816330.9524 - fp0.3:
     1688486.8493 - tn0.3: 42327603.8790 - fn0.3: 678252.5706 - precision0.3: 0.8221 - recall0.3: 0.9201 - tp0.5: 7396513.9524 - fp0.5: 842774.1983 - tn0.5: 43173300.2077 - fn0.5: 1098069.5706 - precision0.5: 0.8972 - recall0.5: 0.8704 - t
    p0.7: 6908332.2162 - fp0.7: 399714.5441 - tn0.7: 43616338.9617 - fn0.7: 1586251.3068 - precision0.7: 0.9448 - recall0.7: 0.8128 - tp0.9: 6106920.7744 - fp0.9: 123699.0000 - tn0.9: 43892389.6027 - fn0.9: 2387662.7486 - precision0.9: 0.9
    796 - recall0.9: 0.7174 - accuracy: 0.9627 - auc: 0.9735 - val_loss: 0.5059 - val_tp0.1: 3832991.0000 - val_fp0.1: 2975127.0000 - val_tn0.1: 19105348.0000 - val_fn0.1: 300933.0000 - val_precision0.1: 0.5630 - val_recall0.1: 0.9272 - va
    l_tp0.3: 3565080.0000 - val_fp0.3: 2148056.0000 - val_tn0.3: 19932426.0000 - val_fn0.3: 568844.0000 - val_precision0.3: 0.6240 - val_recall0.3: 0.8624 - val_tp0.5: 3244053.0000 - val_fp0.5: 1637048.0000 - val_tn0.5: 20443428.0000 - val
    _fn0.5: 889871.0000 - val_precision0.5: 0.6646 - val_recall0.5: 0.7847 - val_tp0.7: 2923895.0000 - val_fp0.7: 1240875.0000 - val_tn0.7: 20839598.0000 - val_fn0.7: 1210029.0000 - val_precision0.7: 0.7021 - val_recall0.7: 0.7073 - val_tp
    0.9: 2501710.0000 - val_fp0.9: 630185.0000 - val_tn0.9: 21450288.0000 - val_fn0.9: 1632214.0000 - val_precision0.9: 0.7988 - val_recall0.9: 0.6052 - val_accuracy: 0.9036 - val_auc: 0.9333
    Epoch 9/50
    1280/1280 [==============================] - 2265s 2s/step - loss: 0.2721 - tp0.1: 8177633.5020 - fp0.1: 3535203.1725 - tn0.1: 40418482.1335 - fn0.1: 379327.7697 - precision0.1: 0.7002 - recall0.1: 0.9554 - tp0.3: 7847088.7190 - fp0.3:
     1695397.4301 - tn0.3: 42258294.9282 - fn0.3: 709872.5527 - precision0.3: 0.8241 - recall0.3: 0.9169 - tp0.5: 7427192.4395 - fp0.5: 834997.2678 - tn0.5: 43118702.8587 - fn0.5: 1129768.8322 - precision0.5: 0.9006 - recall0.5: 0.8679 - t
    p0.7: 6938678.2849 - fp0.7: 395857.1007 - tn0.7: 43557853.7744 - fn0.7: 1618282.9867 - precision0.7: 0.9471 - recall0.7: 0.8106 - tp0.9: 6133368.2951 - fp0.9: 120955.7010 - tn0.9: 43832745.2506 - fn0.9: 2423592.9766 - precision0.9: 0.9
    811 - recall0.9: 0.7170 - accuracy: 0.9631 - auc: 0.9718 - val_loss: 0.5832 - val_tp0.1: 3893714.0000 - val_fp0.1: 3303616.0000 - val_tn0.1: 18681092.0000 - val_fn0.1: 335977.0000 - val_precision0.1: 0.5410 - val_recall0.1: 0.9206 - va
    l_tp0.3: 3627551.0000 - val_fp0.3: 2498540.0000 - val_tn0.3: 19486168.0000 - val_fn0.3: 602140.0000 - val_precision0.3: 0.5921 - val_recall0.3: 0.8576 - val_tp0.5: 3322248.0000 - val_fp0.5: 1987125.0000 - val_tn0.5: 19997588.0000 - val
    _fn0.5: 907443.0000 - val_precision0.5: 0.6257 - val_recall0.5: 0.7855 - val_tp0.7: 3013599.0000 - val_fp0.7: 1581768.0000 - val_tn0.7: 20402948.0000 - val_fn0.7: 1216092.0000 - val_precision0.7: 0.6558 - val_recall0.7: 0.7125 - val_tp
    0.9: 2613832.0000 - val_fp0.9: 924572.0000 - val_tn0.9: 21060124.0000 - val_fn0.9: 1615859.0000 - val_precision0.9: 0.7387 - val_recall0.9: 0.6180 - val_accuracy: 0.8896 - val_auc: 0.9233
    Epoch 10/50
    1280/1280 [==============================] - 2167s 2s/step - loss: 0.2587 - tp0.1: 8173202.1491 - fp0.1: 3419344.5308 - tn0.1: 40568773.3271 - fn0.1: 349346.8673 - precision0.1: 0.7050 - recall0.1: 0.9592 - tp0.3: 7845280.8431 - fp0.3:
     1633368.1054 - tn0.3: 42354746.7455 - fn0.3: 677268.1733 - precision0.3: 0.8274 - recall0.3: 0.9210 - tp0.5: 7444574.4614 - fp0.5: 808848.8946 - tn0.5: 43179274.2358 - fn0.5: 1077974.5550 - precision0.5: 0.9017 - recall0.5: 0.8744 - t
    p0.7: 6974399.5706 - fp0.7: 382341.6963 - tn0.7: 43605795.4044 - fn0.7: 1548149.4457 - precision0.7: 0.9478 - recall0.7: 0.8197 - tp0.9: 6212727.7385 - fp0.9: 117973.7447 - tn0.9: 43870128.1835 - fn0.9: 2309821.2779 - precision0.9: 0.9
    813 - recall0.9: 0.7300 - accuracy: 0.9641 - auc: 0.9742 - val_loss: 0.6408 - val_tp0.1: 3921454.0000 - val_fp0.1: 3165544.0000 - val_tn0.1: 18831180.0000 - val_fn0.1: 296224.0000 - val_precision0.1: 0.5533 - val_recall0.1: 0.9298 - va
    l_tp0.3: 3674710.0000 - val_fp0.3: 2541189.0000 - val_tn0.3: 19455532.0000 - val_fn0.3: 542968.0000 - val_precision0.3: 0.5912 - val_recall0.3: 0.8713 - val_tp0.5: 3370841.0000 - val_fp0.5: 2184413.0000 - val_tn0.5: 19812308.0000 - val
    _fn0.5: 846837.0000 - val_precision0.5: 0.6068 - val_recall0.5: 0.7992 - val_tp0.7: 3057156.0000 - val_fp0.7: 1929320.0000 - val_tn0.7: 20067408.0000 - val_fn0.7: 1160522.0000 - val_precision0.7: 0.6131 - val_recall0.7: 0.7248 - val_tp
    0.9: 2691235.0000 - val_fp0.9: 1545100.0000 - val_tn0.9: 20451626.0000 - val_fn0.9: 1526443.0000 - val_precision0.9: 0.6353 - val_recall0.9: 0.6381 - val_accuracy: 0.8844 - val_auc: 0.9185
    Epoch 11/50
    1280/1280 [==============================] - 2195s 2s/step - loss: 0.2597 - tp0.1: 8080787.5496 - fp0.1: 3464173.5402 - tn0.1: 40607994.5691 - fn0.1: 357720.7119 - precision0.1: 0.6992 - recall0.1: 0.9583 - tp0.3: 7754354.7728 - fp0.3:
     1652487.9594 - tn0.3: 42419634.1717 - fn0.3: 684153.4887 - precision0.3: 0.8245 - recall0.3: 0.9197 - tp0.5: 7350582.6308 - fp0.5: 814018.4028 - tn0.5: 43258092.7291 - fn0.5: 1087925.6308 - precision0.5: 0.9008 - recall0.5: 0.8720 - t
    p0.7: 6874278.2834 - fp0.7: 383492.2842 - tn0.7: 43688666.7549 - fn0.7: 1564229.9781 - precision0.7: 0.9477 - recall0.7: 0.8158 - tp0.9: 6117529.6448 - fp0.9: 121059.4980 - tn0.9: 43951099.9110 - fn0.9: 2320978.6167 - precision0.9: 0.9
    810 - recall0.9: 0.7266 - accuracy: 0.9642 - auc: 0.9736 - val_loss: 0.6007 - val_tp0.1: 3926588.0000 - val_fp0.1: 3104163.0000 - val_tn0.1: 18816186.0000 - val_fn0.1: 367465.0000 - val_precision0.1: 0.5585 - val_recall0.1: 0.9144 - va
    l_tp0.3: 3638712.0000 - val_fp0.3: 2431931.0000 - val_tn0.3: 19488412.0000 - val_fn0.3: 655341.0000 - val_precision0.3: 0.5994 - val_recall0.3: 0.8474 - val_tp0.5: 3274020.0000 - val_fp0.5: 1937942.0000 - val_tn0.5: 19982404.0000 - val
    _fn0.5: 1020033.0000 - val_precision0.5: 0.6282 - val_recall0.5: 0.7625 - val_tp0.7: 2918102.0000 - val_fp0.7: 1553208.0000 - val_tn0.7: 20367136.0000 - val_fn0.7: 1375951.0000 - val_precision0.7: 0.6526 - val_recall0.7: 0.6796 - val_t
    p0.9: 2486914.0000 - val_fp0.9: 949847.0000 - val_tn0.9: 20970500.0000 - val_fn0.9: 1807139.0000 - val_precision0.9: 0.7236 - val_recall0.9: 0.5792 - val_accuracy: 0.8872 - val_auc: 0.9170
    Epoch 12/50
    1280/1280 [==============================] - 2210s 2s/step - loss: 0.2529 - tp0.1: 8177778.9118 - fp0.1: 3446344.3888 - tn0.1: 40554141.6956 - fn0.1: 332395.2459 - precision0.1: 0.7024 - recall0.1: 0.9615 - tp0.3: 7866160.7268 - fp0.3:
     1663533.3247 - tn0.3: 42336942.1569 - fn0.3: 644013.4309 - precision0.3: 0.8244 - recall0.3: 0.9251 - tp0.5: 7468651.7650 - fp0.5: 826902.3630 - tn0.5: 43173597.9063 - fn0.5: 1041522.3927 - precision0.5: 0.8996 - recall0.5: 0.8783 - t
    p0.7: 6982137.1124 - fp0.7: 384836.8439 - tn0.7: 43615637.7978 - fn0.7: 1528037.0453 - precision0.7: 0.9473 - recall0.7: 0.8206 - tp0.9: 6215436.7151 - fp0.9: 115782.2108 - tn0.9: 43884692.7596 - fn0.9: 2294737.4426 - precision0.9: 0.9
    816 - recall0.9: 0.7291 - accuracy: 0.9644 - auc: 0.9753 - val_loss: 0.5433 - val_tp0.1: 3996675.0000 - val_fp0.1: 3049375.0000 - val_tn0.1: 18853738.0000 - val_fn0.1: 314612.0000 - val_precision0.1: 0.5672 - val_recall0.1: 0.9270 - va
    l_tp0.3: 3730606.0000 - val_fp0.3: 2336826.0000 - val_tn0.3: 19566286.0000 - val_fn0.3: 580681.0000 - val_precision0.3: 0.6149 - val_recall0.3: 0.8653 - val_tp0.5: 3416555.0000 - val_fp0.5: 1856264.0000 - val_tn0.5: 20046848.0000 - val
    _fn0.5: 894732.0000 - val_precision0.5: 0.6480 - val_recall0.5: 0.7925 - val_tp0.7: 3097348.0000 - val_fp0.7: 1461441.0000 - val_tn0.7: 20441664.0000 - val_fn0.7: 1213939.0000 - val_precision0.7: 0.6794 - val_recall0.7: 0.7184 - val_tp
    0.9: 2698173.0000 - val_fp0.9: 854641.0000 - val_tn0.9: 21048466.0000 - val_fn0.9: 1613114.0000 - val_precision0.9: 0.7594 - val_recall0.9: 0.6258 - val_accuracy: 0.8951 - val_auc: 0.9303
    Epoch 13/50
    1280/1280 [==============================] - 2209s 2s/step - loss: 0.2538 - tp0.1: 8165544.5761 - fp0.1: 3360321.7119 - tn0.1: 40640034.6550 - fn0.1: 344752.3396 - precision0.1: 0.7106 - recall0.1: 0.9599 - tp0.3: 7853592.0312 - fp0.3:
     1646282.5488 - tn0.3: 42354071.1335 - fn0.3: 656704.8845 - precision0.3: 0.8279 - recall0.3: 0.9236 - tp0.5: 7458424.3138 - fp0.5: 826341.5082 - tn0.5: 43174017.1226 - fn0.5: 1051872.6019 - precision0.5: 0.9009 - recall0.5: 0.8775 - t
    p0.7: 6979820.3271 - fp0.7: 395956.8899 - tn0.7: 43604407.7775 - fn0.7: 1530476.5886 - precision0.7: 0.9468 - recall0.7: 0.8215 - tp0.9: 6232427.8197 - fp0.9: 129181.2912 - tn0.9: 43871195.4387 - fn0.9: 2277869.0960 - precision0.9: 0.9
    799 - recall0.9: 0.7346 - accuracy: 0.9644 - auc: 0.9747 - val_loss: 0.5485 - val_tp0.1: 3997124.0000 - val_fp0.1: 3403162.0000 - val_tn0.1: 18545812.0000 - val_fn0.1: 268302.0000 - val_precision0.1: 0.5401 - val_recall0.1: 0.9371 - va
    l_tp0.3: 3749177.0000 - val_fp0.3: 2616473.0000 - val_tn0.3: 19332510.0000 - val_fn0.3: 516249.0000 - val_precision0.3: 0.5890 - val_recall0.3: 0.8790 - val_tp0.5: 3440083.0000 - val_fp0.5: 2075288.0000 - val_tn0.5: 19873688.0000 - val
    _fn0.5: 825343.0000 - val_precision0.5: 0.6237 - val_recall0.5: 0.8065 - val_tp0.7: 3117260.0000 - val_fp0.7: 1623393.0000 - val_tn0.7: 20325572.0000 - val_fn0.7: 1148166.0000 - val_precision0.7: 0.6576 - val_recall0.7: 0.7308 - val_tp
    0.9: 2708258.0000 - val_fp0.9: 926738.0000 - val_tn0.9: 21022226.0000 - val_fn0.9: 1557168.0000 - val_precision0.9: 0.7451 - val_recall0.9: 0.6349 - val_accuracy: 0.8894 - val_auc: 0.9322
    Epoch 14/50
    1280/1280 [==============================] - 2223s 2s/step - loss: 0.2483 - tp0.1: 8105005.2256 - fp0.1: 3301412.7728 - tn0.1: 40770974.7994 - fn0.1: 333249.2350 - precision0.1: 0.7102 - recall0.1: 0.9606 - tp0.3: 7797681.4614 - fp0.3:
     1632480.2381 - tn0.3: 42439931.4738 - fn0.3: 640572.9992 - precision0.3: 0.8273 - recall0.3: 0.9241 - tp0.5: 7399965.9297 - fp0.5: 804918.4660 - tn0.5: 43267490.8134 - fn0.5: 1038288.5308 - precision0.5: 0.9020 - recall0.5: 0.8772 - t
    p0.7: 6921871.3716 - fp0.7: 370916.4372 - tn0.7: 43701494.4621 - fn0.7: 1516383.0890 - precision0.7: 0.9493 - recall0.7: 0.8208 - tp0.9: 6187238.5597 - fp0.9: 114174.0468 - tn0.9: 43958233.5792 - fn0.9: 2251015.9009 - precision0.9: 0.9
    819 - recall0.9: 0.7337 - accuracy: 0.9651 - auc: 0.9752 - val_loss: 0.4990 - val_tp0.1: 3920222.0000 - val_fp0.1: 2895972.0000 - val_tn0.1: 19106396.0000 - val_fn0.1: 291803.0000 - val_precision0.1: 0.5751 - val_recall0.1: 0.9307 - va
    l_tp0.3: 3647799.0000 - val_fp0.3: 2161341.0000 - val_tn0.3: 19841040.0000 - val_fn0.3: 564226.0000 - val_precision0.3: 0.6279 - val_recall0.3: 0.8660 - val_tp0.5: 3322418.0000 - val_fp0.5: 1638347.0000 - val_tn0.5: 20364020.0000 - val
    _fn0.5: 889607.0000 - val_precision0.5: 0.6697 - val_recall0.5: 0.7888 - val_tp0.7: 2985353.0000 - val_fp0.7: 1222889.0000 - val_tn0.7: 20779488.0000 - val_fn0.7: 1226672.0000 - val_precision0.7: 0.7094 - val_recall0.7: 0.7088 - val_tp
    0.9: 2563095.0000 - val_fp0.9: 657853.0000 - val_tn0.9: 21344516.0000 - val_fn0.9: 1648930.0000 - val_precision0.9: 0.7958 - val_recall0.9: 0.6085 - val_accuracy: 0.9036 - val_auc: 0.9356
    Epoch 15/50
    1280/1280 [==============================] - 2223s 2s/step - loss: 0.2505 - tp0.1: 8129718.4130 - fp0.1: 3285117.6674 - tn0.1: 40755981.7447 - fn0.1: 339847.1585 - precision0.1: 0.7126 - recall0.1: 0.9599 - tp0.3: 7829732.9274 - fp0.3:
     1632416.1491 - tn0.3: 42408661.6440 - fn0.3: 639832.6440 - precision0.3: 0.8279 - recall0.3: 0.9244 - tp0.5: 7437810.6112 - fp0.5: 808981.5230 - tn0.5: 43232126.9953 - fn0.5: 1031754.9602 - precision0.5: 0.9024 - recall0.5: 0.8777 - t
    p0.7: 6957910.6557 - fp0.7: 373871.2498 - tn0.7: 43667250.3630 - fn0.7: 1511654.9157 - precision0.7: 0.9493 - recall0.7: 0.8208 - tp0.9: 6212919.2295 - fp0.9: 115091.8977 - tn0.9: 43925968.1874 - fn0.9: 2256646.3419 - precision0.9: 0.9
    817 - recall0.9: 0.7317 - accuracy: 0.9649 - auc: 0.9750 - val_loss: 0.5413 - val_tp0.1: 3929730.0000 - val_fp0.1: 3234417.0000 - val_tn0.1: 18748682.0000 - val_fn0.1: 301573.0000 - val_precision0.1: 0.5485 - val_recall0.1: 0.9287 - va
    l_tp0.3: 3652364.0000 - val_fp0.3: 2547235.0000 - val_tn0.3: 19435862.0000 - val_fn0.3: 578939.0000 - val_precision0.3: 0.5891 - val_recall0.3: 0.8632 - val_tp0.5: 3294284.0000 - val_fp0.5: 1952001.0000 - val_tn0.5: 20031108.0000 - val
    _fn0.5: 937019.0000 - val_precision0.5: 0.6279 - val_recall0.5: 0.7786 - val_tp0.7: 2934269.0000 - val_fp0.7: 1461182.0000 - val_tn0.7: 20521920.0000 - val_fn0.7: 1297034.0000 - val_precision0.7: 0.6676 - val_recall0.7: 0.6935 - val_tp
    0.9: 2494237.0000 - val_fp0.9: 748300.0000 - val_tn0.9: 21234804.0000 - val_fn0.9: 1737066.0000 - val_precision0.9: 0.7692 - val_recall0.9: 0.5895 - val_accuracy: 0.8898 - val_auc: 0.9282
    Epoch 16/50
    1280/1280 [==============================] - 2215s 2s/step - loss: 0.2478 - tp0.1: 8105796.2350 - fp0.1: 3240299.5347 - tn0.1: 40826166.4356 - fn0.1: 338386.8126 - precision0.1: 0.7132 - recall0.1: 0.9597 - tp0.3: 7813940.3685 - fp0.3:
     1622845.5285 - tn0.3: 42443650.8525 - fn0.3: 630242.6792 - precision0.3: 0.8274 - recall0.3: 0.9252 - tp0.5: 7422996.8228 - fp0.5: 793661.0414 - tn0.5: 43272824.2966 - fn0.5: 1021186.2248 - precision0.5: 0.9030 - recall0.5: 0.8785 - t
    p0.7: 6948059.6292 - fp0.7: 366674.7080 - tn0.7: 43699824.9578 - fn0.7: 1496123.4184 - precision0.7: 0.9495 - recall0.7: 0.8219 - tp0.9: 6225846.1991 - fp0.9: 114013.1436 - tn0.9: 43952461.9219 - fn0.9: 2218336.8486 - precision0.9: 0.9
    817 - recall0.9: 0.7370 - accuracy: 0.9654 - auc: 0.9750 - val_loss: 0.5514 - val_tp0.1: 3985944.0000 - val_fp0.1: 3204062.0000 - val_tn0.1: 18714132.0000 - val_fn0.1: 310258.0000 - val_precision0.1: 0.5544 - val_recall0.1: 0.9278 - va
    l_tp0.3: 3706293.0000 - val_fp0.3: 2449108.0000 - val_tn0.3: 19469088.0000 - val_fn0.3: 589909.0000 - val_precision0.3: 0.6021 - val_recall0.3: 0.8627 - val_tp0.5: 3369179.0000 - val_fp0.5: 1882360.0000 - val_tn0.5: 20035840.0000 - val
    _fn0.5: 927023.0000 - val_precision0.5: 0.6416 - val_recall0.5: 0.7842 - val_tp0.7: 3033922.0000 - val_fp0.7: 1434846.0000 - val_tn0.7: 20483356.0000 - val_fn0.7: 1262280.0000 - val_precision0.7: 0.6789 - val_recall0.7: 0.7062 - val_tp
    0.9: 2621404.0000 - val_fp0.9: 840233.0000 - val_tn0.9: 21077966.0000 - val_fn0.9: 1674798.0000 - val_precision0.9: 0.7573 - val_recall0.9: 0.6102 - val_accuracy: 0.8928 - val_auc: 0.9287
    Epoch 17/50
    1280/1280 [==============================] - 2214s 2s/step - loss: 0.2484 - tp0.1: 8227665.5144 - fp0.1: 3202591.7237 - tn0.1: 40740266.8517 - fn0.1: 340122.5121 - precision0.1: 0.7214 - recall0.1: 0.9603 - tp0.3: 7941320.1460 - fp0.3:
     1633513.9258 - tn0.3: 42309362.5909 - fn0.3: 626467.8806 - precision0.3: 0.8301 - recall0.3: 0.9272 - tp0.5: 7558350.9258 - fp0.5: 804203.6698 - tn0.5: 43138639.2201 - fn0.5: 1009437.1007 - precision0.5: 0.9041 - recall0.5: 0.8831 - t
    p0.7: 7083529.7642 - fp0.7: 372694.8454 - tn0.7: 43570150.8829 - fn0.7: 1484258.2623 - precision0.7: 0.9501 - recall0.7: 0.8284 - tp0.9: 6341241.1249 - fp0.9: 113794.4754 - tn0.9: 43829043.6105 - fn0.9: 2226546.9016 - precision0.9: 0.9
    824 - recall0.9: 0.7414 - accuracy: 0.9652 - auc: 0.9756 - val_loss: 0.5142 - val_tp0.1: 3628279.0000 - val_fp0.1: 2753615.0000 - val_tn0.1: 19485962.0000 - val_fn0.1: 346542.0000 - val_precision0.1: 0.5685 - val_recall0.1: 0.9128 - va
    l_tp0.3: 3324088.0000 - val_fp0.3: 2056425.0000 - val_tn0.3: 20183156.0000 - val_fn0.3: 650733.0000 - val_precision0.3: 0.6178 - val_recall0.3: 0.8363 - val_tp0.5: 2972065.0000 - val_fp0.5: 1467191.0000 - val_tn0.5: 20772396.0000 - val
    _fn0.5: 1002756.0000 - val_precision0.5: 0.6695 - val_recall0.5: 0.7477 - val_tp0.7: 2650974.0000 - val_fp0.7: 1083574.0000 - val_tn0.7: 21156004.0000 - val_fn0.7: 1323847.0000 - val_precision0.7: 0.7099 - val_recall0.7: 0.6669 - val_t
    p0.9: 2300149.0000 - val_fp0.9: 585684.0000 - val_tn0.9: 21653888.0000 - val_fn0.9: 1674672.0000 - val_precision0.9: 0.7970 - val_recall0.9: 0.5787 - val_accuracy: 0.9058 - val_auc: 0.9268
    Epoch 18/50
    1280/1280 [==============================] - 2223s 2s/step - loss: 0.2451 - tp0.1: 8257483.8283 - fp0.1: 3209709.3536 - tn0.1: 40707026.2334 - fn0.1: 336440.2756 - precision0.1: 0.7174 - recall0.1: 0.9618 - tp0.3: 7972148.5215 - fp0.3:
     1611985.2998 - tn0.3: 42304753.9649 - fn0.3: 621775.5824 - precision0.3: 0.8295 - recall0.3: 0.9289 - tp0.5: 7592991.5839 - fp0.5: 801375.8977 - tn0.5: 43115384.3333 - fn0.5: 1000932.5199 - precision0.5: 0.9027 - recall0.5: 0.8847 - t
    p0.7: 7121459.2779 - fp0.7: 371705.6339 - tn0.7: 43545020.0328 - fn0.7: 1472464.8259 - precision0.7: 0.9492 - recall0.7: 0.8297 - tp0.9: 6381060.6097 - fp0.9: 111751.2303 - tn0.9: 43804981.0523 - fn0.9: 2212863.4941 - precision0.9: 0.9
    823 - recall0.9: 0.7435 - accuracy: 0.9654 - auc: 0.9764 - val_loss: 0.5303 - val_tp0.1: 3950393.0000 - val_fp0.1: 2825498.0000 - val_tn0.1: 19094474.0000 - val_fn0.1: 344035.0000 - val_precision0.1: 0.5830 - val_recall0.1: 0.9199 - va
    l_tp0.3: 3645339.0000 - val_fp0.3: 2077885.0000 - val_tn0.3: 19842076.0000 - val_fn0.3: 649089.0000 - val_precision0.3: 0.6369 - val_recall0.3: 0.8489 - val_tp0.5: 3283330.0000 - val_fp0.5: 1558246.0000 - val_tn0.5: 20361722.0000 - val
    _fn0.5: 1011098.0000 - val_precision0.5: 0.6782 - val_recall0.5: 0.7646 - val_tp0.7: 2947342.0000 - val_fp0.7: 1176365.0000 - val_tn0.7: 20743604.0000 - val_fn0.7: 1347086.0000 - val_precision0.7: 0.7147 - val_recall0.7: 0.6863 - val_t
    p0.9: 2536959.0000 - val_fp0.9: 698850.0000 - val_tn0.9: 21221120.0000 - val_fn0.9: 1757469.0000 - val_precision0.9: 0.7840 - val_recall0.9: 0.5908 - val_accuracy: 0.9020 - val_auc: 0.9295
    Epoch 19/50
    1280/1280 [==============================] - 2211s 2s/step - loss: 0.2463 - tp0.1: 8262233.3575 - fp0.1: 3162400.5699 - tn0.1: 40752275.6565 - fn0.1: 333748.0101 - precision0.1: 0.7238 - recall0.1: 0.9607 - tp0.3: 7976781.4278 - fp0.3:
     1621499.8923 - tn0.3: 42293181.6620 - fn0.3: 619199.9399 - precision0.3: 0.8316 - recall0.3: 0.9269 - tp0.5: 7600963.2264 - fp0.5: 819732.1842 - tn0.5: 43094936.0523 - fn0.5: 995018.1413 - precision0.5: 0.9028 - recall0.5: 0.8828 - tp
    0.7: 7125748.6019 - fp0.7: 384384.1327 - tn0.7: 43530286.4083 - fn0.7: 1470232.7658 - precision0.7: 0.9489 - recall0.7: 0.8275 - tp0.9: 6355596.0687 - fp0.9: 116562.7260 - tn0.9: 43798125.0718 - fn0.9: 2240385.2990 - precision0.9: 0.98
    20 - recall0.9: 0.7377 - accuracy: 0.9650 - auc: 0.9759 - val_loss: 0.5854 - val_tp0.1: 3832029.0000 - val_fp0.1: 3030240.0000 - val_tn0.1: 18976838.0000 - val_fn0.1: 375292.0000 - val_precision0.1: 0.5584 - val_recall0.1: 0.9108 - val
    _tp0.3: 3499789.0000 - val_fp0.3: 2341510.0000 - val_tn0.3: 19665576.0000 - val_fn0.3: 707532.0000 - val_precision0.3: 0.5991 - val_recall0.3: 0.8318 - val_tp0.5: 3162666.0000 - val_fp0.5: 1856596.0000 - val_tn0.5: 20150478.0000 - val_
    fn0.5: 1044655.0000 - val_precision0.5: 0.6301 - val_recall0.5: 0.7517 - val_tp0.7: 2854187.0000 - val_fp0.7: 1428102.0000 - val_tn0.7: 20578972.0000 - val_fn0.7: 1353134.0000 - val_precision0.7: 0.6665 - val_recall0.7: 0.6784 - val_tp
    0.9: 2488186.0000 - val_fp0.9: 879408.0000 - val_tn0.9: 21127672.0000 - val_fn0.9: 1719135.0000 - val_precision0.9: 0.7389 - val_recall0.9: 0.5914 - val_accuracy: 0.8893 - val_auc: 0.9201
    Epoch 20/50
    1280/1280 [==============================] - 2220s 2s/step - loss: 0.2304 - tp0.1: 8074195.9617 - fp0.1: 2966270.8033 - tn0.1: 41146339.4450 - fn0.1: 323842.2264 - precision0.1: 0.7319 - recall0.1: 0.9616 - tp0.3: 7805955.5699 - fp0.3:
     1533470.4364 - tn0.3: 42579145.3279 - fn0.3: 592082.6183 - precision0.3: 0.8364 - recall0.3: 0.9297 - tp0.5: 7448954.0062 - fp0.5: 779671.7213 - tn0.5: 43332921.9258 - fn0.5: 949084.1819 - precision0.5: 0.9056 - recall0.5: 0.8873 - tp
    0.7: 6997774.1819 - fp0.7: 363044.1397 - tn0.7: 43749575.7775 - fn0.7: 1400264.0062 - precision0.7: 0.9510 - recall0.7: 0.8336 - tp0.9: 6267801.5144 - fp0.9: 107614.1304 - tn0.9: 44004989.1429 - fn0.9: 2130236.6737 - precision0.9: 0.98
    33 - recall0.9: 0.7471 - accuracy: 0.9673 - auc: 0.9771 - val_loss: 0.5968 - val_tp0.1: 3918274.0000 - val_fp0.1: 3250251.0000 - val_tn0.1: 18736068.0000 - val_fn0.1: 309803.0000 - val_precision0.1: 0.5466 - val_recall0.1: 0.9267 - val
    _tp0.3: 3617081.0000 - val_fp0.3: 2559029.0000 - val_tn0.3: 19427288.0000 - val_fn0.3: 610996.0000 - val_precision0.3: 0.5857 - val_recall0.3: 0.8555 - val_tp0.5: 3277656.0000 - val_fp0.5: 2084096.0000 - val_tn0.5: 19902236.0000 - val_
    fn0.5: 950421.0000 - val_precision0.5: 0.6113 - val_recall0.5: 0.7752 - val_tp0.7: 2954727.0000 - val_fp0.7: 1696039.0000 - val_tn0.7: 20290280.0000 - val_fn0.7: 1273350.0000 - val_precision0.7: 0.6353 - val_recall0.7: 0.6988 - val_tp0
    .9: 2580804.0000 - val_fp0.9: 1147305.0000 - val_tn0.9: 20839018.0000 - val_fn0.9: 1647273.0000 - val_precision0.9: 0.6923 - val_recall0.9: 0.6104 - val_accuracy: 0.8842 - val_auc: 0.9226
    Epoch 21/50
    1280/1280 [==============================] - 2204s 2s/step - loss: 0.2384 - tp0.1: 8140617.7596 - fp0.1: 3066144.5098 - tn0.1: 40972600.1975 - fn0.1: 331283.3044 - precision0.1: 0.7253 - recall0.1: 0.9608 - tp0.3: 7870474.5457 - fp0.3:
     1553244.6440 - tn0.3: 42485524.1530 - fn0.3: 601426.5183 - precision0.3: 0.8351 - recall0.3: 0.9289 - tp0.5: 7506928.4785 - fp0.5: 777322.4692 - tn0.5: 43261445.7369 - fn0.5: 964972.5855 - precision0.5: 0.9063 - recall0.5: 0.8856 - tp
    0.7: 7045491.5386 - fp0.7: 357699.5441 - tn0.7: 43681060.9094 - fn0.7: 1426409.5254 - precision0.7: 0.9516 - recall0.7: 0.8307 - tp0.9: 6309047.4247 - fp0.9: 104611.4294 - tn0.9: 43934120.4317 - fn0.9: 2162853.6393 - precision0.9: 0.98
    35 - recall0.9: 0.7429 - accuracy: 0.9668 - auc: 0.9764 - val_loss: 0.5731 - val_tp0.1: 3942096.0000 - val_fp0.1: 2995461.0000 - val_tn0.1: 18887014.0000 - val_fn0.1: 389824.0000 - val_precision0.1: 0.5682 - val_recall0.1: 0.9100 - val
    _tp0.3: 3599028.0000 - val_fp0.3: 2149008.0000 - val_tn0.3: 19733476.0000 - val_fn0.3: 732892.0000 - val_precision0.3: 0.6261 - val_recall0.3: 0.8308 - val_tp0.5: 3252555.0000 - val_fp0.5: 1599632.0000 - val_tn0.5: 20282852.0000 - val_
    fn0.5: 1079365.0000 - val_precision0.5: 0.6703 - val_recall0.5: 0.7508 - val_tp0.7: 2923628.0000 - val_fp0.7: 1191800.0000 - val_tn0.7: 20690680.0000 - val_fn0.7: 1408292.0000 - val_precision0.7: 0.7104 - val_recall0.7: 0.6749 - val_tp
    0.9: 2521604.0000 - val_fp0.9: 728892.0000 - val_tn0.9: 21153588.0000 - val_fn0.9: 1810316.0000 - val_precision0.9: 0.7758 - val_recall0.9: 0.5821 - val_accuracy: 0.8978 - val_auc: 0.9225
    Epoch 22/50
    1280/1280 [==============================] - 2202s 2s/step - loss: 0.2325 - tp0.1: 8142655.7533 - fp0.1: 2988317.6230 - tn0.1: 41059668.6183 - fn0.1: 320016.3560 - precision0.1: 0.7319 - recall0.1: 0.9621 - tp0.3: 7871852.7736 - fp0.3:
     1506270.7799 - tn0.3: 42541714.4848 - fn0.3: 590819.3357 - precision0.3: 0.8406 - recall0.3: 0.9295 - tp0.5: 7524881.3895 - fp0.5: 772793.9836 - tn0.5: 43275195.0945 - fn0.5: 937790.7198 - precision0.5: 0.9075 - recall0.5: 0.8882 - tp
    0.7: 7077438.3216 - fp0.7: 364340.6877 - tn0.7: 43683658.4301 - fn0.7: 1385233.7877 - precision0.7: 0.9513 - recall0.7: 0.8352 - tp0.9: 6339229.0827 - fp0.9: 109004.6729 - tn0.9: 43938973.3130 - fn0.9: 2123443.0265 - precision0.9: 0.98
    30 - recall0.9: 0.7477 - accuracy: 0.9672 - auc: 0.9774 - val_loss: 0.5088 - val_tp0.1: 4052314.0000 - val_fp0.1: 2813624.0000 - val_tn0.1: 18998480.0000 - val_fn0.1: 349977.0000 - val_precision0.1: 0.5902 - val_recall0.1: 0.9205 - val
    _tp0.3: 3687682.0000 - val_fp0.3: 1991405.0000 - val_tn0.3: 19820706.0000 - val_fn0.3: 714609.0000 - val_precision0.3: 0.6493 - val_recall0.3: 0.8377 - val_tp0.5: 3320706.0000 - val_fp0.5: 1380622.0000 - val_tn0.5: 20431490.0000 - val_
    fn0.5: 1081585.0000 - val_precision0.5: 0.7063 - val_recall0.5: 0.7543 - val_tp0.7: 2967625.0000 - val_fp0.7: 953933.0000 - val_tn0.7: 20858176.0000 - val_fn0.7: 1434666.0000 - val_precision0.7: 0.7567 - val_recall0.7: 0.6741 - val_tp0
    .9: 2531957.0000 - val_fp0.9: 497718.0000 - val_tn0.9: 21314390.0000 - val_fn0.9: 1870334.0000 - val_precision0.9: 0.8357 - val_recall0.9: 0.5751 - val_accuracy: 0.9061 - val_auc: 0.9328
    Epoch 23/50
    1280/1280 [==============================] - 2222s 2s/step - loss: 0.2366 - tp0.1: 8347653.8970 - fp0.1: 3081670.7681 - tn0.1: 40757305.4309 - fn0.1: 324014.3521 - precision0.1: 0.7290 - recall0.1: 0.9623 - tp0.3: 8070883.3950 - fp0.3:
     1575587.0781 - tn0.3: 42263394.8119 - fn0.3: 600784.8540 - precision0.3: 0.8352 - recall0.3: 0.9305 - tp0.5: 7717891.5347 - fp0.5: 814813.8595 - tn0.5: 43024150.6456 - fn0.5: 953776.7143 - precision0.5: 0.9036 - recall0.5: 0.8895 - tp
    0.7: 7268612.4356 - fp0.7: 391109.7408 - tn0.7: 43447878.6557 - fn0.7: 1403055.8134 - precision0.7: 0.9483 - recall0.7: 0.8378 - tp0.9: 6489543.3856 - fp0.9: 111622.6698 - tn0.9: 43727379.5621 - fn0.9: 2182124.8634 - precision0.9: 0.98
    31 - recall0.9: 0.7476 - accuracy: 0.9663 - auc: 0.9772 - val_loss: 0.6052 - val_tp0.1: 3963049.0000 - val_fp0.1: 3225080.0000 - val_tn0.1: 18705446.0000 - val_fn0.1: 320823.0000 - val_precision0.1: 0.5513 - val_recall0.1: 0.9251 - val
    _tp0.3: 3674699.0000 - val_fp0.3: 2561181.0000 - val_tn0.3: 19369346.0000 - val_fn0.3: 609173.0000 - val_precision0.3: 0.5893 - val_recall0.3: 0.8578 - val_tp0.5: 3373791.0000 - val_fp0.5: 2127280.0000 - val_tn0.5: 19803252.0000 - val_
    fn0.5: 910081.0000 - val_precision0.5: 0.6133 - val_recall0.5: 0.7876 - val_tp0.7: 3068979.0000 - val_fp0.7: 1731571.0000 - val_tn0.7: 20198960.0000 - val_fn0.7: 1214893.0000 - val_precision0.7: 0.6393 - val_recall0.7: 0.7164 - val_tp0
    .9: 2716240.0000 - val_fp0.9: 1223118.0000 - val_tn0.9: 20707410.0000 - val_fn0.9: 1567632.0000 - val_precision0.9: 0.6895 - val_recall0.9: 0.6341 - val_accuracy: 0.8841 - val_auc: 0.9237
    Epoch 24/50
    1280/1280 [==============================] - 2204s 2s/step - loss: 0.2289 - tp0.1: 8179279.4356 - fp0.1: 3005191.0726 - tn0.1: 41009950.9407 - fn0.1: 316225.4254 - precision0.1: 0.7325 - recall0.1: 0.9631 - tp0.3: 7901240.7315 - fp0.3:
     1504773.7026 - tn0.3: 42510372.7838 - fn0.3: 594264.1296 - precision0.3: 0.8407 - recall0.3: 0.9307 - tp0.5: 7554121.0180 - fp0.5: 777848.4996 - tn0.5: 43237301.8970 - fn0.5: 941383.8431 - precision0.5: 0.9069 - recall0.5: 0.8901 - tp
    0.7: 7115199.6105 - fp0.7: 370807.8002 - tn0.7: 43644327.6066 - fn0.7: 1380305.2506 - precision0.7: 0.9505 - recall0.7: 0.8385 - tp0.9: 6375731.2256 - fp0.9: 109566.7822 - tn0.9: 43905607.9274 - fn0.9: 2119773.6354 - precision0.9: 0.98
    30 - recall0.9: 0.7519 - accuracy: 0.9674 - auc: 0.9780 - val_loss: 0.5914 - val_tp0.1: 4024334.0000 - val_fp0.1: 3404652.0000 - val_tn0.1: 18506274.0000 - val_fn0.1: 279143.0000 - val_precision0.1: 0.5417 - val_recall0.1: 0.9351 - val
    _tp0.3: 3754317.0000 - val_fp0.3: 2715350.0000 - val_tn0.3: 19195568.0000 - val_fn0.3: 549160.0000 - val_precision0.3: 0.5803 - val_recall0.3: 0.8724 - val_tp0.5: 3470133.0000 - val_fp0.5: 2252806.0000 - val_tn0.5: 19658116.0000 - val_
    fn0.5: 833344.0000 - val_precision0.5: 0.6064 - val_recall0.5: 0.8064 - val_tp0.7: 3161773.0000 - val_fp0.7: 1777262.0000 - val_tn0.7: 20133664.0000 - val_fn0.7: 1141704.0000 - val_precision0.7: 0.6402 - val_recall0.7: 0.7347 - val_tp0
    .9: 2787618.0000 - val_fp0.9: 1197991.0000 - val_tn0.9: 20712926.0000 - val_fn0.9: 1515859.0000 - val_precision0.9: 0.6994 - val_recall0.9: 0.6478 - val_accuracy: 0.8823 - val_auc: 0.9283
    Epoch 25/50
    1280/1280 [==============================] - 2226s 2s/step - loss: 0.2252 - tp0.1: 8291979.4137 - fp0.1: 2984606.2982 - tn0.1: 40931178.3692 - fn0.1: 302890.0656 - precision0.1: 0.7344 - recall0.1: 0.9653 - tp0.3: 8019589.6370 - fp0.3:
     1494741.8806 - tn0.3: 42421057.4286 - fn0.3: 575279.8423 - precision0.3: 0.8422 - recall0.3: 0.9335 - tp0.5: 7686923.1866 - fp0.5: 778234.4176 - tn0.5: 43137535.1632 - fn0.5: 907946.2927 - precision0.5: 0.9079 - recall0.5: 0.8947 - tp
    0.7: 7250107.4707 - fp0.7: 372459.3240 - tn0.7: 43543354.1975 - fn0.7: 1344762.0086 - precision0.7: 0.9509 - recall0.7: 0.8437 - tp0.9: 6493233.8290 - fp0.9: 107705.5613 - tn0.9: 43808088.1733 - fn0.9: 2101635.6503 - precision0.9: 0.98
    38 - recall0.9: 0.7548 - accuracy: 0.9677 - auc: 0.9792 - val_loss: 0.5570 - val_tp0.1: 3995650.0000 - val_fp0.1: 3060009.0000 - val_tn0.1: 18836932.0000 - val_fn0.1: 321813.0000 - val_precision0.1: 0.5663 - val_recall0.1: 0.9255 - val
    _tp0.3: 3674821.0000 - val_fp0.3: 2374036.0000 - val_tn0.3: 19522900.0000 - val_fn0.3: 642642.0000 - val_precision0.3: 0.6075 - val_recall0.3: 0.8512 - val_tp0.5: 3346516.0000 - val_fp0.5: 1900974.0000 - val_tn0.5: 19995958.0000 - val_
    fn0.5: 970947.0000 - val_precision0.5: 0.6377 - val_recall0.5: 0.7751 - val_tp0.7: 3018485.0000 - val_fp0.7: 1460209.0000 - val_tn0.7: 20436728.0000 - val_fn0.7: 1298978.0000 - val_precision0.7: 0.6740 - val_recall0.7: 0.6991 - val_tp0
    .9: 2609054.0000 - val_fp0.9: 880392.0000 - val_tn0.9: 21016544.0000 - val_fn0.9: 1708409.0000 - val_precision0.9: 0.7477 - val_recall0.9: 0.6043 - val_accuracy: 0.8904 - val_auc: 0.9280
    Epoch 26/50
    1280/1280 [==============================] - 2216s 2s/step - loss: 0.2287 - tp0.1: 8319398.9969 - fp0.1: 2952438.8306 - tn0.1: 40921029.8501 - fn0.1: 317787.0890 - precision0.1: 0.7394 - recall0.1: 0.9635 - tp0.3: 8049496.8860 - fp0.3:
     1491537.2982 - tn0.3: 42381938.1233 - fn0.3: 587689.1998 - precision0.3: 0.8439 - recall0.3: 0.9326 - tp0.5: 7714917.0734 - fp0.5: 782715.8696 - tn0.5: 43090766.7041 - fn0.5: 922269.0125 - precision0.5: 0.9077 - recall0.5: 0.8941 - tp
    0.7: 7279420.8743 - fp0.7: 371072.6573 - tn0.7: 43502429.9672 - fn0.7: 1357765.2116 - precision0.7: 0.9513 - recall0.7: 0.8438 - tp0.9: 6527109.8852 - fp0.9: 103689.7635 - tn0.9: 43769772.2685 - fn0.9: 2110076.2006 - precision0.9: 0.98
    45 - recall0.9: 0.7564 - accuracy: 0.9674 - auc: 0.9783 - val_loss: 0.5787 - val_tp0.1: 3910190.0000 - val_fp0.1: 3250030.0000 - val_tn0.1: 18794728.0000 - val_fn0.1: 259453.0000 - val_precision0.1: 0.5461 - val_recall0.1: 0.9378 - val
    _tp0.3: 3639624.0000 - val_fp0.3: 2570780.0000 - val_tn0.3: 19473980.0000 - val_fn0.3: 530019.0000 - val_precision0.3: 0.5861 - val_recall0.3: 0.8729 - val_tp0.5: 3361012.0000 - val_fp0.5: 2146148.0000 - val_tn0.5: 19898600.0000 - val_
    fn0.5: 808631.0000 - val_precision0.5: 0.6103 - val_recall0.5: 0.8061 - val_tp0.7: 3051142.0000 - val_fp0.7: 1790049.0000 - val_tn0.7: 20254708.0000 - val_fn0.7: 1118501.0000 - val_precision0.7: 0.6302 - val_recall0.7: 0.7318 - val_tp0
    .9: 2683794.0000 - val_fp0.9: 1283960.0000 - val_tn0.9: 20760796.0000 - val_fn0.9: 1485849.0000 - val_precision0.9: 0.6764 - val_recall0.9: 0.6437 - val_accuracy: 0.8873 - val_auc: 0.9297
    Epoch 27/50
    1280/1280 [==============================] - 2202s 2s/step - loss: 0.2301 - tp0.1: 8107973.9399 - fp0.1: 2902140.6105 - tn0.1: 41182030.2319 - fn0.1: 318498.9274 - precision0.1: 0.7370 - recall0.1: 0.9620 - tp0.3: 7841754.6401 - fp0.3:
     1478702.1952 - tn0.3: 42605477.3365 - fn0.3: 584718.2272 - precision0.3: 0.8414 - recall0.3: 0.9300 - tp0.5: 7511893.1749 - fp0.5: 775511.8610 - tn0.5: 43308683.9024 - fn0.5: 914579.6924 - precision0.5: 0.9061 - recall0.5: 0.8905 - tp
    0.7: 7075173.0062 - fp0.7: 368300.9977 - tn0.7: 43715881.6714 - fn0.7: 1351299.8610 - precision0.7: 0.9500 - recall0.7: 0.8385 - tp0.9: 6326135.5004 - fp0.9: 105903.6909 - tn0.9: 43978285.1374 - fn0.9: 2100337.3669 - precision0.9: 0.98
    29 - recall0.9: 0.7495 - accuracy: 0.9673 - auc: 0.9774 - val_loss: 0.5563 - val_tp0.1: 3973953.0000 - val_fp0.1: 3033629.0000 - val_tn0.1: 18923208.0000 - val_fn0.1: 283603.0000 - val_precision0.1: 0.5671 - val_recall0.1: 0.9334 - val
    _tp0.3: 3702270.0000 - val_fp0.3: 2375708.0000 - val_tn0.3: 19581140.0000 - val_fn0.3: 555286.0000 - val_precision0.3: 0.6091 - val_recall0.3: 0.8696 - val_tp0.5: 3427641.0000 - val_fp0.5: 1972155.0000 - val_tn0.5: 19984684.0000 - val_
    fn0.5: 829915.0000 - val_precision0.5: 0.6348 - val_recall0.5: 0.8051 - val_tp0.7: 3124472.0000 - val_fp0.7: 1581643.0000 - val_tn0.7: 20375196.0000 - val_fn0.7: 1133084.0000 - val_precision0.7: 0.6639 - val_recall0.7: 0.7339 - val_tp0
    .9: 2757974.0000 - val_fp0.9: 1109127.0000 - val_tn0.9: 20847720.0000 - val_fn0.9: 1499582.0000 - val_precision0.9: 0.7132 - val_recall0.9: 0.6478 - val_accuracy: 0.8931 - val_auc: 0.9321
    Epoch 28/50
    1280/1280 [==============================] - 2087s 2s/step - loss: 0.2197 - tp0.1: 8160795.8228 - fp0.1: 2901034.4309 - tn0.1: 41142814.8181 - fn0.1: 306021.3466 - precision0.1: 0.7381 - recall0.1: 0.9644 - tp0.3: 7892365.4137 - fp0.3:
     1440828.1148 - tn0.3: 42603028.9719 - fn0.3: 574451.7557 - precision0.3: 0.8461 - recall0.3: 0.9326 - tp0.5: 7566706.5480 - fp0.5: 755226.4699 - tn0.5: 43288602.1678 - fn0.5: 900110.6214 - precision0.5: 0.9096 - recall0.5: 0.8942 - tp
    0.7: 7138328.0726 - fp0.7: 359169.3607 - tn0.7: 43684677.2763 - fn0.7: 1328489.0968 - precision0.7: 0.9523 - recall0.7: 0.8435 - tp0.9: 6407064.9711 - fp0.9: 100987.8735 - tn0.9: 43942848.2186 - fn0.9: 2059752.1983 - precision0.9: 0.98
    47 - recall0.9: 0.7566 - accuracy: 0.9687 - auc: 0.9791 - val_loss: 0.4500 - val_tp0.1: 3927337.0000 - val_fp0.1: 2709904.0000 - val_tn0.1: 19279502.0000 - val_fn0.1: 297660.0000 - val_precision0.1: 0.5917 - val_recall0.1: 0.9295 - val
    _tp0.3: 3622327.0000 - val_fp0.3: 1934449.0000 - val_tn0.3: 20054960.0000 - val_fn0.3: 602670.0000 - val_precision0.3: 0.6519 - val_recall0.3: 0.8574 - val_tp0.5: 3304686.0000 - val_fp0.5: 1267577.0000 - val_tn0.5: 20721824.0000 - val_
    fn0.5: 920311.0000 - val_precision0.5: 0.7228 - val_recall0.5: 0.7822 - val_tp0.7: 2969971.0000 - val_fp0.7: 803372.0000 - val_tn0.7: 21186032.0000 - val_fn0.7: 1255026.0000 - val_precision0.7: 0.7871 - val_recall0.7: 0.7030 - val_tp0.
    9: 2545450.0000 - val_fp0.9: 373527.0000 - val_tn0.9: 21615866.0000 - val_fn0.9: 1679547.0000 - val_precision0.9: 0.8720 - val_recall0.9: 0.6025 - val_accuracy: 0.9165 - val_auc: 0.9426
    Epoch 29/50
    1280/1280 [==============================] - 1968s 2s/step - loss: 0.2223 - tp0.1: 8375369.2490 - fp0.1: 2828068.0578 - tn0.1: 41000432.9828 - fn0.1: 306798.1413 - precision0.1: 0.7500 - recall0.1: 0.9648 - tp0.3: 8117816.3411 - fp0.3:
     1454670.2927 - tn0.3: 42373821.8306 - fn0.3: 564351.0492 - precision0.3: 0.8489 - recall0.3: 0.9354 - tp0.5: 7795654.3497 - fp0.5: 777398.3349 - tn0.5: 43051103.4832 - fn0.5: 886513.0406 - precision0.5: 0.9098 - recall0.5: 0.8987 - tp
    0.7: 7368227.7635 - fp0.7: 376034.1069 - tn0.7: 43452466.5371 - fn0.7: 1313939.6269 - precision0.7: 0.9517 - recall0.7: 0.8498 - tp0.9: 6617754.3536 - fp0.9: 111597.3193 - tn0.9: 43716853.5761 - fn0.9: 2064413.0367 - precision0.9: 0.98
    35 - recall0.9: 0.7637 - accuracy: 0.9681 - auc: 0.9792 - val_loss: 0.5416 - val_tp0.1: 3960357.0000 - val_fp0.1: 3230144.0000 - val_tn0.1: 18775996.0000 - val_fn0.1: 247899.0000 - val_precision0.1: 0.5508 - val_recall0.1: 0.9411 - val
    _tp0.3: 3709415.0000 - val_fp0.3: 2490342.0000 - val_tn0.3: 19515800.0000 - val_fn0.3: 498841.0000 - val_precision0.3: 0.5983 - val_recall0.3: 0.8815 - val_tp0.5: 3451033.0000 - val_fp0.5: 2038241.0000 - val_tn0.5: 19967904.0000 - val_
    fn0.5: 757223.0000 - val_precision0.5: 0.6287 - val_recall0.5: 0.8201 - val_tp0.7: 3148179.0000 - val_fp0.7: 1621294.0000 - val_tn0.7: 20384850.0000 - val_fn0.7: 1060077.0000 - val_precision0.7: 0.6601 - val_recall0.7: 0.7481 - val_tp0
    .9: 2788544.0000 - val_fp0.9: 1101598.0000 - val_tn0.9: 20904542.0000 - val_fn0.9: 1419712.0000 - val_precision0.9: 0.7168 - val_recall0.9: 0.6626 - val_accuracy: 0.8934 - val_auc: 0.9369
    Epoch 30/50
    1280/1280 [==============================] - 1987s 2s/step - loss: 0.2171 - tp0.1: 8237924.9360 - fp0.1: 2817507.8111 - tn0.1: 41152156.1608 - fn0.1: 303072.4856 - precision0.1: 0.7480 - recall0.1: 0.9644 - tp0.3: 7981439.7697 - fp0.3:
     1425495.2022 - tn0.3: 42544167.9969 - fn0.3: 559557.6518 - precision0.3: 0.8500 - recall0.3: 0.9347 - tp0.5: 7663120.4309 - fp0.5: 752759.7705 - tn0.5: 43216900.0492 - fn0.5: 877876.9906 - precision0.5: 0.9116 - recall0.5: 0.8978 - tp
    0.7: 7238382.6721 - fp0.7: 357392.6354 - tn0.7: 43612263.4215 - fn0.7: 1302614.7494 - precision0.7: 0.9538 - recall0.7: 0.8481 - tp0.9: 6495143.9938 - fp0.9: 101203.1015 - tn0.9: 43868469.8891 - fn0.9: 2045853.4278 - precision0.9: 0.98
    52 - recall0.9: 0.7605 - accuracy: 0.9692 - auc: 0.9793 - val_loss: 0.5477 - val_tp0.1: 4026668.0000 - val_fp0.1: 3118480.0000 - val_tn0.1: 18786898.0000 - val_fn0.1: 282350.0000 - val_precision0.1: 0.5636 - val_recall0.1: 0.9345 - val
    _tp0.3: 3769431.0000 - val_fp0.3: 2411082.0000 - val_tn0.3: 19494304.0000 - val_fn0.3: 539587.0000 - val_precision0.3: 0.6099 - val_recall0.3: 0.8748 - val_tp0.5: 3496580.0000 - val_fp0.5: 1951231.0000 - val_tn0.5: 19954152.0000 - val_
    fn0.5: 812438.0000 - val_precision0.5: 0.6418 - val_recall0.5: 0.8115 - val_tp0.7: 3175729.0000 - val_fp0.7: 1538001.0000 - val_tn0.7: 20367384.0000 - val_fn0.7: 1133289.0000 - val_precision0.7: 0.6737 - val_recall0.7: 0.7370 - val_tp0
    .9: 2769656.0000 - val_fp0.9: 1014413.0000 - val_tn0.9: 20890968.0000 - val_fn0.9: 1539362.0000 - val_precision0.9: 0.7319 - val_recall0.9: 0.6428 - val_accuracy: 0.8946 - val_auc: 0.9332
    Epoch 31/50
    1280/1280 [==============================] - 1975s 2s/step - loss: 0.2140 - tp0.1: 8254893.9524 - fp0.1: 2820541.8767 - tn0.1: 41143836.3778 - fn0.1: 291401.7947 - precision0.1: 0.7449 - recall0.1: 0.9663 - tp0.3: 8001833.3880 - fp0.3:
     1415982.6237 - tn0.3: 42548340.3044 - fn0.3: 544462.3591 - precision0.3: 0.8490 - recall0.3: 0.9370 - tp0.5: 7689740.5105 - fp0.5: 749876.5176 - tn0.5: 43214484.3458 - fn0.5: 856555.2365 - precision0.5: 0.9104 - recall0.5: 0.9008 - tp
    0.7: 7273005.2974 - fp0.7: 357730.3216 - tn0.7: 43606618.3302 - fn0.7: 1273290.4496 - precision0.7: 0.9525 - recall0.7: 0.8527 - tp0.9: 6528857.1772 - fp0.9: 101215.2264 - tn0.9: 43863149.4848 - fn0.9: 2017438.5699 - precision0.9: 0.98
    45 - recall0.9: 0.7661 - accuracy: 0.9694 - auc: 0.9801 - val_loss: 0.6223 - val_tp0.1: 3930460.0000 - val_fp0.1: 3394464.0000 - val_tn0.1: 18612148.0000 - val_fn0.1: 277327.0000 - val_precision0.1: 0.5366 - val_recall0.1: 0.9341 - val
    _tp0.3: 3651274.0000 - val_fp0.3: 2652264.0000 - val_tn0.3: 19354352.0000 - val_fn0.3: 556513.0000 - val_precision0.3: 0.5792 - val_recall0.3: 0.8677 - val_tp0.5: 3363770.0000 - val_fp0.5: 2181393.0000 - val_tn0.5: 19825220.0000 - val_
    fn0.5: 844017.0000 - val_precision0.5: 0.6066 - val_recall0.5: 0.7994 - val_tp0.7: 3042185.0000 - val_fp0.7: 1805943.0000 - val_tn0.7: 20200670.0000 - val_fn0.7: 1165602.0000 - val_precision0.7: 0.6275 - val_recall0.7: 0.7230 - val_tp0
    .9: 2649971.0000 - val_fp0.9: 1376978.0000 - val_tn0.9: 20629630.0000 - val_fn0.9: 1557816.0000 - val_precision0.9: 0.6581 - val_recall0.9: 0.6298 - val_accuracy: 0.8846 - val_auc: 0.9230
    Epoch 32/50
    1280/1280 [==============================] - 1985s 2s/step - loss: 0.2162 - tp0.1: 8168329.4106 - fp0.1: 2823874.2186 - tn0.1: 41219292.6159 - fn0.1: 299147.5254 - precision0.1: 0.7416 - recall0.1: 0.9648 - tp0.3: 7902494.5543 - fp0.3:
     1406775.2030 - tn0.3: 42636384.1311 - fn0.3: 564982.3817 - precision0.3: 0.8486 - recall0.3: 0.9329 - tp0.5: 7587653.1304 - fp0.5: 746883.7400 - tn0.5: 43296303.4005 - fn0.5: 879823.8056 - precision0.5: 0.9100 - recall0.5: 0.8957 - tp
    0.7: 7172023.5183 - fp0.7: 358490.8813 - tn0.7: 43684701.1390 - fn0.7: 1295453.4176 - precision0.7: 0.9519 - recall0.7: 0.8466 - tp0.9: 6440127.4231 - fp0.9: 99619.9977 - tn0.9: 43943567.7978 - fn0.9: 2027349.5129 - precision0.9: 0.984
    4 - recall0.9: 0.7605 - accuracy: 0.9691 - auc: 0.9792 - val_loss: 0.5922 - val_tp0.1: 4021661.0000 - val_fp0.1: 3341968.0000 - val_tn0.1: 18581152.0000 - val_fn0.1: 269622.0000 - val_precision0.1: 0.5462 - val_recall0.1: 0.9372 - val_
    tp0.3: 3723109.0000 - val_fp0.3: 2641493.0000 - val_tn0.3: 19281632.0000 - val_fn0.3: 568174.0000 - val_precision0.3: 0.5850 - val_recall0.3: 0.8676 - val_tp0.5: 3417861.0000 - val_fp0.5: 2185964.0000 - val_tn0.5: 19737154.0000 - val_f
    n0.5: 873422.0000 - val_precision0.5: 0.6099 - val_recall0.5: 0.7965 - val_tp0.7: 3082813.0000 - val_fp0.7: 1779173.0000 - val_tn0.7: 20143952.0000 - val_fn0.7: 1208470.0000 - val_precision0.7: 0.6341 - val_recall0.7: 0.7184 - val_tp0.
    9: 2687718.0000 - val_fp0.9: 1223941.0000 - val_tn0.9: 20699176.0000 - val_fn0.9: 1603565.0000 - val_precision0.9: 0.6871 - val_recall0.9: 0.6263 - val_accuracy: 0.8833 - val_auc: 0.9267
    Epoch 33/50
    1280/1280 [==============================] - 1990s 2s/step - loss: 0.2153 - tp0.1: 8159566.2951 - fp0.1: 2769324.2404 - tn0.1: 41293176.3880 - fn0.1: 288608.7385 - precision0.1: 0.7434 - recall0.1: 0.9660 - tp0.3: 7912034.2069 - fp0.3:
     1418334.3794 - tn0.3: 42644140.5886 - fn0.3: 536140.8267 - precision0.3: 0.8451 - recall0.3: 0.9365 - tp0.5: 7606237.6534 - fp0.5: 760974.3443 - tn0.5: 43301518.3575 - fn0.5: 841937.3802 - precision0.5: 0.9067 - recall0.5: 0.9000 - tp
    0.7: 7188970.2584 - fp0.7: 368072.7486 - tn0.7: 43694407.5129 - fn0.7: 1259204.7752 - precision0.7: 0.9494 - recall0.7: 0.8501 - tp0.9: 6447265.7268 - fp0.9: 106096.6183 - tn0.9: 43956391.5020 - fn0.9: 2000909.3068 - precision0.9: 0.98
    25 - recall0.9: 0.7622 - accuracy: 0.9690 - auc: 0.9797 - val_loss: 0.6103 - val_tp0.1: 4142693.0000 - val_fp0.1: 3021502.0000 - val_tn0.1: 18751128.0000 - val_fn0.1: 299079.0000 - val_precision0.1: 0.5782 - val_recall0.1: 0.9327 - val
    _tp0.3: 3873213.0000 - val_fp0.3: 2448264.0000 - val_tn0.3: 19324360.0000 - val_fn0.3: 568559.0000 - val_precision0.3: 0.6127 - val_recall0.3: 0.8720 - val_tp0.5: 3610020.0000 - val_fp0.5: 2106610.0000 - val_tn0.5: 19666014.0000 - val_
    fn0.5: 831752.0000 - val_precision0.5: 0.6315 - val_recall0.5: 0.8127 - val_tp0.7: 3302152.0000 - val_fp0.7: 1796893.0000 - val_tn0.7: 19975734.0000 - val_fn0.7: 1139620.0000 - val_precision0.7: 0.6476 - val_recall0.7: 0.7434 - val_tp0
    .9: 2940645.0000 - val_fp0.9: 1387374.0000 - val_tn0.9: 20385260.0000 - val_fn0.9: 1501127.0000 - val_precision0.9: 0.6794 - val_recall0.9: 0.6620 - val_accuracy: 0.8879 - val_auc: 0.9267
    Epoch 34/50
    1280/1280 [==============================] - 1975s 2s/step - loss: 0.2140 - tp0.1: 8354952.6027 - fp0.1: 2805323.7728 - tn0.1: 41057643.9641 - fn0.1: 292731.8275 - precision0.1: 0.7496 - recall0.1: 0.9661 - tp0.3: 8100316.4520 - fp0.3:
     1408795.9087 - tn0.3: 42454187.0320 - fn0.3: 547367.9781 - precision0.3: 0.8514 - recall0.3: 0.9370 - tp0.5: 7794247.9141 - fp0.5: 754289.6760 - tn0.5: 43108644.9532 - fn0.5: 853436.5160 - precision0.5: 0.9115 - recall0.5: 0.9017 - tp
    0.7: 7381753.1905 - fp0.7: 366912.4387 - tn0.7: 43496065.3107 - fn0.7: 1265931.2397 - precision0.7: 0.9524 - recall0.7: 0.8539 - tp0.9: 6643385.3435 - fp0.9: 104367.8337 - tn0.9: 43758580.2849 - fn0.9: 2004299.0867 - precision0.9: 0.98
    45 - recall0.9: 0.7683 - accuracy: 0.9694 - auc: 0.9801 - val_loss: 0.6624 - val_tp0.1: 3856354.0000 - val_fp0.1: 3145321.0000 - val_tn0.1: 18842388.0000 - val_fn0.1: 370344.0000 - val_precision0.1: 0.5508 - val_recall0.1: 0.9124 - val
    _tp0.3: 3549372.0000 - val_fp0.3: 2542341.0000 - val_tn0.3: 19445350.0000 - val_fn0.3: 677326.0000 - val_precision0.3: 0.5827 - val_recall0.3: 0.8398 - val_tp0.5: 3241294.0000 - val_fp0.5: 2119984.0000 - val_tn0.5: 19867720.0000 - val_
    fn0.5: 985404.0000 - val_precision0.5: 0.6046 - val_recall0.5: 0.7669 - val_tp0.7: 2930029.0000 - val_fp0.7: 1781338.0000 - val_tn0.7: 20206368.0000 - val_fn0.7: 1296669.0000 - val_precision0.7: 0.6219 - val_recall0.7: 0.6932 - val_tp0
    .9: 2550993.0000 - val_fp0.9: 1347073.0000 - val_tn0.9: 20640632.0000 - val_fn0.9: 1675705.0000 - val_precision0.9: 0.6544 - val_recall0.9: 0.6035 - val_accuracy: 0.8815 - val_auc: 0.9118
    Epoch 35/50
    1280/1280 [==============================] - 1979s 2s/step - loss: 0.2136 - tp0.1: 8121225.3489 - fp0.1: 2767519.3271 - tn0.1: 41328977.4340 - fn0.1: 292944.1897 - precision0.1: 0.7441 - recall0.1: 0.9648 - tp0.3: 7867775.7931 - fp0.3:
     1380664.7354 - tn0.3: 42715785.1093 - fn0.3: 546393.7455 - precision0.3: 0.8496 - recall0.3: 0.9344 - tp0.5: 7568656.2834 - fp0.5: 741064.5824 - tn0.5: 43355403.8126 - fn0.5: 845513.2553 - precision0.5: 0.9099 - recall0.5: 0.8989 - tp
    0.7: 7163273.2842 - fp0.7: 355917.4442 - tn0.7: 43740534.9688 - fn0.7: 1250896.2545 - precision0.7: 0.9521 - recall0.7: 0.8507 - tp0.9: 6427745.3263 - fp0.9: 99399.9547 - tn0.9: 43997102.2342 - fn0.9: 1986424.2123 - precision0.9: 0.984
    3 - recall0.9: 0.7629 - accuracy: 0.9697 - auc: 0.9794 - val_loss: 0.6109 - val_tp0.1: 3805391.0000 - val_fp0.1: 3155702.0000 - val_tn0.1: 18859740.0000 - val_fn0.1: 393569.0000 - val_precision0.1: 0.5467 - val_recall0.1: 0.9063 - val_
    tp0.3: 3505616.0000 - val_fp0.3: 2482634.0000 - val_tn0.3: 19532808.0000 - val_fn0.3: 693344.0000 - val_precision0.3: 0.5854 - val_recall0.3: 0.8349 - val_tp0.5: 3205095.0000 - val_fp0.5: 1968560.0000 - val_tn0.5: 20046874.0000 - val_f
    n0.5: 993865.0000 - val_precision0.5: 0.6195 - val_recall0.5: 0.7633 - val_tp0.7: 2889262.0000 - val_fp0.7: 1535981.0000 - val_tn0.7: 20479460.0000 - val_fn0.7: 1309698.0000 - val_precision0.7: 0.6529 - val_recall0.7: 0.6881 - val_tp0.
    9: 2477042.0000 - val_fp0.9: 982485.0000 - val_tn0.9: 21032952.0000 - val_fn0.9: 1721918.0000 - val_precision0.9: 0.7160 - val_recall0.9: 0.5899 - val_accuracy: 0.8870 - val_auc: 0.9160
    Epoch 36/50
    1280/1280 [==============================] - 1979s 2s/step - loss: 0.2059 - tp0.1: 8126280.0625 - fp0.1: 2646687.9227 - tn0.1: 41454888.0211 - fn0.1: 282807.8095 - precision0.1: 0.7538 - recall0.1: 0.9656 - tp0.3: 7878883.7135 - fp0.3:
     1323333.3552 - tn0.3: 42778233.2834 - fn0.3: 530204.1585 - precision0.3: 0.8559 - recall0.3: 0.9362 - tp0.5: 7591944.3318 - fp0.5: 712271.5222 - tn0.5: 43389291.7783 - fn0.5: 817143.5402 - precision0.5: 0.9140 - recall0.5: 0.9022 - tp
    0.7: 7203686.0226 - fp0.7: 343437.4106 - tn0.7: 43758143.1655 - fn0.7: 1205401.8493 - precision0.7: 0.9542 - recall0.7: 0.8564 - tp0.9: 6507343.4036 - fp0.9: 97816.8470 - tn0.9: 44003797.8345 - fn0.9: 1901744.4684 - precision0.9: 0.985
    0 - recall0.9: 0.7738 - accuracy: 0.9709 - auc: 0.9801 - val_loss: 0.5870 - val_tp0.1: 4142690.0000 - val_fp0.1: 3187548.0000 - val_tn0.1: 18594374.0000 - val_fn0.1: 289788.0000 - val_precision0.1: 0.5652 - val_recall0.1: 0.9346 - val_
    tp0.3: 3873916.0000 - val_fp0.3: 2590674.0000 - val_tn0.3: 19191250.0000 - val_fn0.3: 558562.0000 - val_precision0.3: 0.5993 - val_recall0.3: 0.8740 - val_tp0.5: 3589951.0000 - val_fp0.5: 2186008.0000 - val_tn0.5: 19595906.0000 - val_f
    n0.5: 842527.0000 - val_precision0.5: 0.6215 - val_recall0.5: 0.8099 - val_tp0.7: 3248583.0000 - val_fp0.7: 1758534.0000 - val_tn0.7: 20023388.0000 - val_fn0.7: 1183895.0000 - val_precision0.7: 0.6488 - val_recall0.7: 0.7329 - val_tp0.
    9: 2813690.0000 - val_fp0.9: 1197675.0000 - val_tn0.9: 20584246.0000 - val_fn0.9: 1618788.0000 - val_precision0.9: 0.7014 - val_recall0.9: 0.6348 - val_accuracy: 0.8845 - val_auc: 0.9275
    Epoch 37/50
    1280/1280 [==============================] - 1993s 2s/step - loss: 0.2130 - tp0.1: 8244281.2553 - fp0.1: 2777623.1632 - tn0.1: 41197305.6495 - fn0.1: 291461.3638 - precision0.1: 0.7465 - recall0.1: 0.9665 - tp0.3: 7992234.6581 - fp0.3:
     1376180.9282 - tn0.3: 42598749.7158 - fn0.3: 543507.9610 - precision0.3: 0.8514 - recall0.3: 0.9375 - tp0.5: 7696124.9321 - fp0.5: 737935.7494 - tn0.5: 43236985.3677 - fn0.5: 839617.6870 - precision0.5: 0.9113 - recall0.5: 0.9031 - tp
    0.7: 7289915.6175 - fp0.7: 354145.8751 - tn0.7: 43620781.5706 - fn0.7: 1245827.0016 - precision0.7: 0.9529 - recall0.7: 0.8559 - tp0.9: 6568139.6253 - fp0.9: 99108.1030 - tn0.9: 43875848.4980 - fn0.9: 1967602.9938 - precision0.9: 0.985
    0 - recall0.9: 0.7707 - accuracy: 0.9697 - auc: 0.9803 - val_loss: 0.6359 - val_tp0.1: 3972718.0000 - val_fp0.1: 2970398.0000 - val_tn0.1: 18895362.0000 - val_fn0.1: 375917.0000 - val_precision0.1: 0.5722 - val_recall0.1: 0.9136 - val_
    tp0.3: 3696968.0000 - val_fp0.3: 2407542.0000 - val_tn0.3: 19458224.0000 - val_fn0.3: 651667.0000 - val_precision0.3: 0.6056 - val_recall0.3: 0.8501 - val_tp0.5: 3418831.0000 - val_fp0.5: 2053387.0000 - val_tn0.5: 19812380.0000 - val_f
    n0.5: 929804.0000 - val_precision0.5: 0.6248 - val_recall0.5: 0.7862 - val_tp0.7: 3101481.0000 - val_fp0.7: 1742891.0000 - val_tn0.7: 20122868.0000 - val_fn0.7: 1247154.0000 - val_precision0.7: 0.6402 - val_recall0.7: 0.7132 - val_tp0.
    9: 2727270.0000 - val_fp0.9: 1316358.0000 - val_tn0.9: 20549408.0000 - val_fn0.9: 1621365.0000 - val_precision0.9: 0.6745 - val_recall0.9: 0.6272 - val_accuracy: 0.8862 - val_auc: 0.9173
    Epoch 38/50
    1280/1280 [==============================] - 1988s 2s/step - loss: 0.2095 - tp0.1: 8322547.4973 - fp0.1: 2736467.1725 - tn0.1: 41169366.0554 - fn0.1: 282238.6792 - precision0.1: 0.7515 - recall0.1: 0.9670 - tp0.3: 8066398.6003 - fp0.3:
     1365148.2873 - tn0.3: 42540740.5316 - fn0.3: 538387.5761 - precision0.3: 0.8549 - recall0.3: 0.9365 - tp0.5: 7770556.2529 - fp0.5: 735978.7931 - tn0.5: 43169885.3575 - fn0.5: 834229.9235 - precision0.5: 0.9132 - recall0.5: 0.9022 - tp
    0.7: 7368501.9875 - fp0.7: 354363.2201 - tn0.7: 43551529.7572 - fn0.7: 1236284.1889 - precision0.7: 0.9541 - recall0.7: 0.8557 - tp0.9: 6640326.0984 - fp0.9: 97963.4192 - tn0.9: 43807909.1975 - fn0.9: 1964460.0781 - precision0.9: 0.985
    5 - recall0.9: 0.7709 - accuracy: 0.9698 - auc: 0.9806 - val_loss: 0.5532 - val_tp0.1: 4070077.0000 - val_fp0.1: 3091837.0000 - val_tn0.1: 18834880.0000 - val_fn0.1: 217612.0000 - val_precision0.1: 0.5683 - val_recall0.1: 0.9492 - val_
    tp0.3: 3841354.0000 - val_fp0.3: 2343330.0000 - val_tn0.3: 19583380.0000 - val_fn0.3: 446335.0000 - val_precision0.3: 0.6211 - val_recall0.3: 0.8959 - val_tp0.5: 3610309.0000 - val_fp0.5: 1940937.0000 - val_tn0.5: 19985782.0000 - val_f
    n0.5: 677380.0000 - val_precision0.5: 0.6504 - val_recall0.5: 0.8420 - val_tp0.7: 3328203.0000 - val_fp0.7: 1620408.0000 - val_tn0.7: 20306288.0000 - val_fn0.7: 959486.0000 - val_precision0.7: 0.6726 - val_recall0.7: 0.7762 - val_tp0.9
    : 2957699.0000 - val_fp0.9: 1252356.0000 - val_tn0.9: 20674356.0000 - val_fn0.9: 1329990.0000 - val_precision0.9: 0.7025 - val_recall0.9: 0.6898 - val_accuracy: 0.9001 - val_auc: 0.9387
    Epoch 39/50
    1280/1280 [==============================] - 1983s 2s/step - loss: 0.2144 - tp0.1: 8366575.3263 - fp0.1: 2766167.9742 - tn0.1: 41080636.4215 - fn0.1: 297288.0242 - precision0.1: 0.7524 - recall0.1: 0.9656 - tp0.3: 8113164.2248 - fp0.3:
     1368911.6565 - tn0.3: 42477877.7752 - fn0.3: 550699.1257 - precision0.3: 0.8555 - recall0.3: 0.9368 - tp0.5: 7813941.1093 - fp0.5: 738235.6479 - tn0.5: 43108568.5925 - fn0.5: 849922.2412 - precision0.5: 0.9133 - recall0.5: 0.9025 - tp
    0.7: 7408230.3068 - fp0.7: 358148.5066 - tn0.7: 43488651.3341 - fn0.7: 1255633.0437 - precision0.7: 0.9536 - recall0.7: 0.8560 - tp0.9: 6668979.4731 - fp0.9: 100667.4668 - tn0.9: 43746134.9883 - fn0.9: 1994883.8774 - precision0.9: 0.98
    51 - recall0.9: 0.7710 - accuracy: 0.9697 - auc: 0.9798 - val_loss: 0.5509 - val_tp0.1: 3928121.0000 - val_fp0.1: 3362312.0000 - val_tn0.1: 18683104.0000 - val_fn0.1: 240862.0000 - val_precision0.1: 0.5388 - val_recall0.1: 0.9422 - val
    _tp0.3: 3683700.0000 - val_fp0.3: 2630754.0000 - val_tn0.3: 19414668.0000 - val_fn0.3: 485283.0000 - val_precision0.3: 0.5834 - val_recall0.3: 0.8836 - val_tp0.5: 3409649.0000 - val_fp0.5: 2123677.0000 - val_tn0.5: 19921740.0000 - val_
    fn0.5: 759334.0000 - val_precision0.5: 0.6162 - val_recall0.5: 0.8179 - val_tp0.7: 3082747.0000 - val_fp0.7: 1673717.0000 - val_tn0.7: 20371692.0000 - val_fn0.7: 1086236.0000 - val_precision0.7: 0.6481 - val_recall0.7: 0.7394 - val_tp0
    .9: 2675367.0000 - val_fp0.9: 1106165.0000 - val_tn0.9: 20939250.0000 - val_fn0.9: 1493616.0000 - val_precision0.9: 0.7075 - val_recall0.9: 0.6417 - val_accuracy: 0.8900 - val_auc: 0.9336
    Epoch 40/50
    1280/1280 [==============================] - 1983s 2s/step - loss: 0.1969 - tp0.1: 8112039.9274 - fp0.1: 2648956.8977 - tn0.1: 41481438.0515 - fn0.1: 268231.5964 - precision0.1: 0.7550 - recall0.1: 0.9682 - tp0.3: 7868925.6425 - fp0.3:
     1315040.1202 - tn0.3: 42815365.2927 - fn0.3: 511345.8813 - precision0.3: 0.8571 - recall0.3: 0.9396 - tp0.5: 7584341.2420 - fp0.5: 709881.4247 - tn0.5: 43420518.9040 - fn0.5: 795930.2818 - precision0.5: 0.9147 - recall0.5: 0.9057 - tp
    0.7: 7193185.0031 - fp0.7: 342578.8923 - tn0.7: 43787824.5191 - fn0.7: 1187086.5207 - precision0.7: 0.9550 - recall0.7: 0.8587 - tp0.9: 6494738.0343 - fp0.9: 97088.4145 - tn0.9: 44033315.7065 - fn0.9: 1885533.4895 - precision0.9: 0.985
    6 - recall0.9: 0.7753 - accuracy: 0.9718 - auc: 0.9815 - val_loss: 0.5690 - val_tp0.1: 3846468.0000 - val_fp0.1: 3007369.0000 - val_tn0.1: 19101806.0000 - val_fn0.1: 258769.0000 - val_precision0.1: 0.5612 - val_recall0.1: 0.9370 - val_
    tp0.3: 3613817.0000 - val_fp0.3: 2397217.0000 - val_tn0.3: 19711954.0000 - val_fn0.3: 491420.0000 - val_precision0.3: 0.6012 - val_recall0.3: 0.8803 - val_tp0.5: 3367535.0000 - val_fp0.5: 2008822.0000 - val_tn0.5: 20100340.0000 - val_f
    n0.5: 737702.0000 - val_precision0.5: 0.6264 - val_recall0.5: 0.8203 - val_tp0.7: 3076985.0000 - val_fp0.7: 1689883.0000 - val_tn0.7: 20419284.0000 - val_fn0.7: 1028252.0000 - val_precision0.7: 0.6455 - val_recall0.7: 0.7495 - val_tp0.
    9: 2719452.0000 - val_fp0.9: 1280160.0000 - val_tn0.9: 20829004.0000 - val_fn0.9: 1385785.0000 - val_precision0.9: 0.6799 - val_recall0.9: 0.6624 - val_accuracy: 0.8952 - val_auc: 0.9311
    Epoch 41/50
    1280/1280 [==============================] - 1978s 2s/step - loss: 0.2044 - tp0.1: 8119761.2217 - fp0.1: 2626596.4067 - tn0.1: 41483268.4879 - fn0.1: 281035.5894 - precision0.1: 0.7571 - recall0.1: 0.9663 - tp0.3: 7878864.4973 - fp0.3:
     1320586.7525 - tn0.3: 42789243.0968 - fn0.3: 521932.3138 - precision0.3: 0.8575 - recall0.3: 0.9377 - tp0.5: 7590439.7557 - fp0.5: 709361.4364 - tn0.5: 43400490.0500 - fn0.5: 810357.0554 - precision0.5: 0.9153 - recall0.5: 0.9035 - tp
    0.7: 7196681.5800 - fp0.7: 343281.3755 - tn0.7: 43766582.6877 - fn0.7: 1204115.2311 - precision0.7: 0.9549 - recall0.7: 0.8569 - tp0.9: 6477320.2436 - fp0.9: 94404.4832 - tn0.9: 44015438.6300 - fn0.9: 1923476.5675 - precision0.9: 0.985
    7 - recall0.9: 0.7709 - accuracy: 0.9710 - auc: 0.9804 - val_loss: 0.7317 - val_tp0.1: 3916023.0000 - val_fp0.1: 3484452.0000 - val_tn0.1: 18565136.0000 - val_fn0.1: 248781.0000 - val_precision0.1: 0.5292 - val_recall0.1: 0.9403 - val_
    tp0.3: 3708159.0000 - val_fp0.3: 2970626.0000 - val_tn0.3: 19078970.0000 - val_fn0.3: 456645.0000 - val_precision0.3: 0.5552 - val_recall0.3: 0.8904 - val_tp0.5: 3475102.0000 - val_fp0.5: 2669322.0000 - val_tn0.5: 19380278.0000 - val_f
    n0.5: 689702.0000 - val_precision0.5: 0.5656 - val_recall0.5: 0.8344 - val_tp0.7: 3188450.0000 - val_fp0.7: 2414665.0000 - val_tn0.7: 19634936.0000 - val_fn0.7: 976354.0000 - val_precision0.7: 0.5690 - val_recall0.7: 0.7656 - val_tp0.9
    : 2847371.0000 - val_fp0.9: 2085317.0000 - val_tn0.9: 19964284.0000 - val_fn0.9: 1317433.0000 - val_precision0.9: 0.5772 - val_recall0.9: 0.6837 - val_accuracy: 0.8719 - val_auc: 0.9139
    Epoch 42/50
    1280/1280 [==============================] - 1987s 2s/step - loss: 0.1985 - tp0.1: 8084262.2818 - fp0.1: 2648823.0039 - tn0.1: 41506455.0390 - fn0.1: 271123.8985 - precision0.1: 0.7515 - recall0.1: 0.9676 - tp0.3: 7842478.2342 - fp0.3:
     1315040.6995 - tn0.3: 42840230.2826 - fn0.3: 512907.9461 - precision0.3: 0.8555 - recall0.3: 0.9387 - tp0.5: 7555647.0101 - fp0.5: 708480.3888 - tn0.5: 43446801.7198 - fn0.5: 799739.1702 - precision0.5: 0.9137 - recall0.5: 0.9044 - tp
    0.7: 7164901.3419 - fp0.7: 337266.9789 - tn0.7: 43818009.3770 - fn0.7: 1190484.8384 - precision0.7: 0.9549 - recall0.7: 0.8575 - tp0.9: 6464041.4738 - fp0.9: 94869.2607 - tn0.9: 44060414.4278 - fn0.9: 1891344.7065 - precision0.9: 0.985
    5 - recall0.9: 0.7739 - accuracy: 0.9716 - auc: 0.9811 - val_loss: 0.5958 - val_tp0.1: 3933554.0000 - val_fp0.1: 2955615.0000 - val_tn0.1: 18990420.0000 - val_fn0.1: 334809.0000 - val_precision0.1: 0.5710 - val_recall0.1: 0.9216 - val_
    tp0.3: 3653243.0000 - val_fp0.3: 2331195.0000 - val_tn0.3: 19614844.0000 - val_fn0.3: 615120.0000 - val_precision0.3: 0.6105 - val_recall0.3: 0.8559 - val_tp0.5: 3388864.0000 - val_fp0.5: 1939453.0000 - val_tn0.5: 20006580.0000 - val_f
    n0.5: 879499.0000 - val_precision0.5: 0.6360 - val_recall0.5: 0.7939 - val_tp0.7: 3079796.0000 - val_fp0.7: 1608320.0000 - val_tn0.7: 20337718.0000 - val_fn0.7: 1188567.0000 - val_precision0.7: 0.6569 - val_recall0.7: 0.7215 - val_tp0.
    9: 2715008.0000 - val_fp0.9: 1171919.0000 - val_tn0.9: 20774120.0000 - val_fn0.9: 1553355.0000 - val_precision0.9: 0.6985 - val_recall0.9: 0.6361 - val_accuracy: 0.8925 - val_auc: 0.9240
    Epoch 43/50
    1280/1280 [==============================] - 1955s 2s/step - loss: 0.1987 - tp0.1: 8221268.6706 - fp0.1: 2670843.3326 - tn0.1: 41354847.4762 - fn0.1: 263685.1889 - precision0.1: 0.7553 - recall0.1: 0.9689 - tp0.3: 7974364.6284 - fp0.3:
     1305978.7268 - tn0.3: 42719745.8759 - fn0.3: 510589.2311 - precision0.3: 0.8607 - recall0.3: 0.9397 - tp0.5: 7690894.8962 - fp0.5: 703492.0546 - tn0.5: 43322229.0648 - fn0.5: 794058.9633 - precision0.5: 0.9176 - recall0.5: 0.9062 - tp
    0.7: 7300427.2842 - fp0.7: 340590.7377 - tn0.7: 43685101.9196 - fn0.7: 1184526.5753 - precision0.7: 0.9563 - recall0.7: 0.8599 - tp0.9: 6589497.3521 - fp0.9: 94983.5316 - tn0.9: 43930710.3302 - fn0.9: 1895456.5074 - precision0.9: 0.986
    2 - recall0.9: 0.7761 - accuracy: 0.9717 - auc: 0.9819 - val_loss: 0.6235 - val_tp0.1: 3909308.0000 - val_fp0.1: 3193225.0000 - val_tn0.1: 18785172.0000 - val_fn0.1: 326693.0000 - val_precision0.1: 0.5504 - val_recall0.1: 0.9229 - val_
    tp0.3: 3626074.0000 - val_fp0.3: 2618929.0000 - val_tn0.3: 19359480.0000 - val_fn0.3: 609927.0000 - val_precision0.3: 0.5806 - val_recall0.3: 0.8560 - val_tp0.5: 3338230.0000 - val_fp0.5: 2236986.0000 - val_tn0.5: 19741408.0000 - val_f
    n0.5: 897771.0000 - val_precision0.5: 0.5988 - val_recall0.5: 0.7881 - val_tp0.7: 2996830.0000 - val_fp0.7: 1846715.0000 - val_tn0.7: 20131684.0000 - val_fn0.7: 1239171.0000 - val_precision0.7: 0.6187 - val_recall0.7: 0.7075 - val_tp0.
    9: 2591293.0000 - val_fp0.9: 1332148.0000 - val_tn0.9: 20646248.0000 - val_fn0.9: 1644708.0000 - val_precision0.9: 0.6605 - val_recall0.9: 0.6117 - val_accuracy: 0.8804 - val_auc: 0.9182
    Epoch 44/50
    1280/1280 [==============================] - 1965s 2s/step - loss: 0.1994 - tp0.1: 8332024.2139 - fp0.1: 2677627.7361 - tn0.1: 41232032.9399 - fn0.1: 268956.1819 - precision0.1: 0.7573 - recall0.1: 0.9690 - tp0.3: 8088072.3755 - fp0.3:
     1334673.8392 - tn0.3: 42575000.3903 - fn0.3: 512908.0203 - precision0.3: 0.8587 - recall0.3: 0.9411 - tp0.5: 7804018.2927 - fp0.5: 727991.3505 - tn0.5: 43181681.2311 - fn0.5: 796962.1030 - precision0.5: 0.9148 - recall0.5: 0.9085 - tp
    0.7: 7411774.5628 - fp0.7: 351151.7166 - tn0.7: 43558520.9914 - fn0.7: 1189205.8329 - precision0.7: 0.9548 - recall0.7: 0.8632 - tp0.9: 6689648.7783 - fp0.9: 96689.1569 - tn0.9: 43812989.9953 - fn0.9: 1911331.6175 - precision0.9: 0.985
    8 - recall0.9: 0.7794 - accuracy: 0.9712 - auc: 0.9819 - val_loss: 0.5577 - val_tp0.1: 3767211.0000 - val_fp0.1: 2896593.0000 - val_tn0.1: 19207012.0000 - val_fn0.1: 343594.0000 - val_precision0.1: 0.5653 - val_recall0.1: 0.9164 - val_
    tp0.3: 3483824.0000 - val_fp0.3: 2230299.0000 - val_tn0.3: 19873292.0000 - val_fn0.3: 626981.0000 - val_precision0.3: 0.6097 - val_recall0.3: 0.8475 - val_tp0.5: 3200515.0000 - val_fp0.5: 1719966.0000 - val_tn0.5: 20383632.0000 - val_f
    n0.5: 910290.0000 - val_precision0.5: 0.6504 - val_recall0.5: 0.7786 - val_tp0.7: 2881571.0000 - val_fp0.7: 1322038.0000 - val_tn0.7: 20781552.0000 - val_fn0.7: 1229234.0000 - val_precision0.7: 0.6855 - val_recall0.7: 0.7010 - val_tp0.
    9: 2488169.0000 - val_fp0.9: 864656.0000 - val_tn0.9: 21238940.0000 - val_fn0.9: 1622636.0000 - val_precision0.9: 0.7421 - val_recall0.9: 0.6053 - val_accuracy: 0.8997 - val_auc: 0.9249
    Epoch 45/50
    1280/1280 [==============================] - 1967s 2s/step - loss: 0.2054 - tp0.1: 8039884.9914 - fp0.1: 2657730.7822 - tn0.1: 41537257.0453 - fn0.1: 275776.4333 - precision0.1: 0.7479 - recall0.1: 0.9656 - tp0.3: 7799006.9430 - fp0.3:
     1331880.2607 - tn0.3: 42863099.0406 - fn0.3: 516654.4817 - precision0.3: 0.8527 - recall0.3: 0.9360 - tp0.5: 7508282.6300 - fp0.5: 716584.7447 - tn0.5: 43478405.7619 - fn0.5: 807378.7947 - precision0.5: 0.9120 - recall0.5: 0.9006 - tp
    0.7: 7111748.2311 - fp0.7: 345919.2553 - tn0.7: 43849114.1967 - fn0.7: 1203913.1936 - precision0.7: 0.9530 - recall0.7: 0.8525 - tp0.9: 6406401.2319 - fp0.9: 97963.5379 - tn0.9: 44097016.4520 - fn0.9: 1909260.1928 - precision0.9: 0.984
    7 - recall0.9: 0.7671 - accuracy: 0.9708 - auc: 0.9799 - val_loss: 0.5755 - val_tp0.1: 3947505.0000 - val_fp0.1: 3387487.0000 - val_tn0.1: 18700156.0000 - val_fn0.1: 179254.0000 - val_precision0.1: 0.5382 - val_recall0.1: 0.9566 - val_
    tp0.3: 3738020.0000 - val_fp0.3: 2730917.0000 - val_tn0.3: 19356726.0000 - val_fn0.3: 388739.0000 - val_precision0.3: 0.5778 - val_recall0.3: 0.9058 - val_tp0.5: 3505678.0000 - val_fp0.5: 2359050.0000 - val_tn0.5: 19728584.0000 - val_f
    n0.5: 621081.0000 - val_precision0.5: 0.5978 - val_recall0.5: 0.8495 - val_tp0.7: 3196056.0000 - val_fp0.7: 1989619.0000 - val_tn0.7: 20098016.0000 - val_fn0.7: 930703.0000 - val_precision0.7: 0.6163 - val_recall0.7: 0.7745 - val_tp0.9
    : 2807022.0000 - val_fp0.9: 1495603.0000 - val_tn0.9: 20592028.0000 - val_fn0.9: 1319737.0000 - val_precision0.9: 0.6524 - val_recall0.9: 0.6802 - val_accuracy: 0.8863 - val_auc: 0.9356
    Epoch 46/50
    1280/1280 [==============================] - 1954s 2s/step - loss: 0.2006 - tp0.1: 8213399.9953 - fp0.1: 2647494.8681 - tn0.1: 41382018.9024 - fn0.1: 267742.8033 - precision0.1: 0.7532 - recall0.1: 0.9684 - tp0.3: 7974876.2194 - fp0.3:
     1321606.3544 - tn0.3: 42707910.7440 - fn0.3: 506266.5792 - precision0.3: 0.8563 - recall0.3: 0.9401 - tp0.5: 7686530.4450 - fp0.5: 705127.5909 - tn0.5: 43324387.6230 - fn0.5: 794612.3536 - precision0.5: 0.9155 - recall0.5: 0.9060 - tp
    0.7: 7293262.6581 - fp0.7: 337606.6417 - tn0.7: 43691898.0304 - fn0.7: 1187880.1405 - precision0.7: 0.9556 - recall0.7: 0.8595 - tp0.9: 6593016.1983 - fp0.9: 93813.7900 - tn0.9: 43935696.6682 - fn0.9: 1888126.6003 - precision0.9: 0.985
    9 - recall0.9: 0.7775 - accuracy: 0.9713 - auc: 0.9815 - val_loss: 0.5779 - val_tp0.1: 3847918.0000 - val_fp0.1: 3630042.0000 - val_tn0.1: 18523056.0000 - val_fn0.1: 213382.0000 - val_precision0.1: 0.5146 - val_recall0.1: 0.9475 - val_
    tp0.3: 3624637.0000 - val_fp0.3: 2927247.0000 - val_tn0.3: 19225848.0000 - val_fn0.3: 436663.0000 - val_precision0.3: 0.5532 - val_recall0.3: 0.8925 - val_tp0.5: 3387759.0000 - val_fp0.5: 2442181.0000 - val_tn0.5: 19710918.0000 - val_f
    n0.5: 673541.0000 - val_precision0.5: 0.5811 - val_recall0.5: 0.8342 - val_tp0.7: 3093355.0000 - val_fp0.7: 1959305.0000 - val_tn0.7: 20193798.0000 - val_fn0.7: 967945.0000 - val_precision0.7: 0.6122 - val_recall0.7: 0.7617 - val_tp0.9
    : 2709194.0000 - val_fp0.9: 1315902.0000 - val_tn0.9: 20837192.0000 - val_fn0.9: 1352106.0000 - val_precision0.9: 0.6731 - val_recall0.9: 0.6671 - val_accuracy: 0.8811 - val_auc: 0.9327
    Epoch 47/50
    1280/1280 [==============================] - 1945s 2s/step - loss: 0.1969 - tp0.1: 8300923.1351 - fp0.1: 2610298.6073 - tn0.1: 41331766.4083 - fn0.1: 267669.1296 - precision0.1: 0.7642 - recall0.1: 0.9694 - tp0.3: 8061644.4340 - fp0.3:
     1313054.2631 - tn0.3: 42629006.5870 - fn0.3: 506947.8306 - precision0.3: 0.8611 - recall0.3: 0.9422 - tp0.5: 7779027.9711 - fp0.5: 711910.2787 - tn0.5: 43230141.7112 - fn0.5: 789564.2935 - precision0.5: 0.9166 - recall0.5: 0.9097 - tp
    0.7: 7390637.0796 - fp0.7: 345621.5621 - tn0.7: 43596452.1616 - fn0.7: 1177955.1850 - precision0.7: 0.9553 - recall0.7: 0.8650 - tp0.9: 6688557.9680 - fp0.9: 97298.4106 - tn0.9: 43844794.7112 - fn0.9: 1880034.2966 - precision0.9: 0.985
    5 - recall0.9: 0.7835 - accuracy: 0.9714 - auc: 0.9821 - val_loss: 0.6259 - val_tp0.1: 3930823.0000 - val_fp0.1: 3136289.0000 - val_tn0.1: 18868696.0000 - val_fn0.1: 278584.0000 - val_precision0.1: 0.5562 - val_recall0.1: 0.9338 - val_
    tp0.3: 3682497.0000 - val_fp0.3: 2597221.0000 - val_tn0.3: 19407772.0000 - val_fn0.3: 526910.0000 - val_precision0.3: 0.5864 - val_recall0.3: 0.8748 - val_tp0.5: 3429169.0000 - val_fp0.5: 2237642.0000 - val_tn0.5: 19767344.0000 - val_f
    n0.5: 780238.0000 - val_precision0.5: 0.6051 - val_recall0.5: 0.8146 - val_tp0.7: 3114765.0000 - val_fp0.7: 1889104.0000 - val_tn0.7: 20115888.0000 - val_fn0.7: 1094642.0000 - val_precision0.7: 0.6225 - val_recall0.7: 0.7400 - val_tp0.
    9: 2710793.0000 - val_fp0.9: 1416123.0000 - val_tn0.9: 20588868.0000 - val_fn0.9: 1498614.0000 - val_precision0.9: 0.6569 - val_recall0.9: 0.6440 - val_accuracy: 0.8849 - val_auc: 0.9224
    Epoch 48/50
    1280/1280 [==============================] - 1953s 2s/step - loss: 0.1928 - tp0.1: 8105003.8283 - fp0.1: 2580803.4801 - tn0.1: 41568825.8158 - fn0.1: 256048.8673 - precision0.1: 0.7573 - recall0.1: 0.9697 - tp0.3: 7868496.5355 - fp0.3:
     1297144.6347 - tn0.3: 42852437.2209 - fn0.3: 492556.1600 - precision0.3: 0.8575 - recall0.3: 0.9414 - tp0.5: 7589914.3154 - fp0.5: 704118.4832 - tn0.5: 43445489.9368 - fn0.5: 771138.3802 - precision0.5: 0.9146 - recall0.5: 0.9080 - tp
    0.7: 7204444.4348 - fp0.7: 338098.1210 - tn0.7: 43811497.8689 - fn0.7: 1156608.2607 - precision0.7: 0.9549 - recall0.7: 0.8617 - tp0.9: 6516177.3638 - fp0.9: 93695.1686 - tn0.9: 44055912.6136 - fn0.9: 1844875.3318 - precision0.9: 0.985
    8 - recall0.9: 0.7794 - accuracy: 0.9719 - auc: 0.9822 - val_loss: 0.5549 - val_tp0.1: 3956721.0000 - val_fp0.1: 3232246.0000 - val_tn0.1: 18771428.0000 - val_fn0.1: 254013.0000 - val_precision0.1: 0.5504 - val_recall0.1: 0.9397 - val_
    tp0.3: 3708830.0000 - val_fp0.3: 2603884.0000 - val_tn0.3: 19399780.0000 - val_fn0.3: 501904.0000 - val_precision0.3: 0.5875 - val_recall0.3: 0.8808 - val_tp0.5: 3455265.0000 - val_fp0.5: 2129156.0000 - val_tn0.5: 19874504.0000 - val_f
    n0.5: 755469.0000 - val_precision0.5: 0.6187 - val_recall0.5: 0.8206 - val_tp0.7: 3150570.0000 - val_fp0.7: 1691047.0000 - val_tn0.7: 20312616.0000 - val_fn0.7: 1060164.0000 - val_precision0.7: 0.6507 - val_recall0.7: 0.7482 - val_tp0.
    9: 2734733.0000 - val_fp0.9: 1128005.0000 - val_tn0.9: 20875662.0000 - val_fn0.9: 1476001.0000 - val_precision0.9: 0.7080 - val_recall0.9: 0.6495 - val_accuracy: 0.8900 - val_auc: 0.9326
    Epoch 49/50
    1280/1280 [==============================] - 1952s 2s/step - loss: 0.1904 - tp0.1: 8205918.2201 - fp0.1: 2597375.0523 - tn0.1: 41463883.8283 - fn0.1: 243494.6815 - precision0.1: 0.7596 - recall0.1: 0.9713 - tp0.3: 7967288.4333 - fp0.3:
     1294707.1905 - tn0.3: 42766530.0679 - fn0.3: 482124.4684 - precision0.3: 0.8602 - recall0.3: 0.9426 - tp0.5: 7690726.4028 - fp0.5: 706852.2178 - tn0.5: 43354411.7049 - fn0.5: 758686.4988 - precision0.5: 0.9160 - recall0.5: 0.9099 - tp
    0.7: 7310265.9742 - fp0.7: 341418.8126 - tn0.7: 43719824.0367 - fn0.7: 1139146.9274 - precision0.7: 0.9557 - recall0.7: 0.8651 - tp0.9: 6619945.5667 - fp0.9: 95254.3942 - tn0.9: 43965990.5909 - fn0.9: 1829467.3349 - precision0.9: 0.986
    3 - recall0.9: 0.7836 - accuracy: 0.9719 - auc: 0.9831 - val_loss: 0.7113 - val_tp0.1: 3891189.0000 - val_fp0.1: 3192765.0000 - val_tn0.1: 18774752.0000 - val_fn0.1: 355695.0000 - val_precision0.1: 0.5493 - val_recall0.1: 0.9162 - val_
    tp0.3: 3627202.0000 - val_fp0.3: 2690459.0000 - val_tn0.3: 19277064.0000 - val_fn0.3: 619682.0000 - val_precision0.3: 0.5741 - val_recall0.3: 0.8541 - val_tp0.5: 3369672.0000 - val_fp0.5: 2384023.0000 - val_tn0.5: 19583492.0000 - val_f
    n0.5: 877212.0000 - val_precision0.5: 0.5857 - val_recall0.5: 0.7934 - val_tp0.7: 3076485.0000 - val_fp0.7: 2107024.0000 - val_tn0.7: 19860492.0000 - val_fn0.7: 1170399.0000 - val_precision0.7: 0.5935 - val_recall0.7: 0.7244 - val_tp0.
    9: 2710033.0000 - val_fp0.9: 1728311.0000 - val_tn0.9: 20239206.0000 - val_fn0.9: 1536851.0000 - val_precision0.9: 0.6106 - val_recall0.9: 0.6381 - val_accuracy: 0.8756 - val_auc: 0.9085
    Epoch 50/50
    1280/1280 [==============================] - 1959s 2s/step - loss: 0.1904 - tp0.1: 8168142.8899 - fp0.1: 2531078.8610 - tn0.1: 41557584.1272 - fn0.1: 253833.5800 - precision0.1: 0.7637 - recall0.1: 0.9699 - tp0.3: 7935448.9009 - fp0.3:
     1268230.0484 - tn0.3: 42820446.9766 - fn0.3: 486527.5691 - precision0.3: 0.8629 - recall0.3: 0.9420 - tp0.5: 7667088.7853 - fp0.5: 699134.4457 - tn0.5: 43389534.5613 - fn0.5: 754887.6846 - precision0.5: 0.9167 - recall0.5: 0.9102 - tp
    0.7: 7290487.3372 - fp0.7: 342110.9336 - tn0.7: 43746573.7869 - fn0.7: 1131489.1327 - precision0.7: 0.9553 - recall0.7: 0.8655 - tp0.9: 6585906.2607 - fp0.9: 97053.1694 - tn0.9: 43991631.9688 - fn0.9: 1836070.2092 - precision0.9: 0.985
    5 - recall0.9: 0.7818 - accuracy: 0.9724 - auc: 0.9826 - val_loss: 0.5552 - val_tp0.1: 3972788.0000 - val_fp0.1: 3022431.0000 - val_tn0.1: 18950448.0000 - val_fn0.1: 268737.0000 - val_precision0.1: 0.5679 - val_recall0.1: 0.9366 - val_
    tp0.3: 3744205.0000 - val_fp0.3: 2467134.0000 - val_tn0.3: 19505742.0000 - val_fn0.3: 497320.0000 - val_precision0.3: 0.6028 - val_recall0.3: 0.8827 - val_tp0.5: 3515241.0000 - val_fp0.5: 2098091.0000 - val_tn0.5: 19874784.0000 - val_f
    n0.5: 726284.0000 - val_precision0.5: 0.6262 - val_recall0.5: 0.8288 - val_tp0.7: 3227939.0000 - val_fp0.7: 1707258.0000 - val_tn0.7: 20265616.0000 - val_fn0.7: 1013586.0000 - val_precision0.7: 0.6541 - val_recall0.7: 0.7610 - val_tp0.
    9: 2849341.0000 - val_fp0.9: 1228067.0000 - val_tn0.9: 20744808.0000 - val_fn0.9: 1392184.0000 - val_precision0.9: 0.6988 - val_recall0.9: 0.6718 - val_accuracy: 0.8923 - val_auc: 0.9339
    420/420 [==============================] - 126s 300ms/step - loss: 0.5623 - tp0.1: 4784751.0000 - fp0.1: 3873965.0000 - tn0.1: 25422992.0000 - fn0.1: 324680.0000 - precision0.1: 0.5526 - recall0.1: 0.9365 - tp0.3: 4514069.0000 - fp0.3:
     3235942.0000 - tn0.3: 26061030.0000 - fn0.3: 595362.0000 - precision0.3: 0.5825 - recall0.3: 0.8835 - tp0.5: 4242444.0000 - fp0.5: 2843465.0000 - tn0.5: 26453508.0000 - fn0.5: 866987.0000 - precision0.5: 0.5987 - recall0.5: 0.8303 - t
    p0.7: 3892738.0000 - fp0.7: 2409415.0000 - tn0.7: 26887552.0000 - fn0.7: 1216693.0000 - precision0.7: 0.6177 - recall0.7: 0.7619 - tp0.9: 3413153.0000 - fp0.9: 1853895.0000 - tn0.9: 27443078.0000 - fn0.9: 1696278.0000 - precision0.9: 0
    .6480 - recall0.9: 0.6680 - accuracy: 0.8922 - auc: 0.9306
    2021/02/06 23:57:14 INFO mlflow.projects: === Run (ID 'b9935d1e554c423fb2852242f4c4504c') succeeded ===
    (tf-nightly) [ye53nis@node221 drmed-git]$
    

2.1.3 Read out logs of Run 1

2.1.3.1 test dataset statistics
  • test data is not saved out automatically, but can be copied from the log above

    420/420 [==============================] - 126s 300ms/step - loss: 0.5623

    0.1 0.3 0.5 0.7 0.9
    tp 4784751.0000 4514069.0000 4242444.0000 3892738.0000 3413153.0000
    fp 3873965.0000 3235942.0000 2843465.0000 2409415.0000 1853895.0000
    fn 324680.0000 595362.0000 866987.0000 1216693.0000 1696278.0000
    tn 25422992.0000 26061030.0000 26453508.0000 26887552.0000 27443078.0000
    all 34,406,388 34,406,403 34,406,404 34,406,398 34,406,404
    precision 0.5526 0.5825 0.5987 0.6177 0.6480
    recall 0.9365 0.8835 0.8303 0.7619 0.6680

    accuracy: 0.8922 - auc: 0.9306

    0.1 actual positive actual negative  
    pred positive 0.13906577 0.11259435 Prec: 0.5526
    pred negative 9.4345271e-3 0.73890325  
      Recall: 0.9365    
          F1: 0.69506400
    0.3 actual positive actual negative  
    pred positive 0.13119852 0.094050575 Prec: 0.5825
    pred negative 0.017303814 0.75744709  
      Recall: 0.8835    
          F1: 0.70209925
    0.5 actual positive actual negative  
    pred positive 0.12330391 0.082643481 Prec: 0.5987
    pred negative 0.025198419 0.76885419  
      Recall: 0.8303    
          F1: 0.69573213
    0.7 actual positive actual negative  
    pred positive 0.11313995 0.070028109 Prec: 0.6177
    pred negative 0.035362406 0.78146954  
      Recall: 0.7619    
          F1: 0.68226389
    0.9 actual positive actual negative  
    pred positive 0.099201096 0.053882266 Prec: 0.6480
    pred negative 0.049301229 0.79761541  
      Recall: 0.6680    
          F1: 0.65784802
2.1.3.2 prediction plots after each epoch

after epoch 1: plot0.png epoch 2: plot1.png epoch 3: plot2.png epoch 4: plot3.png epoch 5: plot4.png epoch 10: plot9.png epoch 20: plot19.png epoch 30: plot29.png epoch 40: plot39.png epoch 50: plot49.png

2.1.3.3 Git log after some code additions
!git log -10
commit a070d3b531725e0fb37688dde80e990083ccf1cc
Author: Apoplex <oligolex@vivaldi.net>
Date:   Mon Mar 15 21:48:01 2021 +0100

    Fix photon count bin metadata 2

commit 86bcbfe13f4026f9b554ba8f0c7e3b9360090331
Author: Apoplex <oligolex@vivaldi.net>
Date:   Mon Mar 15 21:40:47 2021 +0100

    Fix photon count bin metadata
commit 1c7ca995b2e550f6b6cb71dca647f170bbd9982d
Author: Apoplex <oligolex@vivaldi.net>
Date:   Mon Mar 15 19:10:01 2021 +0100

    Fix correction by list of prediction thresholds

commit 61cbc69dc8be177a754afab9dfea82ab6cd1086e
Author: Apoplex <oligolex@vivaldi.net>
Date:   Mon Mar 15 19:03:07 2021 +0100

    Add correction by different prediction thresholds

commit 58aa20f75747c43056ebe56831395b01c0535842
Author: Apoplex <oligolex@vivaldi.net>
Date:   Mon Mar 15 11:04:31 2021 +0100

    Fix column name \tau

commit 01c14384c452ac4106263d088e0587ddf4ebc379
Author: Apoplex <oligolex@vivaldi.net>
Date:   Mon Mar 8 18:33:48 2021 +0100

    Add FileNotFoundError checks to import functions

commit 28640d1360ca77aaa633de04e3349da6f12b208c
Author: Apoplex <oligolex@vivaldi.net>
Date:   Mon Mar 8 17:45:33 2021 +0100

    Fix if ntraces=None

commit 5e493d6c826ca24b425a3b11c0b07d31aac8af1a
Author: Apoplex <oligolex@vivaldi.net>
Date:   Mon Mar 8 17:17:42 2021 +0100

    Add correction function for ptu files + csv export

commit 61f076ecec76dd1f7c0323feb2b9e48f60368582
Author: Apoplex <oligolex@vivaldi.net>
Date:   Sat Feb 20 23:43:15 2021 +0100

    Fix concatenation order, add missing traces note

commit ed974cb634e7e1c47b730b136fbd09d9ee20535f
Author: Apoplex <oligolex@vivaldi.net>
Date:   Sat Feb 20 22:35:14 2021 +0100

    Fix np.repeat, remove nfiles, print no of traces
2.1.3.4 Application 1 - load modules, set parameters
  1. Load the required modules
    %cd /beegfs/ye53nis/drmed-git
    
    /beegfs/ye53nis/drmed-git
    
    from pathlib import Path
    
    import sys
    import mlflow
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import seaborn as sns
    mlflow.version.VERSION
    
    1.13.1
    
    sys.path.append('src/')
    from fluotracify.simulations import (
       import_simulation_from_csv as isfc,
       analyze_simulations as ans,
    )
    from fluotracify.training import build_model as bm, preprocess_data as ppd
    from fluotracify.applications import correlate, plots, correction
    from fluotracify.imports import ptu_utils as ptu
    
    import importlib
    importlib.reload(correction)
    
    <module 'fluotracify.applications.correction' from 'src/fluotracify/applications/correction.py'>
    
folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/'
col_per_example = 3
lab_thresh = 0.04
pred_thresh = 0.5
xunit = 1
artifact = 0
model_type = 1
fwhm = 250
run_id = 'b9935d1e554c423fb2852242f4c4504c'
length_delimiter = 2**14
  • now load the trained model
    mlflow.set_tracking_uri('file:///beegfs/ye53nis/drmed-git/data/mlruns')
    client = mlflow.tracking.MlflowClient(tracking_uri=mlflow.get_tracking_uri())
    model_path = client.download_artifacts(run_id=run_id,
                                           path='model')
    model_keras = mlflow.keras.load_model(model_uri=model_path,
                                          custom_objects={'binary_ce_dice':bm.binary_ce_dice_loss()})
    print(model_path, '\n', model_keras)
    
    /beegfs/ye53nis/drmed-git/data/mlruns/3/b9935d1e554c423fb2852242f4c4504c/artifacts/model
     <tensorflow.python.keras.engine.functional.Functional object at 0x2ae3e21c2d60>
    
2.1.3.5 Application 2 - test data
  • I copied the test data which was randomly sampled in the mlflow run (See docs above) in an extra directory. Next time, train and test data will be split beforehand.
    dataset, _, nsamples, experiment_params = isfc.import_from_csv(
        folder=folder,
        header=12,
        frac_train=1,
        col_per_example=col_per_example,
        dropindex=None,
        dropcolumns=None)
    experiment_params
    
    train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set009.csv
    train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.08_set003.csv
    train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D50_set003.csv
    train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.4_set007.csv
    train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.6_set009.csv
    train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set008.csv
    train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.2_set010.csv
    train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D1.0_set008.csv
    train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.2_set007.csv
    train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.1_set002.csvtrain 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.2_set008.csv
    train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D10_set001.csv
    train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.4_set008.csv
    train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.4_set005.csv
    train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set004.csv
    train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D1.0_set005.csv
    train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.1_set006.csv
    train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D0.069_set010.csv
    train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D3.0_set002.csv
    train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_test_run1/traces_brightclust_Nov2020_D1.0_set006.csv
    
      0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
    unique identifier 340ad302-cf12-4224-addf-9455009bc9b3 b85aeec3-5e79-444f-b0c5-5ba7057fad8c b2b78a0f-278b-4b7d-82a3-5e625fbc91de 32d6e80c-92af-48c2-a756-1eee94d17c74 87d9374a-3ae4-4dfb-8dc3-ec401df4961d 90ec2bbf-d308-4895-b5fd-1974c0b3390d 5c310958-a0cc-4d1d-b721-f8652afd9707 b5d1537c-4113-4f13-a1ca-65664181f8cc 33ee5002-7064-4882-88de-79c773d741cd 9a2f89bd-c64e-4324-910c-46a5b8a657ba 71894018-b950-4672-a182-653d59f3b7db 6a3c00e3-24e6-4758-9c6d-f2a9dc23f7d9 20f0a9df-2c4d-409f-86de-ceda40d1aafe eb3f3035-955f-4e86-bfbd-16421eede63f cf57c545-933f-41b8-bcfe-19723d79b7bf 84116b56-7264-4f63-833a-2fa1af968288 55e826c0-a09a-4f1e-8f57-ddc113715aaf bebf4d6b-0ffe-4dcf-be78-93bfa70dd04c f2dcf7ee-f180-4b26-9706-526ceb6b9fe6 c1a85eb4-f202-40f7-8bce-cd3fd3a843dc
    path and file name /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/50… /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/1…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/10… /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/1…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/0…. /beegfs/ye53nis/saves/firstartifact\Nov2020/3…. /beegfs/ye53nis/saves/firstartifact\Nov2020/1….
    FWHMs of excitation PSFs used in nm [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250]
    Extent of simulated PSF (distance to center of Gaussian) in nm 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000
    total simulation time in ms 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384
    time step in ms 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
    number of fast molecules 2422 856 2561 2887 1296 766 1247 3300 895 2975 1239 1376 1724 560 1785 2059 2060 679 2900 1357
    diffusion rate of molecules in micrometer\2 / s 3.0 0.08 50 0.4 0.6 3.0 0.2 1.0 0.2 0.1 0.2 10 0.4 0.4 3.0 1.0 0.1 0.069 3.0 1.0
    width of the simulation in nm 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0
    height of the simulation in nm 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0
    number of slow clusters 3 7 7 3 3 10 3 3 7 10 7 7 10 3 10 3 10 3 3 10
    diffusion rate of clusters in micrometer\2 / s 1.0 0.1 0.1 1.0 1.0 0.01 1.0 1.0 0.1 0.01 0.1 0.1 0.01 1.0 0.01 1.0 0.01 1.0 1.0 0.01
    trace001 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1 label001\1
    diffrates = experiment_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32)
    nmols = experiment_params.loc['number of fast molecules'].astype(np.float32)
    clusters = experiment_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32)
    
    dataset_sep = isfc.separate_data_and_labels(array=dataset,
                                                nsamples=nsamples,
                                                col_per_example=col_per_example)
    
    features = dataset_sep['0']
    labels_artifact = dataset_sep['1']
    labels_artifact_bool = labels_artifact > lab_thresh
    labels_puretrace = dataset_sep['2']
    
    The given DataFrame was split into 3 parts with shapes: [(16384, 2000), (16384, 2000), (16384, 2000)]
    
  • First attempt: look at distribution of all correlated diffrates by each simulated diffusion rate. The following function was thus executed for each simulated diffusion time and the box plots put together in inkscape by hand.
    pred_thresh = 0.5
    diffrate_of_interest = 50
    transit_time_expected = ((float(fwhm) / 1000)**2 * 1000) / (
        diffrate_of_interest * 8 * np.log(2.0))
    upper_bin = np.ceil(4*transit_time_expected)
    xunit_bins = np.arange(0, upper_bin, upper_bin / 50)
    
    out = plots.plot_distribution_of_correlations_corrected_by_prediction(
        diffrate_of_interest=diffrate_of_interest,
        model=model_keras,
        lab_thresh=lab_thresh,
        pred_thresh=pred_thresh,
        xunit=xunit,
        artifact=artifact,
        model_type=model_type,
        xunit_bins=xunit_bins,
        experiment_params=experiment_params,
        nsamples=nsamples,
        features=features,
        labels_artifact=labels_artifact,
        labels_puretrace=labels_puretrace,
        number_of_traces=100)
    

    210215_artifact0_xunit1_alldiffrates.png

  • We see some interesting results in the corrupted data without correction (first box, in blue), can they be explained by the test data?
    speed of clusters 0.01 0.1 1.0
    0.069 test run1     10
    0.08 test run1   3  
    0.1 test run1 2, 6    
    0.2 test run1   7, 8 10
    0.4 test run1 8   5, 7
    0.6 test run1     9
    1.0 test run1 6   5, 8
    3.0 test run1 4, 8   2, 9
    10 test run1   1  
    50 test run1   3  
    • subsets which look like the bright clusters lead to a shift in the correlation curves towards their own transit time:
      • 0.069=163.35ms: cluster speed 1.0=11.27ms, median correlated speed 11.6ms
      • 0.08=140.89ms: cluster speed 0.1=112.71ms, median correlated speed 100.5ms
      • 0.6=18.79ms: cluster speed 1.0=11.27ms, median correlated speed 12.10ms
      • 10=1.13ms: cluster speed 0.1=112.71ms, median correlated speed 92.1ms
      • 50=0.23ms: cluster speed 0.1=112.71ms, median correlated speed 96.5ms
    • subsets which fall out of the pattern where I have to take a closer look:
      • 0.1=112.71ms: cluster speed 0.01=1127ms, median correlated speed 346.6ms → possible explanation: it is a rule of thumb in the FCS community, that you need around 2-3 orders of magnitude of measurement time longer than transit times you want to measure. For speeds of 1.13s that means measurement times of 113-1130s, where we are far away from with our simulated ~16s of trace.
      • 0.2=56.36ms: cluster speed 0.1=112.71ms AND 1.0=11.27ms, median correlated speed 73ms → possible explanation: there seem to be two maxima in the distribution, one around 10ms, one around 70-110ms, which kind of fits to the two kinds of clusters in these traces. → another strange thing: it has a quite long tail of transit times, way over 200ms, which does not seem related to the direct cluster speeds.
      • 0.4=28.18ms, 1.0=11.27ms and 3.0=3.76ms: cluster speed 0.01=1127ms AND 1.0=11.27ms, median correlated speed 14.4ms → strange case, since the traces with the slower 0.01 clusters do not show up in the distribution! The log of isfc.import_from_csv shows, that the respective files were loaded and used for these plots.
  • Looking at the predictions (and controls)
    • subsets which look fine, as in: predictions ~ controls
      • 0.069, 0.08, 0.2, 0.6
    • subsets where there seem to be a subsubset of traces where the prediction fails:
      • 0.1: median is fine, but the distribution is a lot wider, including a considerable left-ward skew, which does not show in either of the other distributions (corrupted or controls)
      • 0.4: median is fine, distribution is also okay, but a subset of traces gets very low transit times after correlation → have to figure out which subset this is
      • 1.0, 3.0: median is fine, but distribution has a considerable left-ward skew, and quite some outliers on the right
      • 10, 50: median and distribution are okay, BUT here there is quite a difference between the distribution in predictions, label control and pure control → here, most clearly in 50, it seems artifacts are introduced through the correction method.
corr_out = ans.correlate_simulations_corrected_by_prediction(
    model=model_keras,
    lab_thresh=lab_thresh,
    pred_thresh=pred_thresh,
    artifact=artifact,
    model_type=model_type,
    experiment_params=experiment_params,
    nsamples=nsamples,
    features=features,
    labels_artifact=labels_artifact,
    labels_puretrace=labels_puretrace,
    save_as_csv=True)
corr_out
processed correlation of 2000 traces with correction by label
processed correlation of 1999 traces with correction by prediction
processed correlation of 2000 traces without correction
processed correlation of pure 2000 traces
  Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used
0 3.0 1.0 2422.0 1.260146 8.944242 16384 corrupted without correction
1 3.0 1.0 2422.0 1.156435 9.746384 16384 corrupted without correction
2 3.0 1.0 2422.0 1.716206 6.567426 16384 corrupted without correction
3 3.0 1.0 2422.0 0.999673 11.274746 16384 corrupted without correction
4 3.0 1.0 2422.0 1.040372 10.833679 16384 corrupted without correction
7995 1.0 0.01 1357.0 0.706696 15.94895 14933 corrected by prediction
7996 1.0 0.01 1357.0 0.765425 14.725227 11550 corrected by prediction
7997 1.0 0.01 1357.0 2.033196 5.543517 1250 corrected by prediction
7998 1.0 0.01 1357.0 3.744989 3.009636 261 corrected by prediction
7999 1.0 0.01 1357.0 None None None corrected by prediction

8000 rows × 7 columns

corr_out = pd.read_csv(filepath_or_buffer='data/exp-210204-unet/2021-02-20_correlations.csv')
corr_out
  Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used
0 3.0 1.00 2422.0 1.260146 8.944242 16384.0 corrupted without correction
1 3.0 1.00 2422.0 1.156435 9.746384 16384.0 corrupted without correction
2 3.0 1.00 2422.0 1.716206 6.567426 16384.0 corrupted without correction
3 3.0 1.00 2422.0 0.999673 11.274746 16384.0 corrupted without correction
4 3.0 1.00 2422.0 1.040372 10.833679 16384.0 corrupted without correction
7995 1.0 0.01 1357.0 0.706696 15.948950 14933.0 corrected by prediction
7996 1.0 0.01 1357.0 0.765425 14.725227 11550.0 corrected by prediction
7997 1.0 0.01 1357.0 2.033196 5.543517 1250.0 corrected by prediction
7998 1.0 0.01 1357.0 3.744989 3.009636 261.0 corrected by prediction
7999 1.0 0.01 1357.0 NaN NaN NaN corrected by prediction

8000 rows × 7 columns

Awesome! Now let's try categorical plotting to examine the results in a more structured manner. For the following 3 plots, I just changed the x value.

ax = sns.catplot(data=corr_out,
      kind='strip',
      x='$D$ in $\\frac{{\mu m^2}}{{s}}$',
      y='Traces used',
      hue='Simulated $D_{{clust}}$',
      col='Simulated $D$',
      col_wrap=3,
      orient='h',
      dodge=True,
      sharex=False)
plt.show()

Trace lengths: 2021-02-20_correlations_trace-lengths.png Transit times: 2021-02-20_correlations_transittimes.png Diffusion rates: 2021-02-20_correlations_diffusionrates.png

I have the theory, that trace lengths have quite an impact on transit times and diffusion rates. Let's try to do a big plot of transittimes vs trace lengths and diffusion rates against trace lengths.

2.1.3.6 Application 3 - experimental data

Here I used the code in a jupyter notebook to produce this plot: ptu_brightbursts_correction_by_unet_histogram_010_tt_210303_400traces.svg

  1. There is a problem with the UNet, if it has to classify features different than the training size (1, 16384, 1) for the first time. It gives the following error:
    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    <ipython-input-7-4c721240eb1b> in <module>
          3 length_delimiter = 2**13  # for U-Net
          4 bin_for_correlation = 1e5
    ----> 5 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction(
          6   path_list=[path_tb_pex5_egfp],
          7   model=model_keras,
    
    /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_experimental_traces_from_ptu_by_unet_prediction(path_list, model, pred_thresh, photon_count_bin, ntraces, save_as_csv)
        405             print('Processing correlation with correction by prediction '
        406                   'of dataset {}'.format(i + 1))
    --> 407             data['{}-pred'.format(i)] = correct_correlation_by_unet_prediction(
        408                 ntraces=ntraces,
        409                 traces_of_interest=ptu_1ms.astype(np.float64),
    
    /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_correlation_by_unet_prediction(ntraces, traces_of_interest, model, pred_thresh, fwhm, length_delimiter, traces_for_correlation, bin_for_correlation, verbose)
        215             ntraces_index=ntraces_index)
        216
    --> 217         predictions = model.predict(features_prepro, verbose=0)
        218         predictions = predictions.flatten()
        219
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py in predict(self, x, batch_size, verbose, steps, callbacks, max_queue_size, workers, use_multiprocessing)
       1661           for step in data_handler.steps():
       1662             callbacks.on_predict_batch_begin(step)
    -> 1663             tmp_batch_outputs = self.predict_function(iterator)
       1664             if data_handler.should_sync:
       1665               context.async_wait()
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
        816     tracing_count = self.experimental_get_tracing_count()
        817     with trace.Trace(self._name) as tm:
    --> 818       result = self._call(*args, **kwds)
        819       compiler = "xla" if self._jit_compile else "nonXla"
        820       new_tracing_count = self.experimental_get_tracing_count()
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
        860       # This is the first call of __call__, so we have to initialize.
        861       initializers = []
    --> 862       self._initialize(args, kwds, add_initializers_to=initializers)
        863     finally:
        864       # At this point we know that the initialization is complete (or less
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
        701     self._graph_deleter = FunctionDeleter(self._lifted_initializer_graph)
        702     self._concrete_stateful_fn = (
    --> 703         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
        704             *args, **kwds))
        705
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
       3018       args, kwargs = None, None
       3019     with self._lock:
    -> 3020       graph_function, _ = self._maybe_define_function(args, kwargs)
       3021     return graph_function
       3022
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
       3412
       3413           self._function_cache.missed.add(call_context_key)
    -> 3414           graph_function = self._create_graph_function(args, kwargs)
       3415           self._function_cache.primary[cache_key] = graph_function
       3416
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
       3247     arg_names = base_arg_names + missing_arg_names
       3248     graph_function = ConcreteFunction(
    -> 3249         func_graph_module.func_graph_from_py_func(
       3250             self._name,
       3251             self._python_function,
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
        996         _, original_func = tf_decorator.unwrap(python_func)
        997
    --> 998       func_outputs = python_func(*func_args, **func_kwargs)
        999
       1000       # invariant: `func_outputs` contains only Tensors, CompositeTensors,
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
        610             xla_context.Exit()
        611         else:
    --> 612           out = weak_wrapped_fn().__wrapped__(*args, **kwds)
        613         return out
        614
    
     ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
        983           except Exception as e:  # pylint:disable=broad-except
        984             if hasattr(e, "ag_error_metadata"):
    --> 985               raise e.ag_error_metadata.to_exception(e)
        986             else:
        987               raise
    
    ValueError: in user code:
    
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1512 predict_function  *
            return step_function(self, iterator)
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1502 step_function  **
            outputs = model.distribute_strategy.run(run_step, args=(data,))
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:1262 run
            return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:2734 call_for_each_replica
            return self._call_for_each_replica(fn, args, kwargs)
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:3423 _call_for_each_replica
            return fn(*args, **kwargs)
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1495 run_step  **
            outputs = model.predict_step(data)
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1468 predict_step
            return self(x, training=False)
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py:1018 __call__
            input_spec.assert_input_compatibility(self.input_spec, inputs, self.name)
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/input_spec.py:271 assert_input_compatibility
            raise ValueError('Input ' + str(input_index) +
    
        ValueError: Input 0 is incompatible with layer model: expected shape=(None, 16384, 1), found shape=(None, 8192, 1)
    

    So how do we solve this? I did not find the real cause, but a workaround is, to let the loaded model first predict a dummy input with the training size:

    test_features = np.zeros((2**14))
    test_features = np.reshape(test_features, (1, -1, 1))
    print(test_features.shape)
    predictions = model_keras.predict(test_features, verbose=0)
    predictions = predictions.flatten()
    predictions
    
    (1, 16384, 1)
    array([2.7520498e-08, 7.7272375e-09, 5.2612198e-10, ..., 9.8416812e-08,
           8.9488267e-08, 3.5880134e-07], dtype=float32)
    
  2. Test the algorithm: here it can be seen, that in the ideal case, the metadata from the single files is joined to each computation. For the computation of all traces, this will probably not be possible, because of traces, which get omitted before correlation, because their trace lengths shrank below 32 time steps after correction. This small traces can't be handled by multipletau.
    path_tb_pex5_egfp = '/beegfs/ye53nis/data/Pablo_structured_experiment'
    pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9]
    length_delimiter = 2**13  # for U-Net
    bin_for_correlation = 1e5
    out = correction.correct_experimental_traces_from_ptu_by_unet_prediction(
      path_list=path_tb_pex5_egfp,
      model=model_keras,
      pred_thresh=pred_thresh,
      photon_count_bin=bin_for_correlation,
      ntraces=None,
      save_as_csv=True)
    out
    
    Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment with bin=1e6. This can take a while...
    1 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu
    2 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu
    Different binning was chosen for correlation. Loading dataset 1 with bin=100000.0. This can take a while...
    Processing correlation of unprocessed dataset 1
    Processing correlation with correction by prediction of dataset 1
    
      \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\) File\GUID File\CreatingTime Measurement\SubMode File\Comment TTResult\StopReason MeasDesc\GlobalResolution TTResult\NumberOfRecords MeasDesc\AcquisitionTime TTResult\MDescWarningFlags TTResult\StopAfter TTResultFormat\TTTRRecType TTResultFormat\BitsPerRecord UsrPowerDiode Header\End Number of Channels
    0 0.87156 12.932046 8192.0 0-orig 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
    1 0.091734 122.866229 8192.0 0-orig 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1
    2 3.181256 3.542957 6413.0 0-pred-0.1 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
    3 1.968434 5.725899 7132.0 0-pred-0.1 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1
    4 0.534267 21.096303 6903.0 0-pred-0.3 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
    5 0.760655 14.817573 7490.0 0-pred-0.3 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1
    6 0.219843 51.268582 7178.0 0-pred-0.5 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
    7 0.453877 24.832866 7659.0 0-pred-0.5 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1
    8 0.144134 78.198714 7407.0 0-pred-0.7 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
    9 0.350758 32.133387 7785.0 0-pred-0.7 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1
    10 0.092882 121.348056 7692.0 0-pred-0.9 100000.0 {1FADBD63-E853-4886-82EB-0D4FEB0A2641} (2019, 10, 31, 11, 17, 29, 3, 304, 0) 0   0 0.0 6124808 10000 0 10000 16843524 32 1002.253351 <empty Tag> 1
    11 0.281531 40.03487 7937.0 0-pred-0.9 100000.0 {1104778F-509F-40AB-9176-580B3A1CE38D} (2019, 10, 31, 11, 17, 16, 3, 304, 0) 0   0 0.0 5881858 10000 0 10000 16843524 32 979.946455 <empty Tag> 1

    12 rows × 94 columns

  3. Run correction for all experimental traces
    path_pex5_exp = ['/beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu', '/beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu']
    pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9]
    length_delimiter = 2**13  # for U-Net
    bin_for_correlation = 1e5
    out = correction.correct_experimental_traces_from_ptu_by_unet_prediction(
      path_list=path_pex5_exp,
      model=model_keras,
      pred_thresh=pred_thresh,
      photon_count_bin=bin_for_correlation,
      ntraces=400,
      save_as_csv=True)
    out
    
    Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu with bin=1e6. This can take a while...
    1 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1082s_1.ptu
    2 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1537s_1.ptu
    3 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488210_T2505s_1.ptu
    4 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488199_T2375s_1.ptu
    5 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2040s_1.ptu
    6 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488229_T2733s_1.ptu
    7 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1070s_1.ptu
    8 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1352s_1.ptu
    9 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T986s_1.ptu10 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488227_T2709s_1.ptu
    11 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2088s_1.ptu
    12 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1214s_1.ptu
    13 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1561s_1.ptu
    14 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T302s_1.ptu
    15 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1932s_1.ptu
    16 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2267s_1.ptu
    17 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2255s_1.ptu
    18 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488208_T2481s_1.ptu
    19 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T314s_1.ptu
    20 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488221_T2637s_1.ptu
    21 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1834s_1.ptu
    22 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1883s_1.ptu
    23 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488197_T2351s_1.ptu
    24 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T254s_1.ptu
    25 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48816_T182s_1.ptu
    26 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2148s_1.ptu
    27 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1238s_1.ptu
    28 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T833s_1.ptu
    29 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T676s_1.ptu
    30 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1496s_1.ptu
    31 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T459s_1.ptu
    32 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1610s_1.ptu
    33 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T592s_1.ptu
    34 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1907s_1.ptu
    35 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T604s_1.ptu
    36 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1895s_1.ptu
    37 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T926s_1.ptu
    38 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T447s_1.ptu
    39 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T821s_1.ptu
    40 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48834_T399s_1.ptu
    41 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T506s_1.ptu
    42 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1076s_1.ptu
    43 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2209s_1.ptu
    44 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T748s_1.ptu
    45 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1232s_1.ptu
    46 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2159s_1.ptu
    47 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T698s_1.ptu
    48 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T855s_1.ptu
    49 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1789s_1.ptu
    50 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488241_T2877s_1.ptu
    51 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488204_T2434s_1.ptu
    52 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T918s_1.ptu
    53 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2147s_1.ptu
    54 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2197s_1.ptu
    55 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1908s_1.ptu
    56 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488238_T2842s_1.ptu
    57 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1968s_1.ptu
    58 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488234_T2793s_1.ptu
    59 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T979s_1.ptu
    60 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1148s_1.ptu
    61 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1280s_1.ptu
    62 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1654s_1.ptu
    63 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1484s_1.ptu
    64 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2245s_1.ptu
    65 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T879s_1.ptu
    66 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1896s_1.ptu
    67 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2124s_1.ptu
    68 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1328s_1.ptu
    69 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T867s_1.ptu
    70 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T962s_1.ptu
    71 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T628s_1.ptu
    72 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48842_T496s_1.ptu
    73 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T590s_1.ptu
    74 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1184s_1.ptu
    75 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488196_T2339s_1.ptu
    76 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1956s_1.ptu
    77 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488217_T2589s_1.ptu
    78 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488218_T2601s_1.ptu
    79 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1418s_1.ptu
    80 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488206_T2458s_1.ptu
    81 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T785s_1.ptu
    82 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1226s_1.ptu
    83 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T278s_1.ptu
    84 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4887_T74s_1.ptu
    85 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2099s_1.ptu
    86 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48817_T194s_1.ptu
    87 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1346s_1.ptu
    88 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T688s_1.ptu
    89 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488211_T2517s_1.ptu
    90 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T712s_1.ptu
    91 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48833_T387s_1.ptu
    92 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T686s_1.ptu
    93 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48813_T146s_1.ptu
    94 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488126_T1502s_1.ptu
    95 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1118s_1.ptu
    96 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1316s_1.ptu
    97 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2243s_1.ptu
    98 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1430s_1.ptu
    99 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488219_T2613s_1.ptu
    100 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1646s_1.ptu
    101 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2231s_1.ptu
    102 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488146_T1742s_1.ptu
    103 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488155_T1859s_1.ptu
    104 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2075s_1.ptu
    105 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1884s_1.ptu
    106 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488244_T2914s_1.ptu
    107 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4886_T62s_1.ptu
    108 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1015s_1.ptu
    109 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1979s_1.ptu
    110 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T674s_1.ptu
    111 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2279s_1.ptu
    112 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2183s_1.ptu
    113 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1689s_1.ptu
    114 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2269s_1.ptu
    115 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T266s_1.ptu
    116 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488209_T2493s_1.ptu
    117 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1630s_1.ptu
    118 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488185_T2221s_1.ptu
    119 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2135s_1.ptu
    120 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T782s_1.ptu
    121 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1472s_1.ptu
    122 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1919s_1.ptu
    123 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T664s_1.ptu
    124 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T351s_1.ptu
    125 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T375s_1.ptu
    126 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T700s_1.ptu
    127 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1545s_1.ptu
    128 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1714s_1.ptu
    129 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1022s_1.ptu
    130 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1754s_1.ptu
    131 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488193_T2303s_1.ptu
    132 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1250s_1.ptu
    133 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488228_T2721s_1.ptu
    134 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1088s_1.ptu
    135 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2040s_1.ptu
    136 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48835_T411s_1.ptu
    137 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1046s_1.ptu
    138 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1466s_1.ptu
    139 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T906s_1.ptu
    140 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T255s_1.ptu
    141 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1730s_1.ptu
    142 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1358s_1.ptu
    143 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T279s_1.ptu
    144 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T638s_1.ptu
    145 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2949s_1.ptu
    146 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T519s_1.ptu
    147 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T482s_1.ptu
    148 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T327s_1.ptu
    149 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T471s_1.ptu
    150 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488225_T2685s_1.ptu
    151 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T362s_1.ptu
    152 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T578s_1.ptu
    153 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T722s_1.ptu
    154 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T614s_1.ptu
    155 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T616s_1.ptu
    156 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1778s_1.ptu
    157 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2028s_1.ptu
    158 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4883_T26s_1.ptu
    159 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T966s_1.ptu
    160 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T435s_1.ptu
    161 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1666s_1.ptu
    162 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2315s_1.ptu
    163 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488205_T2446s_1.ptu
    164 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48818_T206s_1.ptu
    165 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1533s_1.ptu
    166 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T602s_1.ptu
    167 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488116_T1388s_1.ptu
    168 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2196s_1.ptu
    169 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1394s_1.ptu
    170 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T818s_1.ptu
    171 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1130s_1.ptu
    172 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2076s_1.ptu
    173 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1262s_1.ptu
    174 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2993s_1.ptu
    175 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1063s_1.ptu
    176 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48845_T531s_1.ptu
    177 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1400s_1.ptu
    178 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488192_T2291s_1.ptu
    179 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1992s_1.ptu
    180 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1142s_1.ptu
    181 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1124s_1.ptu
    182 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2111s_1.ptu
    183 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48862_T736s_1.ptu
    184 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1412s_1.ptu
    185 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1100s_1.ptu
    186 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T555s_1.ptu
    187 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488223_T2661s_1.ptu
    188 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T626s_1.ptu
    189 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1622s_1.ptu
    190 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1810s_1.ptu
    191 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2925s_1.ptu
    192 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T942s_1.ptu
    193 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1448s_1.ptu
    194 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T809s_1.ptu
    195 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488201_T2398s_1.ptu
    196 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1670s_1.ptu
    197 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488250_T3006s_1.ptu
    198 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4884_T38s_1.ptu
    199 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1514s_1.ptu
    200 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1244s_1.ptu
    201 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2172s_1.ptu
    202 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1370s_1.ptu
    203 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1678s_1.ptu
    204 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T652s_1.ptu
    205 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T1003s_1.ptu
    206 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T544s_1.ptu
    207 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1569s_1.ptu
    208 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488236_T2817s_1.ptu
    209 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2123s_1.ptu
    210 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T869s_1.ptu
    211 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1968s_1.ptu
    212 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2973s_1.ptu
    213 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1801s_1.ptu
    214 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488235_T2805s_1.ptu
    215 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2028s_1.ptu
    216 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2160s_1.ptu
    217 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1618s_1.ptu
    218 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2281s_1.ptu
    219 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T758s_1.ptu
    220 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T794s_1.ptu
    221 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T891s_1.ptu
    222 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T842s_1.ptu
    223 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488213_T2541s_1.ptu
    224 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2184s_1.ptu
    225 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T484s_1.ptu
    226 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2052s_1.ptu
    227 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1825s_1.ptu
    228 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1581s_1.ptu
    229 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1762s_1.ptu
    230 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1310s_1.ptu
    231 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1010s_1.ptu
    232 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T290s_1.ptu
    233 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488168_T2004s_1.ptu
    234 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48820_T230s_1.ptu
    235 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1944s_1.ptu
    236 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488203_T2422s_1.ptu
    237 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488152_T1822s_1.ptu
    238 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T243s_1.ptu
    239 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T2004s_1.ptu
    240 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T436s_1.ptu
    241 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1980s_1.ptu
    242 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488200_T2386s_1.ptu
    243 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1454s_1.ptu
    244 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T508s_1.ptu
    245 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1220s_1.ptu
    246 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T773s_1.ptu
    247 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1920s_1.ptu
    248 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T267s_1.ptu
    249 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T746s_1.ptu
    250 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1573s_1.ptu
    251 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T797s_1.ptu
    252 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1726s_1.ptu
    253 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1738s_1.ptu
    254 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2016s_1.ptu
    255 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1058s_1.ptu
    256 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T710s_1.ptu
    257 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T363s_1.ptu
    258 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488215_T2565s_1.ptu
    259 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T930s_1.ptu
    260 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T770s_1.ptu
    261 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T830s_1.ptu
    262 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1364s_1.ptu
    263 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488148_T1774s_1.ptu
    264 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488224_T2673s_1.ptu
    265 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488172_T2052s_1.ptu
    266 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T1992s_1.ptu
    267 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488100_T1190s_1.ptu
    268 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T242s_1.ptu
    269 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488240_T2865s_1.ptu
    270 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1701s_1.ptu
    271 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1549s_1.ptu
    272 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T520s_1.ptu
    273 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T724s_1.ptu
    274 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48814_T158s_1.ptu
    275 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1956s_1.ptu
    276 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2064s_1.ptu
    277 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4885_T50s_1.ptu
    278 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T580s_1.ptu
    279 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T472s_1.ptu
    280 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T991s_1.ptu
    281 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2969s_1.ptu
    282 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1798s_1.ptu
    283 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T566s_1.ptu
    284 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1160s_1.ptu
    285 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1406s_1.ptu
    286 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4889_T98s_1.ptu
    287 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T134s_1.ptu
    288 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488222_T2649s_1.ptu
    289 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1039s_1.ptu
    290 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T938s_1.ptu
    291 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1051s_1.ptu
    292 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T902s_1.ptu
    293 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48819_T218s_1.ptu
    294 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1112s_1.ptu
    295 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1442s_1.ptu
    296 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488101_T1208s_1.ptu
    297 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488109_T1304s_1.ptu
    298 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1526s_1.ptu
    299 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488207_T2470s_1.ptu
    300 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2937s_1.ptu
    301 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488242_T2890s_1.ptu
    302 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T640s_1.ptu
    303 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T554s_1.ptu
    304 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1292s_1.ptu
    305 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1597s_1.ptu
    306 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4888_T86s_1.ptu
    307 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T857s_1.ptu
    308 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1786s_1.ptu
    309 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T291s_1.ptu
    310 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2171s_1.ptu
    311 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1871s_1.ptu
    312 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488220_T2624s_1.ptu
    313 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2981s_1.ptu
    314 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1154s_1.ptu
    315 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T568s_1.ptu
    316 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2100s_1.ptu
    317 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1847s_1.ptu
    318 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2945s_1.ptu
    319 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1658s_1.ptu
    320 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T350s_1.ptu
    321 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2087s_1.ptu
    322 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T662s_1.ptu
    323 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488230_T2745s_1.ptu
    324 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T894s_1.ptu
    325 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1521s_1.ptu
    326 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488195_T2327s_1.ptu
    327 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T998s_1.ptu
    328 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2219s_1.ptu
    329 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T974s_1.ptu
    330 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1606s_1.ptu
    331 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1286s_1.ptu
    332 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T315s_1.ptu
    333 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488214_T2553s_1.ptu
    334 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1944s_1.ptu
    335 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T460s_1.ptu
    336 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2233s_1.ptu
    337 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488243_T2902s_1.ptu
    338 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1642s_1.ptu
    339 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1861s_1.ptu
    340 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4882_T14s_1.ptu
    341 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1694s_1.ptu
    342 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T123s_1.ptu
    343 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2961s_1.ptu
    344 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1136s_1.ptu
    345 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T303s_1.ptu
    346 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2293s_1.ptu
    347 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1634s_1.ptu
    348 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488133_T1585s_1.ptu
    349 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488216_T2577s_1.ptu
    350 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1274s_1.ptu
    351 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1557s_1.ptu
    352 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1436s_1.ptu
    353 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T806s_1.ptu
    354 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1490s_1.ptu
    355 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T374s_1.ptu
    356 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1424s_1.ptu
    357 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T914s_1.ptu
    358 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2257s_1.ptu
    359 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48836_T423s_1.ptu
    360 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2112s_1.ptu
    361 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488112_T1334s_1.ptu
    362 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48815_T170s_1.ptu
    363 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T448s_1.ptu
    364 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2136s_1.ptu
    365 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488198_T2363s_1.ptu
    366 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T650s_1.ptu
    367 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1178s_1.ptu
    368 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1931s_1.ptu
    369 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2957s_1.ptu
    370 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488231_T2757s_1.ptu
    371 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1460s_1.ptu
    372 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1873s_1.ptu
    373 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2329s_1.ptu
    374 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T542s_1.ptu
    375 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1718s_1.ptu
    376 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1322s_1.ptu
    377 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1705s_1.ptu
    378 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T882s_1.ptu
    379 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1478s_1.ptu
    380 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1268s_1.ptu
    381 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1094s_1.ptu
    382 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1376s_1.ptu
    383 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T761s_1.ptu
    384 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488239_T2853s_1.ptu
    385 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1106s_1.ptu
    386 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1837s_1.ptu
    387 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1256s_1.ptu
    388 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48829_T338s_1.ptu
    389 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T845s_1.ptu
    390 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1172s_1.ptu
    391 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48880_T954s_1.ptu
    392 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T122s_1.ptu
    393 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1682s_1.ptu
    394 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488237_T2829s_1.ptu
    395 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48810_T110s_1.ptu
    396 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1166s_1.ptu
    397 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T135s_1.ptu
    398 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1034s_1.ptu
    399 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488202_T2410s_1.ptu
    400 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T326s_1.ptu
    401 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1027s_1.ptu
    Different binning was chosen for correlation. Loading dataset 1 with bin=100000.0. This can take a while...
    Processing correlation of unprocessed dataset 1
    Processing correlation with correction by prediction of dataset 1
    Loading dataset 2 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu with bin=1e6. This can take a while...
    1 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48869_T825s_1.ptu
    2 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488196_T2359s_1.ptu
    3 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488146_T1755s_1.ptu
    4 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488227_T2733s_1.ptu
    5 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T287s_1.ptu
    6 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T342s_1.ptu
    7 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488194_T2334s_1.ptu
    8 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48851_T607s_1.ptu
    9 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488210_T2528s_1.ptu
    10 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488234_T2818s_1.ptu
    11 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48882_T982s_1.ptu
    12 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488251_T3022s_1.ptu
    13 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T610s_1.ptu
    14 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488160_T1924s_1.ptu
    15 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T584s_1.ptu
    16 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488268_T3227s_1.ptu
    17 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T268s_1.ptu
    18 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48832_T378s_1.ptu
    19 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488241_T2902s_1.ptu
    20 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488198_T2383s_1.ptu
    21 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48869_T823s_1.ptu
    22 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48895_T1139s_1.ptu
    23 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48878_T934s_1.ptu
    24 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488100_T1197s_1.ptu
    25 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488155_T1864s_1.ptu
    26 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488132_T1585s_1.ptu
    27 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48866_T787s_1.ptu
    28 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48877_T922s_1.ptu
    29 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48861_T728s_1.ptu
    30 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488129_T1548s_1.ptu
    31 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T292s_1.ptu
    32 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488205_T2468s_1.ptu
    33 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4889_T106s_1.ptu
    34 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T474s_1.ptu
    35 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T546s_1.ptu
    36 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48887_T1042s_1.ptu
    37 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488116_T1391s_1.ptu
    38 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4884_T39s_1.ptu
    39 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488110_T1318s_1.ptu
    40 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488218_T2625s_1.ptu
    41 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48870_T834s_1.ptu
    42 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488270_T3251s_1.ptu
    43 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488177_T2129s_1.ptu
    44 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488136_T1633s_1.ptu
    45 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T521s_1.ptu
    46 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T341s_1.ptu
    47 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T75s_1.ptu
    48 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T497s_1.ptu
    49 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488291_T3505s_1.ptu
    50 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488117_T1403s_1.ptu
    51 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T159s_1.ptu
    52 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488215_T2589s_1.ptu
    53 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488128_T1536s_1.ptu
    54 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488135_T1621s_1.ptu
    55 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48870_T837s_1.ptu
    56 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488239_T2878s_1.ptu
    57 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T317s_1.ptu
    58 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488231_T2781s_1.ptu
    59 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488294_T3541s_1.ptu
    60 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488247_T2974s_1.ptu
    61 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488226_T2721s_1.ptu
    62 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488182_T2189s_1.ptu
    63 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488248_T2986s_1.ptu
    64 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488216_T2601s_1.ptu
    65 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T282s_1.ptu
    66 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488152_T1827s_1.ptu
    67 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48868_T811s_1.ptu
    68 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488112_T1342s_1.ptu
    69 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T123s_1.ptu
    70 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488185_T2225s_1.ptu
    71 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T330s_1.ptu
    72 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488232_T2793s_1.ptu
    73 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488293_T3529s_1.ptu
    74 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T294s_1.ptu
    75 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4886_T66s_1.ptu
    76 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu
    77 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48889_T1067s_1.ptu
    78 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T183s_1.ptu
    79 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48879_T946s_1.ptu
    80 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48876_T910s_1.ptu
    81 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T507s_1.ptu
    82 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T583s_1.ptu
    83 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T595s_1.ptu
    84 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T257s_1.ptu
    85 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488184_T2213s_1.ptu
    86 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T148s_1.ptu
    87 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488121_T1452s_1.ptu
    88 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488254_T3059s_1.ptu
    89 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T171s_1.ptu
    90 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T581s_1.ptu
    91 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488122_T1464s_1.ptu
    92 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488153_T1839s_1.ptu
    93 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48851_T605s_1.ptu
    94 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T222s_1.ptu
    95 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488104_T1246s_1.ptu
    96 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488179_T2153s_1.ptu
    97 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488130_T1560s_1.ptu
    98 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48874_T885s_1.ptu
    99 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488115_T1379s_1.ptu
    100 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488282_T3397s_1.ptu
    101 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488259_T3119s_1.ptu
    102 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48858_T690s_1.ptu
    103 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T244s_1.ptu
    104 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T313s_1.ptu
    105 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48861_T726s_1.ptu
    106 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T196s_1.ptu
    107 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488265_T3191s_1.ptu
    108 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48834_T400s_1.ptu
    109 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48854_T643s_1.ptu
    110 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48873_T873s_1.ptu
    111 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48857_T678s_1.ptu
    112 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488208_T2504s_1.ptu
    113 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4884_T41s_1.ptu
    114 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T120s_1.ptu
    115 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48873_T870s_1.ptu
    116 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48872_T859s_1.ptu
    117 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488180_T2165s_1.ptu
    118 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T328s_1.ptu
    119 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488224_T2697s_1.ptu
    120 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488167_T2009s_1.ptu
    121 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488237_T2854s_1.ptu
    122 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488258_T3107s_1.ptu
    123 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488222_T2673s_1.ptu
    124 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T534s_1.ptu
    125 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488280_T3373s_1.ptu
    126 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T569s_1.ptu
    127 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T145s_1.ptu
    128 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T522s_1.ptu
    129 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T351s_1.ptu
    130 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488173_T2081s_1.ptu
    131 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48893_T1115s_1.ptu
    132 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48865_T774s_1.ptu
    133 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48862_T740s_1.ptu
    134 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488187_T2250s_1.ptu
    135 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T136s_1.ptu
    136 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48853_T631s_1.ptu
    137 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T509s_1.ptu
    138 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48880_T955s_1.ptu
    139 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T535s_1.ptu
    140 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488133_T1597s_1.ptu
    141 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48836_T426s_1.ptu
    142 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488138_T1658s_1.ptu
    143 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488235_T2830s_1.ptu
    144 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488111_T1330s_1.ptu
    145 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488156_T1876s_1.ptu
    146 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48855_T655s_1.ptu
    147 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T80s_1.ptu
    148 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T365s_1.ptu
    149 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48854_T642s_1.ptu
    150 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48872_T861s_1.ptu
    151 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488107_T1282s_1.ptu
    152 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T280s_1.ptu
    153 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488256_T3083s_1.ptu
    154 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488204_T2456s_1.ptu
    155 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488197_T2371s_1.ptu
    156 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48852_T619s_1.ptu
    157 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488176_T2117s_1.ptu
    158 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488229_T2757s_1.ptu
    159 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T498s_1.ptu
    160 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T305s_1.ptu
    161 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48864_T762s_1.ptu
    162 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488289_T3481s_1.ptu
    163 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48849_T624s_1.ptu
    164 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488249_T2998s_1.ptu
    165 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T184s_1.ptu
    166 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T197s_1.ptu
    167 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48884_T1006s_1.ptu
    168 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488178_T2141s_1.ptu
    169 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48855_T654s_1.ptu
    170 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T158s_1.ptu
    171 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488118_T1415s_1.ptu
    172 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488127_T1524s_1.ptu
    173 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48836_T425s_1.ptu
    174 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T352s_1.ptu
    175 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48829_T340s_1.ptu
    176 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488261_T3143s_1.ptu
    177 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48837_T468s_1.ptu
    178 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T354s_1.ptu
    179 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T220s_1.ptu
    180 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488236_T2842s_1.ptu
    181 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488257_T3095s_1.ptu
    182 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48819_T219s_1.ptu
    183 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488253_T3047s_1.ptu
    184 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T485s_1.ptu
    185 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T377s_1.ptu
    186 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488201_T2420s_1.ptu
    187 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T412s_1.ptu
    188 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488269_T3239s_1.ptu
    189 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T545s_1.ptu
    190 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T416s_1.ptu
    191 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T461s_1.ptu
    192 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T637s_1.ptu
    193 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488276_T3324s_1.ptu
    194 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488286_T3445s_1.ptu
    195 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488181_T2177s_1.ptu
    196 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488199_T2395s_1.ptu
    197 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488244_T2938s_1.ptu
    198 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488101_T1209s_1.ptu
    199 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48881_T970s_1.ptu
    200 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488126_T1512s_1.ptu
    201 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488223_T2685s_1.ptu
    202 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T557s_1.ptu
    203 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488158_T1900s_1.ptu
    204 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488139_T1670s_1.ptu
    205 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T281s_1.ptu
    206 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48859_T702s_1.ptu
    207 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48846_T546s_1.ptu
    208 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488267_T3215s_1.ptu
    209 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4883_T28s_1.ptu
    210 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T318s_1.ptu
    211 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T232s_1.ptu
    212 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48860_T716s_1.ptu
    213 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4882_T15s_1.ptu
    214 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48896_T1151s_1.ptu
    215 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48830_T353s_1.ptu
    216 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488262_T3155s_1.ptu
    217 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48899_T1187s_1.ptu
    218 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488209_T2516s_1.ptu
    219 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488150_T1803s_1.ptu
    220 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488147_T1767s_1.ptu
    221 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488134_T1609s_1.ptu
    222 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48815_T171s_1.ptu
    223 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488264_T3179s_1.ptu
    224 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488298_T3590s_1.ptu
    225 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488193_T2322s_1.ptu
    226 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4888_T87s_1.ptu
    227 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488106_T1270s_1.ptu
    228 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488284_T3421s_1.ptu
    229 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488145_T1743s_1.ptu
    230 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48828_T329s_1.ptu
    231 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488183_T2201s_1.ptu
    232 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48856_T668s_1.ptu
    233 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4888_T93s_1.ptu
    234 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4889_T100s_1.ptu
    235 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T222s_1.ptu
    236 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T442s_1.ptu
    237 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488175_T2105s_1.ptu
    238 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T486s_1.ptu
    239 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T390s_1.ptu
    240 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488245_T2950s_1.ptu
    241 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488195_T2347s_1.ptu
    242 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48867_T799s_1.ptu
    243 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T494s_1.ptu
    244 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T195s_1.ptu
    245 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488105_T1258s_1.ptu
    246 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48897_T1163s_1.ptu
    247 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48835_T413s_1.ptu
    248 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T248s_1.ptu
    249 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48841_T520s_1.ptu
    250 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4881_T0s_1.ptu
    251 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488165_T1984s_1.ptu
    252 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48887_T1040s_1.ptu
    253 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48817_T210s_1.ptu
    254 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4883_T27s_1.ptu
    255 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48891_T1091s_1.ptu
    256 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488233_T2806s_1.ptu
    257 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T132s_1.ptu
    258 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48876_T906s_1.ptu
    259 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48839_T462s_1.ptu
    260 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488109_T1306s_1.ptu
    261 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488162_T1948s_1.ptu
    262 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48858_T692s_1.ptu
    263 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488151_T1815s_1.ptu
    264 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488203_T2444s_1.ptu
    265 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48815_T184s_1.ptu
    266 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T366s_1.ptu
    267 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48883_T991s_1.ptu
    268 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48881_T967s_1.ptu
    269 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488287_T3457s_1.ptu
    270 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48884_T1003s_1.ptu
    271 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48886_T1031s_1.ptu
    272 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48820_T234s_1.ptu
    273 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T533s_1.ptu
    274 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488100_T1199s_1.ptu
    275 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488214_T2577s_1.ptu
    276 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48845_T571s_1.ptu
    277 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48856_T666s_1.ptu
    278 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488172_T2069s_1.ptu
    279 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48837_T438s_1.ptu
    280 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48822_T256s_1.ptu
    281 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488243_T2926s_1.ptu
    282 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488240_T2890s_1.ptu
    283 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488206_T2480s_1.ptu
    284 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T208s_1.ptu
    285 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48866_T788s_1.ptu
    286 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48863_T752s_1.ptu
    287 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488238_T2866s_1.ptu
    288 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488260_T3131s_1.ptu
    289 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48818_T210s_1.ptu
    290 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48892_T1103s_1.ptu
    291 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48813_T147s_1.ptu
    292 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48834_T402s_1.ptu
    293 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48853_T630s_1.ptu
    294 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488114_T1367s_1.ptu
    295 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488300_T3614s_1.ptu
    296 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488119_T1427s_1.ptu
    297 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48868_T813s_1.ptu
    298 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488157_T1888s_1.ptu
    299 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488188_T2262s_1.ptu
    300 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488212_T2552s_1.ptu
    301 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48833_T388s_1.ptu
    302 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48864_T764s_1.ptu
    303 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48823_T269s_1.ptu
    304 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488252_T3035s_1.ptu
    305 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488169_T2032s_1.ptu
    306 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48890_T1079s_1.ptu
    307 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48871_T847s_1.ptu
    308 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488137_T1646s_1.ptu
    309 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488166_T1997s_1.ptu
    310 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488283_T3409s_1.ptu
    311 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488279_T3360s_1.ptu
    312 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488125_T1500s_1.ptu
    313 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488200_T2408s_1.ptu
    314 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48882_T979s_1.ptu
    315 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488281_T3385s_1.ptu
    316 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48811_T124s_1.ptu
    317 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488102_T1221s_1.ptu
    318 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48825_T293s_1.ptu
    319 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488186_T2237s_1.ptu
    320 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488274_T3299s_1.ptu
    321 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T450s_1.ptu
    322 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T304s_1.ptu
    323 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488163_T1960s_1.ptu
    324 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488174_T2093s_1.ptu
    325 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488250_T3010s_1.ptu
    326 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488255_T3071s_1.ptu
    327 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T597s_1.ptu
    328 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488288_T3469s_1.ptu
    329 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488103_T1234s_1.ptu
    330 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488164_T1972s_1.ptu
    331 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48885_T1018s_1.ptu
    332 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T246s_1.ptu
    333 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48812_T135s_1.ptu
    334 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488242_T2914s_1.ptu
    335 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488142_T1706s_1.ptu
    336 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488159_T1912s_1.ptu
    337 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4887_T76s_1.ptu
    338 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48886_T1028s_1.ptu
    339 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488263_T3167s_1.ptu
    340 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48824_T299s_1.ptu
    341 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488113_T1354s_1.ptu
    342 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488108_T1294s_1.ptu
    343 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T197s_1.ptu
    344 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48863_T750s_1.ptu
    345 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488140_T1682s_1.ptu
    346 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488230_T2769s_1.ptu
    347 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488131_T1573s_1.ptu
    348 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488220_T2649s_1.ptu
    349 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T449s_1.ptu
    350 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488154_T1852s_1.ptu
    351 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48838_T481s_1.ptu
    352 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488120_T1439s_1.ptu
    353 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488207_T2492s_1.ptu
    354 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488171_T2056s_1.ptu
    355 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488190_T2286s_1.ptu
    356 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48847_T558s_1.ptu
    357 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48898_T1175s_1.ptu
    358 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48862_T738s_1.ptu
    359 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48816_T186s_1.ptu
    360 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488299_T3602s_1.ptu
    361 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488219_T2637s_1.ptu
    362 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T111s_1.ptu
    363 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488278_T3348s_1.ptu
    364 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488189_T2274s_1.ptu
    365 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48859_T704s_1.ptu
    366 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48832_T376s_1.ptu
    367 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48865_T776s_1.ptu
    368 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488225_T2709s_1.ptu
    369 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48871_T849s_1.ptu
    370 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48883_T994s_1.ptu
    371 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48831_T390s_1.ptu
    372 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488272_T3276s_1.ptu
    373 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488148_T1779s_1.ptu
    374 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48875_T898s_1.ptu
    375 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48842_T532s_1.ptu
    376 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488290_T3493s_1.ptu
    377 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48877_T918s_1.ptu
    378 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488297_T3578s_1.ptu
    379 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488191_T2298s_1.ptu
    380 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48814_T160s_1.ptu
    381 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48844_T558s_1.ptu
    382 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488221_T2661s_1.ptu
    383 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488211_T2540s_1.ptu
    384 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu
    385 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488123_T1475s_1.ptu
    386 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48852_T617s_1.ptu
    387 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488149_T1791s_1.ptu
    388 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488141_T1694s_1.ptu
    389 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T338s_1.ptu
    390 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488217_T2613s_1.ptu
    391 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48848_T571s_1.ptu
    392 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4886_T63s_1.ptu
    393 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48843_T510s_1.ptu
    394 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48810_T112s_1.ptu
    395 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488124_T1488s_1.ptu
    396 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF488271_T3263s_1.ptu
    397 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48840_T473s_1.ptu
    398 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48826_T306s_1.ptu
    399 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF4885_T54s_1.ptu
    400 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48827_T316s_1.ptu
    401 of 440: /beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu/DiO LUV 10uM in 20 nM AF48850_T593s_1.ptu
    Different binning was chosen for correlation. Loading dataset 2 with bin=100000.0. This can take a while...
    Processing correlation of unprocessed dataset 2
    Processing correlation with correction by prediction of dataset 2
    src/fluotracify/applications/correction.py:508: UserWarning: Metadata is not saved with data. Reason: the correlation algorithm failed for one or more traces which were shorter than 32 time steps after correction.Since metadata is loaded in the beginning, it is not sure, which correlation is missing to ensure proper joining of data and metadata.
      'correlation algorithm failed for one or more traces '
    
      \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\)
    0 19.078159 0.590783 8192.0 0-orig 100000.0
    1 20.314897 0.554817 8192.0 0-orig 100000.0
    2 21.007772 0.536518 8192.0 0-orig 100000.0
    3 22.716317 0.496166 8192.0 0-orig 100000.0
    4 24.089236 0.467888 8192.0 0-orig 100000.0
    4697 0.006707 1680.558197 7719.0 1-pred-0.9 100000.0
    4698 0.071281 158.122526 7592.0 1-pred-0.9 100000.0
    4699 1.228636 9.173635 7876.0 1-pred-0.9 100000.0
    4700 0.258008 43.684844 7830.0 1-pred-0.9 100000.0
    4701 0.436051 25.848023 7974.0 1-pred-0.9 100000.0

    4702 rows × 5 columns

2.1.4 learnings from run 1

  • while loading data, the subsample folder was loaded even though it should not have been → move it out of the main folder.
  • in the end, 3 folders would be good: Nov2020-train, Nov2020-test, Nov2020-subsample (subsample is used for quick prototyping)
  • also, I will need 3 .csv files per simulated diffusion rate, because I want to test the algo on each of the 3 different cluster speeds
  • I created firstartifact_Nov2020_test and firstartifact_Nov2020_train:
      0.01 0.1 1.0
    0.069 train   2, 3, 6, 7, 8 9
    0.08 train 7 2, 6, 8, 10 4, 9
    0.1 train 4, 6, 8, 9, 10   3, 7
    0.2 train 3 1, 4, 6, 8 9, 10
    0.4 train 4, 10 2, 3, 9 6, 7
    0.6 train 10 4, 5, 6, 7 1, 2
    1.0 train 10 4, 7, 9 1, 2, 8
    3.0 train 5, 6, 8 10 1, 3, 9
    10 train 3, 4, 8, 9 6, 7 10
    50 train 6 9, 10 4, 5, 7, 8
    0.069 test 5 1 10
    0.08 test 5 3 1
    0.1 test 2 5 1
    0.2 test 2 7 5
    0.4 test 8 1 5
    0.6 test 8 3 9
    1.0 test 6 3 5
    3.0 test 4 7 2
    10 test 2 1 5
    50 test 2 3 1
  • NOTE: I accidentally deleted set004 (0.01) from 0.069 test file. That means the only remaining simulated file with D=0.01 has to be taken for test (set009) and there is NO training set for 0.01 cluster speed at 0.069 molecule speed. Also, there is no training set for 0.1 clusters and 0.1 molecules (sad!), because there was only one simulated one.

2.1.5 Run 2 - full dataset

2.1.5.1 Record metadata, git log
  1. current directory
    %cd /beegfs/ye53nis/drmed-git
    
    /beegfs/ye53nis/drmed-git
    
  1. git log
    !git log -3
    
    commit fa530079f3d8bdbba1eaa4c6bd3eed6a24789d84
    Author: Apoplex <oligolex@vivaldi.net>
    Date:   Tue Mar 16 22:20:39 2021 +0100
    
        update mlproject for separate train and test files
    
    commit c9dd5f025bbd95e58f8f34796be36bcdb8c1a253
    Author: Apoplex <oligolex@vivaldi.net>
    Date:   Tue Mar 16 22:13:35 2021 +0100
    
        Update train for separate train and test paths
    
    commit a070d3b531725e0fb37688dde80e990083ccf1cc
    Author: Apoplex <oligolex@vivaldi.net>
    Date:   Mon Mar 15 21:48:01 2021 +0100
    
        Fix photon count bin metadata 2
    
  2. Metadata of environment
    No of CPUs in system: 72
    No of CPUs the current process can use: 24
    load average: (29.05, 36.29, 43.21)
    os.uname():  posix.uname_result(sysname='Linux', nodename='node260', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64')
    PID of process: 41375
    RAM total: 199G, RAM used: 7.3G, RAM free: 116G
    the current directory: /beegfs/ye53nis/drmed-git
    My disk usage:
    Filesystem           Size  Used Avail Use% Mounted on
    /dev/sda1             50G  3.3G   47G   7% /
    devtmpfs              94G     0   94G   0% /dev
    tmpfs                 94G  133M   94G   1% /dev/shm
    tmpfs                 94G   19M   94G   1% /run
    tmpfs                 94G     0   94G   0% /sys/fs/cgroup
    nfs02-ib:/data01      88T   69T   19T  79% /data01
    nfs01-ib:/home        80T   66T   15T  82% /home
    nfs01-ib:/cluster    2.0T  417G  1.6T  21% /cluster
    nfs03-ib:/pool/work  100T   78T   23T  78% /nfsdata
    /dev/sda5            2.0G   66M  2.0G   4% /tmp
    /dev/sda6            169G  3.0G  166G   2% /local
    /dev/sda3            6.0G  397M  5.7G   7% /var
    beegfs_nodev         524T  303T  222T  58% /beegfs
    tmpfs                 19G     0   19G   0% /run/user/67339# packages in environment at /home/ye53nis/.conda/envs/tf-nightly:
    #
    # Name                    Version                   Build  Channel
    _libgcc_mutex             0.1                        main
    absl-py                   0.11.0                   pypi_0    pypi
    alembic                   1.4.1                      py_0    conda-forge/label/main
    appdirs                   1.4.4              pyh9f0ad1d_0    conda-forge/label/main
    argon2-cffi               20.1.0           py38h7b6447c_1
    asn1crypto                1.4.0              pyh9f0ad1d_0    conda-forge/label/main
    asteval                   0.9.16             pyh5ca1d4c_0    conda-forge/label/main
    astunparse                1.6.3                    pypi_0    pypi
    async_generator           1.10               pyhd3eb1b0_0
    attrs                     20.3.0             pyhd3eb1b0_0
    azure-core                1.10.0             pyhd8ed1ab_0    conda-forge/label/main
    azure-storage-blob        12.7.1             pyh44b312d_0    conda-forge/label/main
    backcall                  0.2.0              pyhd3eb1b0_0
    blas                      1.0                         mkl
    bleach                    3.2.3              pyhd3eb1b0_0
    blinker                   1.4                        py_1    conda-forge/label/main
    blosc                     1.20.1               hd408876_0
    brotli                    1.0.9                he6710b0_2
    brotlipy                  0.7.0           py38h27cfd23_1003
    brunsli                   0.1                  h2531618_0
    bzip2                     1.0.8                h7b6447c_0
    ca-certificates           2020.12.5            ha878542_0    conda-forge/label/main
    cachetools                4.2.1                    pypi_0    pypi
    certifi                   2020.12.5        py38h578d9bd_1    conda-forge/label/main
    cffi                      1.14.4           py38h261ae71_0
    chardet                   4.0.0           py38h06a4308_1003
    charls                    2.1.0                he6710b0_2
    click                     7.1.2              pyh9f0ad1d_0    conda-forge/label/main
    cloudpickle               1.6.0                      py_0    conda-forge/label/main
    configparser              5.0.1                      py_0    conda-forge/label/main
    cryptography              3.3.1            py38h3c74f83_0
    cycler                    0.10.0                   py38_0
    databricks-cli            0.9.1                      py_0    conda-forge/label/main
    dbus                      1.13.18              hb2f20db_0
    decorator                 4.4.2              pyhd3eb1b0_0
    defusedxml                0.6.0                      py_0
    docker-py                 4.4.1            py38h578d9bd_1    conda-forge/label/main
    docker-pycreds            0.4.0                      py_0    conda-forge/label/main
    entrypoints               0.3                      py38_0
    expat                     2.2.10               he6710b0_2
    fcsfiles                  2020.9.18                pypi_0    pypi
    flask                     1.1.2              pyh9f0ad1d_0    conda-forge/label/main
    flatbuffers               1.12                     pypi_0    pypi
    fontconfig                2.13.0               h9420a91_0
    freetype                  2.10.4               h5ab3b9f_0
    future                    0.18.2           py38h578d9bd_3    conda-forge/label/main
    gast                      0.4.0                    pypi_0    pypi
    giflib                    5.1.4                h14c3975_1
    gitdb                     4.0.5                      py_0    conda-forge/label/main
    gitpython                 3.1.12             pyhd8ed1ab_0    conda-forge/label/main
    glib                      2.66.1               h92f7085_0
    google-auth               1.24.0                   pypi_0    pypi
    google-auth-oauthlib      0.4.2                    pypi_0    pypi
    google-pasta              0.2.0                    pypi_0    pypi
    gorilla                   0.3.0                      py_0    conda-forge/label/main
    grpcio                    1.34.1                   pypi_0    pypi
    gst-plugins-base          1.14.0               h8213a91_2
    gstreamer                 1.14.0               h28cd5cc_2
    gunicorn                  20.0.4           py38h578d9bd_3    conda-forge/label/main
    h5py                      3.1.0                    pypi_0    pypi
    icu                       58.2                 he6710b0_3
    idna                      2.10               pyhd3eb1b0_0
    imagecodecs               2021.1.11        py38h581e88b_1
    importlib-metadata        2.0.0                      py_1
    importlib_metadata        2.0.0                         1
    intel-openmp              2020.2                      254
    ipykernel                 5.3.4            py38h5ca1d4c_0
    ipython                   7.19.0           py38hb070fc8_1
    ipython_genutils          0.2.0              pyhd3eb1b0_1
    isodate                   0.6.0                      py_1    conda-forge/label/main
    itsdangerous              1.1.0                      py_0    conda-forge/label/main
    jedi                      0.17.0                   py38_0
    jinja2                    2.11.2             pyhd3eb1b0_0
    jpeg                      9b                   h024ee3a_2
    json5                     0.9.5                      py_0
    jsonschema                3.2.0                      py_2
    jupyter_client            6.1.7                      py_0
    jupyter_core              4.7.0            py38h06a4308_0
    jupyterlab                2.2.6                      py_0
    jupyterlab_pygments       0.1.2                      py_0
    jupyterlab_server         1.2.0                      py_0
    jxrlib                    1.1                  h7b6447c_2
    keras-preprocessing       1.1.2                    pypi_0    pypi
    kiwisolver                1.3.0            py38h2531618_0
    lcms2                     2.11                 h396b838_0
    ld_impl_linux-64          2.33.1               h53a641e_7
    lerc                      2.2.1                h2531618_0
    libaec                    1.0.4                he6710b0_1
    libdeflate                1.7                  h27cfd23_5
    libedit                   3.1.20191231         h14c3975_1
    libffi                    3.3                  he6710b0_2
    libgcc-ng                 9.1.0                hdf63c60_0
    libgfortran-ng            7.3.0                hdf63c60_0
    libpng                    1.6.37               hbc83047_0
    libprotobuf               3.13.0.1             h8b12597_0    conda-forge/label/main
    libsodium                 1.0.18               h7b6447c_0
    libstdcxx-ng              9.1.0                hdf63c60_0
    libtiff                   4.1.0                h2733197_1
    libuuid                   1.0.3                h1bed415_2
    libwebp                   1.0.1                h8e7db2f_0
    libxcb                    1.14                 h7b6447c_0
    libxml2                   2.9.10               hb55368b_3
    libzopfli                 1.0.3                he6710b0_0
    lmfit                     1.0.1                      py_1    conda-forge/label/main
    lz4-c                     1.9.3                h2531618_0
    mako                      1.1.4              pyh44b312d_0    conda-forge/label/main
    markdown                  3.3.3                    pypi_0    pypi
    markupsafe                1.1.1            py38h7b6447c_0
    matplotlib                3.3.2                h06a4308_0
    matplotlib-base           3.3.2            py38h817c723_0
    mistune                   0.8.4           py38h7b6447c_1000
    mkl                       2020.2                      256
    mkl-service               2.3.0            py38he904b0f_0
    mkl_fft                   1.2.0            py38h23d657b_0
    mkl_random                1.1.1            py38h0573a6f_0
    mlflow                    1.13.1           py38h578d9bd_2    conda-forge/label/main
    msrest                    0.6.21             pyh44b312d_0    conda-forge/label/main
    multipletau               0.3.3                    pypi_0    pypi
    nbclient                  0.5.1                      py_0
    nbconvert                 6.0.7                    py38_0
    nbformat                  5.1.2              pyhd3eb1b0_1
    ncurses                   6.2                  he6710b0_1
    nest-asyncio              1.4.3              pyhd3eb1b0_0
    notebook                  6.2.0            py38h06a4308_0
    numpy                     1.19.2           py38h54aff64_0
    numpy-base                1.19.2           py38hfa32c7d_0
    oauthlib                  3.0.1                      py_0    conda-forge/label/main
    olefile                   0.46                       py_0
    openjpeg                  2.3.0                h05c96fa_1
    openssl                   1.1.1i               h27cfd23_0
    opt-einsum                3.3.0                    pypi_0    pypi
    packaging                 20.9               pyhd3eb1b0_0
    pandas                    1.2.1            py38ha9443f7_0
    pandoc                    2.11                 hb0f4dca_0
    pandocfilters             1.4.3            py38h06a4308_1
    parso                     0.8.1              pyhd3eb1b0_0
    pcre                      8.44                 he6710b0_0
    pexpect                   4.8.0              pyhd3eb1b0_3
    pickleshare               0.7.5           pyhd3eb1b0_1003
    pillow                    8.1.0            py38he98fc37_0
    pip                       20.3.3           py38h06a4308_0
    prometheus_client         0.9.0              pyhd3eb1b0_0
    prometheus_flask_exporter 0.18.1             pyh9f0ad1d_0    conda-forge/label/main
    prompt-toolkit            3.0.8                      py_0
    protobuf                  3.13.0.1         py38hadf7658_1    conda-forge/label/main
    ptyprocess                0.7.0              pyhd3eb1b0_2
    pyasn1                    0.4.8                    pypi_0    pypi
    pyasn1-modules            0.2.8                    pypi_0    pypi
    pycparser                 2.20                       py_2
    pygments                  2.7.4              pyhd3eb1b0_0
    pyjwt                     2.0.1              pyhd8ed1ab_0    conda-forge/label/main
    pyopenssl                 20.0.1             pyhd3eb1b0_1
    pyparsing                 2.4.7              pyhd3eb1b0_0
    pyqt                      5.9.2            py38h05f1152_4
    pyrsistent                0.17.3           py38h7b6447c_0
    pysocks                   1.7.1            py38h06a4308_0
    python                    3.8.5                h7579374_1
    python-dateutil           2.8.1              pyhd3eb1b0_0
    python-editor             1.0.4                      py_0    conda-forge/label/main
    python_abi                3.8                      1_cp38    conda-forge/label/main
    pytz                      2020.5             pyhd3eb1b0_0
    pyyaml                    5.3.1            py38h8df0ef7_1    conda-forge/label/main
    pyzmq                     20.0.0           py38h2531618_1
    qt                        5.9.7                h5867ecd_1
    querystring_parser        1.2.4                      py_0    conda-forge/label/main
    readline                  8.1                  h27cfd23_0
    requests                  2.25.1             pyhd3eb1b0_0
    requests-oauthlib         1.3.0              pyh9f0ad1d_0    conda-forge/label/main
    rsa                       4.7                      pypi_0    pypi
    scipy                     1.5.2            py38h0b6359f_0
    seaborn                   0.11.1             pyhd3eb1b0_0
    send2trash                1.5.0              pyhd3eb1b0_1
    setuptools                52.0.0           py38h06a4308_0
    sip                       4.19.13          py38he6710b0_0
    six                       1.15.0           py38h06a4308_0
    smmap                     4.0.0              pyh44b312d_0    conda-forge/label/main
    snappy                    1.1.8                he6710b0_0
    sqlalchemy                1.3.20           py38h1e0a361_0    conda-forge/label/main
    sqlite                    3.33.0               h62c20be_0
    sqlparse                  0.4.1              pyh9f0ad1d_0    conda-forge/label/main
    tabulate                  0.8.7              pyh9f0ad1d_0    conda-forge/label/main
    tb-nightly                2.5.0a20210130           pypi_0    pypi
    tensorboard-plugin-wit    1.8.0                    pypi_0    pypi
    termcolor                 1.1.0                    pypi_0    pypi
    terminado                 0.9.2            py38h06a4308_0
    testpath                  0.4.4              pyhd3eb1b0_0
    tf-estimator-nightly      2.5.0.dev2021020101          pypi_0    pypi
    tf-nightly                2.5.0.dev20210130          pypi_0    pypi
    tifffile                  2021.1.14          pyhd3eb1b0_1
    tk                        8.6.10               hbc83047_0
    tornado                   6.1              py38h27cfd23_0
    traitlets                 5.0.5              pyhd3eb1b0_0
    typing-extensions         3.7.4.3                  pypi_0    pypi
    uncertainties             3.1.5              pyhd8ed1ab_0    conda-forge/label/main
    urllib3                   1.26.3             pyhd3eb1b0_0
    wcwidth                   0.2.5                      py_0
    webencodings              0.5.1                    py38_1
    websocket-client          0.57.0           py38h578d9bd_4    conda-forge/label/main
    werkzeug                  1.0.1              pyh9f0ad1d_0    conda-forge/label/main
    wheel                     0.36.2             pyhd3eb1b0_0
    wrapt                     1.12.1                   pypi_0    pypi
    xz                        5.2.5                h7b6447c_0
    yaml                      0.2.5                h516909a_0    conda-forge/label/main
    zeromq                    4.3.3                he6710b0_3
    zfp                       0.5.5                h2531618_4
    zipp                      3.4.0              pyhd3eb1b0_0
    zlib                      1.2.11               h7b6447c_3
    zstd                      1.4.5                h9ceee32_0
    
    Note: you may need to restart the kernel to use updated packages.
    {'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint',
     'SLURM_NODELIST': 'node260',
     'SLURM_JOB_NAME': 'bash',
     'XDG_SESSION_ID': '595',
     'SLURMD_NODENAME': 'node260',
     'SLURM_TOPOLOGY_ADDR': 'node260',
     'SLURM_NTASKS_PER_NODE': '24',
     'HOSTNAME': 'login01',
     'SLURM_PRIO_PROCESS': '0',
     'SLURM_SRUN_COMM_PORT': '39229',
     'SHELL': '/bin/bash',
     'TERM': 'xterm-color',
     'SLURM_JOB_QOS': 'qstand',
     'SLURM_PTY_WIN_ROW': '39',
     'HISTSIZE': '1000',
     'TMPDIR': '/tmp',
     'SLURM_TOPOLOGY_ADDR_PATTERN': 'node',
     'SSH_CLIENT': '10.231.182.213 44428 22',
     'CONDA_SHLVL': '2',
     'CONDA_PROMPT_MODIFIER': '(tf-nightly) ',
     'QTDIR': '/usr/lib64/qt-3.3',
     'QTINC': '/usr/lib64/qt-3.3/include',
     'SSH_TTY': '/dev/pts/2',
     'NO_PROXY': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24',
     'QT_GRAPHICSSYSTEM_CHECKED': '1',
     'SLURM_NNODES': '1',
     'USER': 'ye53nis',
     'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
     'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:',
     'CONDA_EXE': '/cluster/miniconda3/bin/conda',
     'SLURM_STEP_NUM_NODES': '1',
     'SLURM_JOBID': '652176',
     'SRUN_DEBUG': '3',
     'FTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
     'ftp_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
     'SLURM_NTASKS': '24',
     'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5',
     'SLURM_STEP_ID': '0',
     'TMUX': '/tmp/tmux-67339/default,43792,2',
     '_CE_CONDA': '',
     'CONDA_PREFIX_1': '/cluster/miniconda3',
     'SLURM_STEP_LAUNCHER_PORT': '39229','SLURM_TASKS_PER_NODE': '24',
    'MAIL': '/var/spool/mail/ye53nis',
    'PATH': '/home/ye53nis/.conda/envs/tf-nightly/bin:/home/lex/Programme/miniconda3/envs/tf-nightly-lab/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin',
    'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448',
    'SLURM_JOB_ID': '652176',
    'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tf-nightly',
    'SLURM_JOB_USER': 'ye53nis',
    'SLURM_STEPID': '0',
    'PWD': '/',
    'SLURM_SRUN_COMM_HOST': '192.168.192.5',
    'LANG': 'en_US.UTF-8',
    'SLURM_PTY_WIN_COL': '205',
    'SLURM_UMASK': '0022',
    'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles',
    'SLURM_JOB_UID': '67339',
    'LOADEDMODULES': '',
    'SLURM_NODEID': '0',
    'TMUX_PANE': '%2',
    'SLURM_SUBMIT_DIR': '/',
    'SLURM_TASK_PID': '167340',
    'SLURM_NPROCS': '24',
    'SLURM_CPUS_ON_NODE': '24',
    'SLURM_DISTRIBUTION': 'block',
    'HTTPS_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
    'https_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
    'SLURM_PROCID': '0',
    'HISTCONTROL': 'ignoredups',
    '_CE_M': '',
    'SLURM_JOB_NODELIST': 'node260',
    'SLURM_PTY_PORT': '33620',
    'HOME': '/home/ye53nis',
    'SHLVL': '3',
    'SLURM_LOCALID': '0',
    'SLURM_JOB_GID': '13280',
    'SLURM_JOB_CPUS_PER_NODE': '24',
    'SLURM_CLUSTER_NAME': 'hpc',
    'no_proxy': 'localhost,127.0.0.0/8,.uni-jena.de,141.35.0.0/16,10.0.0.0/8,192.168.0.0/16,172.0.0.0/8,fe80::/7,2001:638:1558::/24',
    'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23',
    'SLURM_SUBMIT_HOST': 'login01',
    'HTTP_PROXY': 'http://internet4nzm.rz.uni-jena.de:3128',
    'SLURM_JOB_PARTITION': 's_standard',
    'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3',
    'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python',
    'LOGNAME': 'ye53nis',
    'SLURM_STEP_NUM_TASKS': '24',
    'QTLIB': '/usr/lib64/qt-3.3/lib',
    'SLURM_JOB_ACCOUNT': 'iaob',
    'SLURM_JOB_NUM_NODES': '1',
    'MODULESHOME': '/usr/share/Modules',
    'CONDA_DEFAULT_ENV': 'tf-nightly',
    'LESSOPEN': '||/usr/bin/lesspipe.sh %s',
    'SLURM_STEP_TASKS_PER_NODE': '24',
    'PORT': '9999',
    'SLURM_STEP_NODELIST': 'node260',
    'DISPLAY': ':0',
    'XDG_RUNTIME_DIR': '',
    'XAUTHORITY': '/home/lex/.Xauthority',
    'BASH_FUNC_module()': '() {  eval `/usr/bin/modulecmd bash $*`\n}',
    '_': '/home/ye53nis/.conda/envs/tf-nightly/bin/jupyter',
    'JPY_PARENT_PID': '446797',
    'CLICOLOR': '1',
    'PAGER': 'cat',
    'GIT_PAGER': 'cat',
    'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
    
2.1.5.2 Set mlflow variables
  • mlflow environment variables
    conda activate tf-nightly
    cd /beegfs/ye53nis/drmed-git
    export MLFLOW_EXPERIMENT_NAME=exp-210204-unet
    export MLFLOW_TRACKING_URI=file:./data/mlruns
    mkdir data/exp-210204-unet
    
    (tf-nightly) [ye53nis@node117 drmed-git]$
    
2.1.5.3 run mlflow
  • Use whole dataset (6400 training, 1600 validation, 2000 test), but during training, use only 1/5th of it per epoch - but this time with more balanced test set.
    mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train -P csv_path_test=/beegfs/ye53nis/saves/firstartifact_Nov2020_test -P steps_per_epoch=1280 -P validation_steps=320
    
    (tf-nightly) [ye53nis@node117 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=50 -P learning_rate=None -P csv_path_train=/beegfs/ye53nis/saves/firstartifact_Nov2020_train -P csv_path_test=/beegfs/y
    e53nis/saves/firstartifact_Nov2020_test -P steps_per_epoch=1280 -P validation_steps=320
    WARNING:root:Malformed experiment '1'. Detailed error Yaml file './data/mlruns/1/meta.yaml' does not exist.
    Traceback (most recent call last):
      File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 237, in list_experiments
        experiment = self._get_experiment(exp_id, view_type)
      File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 311, in _get_experiment
        meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME)
      File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 170, in read_yaml
        raise MissingConfigException("Yaml file '%s' does not exist." % file_path)
    mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/1/meta.yaml' does not exist.
    WARNING:root:Malformed experiment '0'. Detailed error Yaml file './data/mlruns/0/meta.yaml' does not exist.
    Traceback (most recent call last):
      File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 237, in list_experiments
        experiment = self._get_experiment(exp_id, view_type)
      File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 311, in _get_experiment
        meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME)
      File "/home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 170, in read_yaml
        raise MissingConfigException("Yaml file '%s' does not exist." % file_path)
    mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/0/meta.yaml' does not exist.
    2021/03/16 22:26:14 INFO mlflow.projects.utils: === Created directory /tmp/tmp4e89kbom for downloading remote URIs passed to arguments of type 'path' ===
    2021/03/16 22:26:14 INFO mlflow.projects.backend.local: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c 1>&2 && python src/fluotracify/trai
    ning/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 50 /beegfs/ye53nis/saves/firstartifact_Nov2020_train /beegfs/ye53nis/saves/firstartifact_Nov2020_test 3 1280 320' in run with ID '3cec3f26ed2d4004978c4ec37c00fba0' ===
    2021-03-16 22:26:31.835407: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
    2021-03-16 22:26:31.835484: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    2.5.0-dev20210130
    2021-03-16 22:27:03.495143: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
    2021-03-16 22:27:03.495217: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] failed call to cuInit: UNKNOWN ERROR (303)
    2021-03-16 22:27:03.495359: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node117): /proc/driver/nvidia/version does not exist
    GPUs:  []
    train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set005.csv
    train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set001.csv
    train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set005.csv
    train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set008.csv
    train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set004.csv
    train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set004.csv
    train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set004.csv
    train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set004.csv
    train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set009.csv
    train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set001.csv
    train 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set002.csv
    train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set006.csv
    train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set010.csv
    train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set007.csv
    train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set004.csv
    train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set008.csv
    train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set009.csv
    train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set002.csv
    train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set008.csv
    train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set010.csv
    train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set003.csv
    train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set006.csv
    train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set010.csv
    train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set009.csv
    train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set007.csv
    train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set009.csv
    train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set010.csv
    train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set008.csv
    train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set010.csv
    train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set003.csv
    train 30 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set008.csv
    train 31 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set003.csv
    train 32 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set009.csv
    train 33 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set004.csv
    train 34 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set001.csv
    train 35 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set010.csv
    train 36 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.4/traces_brightclust_Nov2020_D0.4_set004.csv
    train 37 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set007.csv
    train 38 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set002.csv
    train 39 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set009.csv
    train 40 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set002.csv
    train 41 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set006.csv
    train 42 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set009.csv
    train 43 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set007.csv
    train 44 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set001.csv
    train 45 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set007.csv
    train 46 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set006.csv
    train 47 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set003.csv
    train 48 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set009.csv
    train 49 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set005.csv
    train 50 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.1/traces_brightclust_Nov2020_D0.1_set008.csv
    train 51 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set006.csv
    train 52 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set009.csv
    train 53 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set010.csv
    train 54 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set007.csv
    train 55 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set006.csv
    train 56 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.069/traces_brightclust_Nov2020_D0.069_set003.csv
    train 57 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set010.csv
    train 58 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/3.0/traces_brightclust_Nov2020_D3.0_set008.csv
    train 59 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set008.csv
    train 60 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set002.csv
    train 61 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set006.csv
    train 62 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.6/traces_brightclust_Nov2020_D0.6_set004.csv
    train 63 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/10/traces_brightclust_Nov2020_D10_set006.csv
    train 64 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.2/traces_brightclust_Nov2020_D0.2_set003.csv
    train 65 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/0.08/traces_brightclust_Nov2020_D0.08_set007.csv
    train 66 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/50/traces_brightclust_Nov2020_D50_set006.csv
    train 67 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set010.csv
    train 68 /beegfs/ye53nis/saves/firstartifact_Nov2020_train/1.0/traces_brightclust_Nov2020_D1.0_set007.csv
    train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set010.csv
    train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set002.csv
    train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set005.csv
    train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set005.csv
    train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set007.csv
    train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set002.csv
    train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set001.csv
    train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set007.csv
    train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set009.csv
    train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set002.csv
    train 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set005.csv
    train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set008.csv
    train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set005.csv
    train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set008.csv
    train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set005.csv
    train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set006.csv
    train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set005.csv
    train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set003.csv
    train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set001.csv
    train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set003.csv
    train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set003.csv
    train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set005.csv
    train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set002.csv
    train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set002.csv
    train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set004.csv
    train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set001.csv
    train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set001.csv
    train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set001.csv
    train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set003.csv
    train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set001.csv
    The given DataFrame was split into 3 parts with shapes: [(16384, 6900), (16384, 6900), (16384, 6900)]
    The given DataFrame was split into 3 parts with shapes: [(16384, 3000), (16384, 3000), (16384, 3000)]
    
    for each 16384 timestap trace there are the following numbers of corrupted timesteps:
    label001_1    1916
    label002_1    1004
    label003_1    1476
    label004_1    1154
    label005_1    1454
    dtype: int64
    2021-03-16 22:34:23.544689: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operati
    ons:  AVX2 FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    number of training examples: 5520, number of validation examples: 1380
    
    ------------------------
    number of test examples: 3000
    
    input - shape:   (None, 16384, 1)
    output - shape:  (None, 16384, 1)
    2021-03-16 22:34:30.005739: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing.
    2021-03-16 22:34:30.005803: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started.
    2021-03-16 22:34:30.005880: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down.
    2021/03/16 22:34:30 INFO mlflow.utils.autologging_utils: tensorflow autologging will track hyperparameters, performance metrics, model artifacts, and lineage information for the current tensorflow workflow to the MLflow run with ID '3c
    ec3f26ed2d4004978c4ec37c00fba0'
    2021/03/16 22:34:30 WARNING mlflow.utils.autologging_utils: MLflow issued a warning during tensorflow autologging: "/home/ye53nis/.conda/envs/mlflow-fd9a200e5a24d4c79a0ff13be73ccb5141ed072c/lib/python3.8/site-packages/mlflow/utils/auto
    logging_utils.py:86: UserWarning: Logging to MLflow failed: Changing param values is not allowed. Param with key='batch_size' was already logged with value='5' for run ID='3cec3f26ed2d4004978c4ec37c00fba0'. Attempted logging new value
    'None'."
    Epoch 1/50
    2021-03-16 22:34:43.027454: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:145] None of the MLIR Optimization Passes are enabled (registered 2)
    2021-03-16 22:34:43.259103: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2194880000 Hz
       1/1280 [..............................] - ETA: 7:06:43 - loss: 1.7012 - tp0.1: 11443.0000 - fp0.1: 69168.0000 - tn0.1: 50.0000 - fn0.1: 1259.0000 - precision0.1: 0.1420 - recall0.1: 0.9009 - tp0.3: 9371.0000 - fp0.3: 67996.0000 - tn
    0.3: 1222.0000 - fn0.3: 3331.0000 - precision0.3: 0.1211 - recall0.3: 0.7378 - tp0.5: 5565.0000 - fp0.5: 37117.0000 - tn0.5: 32101.0000 - fn0.5: 7137.0000 - precision0.5: 0.1304 - recall0.5: 0.4381 - tp0.7: 1504.0000 - fp0.7: 2293.0000
     - tn0.7: 66925.0000 - fn0.7: 11198.0000 - precision0.7: 0.3961 - recall0.7: 0.1184 - tp0.9: 284.0000 - fp0.9: 114.0000 - tn0.9: 69104.0000 - fn0.9: 12418.0000 - precision0.9: 0.7136 - recall0.9: 0.0224 - accuracy: 0.4598 - auc: 0.4176
    2021-03-16 22:34:50.791836: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing.
    2021-03-16 22:34:50.791935: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started.
       2/1280 [..............................] - ETA: 55:09 - loss: 1.5706 - tp0.1: 15933.5000 - fp0.1: 91410.0000 - tn0.1: 14176.5000 - fn0.1: 1360.0000 - precision0.1: 0.1471 - recall0.1: 0.9171 - tp0.3: 11355.0000 - fp0.3: 68009.0000 -
    tn0.3: 37577.5000 - fn0.3: 5938.5000 - precision0.3: 0.1425 - recall0.3: 0.6736 - tp0.5: 7264.0000 - fp0.5: 37126.5000 - tn0.5: 68460.0000 - fn0.5: 10029.5000 - precision0.5: 0.1624 - recall0.5: 0.4238 - tp0.7: 2845.0000 - fp0.7: 2300.
    0000 - tn0.7: 103286.5000 - fn0.7: 14448.5000 - precision0.7: 0.5204 - recall0.7: 0.1548 - tp0.9: 1306.5000 - fp0.9: 119.0000 - tn0.9: 105467.5000 - fn0.9: 15987.0000 - precision0.9: 0.8315 - recall0.9: 0.0644 - accuracy: 0.5771 - auc:
     0.53722021-03-16 22:34:53.384001: I tensorflow/core/profiler/lib/profiler_session.cc:66] Profiler session collecting data.
    2021-03-16 22:34:53.414299: I tensorflow/core/profiler/lib/profiler_session.cc:158] Profiler session tear down.
    2021-03-16 22:34:53.449110: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_03_16_22_34_53
    2021-03-16 22:34:53.468888: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.trace.json.gz
    2021-03-16 22:34:53.498618: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tb/train/plugins/profile/2021_03_16_22_34_53
    2021-03-16 22:34:53.498775: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.memory_profile.json.gz
    2021-03-16 22:34:53.501218: I tensorflow/core/profiler/rpc/client/capture_profile.cc:251] Creating directory: /tmp/tb/train/plugins/profile/2021_03_16_22_34_53Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2021_03_16_2
    2_34_53/node117.xplane.pb
    Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.overview_page.pb
    Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.input_pipeline.pb
    Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.tensorflow_stats.pb
    Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2021_03_16_22_34_53/node117.kernel_stats.pb
    
    1280/1280 [==============================] - 3356s 3s/step - loss: 0.9438 - tp0.1: 7090847.5004 - fp0.1: 12587220.8876 - tn0.1: 31719449.0960 - fn0.1: 1113141.3841 - precision0.1: 0.3522 - recall0.1: 0.8539 - tp0.3: 5944647.5215 - fp0.
    3: 7704502.4426 - tn0.3: 36602146.0117 - fn0.3: 2259341.3630 - precision0.3: 0.4254 - recall0.3: 0.6980 - tp0.5: 3390349.7166 - fp0.5: 2172177.0687 - tn0.5: 42134502.0273 - fn0.5: 4813639.1678 - precision0.5: 0.5845 - recall0.5: 0.4054
     - tp0.7: 2075799.0164 - fp0.7: 570841.5262 - tn0.7: 43735856.3763 - fn0.7: 6128189.8681 - precision0.7: 0.7474 - recall0.7: 0.2354 - tp0.9: 1317276.8236 - fp0.9: 157422.0055 - tn0.9: 44149241.1343 - fn0.9: 6886712.0609 - precision0.9:
     0.8734 - recall0.9: 0.1441 - accuracy: 0.8611 - auc: 0.8419 - val_loss: 1.7438 - val_tp0.1: 1858818.0000 - val_fp0.1: 1751074.0000 - val_tn0.1: 20297196.0000 - val_fn0.1: 2307317.0000 - val_precision0.1: 0.5149 - val_recall0.1: 0.4462
     - val_tp0.3: 1147351.0000 - val_fp0.3: 857162.0000 - val_tn0.3: 21191096.0000 - val_fn0.3: 3018784.0000 - val_precision0.3: 0.5724 - val_recall0.3: 0.2754 - val_tp0.5: 22832.0000 - val_fp0.5: 2666.0000 - val_tn0.5: 22045600.0000 - val
    _fn0.5: 4143303.0000 - val_precision0.5: 0.8954 - val_recall0.5: 0.0055 - val_tp0.7: 0.0000e+00 - val_fp0.7: 0.0000e+00 - val_tn0.7: 22048264.0000 - val_fn0.7: 4166135.0000 - val_precision0.7: 0.0000e+00 - val_recall0.7: 0.0000e+00 - v
    al_tp0.9: 0.0000e+00 - val_fp0.9: 0.0000e+00 - val_tn0.9: 22048264.0000 - val_fn0.9: 4166135.0000 - val_precision0.9: 0.0000e+00 - val_recall0.9: 0.0000e+00 - val_accuracy: 0.8418 - val_auc: 0.7129
    Epoch 2/50
    1280/1280 [==============================] - 3273s 3s/step - loss: 0.7454 - tp0.1: 7319058.9383 - fp0.1: 12182101.0671 - tn0.1: 32209636.0234 - fn0.1: 799871.6300 - precision0.1: 0.3732 - recall0.1: 0.9003 - tp0.3: 6349950.7744 - fp0.3
    : 7864965.2303 - tn0.3: 36526747.8587 - fn0.3: 1768979.7939 - precision0.3: 0.4426 - recall0.3: 0.7794 - tp0.5: 3304850.4598 - fp0.5: 1018320.5308 - tn0.5: 43373388.4637 - fn0.5: 4814080.1085 - precision0.5: 0.7573 - recall0.5: 0.4070
    - tp0.7: 2713284.5909 - fp0.7: 370786.4668 - tn0.7: 44020933.5667 - fn0.7: 5405645.9774 - precision0.7: 0.8821 - recall0.7: 0.3298 - tp0.9: 2048963.3240 - fp0.9: 143660.5839 - tn0.9: 44248083.9859 - fn0.9: 6069967.2443 - precision0.9:
    0.9325 - recall0.9: 0.2463 - accuracy: 0.8888 - auc: 0.8781 - val_loss: 1.8629 - val_tp0.1: 1696755.0000 - val_fp0.1: 1369278.0000 - val_tn0.1: 20627520.0000 - val_fn0.1: 2520850.0000 - val_precision0.1: 0.5534 - val_recall0.1: 0.4023
    - val_tp0.3: 1177823.0000 - val_fp0.3: 724329.0000 - val_tn0.3: 21272468.0000 - val_fn0.3: 3039782.0000 - val_precision0.3: 0.6192 - val_recall0.3: 0.2793 - val_tp0.5: 726105.0000 - val_fp0.5: 220632.0000 - val_tn0.5: 21776148.0000 - v
    al_fn0.5: 3491500.0000 - val_precision0.5: 0.7670 - val_recall0.5: 0.1722 - val_tp0.7: 622624.0000 - val_fp0.7: 149383.0000 - val_tn0.7: 21847414.0000 - val_fn0.7: 3594981.0000 - val_precision0.7: 0.8065 - val_recall0.7: 0.1476 - val_t
    p0.9: 478068.0000 - val_fp0.9: 78711.0000 - val_tn0.9: 21918088.0000 - val_fn0.9: 3739537.0000 - val_precision0.9: 0.8586 - val_recall0.9: 0.1134 - val_accuracy: 0.8584 - val_auc: 0.6881
    Epoch 3/50
    1280/1280 [==============================] - 3268s 3s/step - loss: 0.6401 - tp0.1: 7574454.9469 - fp0.1: 10689439.2311 - tn0.1: 33573907.5972 - fn0.1: 672847.0898 - precision0.1: 0.4156 - recall0.1: 0.9171 - tp0.3: 6542181.5066 - fp0.3
    : 5029903.7557 - tn0.3: 39233452.5995 - fn0.3: 1705120.5301 - precision0.3: 0.5571 - recall0.3: 0.7912 - tp0.5: 4316700.4192 - fp0.5: 813585.7369 - tn0.5: 43449769.7229 - fn0.5: 3930601.6175 - precision0.5: 0.8494 - recall0.5: 0.5079 -
     tp0.7: 3862233.1499 - fp0.7: 434886.9867 - tn0.7: 43828435.6581 - fn0.7: 4385068.8868 - precision0.7: 0.9012 - recall0.7: 0.4570 - tp0.9: 3000635.4949 - fp0.9: 146691.9102 - tn0.9: 44116668.4348 - fn0.9: 5246666.5418 - precision0.9: 0
    .9538 - recall0.9: 0.3597 - accuracy: 0.9073 - auc: 0.9113 - val_loss: 1.2681 - val_tp0.1: 2112447.0000 - val_fp0.1: 1372411.0000 - val_tn0.1: 20688214.0000 - val_fn0.1: 2041318.0000 - val_precision0.1: 0.6062 - val_recall0.1: 0.5086 -
     val_tp0.3: 1459147.0000 - val_fp0.3: 526021.0000 - val_tn0.3: 21534608.0000 - val_fn0.3: 2694618.0000 - val_precision0.3: 0.7350 - val_recall0.3: 0.3513 - val_tp0.5: 1206684.0000 - val_fp0.5: 343698.0000 - val_tn0.5: 21716924.0000 - v
    al_fn0.5: 2947081.0000 - val_precision0.5: 0.7783 - val_recall0.5: 0.2905 - val_tp0.7: 926901.0000 - val_fp0.7: 212441.0000 - val_tn0.7: 21848180.0000 - val_fn0.7: 3226864.0000 - val_precision0.7: 0.8135 - val_recall0.7: 0.2231 - val_t
    p0.9: 701556.0000 - val_fp0.9: 119958.0000 - val_tn0.9: 21940680.0000 - val_fn0.9: 3452209.0000 - val_precision0.9: 0.8540 - val_recall0.9: 0.1689 - val_accuracy: 0.8745 - val_auc: 0.7587
    Epoch 4/50
    1280/1280 [==============================] - 3266s 3s/step - loss: 0.5483 - tp0.1: 7577427.0859 - fp0.1: 8351943.7939 - tn0.1: 35940757.2381 - fn0.1: 640533.9243 - precision0.1: 0.4704 - recall0.1: 0.9241 - tp0.3: 6848424.7369 - fp0.3:
     4027475.1538 - tn0.3: 40265212.3185 - fn0.3: 1369536.2732 - precision0.3: 0.6241 - recall0.3: 0.8352 - tp0.5: 6060996.3591 - fp0.5: 2313256.1897 - tn0.5: 41979441.1702 - fn0.5: 2156964.6511 - precision0.5: 0.7177 - recall0.5: 0.7389 -
     tp0.7: 4556251.4965 - fp0.7: 542255.6714 - tn0.7: 43750437.9961 - fn0.7: 3661709.5137 - precision0.7: 0.8912 - recall0.7: 0.5511 - tp0.9: 3395492.4715 - fp0.9: 154251.2139 - tn0.9: 44138439.1054 - fn0.9: 4822468.5386 - precision0.9: 0
    .9548 - recall0.9: 0.4106 - accuracy: 0.9134 - auc: 0.9349 - val_loss: 1.5831 - val_tp0.1: 3220872.0000 - val_fp0.1: 3814830.0000 - val_tn0.1: 18497596.0000 - val_fn0.1: 681105.0000 - val_precision0.1: 0.4578 - val_recall0.1: 0.8254 -
    val_tp0.3: 2365990.0000 - val_fp0.3: 2561983.0000 - val_tn0.3: 19750440.0000 - val_fn0.3: 1535987.0000 - val_precision0.3: 0.4801 - val_recall0.3: 0.6064 - val_tp0.5: 1952532.0000 - val_fp0.5: 2291714.0000 - val_tn0.5: 20020708.0000 -
    val_fn0.5: 1949445.0000 - val_precision0.5: 0.4600 - val_recall0.5: 0.5004 - val_tp0.7: 1618270.0000 - val_fp0.7: 2113505.0000 - val_tn0.7: 20198920.0000 - val_fn0.7: 2283707.0000 - val_precision0.7: 0.4336 - val_recall0.7: 0.4147 - va
    l_tp0.9: 1467404.0000 - val_fp0.9: 1996280.0000 - val_tn0.9: 20316148.0000 - val_fn0.9: 2434573.0000 - val_precision0.9: 0.4237 - val_recall0.9: 0.3761 - val_accuracy: 0.8382 - val_auc: 0.8531
    Epoch 5/50
    1280/1280 [==============================] - 3259s 3s/step - loss: 0.4575 - tp0.1: 7563591.0968 - fp0.1: 6166461.2155 - tn0.1: 38207695.0180 - fn0.1: 572899.0141 - precision0.1: 0.5449 - recall0.1: 0.9269 - tp0.3: 6976500.9703 - fp0.3:
     2853572.8470 - tn0.3: 41520584.7908 - fn0.3: 1159989.1405 - precision0.3: 0.7064 - recall0.3: 0.8492 - tp0.5: 6358931.4910 - fp0.5: 1545188.1085 - tn0.5: 42828968.9243 - fn0.5: 1777558.6198 - precision0.5: 0.8010 - recall0.5: 0.7718 -
     tp0.7: 5171541.8845 - fp0.7: 510104.5824 - tn0.7: 43864075.8119 - fn0.7: 2964948.2264 - precision0.7: 0.9101 - recall0.7: 0.6254 - tp0.9: 3989419.1991 - fp0.9: 146867.6534 - tn0.9: 44227286.8977 - fn0.9: 4147070.9118 - precision0.9: 0
    .9658 - recall0.9: 0.4744 - accuracy: 0.9360 - auc: 0.9496 - val_loss: 1.0113 - val_tp0.1: 2745883.0000 - val_fp0.1: 1806365.0000 - val_tn0.1: 20277030.0000 - val_fn0.1: 1385129.0000 - val_precision0.1: 0.6032 - val_recall0.1: 0.6647 -
     val_tp0.3: 1898747.0000 - val_fp0.3: 1004741.0000 - val_tn0.3: 21078656.0000 - val_fn0.3: 2232265.0000 - val_precision0.3: 0.6540 - val_recall0.3: 0.4596 - val_tp0.5: 1378572.0000 - val_fp0.5: 684339.0000 - val_tn0.5: 21399046.0000 -
    val_fn0.5: 2752440.0000 - val_precision0.5: 0.6683 - val_recall0.5: 0.3337 - val_tp0.7: 1058802.0000 - val_fp0.7: 422419.0000 - val_tn0.7: 21660976.0000 - val_fn0.7: 3072210.0000 - val_precision0.7: 0.7148 - val_recall0.7: 0.2563 - val
    _tp0.9: 633251.0000 - val_fp0.9: 145724.0000 - val_tn0.9: 21937676.0000 - val_fn0.9: 3497761.0000 - val_precision0.9: 0.8129 - val_recall0.9: 0.1533 - val_accuracy: 0.8689 - val_auc: 0.8229
    Epoch 6/50
    1280/1280 [==============================] - 3293s 3s/step - loss: 0.3999 - tp0.1: 7670968.6714 - fp0.1: 5321303.1358 - tn0.1: 38997617.0039 - fn0.1: 520751.9563 - precision0.1: 0.5842 - recall0.1: 0.9342 - tp0.3: 7188663.1733 - fp0.3:
     2542544.6495 - tn0.3: 41776414.2037 - fn0.3: 1003057.4543 - precision0.3: 0.7341 - recall0.3: 0.8729 - tp0.5: 6622211.5550 - fp0.5: 1333118.7088 - tn0.5: 42985778.1749 - fn0.5: 1569509.0726 - precision0.5: 0.8305 - recall0.5: 0.8017 -
     tp0.7: 5590775.7127 - fp0.7: 478800.2568 - tn0.7: 43840116.4879 - fn0.7: 2600944.9149 - precision0.7: 0.9198 - recall0.7: 0.6746 - tp0.9: 4639602.3575 - fp0.9: 154184.4598 - tn0.9: 44164751.2225 - fn0.9: 3552118.2701 - precision0.9: 0
    .9678 - recall0.9: 0.5580 - accuracy: 0.9436 - auc: 0.9557 - val_loss: 0.7256 - val_tp0.1: 3301232.0000 - val_fp0.1: 2777637.0000 - val_tn0.1: 19396900.0000 - val_fn0.1: 738630.0000 - val_precision0.1: 0.5431 - val_recall0.1: 0.8172 -
    val_tp0.3: 2789396.0000 - val_fp0.3: 1963405.0000 - val_tn0.3: 20211132.0000 - val_fn0.3: 1250466.0000 - val_precision0.3: 0.5869 - val_recall0.3: 0.6905 - val_tp0.5: 2332065.0000 - val_fp0.5: 1478069.0000 - val_tn0.5: 20696466.0000 -
    val_fn0.5: 1707797.0000 - val_precision0.5: 0.6121 - val_recall0.5: 0.5773 - val_tp0.7: 1949962.0000 - val_fp0.7: 1076978.0000 - val_tn0.7: 21097560.0000 - val_fn0.7: 2089900.0000 - val_precision0.7: 0.6442 - val_recall0.7: 0.4827 - va
    l_tp0.9: 1380432.0000 - val_fp0.9: 492826.0000 - val_tn0.9: 21681716.0000 - val_fn0.9: 2659430.0000 - val_precision0.9: 0.7369 - val_recall0.9: 0.3417 - val_accuracy: 0.8785 - val_auc: 0.8740
    Epoch 7/50
    1280/1280 [==============================] - 3286s 3s/step - loss: 0.3597 - tp0.1: 7890232.5785 - fp0.1: 4953542.9781 - tn0.1: 39218777.5909 - fn0.1: 448103.7330 - precision0.1: 0.6178 - recall0.1: 0.9465 - tp0.3: 7467308.2701 - fp0.3:
     2391275.9922 - tn0.3: 41781019.9024 - fn0.3: 871028.0414 - precision0.3: 0.7613 - recall0.3: 0.8946 - tp0.5: 6988139.4286 - fp0.5: 1302055.8244 - tn0.5: 42870220.7486 - fn0.5: 1350196.8829 - precision0.5: 0.8451 - recall0.5: 0.8377 -
    tp0.7: 5947552.7845 - fp0.7: 472146.9633 - tn0.7: 43700160.4223 - fn0.7: 2390783.5269 - precision0.7: 0.9259 - recall0.7: 0.7138 - tp0.9: 4968978.2139 - fp0.9: 143981.8579 - tn0.9: 44028364.7588 - fn0.9: 3369358.0976 - precision0.9: 0.
    9713 - recall0.9: 0.5953 - accuracy: 0.9493 - auc: 0.9636 - val_loss: 0.7770 - val_tp0.1: 3234726.0000 - val_fp0.1: 2249439.0000 - val_tn0.1: 19829152.0000 - val_fn0.1: 901082.0000 - val_precision0.1: 0.5898 - val_recall0.1: 0.7821 - v
    al_tp0.3: 2554897.0000 - val_fp0.3: 1502825.0000 - val_tn0.3: 20575758.0000 - val_fn0.3: 1580911.0000 - val_precision0.3: 0.6296 - val_recall0.3: 0.6178 - val_tp0.5: 1992390.0000 - val_fp0.5: 1136809.0000 - val_tn0.5: 20941788.0000 - v
    al_fn0.5: 2143418.0000 - val_precision0.5: 0.6367 - val_recall0.5: 0.4817 - val_tp0.7: 1526404.0000 - val_fp0.7: 689435.0000 - val_tn0.7: 21389156.0000 - val_fn0.7: 2609404.0000 - val_precision0.7: 0.6889 - val_recall0.7: 0.3691 - val_
    tp0.9: 847679.0000 - val_fp0.9: 133403.0000 - val_tn0.9: 21945180.0000 - val_fn0.9: 3288129.0000 - val_precision0.9: 0.8640 - val_recall0.9: 0.2050 - val_accuracy: 0.8749 - val_auc: 0.8627
    Epoch 8/50
    1280/1280 [==============================] - 3289s 3s/step - loss: 0.3339 - tp0.1: 7747141.5660 - fp0.1: 4489700.9196 - tn0.1: 39841447.7486 - fn0.1: 432355.7814 - precision0.1: 0.6332 - recall0.1: 0.9472 - tp0.3: 7357958.1397 - fp0.3:
     2241207.2966 - tn0.3: 42089942.4052 - fn0.3: 821539.2077 - precision0.3: 0.7676 - recall0.3: 0.9001 - tp0.5: 6904184.2022 - fp0.5: 1214222.3841 - tn0.5: 43116930.9828 - fn0.5: 1275313.1452 - precision0.5: 0.8526 - recall0.5: 0.8448 -
    tp0.7: 5918119.9930 - fp0.7: 436485.9844 - tn0.7: 43894677.5480 - fn0.7: 2261377.3544 - precision0.7: 0.9324 - recall0.7: 0.7243 - tp0.9: 4978028.0929 - fp0.9: 136413.7908 - tn0.9: 44194744.8298 - fn0.9: 3201469.2545 - precision0.9: 0.
    9737 - recall0.9: 0.6094 - accuracy: 0.9533 - auc: 0.9664 - val_loss: 0.7192 - val_tp0.1: 3266754.0000 - val_fp0.1: 2261077.0000 - val_tn0.1: 19887774.0000 - val_fn0.1: 798799.0000 - val_precision0.1: 0.5910 - val_recall0.1: 0.8035 - v
    al_tp0.3: 2594715.0000 - val_fp0.3: 1533904.0000 - val_tn0.3: 20614936.0000 - val_fn0.3: 1470838.0000 - val_precision0.3: 0.6285 - val_recall0.3: 0.6382 - val_tp0.5: 2022214.0000 - val_fp0.5: 1204526.0000 - val_tn0.5: 20944316.0000 - v
    al_fn0.5: 2043339.0000 - val_precision0.5: 0.6267 - val_recall0.5: 0.4974 - val_tp0.7: 1633266.0000 - val_fp0.7: 893751.0000 - val_tn0.7: 21255104.0000 - val_fn0.7: 2432287.0000 - val_precision0.7: 0.6463 - val_recall0.7: 0.4017 - val_
    tp0.9: 1072066.0000 - val_fp0.9: 366453.0000 - val_tn0.9: 21782404.0000 - val_fn0.9: 2993487.0000 - val_precision0.9: 0.7453 - val_recall0.9: 0.2637 - val_accuracy: 0.8761 - val_auc: 0.8749
    Epoch 9/50
    1280/1280 [==============================] - 3297s 3s/step - loss: 0.3316 - tp0.1: 7830543.1632 - fp0.1: 4449068.0055 - tn0.1: 39786384.2771 - fn0.1: 444679.2272 - precision0.1: 0.6389 - recall0.1: 0.9467 - tp0.3: 7430622.2623 - fp0.3:
     2239407.0976 - tn0.3: 41996012.4926 - fn0.3: 844600.1280 - precision0.3: 0.7686 - recall0.3: 0.8983 - tp0.5: 6975903.1639 - fp0.5: 1214978.6417 - tn0.5: 43020456.3084 - fn0.5: 1299319.2264 - precision0.5: 0.8518 - recall0.5: 0.8438 -
    tp0.7: 6015111.5628 - fp0.7: 439544.0406 - tn0.7: 43795920.7791 - fn0.7: 2260110.8275 - precision0.7: 0.9325 - recall0.7: 0.7281 - tp0.9: 5071827.3482 - fp0.9: 135401.1327 - tn0.9: 44100020.3169 - fn0.9: 3203395.0422 - precision0.9: 0.
    9746 - recall0.9: 0.6139 - accuracy: 0.9520 - auc: 0.9664 - val_loss: 0.7987 - val_tp0.1: 3338155.0000 - val_fp0.1: 2467457.0000 - val_tn0.1: 19568284.0000 - val_fn0.1: 840502.0000 - val_precision0.1: 0.5750 - val_recall0.1: 0.7989 - v
    al_tp0.3: 2683614.0000 - val_fp0.3: 1892638.0000 - val_tn0.3: 20143100.0000 - val_fn0.3: 1495043.0000 - val_precision0.3: 0.5864 - val_recall0.3: 0.6422 - val_tp0.5: 2192750.0000 - val_fp0.5: 1587985.0000 - val_tn0.5: 20447752.0000 - v
    al_fn0.5: 1985907.0000 - val_precision0.5: 0.5800 - val_recall0.5: 0.5247 - val_tp0.7: 1808320.0000 - val_fp0.7: 1284650.0000 - val_tn0.7: 20751092.0000 - val_fn0.7: 2370337.0000 - val_precision0.7: 0.5847 - val_recall0.7: 0.4328 - val
    _tp0.9: 1198897.0000 - val_fp0.9: 618524.0000 - val_tn0.9: 21417220.0000 - val_fn0.9: 2979760.0000 - val_precision0.9: 0.6597 - val_recall0.9: 0.2869 - val_accuracy: 0.8637 - val_auc: 0.8621
    Epoch 10/50
    1280/1280 [==============================] - 3281s 3s/step - loss: 0.3275 - tp0.1: 7792627.5020 - fp0.1: 4279949.3427 - tn0.1: 40001537.3630 - fn0.1: 436537.2279 - precision0.1: 0.6422 - recall0.1: 0.9472 - tp0.3: 7406705.6987 - fp0.3:
     2160243.7174 - tn0.3: 42121245.1132 - fn0.3: 822459.0312 - precision0.3: 0.7727 - recall0.3: 0.8998 - tp0.5: 6961682.1405 - fp0.5: 1207985.9984 - tn0.5: 43073509.1913 - fn0.5: 1267482.5894 - precision0.5: 0.8511 - recall0.5: 0.8457 -
    tp0.7: 5977782.7900 - fp0.7: 441395.7190 - tn0.7: 43840082.2201 - fn0.7: 2251381.9399 - precision0.7: 0.9300 - recall0.7: 0.7245 - tp0.9: 5047421.8314 - fp0.9: 138119.9415 - tn0.9: 44143384.7346 - fn0.9: 3181742.8985 - precision0.9: 0.
    9728 - recall0.9: 0.6102 - accuracy: 0.9528 - auc: 0.9660 - val_loss: 0.8271 - val_tp0.1: 3497398.0000 - val_fp0.1: 2613010.0000 - val_tn0.1: 19230938.0000 - val_fn0.1: 873051.0000 - val_precision0.1: 0.5724 - val_recall0.1: 0.8002 - v
    al_tp0.3: 2805297.0000 - val_fp0.3: 1928525.0000 - val_tn0.3: 19915426.0000 - val_fn0.3: 1565152.0000 - val_precision0.3: 0.5926 - val_recall0.3: 0.6419 - val_tp0.5: 2250608.0000 - val_fp0.5: 1602046.0000 - val_tn0.5: 20241908.0000 - v
    al_fn0.5: 2119841.0000 - val_precision0.5: 0.5842 - val_recall0.5: 0.5150 - val_tp0.7: 1873937.0000 - val_fp0.7: 1289178.0000 - val_tn0.7: 20554764.0000 - val_fn0.7: 2496512.0000 - val_precision0.7: 0.5924 - val_recall0.7: 0.4288 - val
    _tp0.9: 1282739.0000 - val_fp0.9: 663370.0000 - val_tn0.9: 21180588.0000 - val_fn0.9: 3087710.0000 - val_precision0.9: 0.6591 - val_recall0.9: 0.2935 - val_accuracy: 0.8580 - val_auc: 0.8595
    Epoch 11/50
    1280/1280 [==============================] - 3284s 3s/step - loss: 0.3131 - tp0.1: 7805750.0211 - fp0.1: 4180231.1202 - tn0.1: 40107131.8431 - fn0.1: 417539.0390 - precision0.1: 0.6527 - recall0.1: 0.9499 - tp0.3: 7439055.2615 - fp0.3:
     2100484.2233 - tn0.3: 42186897.5113 - fn0.3: 784233.7986 - precision0.3: 0.7813 - recall0.3: 0.9065 - tp0.5: 7021029.5238 - fp0.5: 1158430.3731 - tn0.5: 43128929.4192 - fn0.5: 1202259.5363 - precision0.5: 0.8590 - recall0.5: 0.8568 -
    tp0.7: 6113168.1468 - fp0.7: 426487.4707 - tn0.7: 43860880.4848 - fn0.7: 2110120.9133 - precision0.7: 0.9352 - recall0.7: 0.7472 - tp0.9: 5208463.6464 - fp0.9: 134634.9001 - tn0.9: 44152728.1069 - fn0.9: 3014825.4137 - precision0.9: 0.
    9752 - recall0.9: 0.6369 - accuracy: 0.9554 - auc: 0.9685 - val_loss: 0.8179 - val_tp0.1: 3171244.0000 - val_fp0.1: 2428671.0000 - val_tn0.1: 19710012.0000 - val_fn0.1: 904466.0000 - val_precision0.1: 0.5663 - val_recall0.1: 0.7781 - v
    al_tp0.3: 2577226.0000 - val_fp0.3: 1780010.0000 - val_tn0.3: 20358686.0000 - val_fn0.3: 1498484.0000 - val_precision0.3: 0.5915 - val_recall0.3: 0.6323 - val_tp0.5: 2103216.0000 - val_fp0.5: 1506964.0000 - val_tn0.5: 20631718.0000 - v
    al_fn0.5: 1972494.0000 - val_precision0.5: 0.5826 - val_recall0.5: 0.5160 - val_tp0.7: 1740648.0000 - val_fp0.7: 1184962.0000 - val_tn0.7: 20953724.0000 - val_fn0.7: 2335062.0000 - val_precision0.7: 0.5950 - val_recall0.7: 0.4271 - val
    _tp0.9: 1152892.0000 - val_fp0.9: 479364.0000 - val_tn0.9: 21659326.0000 - val_fn0.9: 2922818.0000 - val_precision0.9: 0.7063 - val_recall0.9: 0.2829 - val_accuracy: 0.8673 - val_auc: 0.8530
    Epoch 12/50
    1280/1280 [==============================] - 3297s 3s/step - loss: 0.3231 - tp0.1: 7673586.0687 - fp0.1: 4254414.5621 - tn0.1: 40148103.3286 - fn0.1: 434544.6292 - precision0.1: 0.6426 - recall0.1: 0.9456 - tp0.3: 7286525.1889 - fp0.3:
     2133646.5324 - tn0.3: 42268881.5730 - fn0.3: 821605.5090 - precision0.3: 0.7727 - recall0.3: 0.8978 - tp0.5: 6849781.8283 - fp0.5: 1164265.2397 - tn0.5: 43238255.9961 - fn0.5: 1258348.8696 - precision0.5: 0.8542 - recall0.5: 0.8438 -
    tp0.7: 5967163.4153 - fp0.7: 423410.0211 - tn0.7: 43979128.0921 - fn0.7: 2140967.2826 - precision0.7: 0.9348 - recall0.7: 0.7339 - tp0.9: 5093586.0039 - fp0.9: 136848.5098 - tn0.9: 44265710.3138 - fn0.9: 3014544.6940 - precision0.9: 0.
    9745 - recall0.9: 0.6262 - accuracy: 0.9537 - auc: 0.9657 - val_loss: 0.7042 - val_tp0.1: 3495859.0000 - val_fp0.1: 2855125.0000 - val_tn0.1: 19280112.0000 - val_fn0.1: 583301.0000 - val_precision0.1: 0.5504 - val_recall0.1: 0.8570 - v
    al_tp0.3: 2938637.0000 - val_fp0.3: 2173835.0000 - val_tn0.3: 19961412.0000 - val_fn0.3: 1140523.0000 - val_precision0.3: 0.5748 - val_recall0.3: 0.7204 - val_tp0.5: 2404430.0000 - val_fp0.5: 1820758.0000 - val_tn0.5: 20314484.0000 - v
    al_fn0.5: 1674730.0000 - val_precision0.5: 0.5691 - val_recall0.5: 0.5894 - val_tp0.7: 2024378.0000 - val_fp0.7: 1527093.0000 - val_tn0.7: 20608140.0000 - val_fn0.7: 2054782.0000 - val_precision0.7: 0.5700 - val_recall0.7: 0.4963 - val
    _tp0.9: 1381535.0000 - val_fp0.9: 912692.0000 - val_tn0.9: 21222556.0000 - val_fn0.9: 2697625.0000 - val_precision0.9: 0.6022 - val_recall0.9: 0.3387 - val_accuracy: 0.8667 - val_auc: 0.8805
    Epoch 13/50
    1280/1280 [==============================] - 3321s 3s/step - loss: 0.3169 - tp0.1: 7909004.5371 - fp0.1: 4146765.2818 - tn0.1: 40030494.6401 - fn0.1: 424405.8938 - precision0.1: 0.6543 - recall0.1: 0.9500 - tp0.3: 7536643.9977 - fp0.3:
     2085465.0749 - tn0.3: 42091771.2584 - fn0.3: 796766.4333 - precision0.3: 0.7808 - recall0.3: 0.9063 - tp0.5: 7106355.0859 - fp0.5: 1146387.5933 - tn0.5: 43030851.5699 - fn0.5: 1227055.3450 - precision0.5: 0.8590 - recall0.5: 0.8551 -
    tp0.7: 6229305.1702 - fp0.7: 429169.7603 - tn0.7: 43748120.6526 - fn0.7: 2104105.2607 - precision0.7: 0.9350 - recall0.7: 0.7476 - tp0.9: 5365662.5207 - fp0.9: 142482.5558 - tn0.9: 44034765.0882 - fn0.9: 2967747.9102 - precision0.9: 0.
    9736 - recall0.9: 0.6436 - accuracy: 0.9544 - auc: 0.9678 - val_loss: 0.8398 - val_tp0.1: 3245885.0000 - val_fp0.1: 2536432.0000 - val_tn0.1: 19519276.0000 - val_fn0.1: 912810.0000 - val_precision0.1: 0.5613 - val_recall0.1: 0.7805 - v
    al_tp0.3: 2564525.0000 - val_fp0.3: 1814112.0000 - val_tn0.3: 20241596.0000 - val_fn0.3: 1594170.0000 - val_precision0.3: 0.5857 - val_recall0.3: 0.6167 - val_tp0.5: 2015465.0000 - val_fp0.5: 1451082.0000 - val_tn0.5: 20604624.0000 - v
    al_fn0.5: 2143230.0000 - val_precision0.5: 0.5814 - val_recall0.5: 0.4846 - val_tp0.7: 1621561.0000 - val_fp0.7: 1053037.0000 - val_tn0.7: 21002666.0000 - val_fn0.7: 2537134.0000 - val_precision0.7: 0.6063 - val_recall0.7: 0.3899 - val
    _tp0.9: 1065568.0000 - val_fp0.9: 460390.0000 - val_tn0.9: 21595312.0000 - val_fn0.9: 3093127.0000 - val_precision0.9: 0.6983 - val_recall0.9: 0.2562 - val_accuracy: 0.8629 - val_auc: 0.8493
    Epoch 14/50
    1280/1280 [==============================] - 3314s 3s/step - loss: 0.3076 - tp0.1: 7765395.1202 - fp0.1: 4130752.8431 - tn0.1: 40213352.2810 - fn0.1: 401143.6737 - precision0.1: 0.6501 - recall0.1: 0.9503 - tp0.3: 7389168.6144 - fp0.3:
     2041484.8189 - tn0.3: 42302624.6870 - fn0.3: 777370.1795 - precision0.3: 0.7825 - recall0.3: 0.9030 - tp0.5: 6961617.5222 - fp0.5: 1091504.5597 - tn0.5: 43252606.1101 - fn0.5: 1204921.2717 - precision0.5: 0.8642 - recall0.5: 0.8492 -
    tp0.7: 6118152.3286 - fp0.7: 416044.1280 - tn0.7: 43928097.5558 - fn0.7: 2048386.4653 - precision0.7: 0.9364 - recall0.7: 0.7464 - tp0.9: 5275694.6081 - fp0.9: 131773.3169 - tn0.9: 44212345.9774 - fn0.9: 2890844.1858 - precision0.9: 0.
    9759 - recall0.9: 0.6429 - accuracy: 0.9559 - auc: 0.9681 - val_loss: 0.7646 - val_tp0.1: 3394116.0000 - val_fp0.1: 2434359.0000 - val_tn0.1: 19620386.0000 - val_fn0.1: 765541.0000 - val_precision0.1: 0.5823 - val_recall0.1: 0.8160 - v
    al_tp0.3: 2854698.0000 - val_fp0.3: 1867547.0000 - val_tn0.3: 20187194.0000 - val_fn0.3: 1304959.0000 - val_precision0.3: 0.6045 - val_recall0.3: 0.6863 - val_tp0.5: 2392164.0000 - val_fp0.5: 1600876.0000 - val_tn0.5: 20453860.0000 - v
    al_fn0.5: 1767493.0000 - val_precision0.5: 0.5991 - val_recall0.5: 0.5751 - val_tp0.7: 2014352.0000 - val_fp0.7: 1325938.0000 - val_tn0.7: 20728804.0000 - val_fn0.7: 2145305.0000 - val_precision0.7: 0.6030 - val_recall0.7: 0.4843 - val
    _tp0.9: 1382581.0000 - val_fp0.9: 710524.0000 - val_tn0.9: 21344216.0000 - val_fn0.9: 2777076.0000 - val_precision0.9: 0.6605 - val_recall0.9: 0.3324 - val_accuracy: 0.8715 - val_auc: 0.8680
    Epoch 15/50
    1280/1280 [==============================] - 3321s 3s/step - loss: 0.3012 - tp0.1: 7918202.5168 - fp0.1: 3944007.1944 - tn0.1: 40234677.5113 - fn0.1: 413802.1538 - precision0.1: 0.6678 - recall0.1: 0.9509 - tp0.3: 7545589.1913 - fp0.3:
     1942385.4692 - tn0.3: 42236259.0687 - fn0.3: 786415.4793 - precision0.3: 0.7966 - recall0.3: 0.9059 - tp0.5: 7139685.9657 - fp0.5: 1075216.9391 - tn0.5: 43103450.5808 - fn0.5: 1192318.7049 - precision0.5: 0.8712 - recall0.5: 0.8570 -
    tp0.7: 6377161.2748 - fp0.7: 450450.9469 - tn0.7: 43728240.0265 - fn0.7: 1954843.3958 - precision0.7: 0.9369 - recall0.7: 0.7641 - tp0.9: 5506362.6120 - fp0.9: 143446.8002 - tn0.9: 44035203.3466 - fn0.9: 2825642.0585 - precision0.9: 0.
    9752 - recall0.9: 0.6625 - accuracy: 0.9571 - auc: 0.9692 - val_loss: 0.7740 - val_tp0.1: 3355047.0000 - val_fp0.1: 2511597.0000 - val_tn0.1: 19571600.0000 - val_fn0.1: 776157.0000 - val_precision0.1: 0.5719 - val_recall0.1: 0.8121 - v
    al_tp0.3: 2793785.0000 - val_fp0.3: 1928920.0000 - val_tn0.3: 20154280.0000 - val_fn0.3: 1337419.0000 - val_precision0.3: 0.5916 - val_recall0.3: 0.6763 - val_tp0.5: 2272116.0000 - val_fp0.5: 1578770.0000 - val_tn0.5: 20504436.0000 - v
    al_fn0.5: 1859088.0000 - val_precision0.5: 0.5900 - val_recall0.5: 0.5500 - val_tp0.7: 1883335.0000 - val_fp0.7: 1254872.0000 - val_tn0.7: 20828326.0000 - val_fn0.7: 2247869.0000 - val_precision0.7: 0.6001 - val_recall0.7: 0.4559 - val
    _tp0.9: 1294491.0000 - val_fp0.9: 656247.0000 - val_tn0.9: 21426948.0000 - val_fn0.9: 2836713.0000 - val_precision0.9: 0.6636 - val_recall0.9: 0.3133 - val_accuracy: 0.8689 - val_auc: 0.8643
    Epoch 16/50
    1280/1280 [==============================] - 3322s 3s/step - loss: 0.2996 - tp0.1: 7939368.5972 - fp0.1: 3969169.3778 - tn0.1: 40211699.6347 - fn0.1: 390406.3911 - precision0.1: 0.6606 - recall0.1: 0.9528 - tp0.3: 7573992.7580 - fp0.3:
     1993073.9243 - tn0.3: 42187811.5020 - fn0.3: 755782.2303 - precision0.3: 0.7866 - recall0.3: 0.9074 - tp0.5: 7177194.8970 - fp0.5: 1109584.0390 - tn0.5: 43071285.9805 - fn0.5: 1152580.0913 - precision0.5: 0.8632 - recall0.5: 0.8586 -
    tp0.7: 6618657.6151 - fp0.7: 578836.1054 - tn0.7: 43602043.0445 - fn0.7: 1711117.3731 - precision0.7: 0.9188 - recall0.7: 0.7896 - tp0.9: 5482513.6440 - fp0.9: 141140.2100 - tn0.9: 44039753.1483 - fn0.9: 2847261.3443 - precision0.9: 0.
    9744 - recall0.9: 0.6538 - accuracy: 0.9565 - auc: 0.9693 - val_loss: 0.8054 - val_tp0.1: 3345481.0000 - val_fp0.1: 2254991.0000 - val_tn0.1: 19696408.0000 - val_fn0.1: 917515.0000 - val_precision0.1: 0.5974 - val_recall0.1: 0.7848 - v
    al_tp0.3: 2726884.0000 - val_fp0.3: 1640058.0000 - val_tn0.3: 20311344.0000 - val_fn0.3: 1536112.0000 - val_precision0.3: 0.6244 - val_recall0.3: 0.6397 - val_tp0.5: 2263115.0000 - val_fp0.5: 1402171.0000 - val_tn0.5: 20549236.0000 - v
    al_fn0.5: 1999881.0000 - val_precision0.5: 0.6174 - val_recall0.5: 0.5309 - val_tp0.7: 1906416.0000 - val_fp0.7: 1106825.0000 - val_tn0.7: 20844576.0000 - val_fn0.7: 2356580.0000 - val_precision0.7: 0.6327 - val_recall0.7: 0.4472 - val
    _tp0.9: 1297258.0000 - val_fp0.9: 495212.0000 - val_tn0.9: 21456192.0000 - val_fn0.9: 2965738.0000 - val_precision0.9: 0.7237 - val_recall0.9: 0.3043 - val_accuracy: 0.8702 - val_auc: 0.8614
    Epoch 17/50
    1280/1280 [==============================] - 3281s 3s/step - loss: 0.2900 - tp0.1: 7724454.9820 - fp0.1: 3793475.2631 - tn0.1: 40600766.8860 - fn0.1: 391947.2693 - precision0.1: 0.6695 - recall0.1: 0.9516 - tp0.3: 7368504.9789 - fp0.3:
     1879500.1913 - tn0.3: 42514764.5855 - fn0.3: 747897.2724 - precision0.3: 0.7960 - recall0.3: 0.9078 - tp0.5: 6984976.5464 - fp0.5: 1046817.2740 - tn0.5: 43347456.7892 - fn0.5: 1131425.7049 - precision0.5: 0.8690 - recall0.5: 0.8606 -
    tp0.7: 6474243.4176 - fp0.7: 552184.5105 - tn0.7: 43842053.0726 - fn0.7: 1642158.8337 - precision0.7: 0.9206 - recall0.7: 0.7983 - tp0.9: 5438164.0788 - fp0.9: 137406.8056 - tn0.9: 44256829.4044 - fn0.9: 2678238.1725 - precision0.9: 0.
    9752 - recall0.9: 0.6718 - accuracy: 0.9584 - auc: 0.9698 - val_loss: 0.8475 - val_tp0.1: 3212091.0000 - val_fp0.1: 2556630.0000 - val_tn0.1: 19565418.0000 - val_fn0.1: 880263.0000 - val_precision0.1: 0.5568 - val_recall0.1: 0.7849 - v
    al_tp0.3: 2676698.0000 - val_fp0.3: 1975975.0000 - val_tn0.3: 20146070.0000 - val_fn0.3: 1415656.0000 - val_precision0.3: 0.5753 - val_recall0.3: 0.6541 - val_tp0.5: 2228667.0000 - val_fp0.5: 1724443.0000 - val_tn0.5: 20397608.0000 - v
    al_fn0.5: 1863687.0000 - val_precision0.5: 0.5638 - val_recall0.5: 0.5446 - val_tp0.7: 1876988.0000 - val_fp0.7: 1421139.0000 - val_tn0.7: 20700906.0000 - val_fn0.7: 2215366.0000 - val_precision0.7: 0.5691 - val_recall0.7: 0.4587 - val
    _tp0.9: 1318523.0000 - val_fp0.9: 744640.0000 - val_tn0.9: 21377414.0000 - val_fn0.9: 2773831.0000 - val_precision0.9: 0.6391 - val_recall0.9: 0.3222 - val_accuracy: 0.8631 - val_auc: 0.8479
    Epoch 18/50
    1280/1280 [==============================] - 3291s 3s/step - loss: 0.2960 - tp0.1: 7878258.3583 - fp0.1: 3966414.4723 - tn0.1: 40266792.8720 - fn0.1: 399191.5441 - precision0.1: 0.6660 - recall0.1: 0.9518 - tp0.3: 7519728.0133 - fp0.3:
     1997387.8189 - tn0.3: 42235815.4325 - fn0.3: 757721.8891 - precision0.3: 0.7910 - recall0.3: 0.9083 - tp0.5: 7117268.5543 - fp0.5: 1103594.4309 - tn0.5: 43129603.3357 - fn0.5: 1160181.3482 - precision0.5: 0.8660 - recall0.5: 0.8598 -
    tp0.7: 6559720.6885 - fp0.7: 569817.0601 - tn0.7: 43663373.8767 - fn0.7: 1717729.2139 - precision0.7: 0.9203 - recall0.7: 0.7929 - tp0.9: 5460392.9578 - fp0.9: 133811.0039 - tn0.9: 44099404.8353 - fn0.9: 2817056.9446 - precision0.9: 0.
    9765 - recall0.9: 0.6620 - accuracy: 0.9569 - auc: 0.9692 - val_loss: 2.4700 - val_tp0.1: 3478680.0000 - val_fp0.1: 2735141.0000 - val_tn0.1: 19398832.0000 - val_fn0.1: 601742.0000 - val_precision0.1: 0.5598 - val_recall0.1: 0.8525 - v
    al_tp0.3: 2990828.0000 - val_fp0.3: 2147854.0000 - val_tn0.3: 19986120.0000 - val_fn0.3: 1089594.0000 - val_precision0.3: 0.5820 - val_recall0.3: 0.7330 - val_tp0.5: 2523597.0000 - val_fp0.5: 1960329.0000 - val_tn0.5: 20173640.0000 - v
    al_fn0.5: 1556825.0000 - val_precision0.5: 0.5628 - val_recall0.5: 0.6185 - val_tp0.7: 2211753.0000 - val_fp0.7: 1837061.0000 - val_tn0.7: 20296910.0000 - val_fn0.7: 1868669.0000 - val_precision0.7: 0.5463 - val_recall0.7: 0.5420 - val
    _tp0.9: 1781271.0000 - val_fp0.9: 1591848.0000 - val_tn0.9: 20542120.0000 - val_fn0.9: 2299151.0000 - val_precision0.9: 0.5281 - val_recall0.9: 0.4365 - val_accuracy: 0.8658 - val_auc: 0.8707
    Epoch 19/50
    1280/1280 [==============================] - 3287s 3s/step - loss: 0.2909 - tp0.1: 7989303.7198 - fp0.1: 3862557.4653 - tn0.1: 40273532.0609 - fn0.1: 385255.3396 - precision0.1: 0.6759 - recall0.1: 0.9542 - tp0.3: 7630793.7799 - fp0.3:
     1926931.7330 - tn0.3: 42209171.3419 - fn0.3: 743765.2795 - precision0.3: 0.7994 - recall0.3: 0.9113 - tp0.5: 7240582.7869 - fp0.5: 1067331.3224 - tn0.5: 43068761.2030 - fn0.5: 1133976.2724 - precision0.5: 0.8729 - recall0.5: 0.8645 -
    tp0.7: 6700153.0500 - fp0.7: 553561.1038 - tn0.7: 43582525.7065 - fn0.7: 1674406.0094 - precision0.7: 0.9247 - recall0.7: 0.7993 - tp0.9: 5619106.6877 - fp0.9: 138913.2576 - tn0.9: 43997191.2326 - fn0.9: 2755452.3716 - precision0.9: 0.
    9761 - recall0.9: 0.6706 - accuracy: 0.9580 - auc: 0.9708 - val_loss: 0.8749 - val_tp0.1: 3092711.0000 - val_fp0.1: 2067604.0000 - val_tn0.1: 20017088.0000 - val_fn0.1: 1036989.0000 - val_precision0.1: 0.5993 - val_recall0.1: 0.7489 -
    val_tp0.3: 2486761.0000 - val_fp0.3: 1549670.0000 - val_tn0.3: 20535032.0000 - val_fn0.3: 1642939.0000 - val_precision0.3: 0.6161 - val_recall0.3: 0.6022 - val_tp0.5: 2068354.0000 - val_fp0.5: 1334103.0000 - val_tn0.5: 20750600.0000 -
    val_fn0.5: 2061346.0000 - val_precision0.5: 0.6079 - val_recall0.5: 0.5008 - val_tp0.7: 1728814.0000 - val_fp0.7: 1041223.0000 - val_tn0.7: 21043472.0000 - val_fn0.7: 2400886.0000 - val_precision0.7: 0.6241 - val_recall0.7: 0.4186 - va
    l_tp0.9: 1199934.0000 - val_fp0.9: 520759.0000 - val_tn0.9: 21563940.0000 - val_fn0.9: 2929766.0000 - val_precision0.9: 0.6974 - val_recall0.9: 0.2906 - val_accuracy: 0.8705 - val_auc: 0.8436
    Epoch 20/50
    1280/1280 [==============================] - 3278s 3s/step - loss: 0.2874 - tp0.1: 7845801.3482 - fp0.1: 3747571.3029 - tn0.1: 40520331.9508 - fn0.1: 396960.4161 - precision0.1: 0.6782 - recall0.1: 0.9514 - tp0.3: 7499855.0742 - fp0.3:
     1875299.3388 - tn0.3: 42392596.7424 - fn0.3: 742906.6901 - precision0.3: 0.8017 - recall0.3: 0.9098 - tp0.5: 7121660.4918 - fp0.5: 1042386.0788 - tn0.5: 43225501.8384 - fn0.5: 1121101.2724 - precision0.5: 0.8739 - recall0.5: 0.8640 -
    tp0.7: 6592531.3404 - fp0.7: 538088.3911 - tn0.7: 43729809.0500 - fn0.7: 1650230.4239 - precision0.7: 0.9254 - recall0.7: 0.8003 - tp0.9: 5543415.5105 - fp0.9: 131938.6378 - tn0.9: 44135942.6190 - fn0.9: 2699346.2537 - precision0.9: 0.
    9770 - recall0.9: 0.6728 - accuracy: 0.9592 - auc: 0.9698 - val_loss: 0.9565 - val_tp0.1: 2943258.0000 - val_fp0.1: 2086336.0000 - val_tn0.1: 20045976.0000 - val_fn0.1: 1138833.0000 - val_precision0.1: 0.5852 - val_recall0.1: 0.7210 -
    val_tp0.3: 2419480.0000 - val_fp0.3: 1662989.0000 - val_tn0.3: 20469314.0000 - val_fn0.3: 1662611.0000 - val_precision0.3: 0.5927 - val_recall0.3: 0.5927 - val_tp0.5: 2018052.0000 - val_fp0.5: 1478186.0000 - val_tn0.5: 20654124.0000 -
    val_fn0.5: 2064039.0000 - val_precision0.5: 0.5772 - val_recall0.5: 0.4944 - val_tp0.7: 1715248.0000 - val_fp0.7: 1231354.0000 - val_tn0.7: 20900956.0000 - val_fn0.7: 2366843.0000 - val_precision0.7: 0.5821 - val_recall0.7: 0.4202 - va
    l_tp0.9: 1245570.0000 - val_fp0.9: 677868.0000 - val_tn0.9: 21454434.0000 - val_fn0.9: 2836521.0000 - val_precision0.9: 0.6476 - val_recall0.9: 0.3051 - val_accuracy: 0.8649 - val_auc: 0.8275
    Epoch 21/50
    1280/1280 [==============================] - 3290s 3s/step - loss: 0.2804 - tp0.1: 7821343.4738 - fp0.1: 3664726.1171 - tn0.1: 40657232.2397 - fn0.1: 367350.5347 - precision0.1: 0.6815 - recall0.1: 0.9542 - tp0.3: 7489144.7580 - fp0.3:
     1868735.6292 - tn0.3: 42453227.8447 - fn0.3: 699549.2506 - precision0.3: 0.8010 - recall0.3: 0.9132 - tp0.5: 7115665.6729 - fp0.5: 1043113.8876 - tn0.5: 43278844.9688 - fn0.5: 1073028.3357 - precision0.5: 0.8724 - recall0.5: 0.8679 -
    tp0.7: 6602597.8665 - fp0.7: 551623.0804 - tn0.7: 43770320.6628 - fn0.7: 1586096.1421 - precision0.7: 0.9226 - recall0.7: 0.8053 - tp0.9: 5554093.7018 - fp0.9: 134091.5519 - tn0.9: 44187854.0671 - fn0.9: 2634600.3068 - precision0.9: 0.
    9763 - recall0.9: 0.6772 - accuracy: 0.9595 - auc: 0.9714 - val_loss: 0.8160 - val_tp0.1: 3192064.0000 - val_fp0.1: 2182394.0000 - val_tn0.1: 19900398.0000 - val_fn0.1: 939537.0000 - val_precision0.1: 0.5939 - val_recall0.1: 0.7726 - v
    al_tp0.3: 2628251.0000 - val_fp0.3: 1676252.0000 - val_tn0.3: 20406544.0000 - val_fn0.3: 1503350.0000 - val_precision0.3: 0.6106 - val_recall0.3: 0.6361 - val_tp0.5: 2262964.0000 - val_fp0.5: 1459711.0000 - val_tn0.5: 20623092.0000 - v
    al_fn0.5: 1868637.0000 - val_precision0.5: 0.6079 - val_recall0.5: 0.5477 - val_tp0.7: 1912004.0000 - val_fp0.7: 1114695.0000 - val_tn0.7: 20968108.0000 - val_fn0.7: 2219597.0000 - val_precision0.7: 0.6317 - val_recall0.7: 0.4628 - val
    _tp0.9: 1266412.0000 - val_fp0.9: 537157.0000 - val_tn0.9: 21545640.0000 - val_fn0.9: 2865189.0000 - val_precision0.9: 0.7022 - val_recall0.9: 0.3065 - val_accuracy: 0.8730 - val_auc: 0.8570
    Epoch 22/50
    1280/1280 [==============================] - 3337s 3s/step - loss: 0.2695 - tp0.1: 7964599.1304 - fp0.1: 3487980.5644 - tn0.1: 40692123.6760 - fn0.1: 365971.2584 - precision0.1: 0.6952 - recall0.1: 0.9559 - tp0.3: 7639300.1928 - fp0.3:
     1768977.4333 - tn0.3: 42411101.8767 - fn0.3: 691270.1959 - precision0.3: 0.8119 - recall0.3: 0.9169 - tp0.5: 7283022.7681 - fp0.5: 1008769.9313 - tn0.5: 43171283.5621 - fn0.5: 1047547.6206 - precision0.5: 0.8781 - recall0.5: 0.8740 -
    tp0.7: 6797706.8946 - fp0.7: 543031.7963 - tn0.7: 43637044.5636 - fn0.7: 1532863.4941 - precision0.7: 0.9257 - recall0.7: 0.8158 - tp0.9: 5748924.9516 - fp0.9: 136050.2350 - tn0.9: 44044056.0921 - fn0.9: 2581645.4372 - precision0.9: 0.
    9771 - recall0.9: 0.6893 - accuracy: 0.9609 - auc: 0.9731 - val_loss: 0.8131 - val_tp0.1: 3187368.0000 - val_fp0.1: 2205558.0000 - val_tn0.1: 19939310.0000 - val_fn0.1: 882169.0000 - val_precision0.1: 0.5910 - val_recall0.1: 0.7832 - v
    al_tp0.3: 2568349.0000 - val_fp0.3: 1630822.0000 - val_tn0.3: 20514044.0000 - val_fn0.3: 1501188.0000 - val_precision0.3: 0.6116 - val_recall0.3: 0.6311 - val_tp0.5: 2132479.0000 - val_fp0.5: 1391371.0000 - val_tn0.5: 20753492.0000 - v
    al_fn0.5: 1937058.0000 - val_precision0.5: 0.6052 - val_recall0.5: 0.5240 - val_tp0.7: 1724396.0000 - val_fp0.7: 1052743.0000 - val_tn0.7: 21092120.0000 - val_fn0.7: 2345141.0000 - val_precision0.7: 0.6209 - val_recall0.7: 0.4237 - val
    _tp0.9: 1088044.0000 - val_fp0.9: 509365.0000 - val_tn0.9: 21635508.0000 - val_fn0.9: 2981493.0000 - val_precision0.9: 0.6811 - val_recall0.9: 0.2674 - val_accuracy: 0.8730 - val_auc: 0.8564
    Epoch 23/50
    1280/1280 [==============================] - 3288s 3s/step - loss: 0.2689 - tp0.1: 7750995.1733 - fp0.1: 3597605.4887 - tn0.1: 40799177.1624 - fn0.1: 362898.6737 - precision0.1: 0.6830 - recall0.1: 0.9562 - tp0.3: 7415912.0773 - fp0.3:
     1777617.9633 - tn0.3: 42619150.5051 - fn0.3: 697981.7697 - precision0.3: 0.8063 - recall0.3: 0.9146 - tp0.5: 7059667.4192 - fp0.5: 992741.5051 - tn0.5: 43404008.9727 - fn0.5: 1054226.4278 - precision0.5: 0.8769 - recall0.5: 0.8705 - t
    p0.7: 6579822.4957 - fp0.7: 525915.9500 - tn0.7: 43870813.2443 - fn0.7: 1534071.3513 - precision0.7: 0.9263 - recall0.7: 0.8112 - tp0.9: 5573469.2935 - fp0.9: 125489.0593 - tn0.9: 44271266.5379 - fn0.9: 2540424.5535 - precision0.9: 0.9
    785 - recall0.9: 0.6878 - accuracy: 0.9612 - auc: 0.9727 - val_loss: 0.8991 - val_tp0.1: 3067116.0000 - val_fp0.1: 2378685.0000 - val_tn0.1: 19772492.0000 - val_fn0.1: 996109.0000 - val_precision0.1: 0.5632 - val_recall0.1: 0.7548 - va
    l_tp0.3: 2525982.0000 - val_fp0.3: 1869663.0000 - val_tn0.3: 20281514.0000 - val_fn0.3: 1537243.0000 - val_precision0.3: 0.5747 - val_recall0.3: 0.6217 - val_tp0.5: 2090818.0000 - val_fp0.5: 1570273.0000 - val_tn0.5: 20580908.0000 - va
    l_fn0.5: 1972407.0000 - val_precision0.5: 0.5711 - val_recall0.5: 0.5146 - val_tp0.7: 1691191.0000 - val_fp0.7: 1177904.0000 - val_tn0.7: 20973274.0000 - val_fn0.7: 2372034.0000 - val_precision0.7: 0.5895 - val_recall0.7: 0.4162 - val_
    tp0.9: 1101527.0000 - val_fp0.9: 574543.0000 - val_tn0.9: 21576624.0000 - val_fn0.9: 2961698.0000 - val_precision0.9: 0.6572 - val_recall0.9: 0.2711 - val_accuracy: 0.8649 - val_auc: 0.8377
    Epoch 24/50
    1280/1280 [==============================] - 3284s 3s/step - loss: 0.2805 - tp0.1: 7918656.6589 - fp0.1: 3592495.9235 - tn0.1: 40635399.4606 - fn0.1: 364123.3185 - precision0.1: 0.6839 - recall0.1: 0.9541 - tp0.3: 7581799.2061 - fp0.3:
     1810020.2311 - tn0.3: 42417852.9594 - fn0.3: 700980.7713 - precision0.3: 0.8032 - recall0.3: 0.9122 - tp0.5: 7211523.7502 - fp0.5: 1027547.9930 - tn0.5: 43200324.1296 - fn0.5: 1071256.2272 - precision0.5: 0.8718 - recall0.5: 0.8665 -
    tp0.7: 6727091.3692 - fp0.7: 558955.8712 - tn0.7: 43668944.4075 - fn0.7: 1555688.6081 - precision0.7: 0.9209 - recall0.7: 0.8072 - tp0.9: 5696121.9555 - fp0.9: 142622.7455 - tn0.9: 44085280.0343 - fn0.9: 2586658.0219 - precision0.9: 0.
    9746 - recall0.9: 0.6826 - accuracy: 0.9591 - auc: 0.9708 - val_loss: 0.9386 - val_tp0.1: 2779932.0000 - val_fp0.1: 1939286.0000 - val_tn0.1: 20344936.0000 - val_fn0.1: 1150243.0000 - val_precision0.1: 0.5891 - val_recall0.1: 0.7073 -
    val_tp0.3: 2181594.0000 - val_fp0.3: 1457307.0000 - val_tn0.3: 20826908.0000 - val_fn0.3: 1748581.0000 - val_precision0.3: 0.5995 - val_recall0.3: 0.5551 - val_tp0.5: 1772386.0000 - val_fp0.5: 1197130.0000 - val_tn0.5: 21087092.0000 -
    val_fn0.5: 2157789.0000 - val_precision0.5: 0.5969 - val_recall0.5: 0.4510 - val_tp0.7: 1397374.0000 - val_fp0.7: 840833.0000 - val_tn0.7: 21443384.0000 - val_fn0.7: 2532801.0000 - val_precision0.7: 0.6243 - val_recall0.7: 0.3556 - val
    _tp0.9: 891892.0000 - val_fp0.9: 338054.0000 - val_tn0.9: 21946184.0000 - val_fn0.9: 3038283.0000 - val_precision0.9: 0.7251 - val_recall0.9: 0.2269 - val_accuracy: 0.8720 - val_auc: 0.8227
    Epoch 25/50
    1280/1280 [==============================] - 3312s 3s/step - loss: 0.2614 - tp0.1: 7920216.7338 - fp0.1: 3526618.6542 - tn0.1: 40723751.9001 - fn0.1: 340058.4512 - precision0.1: 0.6948 - recall0.1: 0.9594 - tp0.3: 7591746.0851 - fp0.3:
     1770255.0687 - tn0.3: 42480125.7884 - fn0.3: 668529.0999 - precision0.3: 0.8133 - recall0.3: 0.9199 - tp0.5: 7232148.8064 - fp0.5: 1004410.7486 - tn0.5: 43245980.8556 - fn0.5: 1028126.3786 - precision0.5: 0.8800 - recall0.5: 0.8766 -
    tp0.7: 6751684.1514 - fp0.7: 540161.4325 - tn0.7: 43710214.4629 - fn0.7: 1508591.0336 - precision0.7: 0.9275 - recall0.7: 0.8179 - tp0.9: 5682987.5933 - fp0.9: 133426.7330 - tn0.9: 44116927.1835 - fn0.9: 2577287.5917 - precision0.9: 0.
    9781 - recall0.9: 0.6873 - accuracy: 0.9617 - auc: 0.9742 - val_loss: 0.7990 - val_tp0.1: 3208335.0000 - val_fp0.1: 2291707.0000 - val_tn0.1: 19888704.0000 - val_fn0.1: 825651.0000 - val_precision0.1: 0.5833 - val_recall0.1: 0.7953 - v
    al_tp0.3: 2646324.0000 - val_fp0.3: 1812815.0000 - val_tn0.3: 20367606.0000 - val_fn0.3: 1387662.0000 - val_precision0.3: 0.5935 - val_recall0.3: 0.6560 - val_tp0.5: 2184535.0000 - val_fp0.5: 1449172.0000 - val_tn0.5: 20731252.0000 - v
    al_fn0.5: 1849451.0000 - val_precision0.5: 0.6012 - val_recall0.5: 0.5415 - val_tp0.7: 1700807.0000 - val_fp0.7: 1059055.0000 - val_tn0.7: 21121356.0000 - val_fn0.7: 2333179.0000 - val_precision0.7: 0.6163 - val_recall0.7: 0.4216 - val
    _tp0.9: 1000799.0000 - val_fp0.9: 603281.0000 - val_tn0.9: 21577132.0000 - val_fn0.9: 3033187.0000 - val_precision0.9: 0.6239 - val_recall0.9: 0.2481 - val_accuracy: 0.8742 - val_auc: 0.8559
    Epoch 26/50
    1280/1280 [==============================] - 3292s 3s/step - loss: 0.2564 - tp0.1: 7951938.6698 - fp0.1: 3507608.0250 - tn0.1: 40722855.8618 - fn0.1: 328256.7658 - precision0.1: 0.6956 - recall0.1: 0.9610 - tp0.3: 7628245.6300 - fp0.3:
     1764444.8579 - tn0.3: 42466010.5285 - fn0.3: 651949.8056 - precision0.3: 0.8130 - recall0.3: 0.9222 - tp0.5: 7277018.4473 - fp0.5: 993563.1429 - tn0.5: 43236890.8002 - fn0.5: 1003176.9883 - precision0.5: 0.8801 - recall0.5: 0.8802 - t
    p0.7: 6809211.9329 - fp0.7: 538938.6565 - tn0.7: 43691507.5847 - fn0.7: 1470983.5027 - precision0.7: 0.9271 - recall0.7: 0.8247 - tp0.9: 5778468.3435 - fp0.9: 130088.7877 - tn0.9: 44100381.7361 - fn0.9: 2501727.0921 - precision0.9: 0.9
    783 - recall0.9: 0.7006 - accuracy: 0.9620 - auc: 0.9752 - val_loss: 0.9080 - val_tp0.1: 2917153.0000 - val_fp0.1: 2217207.0000 - val_tn0.1: 20036056.0000 - val_fn0.1: 1043985.0000 - val_precision0.1: 0.5682 - val_recall0.1: 0.7364 - v
    al_tp0.3: 2324132.0000 - val_fp0.3: 1709552.0000 - val_tn0.3: 20543718.0000 - val_fn0.3: 1637006.0000 - val_precision0.3: 0.5762 - val_recall0.3: 0.5867 - val_tp0.5: 1885949.0000 - val_fp0.5: 1373092.0000 - val_tn0.5: 20880176.0000 - v
    al_fn0.5: 2075189.0000 - val_precision0.5: 0.5787 - val_recall0.5: 0.4761 - val_tp0.7: 1470934.0000 - val_fp0.7: 951612.0000 - val_tn0.7: 21301648.0000 - val_fn0.7: 2490204.0000 - val_precision0.7: 0.6072 - val_recall0.7: 0.3713 - val_
    tp0.9: 925487.0000 - val_fp0.9: 440991.0000 - val_tn0.9: 21812280.0000 - val_fn0.9: 3035651.0000 - val_precision0.9: 0.6773 - val_recall0.9: 0.2336 - val_accuracy: 0.8685 - val_auc: 0.8286
    Epoch 27/50
    1280/1280 [==============================] - 3294s 3s/step - loss: 0.2645 - tp0.1: 8005473.6409 - fp0.1: 3575769.4098 - tn0.1: 40581931.1319 - fn0.1: 347472.6667 - precision0.1: 0.6907 - recall0.1: 0.9587 - tp0.3: 7670517.9243 - fp0.3:
     1798604.7674 - tn0.3: 42359111.5941 - fn0.3: 682428.3833 - precision0.3: 0.8108 - recall0.3: 0.9185 - tp0.5: 7312500.5558 - fp0.5: 1024504.0812 - tn0.5: 43133203.4434 - fn0.5: 1040445.7518 - precision0.5: 0.8784 - recall0.5: 0.8764 -
    tp0.7: 6846122.2201 - fp0.7: 554274.4294 - tn0.7: 43603409.3521 - fn0.7: 1506824.0874 - precision0.7: 0.9264 - recall0.7: 0.8215 - tp0.9: 5804102.2420 - fp0.9: 127947.9672 - tn0.9: 44029764.9969 - fn0.9: 2548844.0656 - precision0.9: 0.
    9789 - recall0.9: 0.6991 - accuracy: 0.9613 - auc: 0.9737 - val_loss: 0.7467 - val_tp0.1: 3265250.0000 - val_fp0.1: 2199966.0000 - val_tn0.1: 19968754.0000 - val_fn0.1: 780424.0000 - val_precision0.1: 0.5975 - val_recall0.1: 0.8071 - v
    al_tp0.3: 2595986.0000 - val_fp0.3: 1569977.0000 - val_tn0.3: 20598752.0000 - val_fn0.3: 1449688.0000 - val_precision0.3: 0.6231 - val_recall0.3: 0.6417 - val_tp0.5: 2090775.0000 - val_fp0.5: 1320764.0000 - val_tn0.5: 20847968.0000 - v
    al_fn0.5: 1954899.0000 - val_precision0.5: 0.6129 - val_recall0.5: 0.5168 - val_tp0.7: 1610859.0000 - val_fp0.7: 895071.0000 - val_tn0.7: 21273662.0000 - val_fn0.7: 2434815.0000 - val_precision0.7: 0.6428 - val_recall0.7: 0.3982 - val_
    tp0.9: 934620.0000 - val_fp0.9: 380349.0000 - val_tn0.9: 21788384.0000 - val_fn0.9: 3111054.0000 - val_precision0.9: 0.7108 - val_recall0.9: 0.2310 - val_accuracy: 0.8750 - val_auc: 0.8659
    Epoch 28/50
    1280/1280 [==============================] - 3286s 3s/step - loss: 0.2563 - tp0.1: 7900461.9563 - fp0.1: 3575374.1405 - tn0.1: 40711544.3599 - fn0.1: 323306.9867 - precision0.1: 0.6896 - recall0.1: 0.9612 - tp0.3: 7567966.7549 - fp0.3:
     1768843.2389 - tn0.3: 42518056.5605 - fn0.3: 655802.1881 - precision0.3: 0.8113 - recall0.3: 0.9206 - tp0.5: 7202561.9477 - fp0.5: 988935.1319 - tn0.5: 43297946.7713 - fn0.5: 1021206.9953 - precision0.5: 0.8795 - recall0.5: 0.8766 - t
    p0.7: 6725537.1077 - fp0.7: 525482.0679 - tn0.7: 43761380.4372 - fn0.7: 1498231.8353 - precision0.7: 0.9278 - recall0.7: 0.8191 - tp0.9: 5729492.5956 - fp0.9: 139279.5152 - tn0.9: 44147595.4887 - fn0.9: 2494276.3474 - precision0.9: 0.9
    761 - recall0.9: 0.7005 - accuracy: 0.9620 - auc: 0.9747 - val_loss: 0.9282 - val_tp0.1: 3074924.0000 - val_fp0.1: 2026526.0000 - val_tn0.1: 20054118.0000 - val_fn0.1: 1058829.0000 - val_precision0.1: 0.6028 - val_recall0.1: 0.7439 - v
    al_tp0.3: 2384857.0000 - val_fp0.3: 1512374.0000 - val_tn0.3: 20568268.0000 - val_fn0.3: 1748896.0000 - val_precision0.3: 0.6119 - val_recall0.3: 0.5769 - val_tp0.5: 1874790.0000 - val_fp0.5: 1177108.0000 - val_tn0.5: 20903548.0000 - v
    al_fn0.5: 2258963.0000 - val_precision0.5: 0.6143 - val_recall0.5: 0.4535 - val_tp0.7: 1433826.0000 - val_fp0.7: 875539.0000 - val_tn0.7: 21205108.0000 - val_fn0.7: 2699927.0000 - val_precision0.7: 0.6209 - val_recall0.7: 0.3469 - val_
    tp0.9: 876571.0000 - val_fp0.9: 463067.0000 - val_tn0.9: 21617596.0000 - val_fn0.9: 3257182.0000 - val_precision0.9: 0.6543 - val_recall0.9: 0.2121 - val_accuracy: 0.8689 - val_auc: 0.8345
    Epoch 29/50
    1280/1280 [==============================] - 3301s 3s/step - loss: 0.2631 - tp0.1: 7928634.4387 - fp0.1: 3499371.4231 - tn0.1: 40746977.2912 - fn0.1: 335655.7486 - precision0.1: 0.6931 - recall0.1: 0.9590 - tp0.3: 7590846.6565 - fp0.3:
     1745234.9133 - tn0.3: 42501135.9079 - fn0.3: 673443.5308 - precision0.3: 0.8123 - recall0.3: 0.9172 - tp0.5: 7228004.8962 - fp0.5: 987598.6276 - tn0.5: 43258775.8423 - fn0.5: 1036285.2912 - precision0.5: 0.8797 - recall0.5: 0.8722 - t
    p0.7: 6751780.5855 - fp0.7: 528906.3060 - tn0.7: 43717457.8899 - fn0.7: 1512509.6019 - precision0.7: 0.9276 - recall0.7: 0.8149 - tp0.9: 5739049.2662 - fp0.9: 134220.8212 - tn0.9: 44112121.8931 - fn0.9: 2525240.9212 - precision0.9: 0.9
    773 - recall0.9: 0.6932 - accuracy: 0.9610 - auc: 0.9735 - val_loss: 0.9733 - val_tp0.1: 2953631.0000 - val_fp0.1: 2097398.0000 - val_tn0.1: 20016580.0000 - val_fn0.1: 1146781.0000 - val_precision0.1: 0.5848 - val_recall0.1: 0.7203 - v
    al_tp0.3: 2295553.0000 - val_fp0.3: 1572391.0000 - val_tn0.3: 20541608.0000 - val_fn0.3: 1804859.0000 - val_precision0.3: 0.5935 - val_recall0.3: 0.5598 - val_tp0.5: 1907607.0000 - val_fp0.5: 1337407.0000 - val_tn0.5: 20776580.0000 - v
    al_fn0.5: 2192805.0000 - val_precision0.5: 0.5879 - val_recall0.5: 0.4652 - val_tp0.7: 1521536.0000 - val_fp0.7: 1008010.0000 - val_tn0.7: 21105980.0000 - val_fn0.7: 2578876.0000 - val_precision0.7: 0.6015 - val_recall0.7: 0.3711 - val
    _tp0.9: 972957.0000 - val_fp0.9: 483731.0000 - val_tn0.9: 21630266.0000 - val_fn0.9: 3127455.0000 - val_precision0.9: 0.6679 - val_recall0.9: 0.2373 - val_accuracy: 0.8653 - val_auc: 0.8217
    Epoch 30/50
    1280/1280 [==============================] - 3328s 3s/step - loss: 0.2476 - tp0.1: 7928433.5863 - fp0.1: 3472550.0773 - tn0.1: 40794809.0422 - fn0.1: 314855.4317 - precision0.1: 0.6960 - recall0.1: 0.9627 - tp0.3: 7601842.5277 - fp0.3:
     1687439.2631 - tn0.3: 42579912.0640 - fn0.3: 641446.4902 - precision0.3: 0.8211 - recall0.3: 0.9228 - tp0.5: 7249994.1311 - fp0.5: 954111.0289 - tn0.5: 43313245.2014 - fn0.5: 993294.8868 - precision0.5: 0.8862 - recall0.5: 0.8801 - tp
    0.7: 6788340.7728 - fp0.7: 512779.7322 - tn0.7: 43754579.6230 - fn0.7: 1454948.2451 - precision0.7: 0.9317 - recall0.7: 0.8242 - tp0.9: 5804142.8977 - fp0.9: 135882.9547 - tn0.9: 44131491.4426 - fn0.9: 2439146.1202 - precision0.9: 0.97
    77 - recall0.9: 0.7071 - accuracy: 0.9638 - auc: 0.9759 - val_loss: 0.9000 - val_tp0.1: 3155596.0000 - val_fp0.1: 2364539.0000 - val_tn0.1: 19719286.0000 - val_fn0.1: 974987.0000 - val_precision0.1: 0.5717 - val_recall0.1: 0.7640 - val
    _tp0.3: 2555024.0000 - val_fp0.3: 1820537.0000 - val_tn0.3: 20263286.0000 - val_fn0.3: 1575559.0000 - val_precision0.3: 0.5839 - val_recall0.3: 0.6186 - val_tp0.5: 2171845.0000 - val_fp0.5: 1530813.0000 - val_tn0.5: 20553012.0000 - val
    _fn0.5: 1958738.0000 - val_precision0.5: 0.5866 - val_recall0.5: 0.5258 - val_tp0.7: 1696953.0000 - val_fp0.7: 1088079.0000 - val_tn0.7: 20995736.0000 - val_fn0.7: 2433630.0000 - val_precision0.7: 0.6093 - val_recall0.7: 0.4108 - val_t
    p0.9: 986911.0000 - val_fp0.9: 596529.0000 - val_tn0.9: 21487282.0000 - val_fn0.9: 3143672.0000 - val_precision0.9: 0.6233 - val_recall0.9: 0.2389 - val_accuracy: 0.8669 - val_auc: 0.8372
    Epoch 31/50
    1280/1280 [==============================] - 3327s 3s/step - loss: 0.2474 - tp0.1: 7893463.6916 - fp0.1: 3376652.6175 - tn0.1: 40920762.5230 - fn0.1: 319751.0945 - precision0.1: 0.6988 - recall0.1: 0.9618 - tp0.3: 7584152.9766 - fp0.3:
     1687559.6604 - tn0.3: 42609861.8407 - fn0.3: 629061.8095 - precision0.3: 0.8167 - recall0.3: 0.9246 - tp0.5: 7249654.8931 - fp0.5: 952218.5824 - tn0.5: 43345227.1788 - fn0.5: 963559.8931 - precision0.5: 0.8832 - recall0.5: 0.8838 - tp
    0.7: 6813905.7268 - fp0.7: 516513.1452 - tn0.7: 43780937.7900 - fn0.7: 1399309.0593 - precision0.7: 0.9292 - recall0.7: 0.8309 - tp0.9: 5825876.9290 - fp0.9: 123739.9094 - tn0.9: 44173704.9789 - fn0.9: 2387337.8571 - precision0.9: 0.97
    94 - recall0.9: 0.7105 - accuracy: 0.9638 - auc: 0.9755 - val_loss: 1.0137 - val_tp0.1: 2843857.0000 - val_fp0.1: 2045215.0000 - val_tn0.1: 20132800.0000 - val_fn0.1: 1192532.0000 - val_precision0.1: 0.5817 - val_recall0.1: 0.7046 - va
    l_tp0.3: 2207535.0000 - val_fp0.3: 1595385.0000 - val_tn0.3: 20582624.0000 - val_fn0.3: 1828854.0000 - val_precision0.3: 0.5805 - val_recall0.3: 0.5469 - val_tp0.5: 1835971.0000 - val_fp0.5: 1390695.0000 - val_tn0.5: 20787306.0000 - va
    l_fn0.5: 2200418.0000 - val_precision0.5: 0.5690 - val_recall0.5: 0.4549 - val_tp0.7: 1407052.0000 - val_fp0.7: 1033277.0000 - val_tn0.7: 21144740.0000 - val_fn0.7: 2629337.0000 - val_precision0.7: 0.5766 - val_recall0.7: 0.3486 - val_
    tp0.9: 786994.0000 - val_fp0.9: 502079.0000 - val_tn0.9: 21675932.0000 - val_fn0.9: 3249395.0000 - val_precision0.9: 0.6105 - val_recall0.9: 0.1950 - val_accuracy: 0.8630 - val_auc: 0.8121
    Epoch 32/50
    1280/1280 [==============================] - 3314s 3s/step - loss: 0.2529 - tp0.1: 7921204.5262 - fp0.1: 3486226.5160 - tn0.1: 40787447.0554 - fn0.1: 315795.7416 - precision0.1: 0.6929 - recall0.1: 0.9624 - tp0.3: 7593409.2264 - fp0.3:
     1719995.1319 - tn0.3: 42553646.5496 - fn0.3: 643591.0414 - precision0.3: 0.8139 - recall0.3: 0.9227 - tp0.5: 7240041.4294 - fp0.5: 971849.9313 - tn0.5: 43301829.9984 - fn0.5: 996958.8384 - precision0.5: 0.8807 - recall0.5: 0.8794 - tp
    0.7: 6782718.2459 - fp0.7: 527577.0203 - tn0.7: 43746081.8454 - fn0.7: 1454282.0219 - precision0.7: 0.9273 - recall0.7: 0.8235 - tp0.9: 5780993.2069 - fp0.9: 137794.4926 - tn0.9: 44135860.1952 - fn0.9: 2456007.0609 - precision0.9: 0.97
    62 - recall0.9: 0.7029 - accuracy: 0.9623 - auc: 0.9755 - val_loss: 0.9139 - val_tp0.1: 2984184.0000 - val_fp0.1: 1853144.0000 - val_tn0.1: 20302900.0000 - val_fn0.1: 1074177.0000 - val_precision0.1: 0.6169 - val_recall0.1: 0.7353 - va
    l_tp0.3: 2282389.0000 - val_fp0.3: 1253127.0000 - val_tn0.3: 20902908.0000 - val_fn0.3: 1775972.0000 - val_precision0.3: 0.6456 - val_recall0.3: 0.5624 - val_tp0.5: 1856088.0000 - val_fp0.5: 1008268.0000 - val_tn0.5: 21147768.0000 - va
    l_fn0.5: 2202273.0000 - val_precision0.5: 0.6480 - val_recall0.5: 0.4573 - val_tp0.7: 1412568.0000 - val_fp0.7: 746394.0000 - val_tn0.7: 21409650.0000 - val_fn0.7: 2645793.0000 - val_precision0.7: 0.6543 - val_recall0.7: 0.3481 - val_t
    p0.9: 859420.0000 - val_fp0.9: 382687.0000 - val_tn0.9: 21773356.0000 - val_fn0.9: 3198941.0000 - val_precision0.9: 0.6919 - val_recall0.9: 0.2118 - val_accuracy: 0.8775 - val_auc: 0.8374
    Epoch 33/50
    1280/1280 [==============================] - 3327s 3s/step - loss: 0.2503 - tp0.1: 8047970.1561 - fp0.1: 3391824.5386 - tn0.1: 40757551.3286 - fn0.1: 313307.7994 - precision0.1: 0.7045 - recall0.1: 0.9628 - tp0.3: 7729505.2756 - fp0.3:
     1696243.9040 - tn0.3: 42453121.2498 - fn0.3: 631772.6799 - precision0.3: 0.8217 - recall0.3: 0.9244 - tp0.5: 7388192.9508 - fp0.5: 982075.0718 - tn0.5: 43167288.1382 - fn0.5: 973085.0047 - precision0.5: 0.8838 - recall0.5: 0.8830 - tp
    0.7: 6931423.2888 - fp0.7: 537102.3271 - tn0.7: 43612270.6479 - fn0.7: 1429854.6667 - precision0.7: 0.9287 - recall0.7: 0.8280 - tp0.9: 5907919.1241 - fp0.9: 136823.9852 - tn0.9: 44012543.5980 - fn0.9: 2453358.8314 - precision0.9: 0.97
    77 - recall0.9: 0.7060 - accuracy: 0.9628 - auc: 0.9760 - val_loss: 1.0074 - val_tp0.1: 3175440.0000 - val_fp0.1: 2183311.0000 - val_tn0.1: 19707500.0000 - val_fn0.1: 1148150.0000 - val_precision0.1: 0.5926 - val_recall0.1: 0.7344 - va
    l_tp0.3: 2561350.0000 - val_fp0.3: 1772975.0000 - val_tn0.3: 20117834.0000 - val_fn0.3: 1762240.0000 - val_precision0.3: 0.5909 - val_recall0.3: 0.5924 - val_tp0.5: 2236272.0000 - val_fp0.5: 1567765.0000 - val_tn0.5: 20323044.0000 - va
    l_fn0.5: 2087318.0000 - val_precision0.5: 0.5879 - val_recall0.5: 0.5172 - val_tp0.7: 1860628.0000 - val_fp0.7: 1235466.0000 - val_tn0.7: 20655340.0000 - val_fn0.7: 2462962.0000 - val_precision0.7: 0.6010 - val_recall0.7: 0.4303 - val_
    tp0.9: 1296792.0000 - val_fp0.9: 704030.0000 - val_tn0.9: 21186792.0000 - val_fn0.9: 3026798.0000 - val_precision0.9: 0.6481 - val_recall0.9: 0.2999 - val_accuracy: 0.8606 - val_auc: 0.8254
    Epoch 34/50
    1280/1280 [==============================] - 3324s 3s/step - loss: 0.2507 - tp0.1: 7911580.4098 - fp0.1: 3345203.1913 - tn0.1: 40931131.7447 - fn0.1: 322742.2100 - precision0.1: 0.7028 - recall0.1: 0.9609 - tp0.3: 7599881.2022 - fp0.3:
     1647150.7923 - tn0.3: 42629169.7291 - fn0.3: 634441.4176 - precision0.3: 0.8220 - recall0.3: 0.9223 - tp0.5: 7270919.3005 - fp0.5: 951517.5379 - tn0.5: 43324815.6550 - fn0.5: 963403.3193 - precision0.5: 0.8843 - recall0.5: 0.8819 - tp
    0.7: 6834573.1491 - fp0.7: 523079.1390 - tn0.7: 43753256.2943 - fn0.7: 1399749.4707 - precision0.7: 0.9292 - recall0.7: 0.8288 - tp0.9: 5841839.3435 - fp0.9: 132340.8064 - tn0.9: 44144004.1702 - fn0.9: 2392483.2763 - precision0.9: 0.97
    80 - recall0.9: 0.7081 - accuracy: 0.9633 - auc: 0.9751 - val_loss: 0.9237 - val_tp0.1: 3263836.0000 - val_fp0.1: 1919441.0000 - val_tn0.1: 19948316.0000 - val_fn0.1: 1082810.0000 - val_precision0.1: 0.6297 - val_recall0.1: 0.7509 - va
    l_tp0.3: 2560242.0000 - val_fp0.3: 1398314.0000 - val_tn0.3: 20469446.0000 - val_fn0.3: 1786404.0000 - val_precision0.3: 0.6468 - val_recall0.3: 0.5890 - val_tp0.5: 2148456.0000 - val_fp0.5: 1146771.0000 - val_tn0.5: 20720984.0000 - va
    l_fn0.5: 2198190.0000 - val_precision0.5: 0.6520 - val_recall0.5: 0.4943 - val_tp0.7: 1663813.0000 - val_fp0.7: 806718.0000 - val_tn0.7: 21061036.0000 - val_fn0.7: 2682833.0000 - val_precision0.7: 0.6735 - val_recall0.7: 0.3828 - val_t
    p0.9: 979165.0000 - val_fp0.9: 394579.0000 - val_tn0.9: 21473184.0000 - val_fn0.9: 3367481.0000 - val_precision0.9: 0.7128 - val_recall0.9: 0.2253 - val_accuracy: 0.8724 - val_auc: 0.8405
    Epoch 35/50
    1280/1280 [==============================] - 3310s 3s/step - loss: 0.2614 - tp0.1: 7937448.7291 - fp0.1: 3421955.0578 - tn0.1: 40822462.2030 - fn0.1: 328785.1717 - precision0.1: 0.6999 - recall0.1: 0.9579 - tp0.3: 7621030.6534 - fp0.3:
     1703065.0414 - tn0.3: 42541374.6472 - fn0.3: 645203.2475 - precision0.3: 0.8174 - recall0.3: 0.9200 - tp0.5: 7279229.2404 - fp0.5: 977595.1093 - tn0.5: 43266832.8696 - fn0.5: 987004.6604 - precision0.5: 0.8809 - recall0.5: 0.8792 - tp
    0.7: 6838107.3216 - fp0.7: 536670.7908 - tn0.7: 43707710.4473 - fn0.7: 1428126.5792 - precision0.7: 0.9261 - recall0.7: 0.8262 - tp0.9: 5811902.2927 - fp0.9: 135171.2490 - tn0.9: 44109247.1507 - fn0.9: 2454331.6081 - precision0.9: 0.97
    71 - recall0.9: 0.7018 - accuracy: 0.9620 - auc: 0.9732 - val_loss: 0.8013 - val_tp0.1: 3284754.0000 - val_fp0.1: 2344554.0000 - val_tn0.1: 19771954.0000 - val_fn0.1: 813139.0000 - val_precision0.1: 0.5835 - val_recall0.1: 0.8016 - val
    _tp0.3: 2575560.0000 - val_fp0.3: 1777769.0000 - val_tn0.3: 20338744.0000 - val_fn0.3: 1522333.0000 - val_precision0.3: 0.5916 - val_recall0.3: 0.6285 - val_tp0.5: 2179640.0000 - val_fp0.5: 1496577.0000 - val_tn0.5: 20619926.0000 - val
    _fn0.5: 1918253.0000 - val_precision0.5: 0.5929 - val_recall0.5: 0.5319 - val_tp0.7: 1701082.0000 - val_fp0.7: 1053012.0000 - val_tn0.7: 21063498.0000 - val_fn0.7: 2396811.0000 - val_precision0.7: 0.6177 - val_recall0.7: 0.4151 - val_t
    p0.9: 989696.0000 - val_fp0.9: 527144.0000 - val_tn0.9: 21589364.0000 - val_fn0.9: 3108197.0000 - val_precision0.9: 0.6525 - val_recall0.9: 0.2415 - val_accuracy: 0.8697 - val_auc: 0.8572
    Epoch 36/50
    1280/1280 [==============================] - 3341s 3s/step - loss: 0.2585 - tp0.1: 7873502.4785 - fp0.1: 3351134.0312 - tn0.1: 40955766.1046 - fn0.1: 330264.3185 - precision0.1: 0.6971 - recall0.1: 0.9588 - tp0.3: 7549771.1140 - fp0.3:
     1661219.6745 - tn0.3: 42645646.7143 - fn0.3: 653995.6831 - precision0.3: 0.8162 - recall0.3: 0.9183 - tp0.5: 7211353.4215 - fp0.5: 964176.2467 - tn0.5: 43342703.0515 - fn0.5: 992413.3755 - precision0.5: 0.8793 - recall0.5: 0.8765 - tp
    0.7: 6769812.5121 - fp0.7: 536905.1553 - tn0.7: 43770008.0851 - fn0.7: 1433954.2849 - precision0.7: 0.9245 - recall0.7: 0.8228 - tp0.9: 5783984.8657 - fp0.9: 143730.5753 - tn0.9: 44163162.1390 - fn0.9: 2419781.9313 - precision0.9: 0.97
    52 - recall0.9: 0.7042 - accuracy: 0.9619 - auc: 0.9736 - val_loss: 0.7459 - val_tp0.1: 3472629.0000 - val_fp0.1: 2432774.0000 - val_tn0.1: 19591824.0000 - val_fn0.1: 717165.0000 - val_precision0.1: 0.5880 - val_recall0.1: 0.8288 - val
    _tp0.3: 2809063.0000 - val_fp0.3: 1835029.0000 - val_tn0.3: 20189584.0000 - val_fn0.3: 1380731.0000 - val_precision0.3: 0.6049 - val_recall0.3: 0.6705 - val_tp0.5: 2315959.0000 - val_fp0.5: 1490932.0000 - val_tn0.5: 20533678.0000 - val
    _fn0.5: 1873835.0000 - val_precision0.5: 0.6084 - val_recall0.5: 0.5528 - val_tp0.7: 1776363.0000 - val_fp0.7: 1094378.0000 - val_tn0.7: 20930232.0000 - val_fn0.7: 2413431.0000 - val_precision0.7: 0.6188 - val_recall0.7: 0.4240 - val_t
    p0.9: 1035383.0000 - val_fp0.9: 541763.0000 - val_tn0.9: 21482840.0000 - val_fn0.9: 3154411.0000 - val_precision0.9: 0.6565 - val_recall0.9: 0.2471 - val_accuracy: 0.8716 - val_auc: 0.8687
    Epoch 37/50
    1280/1280 [==============================] - 3295s 3s/step - loss: 0.2437 - tp0.1: 8016183.8337 - fp0.1: 3307100.4614 - tn0.1: 40879834.5652 - fn0.1: 307556.7455 - precision0.1: 0.7070 - recall0.1: 0.9629 - tp0.3: 7712574.3755 - fp0.3:
     1659818.0539 - tn0.3: 42527102.4731 - fn0.3: 611166.2037 - precision0.3: 0.8224 - recall0.3: 0.9270 - tp0.5: 7388699.9188 - fp0.5: 964567.5652 - tn0.5: 43222331.7237 - fn0.5: 935040.6604 - precision0.5: 0.8843 - recall0.5: 0.8884 - tp
    0.7: 6943361.7510 - fp0.7: 525733.5105 - tn0.7: 43661155.2553 - fn0.7: 1380378.8283 - precision0.7: 0.9294 - recall0.7: 0.8349 - tp0.9: 5919522.7244 - fp0.9: 126122.8407 - tn0.9: 44060797.3005 - fn0.9: 2404217.8548 - precision0.9: 0.97
    90 - recall0.9: 0.7122 - accuracy: 0.9641 - auc: 0.9762 - val_loss: 0.8760 - val_tp0.1: 3352442.0000 - val_fp0.1: 2392549.0000 - val_tn0.1: 19544092.0000 - val_fn0.1: 925309.0000 - val_precision0.1: 0.5835 - val_recall0.1: 0.7837 - val
    _tp0.3: 2658571.0000 - val_fp0.3: 1872790.0000 - val_tn0.3: 20063866.0000 - val_fn0.3: 1619180.0000 - val_precision0.3: 0.5867 - val_recall0.3: 0.6215 - val_tp0.5: 2313864.0000 - val_fp0.5: 1697140.0000 - val_tn0.5: 20239508.0000 - val
    _fn0.5: 1963887.0000 - val_precision0.5: 0.5769 - val_recall0.5: 0.5409 - val_tp0.7: 1882798.0000 - val_fp0.7: 1331096.0000 - val_tn0.7: 20605548.0000 - val_fn0.7: 2394953.0000 - val_precision0.7: 0.5858 - val_recall0.7: 0.4401 - val_t
    p0.9: 1104516.0000 - val_fp0.9: 586104.0000 - val_tn0.9: 21350548.0000 - val_fn0.9: 3173235.0000 - val_precision0.9: 0.6533 - val_recall0.9: 0.2582 - val_accuracy: 0.8603 - val_auc: 0.8446
    Epoch 38/50
    1280/1280 [==============================] - 3369s 3s/step - loss: 0.2413 - tp0.1: 7956859.0180 - fp0.1: 3276078.4895 - tn0.1: 40979600.7861 - fn0.1: 298124.8735 - precision0.1: 0.7090 - recall0.1: 0.9634 - tp0.3: 7646937.8517 - fp0.3:
     1590794.5269 - tn0.3: 42664873.7775 - fn0.3: 608046.0398 - precision0.3: 0.8280 - recall0.3: 0.9258 - tp0.5: 7313832.8025 - fp0.5: 911027.5652 - tn0.5: 43344624.5683 - fn0.5: 941151.0890 - precision0.5: 0.8894 - recall0.5: 0.8851 - tp
    0.7: 6881091.8657 - fp0.7: 495880.5730 - tn0.7: 43759809.8337 - fn0.7: 1373892.0258 - precision0.7: 0.9331 - recall0.7: 0.8326 - tp0.9: 5927602.7518 - fp0.9: 127784.9633 - tn0.9: 44127895.0578 - fn0.9: 2327381.1397 - precision0.9: 0.97
    90 - recall0.9: 0.7159 - accuracy: 0.9644 - auc: 0.9765 - val_loss: 4.9077 - val_tp0.1: 3486973.0000 - val_fp0.1: 2850284.0000 - val_tn0.1: 19285722.0000 - val_fn0.1: 591422.0000 - val_precision0.1: 0.5502 - val_recall0.1: 0.8550 - val
    _tp0.3: 2787062.0000 - val_fp0.3: 2180072.0000 - val_tn0.3: 19955928.0000 - val_fn0.3: 1291333.0000 - val_precision0.3: 0.5611 - val_recall0.3: 0.6834 - val_tp0.5: 2371435.0000 - val_fp0.5: 2041150.0000 - val_tn0.5: 20094856.0000 - val
    _fn0.5: 1706960.0000 - val_precision0.5: 0.5374 - val_recall0.5: 0.5815 - val_tp0.7: 2052507.0000 - val_fp0.7: 1911080.0000 - val_tn0.7: 20224928.0000 - val_fn0.7: 2025888.0000 - val_precision0.7: 0.5178 - val_recall0.7: 0.5033 - val_t
    p0.9: 1593600.0000 - val_fp0.9: 1598028.0000 - val_tn0.9: 20537976.0000 - val_fn0.9: 2484795.0000 - val_precision0.9: 0.4993 - val_recall0.9: 0.3907 - val_accuracy: 0.8570 - val_auc: 0.8622
    Epoch 39/50
    1280/1280 [==============================] - 3380s 3s/step - loss: 0.2414 - tp0.1: 7803821.4372 - fp0.1: 3354269.5839 - tn0.1: 41052380.7252 - fn0.1: 300171.4941 - precision0.1: 0.6956 - recall0.1: 0.9633 - tp0.3: 7497167.4637 - fp0.3:
     1643206.8829 - tn0.3: 42763432.2763 - fn0.3: 606825.4676 - precision0.3: 0.8198 - recall0.3: 0.9250 - tp0.5: 7161284.4465 - fp0.5: 930784.7471 - tn0.5: 43475886.7112 - fn0.5: 942708.4848 - precision0.5: 0.8867 - recall0.5: 0.8828 - tp
    0.7: 6716037.1132 - fp0.7: 498289.9742 - tn0.7: 43908382.7361 - fn0.7: 1387955.8181 - precision0.7: 0.9325 - recall0.7: 0.8275 - tp0.9: 5745482.9321 - fp0.9: 129539.1460 - tn0.9: 44277093.8798 - fn0.9: 2358509.9992 - precision0.9: 0.97
    87 - recall0.9: 0.7074 - accuracy: 0.9647 - auc: 0.9763 - val_loss: 0.8416 - val_tp0.1: 3152764.0000 - val_fp0.1: 1979016.0000 - val_tn0.1: 20133118.0000 - val_fn0.1: 949499.0000 - val_precision0.1: 0.6144 - val_recall0.1: 0.7685 - val
    _tp0.3: 2438228.0000 - val_fp0.3: 1470054.0000 - val_tn0.3: 20642072.0000 - val_fn0.3: 1664035.0000 - val_precision0.3: 0.6239 - val_recall0.3: 0.5944 - val_tp0.5: 1977683.0000 - val_fp0.5: 1217609.0000 - val_tn0.5: 20894528.0000 - val
    _fn0.5: 2124580.0000 - val_precision0.5: 0.6189 - val_recall0.5: 0.4821 - val_tp0.7: 1503343.0000 - val_fp0.7: 862897.0000 - val_tn0.7: 21249240.0000 - val_fn0.7: 2598920.0000 - val_precision0.7: 0.6353 - val_recall0.7: 0.3665 - val_tp
    0.9: 896812.0000 - val_fp0.9: 377234.0000 - val_tn0.9: 21734904.0000 - val_fn0.9: 3205451.0000 - val_precision0.9: 0.7039 - val_recall0.9: 0.2186 - val_accuracy: 0.8725 - val_auc: 0.8477
    Epoch 40/50
    1280/1280 [==============================] - 3386s 3s/step - loss: 0.2375 - tp0.1: 8019265.8907 - fp0.1: 3238880.4543 - tn0.1: 40953284.0133 - fn0.1: 299240.1600 - precision0.1: 0.7138 - recall0.1: 0.9637 - tp0.3: 7719720.4668 - fp0.3:
     1605122.1085 - tn0.3: 42587020.9703 - fn0.3: 598785.5839 - precision0.3: 0.8287 - recall0.3: 0.9280 - tp0.5: 7396785.5230 - fp0.5: 927286.7697 - tn0.5: 43264845.8103 - fn0.5: 921720.5277 - precision0.5: 0.8890 - recall0.5: 0.8895 - tp
    0.7: 6965247.9297 - fp0.7: 501804.8829 - tn0.7: 43690323.6995 - fn0.7: 1353258.1210 - precision0.7: 0.9328 - recall0.7: 0.8383 - tp0.9: 5960658.1421 - fp0.9: 123056.3981 - tn0.9: 44069097.9461 - fn0.9: 2357847.9087 - precision0.9: 0.97
    98 - recall0.9: 0.7181 - accuracy: 0.9649 - auc: 0.9769 - val_loss: 0.7336 - val_tp0.1: 3398410.0000 - val_fp0.1: 2457064.0000 - val_tn0.1: 19690942.0000 - val_fn0.1: 667979.0000 - val_precision0.1: 0.5804 - val_recall0.1: 0.8357 - val
    _tp0.3: 2749737.0000 - val_fp0.3: 1843797.0000 - val_tn0.3: 20304204.0000 - val_fn0.3: 1316652.0000 - val_precision0.3: 0.5986 - val_recall0.3: 0.6762 - val_tp0.5: 2345968.0000 - val_fp0.5: 1609916.0000 - val_tn0.5: 20538100.0000 - val
    _fn0.5: 1720421.0000 - val_precision0.5: 0.5930 - val_recall0.5: 0.5769 - val_tp0.7: 1892495.0000 - val_fp0.7: 1225411.0000 - val_tn0.7: 20922604.0000 - val_fn0.7: 2173894.0000 - val_precision0.7: 0.6070 - val_recall0.7: 0.4654 - val_t
    p0.9: 1133144.0000 - val_fp0.9: 662854.0000 - val_tn0.9: 21485156.0000 - val_fn0.9: 2933245.0000 - val_precision0.9: 0.6309 - val_recall0.9: 0.2787 - val_accuracy: 0.8730 - val_auc: 0.8721
    Epoch 41/50
    1280/1280 [==============================] - 3385s 3s/step - loss: 0.2342 - tp0.1: 7776741.3099 - fp0.1: 3289425.7650 - tn0.1: 41160217.6448 - fn0.1: 284258.4153 - precision0.1: 0.7028 - recall0.1: 0.9655 - tp0.3: 7475615.4660 - fp0.3:
     1607131.3685 - tn0.3: 42842547.8212 - fn0.3: 585384.2592 - precision0.3: 0.8230 - recall0.3: 0.9281 - tp0.5: 7146650.6237 - fp0.5: 908662.7939 - tn0.5: 43541000.6799 - fn0.5: 914349.1015 - precision0.5: 0.8871 - recall0.5: 0.8872 - tp
    0.7: 6711653.7861 - fp0.7: 487381.3060 - tn0.7: 43962279.2373 - fn0.7: 1349345.9391 - precision0.7: 0.9322 - recall0.7: 0.8330 - tp0.9: 5745993.2186 - fp0.9: 124517.9758 - tn0.9: 44325130.4988 - fn0.9: 2315006.5066 - precision0.9: 0.97
    85 - recall0.9: 0.7118 - accuracy: 0.9651 - auc: 0.9776 - val_loss: 0.9870 - val_tp0.1: 3053092.0000 - val_fp0.1: 1964937.0000 - val_tn0.1: 20015960.0000 - val_fn0.1: 1180406.0000 - val_precision0.1: 0.6084 - val_recall0.1: 0.7212 - va
    l_tp0.3: 2284036.0000 - val_fp0.3: 1477236.0000 - val_tn0.3: 20503676.0000 - val_fn0.3: 1949462.0000 - val_precision0.3: 0.6073 - val_recall0.3: 0.5395 - val_tp0.5: 1899487.0000 - val_fp0.5: 1256383.0000 - val_tn0.5: 20724524.0000 - va
    l_fn0.5: 2334011.0000 - val_precision0.5: 0.6019 - val_recall0.5: 0.4487 - val_tp0.7: 1422839.0000 - val_fp0.7: 921281.0000 - val_tn0.7: 21059624.0000 - val_fn0.7: 2810659.0000 - val_precision0.7: 0.6070 - val_recall0.7: 0.3361 - val_t
    p0.9: 829426.0000 - val_fp0.9: 481727.0000 - val_tn0.9: 21499180.0000 - val_fn0.9: 3404072.0000 - val_precision0.9: 0.6326 - val_recall0.9: 0.1959 - val_accuracy: 0.8630 - val_auc: 0.8226
    Epoch 42/50
    1280/1280 [==============================] - 3315s 3s/step - loss: 0.2346 - tp0.1: 8105380.3060 - fp0.1: 3217998.5480 - tn0.1: 40897704.3310 - fn0.1: 289593.6690 - precision0.1: 0.7181 - recall0.1: 0.9656 - tp0.3: 7802382.4910 - fp0.3:
     1604270.8267 - tn0.3: 42511413.2233 - fn0.3: 592591.4840 - precision0.3: 0.8318 - recall0.3: 0.9298 - tp0.5: 7475287.1304 - fp0.5: 928889.2771 - tn0.5: 43186785.4551 - fn0.5: 919686.8447 - precision0.5: 0.8906 - recall0.5: 0.8917 - tp
    0.7: 7046455.8064 - fp0.7: 507457.0898 - tn0.7: 43608208.9945 - fn0.7: 1348518.1686 - precision0.7: 0.9334 - recall0.7: 0.8413 - tp0.9: 6058878.7190 - fp0.9: 128713.2311 - tn0.9: 43986958.0468 - fn0.9: 2336095.2560 - precision0.9: 0.97
    95 - recall0.9: 0.7240 - accuracy: 0.9650 - auc: 0.9779 - val_loss: 0.7327 - val_tp0.1: 3402300.0000 - val_fp0.1: 2653288.0000 - val_tn0.1: 19553712.0000 - val_fn0.1: 605094.0000 - val_precision0.1: 0.5618 - val_recall0.1: 0.8490 - val
    _tp0.3: 2812815.0000 - val_fp0.3: 2101002.0000 - val_tn0.3: 20106008.0000 - val_fn0.3: 1194579.0000 - val_precision0.3: 0.5724 - val_recall0.3: 0.7019 - val_tp0.5: 2455006.0000 - val_fp0.5: 1878473.0000 - val_tn0.5: 20328530.0000 - val
    _fn0.5: 1552388.0000 - val_precision0.5: 0.5665 - val_recall0.5: 0.6126 - val_tp0.7: 2074881.0000 - val_fp0.7: 1530207.0000 - val_tn0.7: 20676798.0000 - val_fn0.7: 1932513.0000 - val_precision0.7: 0.5755 - val_recall0.7: 0.5178 - val_t
    p0.9: 1484583.0000 - val_fp0.9: 913417.0000 - val_tn0.9: 21293592.0000 - val_fn0.9: 2522811.0000 - val_precision0.9: 0.6191 - val_recall0.9: 0.3705 - val_accuracy: 0.8691 - val_auc: 0.8751
    Epoch 43/50
    1280/1280 [==============================] - 3323s 3s/step - loss: 0.2312 - tp0.1: 7991710.0656 - fp0.1: 3249384.0929 - tn0.1: 40992411.0070 - fn0.1: 277145.7760 - precision0.1: 0.7097 - recall0.1: 0.9664 - tp0.3: 7693901.7158 - fp0.3:
     1595395.2670 - tn0.3: 42646409.5269 - fn0.3: 574954.1257 - precision0.3: 0.8268 - recall0.3: 0.9305 - tp0.5: 7373192.4247 - fp0.5: 917265.3872 - tn0.5: 43324540.4536 - fn0.5: 895663.4169 - precision0.5: 0.8882 - recall0.5: 0.8913 - tp
    0.7: 6950466.7244 - fp0.7: 497989.1148 - tn0.7: 43743813.0945 - fn0.7: 1318389.1171 - precision0.7: 0.9326 - recall0.7: 0.8395 - tp0.9: 5981119.6440 - fp0.9: 128545.2209 - tn0.9: 44113239.2467 - fn0.9: 2287736.1975 - precision0.9: 0.97
    92 - recall0.9: 0.7218 - accuracy: 0.9653 - auc: 0.9783 - val_loss: 0.9647 - val_tp0.1: 2876343.0000 - val_fp0.1: 1660425.0000 - val_tn0.1: 20507034.0000 - val_fn0.1: 1170598.0000 - val_precision0.1: 0.6340 - val_recall0.1: 0.7107 - va
    l_tp0.3: 2209087.0000 - val_fp0.3: 1251945.0000 - val_tn0.3: 20915512.0000 - val_fn0.3: 1837854.0000 - val_precision0.3: 0.6383 - val_recall0.3: 0.5459 - val_tp0.5: 1778622.0000 - val_fp0.5: 995657.0000 - val_tn0.5: 21171812.0000 - val
    _fn0.5: 2268319.0000 - val_precision0.5: 0.6411 - val_recall0.5: 0.4395 - val_tp0.7: 1307626.0000 - val_fp0.7: 702184.0000 - val_tn0.7: 21465282.0000 - val_fn0.7: 2739315.0000 - val_precision0.7: 0.6506 - val_recall0.7: 0.3231 - val_tp
    0.9: 721015.0000 - val_fp0.9: 304685.0000 - val_tn0.9: 21862786.0000 - val_fn0.9: 3325926.0000 - val_precision0.9: 0.7029 - val_recall0.9: 0.1782 - val_accuracy: 0.8755 - val_auc: 0.8252
    Epoch 44/50
    1280/1280 [==============================] - 3324s 3s/step - loss: 0.2316 - tp0.1: 7993553.5519 - fp0.1: 3116269.6425 - tn0.1: 41108883.5878 - fn0.1: 291939.1897 - precision0.1: 0.7205 - recall0.1: 0.9644 - tp0.3: 7697513.5496 - fp0.3:
     1532368.8548 - tn0.3: 42692802.8033 - fn0.3: 587979.1920 - precision0.3: 0.8347 - recall0.3: 0.9284 - tp0.5: 7391393.2475 - fp0.5: 891003.0500 - tn0.5: 43334168.9118 - fn0.5: 894099.4941 - precision0.5: 0.8927 - recall0.5: 0.8916 - tp
    0.7: 6972420.4403 - fp0.7: 485629.1991 - tn0.7: 43739548.5152 - fn0.7: 1313072.3013 - precision0.7: 0.9351 - recall0.7: 0.8406 - tp0.9: 6005577.5371 - fp0.9: 125956.1194 - tn0.9: 44099185.2194 - fn0.9: 2279915.2045 - precision0.9: 0.97
    93 - recall0.9: 0.7244 - accuracy: 0.9660 - auc: 0.9775 - val_loss: 0.7395 - val_tp0.1: 3516454.0000 - val_fp0.1: 2931698.0000 - val_tn0.1: 19145124.0000 - val_fn0.1: 621132.0000 - val_precision0.1: 0.5453 - val_recall0.1: 0.8499 - val
    _tp0.3: 2802624.0000 - val_fp0.3: 2096050.0000 - val_tn0.3: 19980764.0000 - val_fn0.3: 1334962.0000 - val_precision0.3: 0.5721 - val_recall0.3: 0.6774 - val_tp0.5: 2395920.0000 - val_fp0.5: 1817727.0000 - val_tn0.5: 20259092.0000 - val
    _fn0.5: 1741666.0000 - val_precision0.5: 0.5686 - val_recall0.5: 0.5791 - val_tp0.7: 1884999.0000 - val_fp0.7: 1378065.0000 - val_tn0.7: 20698756.0000 - val_fn0.7: 2252587.0000 - val_precision0.7: 0.5777 - val_recall0.7: 0.4556 - val_t
    p0.9: 983346.0000 - val_fp0.9: 679335.0000 - val_tn0.9: 21397474.0000 - val_fn0.9: 3154240.0000 - val_precision0.9: 0.5914 - val_recall0.9: 0.2377 - val_accuracy: 0.8642 - val_auc: 0.8683
    Epoch 45/50
    1280/1280 [==============================] - 3312s 3s/step - loss: 0.2330 - tp0.1: 7970480.2670 - fp0.1: 3209589.4871 - tn0.1: 41051845.7307 - fn0.1: 278741.1163 - precision0.1: 0.7127 - recall0.1: 0.9666 - tp0.3: 7675031.2553 - fp0.3:
     1589895.0429 - tn0.3: 42671527.8275 - fn0.3: 574190.1280 - precision0.3: 0.8279 - recall0.3: 0.9311 - tp0.5: 7351503.7557 - fp0.5: 918595.6940 - tn0.5: 43342860.1577 - fn0.5: 897717.6276 - precision0.5: 0.8886 - recall0.5: 0.8921 - tp
    0.7: 6925182.0765 - fp0.7: 503433.8673 - tn0.7: 43758011.1593 - fn0.7: 1324039.3068 - precision0.7: 0.9318 - recall0.7: 0.8413 - tp0.9: 5948949.5558 - fp0.9: 139165.2740 - tn0.9: 44122272.1593 - fn0.9: 2300271.8275 - precision0.9: 0.97
    68 - recall0.9: 0.7246 - accuracy: 0.9651 - auc: 0.9781 - val_loss: 0.7183 - val_tp0.1: 3462944.0000 - val_fp0.1: 2547992.0000 - val_tn0.1: 19584976.0000 - val_fn0.1: 618487.0000 - val_precision0.1: 0.5761 - val_recall0.1: 0.8485 - val
    _tp0.3: 2757155.0000 - val_fp0.3: 1916541.0000 - val_tn0.3: 20216436.0000 - val_fn0.3: 1324276.0000 - val_precision0.3: 0.5899 - val_recall0.3: 0.6755 - val_tp0.5: 2406562.0000 - val_fp0.5: 1766897.0000 - val_tn0.5: 20366082.0000 - val
    _fn0.5: 1674869.0000 - val_precision0.5: 0.5766 - val_recall0.5: 0.5896 - val_tp0.7: 2083375.0000 - val_fp0.7: 1557338.0000 - val_tn0.7: 20575626.0000 - val_fn0.7: 1998056.0000 - val_precision0.7: 0.5722 - val_recall0.7: 0.5105 - val_t
    p0.9: 1330037.0000 - val_fp0.9: 696335.0000 - val_tn0.9: 21436634.0000 - val_fn0.9: 2751394.0000 - val_precision0.9: 0.6564 - val_recall0.9: 0.3259 - val_accuracy: 0.8687 - val_auc: 0.8762
    Epoch 46/50
    1280/1280 [==============================] - 3307s 3s/step - loss: 0.2304 - tp0.1: 7916214.3216 - fp0.1: 3181145.9766 - tn0.1: 41127786.5941 - fn0.1: 285496.9227 - precision0.1: 0.7125 - recall0.1: 0.9651 - tp0.3: 7621058.9899 - fp0.3:
     1584443.6526 - tn0.3: 42724483.9516 - fn0.3: 580652.2545 - precision0.3: 0.8279 - recall0.3: 0.9291 - tp0.5: 7291826.7104 - fp0.5: 896453.6901 - tn0.5: 43412477.0523 - fn0.5: 909884.5340 - precision0.5: 0.8906 - recall0.5: 0.8889 - tp
    0.7: 6852507.8103 - fp0.7: 474238.7486 - tn0.7: 43834734.6058 - fn0.7: 1349203.4340 - precision0.7: 0.9355 - recall0.7: 0.8352 - tp0.9: 5907297.4052 - fp0.9: 120870.0991 - tn0.9: 44188071.7377 - fn0.9: 2294413.8392 - precision0.9: 0.98
    03 - recall0.9: 0.7195 - accuracy: 0.9658 - auc: 0.9776 - val_loss: 0.8308 - val_tp0.1: 2925415.0000 - val_fp0.1: 999631.0000 - val_tn0.1: 21181596.0000 - val_fn0.1: 1107748.0000 - val_precision0.1: 0.7453 - val_recall0.1: 0.7253 - val
    _tp0.3: 2129554.0000 - val_fp0.3: 432959.0000 - val_tn0.3: 21748276.0000 - val_fn0.3: 1903609.0000 - val_precision0.3: 0.8310 - val_recall0.3: 0.5280 - val_tp0.5: 1616477.0000 - val_fp0.5: 255434.0000 - val_tn0.5: 21925804.0000 - val_f
    n0.5: 2416686.0000 - val_precision0.5: 0.8635 - val_recall0.5: 0.4008 - val_tp0.7: 1160120.0000 - val_fp0.7: 159480.0000 - val_tn0.7: 22021744.0000 - val_fn0.7: 2873043.0000 - val_precision0.7: 0.8791 - val_recall0.7: 0.2876 - val_tp0.
    9: 660411.0000 - val_fp0.9: 58454.0000 - val_tn0.9: 22122774.0000 - val_fn0.9: 3372752.0000 - val_precision0.9: 0.9187 - val_recall0.9: 0.1637 - val_accuracy: 0.8981 - val_auc: 0.8530
    Epoch 47/50
    1280/1280 [==============================] - 3373s 3s/step - loss: 0.2224 - tp0.1: 7905453.9578 - fp0.1: 3088525.5402 - tn0.1: 41239482.1889 - fn0.1: 277215.0070 - precision0.1: 0.7202 - recall0.1: 0.9667 - tp0.3: 7625498.5870 - fp0.3:
     1552664.1967 - tn0.3: 42775315.1663 - fn0.3: 557170.3778 - precision0.3: 0.8312 - recall0.3: 0.9328 - tp0.5: 7314136.2771 - fp0.5: 889383.1952 - tn0.5: 43438616.4731 - fn0.5: 868532.6877 - precision0.5: 0.8918 - recall0.5: 0.8950 - tp
    0.7: 6893069.8415 - fp0.7: 475384.9407 - tn0.7: 43852616.7221 - fn0.7: 1289599.1233 - precision0.7: 0.9360 - recall0.7: 0.8437 - tp0.9: 5954104.8665 - fp0.9: 121730.6745 - tn0.9: 44206239.8525 - fn0.9: 2228564.0984 - precision0.9: 0.98
    04 - recall0.9: 0.7290 - accuracy: 0.9667 - auc: 0.9788 - val_loss: 1.0397 - val_tp0.1: 2921669.0000 - val_fp0.1: 1566454.0000 - val_tn0.1: 20378636.0000 - val_fn0.1: 1347646.0000 - val_precision0.1: 0.6510 - val_recall0.1: 0.6843 - va
    l_tp0.3: 2142218.0000 - val_fp0.3: 1055434.0000 - val_tn0.3: 20889652.0000 - val_fn0.3: 2127097.0000 - val_precision0.3: 0.6699 - val_recall0.3: 0.5018 - val_tp0.5: 1695622.0000 - val_fp0.5: 805323.0000 - val_tn0.5: 21139764.0000 - val
    _fn0.5: 2573693.0000 - val_precision0.5: 0.6780 - val_recall0.5: 0.3972 - val_tp0.7: 1240483.0000 - val_fp0.7: 547415.0000 - val_tn0.7: 21397672.0000 - val_fn0.7: 3028832.0000 - val_precision0.7: 0.6938 - val_recall0.7: 0.2906 - val_tp
    0.9: 699052.0000 - val_fp0.9: 209226.0000 - val_tn0.9: 21735862.0000 - val_fn0.9: 3570263.0000 - val_precision0.9: 0.7696 - val_recall0.9: 0.1637 - val_accuracy: 0.8711 - val_auc: 0.8155
    Epoch 48/50
    1280/1280 [==============================] - 3304s 3s/step - loss: 0.2335 - tp0.1: 7940859.5363 - fp0.1: 3183249.2857 - tn0.1: 41099674.0820 - fn0.1: 286865.7822 - precision0.1: 0.7138 - recall0.1: 0.9650 - tp0.3: 7641716.9641 - fp0.3:
     1582103.0671 - tn0.3: 42700833.3349 - fn0.3: 586008.3544 - precision0.3: 0.8288 - recall0.3: 0.9284 - tp0.5: 7316574.1686 - fp0.5: 906813.2022 - tn0.5: 43376114.1671 - fn0.5: 911151.1499 - precision0.5: 0.8900 - recall0.5: 0.8886 - tp
    0.7: 6893099.7447 - fp0.7: 495988.3950 - tn0.7: 43786957.1632 - fn0.7: 1334625.5738 - precision0.7: 0.9332 - recall0.7: 0.8372 - tp0.9: 5936967.9602 - fp0.9: 132958.7853 - tn0.9: 44149966.0359 - fn0.9: 2290757.3583 - precision0.9: 0.97
    82 - recall0.9: 0.7212 - accuracy: 0.9651 - auc: 0.9775 - val_loss: 0.8885 - val_tp0.1: 3090482.0000 - val_fp0.1: 1927063.0000 - val_tn0.1: 20147076.0000 - val_fn0.1: 1049776.0000 - val_precision0.1: 0.6159 - val_recall0.1: 0.7464 - va
    l_tp0.3: 2402659.0000 - val_fp0.3: 1358720.0000 - val_tn0.3: 20715420.0000 - val_fn0.3: 1737599.0000 - val_precision0.3: 0.6388 - val_recall0.3: 0.5803 - val_tp0.5: 2026443.0000 - val_fp0.5: 1121590.0000 - val_tn0.5: 20952544.0000 - va
    l_fn0.5: 2113815.0000 - val_precision0.5: 0.6437 - val_recall0.5: 0.4894 - val_tp0.7: 1587666.0000 - val_fp0.7: 757043.0000 - val_tn0.7: 21317100.0000 - val_fn0.7: 2552592.0000 - val_precision0.7: 0.6771 - val_recall0.7: 0.3835 - val_t
    p0.9: 946633.0000 - val_fp0.9: 302967.0000 - val_tn0.9: 21771180.0000 - val_fn0.9: 3193625.0000 - val_precision0.9: 0.7575 - val_recall0.9: 0.2286 - val_accuracy: 0.8766 - val_auc: 0.8420
    Epoch 49/50
    1280/1280 [==============================] - 3305s 3s/step - loss: 0.2225 - tp0.1: 7979679.4473 - fp0.1: 3114299.9914 - tn0.1: 41145497.0710 - fn0.1: 271189.6027 - precision0.1: 0.7186 - recall0.1: 0.9674 - tp0.3: 7686659.5777 - fp0.3:
     1542401.8501 - tn0.3: 42717409.8704 - fn0.3: 564209.4723 - precision0.3: 0.8334 - recall0.3: 0.9319 - tp0.5: 7371634.7557 - fp0.5: 895979.9727 - tn0.5: 43363790.1265 - fn0.5: 879234.2943 - precision0.5: 0.8923 - recall0.5: 0.8937 - tp
    0.7: 6947267.2155 - fp0.7: 481955.5433 - tn0.7: 43777844.2342 - fn0.7: 1303601.8345 - precision0.7: 0.9356 - recall0.7: 0.8420 - tp0.9: 6003926.6534 - fp0.9: 121081.5886 - tn0.9: 44138712.2896 - fn0.9: 2246942.3966 - precision0.9: 0.98
    05 - recall0.9: 0.7264 - accuracy: 0.9665 - auc: 0.9792 - val_loss: 0.9566 - val_tp0.1: 2861835.0000 - val_fp0.1: 1548477.0000 - val_tn0.1: 20587614.0000 - val_fn0.1: 1216470.0000 - val_precision0.1: 0.6489 - val_recall0.1: 0.7017 - va
    l_tp0.3: 2113828.0000 - val_fp0.3: 1067547.0000 - val_tn0.3: 21068548.0000 - val_fn0.3: 1964477.0000 - val_precision0.3: 0.6644 - val_recall0.3: 0.5183 - val_tp0.5: 1718632.0000 - val_fp0.5: 841787.0000 - val_tn0.5: 21294304.0000 - val
    _fn0.5: 2359673.0000 - val_precision0.5: 0.6712 - val_recall0.5: 0.4214 - val_tp0.7: 1302909.0000 - val_fp0.7: 555088.0000 - val_tn0.7: 21581000.0000 - val_fn0.7: 2775396.0000 - val_precision0.7: 0.7012 - val_recall0.7: 0.3195 - val_tp
    0.9: 773038.0000 - val_fp0.9: 218091.0000 - val_tn0.9: 21918012.0000 - val_fn0.9: 3305267.0000 - val_precision0.9: 0.7800 - val_recall0.9: 0.1895 - val_accuracy: 0.8779 - val_auc: 0.8265
    Epoch 50/50
    1280/1280 [==============================] - 3294s 3s/step - loss: 0.2301 - tp0.1: 8047942.4426 - fp0.1: 3082506.1288 - tn0.1: 41101922.8275 - fn0.1: 278310.9493 - precision0.1: 0.7219 - recall0.1: 0.9663 - tp0.3: 7760370.9899 - fp0.3:
     1521186.0101 - tn0.3: 42663221.2100 - fn0.3: 565882.4020 - precision0.3: 0.8352 - recall0.3: 0.9315 - tp0.5: 7453452.6776 - fp0.5: 892538.5199 - tn0.5: 43291840.9251 - fn0.5: 872800.7143 - precision0.5: 0.8922 - recall0.5: 0.8941 - tp
    0.7: 7032066.8470 - fp0.7: 486059.3411 - tn0.7: 43698327.0984 - fn0.7: 1294186.5449 - precision0.7: 0.9348 - recall0.7: 0.8430 - tp0.9: 6085441.6674 - fp0.9: 123868.2233 - tn0.9: 44060549.1827 - fn0.9: 2240811.7244 - precision0.9: 0.98
    05 - recall0.9: 0.7278 - accuracy: 0.9656 - auc: 0.9784 - val_loss: 0.7966 - val_tp0.1: 3023429.0000 - val_fp0.1: 1958644.0000 - val_tn0.1: 20321072.0000 - val_fn0.1: 911248.0000 - val_precision0.1: 0.6069 - val_recall0.1: 0.7684 - val
    _tp0.3: 2293385.0000 - val_fp0.3: 1327982.0000 - val_tn0.3: 20951742.0000 - val_fn0.3: 1641292.0000 - val_precision0.3: 0.6333 - val_recall0.3: 0.5829 - val_tp0.5: 1893004.0000 - val_fp0.5: 1112093.0000 - val_tn0.5: 21167626.0000 - val
    _fn0.5: 2041673.0000 - val_precision0.5: 0.6299 - val_recall0.5: 0.4811 - val_tp0.7: 1460348.0000 - val_fp0.7: 748911.0000 - val_tn0.7: 21530808.0000 - val_fn0.7: 2474329.0000 - val_precision0.7: 0.6610 - val_recall0.7: 0.3711 - val_tp
    0.9: 871307.0000 - val_fp0.9: 277884.0000 - val_tn0.9: 22001836.0000 - val_fn0.9: 3063370.0000 - val_precision0.9: 0.7582 - val_recall0.9: 0.2214 - val_accuracy: 0.8797 - val_auc: 0.8508
    600/600 [==============================] - 317s 527ms/step - loss: 0.9377 - tp0.1: 5542504.0000 - fp0.1: 4670897.0000 - tn0.1: 36924880.0000 - fn0.1: 2013729.0000 - precision0.1: 0.5427 - recall0.1: 0.7335 - tp0.3: 4216657.0000 - fp0.3
    : 3293157.0000 - tn0.3: 38302600.0000 - fn0.3: 3339576.0000 - precision0.3: 0.5615 - recall0.3: 0.5580 - tp0.5: 3498904.0000 - fp0.5: 2765631.0000 - tn0.5: 38830152.0000 - fn0.5: 4057329.0000 - precision0.5: 0.5585 - recall0.5: 0.4630
    - tp0.7: 2661409.0000 - fp0.7: 1815115.0000 - tn0.7: 39780628.0000 - fn0.7: 4894824.0000 - precision0.7: 0.5945 - recall0.7: 0.3522 - tp0.9: 1573540.0000 - fp0.9: 592773.0000 - tn0.9: 41002980.0000 - fn0.9: 5982693.0000 - precision0.9:
     0.7264 - recall0.9: 0.2082 - accuracy: 0.8612 - auc: 0.8217
    2021/03/18 20:42:08 INFO mlflow.projects: === Run (ID '3cec3f26ed2d4004978c4ec37c00fba0') succeeded ===
    (tf-nightly) [ye53nis@node117 drmed-git]$
    

2.1.6 Read out logs of Run 2

2.1.6.1 test dataset statistics
  • test data is not saved out automatically, but can be copied from the log above

    600/600 [==============================] - 317s 527ms/step - loss: 0.9377

    0.1 0.3 0.5 0.7 0.9
    tp 5542504.0000 4216657.0000 3498904.0000 2661409.0000 1573540.0000
    fp 4670897.0000 3293157.0000 2765631.0000 1815115.0000 592773.0000
    fn 2013729.0000 3339576.0000 4057329.0000 4894824.0000 5982693.0000
    tn 36924880.0000 38302600.0000 38830152.0000 39780628.0000 41002980.0000
    all 49152010 49151990 49152016 49151976 49151986
    precision 0.5427 0.5615 0.5585 0.5945 0.7264
    recall 0.7335 0.5580 0.4630 0.3522 0.2082

    accuracy: 0.8612 auc: 0.8217

    0.1 actual positive actual negative  
    pred positive 0.11276251 0.095029623 Prec: 0.5427
    pred negative 0.040969413 0.75123845  
      Recall: 0.7335    
          F1: 0.62383709
    0.3 actual positive actual negative  
    pred positive 0.085788124 0.066999464 Prec: 0.5615
    pred negative 0.067943861 0.77926855  
      Recall: 0.5580    
          F1: 0.55974453
    0.5 actual positive actual negative  
    pred positive 0.071185361 0.056266888 Prec: 0.5585
    pred negative 0.082546543 0.79000121  
      Recall: 0.4630    
          F1: 0.50628585
    0.7 actual positive actual negative  
    pred positive 0.054146531 0.036928627 Prec: 0.5945
    pred negative 0.099585498 0.80933934  
      Recall: 0.3522    
          F1: 0.44234266
    0.9 actual positive actual negative  
    pred positive 0.032013762 0.012060001 Prec: 0.7264
    pred negative 0.12171824 0.83420800  
      Recall: 0.2082    
          F1: 0.32363895
  • looks like pred_thresh=0.1 leads to the best results (Best F1 score)
2.1.6.2 prediction plots after each epoch

sadly, the random sample traces were not very useful, since the spikes were quite small…

2.1.6.3 Application 1 - git log, load modules, set parameters
  1. Git log, because some more code changes were made
    !git log -5
    
    commit 6586965ec900669bd641d69f85b4999050122502
    Author: Apoplex <oligolex@vivaldi.net>
    Date:   Tue Mar 23 20:26:11 2021 +0100
    
        Fix management of correlation failing 2
    
    commit ccdb3fb0887cce929987ef04408133917c02ce58
    Author: Apoplex <oligolex@vivaldi.net>
    Date:   Tue Mar 23 17:57:39 2021 +0100
    
        Merge plot_simulations and analyze_simulations 2
    
    commit 7951d725c9d53bbffd18c3fca8ccad05d528a368
    Author: Apoplex <oligolex@vivaldi.net>
    Date:   Sun Mar 21 12:49:47 2021 +0100
    
        Fix management of correlation failing; return nan
    
    commit 6c2146df58ba0af6a148745e7fafc7ff01a2e1b4
    Author: Apoplex <oligolex@vivaldi.net>
    Date:   Sun Mar 21 10:43:04 2021 +0100
    
        New management of correlation failing; return nan
    
    commit 940df93d2dacdb9c1951b6d8a8aa92f2c6043695
    Author: Apoplex <oligolex@vivaldi.net>
    Date:   Sat Mar 20 19:54:01 2021 +0100
    
        Merge plot_simulations and analyze_simulations
    
    %cd /beegfs/ye53nis/drmed-git
    
    /beegfs/ye53nis/drmed-git
    
    from pathlib import Path
    
    import sys
    import mlflow
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import seaborn as sns
    mlflow.version.VERSION
    
    1.13.1
    
    sys.path.append('src/')
    from fluotracify.simulations import (
       import_simulation_from_csv as isfc,
       analyze_simulations as ans,
    )
    from fluotracify.training import build_model as bm, preprocess_data as ppd
    from fluotracify.applications import correlate, plots, correction
    from fluotracify.imports import ptu_utils as ptu
    
    import importlib
    importlib.reload(correction)
    
    <module 'fluotracify.applications.correction' from 'src/fluotracify/applications/correction.py'>
    
    folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020_test'
    col_per_example = 3
    lab_thresh = 0.04
    pred_thresh = 0.1
    xunit = 1
    artifact = 0
    model_type = 1
    fwhm = 250
    run_id = '3cec3f26ed2d4004978c4ec37c00fba0'
    length_delimiter = 2**14
    
  2. now load the trained model
    mlflow.set_tracking_uri('file:///beegfs/ye53nis/drmed-git/data/mlruns')
    client = mlflow.tracking.MlflowClient(tracking_uri=mlflow.get_tracking_uri())
    model_path = client.download_artifacts(run_id=run_id,
                                           path='model')
    model_keras = mlflow.keras.load_model(model_uri=model_path,
                                          custom_objects={'binary_ce_dice':bm.binary_ce_dice_loss()})
    print(model_path, '\n', model_keras)
    
    /beegfs/ye53nis/drmed-git/3cec3f26ed2d4004978c4ec37c00fba0/artifacts/model
     <tensorflow.python.keras.engine.functional.Functional object at 0x2acdc9893190>
    
2.1.6.4 Application 2 - test data
  • test and train data were separated beforehand. Now, I only load test data.
    folder = '/beegfs/ye53nis/saves/firstartifact_Nov2020_test'
    dataset, _, nsamples, experiment_params = isfc.import_from_csv(
              folder=folder,
              header=12,
              frac_train=1,
              col_per_example=col_per_example,
              dropindex=None,
              dropcolumns=None)
    experiment_params
    
    train 0 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set010.csv
    train 1 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set002.csv
    train 2 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set005.csv
    train 3 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set005.csv
    train 4 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set007.csv
    train 5 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set002.csv
    train 6 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set001.csv
    train 7 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set007.csv
    train 8 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set009.csv
    train 9 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set002.csvtrain 10 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set005.csv
    train 11 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set008.csv
    train 12 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set005.csv
    train 13 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set008.csv
    train 14 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set005.csv
    train 15 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set006.csv
    train 16 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set005.csv
    train 17 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D50_set003.csv
    train 18 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set001.csv
    train 19 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set003.csv
    train 20 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set003.csv
    train 21 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D1.0_set005.csv
    train 22 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.2_set002.csv
    train 23 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.1_set002.csv
    train 24 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D3.0_set004.csv
    train 25 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.08_set001.csv
    train 26 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.069_set001.csv
    train 27 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D10_set001.csv
    train 28 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.6_set003.csv
    train 29 /beegfs/ye53nis/saves/firstartifact_Nov2020_test/traces_brightclust_Nov2020_D0.4_set001.csv
    
    diffrates = experiment_params.loc['diffusion rate of molecules in micrometer^2 / s'].astype(np.float32)
    nmols = experiment_params.loc['number of fast molecules'].astype(np.float32)
    clusters = experiment_params.loc['diffusion rate of clusters in micrometer^2 / s'].astype(np.float32)
    
    dataset_sep = isfc.separate_data_and_labels(array=dataset,
                                                nsamples=nsamples,
                                                col_per_example=col_per_example)
    
    features = dataset_sep['0']
    labels_artifact = dataset_sep['1']
    labels_artifact_bool = labels_artifact > lab_thresh
    labels_puretrace = dataset_sep['2']
    
    The given DataFrame was split into 3 parts with shapes: [(16384, 3000), (16384, 3000), (16384, 3000)]
    
  • Let's correct the traces with the new model and correlate them!
    corr_out = ans.correlate_simulations_corrected_by_prediction(
        model=model_keras,
        lab_thresh=lab_thresh,
        pred_thresh=pred_thresh,
        artifact=artifact,
        model_type=model_type,
        experiment_params=experiment_params,
        nsamples=nsamples,
        features=features,
        labels_artifact=labels_artifact,
        labels_puretrace=labels_puretrace,
        save_as_csv=True)
    corr_out
    
    processed correlation of 3000 traces with correction by label
    processed correlation of 3000 traces with correction by prediction
    processed correlation of 3000 traces without correction
    processed correlation of pure 3000 traces
    
      Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used
    0 0.069 1.0 679.0 1.037836 10.860146 16384 corrupted without correction
    1 0.069 1.0 679.0 0.81403 13.846002 16384 corrupted without correction
    2 0.069 1.0 679.0 1.053716 10.696482 16384 corrupted without correction
    3 0.069 1.0 679.0 0.897022 12.564974 16384 corrupted without correction
    4 0.069 1.0 679.0 1.083577 10.401707 16384 corrupted without correction
    11995 0.4 0.1 1939.0 0.658104 17.126562 11187 corrected by prediction
    11996 0.4 0.1 1939.0 0.336804 33.464773 15720 corrected by prediction
    11997 0.4 0.1 1939.0 0.456482 24.691128 15292 corrected by prediction
    11998 0.4 0.1 1939.0 0.411872 27.365437 12516 corrected by prediction
    11999 0.4 0.1 1939.0 0.244884 46.026059 12986 corrected by prediction

    12000 rows × 7 columns

    corr_out = pd.read_csv(filepath_or_buffer='data/exp-210204-unet/2021-03-21_correlations.csv')
    corr_out[corr_out['$D$ in $\\frac{{\mu m^2}}{{s}}$'].isna()]
    
      Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used
    9109 50.0 0.01 2323.0 NaN NaN 1 corrected by prediction
    9118 50.0 0.01 2323.0 NaN NaN 6 corrected by prediction
    9131 50.0 0.01 2323.0 NaN NaN 26 corrected by prediction
    9134 50.0 0.01 2323.0 NaN NaN 3 corrected by prediction
    9141 50.0 0.01 2323.0 NaN NaN 6 corrected by prediction
    9144 50.0 0.01 2323.0 NaN NaN 17 corrected by prediction
    9163 50.0 0.01 2323.0 NaN NaN 24 corrected by prediction
    9170 50.0 0.01 2323.0 NaN NaN 27 corrected by prediction
    9171 50.0 0.01 2323.0 NaN NaN 30 corrected by prediction
    9174 50.0 0.01 2323.0 NaN NaN 8 corrected by prediction
    9183 50.0 0.01 2323.0 NaN NaN 13 corrected by prediction
    9187 50.0 0.01 2323.0 NaN NaN 29 corrected by prediction
    9199 50.0 0.01 2323.0 NaN NaN 18 corrected by prediction
    9909 10.0 0.01 1396.0 NaN NaN 24 corrected by prediction
    9922 10.0 0.01 1396.0 NaN NaN 7 corrected by prediction
    9931 10.0 0.01 1396.0 NaN NaN 16 corrected by prediction
    9978 10.0 0.01 1396.0 NaN NaN 31 corrected by prediction
    9998 10.0 0.01 1396.0 NaN NaN 9 corrected by prediction
  • We loaded the correlation results from the saved out .csv file and looked at where it failed. All the cases where basically all the trace was (wrongfully) removed, was at a very slow simulated cluster speed (0.01) and a rather high simulated speed of the molecules we are interested in (10 and 50).

    Awesome! Now let's try categorical plotting to examine the results in a more structured manner. First, plot the trace lengths.

    x = 'Trace lengths'
    
    g = sns.FacetGrid(data=corr_out,
                      col='Simulated $D$',
                      col_wrap=2,
                      sharex=True,
                      aspect=1.5,
                      height=5,
                      legend_out=True)
    g.map_dataframe(sns.boxplot,
          x=x,
          y='Traces used',
          hue='Simulated $D_{{clust}}$',
          palette='colorblind',
          showfliers=False)
    g.add_legend(title='Simulated $D_{{clust}}$')
    g.map_dataframe(sns.stripplot,
          x=x,
          y='Traces used',
          hue='Simulated $D_{{clust}}$',
          dodge=True,
          palette=sns.color_palette(['0.3']),
          size=4,
          jitter=0.2)
    g.set_xlabels(x)
    g.tight_layout()
    plt.show()
    
  • Then, plot the diffusion rates and transit times. Since they follow a log normal distribution, use a log scale.
    # '$D$ in $\\frac{{\mu m^2}}{{s}}$'
    # '$\\tau_{{D}}$ in $ms$'
    x = '$\\tau_{{D}}$ in $ms$'
    
    g = sns.FacetGrid(data=corr_out,
                      col='Simulated $D$',
                      col_wrap=2,
                      sharex=False,  # False for x=D or x=tau, True for x=Trace lengths
                      aspect=1.5,
                      height=5,
                      legend_out=True)
    g.map_dataframe(sns.boxplot,
          x=x,
          y='Traces used',
          hue='Simulated $D_{{clust}}$',
          palette='colorblind',
          showfliers=False).set(xscale = 'log')
    g.add_legend(title='Simulated $D_{{clust}}$')
    g.map_dataframe(sns.stripplot,
          x=x,
          y='Traces used',
          hue='Simulated $D_{{clust}}$',
          dodge=True,
          palette=sns.color_palette(['0.3']),
          size=4,
          jitter=0.2).set(xscale = 'log')
    g.set_xlabels(x)
    g.tight_layout()
    plt.show()
    

    2021-03-21_correlations_transit-times.png 2021-03-21_correlations_diffusion-rates.png 2021-03-21_correlations_trace-lengths.png

  • Now let's look at the corrections a little closer.
    corr_scatter = corr_out[corr_out['Traces used'].isin(['corrected by labels (control)', 'corrected by prediction'])]
    corr_scatter
    
      Simulated \(D\) Simulated \(D\_{{clust}}\) nmol \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths Traces used
    6000 0.069 1.0 679.0 0.051680 218.095043 14468 corrected by labels (control)
    6001 0.069 1.0 679.0 0.050863 221.596899 15380 corrected by labels (control)
    6002 0.069 1.0 679.0 0.060130 187.443486 14908 corrected by labels (control)
    6003 0.069 1.0 679.0 0.087759 128.431237 15230 corrected by labels (control)
    6004 0.069 1.0 679.0 0.144906 77.781595 14930 corrected by labels (control)
    11995 0.400 0.1 1939.0 0.658104 17.126562 11187 corrected by prediction
    11996 0.400 0.1 1939.0 0.336804 33.464773 15720 corrected by prediction
    11997 0.400 0.1 1939.0 0.456482 24.691128 15292 corrected by prediction
    11998 0.400 0.1 1939.0 0.411872 27.365437 12516 corrected by prediction
    11999 0.400 0.1 1939.0 0.244884 46.026059 12986 corrected by prediction

    6000 rows × 7 columns

  • This scatterplot shows Diffusion rates / transit times against trace lengths.
    # '$D$ in $\\frac{{\mu m^2}}{{s}}$'
    # '$\\tau_{{D}}$ in $ms$'
    x = '$\\tau_{{D}}$ in $ms$'
    
    g = sns.FacetGrid(data=corr_scatter,
                      row='Simulated $D$',
                      col='Traces used',
                      sharex='row',
                      aspect=1,
                      height=4,
                      legend_out=True,
                      margin_titles=True)
    g.map_dataframe(sns.scatterplot,
          x=x,
          y='Trace lengths',
          hue='Simulated $D_{{clust}}$',
          palette='colorblind').set(xscale = 'log')
    g.add_legend(title='Simulated $D_{{clust}}$')
    g.set_xlabels(x)
    g.tight_layout()
    plt.show()
    
  • I concatenated the resulting 2 plots into 1 (left diffusion rates, right transit times). Here it can be nicely seen, that they are just two representations of the same dynamic phenomenon. 2021-03-21_correlations_tt-diffrate-tracelength-scatterplot.png
2.1.6.5 Application 3 - experimental data
  1. Workaround for the model prediction problem.
    test_features = np.zeros((2**14)).reshape(1, -1, 1)
    print(test_features.shape)
    predictions = model_keras.predict(test_features, verbose=0).flatten()
    predictions
    
    (1, 16384, 1)
    array([3.3430334e-15, 1.2115031e-08, 5.5057057e-09, ..., 3.8589034e-09,
           8.7170475e-09, 9.7742303e-14], dtype=float32)
    
    test_features = np.zeros((2**13)).reshape(1, -1, 1)
    print(test_features.shape)
    predictions = model_keras.predict(test_features, verbose=0).flatten()
    predictions
    
    (1, 8192, 1)
    array([3.3430334e-15, 1.2115031e-08, 5.5057057e-09, ..., 3.8588959e-09,
           8.7170475e-09, 9.7742493e-14], dtype=float32)
    
    path_tb_pex5_egfp = '/beegfs/ye53nis/data/Pablo_structured_experiment'
    pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9]
    length_delimiter = 2**13  # for U-Net
    bin_for_correlation = 1e6
    out = correction.correct_experimental_traces_from_ptu_by_unet_prediction(
      path_list=path_tb_pex5_egfp,
      model=model_keras,
      pred_thresh=pred_thresh,
      photon_count_bin=bin_for_correlation,
      ntraces=None,
      save_as_csv=True)
    out
    
    Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment with bin=1e6. This can take a while...
    1 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48822_T273s_1.ptu
    2 of 2: /beegfs/ye53nis/data/Pablo_structured_experiment/DiO LUV 10uM in 20 nM AF48821_T260s_1.ptu
    Processing correlation of unprocessed dataset 1
    Processing correlation with correction by prediction of dataset 1
    
    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    <ipython-input-186-8ad0b763f87d> in <module>
          3 length_delimiter = 2**13  # for U-Net
          4 bin_for_correlation = 1e6
    ----> 5 out = correction.correct_experimental_traces_from_ptu_by_unet_prediction(
          6   path_list=path_tb_pex5_egfp,
          7   model=model_keras,
    
    /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_experimental_traces_from_ptu_by_unet_prediction(path_list, model, pred_thresh, photon_count_bin, ntraces, save_as_csv)
        413             for thr in pred_thresh:
        414                 data['{}-pred-{}'.format(
    --> 415                     i, thr)] = correct_correlation_by_unet_prediction(
        416                         ntraces=ntraces,
        417                         traces_of_interest=ptu_1ms.astype(np.float64),
    
    /beegfs/ye53nis/drmed-git/src/fluotracify/applications/correction.py in correct_correlation_by_unet_prediction(ntraces, traces_of_interest, model, pred_thresh, fwhm, length_delimiter, traces_for_correlation, bin_for_correlation, verbose)
        215             ntraces_index=ntraces_index)
        216
    --> 217         predictions = model.predict(features_prepro, verbose=0)
        218         predictions = predictions.flatten()
        219
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py in predict(self, x, batch_size, verbose, steps, callbacks, max_queue_size, workers, use_multiprocessing)
       1661           for step in data_handler.steps():
       1662             callbacks.on_predict_batch_begin(step)
    -> 1663             tmp_batch_outputs = self.predict_function(iterator)
       1664             if data_handler.should_sync:
       1665               context.async_wait()
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
        816     tracing_count = self.experimental_get_tracing_count()
        817     with trace.Trace(self._name) as tm:
    --> 818       result = self._call(*args, **kwds)
        819       compiler = "xla" if self._jit_compile else "nonXla"
        820       new_tracing_count = self.experimental_get_tracing_count()
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
        851       # In this case we have not created variables on the first call. So we can
        852       # run the first trace but we should fail if variables are created.
    --> 853       results = self._stateful_fn(*args, **kwds)
        854       if self._created_variables:
        855         raise ValueError("Creating variables on a non-first call to a function"
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs)
       2990     with self._lock:
       2991       (graph_function,
    -> 2992        filtered_flat_args) = self._maybe_define_function(args, kwargs)
       2993     return graph_function._call_flat(
       2994         filtered_flat_args, captured_inputs=graph_function.captured_inputs)  # pylint: disable=protected-access
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
       3408               self.input_signature is None and
       3409               call_context_key in self._function_cache.missed):
    -> 3410             return self._define_function_with_shape_relaxation(
       3411                 args, kwargs, flat_args, filtered_flat_args, cache_key_context)
       3412
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _define_function_with_shape_relaxation(self, args, kwargs, flat_args, filtered_flat_args, cache_key_context)
       3330           expand_composites=True)
       3331
    -> 3332     graph_function = self._create_graph_function(
       3333         args, kwargs, override_flat_arg_shapes=relaxed_arg_shapes)
       3334     self._function_cache.arg_relaxed[rank_only_cache_key] = graph_function
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
       3247     arg_names = base_arg_names + missing_arg_names
       3248     graph_function = ConcreteFunction(
    -> 3249         func_graph_module.func_graph_from_py_func(
       3250             self._name,
       3251             self._python_function,
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
        996         _, original_func = tf_decorator.unwrap(python_func)
        997
    --> 998       func_outputs = python_func(*func_args, **func_kwargs)
        999
       1000       # invariant: `func_outputs` contains only Tensors, CompositeTensors,
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
        610             xla_context.Exit()
        611         else:
    --> 612           out = weak_wrapped_fn().__wrapped__(*args, **kwds)
        613         return out
        614
    
    ~/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
        983           except Exception as e:  # pylint:disable=broad-except
        984             if hasattr(e, "ag_error_metadata"):
    --> 985               raise e.ag_error_metadata.to_exception(e)
        986             else:
        987               raise
    
    ValueError: in user code:
    
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1512 predict_function  *
            return step_function(self, iterator)
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1502 step_function  **
            outputs = model.distribute_strategy.run(run_step, args=(data,))
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:1262 run
            return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:2734 call_for_each_replica
            return self._call_for_each_replica(fn, args, kwargs)
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:3423 _call_for_each_replica
            return fn(*args, **kwargs)
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1495 run_step  **
            outputs = model.predict_step(data)
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1468 predict_step
            return self(x, training=False)
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py:1018 __call__
            input_spec.assert_input_compatibility(self.input_spec, inputs, self.name)
        /home/ye53nis/.conda/envs/tf-nightly/lib/python3.8/site-packages/tensorflow/python/keras/engine/input_spec.py:271 assert_input_compatibility
            raise ValueError('Input ' + str(input_index) +
    
        ValueError: Input 0 is incompatible with layer model: expected shape=(None, 16384, 1), found shape=(None, 8192, 1)
    
  2. Run correction for all experimental traces
    path_pex5_exp = ['/beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu', '/beegfs/ye53nis/data/Pablo_structured_experiment/all_dirty_ptu']
    pred_thresh = [0.1, 0.3, 0.5, 0.7, 0.9]
    length_delimiter = 2**13  # for U-Net
    bin_for_correlation = 1e5
    out = correction.correct_experimental_traces_from_ptu_by_unet_prediction(
      path_list=path_pex5_exp,
      model=model_keras,
      pred_thresh=pred_thresh,
      photon_count_bin=bin_for_correlation,
      ntraces=400,
      save_as_csv=True)
    out
    
    Loading dataset 1 from path /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu with bin=1e6. This can take a while...
    1 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1082s_1.ptu
    2 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1537s_1.ptu
    3 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488210_T2505s_1.ptu
    4 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488199_T2375s_1.ptu
    5 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2040s_1.ptu
    6 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488229_T2733s_1.ptu
    7 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1070s_1.ptu
    8 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1352s_1.ptu
    9 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T986s_1.ptu10 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488227_T2709s_1.ptu
    11 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2088s_1.ptu
    12 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1214s_1.ptu
    13 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1561s_1.ptu
    14 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T302s_1.ptu
    15 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1932s_1.ptu
    16 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2267s_1.ptu
    17 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2255s_1.ptu
    18 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488208_T2481s_1.ptu
    19 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T314s_1.ptu
    20 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488221_T2637s_1.ptu
    21 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1834s_1.ptu
    22 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1883s_1.ptu
    23 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488197_T2351s_1.ptu
    24 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T254s_1.ptu
    25 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48816_T182s_1.ptu
    26 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2148s_1.ptu
    27 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1238s_1.ptu
    28 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T833s_1.ptu
    29 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T676s_1.ptu
    30 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1496s_1.ptu
    31 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T459s_1.ptu
    32 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1610s_1.ptu
    33 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T592s_1.ptu
    34 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1907s_1.ptu
    35 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T604s_1.ptu
    36 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1895s_1.ptu
    37 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T926s_1.ptu
    38 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T447s_1.ptu
    39 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T821s_1.ptu
    40 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48834_T399s_1.ptu
    41 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T506s_1.ptu
    42 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48890_T1076s_1.ptu
    43 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2209s_1.ptu
    44 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T748s_1.ptu
    45 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1232s_1.ptu
    46 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2159s_1.ptu
    47 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T698s_1.ptu
    48 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T855s_1.ptu
    49 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1789s_1.ptu
    50 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488241_T2877s_1.ptu
    51 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488204_T2434s_1.ptu
    52 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T918s_1.ptu
    53 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2147s_1.ptu
    54 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2197s_1.ptu
    55 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1908s_1.ptu
    56 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488238_T2842s_1.ptu
    57 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1968s_1.ptu
    58 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488234_T2793s_1.ptu
    59 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T979s_1.ptu
    60 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1148s_1.ptu
    61 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1280s_1.ptu
    62 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1654s_1.ptu
    63 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1484s_1.ptu
    64 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2245s_1.ptu
    65 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T879s_1.ptu
    66 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488159_T1896s_1.ptu
    67 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2124s_1.ptu
    68 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1328s_1.ptu
    69 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T867s_1.ptu
    70 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T962s_1.ptu
    71 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T628s_1.ptu
    72 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48842_T496s_1.ptu
    73 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48850_T590s_1.ptu
    74 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1184s_1.ptu
    75 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488196_T2339s_1.ptu
    76 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1956s_1.ptu
    77 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488217_T2589s_1.ptu
    78 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488218_T2601s_1.ptu
    79 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1418s_1.ptu
    80 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488206_T2458s_1.ptu
    81 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T785s_1.ptu
    82 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488103_T1226s_1.ptu
    83 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T278s_1.ptu
    84 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4887_T74s_1.ptu
    85 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2099s_1.ptu
    86 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48817_T194s_1.ptu
    87 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488113_T1346s_1.ptu
    88 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T688s_1.ptu
    89 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488211_T2517s_1.ptu
    90 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T712s_1.ptu
    91 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48833_T387s_1.ptu
    92 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48858_T686s_1.ptu
    93 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48813_T146s_1.ptu
    94 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488126_T1502s_1.ptu
    95 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1118s_1.ptu
    96 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1316s_1.ptu
    97 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2243s_1.ptu
    98 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1430s_1.ptu
    99 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488219_T2613s_1.ptu
    100 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488138_T1646s_1.ptu
    101 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488187_T2231s_1.ptu
    102 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488146_T1742s_1.ptu
    103 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488155_T1859s_1.ptu
    104 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488174_T2075s_1.ptu
    105 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488158_T1884s_1.ptu
    106 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488244_T2914s_1.ptu
    107 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4886_T62s_1.ptu
    108 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1015s_1.ptu
    109 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488165_T1979s_1.ptu
    110 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48857_T674s_1.ptu
    111 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2279s_1.ptu
    112 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488183_T2183s_1.ptu
    113 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1689s_1.ptu
    114 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488189_T2269s_1.ptu
    115 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T266s_1.ptu
    116 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488209_T2493s_1.ptu
    117 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1630s_1.ptu
    118 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488185_T2221s_1.ptu
    119 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488179_T2135s_1.ptu
    120 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48866_T782s_1.ptu
    121 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1472s_1.ptu
    122 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488160_T1919s_1.ptu
    123 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T664s_1.ptu
    124 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T351s_1.ptu
    125 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T375s_1.ptu
    126 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48859_T700s_1.ptu
    127 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488129_T1545s_1.ptu
    128 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1714s_1.ptu
    129 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1022s_1.ptu
    130 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1754s_1.ptu
    131 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488193_T2303s_1.ptu
    132 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1250s_1.ptu
    133 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488228_T2721s_1.ptu
    134 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48891_T1088s_1.ptu
    135 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2040s_1.ptu
    136 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48835_T411s_1.ptu
    137 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1046s_1.ptu
    138 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488123_T1466s_1.ptu
    139 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T906s_1.ptu
    140 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48822_T255s_1.ptu
    141 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1730s_1.ptu
    142 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1358s_1.ptu
    143 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48824_T279s_1.ptu
    144 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T638s_1.ptu
    145 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2949s_1.ptu
    146 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T519s_1.ptu
    147 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T482s_1.ptu
    148 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T327s_1.ptu
    149 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T471s_1.ptu
    150 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488225_T2685s_1.ptu
    151 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T362s_1.ptu
    152 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T578s_1.ptu
    153 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T722s_1.ptu
    154 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T614s_1.ptu
    155 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48852_T616s_1.ptu
    156 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1778s_1.ptu
    157 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2028s_1.ptu
    158 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4883_T26s_1.ptu
    159 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48881_T966s_1.ptu
    160 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T435s_1.ptu
    161 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1666s_1.ptu
    162 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2315s_1.ptu
    163 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488205_T2446s_1.ptu
    164 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48818_T206s_1.ptu
    165 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1533s_1.ptu
    166 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48851_T602s_1.ptu
    167 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488116_T1388s_1.ptu
    168 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488184_T2196s_1.ptu
    169 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1394s_1.ptu
    170 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48869_T818s_1.ptu
    171 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1130s_1.ptu
    172 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2076s_1.ptu
    173 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1262s_1.ptu
    174 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2993s_1.ptu
    175 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1063s_1.ptu
    176 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48845_T531s_1.ptu
    177 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488117_T1400s_1.ptu
    178 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488192_T2291s_1.ptu
    179 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1992s_1.ptu
    180 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48896_T1142s_1.ptu
    181 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48894_T1124s_1.ptu
    182 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488177_T2111s_1.ptu
    183 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48862_T736s_1.ptu
    184 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1412s_1.ptu
    185 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1100s_1.ptu
    186 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T555s_1.ptu
    187 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488223_T2661s_1.ptu
    188 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48853_T626s_1.ptu
    189 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488136_T1622s_1.ptu
    190 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1810s_1.ptu
    191 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2925s_1.ptu
    192 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T942s_1.ptu
    193 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1448s_1.ptu
    194 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T809s_1.ptu
    195 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488201_T2398s_1.ptu
    196 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1670s_1.ptu
    197 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488250_T3006s_1.ptu
    198 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4884_T38s_1.ptu
    199 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1514s_1.ptu
    200 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488104_T1244s_1.ptu
    201 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488181_T2172s_1.ptu
    202 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1370s_1.ptu
    203 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488140_T1678s_1.ptu
    204 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T652s_1.ptu
    205 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T1003s_1.ptu
    206 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T544s_1.ptu
    207 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488131_T1569s_1.ptu
    208 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488236_T2817s_1.ptu
    209 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2123s_1.ptu
    210 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48873_T869s_1.ptu
    211 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488164_T1968s_1.ptu
    212 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488249_T2973s_1.ptu
    213 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488151_T1801s_1.ptu
    214 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488235_T2805s_1.ptu
    215 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488170_T2028s_1.ptu
    216 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488180_T2160s_1.ptu
    217 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488135_T1618s_1.ptu
    218 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488190_T2281s_1.ptu
    219 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T758s_1.ptu
    220 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T794s_1.ptu
    221 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T891s_1.ptu
    222 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T842s_1.ptu
    223 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488213_T2541s_1.ptu
    224 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2184s_1.ptu
    225 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48841_T484s_1.ptu
    226 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488171_T2052s_1.ptu
    227 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488153_T1825s_1.ptu
    228 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1581s_1.ptu
    229 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488147_T1762s_1.ptu
    230 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488110_T1310s_1.ptu
    231 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48885_T1010s_1.ptu
    232 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T290s_1.ptu
    233 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488168_T2004s_1.ptu
    234 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48820_T230s_1.ptu
    235 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488162_T1944s_1.ptu
    236 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488203_T2422s_1.ptu
    237 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488152_T1822s_1.ptu
    238 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T243s_1.ptu
    239 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T2004s_1.ptu
    240 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48837_T436s_1.ptu
    241 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488166_T1980s_1.ptu
    242 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488200_T2386s_1.ptu
    243 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1454s_1.ptu
    244 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48843_T508s_1.ptu
    245 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488102_T1220s_1.ptu
    246 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T773s_1.ptu
    247 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1920s_1.ptu
    248 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48823_T267s_1.ptu
    249 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48863_T746s_1.ptu
    250 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488132_T1573s_1.ptu
    251 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48867_T797s_1.ptu
    252 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1726s_1.ptu
    253 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488145_T1738s_1.ptu
    254 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488169_T2016s_1.ptu
    255 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48889_T1058s_1.ptu
    256 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48860_T710s_1.ptu
    257 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48831_T363s_1.ptu
    258 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488215_T2565s_1.ptu
    259 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48878_T930s_1.ptu
    260 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48865_T770s_1.ptu
    261 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48870_T830s_1.ptu
    262 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488114_T1364s_1.ptu
    263 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488148_T1774s_1.ptu
    264 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488224_T2673s_1.ptu
    265 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488172_T2052s_1.ptu
    266 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488167_T1992s_1.ptu
    267 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488100_T1190s_1.ptu
    268 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48821_T242s_1.ptu
    269 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488240_T2865s_1.ptu
    270 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1701s_1.ptu
    271 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1549s_1.ptu
    272 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48844_T520s_1.ptu
    273 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48861_T724s_1.ptu
    274 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48814_T158s_1.ptu
    275 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1956s_1.ptu
    276 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488173_T2064s_1.ptu
    277 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4885_T50s_1.ptu
    278 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48849_T580s_1.ptu
    279 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48840_T472s_1.ptu
    280 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48883_T991s_1.ptu
    281 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488247_T2969s_1.ptu
    282 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488150_T1798s_1.ptu
    283 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T566s_1.ptu
    284 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1160s_1.ptu
    285 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488118_T1406s_1.ptu
    286 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4889_T98s_1.ptu
    287 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T134s_1.ptu
    288 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488222_T2649s_1.ptu
    289 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1039s_1.ptu
    290 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48879_T938s_1.ptu
    291 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48888_T1051s_1.ptu
    292 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48876_T902s_1.ptu
    293 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48819_T218s_1.ptu
    294 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1112s_1.ptu
    295 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488121_T1442s_1.ptu
    296 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488101_T1208s_1.ptu
    297 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488109_T1304s_1.ptu
    298 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488128_T1526s_1.ptu
    299 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488207_T2470s_1.ptu
    300 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2937s_1.ptu
    301 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488242_T2890s_1.ptu
    302 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48854_T640s_1.ptu
    303 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48847_T554s_1.ptu
    304 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1292s_1.ptu
    305 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1597s_1.ptu
    306 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4888_T86s_1.ptu
    307 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48872_T857s_1.ptu
    308 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488149_T1786s_1.ptu
    309 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48825_T291s_1.ptu
    310 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488182_T2171s_1.ptu
    311 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1871s_1.ptu
    312 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488220_T2624s_1.ptu
    313 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2981s_1.ptu
    314 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48897_T1154s_1.ptu
    315 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48848_T568s_1.ptu
    316 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2100s_1.ptu
    317 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1847s_1.ptu
    318 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488245_T2945s_1.ptu
    319 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488139_T1658s_1.ptu
    320 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48830_T350s_1.ptu
    321 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488175_T2087s_1.ptu
    322 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48856_T662s_1.ptu
    323 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488230_T2745s_1.ptu
    324 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48875_T894s_1.ptu
    325 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488127_T1521s_1.ptu
    326 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488195_T2327s_1.ptu
    327 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48884_T998s_1.ptu
    328 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2219s_1.ptu
    329 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48882_T974s_1.ptu
    330 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488134_T1606s_1.ptu
    331 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488108_T1286s_1.ptu
    332 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48827_T315s_1.ptu
    333 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488214_T2553s_1.ptu
    334 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488163_T1944s_1.ptu
    335 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48839_T460s_1.ptu
    336 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488186_T2233s_1.ptu
    337 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488243_T2902s_1.ptu
    338 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1642s_1.ptu
    339 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488156_T1861s_1.ptu
    340 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF4882_T14s_1.ptu
    341 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488142_T1694s_1.ptu
    342 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T123s_1.ptu
    343 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488248_T2961s_1.ptu
    344 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48895_T1136s_1.ptu
    345 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48826_T303s_1.ptu
    346 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488191_T2293s_1.ptu
    347 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488137_T1634s_1.ptu
    348 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488133_T1585s_1.ptu
    349 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488216_T2577s_1.ptu
    350 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488107_T1274s_1.ptu
    351 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488130_T1557s_1.ptu
    352 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488120_T1436s_1.ptu
    353 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48868_T806s_1.ptu
    354 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488125_T1490s_1.ptu
    355 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48832_T374s_1.ptu
    356 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488119_T1424s_1.ptu
    357 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48877_T914s_1.ptu
    358 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488188_T2257s_1.ptu
    359 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48836_T423s_1.ptu
    360 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488176_T2112s_1.ptu
    361 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488112_T1334s_1.ptu
    362 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48815_T170s_1.ptu
    363 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48838_T448s_1.ptu
    364 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488178_T2136s_1.ptu
    365 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488198_T2363s_1.ptu
    366 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48855_T650s_1.ptu
    367 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48899_T1178s_1.ptu
    368 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488161_T1931s_1.ptu
    369 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488246_T2957s_1.ptu
    370 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488231_T2757s_1.ptu
    371 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488122_T1460s_1.ptu
    372 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488157_T1873s_1.ptu
    373 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488194_T2329s_1.ptu
    374 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48846_T542s_1.ptu
    375 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488144_T1718s_1.ptu
    376 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488111_T1322s_1.ptu
    377 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488143_T1705s_1.ptu
    378 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48874_T882s_1.ptu
    379 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488124_T1478s_1.ptu
    380 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488106_T1268s_1.ptu
    381 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48892_T1094s_1.ptu
    382 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488115_T1376s_1.ptu
    383 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48864_T761s_1.ptu
    384 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488239_T2853s_1.ptu
    385 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48893_T1106s_1.ptu
    386 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488154_T1837s_1.ptu
    387 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488105_T1256s_1.ptu
    388 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48829_T338s_1.ptu
    389 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48871_T845s_1.ptu
    390 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1172s_1.ptu
    391 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48880_T954s_1.ptu
    392 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48811_T122s_1.ptu
    393 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488141_T1682s_1.ptu
    394 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488237_T2829s_1.ptu
    395 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48810_T110s_1.ptu
    396 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48898_T1166s_1.ptu
    397 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48812_T135s_1.ptu
    398 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48887_T1034s_1.ptu
    399 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF488202_T2410s_1.ptu
    400 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48828_T326s_1.ptu
    401 of 424: /beegfs/ye53nis/data/Pablo_structured_experiment/all_clean_ptu/20 nM AF48886_T1027s_1.ptu
    Different binning was chosen for correlation. Loading dataset 1 with bin=100000.0. This can take a while...
    Processing correlation of unprocessed dataset 1
    Processing correlation with correction by prediction of dataset 1
    
  3. Not all of the log was saved (e.g. loading folder alldirtyptu). Load CSV
    corr_out = pd.read_csv(filepath_or_buffer='data/exp-210204-unet/2021-03-24_correlations.csv')
    corr_out
    
      \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\)
    0 19.078159 0.590783 8192.0 0-orig 100000.0
    1 20.314897 0.554817 8192.0 0-orig 100000.0
    2 21.007772 0.536518 8192.0 0-orig 100000.0
    3 22.716317 0.496166 8192.0 0-orig 100000.0
    4 24.089236 0.467888 8192.0 0-orig 100000.0
    4795 0.062475 180.409905 8017.0 1-pred-0.9 100000.0
    4796 0.054750 205.864659 7976.0 1-pred-0.9 100000.0
    4797 0.265582 42.439007 8060.0 1-pred-0.9 100000.0
    4798 0.148929 75.680566 8077.0 1-pred-0.9 100000.0
    4799 0.331785 33.970940 8091.0 1-pred-0.9 100000.0

    4800 rows × 5 columns

    looks good! Open question: why were metadata not saved? Since I started handling multipletau failures better (they now return np.nan values for the correlations instead of just skipping the correlation) the shapes of metadata and data should match…

  4. Check out nan values
    corr_out[corr_out['$D$ in $\\frac{{\mu m^2}}{{s}}$'].isna()]
    
      \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\)
    402 NaN NaN 3.0 0-pred-0.1 100000.0
    410 NaN NaN 3.0 0-pred-0.1 100000.0
    428 NaN NaN 0.0 0-pred-0.1 100000.0
    481 NaN NaN 3.0 0-pred-0.1 100000.0
    527 NaN NaN 3.0 0-pred-0.1 100000.0
    530 NaN NaN 1.0 0-pred-0.1 100000.0
    534 NaN NaN 0.0 0-pred-0.1 100000.0
    552 NaN NaN 1.0 0-pred-0.1 100000.0
    553 NaN NaN 1.0 0-pred-0.1 100000.0
    557 NaN NaN 2.0 0-pred-0.1 100000.0
    558 NaN NaN 2.0 0-pred-0.1 100000.0
    563 NaN NaN 2.0 0-pred-0.1 100000.0
    568 NaN NaN 1.0 0-pred-0.1 100000.0
    572 NaN NaN 0.0 0-pred-0.1 100000.0
    578 NaN NaN 1.0 0-pred-0.1 100000.0
    589 NaN NaN 2.0 0-pred-0.1 100000.0
    623 NaN NaN 3.0 0-pred-0.1 100000.0
    634 NaN NaN 1.0 0-pred-0.1 100000.0
    638 NaN NaN 1.0 0-pred-0.1 100000.0
    651 NaN NaN 2.0 0-pred-0.1 100000.0
    655 NaN NaN 3.0 0-pred-0.1 100000.0
    656 NaN NaN 0.0 0-pred-0.1 100000.0
    660 NaN NaN 0.0 0-pred-0.1 100000.0
    691 NaN NaN 0.0 0-pred-0.1 100000.0
    694 NaN NaN 0.0 0-pred-0.1 100000.0
    699 NaN NaN 2.0 0-pred-0.1 100000.0
    715 NaN NaN 2.0 0-pred-0.1 100000.0
    721 NaN NaN 0.0 0-pred-0.1 100000.0
    725 NaN NaN 1.0 0-pred-0.1 100000.0
    764 NaN NaN 2.0 0-pred-0.1 100000.0
    799 NaN NaN 1.0 0-pred-0.1 100000.0

    We see, that all of the 31 NaNs happened in the "clean" dataset with a prediction threshold of 0.1 and all were presumably caused by the insufficient trace length, since multipletau needs in this case 32 time steps to correlate the trace.

  5. Refactor folder-idtraces-used into 2 columns
    corr_out['folder_id-traces_used']
    
    0           0-orig
    1           0-orig
    2           0-orig
    3           0-orig
    4           0-orig
               ...
    4795    1-pred-0.9
    4796    1-pred-0.9
    4797    1-pred-0.9
    4798    1-pred-0.9
    4799    1-pred-0.9
    Name: folder_id-traces_used, Length: 4800, dtype: object
    
    corr_out[['Folder ID', 'Traces used']] = corr_out['folder_id-traces_used'].str.split(pat='-', n=1, expand=True)
    
    corr_out
    
      \(D\) in \(\frac{{\mu m\^2}}{{s}}\) \(\tau\_{{D}}\) in \(ms\) Trace lengths folder\id-traces\used Photon count bin for correlation in \(ns\) Folder ID Traces used
    0 19.078159 0.590783 8192.0 0-orig 100000.0 0 orig
    1 20.314897 0.554817 8192.0 0-orig 100000.0 0 orig
    2 21.007772 0.536518 8192.0 0-orig 100000.0 0 orig
    3 22.716317 0.496166 8192.0 0-orig 100000.0 0 orig
    4 24.089236 0.467888 8192.0 0-orig 100000.0 0 orig
    4795 0.062475 180.409905 8017.0 1-pred-0.9 100000.0 1 pred-0.9
    4796 0.054750 205.864659 7976.0 1-pred-0.9 100000.0 1 pred-0.9
    4797 0.265582 42.439007 8060.0 1-pred-0.9 100000.0 1 pred-0.9
    4798 0.148929 75.680566 8077.0 1-pred-0.9 100000.0 1 pred-0.9
    4799 0.331785 33.970940 8091.0 1-pred-0.9 100000.0 1 pred-0.9

    4800 rows × 7 columns

  6. plots
    x = 'Trace lengths'
    
    g = sns.FacetGrid(data=corr_out,
                      col='Folder ID',
                      col_wrap=1,
                      sharex=True,
                      aspect=1.5,
                      height=5,
                      legend_out=True)
    g.map_dataframe(sns.boxplot,
          x=x,
          y='Traces used',
          palette='colorblind',
          showfliers=False)
    g.map_dataframe(sns.stripplot,
          x=x,
          y='Traces used',
          dodge=True,
          palette=sns.color_palette(['0.3']),
          size=4,
          jitter=0.2)
    g.set_xlabels(x)
    g.tight_layout()
    plt.show()
    

    Trace lengths: 2021-03-24_correlations_trace-lengths.png

    # '$D$ in $\\frac{{\mu m^2}}{{s}}$'
    # '$\\tau_{{D}}$ in $ms$'
    x = '$D$ in $\\frac{{\mu m^2}}{{s}}$'
    
    g = sns.FacetGrid(data=corr_out,
                      col='Folder ID',
                      col_wrap=1,
                      sharex=True,
                      aspect=1.5,
                      height=5,
                      legend_out=True)
    g.map_dataframe(sns.boxplot,
          x=x,
          y='Traces used',
          palette='colorblind',
          showfliers=False).set(xscale = 'log')
    g.map_dataframe(sns.stripplot,
          x=x,
          y='Traces used',
          dodge=True,
          palette=sns.color_palette(['0.3']),
          size=4,
          jitter=0.2).set(xscale = 'log')
    g.set_xlabels(x)
    g.tight_layout()
    plt.show()
    

    D: 2021-03-24_correlations_diffusion-rates.png tau: 2021-03-24_correlations_transit-times.png

    This scatterplot shows Diffusion rates / transit times against trace lengths. I used a subsample to avoid overplotting.

    # '$D$ in $\\frac{{\mu m^2}}{{s}}$'
    # '$\\tau_{{D}}$ in $ms$'
    x = '$\\tau_{{D}}$ in $ms$'
    
    g = sns.FacetGrid(data=corr_out,
                      row='Traces used',
                      col='Folder ID',
                      hue='Traces used',
                      sharex=True,
                      sharey=True,
                      aspect=1.5,
                      height=3.5,
                      margin_titles=True,
                      legend_out=True)
    g.map_dataframe(sns.scatterplot,
          x=x,
          y='Trace lengths',
          palette='colorblind').set(xscale = 'log')
    g.add_legend(title='Traces used')
    g.set_xlabels(x)
    g.tight_layout()
    plt.show()
    
    # '$D$ in $\\frac{{\mu m^2}}{{s}}$'
    # '$\\tau_{{D}}$ in $ms$'
    x = '$\\tau_{{D}}$ in $ms$'
    
    g = sns.FacetGrid(data=corr_out.sample(1000),
                      row='Folder ID',
                      hue='Traces used',
                      hue_order=['orig', 'pred-0.1', 'pred-0.3', 'pred-0.5', 'pred-0.7', 'pred-0.9'],
                      sharex=True,
                      sharey=True,
                      aspect=1.5,
                      height=4,
                      margin_titles=True,
                      legend_out=True)
    g.map_dataframe(sns.scatterplot,
          x=x,
          y='Trace lengths',
          palette='colorblind').set(xscale = 'log')
    g.add_legend(title='Traces used')
    g.set_xlabels(x)
    g.tight_layout()
    plt.show()
    

    Scatterplot on subsample: 2021-03-24_correlations_scatter-subsample.png Scatterplot on full dataset, but categorical: 2021-03-24_correlations_scatter-full.png

2.1.7 use MLFLOW to compare run 1 and run 2

  1. get the experiment ID
    conda activate tf-nightly
    cd Programme/drmed-git
    export MLFLOW_EXPERIMENT_NAME=exp-210204-unet
    
    export MLFLOW_TRACKING_URI=file:/data/mlruns
    mlflow experiments list
    
      Experiment Id  Name             Artifact Location
    ---------------  ---------------  -------------------
                  2  exp-210124-test  file:.
                  3  exp-210204-unet  file:.
    
    mlflow runs list --experiment-id 3
    
    Date                     Name    ID
    -----------------------  ------  --------------------------------
    2021-03-16 22:26:12 CET          3cec3f26ed2d4004978c4ec37c00fba0
    2021-02-05 18:23:50 CET          b9935d1e554c423fb2852242f4c4504c
    
  2. start tensorboard for the runs
    export EXP1=b9935d1e554c423fb2852242f4c4504c
    export EXP2=3cec3f26ed2d4004978c4ec37c00fba0
    tensorboard --logdir=data/mlruns/3/$EXP2/artifacts/tensorboard_logs
    
                     
    sh-5.1$ sh-5.1$ ye53nis@ara-login01.rz.uni-jena.de's password:          
    ye53nis@login01's password:              
    bind: Address already in use        
    Last login: Fri Apr 2 23:45:47 2021 from 10.231.191.246

auc and val-auc: auc-and-val-auc.png

loss and val-loss: loss-and-val-loss.png

epoch_precision_and_recall.svg

run 1 distribution and histogram of final layer run1_distribution_final-layer.png run1_histogram_final-layer.png

run 2 distribution and histogram of final layer run2_distribution_final-layer.png run2_histogram_final-layer.png