Lab book Fluotracify

1 Technical Notes

1.1 README

1.1.1 General:

  • This file corresponds to my lab book for my doctoral thesis tackling artifact correction in Fluorescence Correlation Spectroscopy (FCS) measurements using Deep Neural Networks. It also contains notes taken during the process of setting up this workflow for reproducible research.
  • This file contains explanations of how things are organized, of the workflow for doing experiments, changes made to the code, and the observed behavior in the "* Data" section.
  • The branching model used is described in this paper. Therefore: if you are interested in the "* Data" section, you have to git clone the data branch of the repository. The main branch is clean from any results, it contains only source code and the analysis.
  • This project is my take on Open-notebook science. The idea was postulated in a blog post in 2006:

    … there is a URL to a laboratory notebook that is freely available and indexed on common search engines. It does not necessarily have to look like a paper notebook but it is essential that all of the information available to the researchers to make their conclusions is equally available to the rest of the world —Jean-Claude Bradley

  • Proposal on how to deal with truly private data (e.g. notes from a confidential meeting with a colleague), which might otherwise be noted in a normal Lab notebook: do not include them here. Only notes relevant to the current project should be taken

1.1.2 Code block languages used in this document

# This is a sh block for shell / bash scripting. In the context of this file,
# these blocks are mainly used for operations on my local computer.
# In the LabBook.html rendering of this document, these blocks will have a
# light green colour (#F0FBE9)
# This block can open and access tmux sessions, used for shell scripting on
# remote computing clusters.
# In the LabBook.html rendering of this document, these blocks will have a
# distinct light green colour (#E1EED8)
# This is a python block. In the context of this file, it is seldomly used
# (only for examplary scripts.)
# In the LabBook.html rendering of this document, these blocks will have a
# light blue colour (#E6EDF4)
# This is a jupyter-python block. The code is sent to a jupyter kernel running
# on a remote high performance computing cluster. Most of my jupyter code is
# executed this way.
# In the LabBook.html rendering of this document, these blocks will have a
# light orange colour (#FAEAE1)
;; This is a emacs-lisp block, the language used to customize Emacs, which is
;; sometimes necessary, since the reproducible workflow of this LabBook is
;; tightly integrated with Emacs and org-mode.
;; In the LabBook.html rendering of this document, these blocks will have a
;; light violet colour (#F7ECFB)
This is a literal example block. It can be used very flexibly - in the context
of this document the output of most code blocks is displayed this way.
In the LabBook.html rendering of this document, these blocks will have a light
yellow colour (#FBFBBF)
This is a literal example block enclosed in a details block. This is useful to
make the page more readable by collapsing large amounts of output.
In the Labbook.html rendering of this document, the details block will have a
light grey colour (#f0f0f0) and a pink color when hovering above it.

1.1.3 Experiments workflow:

  1. Create a new branch from main
  2. Print out the git log from the latest commit and the metadata
  3. Call the analysis scripts, follow the principles outlined in Organization of code
  4. All machine learning runs are saved in data/mlruns, all other data in data/#experiment-name
  5. Add a ** exp-<date>-<name>" section to this file under Data
  6. Commit/push the results of this separate branch
  7. Merge this new branch with the remote data branch

1.1.4 Example for experimental setup procedure

1.1.4.1 Setting starting a jupyter kernel from a remote jupyter session using emacs-jupyter in org babel

1.1.5 tools used (notes)

1.1.5.1 Emacs magit
1.1.5.2 jupyter

1.2 Template for data entry and setup notes:

1.2.1 exp-#date-#title

1.2.1.1 git:
git log -1
1.2.1.2 System Metadata:
import os
import pprint

ramlist = os.popen('free -th').readlines()[-1].split()[1:]

print('No of CPUs in system:', os.cpu_count())
print('No of CPUs the current process can use:',
      len(os.sched_getaffinity(0)))
print('load average:', os.getloadavg())
print('os.uname(): ', os.uname())
print('PID of process:', os.getpid())
print('RAM total: {}, RAM used: {}, RAM free: {}'.format(
    ramlist[0], ramlist[1], ramlist[2]))

!echo the current directory: $PWD
!echo My disk usage:
!df -h
if _long:
    %conda list
    pprint.pprint(dict(os.environ), sort_dicts=False)

1.2.1.3 Tmux setup and scripts
rm ~/.tmux-local-socket-remote-machine
REMOTE_SOCKET=$(ssh ara 'tmux ls -F "#{socket_path}"' | head -1)
echo $REMOTE_SOCKET
ssh ara -tfN \
    -L ~/.tmux-local-socket-remote-machine:$REMOTE_SOCKET
rm: cannot remove 'home/lex.tmux-local-socket-remote-machine': No such file or directory
ye53nis@ara-login01.rz.uni-jena.de's password:              
/tmp/tmux-67339/default                
> ye53nis@ara-login01.rz.uni-jena.de's password:            
1.2.1.4 SSH tunneling

Different applications can be run on the remote compute node. If I want to access them at the local machine, and open them with the browser, I use this tunneling script.

ssh -t -t ara -L $port:localhost:$port ssh $node -L $port:Localhost:$port

Apps I use that way:

  • Jupyter lab for running Python 3-Kernels
  • TensorBoard
  • Mlflow ui
1.2.1.5 jupyter scripts

Starting a jupyter instance on a server where the necessary libraries are installed is easy using this script:

conda activate tf
export PORT=9999
export XDG_RUNTIME_DIR=''
export XDG_RUNTIME_DIR=""
jupyter lab --no-browser --port=$PORT

On the compute node of the HPC, the users' environment is managed through module files using the system Lmod. The export XDG_RUNTIME_DIR statements are needed because of a jupyter bug which did not let it start. Right now, ob-tmux does not support a :var header like normal org-babel does. So the $port variable has to be set here in the template.

Now this port has to be tunnelled on our local computer (See SSH tunneling). While the tmux session above keeps running, no matter if Emacs is running or not, this following ssh tunnel needs to be active locally to connect to the notebook. If you close Emacs, it would need to be reestablished

1.2.2 Setup notes

1.2.2.1 Setting up a tmux connection from using ob-tmux in org-babel
  • prerequisite: tmux versions need to be the same locally and on the server. Let's verify that now.
    • the local tmux version:
      tmux -V
      
      tmux 3.0a
      
    • the remote tmux version:
      ssh ara tmux -V
      
      ye53nis@ara-login01.rz.uni-jena.de's password:
      tmux 3.0a
  • as is described in the ob-tmux readme, the following code snippet creates a socket on the remote machine and forwards this socket to the local machine (note that socket_path was introduced in tmux version 2.2)
    REMOTE_SOCKET=$(ssh ara 'tmux ls -F "#{socket_path}"' | head -1)
    echo $REMOTE_SOCKET
    ssh ara -tfN \
        -L ~/.tmux-local-socket-remote-machine:$REMOTE_SOCKET
    
    ye53nis@ara-login01.rz.uni-jena.de's password:  
    /tmp/tmux-67339/default    
    > ye53nis@ara-login01.rz.uni-jena.de's password:
  • now a new tmux session with name ob-NAME is created when using a code block which looks like this: #+BEGIN_SRC tmux :socket ~/.tmux-local-socket-remote-machine :session NAME
  • Commands can be sent now to the remote tmux session, BUT note that the output is not printed yet
  • there is a workaround for getting output back to our LabBook.org: A script which allows to print the output from the tmux session in an #+begin_example-Block below the tmux block by pressing C-c C-o or C-c C-v C-o when the pointer is inside the tmux block.
1.2.2.2 emacs-jupyter Setup

Emacs-jupyter aims to be an API for a lot of functionalities of the jupyter project. The documentation can be found on GitHub.

  1. For the whole document: connect to a running jupyter instance
    1. M-x jupyter-server-list-kernels
      1. set server URL, e.g. http://localhost:8889
      2. set websocket URL, e.g. http://localhost:8889
    2. two possibilities
      1. kernel already exists \(\to\) list of kernels and kernel-ID is displayed
      2. kernel does not exist \(\to\) prompt asks if you want to start one \(\to\) yes \(\to\) type kernel you want to start, e.g. Python 3
  2. In the subtree where you want to use jupyter-python blocks with org babel
    1. set the :header-args:jupyter-python :session /jpy:localhost#kernel:8889-ID
    2. customize the output folder using the following org-mode variable:
      (setq org-babel-jupyter-resource-directory "./data/exp-test/plots")
      
      ./data/exp-test/plots
      
  3. For each individual block, the following customizations might be useful
    1. jupyter kernels can return multiple kinds of rich output (images, html, …) or scalar data (plain text, numbers, lists, …). To force a plain output, use :results scalar. To show the output in the minibuffer only, use :results silent
    2. to change the priority of different rich outputs, use :display header argument, e.g. :display text/plain text/html prioritizes plain text over html. All supported mimetypes in default order:
      1. text/org
      2. image/svg+xml, image/jpeg, image/png
      3. text/html
      4. text/markdown
      5. text/latex
      6. text/plain
    3. We can set jupyter to output pandas DataFrames as org tables automatically using the source block header argument :pandoc t
    4. useful keybindings
      • M-i to open the documentation for wherever your pointer is (like pressing Shift-TAB in Jupyter notebooks)
      • C-c C-i to interrupt the kernel, C-c C-r to restart the kernel

1.2.3 Notes on archiving

1.2.3.1 Exporting the LabBook.org to html in a twbs style
  • I am partial to the twitter bootstrap theme of html, since I like it's simple design, but clear structure with a nice table of contents at the side → the following org mode extension supports a seemless export to twitter bootstrap html: https://github.com/marsmining/ox-twbs
  • when installed, the export can be triggered via the command (org-twbs-export-as-html) or via the keyboard shortcut for export C-c C-e followed by w for Twitter bootstrap and h for saving the .html
  • Things to configure:
    • in general, there are multiple export options: https://orgmode.org/manual/Export-Settings.html
    • E.g. I set 2 #+OPTIONS keywords at the begin of the file: toc:4 and H:4 which make sure that in my export my sidebar table of contents will show numbered headings till a depth of 4.
    • I configured my code blocks so that they will not be evaluated when exporting (I would recommend this especially if you only export for archiving) and that both the code block and the output will be exported with the keyword: #+PROPERTY: header-args :eval never-export :exports both
    • To discriminate between code blocks for different languages I gave each of them a distinct colour using #+HTML_HEAD_EXTRA: <style... (see above)
    • I had to configure a style for table, so that the
      • display: block; overflow-x: auto; gets the table to be restricted to the width of the text and if it is larger, activates scrolling
      • white-space: nowrap; makes it that there is no wrap in a column, so it might be broader, but better readable if you have scrolling anyway
  • Things to do before exporting / Troubleshooting while exporting:
    • when using a dark theme for you emacs, the export of the code blocks might show some ugly dark backgrounds from the theme. If this becomes an issue, change to a light theme for the export with M-x (load-theme) and choose solarized-light
    • only in the data branch you set the git tags after merging. If you want to show them here, execute the corresponding function in Git TAGs
    • make sure your file links work properly! I recommend referencing your files relatively (e.g. [ [ f ile:./data/exp-XXXXXX-test/test.png]] without spaces). Otherwise there will be errors in your Messages buffer
    • There might be errors with your code blocks
      • e.g. the export function expects you to assign a default variable to your functions
      • if you call a function via the #+CALL mechanism, it wants you to include two parentheses for the function, e.g. #+CALL: test()
    • check indentation of code blocks inside lists
    • add a details block around large output cells. This makes them expandable. I added some #+HTML_HEAD_EXTRA: <style... inspired by alhassy. That's how the details block looks like:
      #+begin_details
      
      #+end_details
      
    • If you reference a parameter with an underscore in the name, use the org markdown tricks to style them like code (== or ~~), otherwise the part after the underscore will be rendered like a subscript: under_score vs underscore
  • Things to do after exporting:
    • In my workflow, the exported LabBook.html with the overview of all experiments is in the data folder. If you move the file, you will have to fix the file links for the new location, e.g. via "Find and replace" M-%:
      • if you move the org file → in the org file find [[file:./data/ and replace with [[file:./ → then export with C-c C-e w h
      • if you export first with C-c C-e w h and move the html file to data → in the html file find ./data and replace with .

1.3 Organization of git

1.3.1 remote/origin/main branch:

  • contains all the source code in folder src/ which is used for experiments.
  • contains the LabBook.org template
  • contains setup- and metadata files such as MLproject or conda.yaml
  • the log contains only lasting alterations on the folders and files mentioned above, which are e.g. used for conducting experiments or which introduce new features. Day-to-day changes in code

1.3.2 remote/origin/exp### branches:

  • if an experiment is done, the code and templates will be branched out from main in an #experiment-name branch, ### meaning some meaningful descriptor.
  • all data generated during the experiment (e.g. .csv files, plots, images, etc), is stored in a folder with the name data/#experiment-name, except machine learning-specific data and metadata from `mlflow` runs, which are saved under data/mlruns (this allows easily comparing machine learning runs with different experimental settings)
  • The LabBook.org file is essential
    • If possible, all code is executed from inside this file (meaning analysis scripts or calling the code from the scr/ directory).
    • All other steps taken during an experiment are noted down, as well as conclusions or my thought process while conducting the experiment
    • Provenance data, such as metadata about the environment the code was executed in, the command line output of the code, and some plots

1.3.3 remote/origin/develop branch:

  • this is the branch I use for day to day work on features and exploration. All of my current activity can be followed here.

1.3.4 remote/origin/data branch:

  • contains a full cronicle of the whole research process
  • all #experiment-name branches are merged here. Afterwards the original branch is deleted and on the data branch there is a Git tag which shows the merge commit to make accessing single experiments easy.
  • the develop branch is merged here as well.

1.3.5 Git TAGs

1.3.5.1 Stable versions:
1.3.5.2 All tags from git:
git push origin --tags
git tag -n1
exp-200402-test Merge branch 'exp-200402-test' into data
exp-200520-unet Merge branch 'exp-310520-unet' into data
exp-200531-unet Merge branch 'heads/exp-310520-unet' into data
exp-201231-clustsim exp-201231-clustsim
exp-210204-unet Add exp-210204-unet LabBook part 3
exp-310520-unet move exp-310520-unet to data branch manually

1.4 Organization of code

1.4.1 scripts:

1.4.2 src/

1.4.2.1 fluotracify/
  1. imports/
  2. simulations/
  3. training/
  4. applications/
  5. doc/
1.4.2.2 nanosimpy/
  • cloned from dwaithe with refactoring for Python 3-compatibility

1.5 Changes in this repository (without "* Data" in this file)

1.5.1 Changes in LabBook.org (without "* Data")

1.5.1.1 2022-02-19
  • Add #+HTML_HEAD_EXTRA: <style... for table to enable scrolling if the table overflows
1.5.1.2 2021-12-16
  • Add details blocks, corresponding #+HTML_HEAD_EXTRA: <style... and documentation in Notes on archiving
1.5.1.3 2021-08-05
  • Rename master branch to main branch
1.5.1.4 2021-04-04
  • Add #+OPTIONS: H:4 and #+OPTIONS: toc:4 to show up to 4 levels of depth in the html (twbs) export of this LabBook in the table of contents at the side
  • I added Notes on archiving
1.5.1.5 2020-11-04
1.5.1.6 2020-05-31
  • extend general documentation in README
  • Add code block examples
  • extend documentation on experiment workflow
  • move setup notes from README to "Template for data entry and setup notes"
  • remove emacs-lisp code for custom tmux block functions (not relevant enough)
  • change named "jpt-tmux" from starting a jupyter notebook to starting jupyter lab. Load a conda environment instead of using Lmod's module load
1.5.1.7 2020-05-07
  • extend documentation on git model
  • extend documentation on jupyter setup
1.5.1.8 2020-04-22
  • added parts of README which describe the experimental process
  • added templates for system metadata, tmux, jupyter setup
  • added organization of code
1.5.1.9 2020-03-30
  • set up lab book and form git repo accoring to setup by Luka Stanisic et al

1.5.2 Changes in src/fluotracify

2 Data

2.1 exp-310520-unet

2.1.1 Connect

2.1.1.1 Tmux on Ara
ye53nis@ara-login01.rz.uni-jena.de's password:  
/tmp/tmux-67339/default    
> ye53nis@ara-login01.rz.uni-jena.de's password:

Test:

pwd
(tensorflow_nightly) [ye53nis@login01 drmed-git]$ pwd
/beegfs/ye53nis/drmed-git
pwd
2.1.1.2 Compute node for script execution
srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
(base) [ye53nis@node151 drmed-git]$
2.1.1.3 Jupyter on Ara
  1. Request compute node via tmux
    srun -p s_standard --time=7-10:00:00 --ntasks-per-node=24 --mem-per-cpu=2000 --pty bash
    
    (base) [ye53nis@node189 drmed-git]$
    
    cd /home/ye53nis/DOKTOR
    
  1. Start Jupyter Lab
    [I 10:54:50.672 LabApp] JupyterLab extension loaded from /home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/jupyterlab
    [I 10:54:50.673 LabApp] JupyterLab application directory is /home/ye53nis/.conda/envs/tensorflow_nightly/share/jupyter/lab
    [I 10:54:50.678 LabApp] Serving notebooks from local directory: /home/ye53nis/DOKTOR
    [I 10:54:50.678 LabApp] The Jupyter Notebook is running at:
    [I 10:54:50.678 LabApp] http://localhost:8889/?token=b210da5d453ac75f8f246e3c23917c94578c516ecfe0d95b
    [I 10:54:50.678 LabApp]  or http://127.0.0.1:8889/?token=b210da5d453ac75f8f246e3c23917c94578c516ecfe0d95b
    [I 10:54:50.678 LabApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
    [C 10:54:50.724 LabApp]
    
        To access the notebook, open this file in a browser:
            file:///home/ye53nis/.local/share/jupyter/runtime/nbserver-365563-open.html
        Or copy and paste one of these URLs:
            http://localhost:8889/?token=b210da5d453ac75f8f246e3c23917c94578c516ecfe0d95b
         or http://127.0.0.1:8889/?token=b210da5d453ac75f8f246e3c23917c94578c516ecfe0d95b
    
sh-5.0$ ye53nis@ara-login01.rz.uni-jena.de's password:              
ye53nis@node020's password: channel 3: open failed: connect failed: Connection refused
channel 3: open failed: connect failed: Connection refused    
Last login: Sun Jul 5 09:52:47 2020 from login01.ara  

I started a Python3 kernel using jupyter-server-list-kernels. Then I added the kernel ID to the :PROPERTIES: drawer of this (and following) subtrees.

python3           7fe3d66b-d802-4f0f-b105-9536a917b816   a few seconds ago    starting   0

Test:

No of CPUs in system: 72
No of CPUs the current process can use: 24
load average: (1.06, 1.01, 0.97)
os.uname():  posix.uname_result(sysname='Linux', nodename='node218', release='3.10.0-957.1.3.el7.x86_64', version='#1 SMP Thu Nov 29 14:49:43 UTC 2018', machine='x86_64')
PID of process: 10254
RAM total: 199G, RAM used: 6.0G, RAM free: 181G
the current directory: /home/ye53nis/DOKTOR
My disk usage:
Filesystem           Size  Used Avail Use% Mounted on
/dev/sda1             50G  3.2G   47G   7% /
devtmpfs              94G     0   94G   0% /dev
tmpfs                 94G  725M   94G   1% /dev/shm
tmpfs                 94G   75M   94G   1% /run
tmpfs                 94G     0   94G   0% /sys/fs/cgroup
nfs02-ib:/data01      88T   61T   27T  70% /data01
nfs03-ib:/pool/work  100T   79T   22T  79% /nfsdata
nfs01-ib:/home        80T   61T   20T  76% /home
nfs01-ib:/cluster    2.0T  316G  1.7T  16% /cluster
/dev/sda3            6.0G  412M  5.6G   7% /var
/dev/sda6            169G  2.8G  166G   2% /local
/dev/sda5            2.0G   34M  2.0G   2% /tmp
beegfs_nodev         524T  453T   72T  87% /beegfs
tmpfs                 19G     0   19G   0% /run/user/67339
/bin/sh: conda: command not found
{'SLURM_CHECKPOINT_IMAGE_DIR': '/var/slurm/checkpoint',
 'SLURM_NODELIST': 'node218',
 'SLURM_JOB_NAME': 'bash',
 'XDG_SESSION_ID': '8541',
 'SLURMD_NODENAME': 'node218',
 'SLURM_TOPOLOGY_ADDR': 'node218',
 'SLURM_NTASKS_PER_NODE': '24',
 'HOSTNAME': 'login01',
 'SLURM_PRIO_PROCESS': '0',
 'SLURM_SRUN_COMM_PORT': '45911',
 'SHELL': '/bin/bash',
 'TERM': 'xterm-color',
 'SLURM_JOB_QOS': 'qstand',
 'SLURM_PTY_WIN_ROW': '52',
 'HISTSIZE': '1000',
 'TMPDIR': '/tmp',
 'SLURM_TOPOLOGY_ADDR_PATTERN': 'node',
 'SSH_CLIENT': '10.231.190.186 48592 22',
 'CONDA_SHLVL': '2',
 'CONDA_PROMPT_MODIFIER': '(tensorflow_nightly) ',
 'GSETTINGS_SCHEMA_DIR_CONDA_BACKUP': '',
 'WINDOWID': '0',
 'OLDPWD': '/beegfs/ye53nis/drmed-git',
 'QTDIR': '/usr/lib64/qt-3.3',
 'QTINC': '/usr/lib64/qt-3.3/include',
 'SSH_TTY': '/dev/pts/57',
 'QT_GRAPHICSSYSTEM_CHECKED': '1',
 'SLURM_NNODES': '1',
 'USER': 'ye53nis',
 'http_proxy': 'http://internet4nzm.rz.uni-jena.de:3128',
 'LS_COLORS': 'rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:',
 'CONDA_EXE': '/cluster/miniconda3/bin/conda',
 'SLURM_STEP_NUM_NODES': '1',
 'SLURM_JOBID': '392142',
 'SRUN_DEBUG': '3',
 'SLURM_NTASKS': '24',
 'SLURM_LAUNCH_NODE_IPADDR': '192.168.192.5',
 'SLURM_STEP_ID': '0',
 'TMUX': '/tmp/tmux-67339/default,47311,2',
 '_CE_CONDA': '',
 'CONDA_PREFIX_1': '/cluster/miniconda3',
 'SLURM_STEP_LAUNCHER_PORT': '45911',
 'SLURM_TASKS_PER_NODE': '24',
 'MAIL': '/var/spool/mail/ye53nis',
 'PATH': '/home/ye53nis/.conda/envs/tensorflow_nightly/bin:/home/lex/Programme/miniconda3/envs/tensorflow_env/bin:/home/lex/Programme/miniconda3/condabin:/home/lex/.local/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/snapd/snap/bin:/home/lex/Programme/miniconda3/bin:/usr/sbin:/home/ye53nis/.local/bin:/home/ye53nis/bin',
 'GSETTINGS_SCHEMA_DIR': '/home/ye53nis/.conda/envs/tensorflow_nightly/share/glib-2.0/schemas',
 'SLURM_WORKING_CLUSTER': 'hpc:192.168.192.1:6817:8448',
 'SLURM_JOB_ID': '392142',
 'CONDA_PREFIX': '/home/ye53nis/.conda/envs/tensorflow_nightly',
 'SLURM_JOB_USER': 'ye53nis',
 'SLURM_STEPID': '0',
 'PWD': '/home/ye53nis/DOKTOR',
 'SLURM_SRUN_COMM_HOST': '192.168.192.5',
 'LANG': 'en_US.UTF-8',
 'SLURM_PTY_WIN_COL': '206',
 'SLURM_UMASK': '0022',
 'MODULEPATH': '/usr/share/Modules/modulefiles:/etc/modulefiles:/cluster/modulefiles',
 'SLURM_JOB_UID': '67339',
 'LOADEDMODULES': '',
 'SLURM_NODEID': '0',
 'TMUX_PANE': '%2',
 'SLURM_SUBMIT_DIR': '/beegfs/ye53nis/drmed-git',
 'SLURM_TASK_PID': '696',
 'SLURM_NPROCS': '24',
 'SLURM_CPUS_ON_NODE': '24',
 'SLURM_DISTRIBUTION': 'block',
 'https_proxy': 'https://internet4nzm.rz.uni-jena.de:3128',
 'SLURM_PROCID': '0',
 'HISTCONTROL': 'ignoredups',
 '_CE_M': '',
 'SLURM_JOB_NODELIST': 'node218',
 'SLURM_PTY_PORT': '37811',
 'HOME': '/home/ye53nis',
 'SHLVL': '3',
 'SLURM_LOCALID': '0',
 'SLURM_JOB_GID': '13280',
 'SLURM_JOB_CPUS_PER_NODE': '24',
 'SLURM_CLUSTER_NAME': 'hpc',
 'SLURM_GTIDS': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23',
 'SLURM_SUBMIT_HOST': 'login01',
 'SLURM_JOB_PARTITION': 's_standard',
 'MATHEMATICA_HOME': '/cluster/apps/mathematica/11.3',
 'CONDA_PYTHON_EXE': '/cluster/miniconda3/bin/python',
 'LOGNAME': 'ye53nis',
 'SLURM_STEP_NUM_TASKS': '24',
 'QTLIB': '/usr/lib64/qt-3.3/lib',
 'SLURM_JOB_ACCOUNT': 'iaob',
 'SLURM_JOB_NUM_NODES': '1',
 'MODULESHOME': '/usr/share/Modules',
 'CONDA_DEFAULT_ENV': 'tensorflow_nightly',
 'LESSOPEN': '||/usr/bin/lesspipe.sh %s',
 'SLURM_STEP_TASKS_PER_NODE': '24',
 'PORT': '8889',
 'SLURM_STEP_NODELIST': 'node218',
 'DISPLAY': ':0',
 'XDG_RUNTIME_DIR': '',
 'XAUTHORITY': '/tmp/xauth-1000-_0',
 'BASH_FUNC_module()': '() {  eval `/usr/bin/modulecmd bash $*`\n}',
 '_': '/home/ye53nis/.conda/envs/tensorflow_nightly/bin/jupyter',
 'KERNEL_LAUNCH_TIMEOUT': '40',
 'JPY_PARENT_PID': '7566',
 'CLICOLOR': '1',
 'PAGER': 'cat',
 'GIT_PAGER': 'cat',
 'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
2.1.1.4 Tensorboard tunnel, Mlflow ui tunnel
sh-5.0$ ye53nis@ara-login01.rz.uni-jena.de's password:            
ye53nis@node171's password:              
Last login: Sun May 31 15:29:02 2020 from login01.ara

2.1.2 git exp 1

git status
git log -1
(tensorflow_nightly) [ye53nis@node171 drmed-git]$ git status
# On branch exp-310520-unet
# Untracked files:
#   (use "git add <file>..." to include in what will be committed)
#
#       data/
#       experiment_params.csv
#       mlruns/
#       tramp.YDPCnB
nothing added to commit but untracked files present (use "git add" to track)

(tensorflow_nightly) [ye53nis@node171 drmed-git]$ git log -1
commit 2225d6fa18cca9044960b6e86a56ec9fb4362d5d
Author: Apoplex <oligolex@vivaldi.net>
Date:   Sun May 31 21:34:12 2020 +0200

    Change learning rate

2.1.3 mlflow environment variables

conda activate tensorflow_nightly
cd /beegfs/ye53nis/drmed-git
export MLFLOW_EXPERIMENT_NAME=exp-310520-unet
export MLFLOW_TRACKING_URI=file:./data/mlruns
mkdir data/exp-310520-unet
(tensorflow_nightly) [ye53nis@node171 drmed-git]$

2.1.4 Learning rate schedule

learning_rate = 0.2
        if epoch > 10:
            learning_rate = 0.02
        if epoch > 20:
            learning_rate = 0.01
        if epoch > 40:
            learning_rate = 0.001
        if epoch > 60:
            learning_rate = 0.0001
        if epoch > 80:
            learning_rate = 0.00001

2.1.5 test runs

2.1.5.1 no 1 - experiment creation failed
mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=2 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Mar2020 -P steps_per_epoch=400 -P validation_steps=200
(tensorflow_nightly) [ye53nis@node171 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=2 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Mar2020 -P
   steps_per_epoch=400 -P validation_steps=200
  WARNING:root:Malformed experiment '1'. Detailed error Yaml file './data/mlruns/1/meta.yaml' does not exist.
  Traceback (most recent call last):
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 197, in list_experiments
      experiment = self._get_experiment(exp_id, view_type)
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 260, in _get_experiment
      meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME)
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 167, in read_yaml
      raise MissingConfigException("Yaml file '%s' does not exist." % file_path)
  mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/1/meta.yaml' does not exist.
  INFO: 'exp-310520-unet' does not exist. Creating a new experiment
  WARNING:root:Malformed experiment '1'. Detailed error Yaml file './data/mlruns/1/meta.yaml' does not exist.
  Traceback (most recent call last):
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 197, in list_experiments
      experiment = self._get_experiment(exp_id, view_type)
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 260, in _get_experiment
      meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME)
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 167, in read_yaml
      raise MissingConfigException("Yaml file '%s' does not exist." % file_path)
  mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/1/meta.yaml' does not exist.
  WARNING:root:Malformed experiment '1'. Detailed error Yaml file './data/mlruns/1/meta.yaml' does not exist.
  Traceback (most recent call last):
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 197, in list_experiments
      experiment = self._get_experiment(exp_id, view_type)
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/store/tracking/file_store.py", line 260, in _get_experiment
      meta = read_yaml(experiment_dir, FileStore.META_DATA_FILE_NAME)
    File "/home/ye53nis/.conda/envs/tensorflow_nightly/lib/python3.8/site-packages/mlflow/utils/file_utils.py", line 167, in read_yaml
      raise MissingConfigException("Yaml file '%s' does not exist." % file_path)
  mlflow.exceptions.MissingConfigException: Yaml file './data/mlruns/1/meta.yaml' does not exist.
  2020/05/31 14:00:34 INFO mlflow.projects: === Created directory /tmp/tmpfhabm3p4 for downloading remote URIs passed to arguments of type 'path' ===
  2020/05/31 14:00:34 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/f
  luotracify/training/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 2 /beegfs/ye53nis/saves/firstartifact_Mar2020 400 200' in run with ID 'b37371694a004638a6cd7a94d4d2e77f' ===
  2020-05-31 14:00:38.667018: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No
   such file or directory
  2020-05-31 14:00:38.667107: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favo
  ur of importlib; see the module's documentation for alternative uses
    import imp
  2.3.0-dev20200527
  2020-05-31 14:00:42.422965: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file
   or directory
  2020-05-31 14:00:42.422998: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
  2020-05-31 14:00:42.423020: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node171): /proc/driver/nvidia/version does not exist
  GPUs:  []
  train 0 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set027.csv
  train 1 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set087.csv
  train 2 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set003.csv
  train 3 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set056.csv
  train 4 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set076.csv
  train 5 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set094.csv
  train 6 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set017.csv
  train 7 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set074.csv
  train 8 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set055.csv
  train 9 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set096.csv
  train 10 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set054.csv
  train 11 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set093.csv
  train 12 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set079.csv
  train 13 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set014.csv
  train 14 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set008.csv
  train 15 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set031.csv
  train 16 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set023.csv
  train 17 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set025.csv
  train 18 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set034.csv
  train 19 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set009.csv
  train 20 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set044.csv
  train 21 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set063.csv
  train 22 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set004.csv
  train 23 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set072.csv
  train 24 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set046.csv
  train 25 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set049.csv
  train 26 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set007.csv
  train 27 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set100.csv
  train 28 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set083.csv
  train 29 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set077.csv
  train 30 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set061.csv
  train 31 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set081.csv
  train 32 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set091.csv
  train 33 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set069.csv
  train 34 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set052.csv
  train 35 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set028.csv
  train 36 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set019.csv
  train 37 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set057.csv
  train 38 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set064.csv
  train 39 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set075.csv
  train 40 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set002.csv
  train 41 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set062.csv
  train 42 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set043.csv
  train 43 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set042.csv
  train 44 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set005.csv
  train 45 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set016.csv
  train 46 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set018.csv
  train 47 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set041.csv
  train 48 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set039.csv
  train 49 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set006.csv
  train 50 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set092.csv
  train 51 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set060.csv
  train 52 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set001.csv
  train 53 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set035.csv
  train 54 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set029.csv
  train 55 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set051.csv
  train 56 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set012.csv
  train 57 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set036.csv
  train 58 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set024.csv
  train 59 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set053.csv
  train 60 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set011.csv
  train 61 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set032.csv
  train 62 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set067.csv
  train 63 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set058.csv
  train 64 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set080.csv
  train 65 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set086.csv
  train 66 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set033.csv
  train 67 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set085.csv
  train 68 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set015.csv
  train 69 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set090.csv
  train 70 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set020.csv
  train 71 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set030.csv
  train 72 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set050.csv
  train 73 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set098.csv
  train 74 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set099.csv
  train 75 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set070.csv
  train 76 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set021.csv
  train 77 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set095.csv
  train 78 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set073.csv
  train 79 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set078.csv
  test 80 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set026.csv
  test 81 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set038.csv
  test 82 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set082.csv
  test 83 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set047.csv
  test 84 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set040.csv
  test 85 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set066.csv
  test 86 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set059.csv
  test 87 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set013.csv
  test 88 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set089.csv
  test 89 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set071.csv
  test 90 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set088.csv
  test 91 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set037.csv
  test 92 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set022.csv
  test 93 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set084.csv
  test 94 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set010.csv
  test 95 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set097.csv
  test 96 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set068.csv
  test 97 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set065.csv
  test 98 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set048.csv
  test 99 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set045.csv
  shapes of feature dataframe: (16384, 8000) and label dataframe: (16384, 8000)
  shapes of feature dataframe: (16384, 2000) and label dataframe: (16384, 2000)

  for each 20,000 timestap trace there are the following numbers of corrupted timesteps:
   label001_1    16384
  label001_1    16384
  label001_1    16384
  label001_1    16384
  label001_1    16384
  dtype: int64
  2020-05-31 14:05:15.534482: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical opera
  tions:  AVX2 AVX512F FMA
  To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
  2020-05-31 14:05:15.544530: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz
  2020-05-31 14:05:15.545867: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x557b10ed44b0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
  2020-05-31 14:05:15.545896: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
  number of training examples: 6400, number of validation examples: 1600

  ------------------------
  number of test examples: 2000

  input - shape:   (None, 16384, 1)
  output - shape:  (None, 16384, 1)
  2020-05-31 14:05:22.334555: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the A
  BCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
    if not isinstance(wrapped_dict, collections.Mapping):
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Pytho
  n 3.0, use inspect.signature() or inspect.getfullargspec()
    all_param_names, _, _, all_default_values = inspect.getargspec(fn)  # pylint: disable=W1505
  Epoch 1/2
  /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from
  'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
    if not isinstance(values, collections.Sequence):
    1/400 [..............................] - ETA: 0s - loss: 0.7153 - tp: 66972.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 14948.0000 - precision: 1.0000 - recall: 0.8175 - accuracy: 0.8175 - auc: 0.0000e+0
  02020-05-31 14:05:34.823955: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
  WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager
  .profiler) is deprecated and will be removed after 2020-07-01.
  Instructions for updating:
  use `tf.profiler.experimental.stop` instead.
  2020-05-31 14:05:36.334154: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_14_05_36
  2020-05-31 14:05:36.348656: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.trace.json.gz
  2020-05-31 14:05:36.375326: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_14_05_36
  2020-05-31 14:05:36.375452: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.memory
  _profile.json.gz
  2020-05-31 14:05:36.377489: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_14_05_36Dumped tool data for xplane.pb to /tmp/tb/trai
  n/plugins/profile/2020_05_31_14_05_36/node171.xplane.pb
  Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.overview_page.pb
  Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.input_pipeline.pb
  Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.tensorflow_stats.pb
  Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_14_05_36/node171.kernel_stats.pb

  400/400 [==============================] - 651s 2s/step - loss: 0.0019 - tp: 32753052.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 14948.0000 - precision: 1.0000 - recall: 0.9995 - accuracy: 0.9995 - auc: 0
  .0000e+00 - val_loss: 7.3428e-23 - val_tp: 16384000.0000 - val_fp: 0.0000e+00 - val_tn: 0.0000e+00 - val_fn: 0.0000e+00 - val_precision: 1.0000 - val_recall: 1.0000 - val_accuracy: 1.0000 - val_auc: 0.0000e
  +00
  Epoch 2/2
  400/400 [==============================] - 645s 2s/step - loss: 2.1658e-09 - tp: 32768000.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 0.0000e+00 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - au
  c: 0.0000e+00 - val_loss: 8.7165e-23 - val_tp: 16384000.0000 - val_fp: 0.0000e+00 - val_tn: 0.0000e+00 - val_fn: 0.0000e+00 - val_precision: 1.0000 - val_recall: 1.0000 - val_accuracy: 1.0000 - val_auc: 0.0
  000e+00
  400/400 [==============================] - 119s 298ms/step - loss: 9.0078e-23 - tp: 32768000.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 0.0000e+00 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 -
   auc: 0.0000e+00
  2020/05/31 14:29:15 INFO mlflow.projects: === Run (ID 'b37371694a004638a6cd7a94d4d2e77f') succeeded ===
  (tensorflow_nightly) [ye53nis@node171 drmed-git]$ Regard
mlflow ui
(tensorflow_nightly) [ye53nis@node171 drmed-git]$ mlflow ui
[2020-05-31 15:27:54 +0200] [200865] [INFO] Starting gunicorn 20.0.4
[2020-05-31 15:27:54 +0200] [200865] [INFO] Listening at: http://127.0.0.1:5000 (200865)
[2020-05-31 15:27:54 +0200] [200865] [INFO] Using worker: sync
[2020-05-31 15:27:54 +0200] [200871] [INFO] Booting worker with pid: 200871
2.1.5.2 no 2
mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=2 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Mar2020 -P steps_per_epoch=10 -P validation_steps=10
(tensorflow_nightly) [ye53nis@node171 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=2 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartifact_Mar2020 -P
 steps_per_epoch=10 -P validation_steps=10
INFO: 'exp-310520-unet' does not exist. Creating a new experiment
2020/05/31 15:45:30 INFO mlflow.projects: === Created directory /tmp/tmp2vv5kiic for downloading remote URIs passed to arguments of type 'path' ===
2020/05/31 15:45:30 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/f
luotracify/training/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 2 /beegfs/ye53nis/saves/firstartifact_Mar2020 10 10' in run with ID '7f23f6ba7a244914b3cbbebd731d50a1' ===
2020-05-31 15:45:31.886019: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No
 such file or directory
2020-05-31 15:45:31.886068: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favo
ur of importlib; see the module's documentation for alternative uses
  import imp
2.3.0-dev20200527
2020-05-31 15:45:35.151500: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file
 or directory
2020-05-31 15:45:35.151549: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
2020-05-31 15:45:35.151589: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node171): /proc/driver/nvidia/version does not exist
GPUs:  []
train 0 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set027.csv
train 1 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set087.csv
train 2 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set003.csv
train 3 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set056.csv
train 4 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set076.csv
train 5 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set094.csv
train 6 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set017.csv
train 7 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set074.csv
train 8 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set055.csv
train 9 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set096.csv
train 10 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set054.csv
train 11 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set093.csv
train 12 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set079.csv
train 13 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set014.csv
train 14 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set008.csv
train 15 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set031.csv
train 16 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set023.csv
train 17 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set025.csv
train 18 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set034.csv
train 19 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set009.csv
train 20 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set044.csv
train 21 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set063.csv
train 22 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set004.csv
train 23 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set072.csv
train 24 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set046.csv
train 25 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set049.csv
train 26 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set007.csv
train 27 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set100.csv
train 28 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set083.csv
train 29 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set077.csv
train 30 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set061.csv
train 31 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set081.csv
train 32 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set091.csv
train 33 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set069.csv
train 34 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set052.csv
train 35 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set028.csv
train 36 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set019.csv
train 37 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set057.csv
train 38 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set064.csv
train 39 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set075.csv
train 40 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set002.csv
train 41 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set062.csv
train 42 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set043.csv
train 43 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set042.csv
train 44 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set005.csv
train 45 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set016.csv
train 46 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set018.csv
train 47 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set041.csv
train 48 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set039.csv
train 49 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set006.csv
train 50 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set092.csv
train 51 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set060.csv
train 52 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set001.csv
train 53 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set035.csv
train 54 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set029.csv
train 55 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set051.csv
train 56 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set012.csv
train 57 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set036.csv
train 58 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set024.csv
train 59 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set053.csv
train 60 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set011.csv
train 61 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set032.csv
train 62 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set067.csv
train 63 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set058.csv
train 64 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set080.csv
train 65 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set086.csv
train 66 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set033.csv
train 67 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set085.csv
train 68 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set015.csv
train 69 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set090.csv
train 70 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set020.csv
train 71 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set030.csv
train 72 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set050.csv
train 73 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set098.csv
train 74 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set099.csv
train 75 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set070.csv
train 76 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set021.csv
train 77 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set095.csv
train 78 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set073.csv
train 79 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set078.csv
test 80 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set026.csv
test 81 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set038.csv
test 82 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set082.csv
test 83 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set047.csv
test 84 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set040.csv
test 85 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set066.csv
test 86 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set059.csv
test 87 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set013.csv
test 88 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set089.csv
test 89 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set071.csv
test 90 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set088.csv
test 91 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set037.csv
test 92 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set022.csv
test 93 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set084.csv
test 94 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set010.csv
test 95 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set097.csv
test 96 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set068.csv
test 97 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set065.csv
test 98 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set048.csv
test 99 /beegfs/ye53nis/saves/firstartifact_Mar2020/traces_brightclust_Mar2020_set045.csv
shapes of feature dataframe: (16384, 8000) and label dataframe: (16384, 8000)
shapes of feature dataframe: (16384, 2000) and label dataframe: (16384, 2000)

for each 20,000 timestap trace there are the following numbers of corrupted timesteps:
 label001_1    16384
label001_1    16384
label001_1    16384
label001_1    16384
label001_1    16384
dtype: int64
2020-05-31 15:49:25.643578: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical opera
tions:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2020-05-31 15:49:25.653635: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz
2020-05-31 15:49:25.655125: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x556ab2694730 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-05-31 15:49:25.655169: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
number of training examples: 6400, number of validation examples: 1600

------------------------
number of test examples: 2000

input - shape:   (None, 16384, 1)
output - shape:  (None, 16384, 1)
2020-05-31 15:49:32.395226: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the A
BCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
  if not isinstance(wrapped_dict, collections.Mapping):
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Pytho
n 3.0, use inspect.signature() or inspect.getfullargspec()
  all_param_names, _, _, all_default_values = inspect.getargspec(fn)  # pylint: disable=W1505
Epoch 1/2
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from
'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
  if not isinstance(values, collections.Sequence):
 1/10 [==>...........................] - ETA: 0s - loss: 0.5648 - tp: 72554.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 9366.0000 - precision: 1.0000 - recall: 0.8857 - accuracy: 0.8857 - auc: 0.0000e+0020
20-05-31 15:49:44.598769: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager
.profiler) is deprecated and will be removed after 2020-07-01.
Instructions for updating:
use `tf.profiler.experimental.stop` instead.
2020-05-31 15:49:46.123954: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_15_49_46
2020-05-31 15:49:46.137599: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.trace.json.gz
2020-05-31 15:49:46.163428: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_15_49_46
2020-05-31 15:49:46.163531: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.memory
_profile.json.gz
2020-05-31 15:49:46.165569: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_15_49_46Dumped tool data for xplane.pb to /tmp/tb/trai
n/plugins/profile/2020_05_31_15_49_46/node171.xplane.pb
Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.overview_page.pb
Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.input_pipeline.pb
Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.tensorflow_stats.pb
Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_15_49_46/node171.kernel_stats.pb

10/10 [==============================] - 23s 2s/step - loss: 0.0638 - tp: 809834.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 9366.0000 - precision: 1.0000 - recall: 0.9886 - accuracy: 0.9886 - auc: 0.0000e
+00 - val_loss: 0.0000e+00 - val_tp: 819200.0000 - val_fp: 0.0000e+00 - val_tn: 0.0000e+00 - val_fn: 0.0000e+00 - val_precision: 1.0000 - val_recall: 1.0000 - val_accuracy: 1.0000 - val_auc: 0.0000e+00
Epoch 2/2
10/10 [==============================] - 18s 2s/step - loss: 6.4955e-17 - tp: 819200.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 0.0000e+00 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 - auc: 0.
0000e+00 - val_loss: 0.0000e+00 - val_tp: 819200.0000 - val_fp: 0.0000e+00 - val_tn: 0.0000e+00 - val_fn: 0.0000e+00 - val_precision: 1.0000 - val_recall: 1.0000 - val_accuracy: 1.0000 - val_auc: 0.0000e+00
400/400 [==============================] - 120s 300ms/step - loss: 0.0000e+00 - tp: 32768000.0000 - fp: 0.0000e+00 - tn: 0.0000e+00 - fn: 0.0000e+00 - precision: 1.0000 - recall: 1.0000 - accuracy: 1.0000 -
 auc: 0.0000e+00
2020/05/31 15:52:36 INFO mlflow.projects: === Run (ID '7f23f6ba7a244914b3cbbebd731d50a1') succeeded ===

These two test runs used the wrong dataset! the firstartifact_Mar2020 dataset is bright clusters, but the label is the uncorrupted trace, not just the artifact information. This dataset is meant for a Variational Autoencoder-Training.

2.1.6 experimental run

mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=70 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=400 -P validation_steps=200
(tensorflow_nightly) [ye53nis@node171 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=70 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -
P steps_per_epoch=400 -P validation_steps=200
2020/05/31 21:39:53 INFO mlflow.projects: === Created directory /tmp/tmpnc10f5ut for downloading remote URIs passed to arguments of type 'path' ===
2020/05/31 21:39:53 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/f
luotracify/training/train.py /beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 70 /beegfs/ye53nis/saves/firstartefact_Sep2019 400 200' in run with ID '1aefda1366f04f5da5d1fc2241ad9208' ===
2020-05-31 21:39:54.753597: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No
 such file or directory
2020-05-31 21:39:54.753646: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favo
ur of importlib; see the module's documentation for alternative uses
  import imp
2.3.0-dev20200527
2020-05-31 21:39:57.636018: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file
 or directory
2020-05-31 21:39:57.636052: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
2020-05-31 21:39:57.636075: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node171): /proc/driver/nvidia/version does not exist
GPUs:  []
train 0 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set027.csv
train 1 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set087.csv
train 2 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set003.csv
train 3 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set056.csv
train 4 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set076.csv
train 5 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set094.csv
train 6 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set017.csv
train 7 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set074.csv
train 8 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set055.csv
train 9 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set096.csv
train 10 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set054.csv
train 11 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set093.csv
train 12 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set079.csv
train 13 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set014.csv
train 14 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set008.csv
train 15 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set031.csv
train 16 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set023.csv
train 17 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set025.csv
train 18 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set034.csv
train 19 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set009.csv
train 20 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set044.csv
train 21 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set063.csv
train 22 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set004.csv
train 23 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set072.csv
train 24 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set046.csv
train 25 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set049.csv
train 26 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set007.csv
train 27 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set100.csv
train 28 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set083.csv
train 29 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set077.csv
train 30 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set061.csv
train 31 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set081.csv
train 32 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set091.csv
train 33 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set069.csv
train 34 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set052.csv
train 35 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set028.csv
train 36 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set019.csv
train 37 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set057.csv
train 38 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set064.csv
train 39 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set075.csv
train 40 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set002.csv
train 41 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set062.csv
train 42 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set043.csv
train 43 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set042.csv
train 44 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set005.csv
train 45 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set016.csv
train 46 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set018.csv
train 47 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set041.csv
train 48 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set039.csv
train 49 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set006.csv
train 50 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set092.csv
train 51 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set060.csv
train 52 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set001.csv
train 53 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set035.csv
train 54 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set029.csv
train 55 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set051.csv
train 56 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set012.csv
train 57 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set036.csv
train 58 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set024.csv
train 59 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set053.csv
train 60 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set011.csv
train 61 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set032.csv
train 62 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set067.csv
train 63 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set058.csv
train 64 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set080.csv
train 65 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set086.csv
train 66 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set033.csv
train 67 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set085.csv
train 68 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set015.csv
train 69 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set090.csv
train 70 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set020.csv
train 71 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set030.csv
train 72 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set050.csv
train 73 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set098.csv
train 74 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set099.csv
train 75 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set070.csv
train 76 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set021.csv
train 77 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set095.csv
train 78 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set073.csv
train 79 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set078.csv
test 80 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set026.csv
test 81 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set038.csv
test 82 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set082.csv
test 83 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set047.csv
test 84 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set040.csv
test 85 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set066.csv
test 86 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set059.csv
test 87 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set013.csv
test 88 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set089.csv
test 89 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set071.csv
test 90 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set088.csv
test 91 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set037.csv
test 92 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set022.csv
test 93 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set084.csv
test 94 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set010.csv
test 95 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set097.csv
test 96 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set068.csv
test 97 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set065.csv
test 98 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set048.csv
test 99 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set045.csv
shapes of feature dataframe: (20000, 8000) and label dataframe: (20000, 8000)
shapes of feature dataframe: (20000, 2000) and label dataframe: (20000, 2000)

for each 20,000 timestap trace there are the following numbers of corrupted timesteps:
 label001_1    6286
label001_1    2568
label001_1    4495
label001_1    4414
label001_1    1105
dtype: int64
2020-05-31 21:44:15.811359: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical opera
tions:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2020-05-31 21:44:15.820877: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz
2020-05-31 21:44:15.822374: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55acbe3932e0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-05-31 21:44:15.822402: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
number of training examples: 6400, number of validation examples: 1600

------------------------
number of test examples: 2000

input - shape:   (None, 16384, 1)
output - shape:  (None, 16384, 1)
2020-05-31 21:44:19.667769: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the A
BCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
  if not isinstance(wrapped_dict, collections.Mapping):
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Pytho
n 3.0, use inspect.signature() or inspect.getfullargspec()
  all_param_names, _, _, all_default_values = inspect.getargspec(fn)  # pylint: disable=W1505
Epoch 1/70
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from
'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
  if not isinstance(values, collections.Sequence):
  1/400 [..............................] - ETA: 0s - loss: 1.5974 - tp: 3783.0000 - fp: 23102.0000 - tn: 47580.0000 - fn: 7455.0000 - precision: 0.1407 - recall: 0.3366 - accuracy: 0.6270 - auc: 0.51772020-
05-31 21:44:31.349376: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager
.profiler) is deprecated and will be removed after 2020-07-01.
Instructions for updating:
use `tf.profiler.experimental.stop` instead.
2020-05-31 21:44:32.843703: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_21_44_32
2020-05-31 21:44:32.857345: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.trace.json.gz
2020-05-31 21:44:32.882350: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_21_44_32
2020-05-31 21:44:32.882475: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.memory
_profile.json.gz
2020-05-31 21:44:32.884516: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_05_31_21_44_32Dumped tool data for xplane.pb to /tmp/tb/trai
n/plugins/profile/2020_05_31_21_44_32/node171.xplane.pb
Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.overview_page.pb
Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.input_pipeline.pb
Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.tensorflow_stats.pb
Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_05_31_21_44_32/node171.kernel_stats.pb

400/400 [==============================] - 648s 2s/step - loss: 1.2332 - tp: 3788781.0000 - fp: 1219922.0000 - tn: 24049440.0000 - fn: 3709858.0000 - precision: 0.7564 - recall: 0.5053 - accuracy: 0.8496 -
auc: 0.8489 - val_loss: 322.0566 - val_tp: 3646493.0000 - val_fp: 12737507.0000 - val_tn: 0.0000e+00 - val_fn: 0.0000e+00 - val_precision: 0.2226 - val_recall: 1.0000 - val_accuracy: 0.2226 - val_auc: 0.500
0
Epoch 2/70
400/400 [==============================] - 644s 2s/step - loss: 1.0109 - tp: 5005706.0000 - fp: 1436756.0000 - tn: 23682896.0000 - fn: 2642650.0000 - precision: 0.7770 - recall: 0.6545 - accuracy: 0.8755 -
auc: 0.8979 - val_loss: 606.1023 - val_tp: 3756979.0000 - val_fp: 12626343.0000 - val_tn: 645.0000 - val_fn: 33.0000 - val_precision: 0.2293 - val_recall: 1.0000 - val_accuracy: 0.2293 - val_auc: 0.5000
Epoch 3/70
400/400 [==============================] - 628s 2s/step - loss: 0.8285 - tp: 5051785.0000 - fp: 1374618.0000 - tn: 23855938.0000 - fn: 2485671.0000 - precision: 0.7861 - recall: 0.6702 - accuracy: 0.8822 -
auc: 0.9026 - val_loss: 10.0331 - val_tp: 3878641.0000 - val_fp: 12500019.0000 - val_tn: 4304.0000 - val_fn: 1036.0000 - val_precision: 0.2368 - val_recall: 0.9997 - val_accuracy: 0.2370 - val_auc: 0.5000
Epoch 4/70
400/400 [==============================] - 629s 2s/step - loss: 0.6738 - tp: 5537594.0000 - fp: 1337082.0000 - tn: 23959264.0000 - fn: 1934060.0000 - precision: 0.8055 - recall: 0.7411 - accuracy: 0.9002 -
auc: 0.9303 - val_loss: 1.2653 - val_tp: 3303018.0000 - val_fp: 1870945.0000 - val_tn: 10869556.0000 - val_fn: 340481.0000 - val_precision: 0.6384 - val_recall: 0.9066 - val_accuracy: 0.8650 - val_auc: 0.92
24
Epoch 5/70
400/400 [==============================] - 631s 2s/step - loss: 0.5958 - tp: 5587069.0000 - fp: 1162314.0000 - tn: 24313792.0000 - fn: 1704840.0000 - precision: 0.8278 - recall: 0.7662 - accuracy: 0.9125 -
auc: 0.9409 - val_loss: 1.2564 - val_tp: 2402186.0000 - val_fp: 760086.0000 - val_tn: 11788196.0000 - val_fn: 1433532.0000 - val_precision: 0.7596 - val_recall: 0.6263 - val_accuracy: 0.8661 - val_auc: 0.84
39
Epoch 6/70
400/400 [==============================] - 632s 2s/step - loss: 0.5248 - tp: 6187578.0000 - fp: 1102970.0000 - tn: 24040936.0000 - fn: 1436530.0000 - precision: 0.8487 - recall: 0.8116 - accuracy: 0.9225 -
auc: 0.9536 - val_loss: 3.8886 - val_tp: 3699587.0000 - val_fp: 5786776.0000 - val_tn: 6872632.0000 - val_fn: 25005.0000 - val_precision: 0.3900 - val_recall: 0.9933 - val_accuracy: 0.6453 - val_auc: 0.8590
Epoch 7/70
400/400 [==============================] - 629s 2s/step - loss: 0.5417 - tp: 6075103.0000 - fp: 1198710.0000 - tn: 23976388.0000 - fn: 1517805.0000 - precision: 0.8352 - recall: 0.8001 - accuracy: 0.9171 -
auc: 0.9507 - val_loss: 0.6575 - val_tp: 3549691.0000 - val_fp: 1710464.0000 - val_tn: 10816997.0000 - val_fn: 306848.0000 - val_precision: 0.6748 - val_recall: 0.9204 - val_accuracy: 0.8769 - val_auc: 0.95
25
Epoch 8/70
400/400 [==============================] - 630s 2s/step - loss: 0.5261 - tp: 6041081.0000 - fp: 1000532.0000 - tn: 24306236.0000 - fn: 1420140.0000 - precision: 0.8579 - recall: 0.8097 - accuracy: 0.9261 -
auc: 0.9527 - val_loss: 21.2177 - val_tp: 3715793.0000 - val_fp: 9558636.0000 - val_tn: 3103000.0000 - val_fn: 6571.0000 - val_precision: 0.2799 - val_recall: 0.9982 - val_accuracy: 0.4162 - val_auc: 0.6830
Epoch 9/70
400/400 [==============================] - 634s 2s/step - loss: 0.5777 - tp: 5925253.0000 - fp: 1206548.0000 - tn: 23980040.0000 - fn: 1656156.0000 - precision: 0.8308 - recall: 0.7816 - accuracy: 0.9126 -
auc: 0.9467 - val_loss: 1.4550 - val_tp: 2525888.0000 - val_fp: 1794119.0000 - val_tn: 10974268.0000 - val_fn: 1089725.0000 - val_precision: 0.5847 - val_recall: 0.6986 - val_accuracy: 0.8240 - val_auc: 0.8
157
Epoch 10/70
400/400 [==============================] - 633s 2s/step - loss: 0.4670 - tp: 6137276.0000 - fp: 1085998.0000 - tn: 24173720.0000 - fn: 1370997.0000 - precision: 0.8497 - recall: 0.8174 - accuracy: 0.9250 -
auc: 0.9596 - val_loss: 0.4228 - val_tp: 3267331.0000 - val_fp: 512452.0000 - val_tn: 12134530.0000 - val_fn: 469687.0000 - val_precision: 0.8644 - val_recall: 0.8743 - val_accuracy: 0.9401 - val_auc: 0.958
6
Epoch 11/70
400/400 [==============================] - 636s 2s/step - loss: 0.4183 - tp: 6387249.0000 - fp: 950432.0000 - tn: 24334356.0000 - fn: 1095980.0000 - precision: 0.8705 - recall: 0.8535 - accuracy: 0.9375 - a
uc: 0.9662 - val_loss: 2.5835 - val_tp: 3791404.0000 - val_fp: 10983628.0000 - val_tn: 1606117.0000 - val_fn: 2851.0000 - val_precision: 0.2566 - val_recall: 0.9992 - val_accuracy: 0.3294 - val_auc: 0.9205
Epoch 12/70
400/400 [==============================] - 633s 2s/step - loss: 0.3622 - tp: 6622657.0000 - fp: 875498.0000 - tn: 24381258.0000 - fn: 888583.0000 - precision: 0.8832 - recall: 0.8817 - accuracy: 0.9462 - au
c: 0.9716 - val_loss: 0.3789 - val_tp: 3055309.0000 - val_fp: 146845.0000 - val_tn: 12452879.0000 - val_fn: 728967.0000 - val_precision: 0.9541 - val_recall: 0.8074 - val_accuracy: 0.9465 - val_auc: 0.9659
Epoch 13/70
400/400 [==============================] - 631s 2s/step - loss: 0.3590 - tp: 6660677.0000 - fp: 869994.0000 - tn: 24335574.0000 - fn: 901756.0000 - precision: 0.8845 - recall: 0.8808 - accuracy: 0.9459 - au
c: 0.9722 - val_loss: 0.4284 - val_tp: 2585078.0000 - val_fp: 26120.0000 - val_tn: 12713922.0000 - val_fn: 1058880.0000 - val_precision: 0.9900 - val_recall: 0.7094 - val_accuracy: 0.9338 - val_auc: 0.9595
Epoch 14/70
400/400 [==============================] - 631s 2s/step - loss: 0.3391 - tp: 6632643.0000 - fp: 838058.0000 - tn: 24461996.0000 - fn: 835290.0000 - precision: 0.8878 - recall: 0.8881 - accuracy: 0.9489 - au
c: 0.9747 - val_loss: 0.3533 - val_tp: 3003363.0000 - val_fp: 127052.0000 - val_tn: 12492719.0000 - val_fn: 760866.0000 - val_precision: 0.9594 - val_recall: 0.7979 - val_accuracy: 0.9458 - val_auc: 0.9766
Epoch 15/70
400/400 [==============================] - 634s 2s/step - loss: 0.3422 - tp: 6682203.0000 - fp: 861078.0000 - tn: 24351496.0000 - fn: 873232.0000 - precision: 0.8858 - recall: 0.8844 - accuracy: 0.9471 - au
c: 0.9741 - val_loss: 0.3630 - val_tp: 2919284.0000 - val_fp: 89104.0000 - val_tn: 12597566.0000 - val_fn: 778046.0000 - val_precision: 0.9704 - val_recall: 0.7896 - val_accuracy: 0.9471 - val_auc: 0.9763
Epoch 16/70
400/400 [==============================] - 632s 2s/step - loss: 0.3356 - tp: 6670288.0000 - fp: 818050.0000 - tn: 24453228.0000 - fn: 826432.0000 - precision: 0.8908 - recall: 0.8898 - accuracy: 0.9498 - au
c: 0.9748 - val_loss: 0.7556 - val_tp: 1874704.0000 - val_fp: 1072.0000 - val_tn: 12589343.0000 - val_fn: 1918881.0000 - val_precision: 0.9994 - val_recall: 0.4942 - val_accuracy: 0.8828 - val_auc: 0.9213
Epoch 17/70
400/400 [==============================] - 629s 2s/step - loss: 0.3260 - tp: 6760875.0000 - fp: 795293.0000 - tn: 24413246.0000 - fn: 798585.0000 - precision: 0.8947 - recall: 0.8944 - accuracy: 0.9514 - au
c: 0.9761 - val_loss: 0.4649 - val_tp: 2671759.0000 - val_fp: 36166.0000 - val_tn: 12592753.0000 - val_fn: 1083322.0000 - val_precision: 0.9866 - val_recall: 0.7115 - val_accuracy: 0.9317 - val_auc: 0.9546
Epoch 18/70
400/400 [==============================] - 631s 2s/step - loss: 0.3309 - tp: 6559233.0000 - fp: 790466.0000 - tn: 24604904.0000 - fn: 813389.0000 - precision: 0.8924 - recall: 0.8897 - accuracy: 0.9511 - au
c: 0.9751 - val_loss: 0.4767 - val_tp: 2812359.0000 - val_fp: 90282.0000 - val_tn: 12389838.0000 - val_fn: 1091521.0000 - val_precision: 0.9689 - val_recall: 0.7204 - val_accuracy: 0.9279 - val_auc: 0.9586
Epoch 19/70
400/400 [==============================] - 631s 2s/step - loss: 0.3375 - tp: 6783791.0000 - fp: 866853.0000 - tn: 24263056.0000 - fn: 854305.0000 - precision: 0.8867 - recall: 0.8882 - accuracy: 0.9475 - au
c: 0.9752 - val_loss: 0.3983 - val_tp: 2551077.0000 - val_fp: 35530.0000 - val_tn: 12721430.0000 - val_fn: 1075963.0000 - val_precision: 0.9863 - val_recall: 0.7033 - val_accuracy: 0.9322 - val_auc: 0.9710
Epoch 20/70
400/400 [==============================] - 632s 2s/step - loss: 0.3254 - tp: 6564303.0000 - fp: 830891.0000 - tn: 24563264.0000 - fn: 809541.0000 - precision: 0.8876 - recall: 0.8902 - accuracy: 0.9499 - au
c: 0.9757 - val_loss: 0.5314 - val_tp: 2046949.0000 - val_fp: 3561.0000 - val_tn: 12714086.0000 - val_fn: 1619404.0000 - val_precision: 0.9983 - val_recall: 0.5583 - val_accuracy: 0.9009 - val_auc: 0.9545
Epoch 21/70
400/400 [==============================] - 640s 2s/step - loss: 0.3196 - tp: 6686380.0000 - fp: 775563.0000 - tn: 24496560.0000 - fn: 809502.0000 - precision: 0.8961 - recall: 0.8920 - accuracy: 0.9516 - au
c: 0.9765 - val_loss: 0.4055 - val_tp: 2871943.0000 - val_fp: 218969.0000 - val_tn: 12467101.0000 - val_fn: 825987.0000 - val_precision: 0.9292 - val_recall: 0.7766 - val_accuracy: 0.9362 - val_auc: 0.9714
Epoch 22/70
400/400 [==============================] - 625s 2s/step - loss: 0.3154 - tp: 6756372.0000 - fp: 777461.0000 - tn: 24450556.0000 - fn: 783609.0000 - precision: 0.8968 - recall: 0.8961 - accuracy: 0.9524 - au
c: 0.9770 - val_loss: 0.3362 - val_tp: 3143955.0000 - val_fp: 135752.0000 - val_tn: 12411791.0000 - val_fn: 692502.0000 - val_precision: 0.9586 - val_recall: 0.8195 - val_accuracy: 0.9494 - val_auc: 0.9754
Epoch 23/70
400/400 [==============================] - 633s 2s/step - loss: 0.3294 - tp: 6975026.0000 - fp: 773797.0000 - tn: 24208046.0000 - fn: 811140.0000 - precision: 0.9001 - recall: 0.8958 - accuracy: 0.9516 - au
c: 0.9760 - val_loss: 0.3650 - val_tp: 2827380.0000 - val_fp: 88109.0000 - val_tn: 12626725.0000 - val_fn: 841786.0000 - val_precision: 0.9698 - val_recall: 0.7706 - val_accuracy: 0.9432 - val_auc: 0.9697
Epoch 24/70
400/400 [==============================] - 629s 2s/step - loss: 0.3184 - tp: 6701853.0000 - fp: 767247.0000 - tn: 24524388.0000 - fn: 774508.0000 - precision: 0.8973 - recall: 0.8964 - accuracy: 0.9529 - au
c: 0.9767 - val_loss: 0.5394 - val_tp: 2252899.0000 - val_fp: 4050.0000 - val_tn: 12590875.0000 - val_fn: 1536176.0000 - val_precision: 0.9982 - val_recall: 0.5946 - val_accuracy: 0.9060 - val_auc: 0.9528
Epoch 25/70
400/400 [==============================] - 633s 2s/step - loss: 0.3189 - tp: 6642243.0000 - fp: 777194.0000 - tn: 24527812.0000 - fn: 820758.0000 - precision: 0.8952 - recall: 0.8900 - accuracy: 0.9512 - au
c: 0.9762 - val_loss: 0.3377 - val_tp: 3281478.0000 - val_fp: 329375.0000 - val_tn: 12262368.0000 - val_fn: 510779.0000 - val_precision: 0.9088 - val_recall: 0.8653 - val_accuracy: 0.9487 - val_auc: 0.9760
Epoch 26/70
400/400 [==============================] - 636s 2s/step - loss: 0.3137 - tp: 6689776.0000 - fp: 788613.0000 - tn: 24505860.0000 - fn: 783748.0000 - precision: 0.8945 - recall: 0.8951 - accuracy: 0.9520 - au
c: 0.9772 - val_loss: 0.4429 - val_tp: 2772106.0000 - val_fp: 45921.0000 - val_tn: 12444722.0000 - val_fn: 1121251.0000 - val_precision: 0.9837 - val_recall: 0.7120 - val_accuracy: 0.9288 - val_auc: 0.9625
Epoch 27/70
400/400 [==============================] - 632s 2s/step - loss: 0.3110 - tp: 6754135.0000 - fp: 761746.0000 - tn: 24463904.0000 - fn: 788220.0000 - precision: 0.8986 - recall: 0.8955 - accuracy: 0.9527 - au
c: 0.9778 - val_loss: 0.3217 - val_tp: 3322329.0000 - val_fp: 341816.0000 - val_tn: 12309980.0000 - val_fn: 409875.0000 - val_precision: 0.9067 - val_recall: 0.8902 - val_accuracy: 0.9541 - val_auc: 0.9829
Epoch 28/70
400/400 [==============================] - 632s 2s/step - loss: 0.3143 - tp: 6711103.0000 - fp: 764757.0000 - tn: 24512308.0000 - fn: 779835.0000 - precision: 0.8977 - recall: 0.8959 - accuracy: 0.9529 - au
c: 0.9772 - val_loss: 0.5518 - val_tp: 2137267.0000 - val_fp: 8417.0000 - val_tn: 12762333.0000 - val_fn: 1475983.0000 - val_precision: 0.9961 - val_recall: 0.5915 - val_accuracy: 0.9094 - val_auc: 0.9459
Epoch 29/70
400/400 [==============================] - 636s 2s/step - loss: 0.3172 - tp: 6808597.0000 - fp: 762146.0000 - tn: 24410300.0000 - fn: 786963.0000 - precision: 0.8993 - recall: 0.8964 - accuracy: 0.9527 - au
c: 0.9773 - val_loss: 0.3880 - val_tp: 3284429.0000 - val_fp: 149353.0000 - val_tn: 12279814.0000 - val_fn: 670404.0000 - val_precision: 0.9565 - val_recall: 0.8305 - val_accuracy: 0.9500 - val_auc: 0.9824
Epoch 30/70
400/400 [==============================] - 636s 2s/step - loss: 0.3119 - tp: 6732407.0000 - fp: 734825.0000 - tn: 24527008.0000 - fn: 773770.0000 - precision: 0.9016 - recall: 0.8969 - accuracy: 0.9540 - au
c: 0.9770 - val_loss: 0.3304 - val_tp: 3197972.0000 - val_fp: 378897.0000 - val_tn: 12377137.0000 - val_fn: 429994.0000 - val_precision: 0.8941 - val_recall: 0.8815 - val_accuracy: 0.9506 - val_auc: 0.9788
Epoch 31/70
400/400 [==============================] - 639s 2s/step - loss: 0.3172 - tp: 6584008.0000 - fp: 749012.0000 - tn: 24635250.0000 - fn: 799720.0000 - precision: 0.8979 - recall: 0.8917 - accuracy: 0.9527 - au
c: 0.9763 - val_loss: 0.4527 - val_tp: 3349009.0000 - val_fp: 338939.0000 - val_tn: 12288817.0000 - val_fn: 407235.0000 - val_precision: 0.9081 - val_recall: 0.8916 - val_accuracy: 0.9545 - val_auc: 0.9822
Epoch 32/70
400/400 [==============================] - 632s 2s/step - loss: 0.3146 - tp: 6690763.0000 - fp: 766270.0000 - tn: 24531178.0000 - fn: 779790.0000 - precision: 0.8972 - recall: 0.8956 - accuracy: 0.9528 - au
c: 0.9763 - val_loss: 0.3255 - val_tp: 2945281.0000 - val_fp: 103765.0000 - val_tn: 12623298.0000 - val_fn: 711656.0000 - val_precision: 0.9660 - val_recall: 0.8054 - val_accuracy: 0.9502 - val_auc: 0.9761
Epoch 33/70
400/400 [==============================] - 632s 2s/step - loss: 0.2975 - tp: 6744548.0000 - fp: 747413.0000 - tn: 24547794.0000 - fn: 728248.0000 - precision: 0.9002 - recall: 0.9025 - accuracy: 0.9550 - au
c: 0.9787 - val_loss: 0.3461 - val_tp: 2865337.0000 - val_fp: 80568.0000 - val_tn: 12713439.0000 - val_fn: 724656.0000 - val_precision: 0.9727 - val_recall: 0.7981 - val_accuracy: 0.9509 - val_auc: 0.9780
Epoch 34/70
400/400 [==============================] - 635s 2s/step - loss: 0.3060 - tp: 6610739.0000 - fp: 717355.0000 - tn: 24665928.0000 - fn: 773982.0000 - precision: 0.9021 - recall: 0.8952 - accuracy: 0.9545 - au
c: 0.9768 - val_loss: 0.3895 - val_tp: 2875845.0000 - val_fp: 64187.0000 - val_tn: 12593693.0000 - val_fn: 850275.0000 - val_precision: 0.9782 - val_recall: 0.7718 - val_accuracy: 0.9442 - val_auc: 0.9762
Epoch 35/70
400/400 [==============================] - 632s 2s/step - loss: 0.3131 - tp: 6658644.0000 - fp: 787948.0000 - tn: 24555564.0000 - fn: 765835.0000 - precision: 0.8942 - recall: 0.8968 - accuracy: 0.9526 - au
c: 0.9770 - val_loss: 0.3298 - val_tp: 3291381.0000 - val_fp: 128257.0000 - val_tn: 12266428.0000 - val_fn: 697934.0000 - val_precision: 0.9625 - val_recall: 0.8250 - val_accuracy: 0.9496 - val_auc: 0.9787
Epoch 36/70
400/400 [==============================] - 631s 2s/step - loss: 0.3076 - tp: 6714273.0000 - fp: 757539.0000 - tn: 24536108.0000 - fn: 760070.0000 - precision: 0.8986 - recall: 0.8983 - accuracy: 0.9537 - au
c: 0.9776 - val_loss: 0.3586 - val_tp: 2828629.0000 - val_fp: 70731.0000 - val_tn: 12691571.0000 - val_fn: 793069.0000 - val_precision: 0.9756 - val_recall: 0.7810 - val_accuracy: 0.9473 - val_auc: 0.9764
Epoch 37/70
400/400 [==============================] - 630s 2s/step - loss: 0.3019 - tp: 6673190.0000 - fp: 759238.0000 - tn: 24567992.0000 - fn: 767563.0000 - precision: 0.8978 - recall: 0.8968 - accuracy: 0.9534 - au
c: 0.9783 - val_loss: 0.3614 - val_tp: 3049928.0000 - val_fp: 93276.0000 - val_tn: 12445161.0000 - val_fn: 795635.0000 - val_precision: 0.9703 - val_recall: 0.7931 - val_accuracy: 0.9457 - val_auc: 0.9755
Epoch 38/70
400/400 [==============================] - 631s 2s/step - loss: 0.3022 - tp: 6902334.0000 - fp: 772344.0000 - tn: 24353052.0000 - fn: 740273.0000 - precision: 0.8994 - recall: 0.9031 - accuracy: 0.9538 - au
c: 0.9785 - val_loss: 0.3220 - val_tp: 2932889.0000 - val_fp: 104394.0000 - val_tn: 12669356.0000 - val_fn: 677361.0000 - val_precision: 0.9656 - val_recall: 0.8124 - val_accuracy: 0.9523 - val_auc: 0.9783
Epoch 39/70
400/400 [==============================] - 632s 2s/step - loss: 0.2978 - tp: 6800883.0000 - fp: 734721.0000 - tn: 24491858.0000 - fn: 740536.0000 - precision: 0.9025 - recall: 0.9018 - accuracy: 0.9550 - au
c: 0.9785 - val_loss: 0.3295 - val_tp: 3082233.0000 - val_fp: 128611.0000 - val_tn: 12542874.0000 - val_fn: 630282.0000 - val_precision: 0.9599 - val_recall: 0.8302 - val_accuracy: 0.9537 - val_auc: 0.9799
Epoch 40/70
400/400 [==============================] - 634s 2s/step - loss: 0.3083 - tp: 6769252.0000 - fp: 762049.0000 - tn: 24472648.0000 - fn: 764043.0000 - precision: 0.8988 - recall: 0.8986 - accuracy: 0.9534 - au
c: 0.9771 - val_loss: 0.3593 - val_tp: 2826188.0000 - val_fp: 59581.0000 - val_tn: 12671875.0000 - val_fn: 826356.0000 - val_precision: 0.9794 - val_recall: 0.7738 - val_accuracy: 0.9459 - val_auc: 0.9756
Epoch 41/70
400/400 [==============================] - 630s 2s/step - loss: 0.2953 - tp: 6718090.0000 - fp: 747344.0000 - tn: 24561188.0000 - fn: 741388.0000 - precision: 0.8999 - recall: 0.9006 - accuracy: 0.9546 - au
c: 0.9793 - val_loss: 0.3628 - val_tp: 2996938.0000 - val_fp: 97647.0000 - val_tn: 12518986.0000 - val_fn: 770429.0000 - val_precision: 0.9684 - val_recall: 0.7955 - val_accuracy: 0.9470 - val_auc: 0.9774
Epoch 42/70
400/400 [==============================] - 629s 2s/step - loss: 0.3039 - tp: 6654758.0000 - fp: 731543.0000 - tn: 24611838.0000 - fn: 769861.0000 - precision: 0.9010 - recall: 0.8963 - accuracy: 0.9542 - au
c: 0.9775 - val_loss: 0.3282 - val_tp: 2923757.0000 - val_fp: 81924.0000 - val_tn: 12615035.0000 - val_fn: 763284.0000 - val_precision: 0.9727 - val_recall: 0.7930 - val_accuracy: 0.9484 - val_auc: 0.9759
Epoch 43/70
400/400 [==============================] - 636s 2s/step - loss: 0.2937 - tp: 6435979.0000 - fp: 733398.0000 - tn: 24870358.0000 - fn: 728270.0000 - precision: 0.8977 - recall: 0.8983 - accuracy: 0.9554 - au
c: 0.9781 - val_loss: 0.3116 - val_tp: 3021625.0000 - val_fp: 126888.0000 - val_tn: 12599400.0000 - val_fn: 636087.0000 - val_precision: 0.9597 - val_recall: 0.8261 - val_accuracy: 0.9534 - val_auc: 0.9791
Epoch 44/70
400/400 [==============================] - 638s 2s/step - loss: 0.3207 - tp: 6810749.0000 - fp: 779963.0000 - tn: 24383824.0000 - fn: 793469.0000 - precision: 0.8972 - recall: 0.8957 - accuracy: 0.9520 - au
c: 0.9763 - val_loss: 0.3609 - val_tp: 3046190.0000 - val_fp: 96429.0000 - val_tn: 12529182.0000 - val_fn: 712199.0000 - val_precision: 0.9693 - val_recall: 0.8105 - val_accuracy: 0.9506 - val_auc: 0.9784
Epoch 45/70
400/400 [==============================] - 631s 2s/step - loss: 0.3025 - tp: 7086768.0000 - fp: 750575.0000 - tn: 24182492.0000 - fn: 748166.0000 - precision: 0.9042 - recall: 0.9045 - accuracy: 0.9543 - au
c: 0.9790 - val_loss: 0.3397 - val_tp: 2823520.0000 - val_fp: 64000.0000 - val_tn: 12722924.0000 - val_fn: 773556.0000 - val_precision: 0.9778 - val_recall: 0.7849 - val_accuracy: 0.9489 - val_auc: 0.9768
Epoch 46/70
400/400 [==============================] - 639s 2s/step - loss: 0.3029 - tp: 6575419.0000 - fp: 752434.0000 - tn: 24679216.0000 - fn: 760935.0000 - precision: 0.8973 - recall: 0.8963 - accuracy: 0.9538 - au
c: 0.9777 - val_loss: 0.3449 - val_tp: 3214822.0000 - val_fp: 77887.0000 - val_tn: 12327207.0000 - val_fn: 764084.0000 - val_precision: 0.9763 - val_recall: 0.8080 - val_accuracy: 0.9486 - val_auc: 0.9800
Epoch 47/70
400/400 [==============================] - 638s 2s/step - loss: 0.2988 - tp: 7041341.0000 - fp: 779154.0000 - tn: 24212120.0000 - fn: 735391.0000 - precision: 0.9004 - recall: 0.9054 - accuracy: 0.9538 - au
c: 0.9794 - val_loss: 0.3507 - val_tp: 2992658.0000 - val_fp: 83764.0000 - val_tn: 12550469.0000 - val_fn: 757109.0000 - val_precision: 0.9728 - val_recall: 0.7981 - val_accuracy: 0.9487 - val_auc: 0.9795
Epoch 48/70
400/400 [==============================] - 633s 2s/step - loss: 0.3015 - tp: 6740728.0000 - fp: 737863.0000 - tn: 24521192.0000 - fn: 768220.0000 - precision: 0.9013 - recall: 0.8977 - accuracy: 0.9540 - au
c: 0.9781 - val_loss: 0.3456 - val_tp: 3135590.0000 - val_fp: 126895.0000 - val_tn: 12407028.0000 - val_fn: 714487.0000 - val_precision: 0.9611 - val_recall: 0.8144 - val_accuracy: 0.9486 - val_auc: 0.9755
Epoch 49/70
400/400 [==============================] - 630s 2s/step - loss: 0.2965 - tp: 6929622.0000 - fp: 773455.0000 - tn: 24334720.0000 - fn: 730210.0000 - precision: 0.8996 - recall: 0.9047 - accuracy: 0.9541 - au
c: 0.9793 - val_loss: 0.3253 - val_tp: 2923894.0000 - val_fp: 87045.0000 - val_tn: 12668721.0000 - val_fn: 704340.0000 - val_precision: 0.9711 - val_recall: 0.8059 - val_accuracy: 0.9517 - val_auc: 0.9786
Epoch 50/70
400/400 [==============================] - 631s 2s/step - loss: 0.3053 - tp: 6698368.0000 - fp: 772097.0000 - tn: 24544316.0000 - fn: 753212.0000 - precision: 0.8966 - recall: 0.8989 - accuracy: 0.9535 - au
c: 0.9778 - val_loss: 0.3687 - val_tp: 2958570.0000 - val_fp: 52523.0000 - val_tn: 12513477.0000 - val_fn: 859430.0000 - val_precision: 0.9826 - val_recall: 0.7749 - val_accuracy: 0.9443 - val_auc: 0.9771
Epoch 51/70
400/400 [==============================] - 635s 2s/step - loss: 0.2971 - tp: 6664028.0000 - fp: 737094.0000 - tn: 24626012.0000 - fn: 740867.0000 - precision: 0.9004 - recall: 0.8999 - accuracy: 0.9549 - au
c: 0.9786 - val_loss: 0.3459 - val_tp: 3029844.0000 - val_fp: 116426.0000 - val_tn: 12539360.0000 - val_fn: 698370.0000 - val_precision: 0.9630 - val_recall: 0.8127 - val_accuracy: 0.9503 - val_auc: 0.9793
Epoch 52/70
400/400 [==============================] - 633s 2s/step - loss: 0.3026 - tp: 6753347.0000 - fp: 678789.0000 - tn: 24527348.0000 - fn: 808513.0000 - precision: 0.9087 - recall: 0.8931 - accuracy: 0.9546 - au
c: 0.9785 - val_loss: 0.3330 - val_tp: 2851126.0000 - val_fp: 109294.0000 - val_tn: 12699895.0000 - val_fn: 723685.0000 - val_precision: 0.9631 - val_recall: 0.7976 - val_accuracy: 0.9492 - val_auc: 0.9762
Epoch 53/70
400/400 [==============================] - 636s 2s/step - loss: 0.2980 - tp: 6803599.0000 - fp: 685524.0000 - tn: 24488690.0000 - fn: 790195.0000 - precision: 0.9085 - recall: 0.8959 - accuracy: 0.9550 - au
c: 0.9786 - val_loss: 0.3384 - val_tp: 2978082.0000 - val_fp: 84198.0000 - val_tn: 12570606.0000 - val_fn: 751114.0000 - val_precision: 0.9725 - val_recall: 0.7986 - val_accuracy: 0.9490 - val_auc: 0.9782
Epoch 54/70
400/400 [==============================] - 636s 2s/step - loss: 0.3008 - tp: 6617352.0000 - fp: 660115.0000 - tn: 24672528.0000 - fn: 818008.0000 - precision: 0.9093 - recall: 0.8900 - accuracy: 0.9549 - au
c: 0.9776 - val_loss: 0.3487 - val_tp: 3069049.0000 - val_fp: 100663.0000 - val_tn: 12450296.0000 - val_fn: 763992.0000 - val_precision: 0.9682 - val_recall: 0.8007 - val_accuracy: 0.9472 - val_auc: 0.9767
Epoch 55/70
400/400 [==============================] - 634s 2s/step - loss: 0.3041 - tp: 6727196.0000 - fp: 696140.0000 - tn: 24540392.0000 - fn: 804270.0000 - precision: 0.9062 - recall: 0.8932 - accuracy: 0.9542 - au
c: 0.9781 - val_loss: 0.3201 - val_tp: 2941382.0000 - val_fp: 99527.0000 - val_tn: 12647545.0000 - val_fn: 695546.0000 - val_precision: 0.9673 - val_recall: 0.8088 - val_accuracy: 0.9515 - val_auc: 0.9784
Epoch 56/70
400/400 [==============================] - 636s 2s/step - loss: 0.2960 - tp: 6826521.0000 - fp: 708283.0000 - tn: 24472022.0000 - fn: 761183.0000 - precision: 0.9060 - recall: 0.8997 - accuracy: 0.9552 - au
c: 0.9793 - val_loss: 0.3209 - val_tp: 2942017.0000 - val_fp: 95854.0000 - val_tn: 12658328.0000 - val_fn: 687801.0000 - val_precision: 0.9684 - val_recall: 0.8105 - val_accuracy: 0.9522 - val_auc: 0.9787
Epoch 57/70
400/400 [==============================] - 638s 2s/step - loss: 0.2978 - tp: 6648554.0000 - fp: 686959.0000 - tn: 24654000.0000 - fn: 778489.0000 - precision: 0.9064 - recall: 0.8952 - accuracy: 0.9553 - au
c: 0.9782 - val_loss: 0.3418 - val_tp: 3047748.0000 - val_fp: 90564.0000 - val_tn: 12482669.0000 - val_fn: 763019.0000 - val_precision: 0.9711 - val_recall: 0.7998 - val_accuracy: 0.9479 - val_auc: 0.9784
Epoch 58/70
400/400 [==============================] - 637s 2s/step - loss: 0.3043 - tp: 6628231.0000 - fp: 693416.0000 - tn: 24639726.0000 - fn: 806627.0000 - precision: 0.9053 - recall: 0.8915 - accuracy: 0.9542 - au
c: 0.9777 - val_loss: 0.3313 - val_tp: 3159765.0000 - val_fp: 106822.0000 - val_tn: 12398325.0000 - val_fn: 719088.0000 - val_precision: 0.9673 - val_recall: 0.8146 - val_accuracy: 0.9496 - val_auc: 0.9780
Epoch 59/70
400/400 [==============================] - 637s 2s/step - loss: 0.3006 - tp: 6652559.0000 - fp: 718848.0000 - tn: 24625476.0000 - fn: 771096.0000 - precision: 0.9025 - recall: 0.8961 - accuracy: 0.9545 - au
c: 0.9786 - val_loss: 0.3533 - val_tp: 3040082.0000 - val_fp: 82199.0000 - val_tn: 12530147.0000 - val_fn: 731572.0000 - val_precision: 0.9737 - val_recall: 0.8060 - val_accuracy: 0.9503 - val_auc: 0.9795
Epoch 60/70
400/400 [==============================] - 634s 2s/step - loss: 0.3137 - tp: 6891311.0000 - fp: 715443.0000 - tn: 24333106.0000 - fn: 828145.0000 - precision: 0.9059 - recall: 0.8927 - accuracy: 0.9529 - au
c: 0.9774 - val_loss: 0.3250 - val_tp: 2930627.0000 - val_fp: 99442.0000 - val_tn: 12670646.0000 - val_fn: 683285.0000 - val_precision: 0.9672 - val_recall: 0.8109 - val_accuracy: 0.9522 - val_auc: 0.9785
Epoch 61/70
400/400 [==============================] - 641s 2s/step - loss: 0.3028 - tp: 6738706.0000 - fp: 737970.0000 - tn: 24529770.0000 - fn: 761545.0000 - precision: 0.9013 - recall: 0.8985 - accuracy: 0.9542 - au
c: 0.9783 - val_loss: 0.3347 - val_tp: 3211606.0000 - val_fp: 100010.0000 - val_tn: 12350882.0000 - val_fn: 721502.0000 - val_precision: 0.9698 - val_recall: 0.8166 - val_accuracy: 0.9499 - val_auc: 0.9791
Epoch 62/70
400/400 [==============================] - 635s 2s/step - loss: 0.3047 - tp: 6492872.0000 - fp: 710243.0000 - tn: 24764572.0000 - fn: 800309.0000 - precision: 0.9014 - recall: 0.8903 - accuracy: 0.9539 - au
c: 0.9771 - val_loss: 0.3868 - val_tp: 3110246.0000 - val_fp: 71777.0000 - val_tn: 12369449.0000 - val_fn: 832528.0000 - val_precision: 0.9774 - val_recall: 0.7888 - val_accuracy: 0.9448 - val_auc: 0.9764
Epoch 63/70
400/400 [==============================] - 633s 2s/step - loss: 0.3033 - tp: 6979600.0000 - fp: 720858.0000 - tn: 24300348.0000 - fn: 767184.0000 - precision: 0.9064 - recall: 0.9010 - accuracy: 0.9546 - au
c: 0.9788 - val_loss: 0.3340 - val_tp: 3093435.0000 - val_fp: 85835.0000 - val_tn: 12442850.0000 - val_fn: 761880.0000 - val_precision: 0.9730 - val_recall: 0.8024 - val_accuracy: 0.9483 - val_auc: 0.9784
Epoch 64/70
400/400 [==============================] - 637s 2s/step - loss: 0.2992 - tp: 6684955.0000 - fp: 717935.0000 - tn: 24597880.0000 - fn: 767241.0000 - precision: 0.9030 - recall: 0.8970 - accuracy: 0.9547 - au
c: 0.9787 - val_loss: 0.3498 - val_tp: 2864609.0000 - val_fp: 82878.0000 - val_tn: 12711063.0000 - val_fn: 725450.0000 - val_precision: 0.9719 - val_recall: 0.7979 - val_accuracy: 0.9507 - val_auc: 0.9786
Epoch 65/70
400/400 [==============================] - 637s 2s/step - loss: 0.2992 - tp: 6881058.0000 - fp: 713083.0000 - tn: 24387492.0000 - fn: 786363.0000 - precision: 0.9061 - recall: 0.8974 - accuracy: 0.9542 - au
c: 0.9792 - val_loss: 0.3161 - val_tp: 3129890.0000 - val_fp: 123769.0000 - val_tn: 12482708.0000 - val_fn: 647633.0000 - val_precision: 0.9620 - val_recall: 0.8286 - val_accuracy: 0.9529 - val_auc: 0.9799
Epoch 66/70
400/400 [==============================] - 638s 2s/step - loss: 0.2998 - tp: 6513297.0000 - fp: 696712.0000 - tn: 24803000.0000 - fn: 754991.0000 - precision: 0.9034 - recall: 0.8961 - accuracy: 0.9557 - au
c: 0.9779 - val_loss: 0.3222 - val_tp: 3039732.0000 - val_fp: 95061.0000 - val_tn: 12541210.0000 - val_fn: 707997.0000 - val_precision: 0.9697 - val_recall: 0.8111 - val_accuracy: 0.9510 - val_auc: 0.9783
Epoch 67/70
400/400 [==============================] - 635s 2s/step - loss: 0.3011 - tp: 6869971.0000 - fp: 709956.0000 - tn: 24396884.0000 - fn: 791177.0000 - precision: 0.9063 - recall: 0.8967 - accuracy: 0.9542 - au
c: 0.9787 - val_loss: 0.3435 - val_tp: 3137473.0000 - val_fp: 93385.0000 - val_tn: 12425599.0000 - val_fn: 727543.0000 - val_precision: 0.9711 - val_recall: 0.8118 - val_accuracy: 0.9499 - val_auc: 0.9791
Epoch 68/70
400/400 [==============================] - 632s 2s/step - loss: 0.3034 - tp: 6640807.0000 - fp: 757137.0000 - tn: 24604356.0000 - fn: 765698.0000 - precision: 0.8977 - recall: 0.8966 - accuracy: 0.9535 - au
c: 0.9781 - val_loss: 0.3824 - val_tp: 3081203.0000 - val_fp: 98009.0000 - val_tn: 12448722.0000 - val_fn: 756066.0000 - val_precision: 0.9692 - val_recall: 0.8030 - val_accuracy: 0.9479 - val_auc: 0.9776
Epoch 69/70
400/400 [==============================] - 636s 2s/step - loss: 0.2988 - tp: 6698533.0000 - fp: 734236.0000 - tn: 24588786.0000 - fn: 746437.0000 - precision: 0.9012 - recall: 0.8997 - accuracy: 0.9548 - au
c: 0.9788 - val_loss: 0.3604 - val_tp: 2967778.0000 - val_fp: 93005.0000 - val_tn: 12540155.0000 - val_fn: 783062.0000 - val_precision: 0.9696 - val_recall: 0.7912 - val_accuracy: 0.9465 - val_auc: 0.9780
Epoch 70/70
400/400 [==============================] - 638s 2s/step - loss: 0.2996 - tp: 6725869.0000 - fp: 711970.0000 - tn: 24565164.0000 - fn: 765019.0000 - precision: 0.9043 - recall: 0.8979 - accuracy: 0.9549 - au
c: 0.9786 - val_loss: 0.3505 - val_tp: 3050870.0000 - val_fp: 101786.0000 - val_tn: 12476995.0000 - val_fn: 754349.0000 - val_precision: 0.9677 - val_recall: 0.8018 - val_accuracy: 0.9477 - val_auc: 0.9771
400/400 [==============================] - 121s 301ms/step - loss: 0.3684 - tp: 6266358.0000 - fp: 308665.0000 - tn: 24781578.0000 - fn: 1411378.0000 - precision: 0.9531 - recall: 0.8162 - accuracy: 0.9475
- auc: 0.9778
2020/06/01 10:07:50 INFO mlflow.projects: === Run (ID '1aefda1366f04f5da5d1fc2241ad9208') succeeded ===
(tensorflow_nightly) [ye53nis@node171 drmed-git]$
mlflow ui
(tensorflow_nightly) [ye53nis@node171 drmed-git]$ mlflow ui
[2020-06-01 10:38:40 +0200] [298787] [INFO] Starting gunicorn 20.0.4
[2020-06-01 10:38:40 +0200] [298787] [INFO] Listening at: http://127.0.0.1:5000 (298787)
[2020-06-01 10:38:40 +0200] [298787] [INFO] Using worker: sync
[2020-06-01 10:38:40 +0200] [298793] [INFO] Booting worker with pid: 298793

2.1.7 read out logs

2.1.7.1 read out mlflow logs using CLI
conda activate tensorflow_env
cd Programme/drmed-git
export MLFLOW_EXPERIMENT_NAME=exp-devtest
export MLFLOW_TRACKING_URI=file:./data/mlruns
mlflow experiments list
mlflow runs list --experiment-id 1
mlflow artifacts list -r 47b870b8fdcb4445956635c6758caff3
mlflow artifacts list -r 47b870b8fdcb4445956635c6758caff3 -a model
mlflow artifacts list -r 47b870b8fdcb4445956635c6758caff3 -a model_summary.txt
mlflow artifacts list -r 47b870b8fdcb4445956635c6758caff3 -a tensorboard_logs/train/
mlflow artifacts download -r 47b870b8fdcb4445956635c6758caff3
mlflow artifacts download -r 47b870b8fdcb4445956635c6758caff3 -a model
mlflow artifacts download -r 47b870b8fdcb4445956635c6758caff3 -a model_summary.txt
mlflow artifacts download -r 47b870b8fdcb4445956635c6758caff3 -a tensorboard_logs
mlflow runs describe --run-id 47b870b8fdcb4445956635c6758caff3
tensorboard --logdir=data/mlruns/1/47b870b8fdcb4445956635c6758caff3/artifacts/tensorboard_logs
mlflow ui --backend-store-uri file:///home/lex/Programme/drmed-git/data/mlruns
2.1.7.2 Reading out mlflow logs with Python API

I started local machine:

import mlflow
import pprint
%cd /home/lex/Programme/drmed-git/
/home/lex/Programme/drmed-git
uri = 'file:///home/lex/Programme/drmed-git/data/mlruns'
mlflow.set_tracking_uri(uri)
runs = mlflow.search_runs(experiment_ids='0')
print('run_id of first in list: ', runs.iloc[0].run_id)
print('no of runs in list: ', len(runs))
print()
runs
run_id of first in list:  1aefda1366f04f5da5d1fc2241ad9208
no of runs in list:  1
  run\id experiment\id status artifact\uri start\time end\time metrics.val\recall metrics.tn metrics.auc metrics.val\loss tags.mlflow.log-model.history tags.mlflow.source.type tags.mlflow.user tags.mlflow.project.entryPoint tags.mlflow.source.git.repoURL tags.mlflow.source.name tags.mlflow.source.git.commit tags.mlflow.project.backend tags.mlflow.gitRepoURL tags.mlflow.project.env
0 1aefda1366f04f5da5d1fc2241ad9208 0 FINISHED ./data/mlruns/0/1aefda1366f04f5da5d1fc224 2020-05-31 19:39:51.905000+00:00 2020-06-01 08:07:51.011000+00:00 0.801759 24565164.0 0.978632 0.350498 [{"run\id": "1aefda1366f04f5da5d1fc2241ad9208"… PROJECT ye53nis main https://github.com/aseltmann/fluotracify file:///beegfs/ye53nis/drmed-git 2225d6fa18cca9044960b6e86a56ec9fb4362d5d local https://github.com/aseltmann/fluotracify conda

1 rows × 52 columns

client = mlflow.tracking.MlflowClient(tracking_uri=uri)
run_idx = 0

# mlflow.entities.Experiment
print('client.get_experiment()\n', exp.to_proto())
# mlflow.entities.Metric
# metent = client.get_metric_history(run_id=runs.iloc[run_idx].run_id, key='loss')
# for i in metent:
    # print(i)

print('- - - mlflow.entities.Run - - -')
run = client.get_run(runs.iloc[run_idx].run_id)
print('run.info.to_proto\n', run.info.to_proto())
pprint.pprint(run.data.metrics, sort_dicts=False)

model_path = client.download_artifacts(
    run_id=runs.iloc[run_idx].run_id,
    path='model')
tensorboard_path = client.download_artifacts(
    run_id=runs.iloc[run_idx].run_id,
    path='tensorboard_logs')



print('\nmodel_path\n', model_path)
print('\nMLmodel file')
%cat $model_path/MLmodel
print('\nconda.yaml')
%cat $model_path/conda.yaml
print('\nkeras_module.txt')
%cat $model_path/data/keras_module.txt
client.get_experiment()
 experiment_id: "0"
name: "exp-310520-unet"
artifact_location: "file:./data/mlruns/0"
lifecycle_stage: "active"

- - - mlflow.entities.Run - - -
run.info.to_proto
 run_uuid: "1aefda1366f04f5da5d1fc2241ad9208"
experiment_id: "0"
user_id: "ye53nis"
status: FINISHED
start_time: 1590953991905
end_time: 1590998871011
artifact_uri: "file:./data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts"
lifecycle_stage: "active"
run_id: "1aefda1366f04f5da5d1fc2241ad9208"

{'learning rate': 1e-05,
 'val_loss': 0.3504984378814697,
 'precision': 0.9042773246765137,
 'fp': 711970.0,
 'loss': 0.2996121346950531,
 'val_tp': 3050870.0,
 'recall': 0.8978734016418457,
 'accuracy': 0.9549258947372437,
 'val_precision': 0.9677141904830933,
 'val_recall': 0.8017593622207642,
 'lr': 1e-05,
 'fn': 765019.0,
 'auc': 0.9786317348480225,
 'val_fp': 101786.0,
 'val_accuracy': 0.947745680809021,
 'val_tn': 12476995.0,
 'val_auc': 0.977130651473999,
 'val_fn': 754349.0,
 'tn': 24565164.0,
 'tp': 6725869.0}

model_path
 /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/model

MLmodel file
artifact_path: model
flavors:
  keras:
    data: data
    keras_module: tensorflow.keras
    keras_version: 2.2.4-tf
  python_function:
    data: data
    env: conda.yaml
    loader_module: mlflow.keras
    python_version: 3.8.3
run_id: 1aefda1366f04f5da5d1fc2241ad9208
utc_time_created: '2020-06-01 08:05:46.358978'

conda.yaml
channels:
- defaults
dependencies:
- python=3.8.3
- pip
- pip:
  - mlflow
  - tensorflow==2.3.0-dev20200527
name: mlflow-env

keras_module.txt
tensorflow.keras

summary_path
 /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/model_summary.txt

tensorboard_path
 /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/tensorboard_logs
summary_path = client.download_artifacts(
    run_id=runs.iloc[run_idx].run_id,
    path='model_summary.txt')

print('summary_path\n', summary_path, '\n')
%cat $summary_path
summary_path
 /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/model_summary.txt

Model: "functional_1"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to
==================================================================================================
input_1 (InputLayer)            [(None, 16384, 1)]   0
__________________________________________________________________________________________________
encode0 (Sequential)            (None, 16384, 64)    13120       input_1[0][0]
__________________________________________________________________________________________________
mp_encode0 (MaxPooling1D)       (None, 8192, 64)     0           encode0[0][0]
__________________________________________________________________________________________________
encode1 (Sequential)            (None, 8192, 128)    75008       mp_encode0[0][0]
__________________________________________________________________________________________________
mp_encode1 (MaxPooling1D)       (None, 4096, 128)    0           encode1[0][0]
__________________________________________________________________________________________________
encode2 (Sequential)            (None, 4096, 256)    297472      mp_encode1[0][0]
__________________________________________________________________________________________________
mp_encode2 (MaxPooling1D)       (None, 2048, 256)    0           encode2[0][0]
__________________________________________________________________________________________________
encode3 (Sequential)            (None, 2048, 512)    1184768     mp_encode2[0][0]
__________________________________________________________________________________________________
mp_encode3 (MaxPooling1D)       (None, 1024, 512)    0           encode3[0][0]
__________________________________________________________________________________________________
encode4 (Sequential)            (None, 1024, 512)    1577984     mp_encode3[0][0]
__________________________________________________________________________________________________
mp_encode4 (MaxPooling1D)       (None, 512, 512)     0           encode4[0][0]
__________________________________________________________________________________________________
encode5 (Sequential)            (None, 512, 512)     1577984     mp_encode4[0][0]
__________________________________________________________________________________________________
mp_encode5 (MaxPooling1D)       (None, 256, 512)     0           encode5[0][0]
__________________________________________________________________________________________________
encode6 (Sequential)            (None, 256, 512)     1577984     mp_encode5[0][0]
__________________________________________________________________________________________________
mp_encode6 (MaxPooling1D)       (None, 128, 512)     0           encode6[0][0]
__________________________________________________________________________________________________
encode7 (Sequential)            (None, 128, 512)     1577984     mp_encode6[0][0]
__________________________________________________________________________________________________
mp_encode7 (MaxPooling1D)       (None, 64, 512)      0           encode7[0][0]
__________________________________________________________________________________________________
encode8 (Sequential)            (None, 64, 512)      1577984     mp_encode7[0][0]
__________________________________________________________________________________________________
mp_encode8 (MaxPooling1D)       (None, 32, 512)      0           encode8[0][0]
__________________________________________________________________________________________________
two_conv_center (Sequential)    (None, 32, 1024)     4728832     mp_encode8[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder8 (Sequen (None, 64, 512)      1051136     two_conv_center[0][0]
__________________________________________________________________________________________________
decoder8 (Concatenate)          (None, 64, 1024)     0           encode8[0][0]
                                                                 conv_transpose_decoder8[0][0]
__________________________________________________________________________________________________
two_conv_decoder8 (Sequential)  (None, 64, 512)      2364416     decoder8[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder7 (Sequen (None, 128, 512)     526848      two_conv_decoder8[0][0]
__________________________________________________________________________________________________
decoder7 (Concatenate)          (None, 128, 1024)    0           encode7[0][0]
                                                                 conv_transpose_decoder7[0][0]
__________________________________________________________________________________________________
two_conv_decoder7 (Sequential)  (None, 128, 512)     2364416     decoder7[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder6 (Sequen (None, 256, 512)     526848      two_conv_decoder7[0][0]
__________________________________________________________________________________________________
decoder6 (Concatenate)          (None, 256, 1024)    0           encode6[0][0]
                                                                 conv_transpose_decoder6[0][0]
__________________________________________________________________________________________________
two_conv_decoder6 (Sequential)  (None, 256, 512)     2364416     decoder6[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder5 (Sequen (None, 512, 512)     526848      two_conv_decoder6[0][0]
__________________________________________________________________________________________________
decoder5 (Concatenate)          (None, 512, 1024)    0           encode5[0][0]
                                                                 conv_transpose_decoder5[0][0]
__________________________________________________________________________________________________
two_conv_decoder5 (Sequential)  (None, 512, 512)     2364416     decoder5[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder4 (Sequen (None, 1024, 512)    526848      two_conv_decoder5[0][0]
__________________________________________________________________________________________________
decoder4 (Concatenate)          (None, 1024, 1024)   0           encode4[0][0]
                                                                 conv_transpose_decoder4[0][0]
__________________________________________________________________________________________________
two_conv_decoder4 (Sequential)  (None, 1024, 512)    2364416     decoder4[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder3 (Sequen (None, 2048, 512)    526848      two_conv_decoder4[0][0]
__________________________________________________________________________________________________
decoder3 (Concatenate)          (None, 2048, 1024)   0           encode3[0][0]
                                                                 conv_transpose_decoder3[0][0]
__________________________________________________________________________________________________
two_conv_decoder3 (Sequential)  (None, 2048, 512)    2364416     decoder3[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder2 (Sequen (None, 4096, 256)    263424      two_conv_decoder3[0][0]
__________________________________________________________________________________________________
decoder2 (Concatenate)          (None, 4096, 512)    0           encode2[0][0]
                                                                 conv_transpose_decoder2[0][0]
__________________________________________________________________________________________________
two_conv_decoder2 (Sequential)  (None, 4096, 256)    592384      decoder2[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder1 (Sequen (None, 8192, 128)    66176       two_conv_decoder2[0][0]
__________________________________________________________________________________________________
decoder1 (Concatenate)          (None, 8192, 256)    0           encode1[0][0]
                                                                 conv_transpose_decoder1[0][0]
__________________________________________________________________________________________________
two_conv_decoder1 (Sequential)  (None, 8192, 128)    148736      decoder1[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder0 (Sequen (None, 16384, 64)    16704       two_conv_decoder1[0][0]
__________________________________________________________________________________________________
decoder0 (Concatenate)          (None, 16384, 128)   0           encode0[0][0]
                                                                 conv_transpose_decoder0[0][0]
__________________________________________________________________________________________________
two_conv_decoder0 (Sequential)  (None, 16384, 64)    37504       decoder0[0][0]
__________________________________________________________________________________________________
conv1d_38 (Conv1D)              (None, 16384, 1)     65          two_conv_decoder0[0][0]
==================================================================================================
Total params: 33,185,985
Trainable params: 33,146,689
Non-trainable params: 39,296
__________________________________________________________________________________________________
  print('\ntensorboard_path\n', tensorboard_path)
  !ls $tensorboard_path

# https://stackoverflow.com/questions/41074688/how-do-you-read-tensorboard-files-programmatically
from tensorboard.backend.event_processing import event_accumulator
path = str(tensorboard_path) + '/train'
path2 = str()
print(path)
ea = event_accumulator.EventAccumulator(path=path,
    size_guidance={ # see below regarding this argument
        event_accumulator.COMPRESSED_HISTOGRAMS: 500,
        event_accumulator.IMAGES: 4,
        event_accumulator.AUDIO: 4,
        event_accumulator.SCALARS: 0,
        event_accumulator.HISTOGRAMS: 1,
    })

ea.Reload() # loads events from file
tensorboard_path
 /home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/tensorboard_logs
image  metrics	train  validation
/home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/tensorboard_logs/train
<tensorboard.backend.event_processing.event_accumulator.EventAccumulator at 0x7fdb70770c70>
ea.Tags()
{'images': ['encode0/conv1d/kernel_0/image/0',
    'encode0/conv1d/bias_0/image/0',
    'encode0/batch_normalization/gamma_0/image/0',
    'encode0/batch_normalization/beta_0/image/0',
    'encode0/batch_normalization/moving_mean_0/image/0',
    'encode0/batch_normalization/moving_variance_0/image/0',
    'encode0/conv1d_1/kernel_0/image/0',
    'encode0/conv1d_1/kernel_0/image/1',
    'encode0/conv1d_1/kernel_0/image/2',
    'encode0/conv1d_1/bias_0/image/0',
    'encode0/batch_normalization_1/gamma_0/image/0',
    'encode0/batch_normalization_1/beta_0/image/0',
    'encode0/batch_normalization_1/moving_mean_0/image/0',
    'encode0/batch_normalization_1/moving_variance_0/image/0',
    'encode1/conv1d_2/kernel_0/image/0',
    'encode1/conv1d_2/kernel_0/image/1',
    'encode1/conv1d_2/kernel_0/image/2',
    'encode1/conv1d_2/bias_0/image/0',
    'encode1/batch_normalization_2/gamma_0/image/0',
    'encode1/batch_normalization_2/beta_0/image/0',
    'encode1/batch_normalization_2/moving_mean_0/image/0',
    'encode1/batch_normalization_2/moving_variance_0/image/0',
    'encode1/conv1d_3/kernel_0/image/0',
    'encode1/conv1d_3/kernel_0/image/1',
    'encode1/conv1d_3/kernel_0/image/2',
    'encode1/conv1d_3/bias_0/image/0',
    'encode1/batch_normalization_3/gamma_0/image/0',
    'encode1/batch_normalization_3/beta_0/image/0',
    'encode1/batch_normalization_3/moving_mean_0/image/0',
    'encode1/batch_normalization_3/moving_variance_0/image/0',
    'encode2/conv1d_4/kernel_0/image/0',
    'encode2/conv1d_4/kernel_0/image/1',
    'encode2/conv1d_4/kernel_0/image/2',
    'encode2/conv1d_4/bias_0/image/0',
    'encode2/batch_normalization_4/gamma_0/image/0',
    'encode2/batch_normalization_4/beta_0/image/0',
    'encode2/batch_normalization_4/moving_mean_0/image/0',
    'encode2/batch_normalization_4/moving_variance_0/image/0',
    'encode2/conv1d_5/kernel_0/image/0',
    'encode2/conv1d_5/kernel_0/image/1',
    'encode2/conv1d_5/kernel_0/image/2',
    'encode2/conv1d_5/bias_0/image/0',
    'encode2/batch_normalization_5/gamma_0/image/0',
    'encode2/batch_normalization_5/beta_0/image/0',
    'encode2/batch_normalization_5/moving_mean_0/image/0',
    'encode2/batch_normalization_5/moving_variance_0/image/0',
    'encode3/conv1d_6/kernel_0/image/0',
    'encode3/conv1d_6/kernel_0/image/1',
    'encode3/conv1d_6/kernel_0/image/2',
    'encode3/conv1d_6/bias_0/image/0',
    'encode3/batch_normalization_6/gamma_0/image/0',
    'encode3/batch_normalization_6/beta_0/image/0',
    'encode3/batch_normalization_6/moving_mean_0/image/0',
    'encode3/batch_normalization_6/moving_variance_0/image/0',
    'encode3/conv1d_7/kernel_0/image/0',
    'encode3/conv1d_7/kernel_0/image/1',
    'encode3/conv1d_7/kernel_0/image/2',
    'encode3/conv1d_7/bias_0/image/0',
    'encode3/batch_normalization_7/gamma_0/image/0',
    'encode3/batch_normalization_7/beta_0/image/0',
    'encode3/batch_normalization_7/moving_mean_0/image/0',
    'encode3/batch_normalization_7/moving_variance_0/image/0',
    'encode4/conv1d_8/kernel_0/image/0',
    'encode4/conv1d_8/kernel_0/image/1',
    'encode4/conv1d_8/kernel_0/image/2',
    'encode4/conv1d_8/bias_0/image/0',
    'encode4/batch_normalization_8/gamma_0/image/0',
    'encode4/batch_normalization_8/beta_0/image/0',
    'encode4/batch_normalization_8/moving_mean_0/image/0',
    'encode4/batch_normalization_8/moving_variance_0/image/0',
    'encode4/conv1d_9/kernel_0/image/0',
    'encode4/conv1d_9/kernel_0/image/1',
    'encode4/conv1d_9/kernel_0/image/2',
    'encode4/conv1d_9/bias_0/image/0',
    'encode4/batch_normalization_9/gamma_0/image/0',
    'encode4/batch_normalization_9/beta_0/image/0',
    'encode4/batch_normalization_9/moving_mean_0/image/0',
    'encode4/batch_normalization_9/moving_variance_0/image/0',
    'encode5/conv1d_10/kernel_0/image/0',
    'encode5/conv1d_10/kernel_0/image/1',
    'encode5/conv1d_10/kernel_0/image/2',
    'encode5/conv1d_10/bias_0/image/0',
    'encode5/batch_normalization_10/gamma_0/image/0',
    'encode5/batch_normalization_10/beta_0/image/0',
    'encode5/batch_normalization_10/moving_mean_0/image/0',
    'encode5/batch_normalization_10/moving_variance_0/image/0',
    'encode5/conv1d_11/kernel_0/image/0',
    'encode5/conv1d_11/kernel_0/image/1',
    'encode5/conv1d_11/kernel_0/image/2',
    'encode5/conv1d_11/bias_0/image/0',
    'encode5/batch_normalization_11/gamma_0/image/0',
    'encode5/batch_normalization_11/beta_0/image/0',
    'encode5/batch_normalization_11/moving_mean_0/image/0',
    'encode5/batch_normalization_11/moving_variance_0/image/0',
    'encode6/conv1d_12/kernel_0/image/0',
    'encode6/conv1d_12/kernel_0/image/1',
    'encode6/conv1d_12/kernel_0/image/2',
    'encode6/conv1d_12/bias_0/image/0',
    'encode6/batch_normalization_12/gamma_0/image/0',
    'encode6/batch_normalization_12/beta_0/image/0',
    'encode6/batch_normalization_12/moving_mean_0/image/0',
    'encode6/batch_normalization_12/moving_variance_0/image/0',
    'encode6/conv1d_13/kernel_0/image/0',
    'encode6/conv1d_13/kernel_0/image/1',
    'encode6/conv1d_13/kernel_0/image/2',
    'encode6/conv1d_13/bias_0/image/0',
    'encode6/batch_normalization_13/gamma_0/image/0',
    'encode6/batch_normalization_13/beta_0/image/0',
    'encode6/batch_normalization_13/moving_mean_0/image/0',
    'encode6/batch_normalization_13/moving_variance_0/image/0',
    'encode7/conv1d_14/kernel_0/image/0',
    'encode7/conv1d_14/kernel_0/image/1',
    'encode7/conv1d_14/kernel_0/image/2',
    'encode7/conv1d_14/bias_0/image/0',
    'encode7/batch_normalization_14/gamma_0/image/0',
    'encode7/batch_normalization_14/beta_0/image/0',
    'encode7/batch_normalization_14/moving_mean_0/image/0',
    'encode7/batch_normalization_14/moving_variance_0/image/0',
    'encode7/conv1d_15/kernel_0/image/0',
    'encode7/conv1d_15/kernel_0/image/1',
    'encode7/conv1d_15/kernel_0/image/2',
    'encode7/conv1d_15/bias_0/image/0',
    'encode7/batch_normalization_15/gamma_0/image/0',
    'encode7/batch_normalization_15/beta_0/image/0',
    'encode7/batch_normalization_15/moving_mean_0/image/0',
    'encode7/batch_normalization_15/moving_variance_0/image/0',
    'encode8/conv1d_16/kernel_0/image/0',
    'encode8/conv1d_16/kernel_0/image/1',
    'encode8/conv1d_16/kernel_0/image/2',
    'encode8/conv1d_16/bias_0/image/0',
    'encode8/batch_normalization_16/gamma_0/image/0',
    'encode8/batch_normalization_16/beta_0/image/0',
    'encode8/batch_normalization_16/moving_mean_0/image/0',
    'encode8/batch_normalization_16/moving_variance_0/image/0',
    'encode8/conv1d_17/kernel_0/image/0',
    'encode8/conv1d_17/kernel_0/image/1',
    'encode8/conv1d_17/kernel_0/image/2',
    'encode8/conv1d_17/bias_0/image/0',
    'encode8/batch_normalization_17/gamma_0/image/0',
    'encode8/batch_normalization_17/beta_0/image/0',
    'encode8/batch_normalization_17/moving_mean_0/image/0',
    'encode8/batch_normalization_17/moving_variance_0/image/0',
    'two_conv_center/conv1d_18/kernel_0/image/0',
    'two_conv_center/conv1d_18/kernel_0/image/1',
    'two_conv_center/conv1d_18/kernel_0/image/2',
    'two_conv_center/conv1d_18/bias_0/image/0',
    'two_conv_center/batch_normalization_18/gamma_0/image/0',
    'two_conv_center/batch_normalization_18/beta_0/image/0',
    'two_conv_center/batch_normalization_18/moving_mean_0/image/0',
    'two_conv_center/batch_normalization_18/moving_variance_0/image/0',
    'two_conv_center/conv1d_19/kernel_0/image/0',
    'two_conv_center/conv1d_19/kernel_0/image/1',
    'two_conv_center/conv1d_19/kernel_0/image/2',
    'two_conv_center/conv1d_19/bias_0/image/0',
    'two_conv_center/batch_normalization_19/gamma_0/image/0',
    'two_conv_center/batch_normalization_19/beta_0/image/0',
    'two_conv_center/batch_normalization_19/moving_mean_0/image/0',
    'two_conv_center/batch_normalization_19/moving_variance_0/image/0',
    'conv_transpose_decoder8/conv1d_transpose/kernel_0/image/0',
    'conv_transpose_decoder8/conv1d_transpose/kernel_0/image/1',
    'conv_transpose_decoder8/conv1d_transpose/kernel_0/image/2',
    'conv_transpose_decoder8/conv1d_transpose/bias_0/image/0',
    'conv_transpose_decoder8/batch_normalization_20/gamma_0/image/0',
    'conv_transpose_decoder8/batch_normalization_20/beta_0/image/0',
    'conv_transpose_decoder8/batch_normalization_20/moving_mean_0/image/0',
    'conv_transpose_decoder8/batch_normalization_20/moving_variance_0/image/0',
    'two_conv_decoder8/conv1d_20/kernel_0/image/0',
    'two_conv_decoder8/conv1d_20/kernel_0/image/1',
    'two_conv_decoder8/conv1d_20/kernel_0/image/2',
    'two_conv_decoder8/conv1d_20/bias_0/image/0',
    'two_conv_decoder8/batch_normalization_21/gamma_0/image/0',
    'two_conv_decoder8/batch_normalization_21/beta_0/image/0',
    'two_conv_decoder8/batch_normalization_21/moving_mean_0/image/0',
    'two_conv_decoder8/batch_normalization_21/moving_variance_0/image/0',
    'two_conv_decoder8/conv1d_21/kernel_0/image/0',
    'two_conv_decoder8/conv1d_21/kernel_0/image/1',
    'two_conv_decoder8/conv1d_21/kernel_0/image/2',
    'two_conv_decoder8/conv1d_21/bias_0/image/0',
    'two_conv_decoder8/batch_normalization_22/gamma_0/image/0',
    'two_conv_decoder8/batch_normalization_22/beta_0/image/0',
    'two_conv_decoder8/batch_normalization_22/moving_mean_0/image/0',
    'two_conv_decoder8/batch_normalization_22/moving_variance_0/image/0',
    'conv_transpose_decoder7/conv1d_transpose_1/kernel_0/image/0',
    'conv_transpose_decoder7/conv1d_transpose_1/kernel_0/image/1',
    'conv_transpose_decoder7/conv1d_transpose_1/kernel_0/image/2',
    'conv_transpose_decoder7/conv1d_transpose_1/bias_0/image/0',
    'conv_transpose_decoder7/batch_normalization_23/gamma_0/image/0',
    'conv_transpose_decoder7/batch_normalization_23/beta_0/image/0',
    'conv_transpose_decoder7/batch_normalization_23/moving_mean_0/image/0',
    'conv_transpose_decoder7/batch_normalization_23/moving_variance_0/image/0',
    'two_conv_decoder7/conv1d_22/kernel_0/image/0',
    'two_conv_decoder7/conv1d_22/kernel_0/image/1',
    'two_conv_decoder7/conv1d_22/kernel_0/image/2',
    'two_conv_decoder7/conv1d_22/bias_0/image/0',
    'two_conv_decoder7/batch_normalization_24/gamma_0/image/0',
    'two_conv_decoder7/batch_normalization_24/beta_0/image/0',
    'two_conv_decoder7/batch_normalization_24/moving_mean_0/image/0',
    'two_conv_decoder7/batch_normalization_24/moving_variance_0/image/0',
    'two_conv_decoder7/conv1d_23/kernel_0/image/0',
    'two_conv_decoder7/conv1d_23/kernel_0/image/1',
    'two_conv_decoder7/conv1d_23/kernel_0/image/2',
    'two_conv_decoder7/conv1d_23/bias_0/image/0',
    'two_conv_decoder7/batch_normalization_25/gamma_0/image/0',
    'two_conv_decoder7/batch_normalization_25/beta_0/image/0',
    'two_conv_decoder7/batch_normalization_25/moving_mean_0/image/0',
    'two_conv_decoder7/batch_normalization_25/moving_variance_0/image/0',
    'conv_transpose_decoder6/conv1d_transpose_2/kernel_0/image/0',
    'conv_transpose_decoder6/conv1d_transpose_2/kernel_0/image/1',
    'conv_transpose_decoder6/conv1d_transpose_2/kernel_0/image/2',
    'conv_transpose_decoder6/conv1d_transpose_2/bias_0/image/0',
    'conv_transpose_decoder6/batch_normalization_26/gamma_0/image/0',
    'conv_transpose_decoder6/batch_normalization_26/beta_0/image/0',
    'conv_transpose_decoder6/batch_normalization_26/moving_mean_0/image/0',
    'conv_transpose_decoder6/batch_normalization_26/moving_variance_0/image/0',
    'two_conv_decoder6/conv1d_24/kernel_0/image/0',
    'two_conv_decoder6/conv1d_24/kernel_0/image/1',
    'two_conv_decoder6/conv1d_24/kernel_0/image/2',
    'two_conv_decoder6/conv1d_24/bias_0/image/0',
    'two_conv_decoder6/batch_normalization_27/gamma_0/image/0',
    'two_conv_decoder6/batch_normalization_27/beta_0/image/0',
    'two_conv_decoder6/batch_normalization_27/moving_mean_0/image/0',
    'two_conv_decoder6/batch_normalization_27/moving_variance_0/image/0',
    'two_conv_decoder6/conv1d_25/kernel_0/image/0',
    'two_conv_decoder6/conv1d_25/kernel_0/image/1',
    'two_conv_decoder6/conv1d_25/kernel_0/image/2',
    'two_conv_decoder6/conv1d_25/bias_0/image/0',
    'two_conv_decoder6/batch_normalization_28/gamma_0/image/0',
    'two_conv_decoder6/batch_normalization_28/beta_0/image/0',
    'two_conv_decoder6/batch_normalization_28/moving_mean_0/image/0',
    'two_conv_decoder6/batch_normalization_28/moving_variance_0/image/0',
    'conv_transpose_decoder5/conv1d_transpose_3/kernel_0/image/0',
    'conv_transpose_decoder5/conv1d_transpose_3/kernel_0/image/1',
    'conv_transpose_decoder5/conv1d_transpose_3/kernel_0/image/2',
    'conv_transpose_decoder5/conv1d_transpose_3/bias_0/image/0',
    'conv_transpose_decoder5/batch_normalization_29/gamma_0/image/0',
    'conv_transpose_decoder5/batch_normalization_29/beta_0/image/0',
    'conv_transpose_decoder5/batch_normalization_29/moving_mean_0/image/0',
    'conv_transpose_decoder5/batch_normalization_29/moving_variance_0/image/0',
    'two_conv_decoder5/conv1d_26/kernel_0/image/0',
    'two_conv_decoder5/conv1d_26/kernel_0/image/1',
    'two_conv_decoder5/conv1d_26/kernel_0/image/2',
    'two_conv_decoder5/conv1d_26/bias_0/image/0',
    'two_conv_decoder5/batch_normalization_30/gamma_0/image/0',
    'two_conv_decoder5/batch_normalization_30/beta_0/image/0',
    'two_conv_decoder5/batch_normalization_30/moving_mean_0/image/0',
    'two_conv_decoder5/batch_normalization_30/moving_variance_0/image/0',
    'two_conv_decoder5/conv1d_27/kernel_0/image/0',
    'two_conv_decoder5/conv1d_27/kernel_0/image/1',
    'two_conv_decoder5/conv1d_27/kernel_0/image/2',
    'two_conv_decoder5/conv1d_27/bias_0/image/0',
    'two_conv_decoder5/batch_normalization_31/gamma_0/image/0',
    'two_conv_decoder5/batch_normalization_31/beta_0/image/0',
    'two_conv_decoder5/batch_normalization_31/moving_mean_0/image/0',
    'two_conv_decoder5/batch_normalization_31/moving_variance_0/image/0',
    'conv_transpose_decoder4/conv1d_transpose_4/kernel_0/image/0',
    'conv_transpose_decoder4/conv1d_transpose_4/kernel_0/image/1',
    'conv_transpose_decoder4/conv1d_transpose_4/kernel_0/image/2',
    'conv_transpose_decoder4/conv1d_transpose_4/bias_0/image/0',
    'conv_transpose_decoder4/batch_normalization_32/gamma_0/image/0',
    'conv_transpose_decoder4/batch_normalization_32/beta_0/image/0',
    'conv_transpose_decoder4/batch_normalization_32/moving_mean_0/image/0',
    'conv_transpose_decoder4/batch_normalization_32/moving_variance_0/image/0',
    'two_conv_decoder4/conv1d_28/kernel_0/image/0',
    'two_conv_decoder4/conv1d_28/kernel_0/image/1',
    'two_conv_decoder4/conv1d_28/kernel_0/image/2',
    'two_conv_decoder4/conv1d_28/bias_0/image/0',
    'two_conv_decoder4/batch_normalization_33/gamma_0/image/0',
    'two_conv_decoder4/batch_normalization_33/beta_0/image/0',
    'two_conv_decoder4/batch_normalization_33/moving_mean_0/image/0',
    'two_conv_decoder4/batch_normalization_33/moving_variance_0/image/0',
    'two_conv_decoder4/conv1d_29/kernel_0/image/0',
    'two_conv_decoder4/conv1d_29/kernel_0/image/1',
    'two_conv_decoder4/conv1d_29/kernel_0/image/2',
    'two_conv_decoder4/conv1d_29/bias_0/image/0',
    'two_conv_decoder4/batch_normalization_34/gamma_0/image/0',
    'two_conv_decoder4/batch_normalization_34/beta_0/image/0',
    'two_conv_decoder4/batch_normalization_34/moving_mean_0/image/0',
    'two_conv_decoder4/batch_normalization_34/moving_variance_0/image/0',
    'conv_transpose_decoder3/conv1d_transpose_5/kernel_0/image/0',
    'conv_transpose_decoder3/conv1d_transpose_5/kernel_0/image/1',
    'conv_transpose_decoder3/conv1d_transpose_5/kernel_0/image/2',
    'conv_transpose_decoder3/conv1d_transpose_5/bias_0/image/0',
    'conv_transpose_decoder3/batch_normalization_35/gamma_0/image/0',
    'conv_transpose_decoder3/batch_normalization_35/beta_0/image/0',
    'conv_transpose_decoder3/batch_normalization_35/moving_mean_0/image/0',
    'conv_transpose_decoder3/batch_normalization_35/moving_variance_0/image/0',
    'two_conv_decoder3/conv1d_30/kernel_0/image/0',
    'two_conv_decoder3/conv1d_30/kernel_0/image/1',
    'two_conv_decoder3/conv1d_30/kernel_0/image/2',
    'two_conv_decoder3/conv1d_30/bias_0/image/0',
    'two_conv_decoder3/batch_normalization_36/gamma_0/image/0',
    'two_conv_decoder3/batch_normalization_36/beta_0/image/0',
    'two_conv_decoder3/batch_normalization_36/moving_mean_0/image/0',
    'two_conv_decoder3/batch_normalization_36/moving_variance_0/image/0',
    'two_conv_decoder3/conv1d_31/kernel_0/image/0',
    'two_conv_decoder3/conv1d_31/kernel_0/image/1',
    'two_conv_decoder3/conv1d_31/kernel_0/image/2',
    'two_conv_decoder3/conv1d_31/bias_0/image/0',
    'two_conv_decoder3/batch_normalization_37/gamma_0/image/0',
    'two_conv_decoder3/batch_normalization_37/beta_0/image/0',
    'two_conv_decoder3/batch_normalization_37/moving_mean_0/image/0',
    'two_conv_decoder3/batch_normalization_37/moving_variance_0/image/0',
    'conv_transpose_decoder2/conv1d_transpose_6/kernel_0/image/0',
    'conv_transpose_decoder2/conv1d_transpose_6/kernel_0/image/1',
    'conv_transpose_decoder2/conv1d_transpose_6/kernel_0/image/2',
    'conv_transpose_decoder2/conv1d_transpose_6/bias_0/image/0',
    'conv_transpose_decoder2/batch_normalization_38/gamma_0/image/0',
    'conv_transpose_decoder2/batch_normalization_38/beta_0/image/0',
    'conv_transpose_decoder2/batch_normalization_38/moving_mean_0/image/0',
    'conv_transpose_decoder2/batch_normalization_38/moving_variance_0/image/0',
    'two_conv_decoder2/conv1d_32/kernel_0/image/0',
    'two_conv_decoder2/conv1d_32/kernel_0/image/1',
    'two_conv_decoder2/conv1d_32/kernel_0/image/2',
    'two_conv_decoder2/conv1d_32/bias_0/image/0',
    'two_conv_decoder2/batch_normalization_39/gamma_0/image/0',
    'two_conv_decoder2/batch_normalization_39/beta_0/image/0',
    'two_conv_decoder2/batch_normalization_39/moving_mean_0/image/0',
    'two_conv_decoder2/batch_normalization_39/moving_variance_0/image/0',
    'two_conv_decoder2/conv1d_33/kernel_0/image/0',
    'two_conv_decoder2/conv1d_33/kernel_0/image/1',
    'two_conv_decoder2/conv1d_33/kernel_0/image/2',
    'two_conv_decoder2/conv1d_33/bias_0/image/0',
    'two_conv_decoder2/batch_normalization_40/gamma_0/image/0',
    'two_conv_decoder2/batch_normalization_40/beta_0/image/0',
    'two_conv_decoder2/batch_normalization_40/moving_mean_0/image/0',
    'two_conv_decoder2/batch_normalization_40/moving_variance_0/image/0',
    'conv_transpose_decoder1/conv1d_transpose_7/kernel_0/image/0',
    'conv_transpose_decoder1/conv1d_transpose_7/kernel_0/image/1',
    'conv_transpose_decoder1/conv1d_transpose_7/kernel_0/image/2',
    'conv_transpose_decoder1/conv1d_transpose_7/bias_0/image/0',
    'conv_transpose_decoder1/batch_normalization_41/gamma_0/image/0',
    'conv_transpose_decoder1/batch_normalization_41/beta_0/image/0',
    'conv_transpose_decoder1/batch_normalization_41/moving_mean_0/image/0',
    'conv_transpose_decoder1/batch_normalization_41/moving_variance_0/image/0',
    'two_conv_decoder1/conv1d_34/kernel_0/image/0',
    'two_conv_decoder1/conv1d_34/kernel_0/image/1',
    'two_conv_decoder1/conv1d_34/kernel_0/image/2',
    'two_conv_decoder1/conv1d_34/bias_0/image/0',
    'two_conv_decoder1/batch_normalization_42/gamma_0/image/0',
    'two_conv_decoder1/batch_normalization_42/beta_0/image/0',
    'two_conv_decoder1/batch_normalization_42/moving_mean_0/image/0',
    'two_conv_decoder1/batch_normalization_42/moving_variance_0/image/0',
    'two_conv_decoder1/conv1d_35/kernel_0/image/0',
    'two_conv_decoder1/conv1d_35/kernel_0/image/1',
    'two_conv_decoder1/conv1d_35/kernel_0/image/2',
    'two_conv_decoder1/conv1d_35/bias_0/image/0',
    'two_conv_decoder1/batch_normalization_43/gamma_0/image/0',
    'two_conv_decoder1/batch_normalization_43/beta_0/image/0',
    'two_conv_decoder1/batch_normalization_43/moving_mean_0/image/0',
    'two_conv_decoder1/batch_normalization_43/moving_variance_0/image/0',
    'conv_transpose_decoder0/conv1d_transpose_8/kernel_0/image/0',
    'conv_transpose_decoder0/conv1d_transpose_8/kernel_0/image/1',
    'conv_transpose_decoder0/conv1d_transpose_8/kernel_0/image/2',
    'conv_transpose_decoder0/conv1d_transpose_8/bias_0/image/0',
    'conv_transpose_decoder0/batch_normalization_44/gamma_0/image/0',
    'conv_transpose_decoder0/batch_normalization_44/beta_0/image/0',
    'conv_transpose_decoder0/batch_normalization_44/moving_mean_0/image/0',
    'conv_transpose_decoder0/batch_normalization_44/moving_variance_0/image/0',
    'two_conv_decoder0/conv1d_36/kernel_0/image/0',
    'two_conv_decoder0/conv1d_36/kernel_0/image/1',
    'two_conv_decoder0/conv1d_36/kernel_0/image/2',
    'two_conv_decoder0/conv1d_36/bias_0/image/0',
    'two_conv_decoder0/batch_normalization_45/gamma_0/image/0',
    'two_conv_decoder0/batch_normalization_45/beta_0/image/0',
    'two_conv_decoder0/batch_normalization_45/moving_mean_0/image/0',
    'two_conv_decoder0/batch_normalization_45/moving_variance_0/image/0',
    'two_conv_decoder0/conv1d_37/kernel_0/image/0',
    'two_conv_decoder0/conv1d_37/kernel_0/image/1',
    'two_conv_decoder0/conv1d_37/kernel_0/image/2',
    'two_conv_decoder0/conv1d_37/bias_0/image/0',
    'two_conv_decoder0/batch_normalization_46/gamma_0/image/0',
    'two_conv_decoder0/batch_normalization_46/beta_0/image/0',
    'two_conv_decoder0/batch_normalization_46/moving_mean_0/image/0',
    'two_conv_decoder0/batch_normalization_46/moving_variance_0/image/0',
    'conv1d_38/kernel_0/image/0'],
   'audio': [],
   'histograms': ['encode0/conv1d/kernel_0',
    'encode0/conv1d/bias_0',
    'encode0/batch_normalization/gamma_0',
    'encode0/batch_normalization/beta_0',
    'encode0/batch_normalization/moving_mean_0',
    'encode0/batch_normalization/moving_variance_0',
    'encode0/conv1d_1/kernel_0',
    'encode0/conv1d_1/bias_0',
    'encode0/batch_normalization_1/gamma_0',
    'encode0/batch_normalization_1/beta_0',
    'encode0/batch_normalization_1/moving_mean_0',
    'encode0/batch_normalization_1/moving_variance_0',
    'encode1/conv1d_2/kernel_0',
    'encode1/conv1d_2/bias_0',
    'encode1/batch_normalization_2/gamma_0',
    'encode1/batch_normalization_2/beta_0',
    'encode1/batch_normalization_2/moving_mean_0',
    'encode1/batch_normalization_2/moving_variance_0',
    'encode1/conv1d_3/kernel_0',
    'encode1/conv1d_3/bias_0',
    'encode1/batch_normalization_3/gamma_0',
    'encode1/batch_normalization_3/beta_0',
    'encode1/batch_normalization_3/moving_mean_0',
    'encode1/batch_normalization_3/moving_variance_0',
    'encode2/conv1d_4/kernel_0',
    'encode2/conv1d_4/bias_0',
    'encode2/batch_normalization_4/gamma_0',
    'encode2/batch_normalization_4/beta_0',
    'encode2/batch_normalization_4/moving_mean_0',
    'encode2/batch_normalization_4/moving_variance_0',
    'encode2/conv1d_5/kernel_0',
    'encode2/conv1d_5/bias_0',
    'encode2/batch_normalization_5/gamma_0',
    'encode2/batch_normalization_5/beta_0',
    'encode2/batch_normalization_5/moving_mean_0',
    'encode2/batch_normalization_5/moving_variance_0',
    'encode3/conv1d_6/kernel_0',
    'encode3/conv1d_6/bias_0',
    'encode3/batch_normalization_6/gamma_0',
    'encode3/batch_normalization_6/beta_0',
    'encode3/batch_normalization_6/moving_mean_0',
    'encode3/batch_normalization_6/moving_variance_0',
    'encode3/conv1d_7/kernel_0',
    'encode3/conv1d_7/bias_0',
    'encode3/batch_normalization_7/gamma_0',
    'encode3/batch_normalization_7/beta_0',
    'encode3/batch_normalization_7/moving_mean_0',
    'encode3/batch_normalization_7/moving_variance_0',
    'encode4/conv1d_8/kernel_0',
    'encode4/conv1d_8/bias_0',
    'encode4/batch_normalization_8/gamma_0',
    'encode4/batch_normalization_8/beta_0',
    'encode4/batch_normalization_8/moving_mean_0',
    'encode4/batch_normalization_8/moving_variance_0',
    'encode4/conv1d_9/kernel_0',
    'encode4/conv1d_9/bias_0',
    'encode4/batch_normalization_9/gamma_0',
    'encode4/batch_normalization_9/beta_0',
    'encode4/batch_normalization_9/moving_mean_0',
    'encode4/batch_normalization_9/moving_variance_0',
    'encode5/conv1d_10/kernel_0',
    'encode5/conv1d_10/bias_0',
    'encode5/batch_normalization_10/gamma_0',
    'encode5/batch_normalization_10/beta_0',
    'encode5/batch_normalization_10/moving_mean_0',
    'encode5/batch_normalization_10/moving_variance_0',
    'encode5/conv1d_11/kernel_0',
    'encode5/conv1d_11/bias_0',
    'encode5/batch_normalization_11/gamma_0',
    'encode5/batch_normalization_11/beta_0',
    'encode5/batch_normalization_11/moving_mean_0',
    'encode5/batch_normalization_11/moving_variance_0',
    'encode6/conv1d_12/kernel_0',
    'encode6/conv1d_12/bias_0',
    'encode6/batch_normalization_12/gamma_0',
    'encode6/batch_normalization_12/beta_0',
    'encode6/batch_normalization_12/moving_mean_0',
    'encode6/batch_normalization_12/moving_variance_0',
    'encode6/conv1d_13/kernel_0',
    'encode6/conv1d_13/bias_0',
    'encode6/batch_normalization_13/gamma_0',
    'encode6/batch_normalization_13/beta_0',
    'encode6/batch_normalization_13/moving_mean_0',
    'encode6/batch_normalization_13/moving_variance_0',
    'encode7/conv1d_14/kernel_0',
    'encode7/conv1d_14/bias_0',
    'encode7/batch_normalization_14/gamma_0',
    'encode7/batch_normalization_14/beta_0',
    'encode7/batch_normalization_14/moving_mean_0',
    'encode7/batch_normalization_14/moving_variance_0',
    'encode7/conv1d_15/kernel_0',
    'encode7/conv1d_15/bias_0',
    'encode7/batch_normalization_15/gamma_0',
    'encode7/batch_normalization_15/beta_0',
    'encode7/batch_normalization_15/moving_mean_0',
    'encode7/batch_normalization_15/moving_variance_0',
    'encode8/conv1d_16/kernel_0',
    'encode8/conv1d_16/bias_0',
    'encode8/batch_normalization_16/gamma_0',
    'encode8/batch_normalization_16/beta_0',
    'encode8/batch_normalization_16/moving_mean_0',
    'encode8/batch_normalization_16/moving_variance_0',
    'encode8/conv1d_17/kernel_0',
    'encode8/conv1d_17/bias_0',
    'encode8/batch_normalization_17/gamma_0',
    'encode8/batch_normalization_17/beta_0',
    'encode8/batch_normalization_17/moving_mean_0',
    'encode8/batch_normalization_17/moving_variance_0',
    'two_conv_center/conv1d_18/kernel_0',
    'two_conv_center/conv1d_18/bias_0',
    'two_conv_center/batch_normalization_18/gamma_0',
    'two_conv_center/batch_normalization_18/beta_0',
    'two_conv_center/batch_normalization_18/moving_mean_0',
    'two_conv_center/batch_normalization_18/moving_variance_0',
    'two_conv_center/conv1d_19/kernel_0',
    'two_conv_center/conv1d_19/bias_0',
    'two_conv_center/batch_normalization_19/gamma_0',
    'two_conv_center/batch_normalization_19/beta_0',
    'two_conv_center/batch_normalization_19/moving_mean_0',
    'two_conv_center/batch_normalization_19/moving_variance_0',
    'conv_transpose_decoder8/conv1d_transpose/kernel_0',
    'conv_transpose_decoder8/conv1d_transpose/bias_0',
    'conv_transpose_decoder8/batch_normalization_20/gamma_0',
    'conv_transpose_decoder8/batch_normalization_20/beta_0',
    'conv_transpose_decoder8/batch_normalization_20/moving_mean_0',
    'conv_transpose_decoder8/batch_normalization_20/moving_variance_0',
    'two_conv_decoder8/conv1d_20/kernel_0',
    'two_conv_decoder8/conv1d_20/bias_0',
    'two_conv_decoder8/batch_normalization_21/gamma_0',
    'two_conv_decoder8/batch_normalization_21/beta_0',
    'two_conv_decoder8/batch_normalization_21/moving_mean_0',
    'two_conv_decoder8/batch_normalization_21/moving_variance_0',
    'two_conv_decoder8/conv1d_21/kernel_0',
    'two_conv_decoder8/conv1d_21/bias_0',
    'two_conv_decoder8/batch_normalization_22/gamma_0',
    'two_conv_decoder8/batch_normalization_22/beta_0',
    'two_conv_decoder8/batch_normalization_22/moving_mean_0',
    'two_conv_decoder8/batch_normalization_22/moving_variance_0',
    'conv_transpose_decoder7/conv1d_transpose_1/kernel_0',
    'conv_transpose_decoder7/conv1d_transpose_1/bias_0',
    'conv_transpose_decoder7/batch_normalization_23/gamma_0',
    'conv_transpose_decoder7/batch_normalization_23/beta_0',
    'conv_transpose_decoder7/batch_normalization_23/moving_mean_0',
    'conv_transpose_decoder7/batch_normalization_23/moving_variance_0',
    'two_conv_decoder7/conv1d_22/kernel_0',
    'two_conv_decoder7/conv1d_22/bias_0',
    'two_conv_decoder7/batch_normalization_24/gamma_0',
    'two_conv_decoder7/batch_normalization_24/beta_0',
    'two_conv_decoder7/batch_normalization_24/moving_mean_0',
    'two_conv_decoder7/batch_normalization_24/moving_variance_0',
    'two_conv_decoder7/conv1d_23/kernel_0',
    'two_conv_decoder7/conv1d_23/bias_0',
    'two_conv_decoder7/batch_normalization_25/gamma_0',
    'two_conv_decoder7/batch_normalization_25/beta_0',
    'two_conv_decoder7/batch_normalization_25/moving_mean_0',
    'two_conv_decoder7/batch_normalization_25/moving_variance_0',
    'conv_transpose_decoder6/conv1d_transpose_2/kernel_0',
    'conv_transpose_decoder6/conv1d_transpose_2/bias_0',
    'conv_transpose_decoder6/batch_normalization_26/gamma_0',
    'conv_transpose_decoder6/batch_normalization_26/beta_0',
    'conv_transpose_decoder6/batch_normalization_26/moving_mean_0',
    'conv_transpose_decoder6/batch_normalization_26/moving_variance_0',
    'two_conv_decoder6/conv1d_24/kernel_0',
    'two_conv_decoder6/conv1d_24/bias_0',
    'two_conv_decoder6/batch_normalization_27/gamma_0',
    'two_conv_decoder6/batch_normalization_27/beta_0',
    'two_conv_decoder6/batch_normalization_27/moving_mean_0',
    'two_conv_decoder6/batch_normalization_27/moving_variance_0',
    'two_conv_decoder6/conv1d_25/kernel_0',
    'two_conv_decoder6/conv1d_25/bias_0',
    'two_conv_decoder6/batch_normalization_28/gamma_0',
    'two_conv_decoder6/batch_normalization_28/beta_0',
    'two_conv_decoder6/batch_normalization_28/moving_mean_0',
    'two_conv_decoder6/batch_normalization_28/moving_variance_0',
    'conv_transpose_decoder5/conv1d_transpose_3/kernel_0',
    'conv_transpose_decoder5/conv1d_transpose_3/bias_0',
    'conv_transpose_decoder5/batch_normalization_29/gamma_0',
    'conv_transpose_decoder5/batch_normalization_29/beta_0',
    'conv_transpose_decoder5/batch_normalization_29/moving_mean_0',
    'conv_transpose_decoder5/batch_normalization_29/moving_variance_0',
    'two_conv_decoder5/conv1d_26/kernel_0',
    'two_conv_decoder5/conv1d_26/bias_0',
    'two_conv_decoder5/batch_normalization_30/gamma_0',
    'two_conv_decoder5/batch_normalization_30/beta_0',
    'two_conv_decoder5/batch_normalization_30/moving_mean_0',
    'two_conv_decoder5/batch_normalization_30/moving_variance_0',
    'two_conv_decoder5/conv1d_27/kernel_0',
    'two_conv_decoder5/conv1d_27/bias_0',
    'two_conv_decoder5/batch_normalization_31/gamma_0',
    'two_conv_decoder5/batch_normalization_31/beta_0',
    'two_conv_decoder5/batch_normalization_31/moving_mean_0',
    'two_conv_decoder5/batch_normalization_31/moving_variance_0',
    'conv_transpose_decoder4/conv1d_transpose_4/kernel_0',
    'conv_transpose_decoder4/conv1d_transpose_4/bias_0',
    'conv_transpose_decoder4/batch_normalization_32/gamma_0',
    'conv_transpose_decoder4/batch_normalization_32/beta_0',
    'conv_transpose_decoder4/batch_normalization_32/moving_mean_0',
    'conv_transpose_decoder4/batch_normalization_32/moving_variance_0',
    'two_conv_decoder4/conv1d_28/kernel_0',
    'two_conv_decoder4/conv1d_28/bias_0',
    'two_conv_decoder4/batch_normalization_33/gamma_0',
    'two_conv_decoder4/batch_normalization_33/beta_0',
    'two_conv_decoder4/batch_normalization_33/moving_mean_0',
    'two_conv_decoder4/batch_normalization_33/moving_variance_0',
    'two_conv_decoder4/conv1d_29/kernel_0',
    'two_conv_decoder4/conv1d_29/bias_0',
    'two_conv_decoder4/batch_normalization_34/gamma_0',
    'two_conv_decoder4/batch_normalization_34/beta_0',
    'two_conv_decoder4/batch_normalization_34/moving_mean_0',
    'two_conv_decoder4/batch_normalization_34/moving_variance_0',
    'conv_transpose_decoder3/conv1d_transpose_5/kernel_0',
    'conv_transpose_decoder3/conv1d_transpose_5/bias_0',
    'conv_transpose_decoder3/batch_normalization_35/gamma_0',
    'conv_transpose_decoder3/batch_normalization_35/beta_0',
    'conv_transpose_decoder3/batch_normalization_35/moving_mean_0',
    'conv_transpose_decoder3/batch_normalization_35/moving_variance_0',
    'two_conv_decoder3/conv1d_30/kernel_0',
    'two_conv_decoder3/conv1d_30/bias_0',
    'two_conv_decoder3/batch_normalization_36/gamma_0',
    'two_conv_decoder3/batch_normalization_36/beta_0',
    'two_conv_decoder3/batch_normalization_36/moving_mean_0',
    'two_conv_decoder3/batch_normalization_36/moving_variance_0',
    'two_conv_decoder3/conv1d_31/kernel_0',
    'two_conv_decoder3/conv1d_31/bias_0',
    'two_conv_decoder3/batch_normalization_37/gamma_0',
    'two_conv_decoder3/batch_normalization_37/beta_0',
    'two_conv_decoder3/batch_normalization_37/moving_mean_0',
    'two_conv_decoder3/batch_normalization_37/moving_variance_0',
    'conv_transpose_decoder2/conv1d_transpose_6/kernel_0',
    'conv_transpose_decoder2/conv1d_transpose_6/bias_0',
    'conv_transpose_decoder2/batch_normalization_38/gamma_0',
    'conv_transpose_decoder2/batch_normalization_38/beta_0',
    'conv_transpose_decoder2/batch_normalization_38/moving_mean_0',
    'conv_transpose_decoder2/batch_normalization_38/moving_variance_0',
    'two_conv_decoder2/conv1d_32/kernel_0',
    'two_conv_decoder2/conv1d_32/bias_0',
    'two_conv_decoder2/batch_normalization_39/gamma_0',
    'two_conv_decoder2/batch_normalization_39/beta_0',
    'two_conv_decoder2/batch_normalization_39/moving_mean_0',
    'two_conv_decoder2/batch_normalization_39/moving_variance_0',
    'two_conv_decoder2/conv1d_33/kernel_0',
    'two_conv_decoder2/conv1d_33/bias_0',
    'two_conv_decoder2/batch_normalization_40/gamma_0',
    'two_conv_decoder2/batch_normalization_40/beta_0',
    'two_conv_decoder2/batch_normalization_40/moving_mean_0',
    'two_conv_decoder2/batch_normalization_40/moving_variance_0',
    'conv_transpose_decoder1/conv1d_transpose_7/kernel_0',
    'conv_transpose_decoder1/conv1d_transpose_7/bias_0',
    'conv_transpose_decoder1/batch_normalization_41/gamma_0',
    'conv_transpose_decoder1/batch_normalization_41/beta_0',
    'conv_transpose_decoder1/batch_normalization_41/moving_mean_0',
    'conv_transpose_decoder1/batch_normalization_41/moving_variance_0',
    'two_conv_decoder1/conv1d_34/kernel_0',
    'two_conv_decoder1/conv1d_34/bias_0',
    'two_conv_decoder1/batch_normalization_42/gamma_0',
    'two_conv_decoder1/batch_normalization_42/beta_0',
    'two_conv_decoder1/batch_normalization_42/moving_mean_0',
    'two_conv_decoder1/batch_normalization_42/moving_variance_0',
    'two_conv_decoder1/conv1d_35/kernel_0',
    'two_conv_decoder1/conv1d_35/bias_0',
    'two_conv_decoder1/batch_normalization_43/gamma_0',
    'two_conv_decoder1/batch_normalization_43/beta_0',
    'two_conv_decoder1/batch_normalization_43/moving_mean_0',
    'two_conv_decoder1/batch_normalization_43/moving_variance_0',
    'conv_transpose_decoder0/conv1d_transpose_8/kernel_0',
    'conv_transpose_decoder0/conv1d_transpose_8/bias_0',
    'conv_transpose_decoder0/batch_normalization_44/gamma_0',
    'conv_transpose_decoder0/batch_normalization_44/beta_0',
    'conv_transpose_decoder0/batch_normalization_44/moving_mean_0',
    'conv_transpose_decoder0/batch_normalization_44/moving_variance_0',
    'two_conv_decoder0/conv1d_36/kernel_0',
    'two_conv_decoder0/conv1d_36/bias_0',
    'two_conv_decoder0/batch_normalization_45/gamma_0',
    'two_conv_decoder0/batch_normalization_45/beta_0',
    'two_conv_decoder0/batch_normalization_45/moving_mean_0',
    'two_conv_decoder0/batch_normalization_45/moving_variance_0',
    'two_conv_decoder0/conv1d_37/kernel_0',
    'two_conv_decoder0/conv1d_37/bias_0',
    'two_conv_decoder0/batch_normalization_46/gamma_0',
    'two_conv_decoder0/batch_normalization_46/beta_0',
    'two_conv_decoder0/batch_normalization_46/moving_mean_0',
    'two_conv_decoder0/batch_normalization_46/moving_variance_0',
    'conv1d_38/kernel_0',
    'conv1d_38/bias_0'],
   'scalars': ['epoch_loss',
    'epoch_tp',
    'epoch_fp',
    'epoch_tn',
    'epoch_fn',
    'epoch_precision',
    'epoch_recall',
    'epoch_accuracy',
    'epoch_auc'],
   'distributions': ['encode0/conv1d/kernel_0',
    'encode0/conv1d/bias_0',
    'encode0/batch_normalization/gamma_0',
    'encode0/batch_normalization/beta_0',
    'encode0/batch_normalization/moving_mean_0',
    'encode0/batch_normalization/moving_variance_0',
    'encode0/conv1d_1/kernel_0',
    'encode0/conv1d_1/bias_0',
    'encode0/batch_normalization_1/gamma_0',
    'encode0/batch_normalization_1/beta_0',
    'encode0/batch_normalization_1/moving_mean_0',
    'encode0/batch_normalization_1/moving_variance_0',
    'encode1/conv1d_2/kernel_0',
    'encode1/conv1d_2/bias_0',
    'encode1/batch_normalization_2/gamma_0',
    'encode1/batch_normalization_2/beta_0',
    'encode1/batch_normalization_2/moving_mean_0',
    'encode1/batch_normalization_2/moving_variance_0',
    'encode1/conv1d_3/kernel_0',
    'encode1/conv1d_3/bias_0',
    'encode1/batch_normalization_3/gamma_0',
    'encode1/batch_normalization_3/beta_0',
    'encode1/batch_normalization_3/moving_mean_0',
    'encode1/batch_normalization_3/moving_variance_0',
    'encode2/conv1d_4/kernel_0',
    'encode2/conv1d_4/bias_0',
    'encode2/batch_normalization_4/gamma_0',
    'encode2/batch_normalization_4/beta_0',
    'encode2/batch_normalization_4/moving_mean_0',
    'encode2/batch_normalization_4/moving_variance_0',
    'encode2/conv1d_5/kernel_0',
    'encode2/conv1d_5/bias_0',
    'encode2/batch_normalization_5/gamma_0',
    'encode2/batch_normalization_5/beta_0',
    'encode2/batch_normalization_5/moving_mean_0',
    'encode2/batch_normalization_5/moving_variance_0',
    'encode3/conv1d_6/kernel_0',
    'encode3/conv1d_6/bias_0',
    'encode3/batch_normalization_6/gamma_0',
    'encode3/batch_normalization_6/beta_0',
    'encode3/batch_normalization_6/moving_mean_0',
    'encode3/batch_normalization_6/moving_variance_0',
    'encode3/conv1d_7/kernel_0',
    'encode3/conv1d_7/bias_0',
    'encode3/batch_normalization_7/gamma_0',
    'encode3/batch_normalization_7/beta_0',
    'encode3/batch_normalization_7/moving_mean_0',
    'encode3/batch_normalization_7/moving_variance_0',
    'encode4/conv1d_8/kernel_0',
    'encode4/conv1d_8/bias_0',
    'encode4/batch_normalization_8/gamma_0',
    'encode4/batch_normalization_8/beta_0',
    'encode4/batch_normalization_8/moving_mean_0',
    'encode4/batch_normalization_8/moving_variance_0',
    'encode4/conv1d_9/kernel_0',
    'encode4/conv1d_9/bias_0',
    'encode4/batch_normalization_9/gamma_0',
    'encode4/batch_normalization_9/beta_0',
    'encode4/batch_normalization_9/moving_mean_0',
    'encode4/batch_normalization_9/moving_variance_0',
    'encode5/conv1d_10/kernel_0',
    'encode5/conv1d_10/bias_0',
    'encode5/batch_normalization_10/gamma_0',
    'encode5/batch_normalization_10/beta_0',
    'encode5/batch_normalization_10/moving_mean_0',
    'encode5/batch_normalization_10/moving_variance_0',
    'encode5/conv1d_11/kernel_0',
    'encode5/conv1d_11/bias_0',
    'encode5/batch_normalization_11/gamma_0',
    'encode5/batch_normalization_11/beta_0',
    'encode5/batch_normalization_11/moving_mean_0',
    'encode5/batch_normalization_11/moving_variance_0',
    'encode6/conv1d_12/kernel_0',
    'encode6/conv1d_12/bias_0',
    'encode6/batch_normalization_12/gamma_0',
    'encode6/batch_normalization_12/beta_0',
    'encode6/batch_normalization_12/moving_mean_0',
    'encode6/batch_normalization_12/moving_variance_0',
    'encode6/conv1d_13/kernel_0',
    'encode6/conv1d_13/bias_0',
    'encode6/batch_normalization_13/gamma_0',
    'encode6/batch_normalization_13/beta_0',
    'encode6/batch_normalization_13/moving_mean_0',
    'encode6/batch_normalization_13/moving_variance_0',
    'encode7/conv1d_14/kernel_0',
    'encode7/conv1d_14/bias_0',
    'encode7/batch_normalization_14/gamma_0',
    'encode7/batch_normalization_14/beta_0',
    'encode7/batch_normalization_14/moving_mean_0',
    'encode7/batch_normalization_14/moving_variance_0',
    'encode7/conv1d_15/kernel_0',
    'encode7/conv1d_15/bias_0',
    'encode7/batch_normalization_15/gamma_0',
    'encode7/batch_normalization_15/beta_0',
    'encode7/batch_normalization_15/moving_mean_0',
    'encode7/batch_normalization_15/moving_variance_0',
    'encode8/conv1d_16/kernel_0',
    'encode8/conv1d_16/bias_0',
    'encode8/batch_normalization_16/gamma_0',
    'encode8/batch_normalization_16/beta_0',
    'encode8/batch_normalization_16/moving_mean_0',
    'encode8/batch_normalization_16/moving_variance_0',
    'encode8/conv1d_17/kernel_0',
    'encode8/conv1d_17/bias_0',
    'encode8/batch_normalization_17/gamma_0',
    'encode8/batch_normalization_17/beta_0',
    'encode8/batch_normalization_17/moving_mean_0',
    'encode8/batch_normalization_17/moving_variance_0',
    'two_conv_center/conv1d_18/kernel_0',
    'two_conv_center/conv1d_18/bias_0',
    'two_conv_center/batch_normalization_18/gamma_0',
    'two_conv_center/batch_normalization_18/beta_0',
    'two_conv_center/batch_normalization_18/moving_mean_0',
    'two_conv_center/batch_normalization_18/moving_variance_0',
    'two_conv_center/conv1d_19/kernel_0',
    'two_conv_center/conv1d_19/bias_0',
    'two_conv_center/batch_normalization_19/gamma_0',
    'two_conv_center/batch_normalization_19/beta_0',
    'two_conv_center/batch_normalization_19/moving_mean_0',
    'two_conv_center/batch_normalization_19/moving_variance_0',
    'conv_transpose_decoder8/conv1d_transpose/kernel_0',
    'conv_transpose_decoder8/conv1d_transpose/bias_0',
    'conv_transpose_decoder8/batch_normalization_20/gamma_0',
    'conv_transpose_decoder8/batch_normalization_20/beta_0',
    'conv_transpose_decoder8/batch_normalization_20/moving_mean_0',
    'conv_transpose_decoder8/batch_normalization_20/moving_variance_0',
    'two_conv_decoder8/conv1d_20/kernel_0',
    'two_conv_decoder8/conv1d_20/bias_0',
    'two_conv_decoder8/batch_normalization_21/gamma_0',
    'two_conv_decoder8/batch_normalization_21/beta_0',
    'two_conv_decoder8/batch_normalization_21/moving_mean_0',
    'two_conv_decoder8/batch_normalization_21/moving_variance_0',
    'two_conv_decoder8/conv1d_21/kernel_0',
    'two_conv_decoder8/conv1d_21/bias_0',
    'two_conv_decoder8/batch_normalization_22/gamma_0',
    'two_conv_decoder8/batch_normalization_22/beta_0',
    'two_conv_decoder8/batch_normalization_22/moving_mean_0',
    'two_conv_decoder8/batch_normalization_22/moving_variance_0',
    'conv_transpose_decoder7/conv1d_transpose_1/kernel_0',
    'conv_transpose_decoder7/conv1d_transpose_1/bias_0',
    'conv_transpose_decoder7/batch_normalization_23/gamma_0',
    'conv_transpose_decoder7/batch_normalization_23/beta_0',
    'conv_transpose_decoder7/batch_normalization_23/moving_mean_0',
    'conv_transpose_decoder7/batch_normalization_23/moving_variance_0',
    'two_conv_decoder7/conv1d_22/kernel_0',
    'two_conv_decoder7/conv1d_22/bias_0',
    'two_conv_decoder7/batch_normalization_24/gamma_0',
    'two_conv_decoder7/batch_normalization_24/beta_0',
    'two_conv_decoder7/batch_normalization_24/moving_mean_0',
    'two_conv_decoder7/batch_normalization_24/moving_variance_0',
    'two_conv_decoder7/conv1d_23/kernel_0',
    'two_conv_decoder7/conv1d_23/bias_0',
    'two_conv_decoder7/batch_normalization_25/gamma_0',
    'two_conv_decoder7/batch_normalization_25/beta_0',
    'two_conv_decoder7/batch_normalization_25/moving_mean_0',
    'two_conv_decoder7/batch_normalization_25/moving_variance_0',
    'conv_transpose_decoder6/conv1d_transpose_2/kernel_0',
    'conv_transpose_decoder6/conv1d_transpose_2/bias_0',
    'conv_transpose_decoder6/batch_normalization_26/gamma_0',
    'conv_transpose_decoder6/batch_normalization_26/beta_0',
    'conv_transpose_decoder6/batch_normalization_26/moving_mean_0',
    'conv_transpose_decoder6/batch_normalization_26/moving_variance_0',
    'two_conv_decoder6/conv1d_24/kernel_0',
    'two_conv_decoder6/conv1d_24/bias_0',
    'two_conv_decoder6/batch_normalization_27/gamma_0',
    'two_conv_decoder6/batch_normalization_27/beta_0',
    'two_conv_decoder6/batch_normalization_27/moving_mean_0',
    'two_conv_decoder6/batch_normalization_27/moving_variance_0',
    'two_conv_decoder6/conv1d_25/kernel_0',
    'two_conv_decoder6/conv1d_25/bias_0',
    'two_conv_decoder6/batch_normalization_28/gamma_0',
    'two_conv_decoder6/batch_normalization_28/beta_0',
    'two_conv_decoder6/batch_normalization_28/moving_mean_0',
    'two_conv_decoder6/batch_normalization_28/moving_variance_0',
    'conv_transpose_decoder5/conv1d_transpose_3/kernel_0',
    'conv_transpose_decoder5/conv1d_transpose_3/bias_0',
    'conv_transpose_decoder5/batch_normalization_29/gamma_0',
    'conv_transpose_decoder5/batch_normalization_29/beta_0',
    'conv_transpose_decoder5/batch_normalization_29/moving_mean_0',
    'conv_transpose_decoder5/batch_normalization_29/moving_variance_0',
    'two_conv_decoder5/conv1d_26/kernel_0',
    'two_conv_decoder5/conv1d_26/bias_0',
    'two_conv_decoder5/batch_normalization_30/gamma_0',
    'two_conv_decoder5/batch_normalization_30/beta_0',
    'two_conv_decoder5/batch_normalization_30/moving_mean_0',
    'two_conv_decoder5/batch_normalization_30/moving_variance_0',
    'two_conv_decoder5/conv1d_27/kernel_0',
    'two_conv_decoder5/conv1d_27/bias_0',
    'two_conv_decoder5/batch_normalization_31/gamma_0',
    'two_conv_decoder5/batch_normalization_31/beta_0',
    'two_conv_decoder5/batch_normalization_31/moving_mean_0',
    'two_conv_decoder5/batch_normalization_31/moving_variance_0',
    'conv_transpose_decoder4/conv1d_transpose_4/kernel_0',
    'conv_transpose_decoder4/conv1d_transpose_4/bias_0',
    'conv_transpose_decoder4/batch_normalization_32/gamma_0',
    'conv_transpose_decoder4/batch_normalization_32/beta_0',
    'conv_transpose_decoder4/batch_normalization_32/moving_mean_0',
    'conv_transpose_decoder4/batch_normalization_32/moving_variance_0',
    'two_conv_decoder4/conv1d_28/kernel_0',
    'two_conv_decoder4/conv1d_28/bias_0',
    'two_conv_decoder4/batch_normalization_33/gamma_0',
    'two_conv_decoder4/batch_normalization_33/beta_0',
    'two_conv_decoder4/batch_normalization_33/moving_mean_0',
    'two_conv_decoder4/batch_normalization_33/moving_variance_0',
    'two_conv_decoder4/conv1d_29/kernel_0',
    'two_conv_decoder4/conv1d_29/bias_0',
    'two_conv_decoder4/batch_normalization_34/gamma_0',
    'two_conv_decoder4/batch_normalization_34/beta_0',
    'two_conv_decoder4/batch_normalization_34/moving_mean_0',
    'two_conv_decoder4/batch_normalization_34/moving_variance_0',
    'conv_transpose_decoder3/conv1d_transpose_5/kernel_0',
    'conv_transpose_decoder3/conv1d_transpose_5/bias_0',
    'conv_transpose_decoder3/batch_normalization_35/gamma_0',
    'conv_transpose_decoder3/batch_normalization_35/beta_0',
    'conv_transpose_decoder3/batch_normalization_35/moving_mean_0',
    'conv_transpose_decoder3/batch_normalization_35/moving_variance_0',
    'two_conv_decoder3/conv1d_30/kernel_0',
    'two_conv_decoder3/conv1d_30/bias_0',
    'two_conv_decoder3/batch_normalization_36/gamma_0',
    'two_conv_decoder3/batch_normalization_36/beta_0',
    'two_conv_decoder3/batch_normalization_36/moving_mean_0',
    'two_conv_decoder3/batch_normalization_36/moving_variance_0',
    'two_conv_decoder3/conv1d_31/kernel_0',
    'two_conv_decoder3/conv1d_31/bias_0',
    'two_conv_decoder3/batch_normalization_37/gamma_0',
    'two_conv_decoder3/batch_normalization_37/beta_0',
    'two_conv_decoder3/batch_normalization_37/moving_mean_0',
    'two_conv_decoder3/batch_normalization_37/moving_variance_0',
    'conv_transpose_decoder2/conv1d_transpose_6/kernel_0',
    'conv_transpose_decoder2/conv1d_transpose_6/bias_0',
    'conv_transpose_decoder2/batch_normalization_38/gamma_0',
    'conv_transpose_decoder2/batch_normalization_38/beta_0',
    'conv_transpose_decoder2/batch_normalization_38/moving_mean_0',
    'conv_transpose_decoder2/batch_normalization_38/moving_variance_0',
    'two_conv_decoder2/conv1d_32/kernel_0',
    'two_conv_decoder2/conv1d_32/bias_0',
    'two_conv_decoder2/batch_normalization_39/gamma_0',
    'two_conv_decoder2/batch_normalization_39/beta_0',
    'two_conv_decoder2/batch_normalization_39/moving_mean_0',
    'two_conv_decoder2/batch_normalization_39/moving_variance_0',
    'two_conv_decoder2/conv1d_33/kernel_0',
    'two_conv_decoder2/conv1d_33/bias_0',
    'two_conv_decoder2/batch_normalization_40/gamma_0',
    'two_conv_decoder2/batch_normalization_40/beta_0',
    'two_conv_decoder2/batch_normalization_40/moving_mean_0',
    'two_conv_decoder2/batch_normalization_40/moving_variance_0',
    'conv_transpose_decoder1/conv1d_transpose_7/kernel_0',
    'conv_transpose_decoder1/conv1d_transpose_7/bias_0',
    'conv_transpose_decoder1/batch_normalization_41/gamma_0',
    'conv_transpose_decoder1/batch_normalization_41/beta_0',
    'conv_transpose_decoder1/batch_normalization_41/moving_mean_0',
    'conv_transpose_decoder1/batch_normalization_41/moving_variance_0',
    'two_conv_decoder1/conv1d_34/kernel_0',
    'two_conv_decoder1/conv1d_34/bias_0',
    'two_conv_decoder1/batch_normalization_42/gamma_0',
    'two_conv_decoder1/batch_normalization_42/beta_0',
    'two_conv_decoder1/batch_normalization_42/moving_mean_0',
    'two_conv_decoder1/batch_normalization_42/moving_variance_0',
    'two_conv_decoder1/conv1d_35/kernel_0',
    'two_conv_decoder1/conv1d_35/bias_0',
    'two_conv_decoder1/batch_normalization_43/gamma_0',
    'two_conv_decoder1/batch_normalization_43/beta_0',
    'two_conv_decoder1/batch_normalization_43/moving_mean_0',
    'two_conv_decoder1/batch_normalization_43/moving_variance_0',
    'conv_transpose_decoder0/conv1d_transpose_8/kernel_0',
    'conv_transpose_decoder0/conv1d_transpose_8/bias_0',
    'conv_transpose_decoder0/batch_normalization_44/gamma_0',
    'conv_transpose_decoder0/batch_normalization_44/beta_0',
    'conv_transpose_decoder0/batch_normalization_44/moving_mean_0',
    'conv_transpose_decoder0/batch_normalization_44/moving_variance_0',
    'two_conv_decoder0/conv1d_36/kernel_0',
    'two_conv_decoder0/conv1d_36/bias_0',
    'two_conv_decoder0/batch_normalization_45/gamma_0',
    'two_conv_decoder0/batch_normalization_45/beta_0',
    'two_conv_decoder0/batch_normalization_45/moving_mean_0',
    'two_conv_decoder0/batch_normalization_45/moving_variance_0',
    'two_conv_decoder0/conv1d_37/kernel_0',
    'two_conv_decoder0/conv1d_37/bias_0',
    'two_conv_decoder0/batch_normalization_46/gamma_0',
    'two_conv_decoder0/batch_normalization_46/beta_0',
    'two_conv_decoder0/batch_normalization_46/moving_mean_0',
    'two_conv_decoder0/batch_normalization_46/moving_variance_0',
    'conv1d_38/kernel_0',
    'conv1d_38/bias_0'],
   'tensors': ['batch_2'],
   'graph': False,
   'meta_graph': False,
   'run_metadata': []}
ea.Scalars('epoch_loss')

2.1.8 Load model from mlflow logs and predict separately loaded data

First, check if the model file has to be downloaded via git lfs

cd /home/lex/Programme/drmed-git/
git lfs ls-files
git lfs checkout
(base) [lex@Topialex drmed-git]$ git lfs ls-files
6526c5abca - data/mlruns/1/47b870b8fdcb4445956635c6758caff3/artifacts/model/data/model.h5

(base) [lex@Topialex drmed-git]$ git lfs checkout
Skipped checkout for
"data/mlruns/1/47b870b8fdcb4445956635c6758caff3/artifacts/model/data/model.h5",
content not local. Use fetch to download.
Checking out LFS objects: 100% (1/1), 399 MB | 0 B/s, done.
git lfs pull
fetch: Fetching reference refs/heads/develop
Username for 'https://github.com': aseltmann B/s
Password for 'https://aseltmann@github.com':
(base) [lex@Topialex drmed-git]$ 1), 399 MB | 1.9 MB/s

Note: after these downloads, the GitHub-Version of git lfs didn't work for me anymore without a payment for download/upload. Initially I thought of git lfs as a distributed way of storing files without the need of a central storage. GitHub does not seem to support that, which is sad - I will move away from it in the future. See here.

import mlflow.keras
import mlflow.tensorflow
import sys
import numpy as np
import tensorflow as tf

project_path = '/home/lex/Programme/drmed-git'
fluotracify_path = '{}/src/'.format(project_path)
sys.path.append(fluotracify_path)

from fluotracify.simulations import import_simulation_from_csv as isfc
from fluotracify.training import build_model as bm, preprocess_data as ppd

%cd /home/lex/Programme/drmed-git
print(tf.__version__)
/home/lex/Programme/drmed-git
2.3.0-dev20200519
mlflow.set_tracking_uri('file://{}/data/mlruns'.format(project_path))
client = mlflow.tracking.MlflowClient(tracking_uri=mlflow.get_tracking_uri())
model_path = client.download_artifacts(
    run_id='1aefda1366f04f5da5d1fc2241ad9208',
    path='model')
print(model_path)
/home/lex/Programme/drmed-git/data/mlruns/0/1aefda1366f04f5da5d1fc2241ad9208/artifacts/model
bm.binary_ce_dice_loss()
<function fluotracify.training.build_model.binary_ce_dice_loss.<locals>.binary_ce_dice(y_true, y_pred)>
# mlflow.keras module
model_keras = mlflow.keras.load_model(model_uri=model_path,
                                      custom_objects={'binary_ce_dice': bm.binary_ce_dice_loss()})
model_keras
<tensorflow.python.keras.engine.functional.Functional at 0x7f3afa29d0a0>
data, _, nsamples, experiment_params = isfc.import_from_csv(
    path='/home/lex/Programme/Jupyter/DOKTOR/saves/firstartefact/subsample_rand/',
    header=12,
    frac_train=1,
    col_per_example=2,
    dropindex=None,
    dropcolumns='Unnamed: 200')
train 0 /home/lex/Programme/Jupyter/DOKTOR/saves/firstartefact/subsample_rand/traces_brightclust_rand_Sep2019_set003.csv
train 1 /home/lex/Programme/Jupyter/DOKTOR/saves/firstartefact/subsample_rand/traces_brightclust_rand_Sep2019_set002.csv
train 2 /home/lex/Programme/Jupyter/DOKTOR/saves/firstartefact/subsample_rand/traces_brightclust_rand_Sep2019_set001.csv
input - shape:	 (None, 16384, 1)
output - shape:	 (None, 16384, 1)
Model: "model"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to
==================================================================================================
input_1 (InputLayer)            [(None, 16384, 1)]   0
__________________________________________________________________________________________________
encode0 (Sequential)            (None, 16384, 64)    13120       input_1[0][0]
__________________________________________________________________________________________________
mp_encode0 (MaxPooling1D)       (None, 8192, 64)     0           encode0[0][0]
__________________________________________________________________________________________________
encode1 (Sequential)            (None, 8192, 128)    75008       mp_encode0[0][0]
__________________________________________________________________________________________________
mp_encode1 (MaxPooling1D)       (None, 4096, 128)    0           encode1[0][0]
__________________________________________________________________________________________________
encode2 (Sequential)            (None, 4096, 256)    297472      mp_encode1[0][0]
__________________________________________________________________________________________________
mp_encode2 (MaxPooling1D)       (None, 2048, 256)    0           encode2[0][0]
__________________________________________________________________________________________________
encode3 (Sequential)            (None, 2048, 512)    1184768     mp_encode2[0][0]
__________________________________________________________________________________________________
mp_encode3 (MaxPooling1D)       (None, 1024, 512)    0           encode3[0][0]
__________________________________________________________________________________________________
encode4 (Sequential)            (None, 1024, 512)    1577984     mp_encode3[0][0]
__________________________________________________________________________________________________
mp_encode4 (MaxPooling1D)       (None, 512, 512)     0           encode4[0][0]
__________________________________________________________________________________________________
encode5 (Sequential)            (None, 512, 512)     1577984     mp_encode4[0][0]
__________________________________________________________________________________________________
mp_encode5 (MaxPooling1D)       (None, 256, 512)     0           encode5[0][0]
__________________________________________________________________________________________________
encode6 (Sequential)            (None, 256, 512)     1577984     mp_encode5[0][0]
__________________________________________________________________________________________________
mp_encode6 (MaxPooling1D)       (None, 128, 512)     0           encode6[0][0]
__________________________________________________________________________________________________
encode7 (Sequential)            (None, 128, 512)     1577984     mp_encode6[0][0]
__________________________________________________________________________________________________
mp_encode7 (MaxPooling1D)       (None, 64, 512)      0           encode7[0][0]
__________________________________________________________________________________________________
encode8 (Sequential)            (None, 64, 512)      1577984     mp_encode7[0][0]
__________________________________________________________________________________________________
mp_encode8 (MaxPooling1D)       (None, 32, 512)      0           encode8[0][0]
__________________________________________________________________________________________________
two_conv_center (Sequential)    (None, 32, 1024)     4728832     mp_encode8[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder8 (Sequen (None, 64, 512)      1051136     two_conv_center[0][0]
__________________________________________________________________________________________________
decoder8 (Concatenate)          (None, 64, 1024)     0           encode8[0][0]
                                                                 conv_transpose_decoder8[0][0]
__________________________________________________________________________________________________
two_conv_decoder8 (Sequential)  (None, 64, 512)      2364416     decoder8[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder7 (Sequen (None, 128, 512)     526848      two_conv_decoder8[0][0]
__________________________________________________________________________________________________
decoder7 (Concatenate)          (None, 128, 1024)    0           encode7[0][0]
                                                                 conv_transpose_decoder7[0][0]
__________________________________________________________________________________________________
two_conv_decoder7 (Sequential)  (None, 128, 512)     2364416     decoder7[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder6 (Sequen (None, 256, 512)     526848      two_conv_decoder7[0][0]
__________________________________________________________________________________________________
decoder6 (Concatenate)          (None, 256, 1024)    0           encode6[0][0]
                                                                 conv_transpose_decoder6[0][0]
__________________________________________________________________________________________________
two_conv_decoder6 (Sequential)  (None, 256, 512)     2364416     decoder6[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder5 (Sequen (None, 512, 512)     526848      two_conv_decoder6[0][0]
__________________________________________________________________________________________________
decoder5 (Concatenate)          (None, 512, 1024)    0           encode5[0][0]
                                                                 conv_transpose_decoder5[0][0]
__________________________________________________________________________________________________
two_conv_decoder5 (Sequential)  (None, 512, 512)     2364416     decoder5[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder4 (Sequen (None, 1024, 512)    526848      two_conv_decoder5[0][0]
__________________________________________________________________________________________________
decoder4 (Concatenate)          (None, 1024, 1024)   0           encode4[0][0]
                                                                 conv_transpose_decoder4[0][0]
__________________________________________________________________________________________________
two_conv_decoder4 (Sequential)  (None, 1024, 512)    2364416     decoder4[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder3 (Sequen (None, 2048, 512)    526848      two_conv_decoder4[0][0]
__________________________________________________________________________________________________
decoder3 (Concatenate)          (None, 2048, 1024)   0           encode3[0][0]
                                                                 conv_transpose_decoder3[0][0]
__________________________________________________________________________________________________
two_conv_decoder3 (Sequential)  (None, 2048, 512)    2364416     decoder3[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder2 (Sequen (None, 4096, 256)    263424      two_conv_decoder3[0][0]
__________________________________________________________________________________________________
decoder2 (Concatenate)          (None, 4096, 512)    0           encode2[0][0]
                                                                 conv_transpose_decoder2[0][0]
__________________________________________________________________________________________________
two_conv_decoder2 (Sequential)  (None, 4096, 256)    592384      decoder2[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder1 (Sequen (None, 8192, 128)    66176       two_conv_decoder2[0][0]
__________________________________________________________________________________________________
decoder1 (Concatenate)          (None, 8192, 256)    0           encode1[0][0]
                                                                 conv_transpose_decoder1[0][0]
__________________________________________________________________________________________________
two_conv_decoder1 (Sequential)  (None, 8192, 128)    148736      decoder1[0][0]
__________________________________________________________________________________________________
conv_transpose_decoder0 (Sequen (None, 16384, 64)    16704       two_conv_decoder1[0][0]
__________________________________________________________________________________________________
decoder0 (Concatenate)          (None, 16384, 128)   0           encode0[0][0]
                                                                 conv_transpose_decoder0[0][0]
__________________________________________________________________________________________________
two_conv_decoder0 (Sequential)  (None, 16384, 64)    37504       decoder0[0][0]
__________________________________________________________________________________________________
conv1d_38 (Conv1D)              (None, 16384, 1)     65          two_conv_decoder0[0][0]
==================================================================================================
Total params: 33,185,985
Trainable params: 33,146,689
Non-trainable params: 39,296
__________________________________________________________________________________________________
None
prediction = model_keras.predict(np.array(data.iloc[:16384, 0]).reshape(1, -1, 1))

I noticed one problem: directly outputting the prediction array for large predictions (e.g. 16384 time steps), will freeze emacs. Especially with my setup with conversion to org tables. It is possible to output it in the REPL, or print it using print(prediction), because there the output gets truncated, e.g. like this:

array([[[1.],
        [1.],
        [1.],
        ...,
        [1.],
        [1.],
        [1.]]], dtype=float32)

While here it tries to print everything (I guess). Maybe I should test the :pandoc t argument instead of the OrgFormatter class

Basically, no matter if I choosnpe the :results header argument, it always gets printed with :display org like this.

log_dir="logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(
    log_dir=log_dir,
    histogram_freq=5,
    write_images=True,
    update_freq='batch')

epochs = 50

history = model.fit(x=dataset_train,
                    epochs=epochs,
                    steps_per_epoch=400,
                    validation_data=dataset_val,
                    validation_steps=tf.math.ceil(num_val_examples / batch_size),
                    callbacks=[tensorboard_callback])
WARNING: Logging before flag parsing goes to stderr.
W0413 03:23:05.926374 47620222508736 summary_ops_v2.py:1132] Model failed to serialize as JSON. Ignoring... Layers with arguments in `__init__` must override `get_config`.
Train for 400 steps, validate for 534.0 steps
Epoch 1/50
  8/400 [..............................] - ETA: 1:05:18 - loss: 1.4586 - mean_io_u: 0.4039 - precision: 0.2347 - recall: 0.1408
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
prediction
  0 1 2 3 4 5 6 7 8 9 10 11 2043 2044 2045 2046 2047
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

To make the output work the desired way (like in the REPL or print() and without freezing emacs for large tables), use :display plain

prediction
array([[[1.],
        [1.],
        [1.],
        ...,
        [1.],
        [1.],
        [1.]]], dtype=float32)

2.1.9 git exp 2

git status
git log -1
(tensorflow_nightly) [ye53nis@node151 drmed-git]$ git status
# On branch exp-310520-unet
# Untracked files:
#   (use "git add <file>..." to include in what will be committed)
#  ...
nothing added to commit but untracked files present (use "git add" to track)

(tensorflow_nightly) [ye53nis@node151 drmed-git]$ git log -1
commit 09c1d2a1bc083695026b46c74ea175c9168bb5f2
Author: Apoplex <oligolex@vivaldi.net>
Date:   Fri Jun 12 14:17:14 2020 +0200

    New learning rate schedule

current learning rate schedule:

learning_rate = 0.1
 if epoch > 10:
     learning_rate = 0.01
 if epoch > 20:
     learning_rate = 0.001
 if epoch > 30:
     learning_rate = 0.0001
 if epoch > 40:
     learning_rate = 0.00001
 if epoch > 50:
     learning_rate = 0.000001
 if epoch > 60:
     learning_rate = 0.00000001
 if epoch > 70:
     learning_rate = 0.0000000001
 if epoch > 80:
     learning_rate = 0.000000000001
 if epoch > 90:
     learning_rate = 0.00000000000001

2.1.10 experimental run 2 - full dataset

This time new learning rate

mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=100 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=1280 -P validation_steps=320
(tensorflow_nightly) [ye53nis@node151 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src/ -P epochs=100 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=1280 -P val
idation_steps=320
2020/06/12 14:20:34 INFO mlflow.projects: === Created directory /tmp/tmp2s79px_z for downloading remote URIs passed to arguments of type 'path' ===
2020/06/12 14:20:34 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/fluotracify/training/train.py /
beegfs/ye53nis/drmed-git/src 5 0.2 16384 None 100 /beegfs/ye53nis/saves/firstartefact_Sep2019 1280 320' in run with ID '037e1d9e4ad74784974f4aaac11138cc' ===
2020-06-12 14:20:53.286502: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory
2020-06-12 14:20:53.286593: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favour of importlib; see the modul
e's documentation for alternative uses
  import imp
2.3.0-dev20200527
2020-06-12 14:21:33.782337: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
2020-06-12 14:21:33.782422: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
2020-06-12 14:21:33.782480: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node151): /proc/driver/nvidia/version does not exist
GPUs:  []
train 0 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set027.csv
train 1 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set087.csv
train 2 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set003.csv
train 3 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set056.csv
train 4 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set076.csv
train 5 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set094.csv
train 6 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set017.csv
train 7 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set074.csv
train 8 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set055.csv
train 9 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set096.csv
train 10 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set054.csv
train 11 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set093.csv
train 12 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set079.csv
train 13 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set014.csv
train 14 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set008.csv
train 15 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set031.csv
train 16 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set023.csv
train 17 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set025.csv
train 18 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set034.csv
train 19 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set009.csv
train 20 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set044.csv
train 21 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set063.csv
train 22 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set004.csv
train 23 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set072.csv
train 24 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set046.csv
train 25 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set049.csv
train 26 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set007.csv
train 27 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set100.csv
train 28 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set083.csv
train 29 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set077.csv
train 30 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set061.csv
train 31 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set081.csv
train 32 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set091.csv
train 33 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set069.csv
train 34 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set052.csv
train 35 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set028.csv
train 36 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set019.csv
train 37 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set057.csv
train 38 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set064.csv
train 39 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set075.csv
train 40 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set002.csv
train 41 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set062.csv
train 42 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set043.csv
train 43 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set042.csv
train 44 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set005.csv
train 45 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set016.csv
train 46 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set018.csv
train 47 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set041.csv
train 48 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set039.csv
train 49 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set006.csv
train 50 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set092.csv
train 51 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set060.csv
train 52 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set001.csv
train 53 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set035.csv
train 54 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set029.csv
train 55 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set051.csv
train 56 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set012.csv
train 57 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set036.csv
train 58 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set024.csv
train 59 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set053.csv
train 60 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set011.csv
train 61 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set032.csv
train 62 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set067.csv
train 63 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set058.csv
train 64 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set080.csv
train 65 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set086.csv
train 66 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set033.csv
train 67 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set085.csv
train 68 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set015.csv
train 69 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set090.csv
train 70 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set020.csv
train 71 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set030.csv
train 72 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set050.csv
train 73 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set098.csv
train 74 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set099.csv
train 75 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set070.csv
train 76 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set021.csv
train 77 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set095.csv
train 78 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set073.csv
train 79 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set078.csv
test 80 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set026.csv
test 81 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set038.csv
test 82 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set082.csv
test 83 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set047.csv
test 84 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set040.csv
test 85 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set066.csv
test 86 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set059.csv
test 87 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set013.csv
test 88 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set089.csv
test 89 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set071.csv
test 90 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set088.csv
test 91 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set037.csv
test 92 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set022.csv
test 93 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set084.csv
test 94 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set010.csv
test 95 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set097.csv
test 96 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set068.csv
test 97 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set065.csv
test 98 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set048.csv
test 99 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set045.csv
shapes of feature dataframe: (20000, 8000) and label dataframe: (20000, 8000)
shapes of feature dataframe: (20000, 2000) and label dataframe: (20000, 2000)

for each 20,000 timestap trace there are the following numbers of corrupted timesteps:
 label001_1    6286
label001_1    2568
label001_1    4495
label001_1    4414
label001_1    1105
dtype: int64
2020-06-12 14:26:49.734444: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2020-06-12 14:26:49.744132: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz
2020-06-12 14:26:49.745558: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55721c34af40 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-06-12 14:26:49.745586: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
number of training examples: 6400, number of validation examples: 1600

------------------------
number of test examples: 2000

input - shape:   (None, 16384, 1)
output - shape:  (None, 16384, 1)
2020-06-12 14:26:53.653730: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the ABCs from 'collections' instead
 of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
  if not isinstance(wrapped_dict, collections.Mapping):
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Python 3.0, use inspect.signature()
 or inspect.getfullargspec()
  all_param_names, _, _, all_default_values = inspect.getargspec(fn)  # pylint: disable=W1505
Epoch 1/100
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from
'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
  if not isinstance(values, collections.Sequence):
   1/1280 [..............................] - ETA: 0s - loss: 1.5430 - tp: 5048.0000 - fp: 18093.0000 - tn: 50755.0000 - fn: 8024.0000 - precision: 0.2181 - recall: 0.3862 - accuracy: 0.6812 - auc: 0.58482020-06-12 14:27:06.190184: I ten
sorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and w
ill be removed after 2020-07-01.
Instructions for updating:
use `tf.profiler.experimental.stop` instead.
2020-06-12 14:27:07.670394: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_12_14_27_07
2020-06-12 14:27:07.684980: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.trace.json.gz
2020-06-12 14:27:07.711539: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_12_14_27_07
2020-06-12 14:27:07.711638: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.memory_profile.json.gz
2020-06-12 14:27:07.713732: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_06_12_14_27_07Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2020_06_12_1
4_27_07/node151.xplane.pb
Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.overview_page.pb
Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.input_pipeline.pb
Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.tensorflow_stats.pb
Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_06_12_14_27_07/node151.kernel_stats.pb

1280/1280 [==============================] - 2053s 2s/step - loss: 0.9576 - tp: 14931613.0000 - fp: 6406557.0000 - tn: 74369864.0000 - fn: 9149518.0000 - precision: 0.6998 - recall: 0.6201 - accuracy: 0.8516 - auc: 0.8805 - val_loss: 1.
1981 - val_tp: 3451021.0000 - val_fp: 465330.0000 - val_tn: 19870236.0000 - val_fn: 2427812.0000 - val_precision: 0.8812 - val_recall: 0.5870 - val_accuracy: 0.8896 - val_auc: 0.8828
Epoch 2/100
 679/1280 [==============>...............] - ETA: 14:47 - loss: 0.6900 - tp: 9867994.0000 - fp: 2756931.0000 - tn: 40089676.0000 - fn: 2909066.0000 - precision: 0.7816 - recall: 0.7723 - accuracy: 0.8981 - auc: 0.9307
1280/1280 [==============================] - 1998s 2s/step - loss: 0.6748 - tp: 18707488.0000 - fp: 4980630.0000 - tn: 75750952.0000 - fn: 5418544.0000 - precision: 0.7897 - recall: 0.7754 - accuracy: 0.9008 - auc: 0.9335 - val_loss: 1.
8923 - val_tp: 1511411.0000 - val_fp: 71511.0000 - val_tn: 20387136.0000 - val_fn: 4244342.0000 - val_precision: 0.9548 - val_recall: 0.2626 - val_accuracy: 0.8354 - val_auc: 0.8004
Epoch 3/100
1280/1280 [==============================] - 1974s 2s/step - loss: 0.6086 - tp: 19388796.0000 - fp: 4672424.0000 - tn: 76028144.0000 - fn: 4768219.0000 - precision: 0.8058 - recall: 0.8026 - accuracy: 0.9100 - auc: 0.9440 - val_loss: 4.
4772 - val_tp: 497608.0000 - val_fp: 47.0000 - val_tn: 20133974.0000 - val_fn: 5582775.0000 - val_precision: 0.9999 - val_recall: 0.0818 - val_accuracy: 0.7870 - val_auc: 0.6095
Epoch 4/100
1280/1280 [==============================] - 2036s 2s/step - loss: 0.5105 - tp: 20225824.0000 - fp: 3816004.0000 - tn: 76833904.0000 - fn: 3981872.0000 - precision: 0.8413 - recall: 0.8355 - accuracy: 0.9256 - auc: 0.9568 - val_loss: 1.
5316 - val_tp: 1395128.0000 - val_fp: 5102.0000 - val_tn: 20164212.0000 - val_fn: 4649960.0000 - val_precision: 0.9964 - val_recall: 0.2308 - val_accuracy: 0.8224 - val_auc: 0.7861
Epoch 5/100
1280/1280 [==============================] - 1961s 2s/step - loss: 0.4310 - tp: 20871492.0000 - fp: 3257518.0000 - tn: 77358976.0000 - fn: 3369640.0000 - precision: 0.8650 - recall: 0.8610 - accuracy: 0.9368 - auc: 0.9655 - val_loss: 0.
6155 - val_tp: 4878880.0000 - val_fp: 1771345.0000 - val_tn: 18827236.0000 - val_fn: 736940.0000 - val_precision: 0.7336 - val_recall: 0.8688 - val_accuracy: 0.9043 - val_auc: 0.9524
Epoch 6/100
1280/1280 [==============================] - 1934s 2s/step - loss: 0.3911 - tp: 20849656.0000 - fp: 2983615.0000 - tn: 77906056.0000 - fn: 3118252.0000 - precision: 0.8748 - recall: 0.8699 - accuracy: 0.9418 - auc: 0.9695 - val_loss: 13
.7751 - val_tp: 5829853.0000 - val_fp: 12729657.0000 - val_tn: 7490981.0000 - val_fn: 163909.0000 - val_precision: 0.3141 - val_recall: 0.9727 - val_accuracy: 0.5081 - val_auc: 0.7568
Epoch 7/100
1280/1280 [==============================] - 1954s 2s/step - loss: 0.3763 - tp: 20945158.0000 - fp: 2869675.0000 - tn: 78062216.0000 - fn: 2980532.0000 - precision: 0.8795 - recall: 0.8754 - accuracy: 0.9442 - auc: 0.9712 - val_loss: 1.
4221 - val_tp: 2763303.0000 - val_fp: 537658.0000 - val_tn: 19870444.0000 - val_fn: 3042995.0000 - val_precision: 0.8371 - val_recall: 0.4759 - val_accuracy: 0.8634 - val_auc: 0.8209
Epoch 8/100
1280/1280 [==============================] - 1959s 2s/step - loss: 0.3565 - tp: 21224852.0000 - fp: 2648995.0000 - tn: 78077912.0000 - fn: 2905816.0000 - precision: 0.8890 - recall: 0.8796 - accuracy: 0.9470 - auc: 0.9734 - val_loss: 4.
1428 - val_tp: 671439.0000 - val_fp: 5.0000 - val_tn: 19926294.0000 - val_fn: 5616654.0000 - val_precision: 1.0000 - val_recall: 0.1068 - val_accuracy: 0.7857 - val_auc: 0.6147
Epoch 9/100
1280/1280 [==============================] - 1959s 2s/step - loss: 0.3532 - tp: 21099540.0000 - fp: 2612022.0000 - tn: 78277824.0000 - fn: 2868197.0000 - precision: 0.8898 - recall: 0.8803 - accuracy: 0.9477 - auc: 0.9736 - val_loss: 0.
4181 - val_tp: 5276605.0000 - val_fp: 1364866.0000 - val_tn: 19070268.0000 - val_fn: 502655.0000 - val_precision: 0.7945 - val_recall: 0.9130 - val_accuracy: 0.9288 - val_auc: 0.9733
Epoch 10/100
1280/1280 [==============================] - 1964s 2s/step - loss: 0.3303 - tp: 21854000.0000 - fp: 2601074.0000 - tn: 77778032.0000 - fn: 2624482.0000 - precision: 0.8936 - recall: 0.8928 - accuracy: 0.9502 - auc: 0.9758 - val_loss: 0.
8186 - val_tp: 4852372.0000 - val_fp: 1259191.0000 - val_tn: 19046032.0000 - val_fn: 1056801.0000 - val_precision: 0.7940 - val_recall: 0.8212 - val_accuracy: 0.9117 - val_auc: 0.9279
Epoch 11/100
1280/1280 [==============================] - 1954s 2s/step - loss: 0.3367 - tp: 21247744.0000 - fp: 2633337.0000 - tn: 78318176.0000 - fn: 2658349.0000 - precision: 0.8897 - recall: 0.8888 - accuracy: 0.9495 - auc: 0.9748 - val_loss: 14
.1746 - val_tp: 5315183.0000 - val_fp: 9292374.0000 - val_tn: 10878559.0000 - val_fn: 728284.0000 - val_precision: 0.3639 - val_recall: 0.8795 - val_accuracy: 0.6177 - val_auc: 0.7350
Epoch 12/100
1280/1280 [==============================] - 1962s 2s/step - loss: 0.3097 - tp: 21383088.0000 - fp: 2165215.0000 - tn: 78747360.0000 - fn: 2561919.0000 - precision: 0.9081 - recall: 0.8930 - accuracy: 0.9549 - auc: 0.9777 - val_loss: 0.
3274 - val_tp: 4925695.0000 - val_fp: 165902.0000 - val_tn: 20004090.0000 - val_fn: 1118702.0000 - val_precision: 0.9674 - val_recall: 0.8149 - val_accuracy: 0.9510 - val_auc: 0.9759
Epoch 13/100
1280/1280 [==============================] - 1969s 2s/step - loss: 0.2912 - tp: 21857506.0000 - fp: 2213488.0000 - tn: 78446488.0000 - fn: 2340152.0000 - precision: 0.9080 - recall: 0.9033 - accuracy: 0.9566 - auc: 0.9793 - val_loss: 0.
4428 - val_tp: 4338892.0000 - val_fp: 35099.0000 - val_tn: 20239610.0000 - val_fn: 1600799.0000 - val_precision: 0.9920 - val_recall: 0.7305 - val_accuracy: 0.9376 - val_auc: 0.9713
Epoch 14/100
1280/1280 [==============================] - 1957s 2s/step - loss: 0.2883 - tp: 21882504.0000 - fp: 2239269.0000 - tn: 78431648.0000 - fn: 2304140.0000 - precision: 0.9072 - recall: 0.9047 - accuracy: 0.9567 - auc: 0.9796 - val_loss: 0.
2957 - val_tp: 5289461.0000 - val_fp: 449961.0000 - val_tn: 19835942.0000 - val_fn: 639032.0000 - val_precision: 0.9216 - val_recall: 0.8922 - val_accuracy: 0.9585 - val_auc: 0.9820
Epoch 15/100
1280/1280 [==============================] - 2044s 2s/step - loss: 0.2825 - tp: 21866824.0000 - fp: 2177254.0000 - tn: 78541248.0000 - fn: 2272316.0000 - precision: 0.9094 - recall: 0.9059 - accuracy: 0.9576 - auc: 0.9802 - val_loss: 0.
3209 - val_tp: 5233737.0000 - val_fp: 520949.0000 - val_tn: 19784424.0000 - val_fn: 675290.0000 - val_precision: 0.9095 - val_recall: 0.8857 - val_accuracy: 0.9544 - val_auc: 0.9800
Epoch 16/100
1280/1280 [==============================] - 1957s 2s/step - loss: 0.2769 - tp: 21749612.0000 - fp: 2170557.0000 - tn: 78722872.0000 - fn: 2214598.0000 - precision: 0.9093 - recall: 0.9076 - accuracy: 0.9582 - auc: 0.9802 - val_loss: 0.
3247 - val_tp: 5660332.0000 - val_fp: 828589.0000 - val_tn: 19303372.0000 - val_fn: 422111.0000 - val_precision: 0.8723 - val_recall: 0.9306 - val_accuracy: 0.9523 - val_auc: 0.9859
Epoch 17/100
1280/1280 [==============================] - 1949s 2s/step - loss: 0.2774 - tp: 21816756.0000 - fp: 2164372.0000 - tn: 78635128.0000 - fn: 2241237.0000 - precision: 0.9097 - recall: 0.9068 - accuracy: 0.9580 - auc: 0.9806 - val_loss: 0.
3148 - val_tp: 4953313.0000 - val_fp: 118813.0000 - val_tn: 20032204.0000 - val_fn: 1110073.0000 - val_precision: 0.9766 - val_recall: 0.8169 - val_accuracy: 0.9531 - val_auc: 0.9788
Epoch 18/100
1280/1280 [==============================] - 1944s 2s/step - loss: 0.2725 - tp: 21678578.0000 - fp: 2114671.0000 - tn: 78865952.0000 - fn: 2198422.0000 - precision: 0.9111 - recall: 0.9079 - accuracy: 0.9589 - auc: 0.9807 - val_loss: 0.
3363 - val_tp: 4425577.0000 - val_fp: 55980.0000 - val_tn: 20363536.0000 - val_fn: 1369309.0000 - val_precision: 0.9875 - val_recall: 0.7637 - val_accuracy: 0.9456 - val_auc: 0.9739
Epoch 19/100
1280/1280 [==============================] - 1947s 2s/step - loss: 0.2757 - tp: 22040606.0000 - fp: 2177952.0000 - tn: 78420008.0000 - fn: 2218997.0000 - precision: 0.9101 - recall: 0.9085 - accuracy: 0.9581 - auc: 0.9805 - val_loss: 0.
3061 - val_tp: 5376668.0000 - val_fp: 295874.0000 - val_tn: 19715332.0000 - val_fn: 826533.0000 - val_precision: 0.9478 - val_recall: 0.8668 - val_accuracy: 0.9572 - val_auc: 0.9796
Epoch 20/100
1280/1280 [==============================] - 1953s 2s/step - loss: 0.2758 - tp: 21804466.0000 - fp: 2129789.0000 - tn: 78704432.0000 - fn: 2218904.0000 - precision: 0.9110 - recall: 0.9076 - accuracy: 0.9585 - auc: 0.9805 - val_loss: 0.
3864 - val_tp: 4404185.0000 - val_fp: 40930.0000 - val_tn: 20226700.0000 - val_fn: 1542578.0000 - val_precision: 0.9908 - val_recall: 0.7406 - val_accuracy: 0.9396 - val_auc: 0.9670
Epoch 21/100
1280/1280 [==============================] - 1956s 2s/step - loss: 0.2715 - tp: 21833378.0000 - fp: 2128388.0000 - tn: 78697688.0000 - fn: 2198099.0000 - precision: 0.9112 - recall: 0.9085 - accuracy: 0.9587 - auc: 0.9812 - val_loss: 0.
3215 - val_tp: 4933923.0000 - val_fp: 100047.0000 - val_tn: 20044032.0000 - val_fn: 1136392.0000 - val_precision: 0.9801 - val_recall: 0.8128 - val_accuracy: 0.9528 - val_auc: 0.9780
Epoch 22/100
1280/1280 [==============================] - 1957s 2s/step - loss: 0.2685 - tp: 22131982.0000 - fp: 2123964.0000 - tn: 78455072.0000 - fn: 2146571.0000 - precision: 0.9124 - recall: 0.9116 - accuracy: 0.9593 - auc: 0.9811 - val_loss: 0.
2843 - val_tp: 5065657.0000 - val_fp: 196579.0000 - val_tn: 20093300.0000 - val_fn: 858874.0000 - val_precision: 0.9626 - val_recall: 0.8550 - val_accuracy: 0.9597 - val_auc: 0.9806
Epoch 23/100
1280/1280 [==============================] - 1974s 2s/step - loss: 0.2667 - tp: 21803614.0000 - fp: 2090465.0000 - tn: 78828520.0000 - fn: 2134989.0000 - precision: 0.9125 - recall: 0.9108 - accuracy: 0.9597 - auc: 0.9811 - val_loss: 0.
3048 - val_tp: 5024525.0000 - val_fp: 147570.0000 - val_tn: 20040236.0000 - val_fn: 1002069.0000 - val_precision: 0.9715 - val_recall: 0.8337 - val_accuracy: 0.9561 - val_auc: 0.9796
Epoch 24/100
1280/1280 [==============================] - 1969s 2s/step - loss: 0.2636 - tp: 21975042.0000 - fp: 2062614.0000 - tn: 78687080.0000 - fn: 2132792.0000 - precision: 0.9142 - recall: 0.9115 - accuracy: 0.9600 - auc: 0.9817 - val_loss: 0.
2889 - val_tp: 5170852.0000 - val_fp: 206375.0000 - val_tn: 19954888.0000 - val_fn: 882289.0000 - val_precision: 0.9616 - val_recall: 0.8542 - val_accuracy: 0.9585 - val_auc: 0.9811
Epoch 25/100
1280/1280 [==============================] - 1966s 2s/step - loss: 0.2654 - tp: 21864694.0000 - fp: 2102611.0000 - tn: 78755144.0000 - fn: 2135188.0000 - precision: 0.9123 - recall: 0.9110 - accuracy: 0.9596 - auc: 0.9815 - val_loss: 0.
2742 - val_tp: 5232587.0000 - val_fp: 220712.0000 - val_tn: 19933466.0000 - val_fn: 827639.0000 - val_precision: 0.9595 - val_recall: 0.8634 - val_accuracy: 0.9600 - val_auc: 0.9812
Epoch 26/100
1280/1280 [==============================] - 1968s 2s/step - loss: 0.2665 - tp: 21870048.0000 - fp: 2112301.0000 - tn: 78741728.0000 - fn: 2133559.0000 - precision: 0.9119 - recall: 0.9111 - accuracy: 0.9595 - auc: 0.9816 - val_loss: 0.
3169 - val_tp: 4986570.0000 - val_fp: 130988.0000 - val_tn: 20053542.0000 - val_fn: 1043297.0000 - val_precision: 0.9744 - val_recall: 0.8270 - val_accuracy: 0.9552 - val_auc: 0.9802
Epoch 27/100
1280/1280 [==============================] - 1952s 2s/step - loss: 0.2678 - tp: 21893164.0000 - fp: 2085167.0000 - tn: 78709264.0000 - fn: 2170034.0000 - precision: 0.9130 - recall: 0.9098 - accuracy: 0.9594 - auc: 0.9813 - val_loss: 0.
2900 - val_tp: 5054986.0000 - val_fp: 200466.0000 - val_tn: 20084900.0000 - val_fn: 874040.0000 - val_precision: 0.9619 - val_recall: 0.8526 - val_accuracy: 0.9590 - val_auc: 0.9804
Epoch 28/100
1280/1280 [==============================] - 1958s 2s/step - loss: 0.2650 - tp: 22049098.0000 - fp: 2106978.0000 - tn: 78571512.0000 - fn: 2130046.0000 - precision: 0.9128 - recall: 0.9119 - accuracy: 0.9596 - auc: 0.9817 - val_loss: 0.
2835 - val_tp: 4962208.0000 - val_fp: 180333.0000 - val_tn: 20181980.0000 - val_fn: 889878.0000 - val_precision: 0.9649 - val_recall: 0.8479 - val_accuracy: 0.9592 - val_auc: 0.9790
Epoch 29/100
1280/1280 [==============================] - 1966s 2s/step - loss: 0.2624 - tp: 21985904.0000 - fp: 2088019.0000 - tn: 78675856.0000 - fn: 2107816.0000 - precision: 0.9133 - recall: 0.9125 - accuracy: 0.9600 - auc: 0.9818 - val_loss: 0.
2769 - val_tp: 5178520.0000 - val_fp: 252398.0000 - val_tn: 20002776.0000 - val_fn: 780712.0000 - val_precision: 0.9535 - val_recall: 0.8690 - val_accuracy: 0.9606 - val_auc: 0.9797
Epoch 30/100
1280/1280 [==============================] - 1938s 2s/step - loss: 0.2616 - tp: 21893676.0000 - fp: 2096355.0000 - tn: 78765992.0000 - fn: 2101589.0000 - precision: 0.9126 - recall: 0.9124 - accuracy: 0.9600 - auc: 0.9820 - val_loss: 0.
2931 - val_tp: 5091699.0000 - val_fp: 180837.0000 - val_tn: 20020972.0000 - val_fn: 920891.0000 - val_precision: 0.9657 - val_recall: 0.8468 - val_accuracy: 0.9580 - val_auc: 0.9803
Epoch 31/100
1280/1280 [==============================] - 1932s 2s/step - loss: 0.2629 - tp: 21900190.0000 - fp: 2102823.0000 - tn: 78738360.0000 - fn: 2116254.0000 - precision: 0.9124 - recall: 0.9119 - accuracy: 0.9598 - auc: 0.9818 - val_loss: 0.
2833 - val_tp: 5068565.0000 - val_fp: 190985.0000 - val_tn: 20068752.0000 - val_fn: 886105.0000 - val_precision: 0.9637 - val_recall: 0.8512 - val_accuracy: 0.9589 - val_auc: 0.9797
Epoch 32/100
1280/1280 [==============================] - 1936s 2s/step - loss: 0.2656 - tp: 21855648.0000 - fp: 2070417.0000 - tn: 78781648.0000 - fn: 2149897.0000 - precision: 0.9135 - recall: 0.9104 - accuracy: 0.9598 - auc: 0.9816 - val_loss: 0.
3086 - val_tp: 5081221.0000 - val_fp: 145540.0000 - val_tn: 20010884.0000 - val_fn: 976755.0000 - val_precision: 0.9722 - val_recall: 0.8388 - val_accuracy: 0.9572 - val_auc: 0.9796
Epoch 33/100
1280/1280 [==============================] - 1896s 1s/step - loss: 0.2601 - tp: 21847706.0000 - fp: 2017783.0000 - tn: 78866344.0000 - fn: 2125796.0000 - precision: 0.9155 - recall: 0.9113 - accuracy: 0.9605 - auc: 0.9820 - val_loss: 0.
3225 - val_tp: 5136058.0000 - val_fp: 129931.0000 - val_tn: 19900672.0000 - val_fn: 1047735.0000 - val_precision: 0.9753 - val_recall: 0.8306 - val_accuracy: 0.9551 - val_auc: 0.9803
Epoch 34/100
1280/1280 [==============================] - 1883s 1s/step - loss: 0.2647 - tp: 21866856.0000 - fp: 2063199.0000 - tn: 78792768.0000 - fn: 2134767.0000 - precision: 0.9138 - recall: 0.9111 - accuracy: 0.9600 - auc: 0.9815 - val_loss: 0.
2877 - val_tp: 5081384.0000 - val_fp: 183837.0000 - val_tn: 20092414.0000 - val_fn: 856762.0000 - val_precision: 0.9651 - val_recall: 0.8557 - val_accuracy: 0.9603 - val_auc: 0.9819
Epoch 35/100
1280/1280 [==============================] - 1909s 1s/step - loss: 0.2644 - tp: 21793352.0000 - fp: 2043704.0000 - tn: 78858192.0000 - fn: 2162348.0000 - precision: 0.9143 - recall: 0.9097 - accuracy: 0.9599 - auc: 0.9813 - val_loss: 0.
2804 - val_tp: 5229124.0000 - val_fp: 199996.0000 - val_tn: 19913378.0000 - val_fn: 871912.0000 - val_precision: 0.9632 - val_recall: 0.8571 - val_accuracy: 0.9591 - val_auc: 0.9811
Epoch 36/100
1280/1280 [==============================] - 1926s 2s/step - loss: 0.2624 - tp: 21694132.0000 - fp: 2078119.0000 - tn: 78982728.0000 - fn: 2102522.0000 - precision: 0.9126 - recall: 0.9116 - accuracy: 0.9601 - auc: 0.9816 - val_loss: 0.
2822 - val_tp: 5091321.0000 - val_fp: 163063.0000 - val_tn: 20040276.0000 - val_fn: 919745.0000 - val_precision: 0.9690 - val_recall: 0.8470 - val_accuracy: 0.9587 - val_auc: 0.9807
Epoch 37/100
1280/1280 [==============================] - 1904s 1s/step - loss: 0.2629 - tp: 21760348.0000 - fp: 2034859.0000 - tn: 78921984.0000 - fn: 2140485.0000 - precision: 0.9145 - recall: 0.9104 - accuracy: 0.9602 - auc: 0.9816 - val_loss: 0.
3176 - val_tp: 5181435.0000 - val_fp: 158434.0000 - val_tn: 19879032.0000 - val_fn: 995505.0000 - val_precision: 0.9703 - val_recall: 0.8388 - val_accuracy: 0.9560 - val_auc: 0.9790
Epoch 38/100
1280/1280 [==============================] - 1894s 1s/step - loss: 0.2660 - tp: 21873788.0000 - fp: 2074315.0000 - tn: 78773216.0000 - fn: 2136309.0000 - precision: 0.9134 - recall: 0.9110 - accuracy: 0.9598 - auc: 0.9814 - val_loss: 0.
2881 - val_tp: 4927277.0000 - val_fp: 173887.0000 - val_tn: 20220536.0000 - val_fn: 892705.0000 - val_precision: 0.9659 - val_recall: 0.8466 - val_accuracy: 0.9593 - val_auc: 0.9789
Epoch 39/100
1280/1280 [==============================] - 1899s 1s/step - loss: 0.2622 - tp: 21838440.0000 - fp: 2067724.0000 - tn: 78836336.0000 - fn: 2115209.0000 - precision: 0.9135 - recall: 0.9117 - accuracy: 0.9601 - auc: 0.9818 - val_loss: 0.
2978 - val_tp: 4918815.0000 - val_fp: 143772.0000 - val_tn: 20190378.0000 - val_fn: 961431.0000 - val_precision: 0.9716 - val_recall: 0.8365 - val_accuracy: 0.9578 - val_auc: 0.9807
Epoch 40/100
1280/1280 [==============================] - 1888s 1s/step - loss: 0.2648 - tp: 21872584.0000 - fp: 2050789.0000 - tn: 78773392.0000 - fn: 2160846.0000 - precision: 0.9143 - recall: 0.9101 - accuracy: 0.9598 - auc: 0.9816 - val_loss: 0.
2909 - val_tp: 5274649.0000 - val_fp: 191573.0000 - val_tn: 19822700.0000 - val_fn: 925468.0000 - val_precision: 0.9650 - val_recall: 0.8507 - val_accuracy: 0.9574 - val_auc: 0.9799
Epoch 41/100
1280/1280 [==============================] - 1910s 1s/step - loss: 0.2648 - tp: 21696836.0000 - fp: 2093251.0000 - tn: 78944688.0000 - fn: 2122855.0000 - precision: 0.9120 - recall: 0.9109 - accuracy: 0.9598 - auc: 0.9814 - val_loss: 0.
2811 - val_tp: 5266549.0000 - val_fp: 194645.0000 - val_tn: 19876088.0000 - val_fn: 877120.0000 - val_precision: 0.9644 - val_recall: 0.8572 - val_accuracy: 0.9591 - val_auc: 0.9805
Epoch 42/100
1280/1280 [==============================] - 1912s 1s/step - loss: 0.2653 - tp: 21816640.0000 - fp: 2044165.0000 - tn: 78832952.0000 - fn: 2163912.0000 - precision: 0.9143 - recall: 0.9098 - accuracy: 0.9599 - auc: 0.9813 - val_loss: 0.
2983 - val_tp: 4907063.0000 - val_fp: 162204.0000 - val_tn: 20208222.0000 - val_fn: 936914.0000 - val_precision: 0.9680 - val_recall: 0.8397 - val_accuracy: 0.9581 - val_auc: 0.9799
Epoch 43/100
1280/1280 [==============================] - 1898s 1s/step - loss: 0.2646 - tp: 22222472.0000 - fp: 2064761.0000 - tn: 78412904.0000 - fn: 2157526.0000 - precision: 0.9150 - recall: 0.9115 - accuracy: 0.9597 - auc: 0.9817 - val_loss: 0.
2900 - val_tp: 5266505.0000 - val_fp: 189111.0000 - val_tn: 19834046.0000 - val_fn: 924743.0000 - val_precision: 0.9653 - val_recall: 0.8506 - val_accuracy: 0.9575 - val_auc: 0.9807
Epoch 44/100
1280/1280 [==============================] - 1937s 2s/step - loss: 0.2625 - tp: 21883992.0000 - fp: 2040394.0000 - tn: 78792808.0000 - fn: 2140429.0000 - precision: 0.9147 - recall: 0.9109 - accuracy: 0.9601 - auc: 0.9817 - val_loss: 0.
3128 - val_tp: 4872292.0000 - val_fp: 140248.0000 - val_tn: 20261372.0000 - val_fn: 940479.0000 - val_precision: 0.9720 - val_recall: 0.8382 - val_accuracy: 0.9588 - val_auc: 0.9805
Epoch 45/100
1280/1280 [==============================] - 1931s 2s/step - loss: 0.2641 - tp: 21804156.0000 - fp: 2047906.0000 - tn: 78877472.0000 - fn: 2128092.0000 - precision: 0.9141 - recall: 0.9111 - accuracy: 0.9602 - auc: 0.9814 - val_loss: 0.
2983 - val_tp: 5262537.0000 - val_fp: 177583.0000 - val_tn: 19827930.0000 - val_fn: 946346.0000 - val_precision: 0.9674 - val_recall: 0.8476 - val_accuracy: 0.9571 - val_auc: 0.9792
Epoch 46/100
1280/1280 [==============================] - 1941s 2s/step - loss: 0.2640 - tp: 21923374.0000 - fp: 2080069.0000 - tn: 78717264.0000 - fn: 2136918.0000 - precision: 0.9133 - recall: 0.9112 - accuracy: 0.9598 - auc: 0.9816 - val_loss: 0.
2822 - val_tp: 5087710.0000 - val_fp: 182249.0000 - val_tn: 20063030.0000 - val_fn: 881411.0000 - val_precision: 0.9654 - val_recall: 0.8523 - val_accuracy: 0.9594 - val_auc: 0.9803
Epoch 47/100
1280/1280 [==============================] - 1944s 2s/step - loss: 0.2620 - tp: 21961636.0000 - fp: 2068701.0000 - tn: 78701112.0000 - fn: 2126225.0000 - precision: 0.9139 - recall: 0.9117 - accuracy: 0.9600 - auc: 0.9818 - val_loss: 0.
2982 - val_tp: 5201830.0000 - val_fp: 170225.0000 - val_tn: 19876590.0000 - val_fn: 965741.0000 - val_precision: 0.9683 - val_recall: 0.8434 - val_accuracy: 0.9567 - val_auc: 0.9799
Epoch 48/100
1280/1280 [==============================] - 1948s 2s/step - loss: 0.2631 - tp: 21971392.0000 - fp: 2056324.0000 - tn: 78695536.0000 - fn: 2134300.0000 - precision: 0.9144 - recall: 0.9115 - accuracy: 0.9600 - auc: 0.9818 - val_loss: 0.
2906 - val_tp: 5083102.0000 - val_fp: 170364.0000 - val_tn: 20046178.0000 - val_fn: 914747.0000 - val_precision: 0.9676 - val_recall: 0.8475 - val_accuracy: 0.9586 - val_auc: 0.9792
Epoch 49/100
1280/1280 [==============================] - 1937s 2s/step - loss: 0.2629 - tp: 21911328.0000 - fp: 2071634.0000 - tn: 78755200.0000 - fn: 2119426.0000 - precision: 0.9136 - recall: 0.9118 - accuracy: 0.9600 - auc: 0.9818 - val_loss: 0.
2839 - val_tp: 5050322.0000 - val_fp: 183661.0000 - val_tn: 20111232.0000 - val_fn: 869193.0000 - val_precision: 0.9649 - val_recall: 0.8532 - val_accuracy: 0.9598 - val_auc: 0.9806
Epoch 50/100
1280/1280 [==============================] - 1964s 2s/step - loss: 0.2634 - tp: 21943356.0000 - fp: 2042601.0000 - tn: 78728936.0000 - fn: 2142696.0000 - precision: 0.9148 - recall: 0.9110 - accuracy: 0.9601 - auc: 0.9816 - val_loss: 0.
2906 - val_tp: 5176414.0000 - val_fp: 195927.0000 - val_tn: 19950280.0000 - val_fn: 891781.0000 - val_precision: 0.9635 - val_recall: 0.8530 - val_accuracy: 0.9585 - val_auc: 0.9800
Epoch 51/100
1280/1280 [==============================] - 1949s 2s/step - loss: 0.2619 - tp: 21905776.0000 - fp: 2054187.0000 - tn: 78790400.0000 - fn: 2107240.0000 - precision: 0.9143 - recall: 0.9122 - accuracy: 0.9603 - auc: 0.9818 - val_loss: 0.
2845 - val_tp: 5128164.0000 - val_fp: 168438.0000 - val_tn: 19986128.0000 - val_fn: 931667.0000 - val_precision: 0.9682 - val_recall: 0.8463 - val_accuracy: 0.9580 - val_auc: 0.9810
Epoch 52/100
1280/1280 [==============================] - 1959s 2s/step - loss: 0.2638 - tp: 21870924.0000 - fp: 2087711.0000 - tn: 78782424.0000 - fn: 2116607.0000 - precision: 0.9129 - recall: 0.9118 - accuracy: 0.9599 - auc: 0.9817 - val_loss: 0.
3062 - val_tp: 5273162.0000 - val_fp: 169306.0000 - val_tn: 19832368.0000 - val_fn: 939566.0000 - val_precision: 0.9689 - val_recall: 0.8488 - val_accuracy: 0.9577 - val_auc: 0.9815
Epoch 53/100
1280/1280 [==============================] - 1958s 2s/step - loss: 0.2648 - tp: 21947556.0000 - fp: 2065779.0000 - tn: 78702432.0000 - fn: 2141837.0000 - precision: 0.9140 - recall: 0.9111 - accuracy: 0.9599 - auc: 0.9816 - val_loss: 0.
2945 - val_tp: 5204859.0000 - val_fp: 153095.0000 - val_tn: 19890892.0000 - val_fn: 965553.0000 - val_precision: 0.9714 - val_recall: 0.8435 - val_accuracy: 0.9573 - val_auc: 0.9800
Epoch 54/100
1280/1280 [==============================] - 1937s 2s/step - loss: 0.2635 - tp: 21905812.0000 - fp: 2049643.0000 - tn: 78761584.0000 - fn: 2140551.0000 - precision: 0.9144 - recall: 0.9110 - accuracy: 0.9600 - auc: 0.9816 - val_loss: 0.
3064 - val_tp: 5062076.0000 - val_fp: 149992.0000 - val_tn: 20054216.0000 - val_fn: 948115.0000 - val_precision: 0.9712 - val_recall: 0.8422 - val_accuracy: 0.9581 - val_auc: 0.9815
Epoch 55/100
1280/1280 [==============================] - 1958s 2s/step - loss: 0.2653 - tp: 22046804.0000 - fp: 2122362.0000 - tn: 78569416.0000 - fn: 2119021.0000 - precision: 0.9122 - recall: 0.9123 - accuracy: 0.9596 - auc: 0.9818 - val_loss: 0.
2913 - val_tp: 5030327.0000 - val_fp: 162722.0000 - val_tn: 20130282.0000 - val_fn: 891077.0000 - val_precision: 0.9687 - val_recall: 0.8495 - val_accuracy: 0.9598 - val_auc: 0.9812
Epoch 56/100
1280/1280 [==============================] - 1946s 2s/step - loss: 0.2644 - tp: 21869356.0000 - fp: 2060246.0000 - tn: 78783952.0000 - fn: 2144064.0000 - precision: 0.9139 - recall: 0.9107 - accuracy: 0.9599 - auc: 0.9814 - val_loss: 0.
2816 - val_tp: 5105422.0000 - val_fp: 167571.0000 - val_tn: 20081292.0000 - val_fn: 860105.0000 - val_precision: 0.9682 - val_recall: 0.8558 - val_accuracy: 0.9608 - val_auc: 0.9805
Epoch 57/100
1280/1280 [==============================] - 1921s 2s/step - loss: 0.2642 - tp: 22001298.0000 - fp: 2070341.0000 - tn: 78641616.0000 - fn: 2144355.0000 - precision: 0.9140 - recall: 0.9112 - accuracy: 0.9598 - auc: 0.9816 - val_loss: 0.
3304 - val_tp: 4955272.0000 - val_fp: 133108.0000 - val_tn: 20129192.0000 - val_fn: 996829.0000 - val_precision: 0.9738 - val_recall: 0.8325 - val_accuracy: 0.9569 - val_auc: 0.9802
Epoch 58/100
1280/1280 [==============================] - 1919s 1s/step - loss: 0.2644 - tp: 21756178.0000 - fp: 2097986.0000 - tn: 78861704.0000 - fn: 2141728.0000 - precision: 0.9120 - recall: 0.9104 - accuracy: 0.9596 - auc: 0.9815 - val_loss: 0.
2800 - val_tp: 5173984.0000 - val_fp: 172737.0000 - val_tn: 19995672.0000 - val_fn: 872006.0000 - val_precision: 0.9677 - val_recall: 0.8558 - val_accuracy: 0.9601 - val_auc: 0.9811
Epoch 59/100
1280/1280 [==============================] - 1937s 2s/step - loss: 0.2639 - tp: 21965856.0000 - fp: 2104414.0000 - tn: 78670312.0000 - fn: 2117059.0000 - precision: 0.9126 - recall: 0.9121 - accuracy: 0.9597 - auc: 0.9817 - val_loss: 0.
2969 - val_tp: 5288252.0000 - val_fp: 187540.0000 - val_tn: 19831520.0000 - val_fn: 907092.0000 - val_precision: 0.9658 - val_recall: 0.8536 - val_accuracy: 0.9582 - val_auc: 0.9792
Epoch 60/100
1280/1280 [==============================] - 1942s 2s/step - loss: 0.2652 - tp: 21972316.0000 - fp: 2103459.0000 - tn: 78666280.0000 - fn: 2115554.0000 - precision: 0.9126 - recall: 0.9122 - accuracy: 0.9598 - auc: 0.9817 - val_loss: 0.
2818 - val_tp: 5166245.0000 - val_fp: 190846.0000 - val_tn: 19971494.0000 - val_fn: 885813.0000 - val_precision: 0.9644 - val_recall: 0.8536 - val_accuracy: 0.9589 - val_auc: 0.9810
Epoch 61/100
1280/1280 [==============================] - 1925s 2s/step - loss: 0.2651 - tp: 21878652.0000 - fp: 2066501.0000 - tn: 78782176.0000 - fn: 2130193.0000 - precision: 0.9137 - recall: 0.9113 - accuracy: 0.9600 - auc: 0.9814 - val_loss: 0.
2793 - val_tp: 5085499.0000 - val_fp: 194718.0000 - val_tn: 20060124.0000 - val_fn: 874059.0000 - val_precision: 0.9631 - val_recall: 0.8533 - val_accuracy: 0.9592 - val_auc: 0.9805
Epoch 62/100
1280/1280 [==============================] - 1922s 2s/step - loss: 0.2645 - tp: 21871498.0000 - fp: 2095977.0000 - tn: 78758960.0000 - fn: 2131121.0000 - precision: 0.9125 - recall: 0.9112 - accuracy: 0.9597 - auc: 0.9816 - val_loss: 0.
3215 - val_tp: 5111082.0000 - val_fp: 129336.0000 - val_tn: 19952116.0000 - val_fn: 1021864.0000 - val_precision: 0.9753 - val_recall: 0.8334 - val_accuracy: 0.9561 - val_auc: 0.9808
Epoch 63/100
1280/1280 [==============================] - 1938s 2s/step - loss: 0.2653 - tp: 21667542.0000 - fp: 2040165.0000 - tn: 78980168.0000 - fn: 2169717.0000 - precision: 0.9139 - recall: 0.9090 - accuracy: 0.9599 - auc: 0.9811 - val_loss: 0.
2935 - val_tp: 5105651.0000 - val_fp: 157582.0000 - val_tn: 19997984.0000 - val_fn: 953187.0000 - val_precision: 0.9701 - val_recall: 0.8427 - val_accuracy: 0.9576 - val_auc: 0.9795
Epoch 64/100
1280/1280 [==============================] - 1922s 2s/step - loss: 0.2621 - tp: 21566260.0000 - fp: 2041653.0000 - tn: 79126792.0000 - fn: 2122825.0000 - precision: 0.9135 - recall: 0.9104 - accuracy: 0.9603 - auc: 0.9816 - val_loss: 0.
2868 - val_tp: 5295960.0000 - val_fp: 181316.0000 - val_tn: 19817780.0000 - val_fn: 919349.0000 - val_precision: 0.9669 - val_recall: 0.8521 - val_accuracy: 0.9580 - val_auc: 0.9802
Epoch 65/100
1280/1280 [==============================] - 1930s 2s/step - loss: 0.2618 - tp: 21803380.0000 - fp: 2046884.0000 - tn: 78875232.0000 - fn: 2132114.0000 - precision: 0.9142 - recall: 0.9109 - accuracy: 0.9601 - auc: 0.9818 - val_loss: 0.
2655 - val_tp: 4998172.0000 - val_fp: 220002.0000 - val_tn: 20208396.0000 - val_fn: 787827.0000 - val_precision: 0.9578 - val_recall: 0.8638 - val_accuracy: 0.9616 - val_auc: 0.9810
Epoch 66/100
1280/1280 [==============================] - 1940s 2s/step - loss: 0.2621 - tp: 21715956.0000 - fp: 2060856.0000 - tn: 78976016.0000 - fn: 2104835.0000 - precision: 0.9133 - recall: 0.9116 - accuracy: 0.9603 - auc: 0.9817 - val_loss: 0.
2934 - val_tp: 4858098.0000 - val_fp: 162111.0000 - val_tn: 20270832.0000 - val_fn: 923350.0000 - val_precision: 0.9677 - val_recall: 0.8403 - val_accuracy: 0.9586 - val_auc: 0.9797
Epoch 67/100
1280/1280 [==============================] - 1936s 2s/step - loss: 0.2641 - tp: 22101508.0000 - fp: 2096796.0000 - tn: 78514056.0000 - fn: 2145167.0000 - precision: 0.9133 - recall: 0.9115 - accuracy: 0.9595 - auc: 0.9819 - val_loss: 0.
2935 - val_tp: 5311098.0000 - val_fp: 189758.0000 - val_tn: 19779840.0000 - val_fn: 933704.0000 - val_precision: 0.9655 - val_recall: 0.8505 - val_accuracy: 0.9571 - val_auc: 0.9804
Epoch 68/100
1280/1280 [==============================] - 1929s 2s/step - loss: 0.2639 - tp: 21973892.0000 - fp: 2058296.0000 - tn: 78690816.0000 - fn: 2134585.0000 - precision: 0.9144 - recall: 0.9115 - accuracy: 0.9600 - auc: 0.9816 - val_loss: 0.
3021 - val_tp: 5393303.0000 - val_fp: 200762.0000 - val_tn: 19679066.0000 - val_fn: 941275.0000 - val_precision: 0.9641 - val_recall: 0.8514 - val_accuracy: 0.9564 - val_auc: 0.9795
Epoch 69/100
1280/1280 [==============================] - 1928s 2s/step - loss: 0.2632 - tp: 21797492.0000 - fp: 2054212.0000 - tn: 78874840.0000 - fn: 2131042.0000 - precision: 0.9139 - recall: 0.9109 - accuracy: 0.9601 - auc: 0.9816 - val_loss: 0.
2970 - val_tp: 5102175.0000 - val_fp: 191344.0000 - val_tn: 19995848.0000 - val_fn: 925037.0000 - val_precision: 0.9639 - val_recall: 0.8465 - val_accuracy: 0.9574 - val_auc: 0.9797
Epoch 70/100
1280/1280 [==============================] - 1936s 2s/step - loss: 0.2629 - tp: 21925510.0000 - fp: 2063262.0000 - tn: 78733408.0000 - fn: 2135445.0000 - precision: 0.9140 - recall: 0.9112 - accuracy: 0.9600 - auc: 0.9818 - val_loss: 0.
2835 - val_tp: 5162856.0000 - val_fp: 228043.0000 - val_tn: 19969488.0000 - val_fn: 854014.0000 - val_precision: 0.9577 - val_recall: 0.8581 - val_accuracy: 0.9587 - val_auc: 0.9802
Epoch 71/100
1280/1280 [==============================] - 1930s 2s/step - loss: 0.2606 - tp: 21986884.0000 - fp: 2118880.0000 - tn: 78684536.0000 - fn: 2067241.0000 - precision: 0.9121 - recall: 0.9141 - accuracy: 0.9601 - auc: 0.9822 - val_loss: 0.
2809 - val_tp: 5176839.0000 - val_fp: 235191.0000 - val_tn: 19977128.0000 - val_fn: 825244.0000 - val_precision: 0.9565 - val_recall: 0.8625 - val_accuracy: 0.9595 - val_auc: 0.9812
Epoch 72/100
1280/1280 [==============================] - 1952s 2s/step - loss: 0.2618 - tp: 22038310.0000 - fp: 2056830.0000 - tn: 78655040.0000 - fn: 2107382.0000 - precision: 0.9146 - recall: 0.9127 - accuracy: 0.9603 - auc: 0.9820 - val_loss: 0.
2895 - val_tp: 5367415.0000 - val_fp: 210844.0000 - val_tn: 19760872.0000 - val_fn: 875261.0000 - val_precision: 0.9622 - val_recall: 0.8598 - val_accuracy: 0.9586 - val_auc: 0.9801
Epoch 73/100
1280/1280 [==============================] - 1931s 2s/step - loss: 0.2642 - tp: 22040244.0000 - fp: 2079148.0000 - tn: 78597176.0000 - fn: 2140976.0000 - precision: 0.9138 - recall: 0.9115 - accuracy: 0.9598 - auc: 0.9817 - val_loss: 0.
3093 - val_tp: 5018548.0000 - val_fp: 149682.0000 - val_tn: 20096504.0000 - val_fn: 949668.0000 - val_precision: 0.9710 - val_recall: 0.8409 - val_accuracy: 0.9581 - val_auc: 0.9804
Epoch 74/100
1280/1280 [==============================] - 1891s 1s/step - loss: 0.2648 - tp: 21823536.0000 - fp: 2026553.0000 - tn: 78842960.0000 - fn: 2164550.0000 - precision: 0.9150 - recall: 0.9098 - accuracy: 0.9600 - auc: 0.9815 - val_loss: 0.
2941 - val_tp: 5138005.0000 - val_fp: 183811.0000 - val_tn: 19970134.0000 - val_fn: 922446.0000 - val_precision: 0.9655 - val_recall: 0.8478 - val_accuracy: 0.9578 - val_auc: 0.9795
Epoch 75/100
1280/1280 [==============================] - 1896s 1s/step - loss: 0.2599 - tp: 21797956.0000 - fp: 2051529.0000 - tn: 78902288.0000 - fn: 2105822.0000 - precision: 0.9140 - recall: 0.9119 - accuracy: 0.9604 - auc: 0.9820 - val_loss: 0.
2866 - val_tp: 5237317.0000 - val_fp: 179478.0000 - val_tn: 19883768.0000 - val_fn: 913840.0000 - val_precision: 0.9669 - val_recall: 0.8514 - val_accuracy: 0.9583 - val_auc: 0.9806
Epoch 76/100
1280/1280 [==============================] - 1920s 2s/step - loss: 0.2644 - tp: 21883500.0000 - fp: 2043967.0000 - tn: 78765848.0000 - fn: 2164260.0000 - precision: 0.9146 - recall: 0.9100 - accuracy: 0.9599 - auc: 0.9815 - val_loss: 0.
2969 - val_tp: 4856771.0000 - val_fp: 158534.0000 - val_tn: 20318780.0000 - val_fn: 880306.0000 - val_precision: 0.9684 - val_recall: 0.8466 - val_accuracy: 0.9604 - val_auc: 0.9810
Epoch 77/100
1280/1280 [==============================] - 1950s 2s/step - loss: 0.2649 - tp: 21977528.0000 - fp: 2098101.0000 - tn: 78653504.0000 - fn: 2128494.0000 - precision: 0.9129 - recall: 0.9117 - accuracy: 0.9597 - auc: 0.9816 - val_loss: 0.
2794 - val_tp: 5248088.0000 - val_fp: 201804.0000 - val_tn: 19923706.0000 - val_fn: 840800.0000 - val_precision: 0.9630 - val_recall: 0.8619 - val_accuracy: 0.9602 - val_auc: 0.9806
Epoch 78/100
1280/1280 [==============================] - 1951s 2s/step - loss: 0.2630 - tp: 21619006.0000 - fp: 2054910.0000 - tn: 79065992.0000 - fn: 2117649.0000 - precision: 0.9132 - recall: 0.9108 - accuracy: 0.9602 - auc: 0.9815 - val_loss: 0.
2924 - val_tp: 5121101.0000 - val_fp: 170363.0000 - val_tn: 20022854.0000 - val_fn: 900073.0000 - val_precision: 0.9678 - val_recall: 0.8505 - val_accuracy: 0.9592 - val_auc: 0.9811
Epoch 79/100
1280/1280 [==============================] - 1956s 2s/step - loss: 0.2646 - tp: 21744384.0000 - fp: 2060624.0000 - tn: 78899240.0000 - fn: 2153398.0000 - precision: 0.9134 - recall: 0.9099 - accuracy: 0.9598 - auc: 0.9814 - val_loss: 0.
2982 - val_tp: 4993843.0000 - val_fp: 185702.0000 - val_tn: 20120108.0000 - val_fn: 914746.0000 - val_precision: 0.9641 - val_recall: 0.8452 - val_accuracy: 0.9580 - val_auc: 0.9797
Epoch 80/100
1280/1280 [==============================] - 1953s 2s/step - loss: 0.2669 - tp: 22055420.0000 - fp: 2135651.0000 - tn: 78526352.0000 - fn: 2140199.0000 - precision: 0.9117 - recall: 0.9115 - accuracy: 0.9592 - auc: 0.9815 - val_loss: 0.
2787 - val_tp: 4984180.0000 - val_fp: 197102.0000 - val_tn: 20178072.0000 - val_fn: 855046.0000 - val_precision: 0.9620 - val_recall: 0.8536 - val_accuracy: 0.9599 - val_auc: 0.9800
Epoch 81/100
1280/1280 [==============================] - 1956s 2s/step - loss: 0.2622 - tp: 21705808.0000 - fp: 2077811.0000 - tn: 78966440.0000 - fn: 2107549.0000 - precision: 0.9126 - recall: 0.9115 - accuracy: 0.9601 - auc: 0.9817 - val_loss: 0.
2877 - val_tp: 4988818.0000 - val_fp: 163659.0000 - val_tn: 20154334.0000 - val_fn: 907589.0000 - val_precision: 0.9682 - val_recall: 0.8461 - val_accuracy: 0.9591 - val_auc: 0.9802
Epoch 82/100
1280/1280 [==============================] - 1945s 2s/step - loss: 0.2660 - tp: 22038244.0000 - fp: 2055404.0000 - tn: 78596896.0000 - fn: 2167084.0000 - precision: 0.9147 - recall: 0.9105 - accuracy: 0.9597 - auc: 0.9813 - val_loss: 0.
2860 - val_tp: 4915941.0000 - val_fp: 173380.0000 - val_tn: 20253348.0000 - val_fn: 871720.0000 - val_precision: 0.9659 - val_recall: 0.8494 - val_accuracy: 0.9601 - val_auc: 0.9808
Epoch 83/100
1280/1280 [==============================] - 1960s 2s/step - loss: 0.2620 - tp: 21828352.0000 - fp: 2096385.0000 - tn: 78818296.0000 - fn: 2114614.0000 - precision: 0.9124 - recall: 0.9117 - accuracy: 0.9598 - auc: 0.9819 - val_loss: 0.
2882 - val_tp: 5181476.0000 - val_fp: 172365.0000 - val_tn: 19932176.0000 - val_fn: 928376.0000 - val_precision: 0.9678 - val_recall: 0.8481 - val_accuracy: 0.9580 - val_auc: 0.9790
Epoch 84/100
1280/1280 [==============================] - 1956s 2s/step - loss: 0.2650 - tp: 21972974.0000 - fp: 2043197.0000 - tn: 78688096.0000 - fn: 2153339.0000 - precision: 0.9149 - recall: 0.9107 - accuracy: 0.9600 - auc: 0.9815 - val_loss: 0.
2884 - val_tp: 5125310.0000 - val_fp: 199354.0000 - val_tn: 20006488.0000 - val_fn: 883247.0000 - val_precision: 0.9626 - val_recall: 0.8530 - val_accuracy: 0.9587 - val_auc: 0.9792
Epoch 85/100
1280/1280 [==============================] - 1932s 2s/step - loss: 0.2665 - tp: 21841062.0000 - fp: 2087044.0000 - tn: 78779464.0000 - fn: 2150003.0000 - precision: 0.9128 - recall: 0.9104 - accuracy: 0.9596 - auc: 0.9813 - val_loss: 0.
2990 - val_tp: 4966995.0000 - val_fp: 155834.0000 - val_tn: 20153514.0000 - val_fn: 938068.0000 - val_precision: 0.9696 - val_recall: 0.8411 - val_accuracy: 0.9583 - val_auc: 0.9797
Epoch 86/100
1280/1280 [==============================] - 1950s 2s/step - loss: 0.2613 - tp: 21989296.0000 - fp: 2028370.0000 - tn: 78716320.0000 - fn: 2123700.0000 - precision: 0.9155 - recall: 0.9119 - accuracy: 0.9604 - auc: 0.9819 - val_loss: 0.
3127 - val_tp: 5106508.0000 - val_fp: 142899.0000 - val_tn: 19982462.0000 - val_fn: 982530.0000 - val_precision: 0.9728 - val_recall: 0.8386 - val_accuracy: 0.9571 - val_auc: 0.9803
Epoch 87/100
1280/1280 [==============================] - 1949s 2s/step - loss: 0.2652 - tp: 21800292.0000 - fp: 2065815.0000 - tn: 78849960.0000 - fn: 2141540.0000 - precision: 0.9134 - recall: 0.9106 - accuracy: 0.9599 - auc: 0.9813 - val_loss: 0.
2862 - val_tp: 5040894.0000 - val_fp: 182758.0000 - val_tn: 20103008.0000 - val_fn: 887735.0000 - val_precision: 0.9650 - val_recall: 0.8503 - val_accuracy: 0.9592 - val_auc: 0.9799
Epoch 88/100
1280/1280 [==============================] - 1920s 2s/step - loss: 0.2629 - tp: 21758816.0000 - fp: 2035708.0000 - tn: 78916872.0000 - fn: 2146157.0000 - precision: 0.9144 - recall: 0.9102 - accuracy: 0.9601 - auc: 0.9815 - val_loss: 0.
2883 - val_tp: 5067502.0000 - val_fp: 156913.0000 - val_tn: 20054418.0000 - val_fn: 935565.0000 - val_precision: 0.9700 - val_recall: 0.8442 - val_accuracy: 0.9583 - val_auc: 0.9804
Epoch 89/100
1280/1280 [==============================] - 1902s 1s/step - loss: 0.2661 - tp: 21907896.0000 - fp: 2077818.0000 - tn: 78708656.0000 - fn: 2163245.0000 - precision: 0.9134 - recall: 0.9101 - accuracy: 0.9596 - auc: 0.9814 - val_loss: 0.
3095 - val_tp: 5120703.0000 - val_fp: 137657.0000 - val_tn: 19965744.0000 - val_fn: 990302.0000 - val_precision: 0.9738 - val_recall: 0.8379 - val_accuracy: 0.9570 - val_auc: 0.9806
Epoch 90/100
1280/1280 [==============================] - 1920s 1s/step - loss: 0.2652 - tp: 21984496.0000 - fp: 2114012.0000 - tn: 78621976.0000 - fn: 2137152.0000 - precision: 0.9123 - recall: 0.9114 - accuracy: 0.9595 - auc: 0.9815 - val_loss: 0.
2829 - val_tp: 5208131.0000 - val_fp: 193268.0000 - val_tn: 19946136.0000 - val_fn: 866871.0000 - val_precision: 0.9642 - val_recall: 0.8573 - val_accuracy: 0.9596 - val_auc: 0.9809
Epoch 91/100
1280/1280 [==============================] - 1917s 1s/step - loss: 0.2631 - tp: 21814944.0000 - fp: 2037460.0000 - tn: 78857032.0000 - fn: 2148231.0000 - precision: 0.9146 - recall: 0.9104 - accuracy: 0.9601 - auc: 0.9817 - val_loss: 0.
2921 - val_tp: 4988873.0000 - val_fp: 154974.0000 - val_tn: 20127408.0000 - val_fn: 943141.0000 - val_precision: 0.9699 - val_recall: 0.8410 - val_accuracy: 0.9581 - val_auc: 0.9797
Epoch 92/100
1280/1280 [==============================] - 1920s 1s/step - loss: 0.2641 - tp: 21926682.0000 - fp: 2066839.0000 - tn: 78722320.0000 - fn: 2141742.0000 - precision: 0.9139 - recall: 0.9110 - accuracy: 0.9599 - auc: 0.9816 - val_loss: 0.
3016 - val_tp: 5074157.0000 - val_fp: 161845.0000 - val_tn: 20024836.0000 - val_fn: 953570.0000 - val_precision: 0.9691 - val_recall: 0.8418 - val_accuracy: 0.9575 - val_auc: 0.9794
Epoch 93/100
1280/1280 [==============================] - 1915s 1s/step - loss: 0.2639 - tp: 21858124.0000 - fp: 2086217.0000 - tn: 78785032.0000 - fn: 2128289.0000 - precision: 0.9129 - recall: 0.9113 - accuracy: 0.9598 - auc: 0.9817 - val_loss: 0.
3349 - val_tp: 5110189.0000 - val_fp: 138626.0000 - val_tn: 19910190.0000 - val_fn: 1055394.0000 - val_precision: 0.9736 - val_recall: 0.8288 - val_accuracy: 0.9545 - val_auc: 0.9781
Epoch 94/100
1280/1280 [==============================] - 1932s 2s/step - loss: 0.2661 - tp: 21972080.0000 - fp: 2067147.0000 - tn: 78645520.0000 - fn: 2172891.0000 - precision: 0.9140 - recall: 0.9100 - accuracy: 0.9596 - auc: 0.9814 - val_loss: 0.
3010 - val_tp: 5379887.0000 - val_fp: 190356.0000 - val_tn: 19720614.0000 - val_fn: 923543.0000 - val_precision: 0.9658 - val_recall: 0.8535 - val_accuracy: 0.9575 - val_auc: 0.9800
Epoch 95/100
1280/1280 [==============================] - 1925s 2s/step - loss: 0.2641 - tp: 21773760.0000 - fp: 2069301.0000 - tn: 78892664.0000 - fn: 2121866.0000 - precision: 0.9132 - recall: 0.9112 - accuracy: 0.9600 - auc: 0.9814 - val_loss: 0.
2834 - val_tp: 5148394.0000 - val_fp: 196890.0000 - val_tn: 20004664.0000 - val_fn: 864450.0000 - val_precision: 0.9632 - val_recall: 0.8562 - val_accuracy: 0.9595 - val_auc: 0.9803
Epoch 96/100
1280/1280 [==============================] - 1924s 2s/step - loss: 0.2620 - tp: 21883636.0000 - fp: 2083221.0000 - tn: 78785256.0000 - fn: 2105458.0000 - precision: 0.9131 - recall: 0.9122 - accuracy: 0.9601 - auc: 0.9819 - val_loss: 0.
3238 - val_tp: 5063114.0000 - val_fp: 150917.0000 - val_tn: 20012972.0000 - val_fn: 987390.0000 - val_precision: 0.9711 - val_recall: 0.8368 - val_accuracy: 0.9566 - val_auc: 0.9792
Epoch 97/100
1280/1280 [==============================] - 1926s 2s/step - loss: 0.2629 - tp: 21759104.0000 - fp: 2051085.0000 - tn: 78912920.0000 - fn: 2134447.0000 - precision: 0.9139 - recall: 0.9107 - accuracy: 0.9601 - auc: 0.9815 - val_loss: 0.
2802 - val_tp: 5228317.0000 - val_fp: 190075.0000 - val_tn: 19926608.0000 - val_fn: 869396.0000 - val_precision: 0.9649 - val_recall: 0.8574 - val_accuracy: 0.9596 - val_auc: 0.9809
Epoch 98/100
1280/1280 [==============================] - 1929s 2s/step - loss: 0.2630 - tp: 21930218.0000 - fp: 2067388.0000 - tn: 78741992.0000 - fn: 2117977.0000 - precision: 0.9139 - recall: 0.9119 - accuracy: 0.9601 - auc: 0.9817 - val_loss: 0.
3097 - val_tp: 4899275.0000 - val_fp: 135668.0000 - val_tn: 20163436.0000 - val_fn: 1016018.0000 - val_precision: 0.9731 - val_recall: 0.8282 - val_accuracy: 0.9561 - val_auc: 0.9789
Epoch 99/100
1280/1280 [==============================] - 1957s 2s/step - loss: 0.2648 - tp: 21993828.0000 - fp: 2052826.0000 - tn: 78663616.0000 - fn: 2147339.0000 - precision: 0.9146 - recall: 0.9111 - accuracy: 0.9599 - auc: 0.9816 - val_loss: 0.
2889 - val_tp: 5106607.0000 - val_fp: 161956.0000 - val_tn: 20025448.0000 - val_fn: 920399.0000 - val_precision: 0.9693 - val_recall: 0.8473 - val_accuracy: 0.9587 - val_auc: 0.9814
Epoch 100/100
1280/1280 [==============================] - 1941s 2s/step - loss: 0.2598 - tp: 21924942.0000 - fp: 2029354.0000 - tn: 78777592.0000 - fn: 2125714.0000 - precision: 0.9153 - recall: 0.9116 - accuracy: 0.9604 - auc: 0.9819 - val_loss: 0.
3001 - val_tp: 5185959.0000 - val_fp: 162584.0000 - val_tn: 19884838.0000 - val_fn: 981025.0000 - val_precision: 0.9696 - val_recall: 0.8409 - val_accuracy: 0.9564 - val_auc: 0.9800
400/400 [==============================] - 121s 302ms/step - loss: 0.3130 - tp: 6560497.0000 - fp: 267592.0000 - tn: 24822684.0000 - fn: 1117239.0000 - precision: 0.9608 - recall: 0.8545 - accuracy: 0.9577 - auc: 0.9801
2020/06/14 20:28:16 INFO mlflow.projects: === Run (ID '037e1d9e4ad74784974f4aaac11138cc') succeeded ===

2.1.11 read out logs experiment 2

2.1.11.1 read out mlflow logs using CLI
conda activate tensorflow_env
cd Programme/drmed-git
export MLFLOW_EXPERIMENT_NAME=exp-310520-unet
export MLFLOW_TRACKING_URI=file:./data/mlruns
mlflow experiments list
  Experiment Id  Name             Artifact Location
---------------  ---------------  --------------------
              0  exp-310520-unet  file:./data/mlruns/0
              1  exp-devtest      file:./data/mlruns/1
mlflow runs list --experiment-id 0
Date                      Name    ID
------------------------  ------  --------------------------------
2020-06-12 14:20:30 CEST          037e1d9e4ad74784974f4aaac11138cc
2020-05-31 21:39:51 CEST          1aefda1366f04f5da5d1fc2241ad9208
export EXP2=037e1d9e4ad74784974f4aaac11138cc

I have accidentally run the model with the wrong experiment ID. I'll check if I can change the experiment. I will do it later with mlflow.tracking.MlflowClient().rename_experiment()

mlflow artifacts list -r $EXP2
mlflow artifacts list -r $EXP2 -a model
mlflow artifacts list -r $EXP2 -a model_summary.txt
mlflow artifacts list -r $EXP2 -a tensorboard_logs/train/
(tensorflow_env) [lex@Topialex drmed-git]$ mlflow artifacts list -r $EXP2
[{
  "path": "model",
  "is_dir": true
}, {
  "path": "model_summary.txt",
  "is_dir": false,
  "file_size": "10895"
}, {
  "path": "tensorboard_logs",
  "is_dir": true
}]

(tensorflow_env) [lex@Topialex drmed-git]$ mlflow artifacts list -r $EXP2 -a model
[{
  "path": "model/MLmodel",
  "is_dir": false,
  "file_size": "317"
}, {
  "path": "model/conda.yaml",
  "is_dir": false,
  "file_size": "125"
}, {
  "path": "model/data",
  "is_dir": true
}]
(tensorflow_env) [lex@Topialex drmed-git]$ mlflow artifacts list -r $EXP2 -a model_summary.txt
[]

(tensorflow_env) [lex@Topialex drmed-git]$ mlflow artifacts list -r $EXP2 -a tensorboard_logs/train/
[{
  "path": "tensorboard_logs/train/events.out.tfevents.1591964813.node151.309868.9202.v2",
  "is_dir": false,
  "file_size": "20270485"
}, {
  "path": "tensorboard_logs/train/events.out.tfevents.1591964827.node151.profile-empty",
  "is_dir": false,
  "file_size": "40"
}, {
  "path": "tensorboard_logs/train/plugins",
  "is_dir": true
}]
mlflow artifacts download -r $EXP2
mlflow artifacts download -r $EXP2 -a model
mlflow artifacts download -r $EXP2 -a model_summary.txt
mlflow artifacts download -r $EXP2 -a tensorboard_logs
/home/lex/Programme/drmed-git/data/mlruns/0/037e1d9e4ad74784974f4aaac11138cc/artifacts
/home/lex/Programme/drmed-git/data/mlruns/0/037e1d9e4ad74784974f4aaac11138cc/artifacts/model
/home/lex/Programme/drmed-git/data/mlruns/0/037e1d9e4ad74784974f4aaac11138cc/artifacts/model_summary.txt
/home/lex/Programme/drmed-git/data/mlruns/0/037e1d9e4ad74784974f4aaac11138cc/artifacts/tensorboard_logs
mlflow runs describe --run-id $EXP2
{
    "info": {
        "artifact_uri": "file:./data/mlruns/0/037e1d9e4ad74784974f4aaac11138cc/artifacts",
        "end_time": 1592159296429,
        "experiment_id": "0",
        "lifecycle_stage": "active",
        "run_id": "037e1d9e4ad74784974f4aaac11138cc",
        "run_uuid": "037e1d9e4ad74784974f4aaac11138cc",
        "start_time": 1591964430233,
        "status": "FINISHED",
        "user_id": "ye53nis"
    },
    "data": {
        "metrics": {
            "learning rate": 1e-14,
            "val_loss": 0.3001052141189575,
            "precision": 0.9152822494506836,
            "fp": 2029354.0,
            "loss": 0.2597578763961792,
            "val_tp": 5185959.0,
            "recall": 0.9116151332855225,
            "accuracy": 0.9603750705718994,
            "val_precision": 0.9696021676063538,
            "val_recall": 0.8409230709075928,
            "lr": 1e-14,
            "fn": 2125714.0,
            "auc": 0.9819398522377014,
            "val_fp": 162584.0,
            "val_accuracy": 0.9563749432563782,
            "val_tn": 19884838.0,
            "val_auc": 0.9799740314483643,
            "val_fn": 981025.0,
            "tn": 78777592.0,
            "tp": 21924942.0
        },
        "params": {
            "opt_beta_1": "0.9",
            "validation_steps": "320",
            "opt_learning_rate": "0.001",
            "fluotracify_path": "/beegfs/ye53nis/drmed-git/src/",
            "opt_amsgrad": "False",
            "frac_val": "0.2",
            "batch_size": "5",
            "epochs": "100",
            "opt_decay": "0.0",
            "steps_per_epoch": "1280",
            "length_delimiter": "16384",
            "opt_name": "Adam",
            "opt_beta_2": "0.999",
            "csv_path": "/beegfs/ye53nis/saves/firstartefact_Sep2019",
            "learning_rate": "None",
            "opt_epsilon": "1e-07"
        },
        "tags": {
            "mlflow.source.git.repoURL": "https://github.com/aseltmann/fluotracify",
            "mlflow.source.type": "PROJECT",
            "mlflow.source.name": "file:///beegfs/ye53nis/drmed-git",
            "mlflow.user": "ye53nis",
            "mlflow.source.git.commit": "09c1d2a1bc083695026b46c74ea175c9168bb5f2",
            "mlflow.gitRepoURL": "https://github.com/aseltmann/fluotracify",
            "mlflow.project.backend": "local",
            "mlflow.project.env": "conda",
            "mlflow.project.entryPoint": "main",
            "mlflow.log-model.history": "[{
                \"run_id\": \"037e1d9e4ad74784974f4aaac11138cc\",
                \"artifact_path\": \"model\",
                \"utc_time_created\": \"2020-06-14 18:26:02.386982\",
                \"flavors\": {
                    \"keras\": {
                        \"keras_module\": \"tensorflow.keras\",
                        \"keras_version\": \"2.2.4-tf\",
                        \"data\": \"data\"
                    },
                    \"python_function\": {
                        \"loader_module\": \"mlflow.keras\",
                        \"python_version\": \"3.8.3\",
                        \"data\": \"data\",
                        \"env\": \"conda.yaml\"
                    }
                }
            }]"
        }
    }
}
tensorboard --logdir=data/mlruns/0/$EXP2/artifacts/tensorboard_logs
mlflow ui --backend-store-uri file:///home/lex/Programme/drmed-git/data/mlruns
2.1.11.2 plots via mlflow ui, comparing run 1 and 2

AUC: run2_auc.png Loss: run2_loss.png Precision / Recall: run2_prec_recall.png

2.1.11.3 plots via tensorboard ui

Prediction 03 prediction_03.png Prediction 20 prediction_20.png Prediction 24 prediction_24.png Prediction 32 prediction_32.png Prediction 99 prediction_99.png Distribution of Conv1D-Kernel (final layer) distribution_conv1d-kernel_finallayer.png Histograms of Conv1D-Kernel (final layer) histograms_conv1d-kernel_finallayer.png

2.1.11.4 for next runs
  • more steps = good: better recall
  • strong fluctuation of validation metrics in beginning and already convergence after ~30 Epochs for the second run → maybe use learning rate a bit more gently and start the lr schedule with lower rates
  • judging from the tensorboard histograms, the model architecture can clearly be made simpler
  • doing some background reading: in this SO thread it is argued that while using Adam, an extensive learning rate schedule, as I used, should not really be necessary.
    • Adam (adaptive moment estimation) updates any parameter with an individual learning rate
    • every learning rate can vary from 0 (no update) to the given learning rate as an upper limit
    • others argue, that it definitely helps (or that you have to start with a very low lr, which I can confirm from own experience) and that it especially could help reducing the loss in the late steps of training
    • finding optimal lr:
      • start with very very low lr, than increase till loss stops decreasing, and look at where the slope of the loss curve and pick the learning rate that is associated with the fastest decrease
  1. effect of batch size
    • see effect of batch size
    • from pracitcal point: larger batch size → computational speedups from parallelism of GPUs. In theory, using a batch equal to the entire dataset guarantees convergence to global optima of objective function - hower on cost of slower, empirical convergence
    • well known: too large of a batch size → poor generalization (hoffer, hubara, soudry argue here that this is not inherently true).
      • why poor gen: competing gradients of different training examples → sequential optimization is easier than simultaneous optimization in complex, high dimensional parameter spaces
    • smaller batch size pro: faster convergence to "good" solutions
    • smaller batch size con: model not guaranteed to converge to global optima, will bounce around, staying outside some \(\epsilon\) - ball of the optima, where \(\epsilon\) depends on the ratio of the batch size to the data size
    • if no computational constraints: start at small batch size, steadily grow batch size through training.
    • non-convex models: "sweet spot" between batch size of 1 (bad, "noisy", nn prone to overfitting) and entire training dataset.
    • on other hand: "noise" in small batch size might be good → "tug-and-pull" dynamic which might prevent nn from overfitting
    • what is "large number of epochs" → number of epochs such that any further training provides little to no boost in test accuracy → difficult to determine → best guess
    • example MNIST: bs=64 gets test acc of 98%, bs=1024 gets test acc of 95% → increasing learning rate can compensate for larger batch sizes (for bs=1024 from 0.01 to 0.1 → problem solved) → could be more difficult in more complex datasets
    • example MNIST: starting with large batch size does not "get the model stuck" in bad local optimums, better test accuracy can be achieved anytime by switching to lower batch size or higher learning rate
    • investigation of how stuff is updated with large batch size:
      • larger batch sizes make larger gradient steps than smaller batch sizes for the same number of samples seen
      • for same average euclidean norm distance from initial weights of the model, larger batch sizes have larger variance in the distance → if smaller batch sizes are more "noisy", this would be the other way around
      • conclusion:
        • large batch size → model makes very large gradient updates and very small gradient updates → size depends on which particular samples are drawn.
        • Small batch size → model makes updates of about the same size → weakly dependend on which particular samples are drawn.
    • better solutions can be far away from inital weights → if loss is averaged over the batch then large batch sizes simply do not allow the model to travel far enough to reach the better solutions for the same number of training epochs → you take fewer steps → increasing lr makes steps larger → and then they can even move further after seeing the same number of samples
    • Adam vs SGD
      • Adam claims: insensitivity to weight initialization and initial learning rate choice
      • finding: adam finds solutions with much larger weights, which might explain why it has lower test accuracy and is not generalizing as well → this is why weight decay is recommended with Adam
      • in SGD the weights are initialized to approx the magnitude you want them to be and most of the learning is shuffling the weights along the hyper-sphere of the initial radius
      • in Adam, the model ignores the initialization
    • hoffer et al
      • propose that in SGD, initial learning phase can be described using high-dimensional "random walk on a random potential" process, with an "ultra-slow" logarithmic increase in the distance of the weights from their initialization (observed empirically)
      • remedies
        1. Use SGD with momentum, gradient clipping, and a decreasing learning rate schedule
        2. adapt learning rate with batch size (e.g. square root scaling)
        3. compute batch-norm statistics over several partitions ("ghost batch-norm")
        4. use sufficient number of high learning rate training iterations
      • the "generalization gap" problem is not related to the batch size but rather the amount of updates
    • Smith et al, Google Brain
      • instead of learning rate decay, increase batch size with training → works with Adam, Nesterov momentum, SGD with momentum, SGD → reaches equivalent test accuracies after same no of epochs, but with fewer parameter updates → greater parallelism (good for GPU), shorter training time
  2. using dropout layers with Unet
    • Bartolome et al did it in DeepCell for automatic nuclei detection
      • encoding block:
        • maxpool
        • 2 times conv+ELU+batchnorm
      • decoding block:
        • upsample
        • dropout (0.3)
        • 2 times conv+ELU
      • last block
        • 1x1 conv
        • sigmoid
    • from this reddit
      • Srivastava/Hinton dropout paper: additional gain in performacne obtained by adding dropout in conv layers is worth noting (3% to 2.55%). Dropout in lower layers help, because it provides noisy inputs for the higher fully connected layers which prevents them from overfitting → they use 0.7 prob for conv dropout and 0.5 for FC

2.1.12 use model from run 2 to correct data

2.1.12.1 simulated data from the test set

brightbursts_correction_by_unet_histogram_050_tt_200702.svg

2.1.12.2 experimental data from Pablo (structured experiment)

ptu_brightbursts_correction_by_unet_histogram_010_tt_200704_400traces.svg

  1. biological metadata
    • Who took the data: Pablo Carravilla in November 2019 in Oxford
    • a bit of 400 "dirty" and 400 "clean" curves
    • AF488: small dye, homogeneous signal
    • "clean"
      • in folders GroupMeas_5" and GroupMeas_6
      • Hs-PEX5-eGFP - PEX5 from Homo sapiens, labelled with eGFP
      • typical filename: 20 nM AF488147_T1754s_1.ptu
    • "dirty"
      • in folders GroupMeas_1 to GroupMeas_4_4
      • Tp-PEX5-eGFP - PEX5 from Trypanosoma brucei, labelled with eGFP
      • typical filename: DiO LUV 10uM in 20 nM AF48816_T197s_1.ptu
      • Dio LUV: big vesicles, spikes
  2. TODO microscope metadata - paste from pickled pandas dfs
  3. anecdotal, semi-structured plotting of correlation curves
    • first: "clean" data of Hs-PEX5-eGFP
    • from plotting 10 traces with the respective binning windows using correct_correlation_by_unet_prediction:
      • prediction didn't find anything - awesome! So no values were removed and correlations are "pure"
      • for correlation at \(1ms\) binning window:
        • transit time ~\(0.25...0.5ms\)
        • diffusion coefficient ~\(22.5...45 \mu m^2 / s\)
    • run2_hs-pex5-egfp_1mscorr_1.png
      • for correlation at \(100\mu s\) binning window:
        • transit time ~\(0.4...0.53ms\)
        • diffusion coefficient ~\(21...29 \mu m^2 / s\)
        • This is probably the most accurate!
    • run2_hs-pex5-egfp_100uscorr_1.png
      • for correlation at \(10\mu s\) and at 1us binning window:
        • transit time ~\(0.09ms\)
        • diffusion coefficient ~\(120...133\mu m^2 / s\)
        • fit didn't look too good - probably something is not working correctly here with multipletau. Looks like the start of the correlation curve is flattening, but multipletau fits an increase
    • run2_hs-pex5-egfp_10uscorr_1.png
      • second: "dirty" data of Tb-PEX5-eGFP
      • from plotting 10 traces with the respective binning windows using correct_correlation_by_unet_prediction:
        • for correlation at \(1ms\) binning wnidow:
          • transit time
            • without correction: ~\(6...20ms\)
            • with correction: ~\(2...5ms\)
          • diffusion coefficients:
            • without correction: ~\(0.6...1.9\mu m^2 / s\)
            • with correction: ~\(2...6.3 \mu m^2 / s\)
    • run2_tb-pex5-egfp_1mscorr_2.png
      • for correlation at \(100 \mu s\) binninw window:
        • transit time
          • without correction: ~\(43...149ms\)
          • with correction: ~\(1.6...42ms\)
        • diffusion coefficients:
          • without correction: ~\(0.08...0.26\mu m^2/s\)
          • with correction: ~\(0.3...7\mu m^2 / s\)
    • run2_tb-pex5-egfp_100uscorr_1.png
      • for correlation at \(10\mu s\) binning window:
        • fitting looks HORRIBLE for the traces corrected by prediction, while looking "okayish" for traces without correction - even though the values are bad.
        • transit time
          • without correction: ~\(153...1329ms\)
          • with correction: ~\(0.2...346ms\)
        • diffusion coefficients:
          • without correction: ~\(0.008...0.07 \mu m^2 / s\)
          • with correction: ~\(0.03...52\mu m^2 / s\)
    • run2_tb-pex5-egfp_10uscorr_3.png
      • for correlation at \(1\mu s\) binning window (only 3 traces, because ):
        • fits have to be better!
    • run2_tb-pex5-egfp_1uscorr_1.png

2.1.13 git exp 3

git status
git log -1
(base) [ye53nis@node161 drmed-git]$ git status
# On branch exp-310520-unet
# Untracked files:
# ...
nothing added to commit but untracked files present (use "git add" to track)

(base) [ye53nis@node161 drmed-git]$ git log -1
commit 193d9e3f8d126828b253121e613ddaf5363d7c3d
Author: Apoplex <oligolex@vivaldi.net>
Date:   Wed Jun 17 12:09:44 2020 +0200

    Move experiment to correct mlflow id

2.1.14 experimental run 3 - bs=3

conda activate tensorflow_nightly
cd /beegfs/ye53nis/drmed-git
export MLFLOW_EXPERIMENT_NAME=exp-310520-unet
export MLFLOW_TRACKING_URI=file:./data/mlruns
mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src -P batch_size=3 -P epochs=40 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=2100 -P validation_steps=320
2020/06/20 00:43:51 INFO mlflow.projects: === Created directory /tmp/tmpxwtlwi2b for downloading remote URIs passed to arguments of type 'path' ===
2020/06/20 00:43:51 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/fluotracify/training/train.py /
beegfs/ye53nis/drmed-git/src 3 0.2 16384 None 40 /beegfs/ye53nis/saves/firstartefact_Sep2019 2100 320' in run with ID '1e98b3ed2e1d421da9592058bd5587a8' ===
2020-06-20 00:44:08.580506: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory
2020-06-20 00:44:08.580645: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favour of importlib; see the modul
e's documentation for alternative uses
  import imp
2.3.0-dev20200527
2020-06-20 00:44:36.776071: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
2020-06-20 00:44:36.776132: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
2020-06-20 00:44:36.776174: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node161): /proc/driver/nvidia/version does not exist
GPUs:  []
train 0 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set027.csv
train 1 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set087.csv
train 2 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set003.csv
train 3 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set056.csv
train 4 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set076.csv
train 5 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set094.csv
train 6 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set017.csv
train 7 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set074.csv
train 8 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set055.csv
train 9 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set096.csv
train 10 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set054.csv
train 11 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set093.csv
train 12 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set079.csv
train 13 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set014.csv
train 14 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set008.csv
train 15 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set031.csv
train 16 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set023.csv
train 17 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set025.csv
train 18 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set034.csv
train 19 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set009.csv
train 20 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set044.csv
train 21 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set063.csv
train 22 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set004.csv
train 23 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set072.csv
train 24 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set046.csv
train 25 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set049.csv
train 26 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set007.csv
train 27 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set100.csv
train 28 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set083.csv
train 29 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set077.csv
train 30 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set061.csv
train 31 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set081.csv
train 32 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set091.csv
train 33 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set069.csv
train 34 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set052.csv
train 35 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set028.csv
train 36 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set019.csv
train 37 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set057.csv
train 38 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set064.csv
train 39 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set075.csv
train 40 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set002.csv
train 41 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set062.csv
train 42 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set043.csv
train 43 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set042.csv
train 44 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set005.csv
train 45 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set016.csv
train 46 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set018.csv
train 47 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set041.csv
train 48 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set039.csv
train 49 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set006.csv
train 50 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set092.csv
train 51 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set060.csv
train 52 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set001.csv
train 53 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set035.csv
train 54 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set029.csv
train 55 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set051.csv
train 56 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set012.csv
train 57 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set036.csv
train 58 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set024.csv
train 59 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set053.csv
train 60 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set011.csv
train 61 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set032.csv
train 62 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set067.csv
train 63 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set058.csv
train 64 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set080.csv
train 65 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set086.csv
train 66 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set033.csv
train 67 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set085.csv
train 68 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set015.csv
train 69 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set090.csv
train 70 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set020.csv
train 71 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set030.csv
train 72 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set050.csv
train 73 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set098.csv
train 74 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set099.csv
train 75 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set070.csv
train 76 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set021.csv
train 77 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set095.csv
train 78 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set073.csv
train 79 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set078.csv
test 80 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set026.csv
test 81 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set038.csv
test 82 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set082.csv
test 83 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set047.csv
test 84 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set040.csv
test 85 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set066.csv
test 86 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set059.csv
test 87 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set013.csv
test 88 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set089.csv
test 89 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set071.csv
test 90 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set088.csv
test 91 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set037.csv
test 92 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set022.csv
test 93 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set084.csv
test 94 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set010.csv
test 95 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set097.csv
test 96 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set068.csv
test 97 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set065.csv
test 98 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set048.csv
test 99 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set045.csv
shapes of feature dataframe: (20000, 8000) and label dataframe: (20000, 8000)
shapes of feature dataframe: (20000, 2000) and label dataframe: (20000, 2000)

for each 20,000 timestap trace there are the following numbers of corrupted timesteps:
 label001_1    6286
label001_1    2568
label001_1    4495
label001_1    4414
label001_1    1105
dtype: int64
2020-06-20 00:49:48.824441: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2020-06-20 00:49:48.834205: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz
2020-06-20 00:49:48.835707: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5643aca77c10 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-06-20 00:49:48.835736: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
number of training examples: 6400, number of validation examples: 1600

------------------------
number of test examples: 2000

input - shape:   (None, 16384, 1)
output - shape:  (None, 16384, 1)
2020-06-20 00:49:53.167773: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the ABCs from 'collections' instead
 of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
  if not isinstance(wrapped_dict, collections.Mapping):
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Python 3.0, use inspect.signature()
 or inspect.getfullargspec()
  all_param_names, _, _, all_default_values = inspect.getargspec(fn)  # pylint: disable=W1505
Epoch 1/40
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from
'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
  if not isinstance(values, collections.Sequence):
   1/2100 [..............................] - ETA: 0s - loss: 1.4336 - tp: 11096.0000 - fp: 13747.0000 - tn: 16434.0000 - fn: 7875.0000 - precision: 0.4466 - recall: 0.5849 - accuracy: 0.5601 - auc: 0.59502020-06-20 00:50:06.341154: I te
nsorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and w
ill be removed after 2020-07-01.
Instructions for updating:
use `tf.profiler.experimental.stop` instead.
2020-06-20 00:50:07.661012: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_20_00_50_07
2020-06-20 00:50:07.677958: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.trace.json.gz
2020-06-20 00:50:07.711562: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_20_00_50_07
2020-06-20 00:50:07.711709: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.memory_profile.json.gz
2020-06-20 00:50:07.713980: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_06_20_00_50_07Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2020_06_20_0
0_50_07/node161.xplane.pb
Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.overview_page.pb
Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.input_pipeline.pb
Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.tensorflow_stats.pb
Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_06_20_00_50_07/node161.kernel_stats.pb

2100/2100 [==============================] - 2619s 1s/step - loss: 1.1651 - tp: 14036256.0000 - fp: 5361485.0000 - tn: 74321616.0000 - fn: 9499881.0000 - precision: 0.7236 - recall: 0.5964 - accuracy: 0.8560 - auc: 0.8712 - val_loss: 6.
7480 - val_tp: 3658812.0000 - val_fp: 7608396.0000 - val_tn: 4305440.0000 - val_fn: 155992.0000 - val_precision: 0.3247 - val_recall: 0.9591 - val_accuracy: 0.5064 - val_auc: 0.7199
Epoch 2/40
2100/2100 [==============================] - 2616s 1s/step - loss: 0.7522 - tp: 16978660.0000 - fp: 4731235.0000 - tn: 74935072.0000 - fn: 6574314.0000 - precision: 0.7821 - recall: 0.7209 - accuracy: 0.8905 - auc: 0.9195 - val_loss: 2.
3699 - val_tp: 1583199.0000 - val_fp: 169213.0000 - val_tn: 11937019.0000 - val_fn: 2039209.0000 - val_precision: 0.9034 - val_recall: 0.4371 - val_accuracy: 0.8596 - val_auc: 0.7654
Epoch 3/40
2100/2100 [==============================] - 2615s 1s/step - loss: 0.5253 - tp: 19558076.0000 - fp: 3583985.0000 - tn: 75779848.0000 - fn: 4297304.0000 - precision: 0.8451 - recall: 0.8199 - accuracy: 0.9236 - auc: 0.9546 - val_loss: 20
.3139 - val_tp: 3551544.0000 - val_fp: 6920318.0000 - val_tn: 5181055.0000 - val_fn: 75723.0000 - val_precision: 0.3392 - val_recall: 0.9791 - val_accuracy: 0.5552 - val_auc: 0.7820
Epoch 4/40
2100/2100 [==============================] - 2593s 1s/step - loss: 0.4607 - tp: 19722116.0000 - fp: 3070380.0000 - tn: 76557328.0000 - fn: 3869410.0000 - precision: 0.8653 - recall: 0.8360 - accuracy: 0.9328 - auc: 0.9621 - val_loss: 0.
6783 - val_tp: 2809999.0000 - val_fp: 1055013.0000 - val_tn: 11273173.0000 - val_fn: 590455.0000 - val_precision: 0.7270 - val_recall: 0.8264 - val_accuracy: 0.8954 - val_auc: 0.9256
Epoch 5/40
2100/2100 [==============================] - 2579s 1s/step - loss: 0.4347 - tp: 20035524.0000 - fp: 2906267.0000 - tn: 76615392.0000 - fn: 3662016.0000 - precision: 0.8733 - recall: 0.8455 - accuracy: 0.9364 - auc: 0.9644 - val_loss: 0.
9250 - val_tp: 2881407.0000 - val_fp: 1446289.0000 - val_tn: 10683025.0000 - val_fn: 717919.0000 - val_precision: 0.6658 - val_recall: 0.8005 - val_accuracy: 0.8624 - val_auc: 0.9110
Epoch 6/40
2100/2100 [==============================] - 2587s 1s/step - loss: 0.3938 - tp: 20159010.0000 - fp: 2640041.0000 - tn: 77171896.0000 - fn: 3248240.0000 - precision: 0.8842 - recall: 0.8612 - accuracy: 0.9430 - auc: 0.9692 - val_loss: 0.
9069 - val_tp: 3350060.0000 - val_fp: 2334741.0000 - val_tn: 9777228.0000 - val_fn: 266611.0000 - val_precision: 0.5893 - val_recall: 0.9263 - val_accuracy: 0.8346 - val_auc: 0.9424
Epoch 7/40
2100/2100 [==============================] - 2596s 1s/step - loss: 0.3898 - tp: 20604918.0000 - fp: 2623827.0000 - tn: 76744272.0000 - fn: 3246144.0000 - precision: 0.8870 - recall: 0.8639 - accuracy: 0.9431 - auc: 0.9700 - val_loss: 1.
1869 - val_tp: 2154011.0000 - val_fp: 161830.0000 - val_tn: 11907682.0000 - val_fn: 1505117.0000 - val_precision: 0.9301 - val_recall: 0.5887 - val_accuracy: 0.8940 - val_auc: 0.8640
Epoch 8/40
2100/2100 [==============================] - 2585s 1s/step - loss: 0.3615 - tp: 20559308.0000 - fp: 2451944.0000 - tn: 77195760.0000 - fn: 3012324.0000 - precision: 0.8934 - recall: 0.8722 - accuracy: 0.9471 - auc: 0.9725 - val_loss: 2.
2166 - val_tp: 457245.0000 - val_fp: 0.0000e+00 - val_tn: 12111846.0000 - val_fn: 3159549.0000 - val_precision: 1.0000 - val_recall: 0.1264 - val_accuracy: 0.7991 - val_auc: 0.7373
Epoch 9/40
2100/2100 [==============================] - 2575s 1s/step - loss: 0.3614 - tp: 20474248.0000 - fp: 2479592.0000 - tn: 77192832.0000 - fn: 3072574.0000 - precision: 0.8920 - recall: 0.8695 - accuracy: 0.9462 - auc: 0.9720 - val_loss: 1.
6778 - val_tp: 3153657.0000 - val_fp: 3799634.0000 - val_tn: 8459831.0000 - val_fn: 315518.0000 - val_precision: 0.4535 - val_recall: 0.9091 - val_accuracy: 0.7384 - val_auc: 0.8806
Epoch 10/40
2100/2100 [==============================] - 2574s 1s/step - loss: 0.3525 - tp: 20915356.0000 - fp: 2417250.0000 - tn: 76968064.0000 - fn: 2918540.0000 - precision: 0.8964 - recall: 0.8775 - accuracy: 0.9483 - auc: 0.9734 - val_loss: 0.
7001 - val_tp: 3011358.0000 - val_fp: 1423566.0000 - val_tn: 10810936.0000 - val_fn: 482780.0000 - val_precision: 0.6790 - val_recall: 0.8618 - val_accuracy: 0.8788 - val_auc: 0.9191
Epoch 11/40
2100/2100 [==============================] - 2583s 1s/step - loss: 0.3536 - tp: 20693556.0000 - fp: 2409057.0000 - tn: 77110336.0000 - fn: 3006188.0000 - precision: 0.8957 - recall: 0.8732 - accuracy: 0.9475 - auc: 0.9731 - val_loss: 0.
8146 - val_tp: 3341267.0000 - val_fp: 1466467.0000 - val_tn: 10619280.0000 - val_fn: 301626.0000 - val_precision: 0.6950 - val_recall: 0.9172 - val_accuracy: 0.8876 - val_auc: 0.9452
Epoch 12/40
2100/2100 [==============================] - 2559s 1s/step - loss: 0.3165 - tp: 21370760.0000 - fp: 2314648.0000 - tn: 77018928.0000 - fn: 2514801.0000 - precision: 0.9023 - recall: 0.8947 - accuracy: 0.9532 - auc: 0.9771 - val_loss: 0.
3977 - val_tp: 2929496.0000 - val_fp: 337784.0000 - val_tn: 11799466.0000 - val_fn: 661894.0000 - val_precision: 0.8966 - val_recall: 0.8157 - val_accuracy: 0.9364 - val_auc: 0.9624
Epoch 13/40
2100/2100 [==============================] - 2555s 1s/step - loss: 0.2959 - tp: 21260244.0000 - fp: 2183093.0000 - tn: 77404592.0000 - fn: 2371187.0000 - precision: 0.9069 - recall: 0.8997 - accuracy: 0.9559 - auc: 0.9785 - val_loss: 0.
4174 - val_tp: 2796648.0000 - val_fp: 277583.0000 - val_tn: 11853440.0000 - val_fn: 800969.0000 - val_precision: 0.9097 - val_recall: 0.7774 - val_accuracy: 0.9314 - val_auc: 0.9595
Epoch 14/40
2100/2100 [==============================] - 2567s 1s/step - loss: 0.2983 - tp: 21268994.0000 - fp: 2193443.0000 - tn: 77331256.0000 - fn: 2425591.0000 - precision: 0.9065 - recall: 0.8976 - accuracy: 0.9552 - auc: 0.9784 - val_loss: 0.
3715 - val_tp: 3222237.0000 - val_fp: 299190.0000 - val_tn: 11646772.0000 - val_fn: 560441.0000 - val_precision: 0.9150 - val_recall: 0.8518 - val_accuracy: 0.9453 - val_auc: 0.9688
Epoch 15/40
2100/2100 [==============================] - 2562s 1s/step - loss: 0.2919 - tp: 21573232.0000 - fp: 2138857.0000 - tn: 77160424.0000 - fn: 2346711.0000 - precision: 0.9098 - recall: 0.9019 - accuracy: 0.9565 - auc: 0.9791 - val_loss: 0.
4316 - val_tp: 3028795.0000 - val_fp: 656530.0000 - val_tn: 11568012.0000 - val_fn: 475303.0000 - val_precision: 0.8219 - val_recall: 0.8644 - val_accuracy: 0.9280 - val_auc: 0.9580
Epoch 16/40
2100/2100 [==============================] - 2544s 1s/step - loss: 0.2915 - tp: 21637290.0000 - fp: 2191368.0000 - tn: 77039000.0000 - fn: 2351546.0000 - precision: 0.9080 - recall: 0.9020 - accuracy: 0.9560 - auc: 0.9792 - val_loss: 0.
4676 - val_tp: 2601966.0000 - val_fp: 397290.0000 - val_tn: 12006863.0000 - val_fn: 722521.0000 - val_precision: 0.8675 - val_recall: 0.7827 - val_accuracy: 0.9288 - val_auc: 0.9455
Epoch 17/40
2100/2100 [==============================] - 2550s 1s/step - loss: 0.2894 - tp: 21593576.0000 - fp: 2107461.0000 - tn: 77151016.0000 - fn: 2367164.0000 - precision: 0.9111 - recall: 0.9012 - accuracy: 0.9566 - auc: 0.9796 - val_loss: 0.
5073 - val_tp: 2723777.0000 - val_fp: 267464.0000 - val_tn: 11851181.0000 - val_fn: 886218.0000 - val_precision: 0.9106 - val_recall: 0.7545 - val_accuracy: 0.9267 - val_auc: 0.9421
Epoch 18/40
2100/2100 [==============================] - 2565s 1s/step - loss: 0.2915 - tp: 21220710.0000 - fp: 2089500.0000 - tn: 77529384.0000 - fn: 2379606.0000 - precision: 0.9104 - recall: 0.8992 - accuracy: 0.9567 - auc: 0.9792 - val_loss: 0.
4440 - val_tp: 3014233.0000 - val_fp: 194294.0000 - val_tn: 11773351.0000 - val_fn: 746762.0000 - val_precision: 0.9394 - val_recall: 0.8014 - val_accuracy: 0.9402 - val_auc: 0.9537
Epoch 19/40
2100/2100 [==============================] - 2555s 1s/step - loss: 0.2859 - tp: 21497494.0000 - fp: 2128539.0000 - tn: 77269760.0000 - fn: 2323349.0000 - precision: 0.9099 - recall: 0.9025 - accuracy: 0.9569 - auc: 0.9798 - val_loss: 0.
4337 - val_tp: 2842516.0000 - val_fp: 264846.0000 - val_tn: 11878934.0000 - val_fn: 742344.0000 - val_precision: 0.9148 - val_recall: 0.7929 - val_accuracy: 0.9360 - val_auc: 0.9550
Epoch 20/40
2100/2100 [==============================] - 2618s 1s/step - loss: 0.2902 - tp: 21548910.0000 - fp: 2102526.0000 - tn: 77221952.0000 - fn: 2345775.0000 - precision: 0.9111 - recall: 0.9018 - accuracy: 0.9569 - auc: 0.9791 - val_loss: 0.
5074 - val_tp: 2805182.0000 - val_fp: 105571.0000 - val_tn: 11861966.0000 - val_fn: 955921.0000 - val_precision: 0.9637 - val_recall: 0.7458 - val_accuracy: 0.9325 - val_auc: 0.9465
Epoch 21/40
2100/2100 [==============================] - 2633s 1s/step - loss: 0.2838 - tp: 21355176.0000 - fp: 2103115.0000 - tn: 77459040.0000 - fn: 2301871.0000 - precision: 0.9103 - recall: 0.9027 - accuracy: 0.9573 - auc: 0.9797 - val_loss: 0.
5292 - val_tp: 2876840.0000 - val_fp: 499247.0000 - val_tn: 11594560.0000 - val_fn: 757993.0000 - val_precision: 0.8521 - val_recall: 0.7915 - val_accuracy: 0.9201 - val_auc: 0.9410
Epoch 22/40
2100/2100 [==============================] - 2623s 1s/step - loss: 0.2770 - tp: 21105648.0000 - fp: 2105094.0000 - tn: 77782320.0000 - fn: 2226166.0000 - precision: 0.9093 - recall: 0.9046 - accuracy: 0.9580 - auc: 0.9804 - val_loss: 0.
4563 - val_tp: 2796040.0000 - val_fp: 290458.0000 - val_tn: 11870456.0000 - val_fn: 771686.0000 - val_precision: 0.9059 - val_recall: 0.7837 - val_accuracy: 0.9325 - val_auc: 0.9511
Epoch 23/40
2100/2100 [==============================] - 2604s 1s/step - loss: 0.2779 - tp: 21230712.0000 - fp: 2051525.0000 - tn: 77688872.0000 - fn: 2248134.0000 - precision: 0.9119 - recall: 0.9042 - accuracy: 0.9583 - auc: 0.9800 - val_loss: 0.
4772 - val_tp: 2839169.0000 - val_fp: 344193.0000 - val_tn: 11784262.0000 - val_fn: 761016.0000 - val_precision: 0.8919 - val_recall: 0.7886 - val_accuracy: 0.9297 - val_auc: 0.9486
Epoch 24/40
2100/2100 [==============================] - 2607s 1s/step - loss: 0.2831 - tp: 21599932.0000 - fp: 2114749.0000 - tn: 77206248.0000 - fn: 2298204.0000 - precision: 0.9108 - recall: 0.9038 - accuracy: 0.9572 - auc: 0.9799 - val_loss: 0.
4515 - val_tp: 3000318.0000 - val_fp: 428123.0000 - val_tn: 11603006.0000 - val_fn: 697193.0000 - val_precision: 0.8751 - val_recall: 0.8114 - val_accuracy: 0.9285 - val_auc: 0.9539
Epoch 25/40
2100/2100 [==============================] - 2608s 1s/step - loss: 0.2802 - tp: 21684768.0000 - fp: 2090639.0000 - tn: 77166856.0000 - fn: 2276865.0000 - precision: 0.9121 - recall: 0.9050 - accuracy: 0.9577 - auc: 0.9803 - val_loss: 0.
4666 - val_tp: 2881923.0000 - val_fp: 449549.0000 - val_tn: 11719217.0000 - val_fn: 677951.0000 - val_precision: 0.8651 - val_recall: 0.8096 - val_accuracy: 0.9283 - val_auc: 0.9492
Epoch 26/40
2100/2100 [==============================] - 2601s 1s/step - loss: 0.2817 - tp: 21424128.0000 - fp: 2071632.0000 - tn: 77450872.0000 - fn: 2272584.0000 - precision: 0.9118 - recall: 0.9041 - accuracy: 0.9579 - auc: 0.9798 - val_loss: 0.
4771 - val_tp: 2777236.0000 - val_fp: 523426.0000 - val_tn: 11747034.0000 - val_fn: 680944.0000 - val_precision: 0.8414 - val_recall: 0.8031 - val_accuracy: 0.9234 - val_auc: 0.9473
Epoch 27/40
2100/2100 [==============================] - 2557s 1s/step - loss: 0.2761 - tp: 21149424.0000 - fp: 2050887.0000 - tn: 77759664.0000 - fn: 2259208.0000 - precision: 0.9116 - recall: 0.9035 - accuracy: 0.9582 - auc: 0.9802 - val_loss: 0.
4809 - val_tp: 2766963.0000 - val_fp: 356057.0000 - val_tn: 11830343.0000 - val_fn: 775277.0000 - val_precision: 0.8860 - val_recall: 0.7811 - val_accuracy: 0.9281 - val_auc: 0.9473
Epoch 28/40
2100/2100 [==============================] - 2572s 1s/step - loss: 0.2787 - tp: 21614004.0000 - fp: 2105764.0000 - tn: 77265320.0000 - fn: 2234175.0000 - precision: 0.9112 - recall: 0.9063 - accuracy: 0.9580 - auc: 0.9804 - val_loss: 0.
4297 - val_tp: 2776882.0000 - val_fp: 304747.0000 - val_tn: 11905345.0000 - val_fn: 741666.0000 - val_precision: 0.9011 - val_recall: 0.7892 - val_accuracy: 0.9335 - val_auc: 0.9558
Epoch 29/40
2100/2100 [==============================] - 2592s 1s/step - loss: 0.2759 - tp: 21330060.0000 - fp: 2032687.0000 - tn: 77600192.0000 - fn: 2256365.0000 - precision: 0.9130 - recall: 0.9043 - accuracy: 0.9584 - auc: 0.9805 - val_loss: 0.
4579 - val_tp: 2999477.0000 - val_fp: 494545.0000 - val_tn: 11578967.0000 - val_fn: 655651.0000 - val_precision: 0.8585 - val_recall: 0.8206 - val_accuracy: 0.9269 - val_auc: 0.9534
Epoch 30/40
2100/2100 [==============================] - 2581s 1s/step - loss: 0.2724 - tp: 21130112.0000 - fp: 2033978.0000 - tn: 77848336.0000 - fn: 2206652.0000 - precision: 0.9122 - recall: 0.9054 - accuracy: 0.9589 - auc: 0.9804 - val_loss: 0.
4905 - val_tp: 2843808.0000 - val_fp: 315711.0000 - val_tn: 11777024.0000 - val_fn: 792097.0000 - val_precision: 0.9001 - val_recall: 0.7821 - val_accuracy: 0.9296 - val_auc: 0.9485
Epoch 31/40
2100/2100 [==============================] - 2600s 1s/step - loss: 0.2785 - tp: 21125680.0000 - fp: 2037613.0000 - tn: 77795080.0000 - fn: 2260802.0000 - precision: 0.9120 - recall: 0.9033 - accuracy: 0.9584 - auc: 0.9796 - val_loss: 0.
4386 - val_tp: 2841391.0000 - val_fp: 466262.0000 - val_tn: 11790714.0000 - val_fn: 630273.0000 - val_precision: 0.8590 - val_recall: 0.8185 - val_accuracy: 0.9303 - val_auc: 0.9549
Epoch 32/40
2100/2100 [==============================] - 2569s 1s/step - loss: 0.2780 - tp: 21701982.0000 - fp: 2120334.0000 - tn: 77174816.0000 - fn: 2221998.0000 - precision: 0.9110 - recall: 0.9071 - accuracy: 0.9579 - auc: 0.9802 - val_loss: 0.
4458 - val_tp: 2760528.0000 - val_fp: 256875.0000 - val_tn: 11974282.0000 - val_fn: 736955.0000 - val_precision: 0.9149 - val_recall: 0.7893 - val_accuracy: 0.9368 - val_auc: 0.9520
Epoch 33/40
2100/2100 [==============================] - 2558s 1s/step - loss: 0.2798 - tp: 21431360.0000 - fp: 2104855.0000 - tn: 77436496.0000 - fn: 2246416.0000 - precision: 0.9106 - recall: 0.9051 - accuracy: 0.9578 - auc: 0.9799 - val_loss: 0.
4787 - val_tp: 2902400.0000 - val_fp: 434973.0000 - val_tn: 11637810.0000 - val_fn: 753457.0000 - val_precision: 0.8697 - val_recall: 0.7939 - val_accuracy: 0.9244 - val_auc: 0.9494
Epoch 34/40
2100/2100 [==============================] - 2540s 1s/step - loss: 0.2773 - tp: 21209216.0000 - fp: 2046492.0000 - tn: 77703984.0000 - fn: 2259570.0000 - precision: 0.9120 - recall: 0.9037 - accuracy: 0.9583 - auc: 0.9800 - val_loss: 0.
4282 - val_tp: 2892899.0000 - val_fp: 378247.0000 - val_tn: 11801593.0000 - val_fn: 655901.0000 - val_precision: 0.8844 - val_recall: 0.8152 - val_accuracy: 0.9343 - val_auc: 0.9564
Epoch 35/40
2100/2100 [==============================] - 2548s 1s/step - loss: 0.2784 - tp: 21515622.0000 - fp: 2084525.0000 - tn: 77370184.0000 - fn: 2248908.0000 - precision: 0.9117 - recall: 0.9054 - accuracy: 0.9580 - auc: 0.9804 - val_loss: 0.
4553 - val_tp: 3086603.0000 - val_fp: 467495.0000 - val_tn: 11473592.0000 - val_fn: 700950.0000 - val_precision: 0.8685 - val_recall: 0.8149 - val_accuracy: 0.9257 - val_auc: 0.9544
Epoch 36/40
2100/2100 [==============================] - 2541s 1s/step - loss: 0.2708 - tp: 20892576.0000 - fp: 2005985.0000 - tn: 78121936.0000 - fn: 2198694.0000 - precision: 0.9124 - recall: 0.9048 - accuracy: 0.9593 - auc: 0.9805 - val_loss: 0.
4393 - val_tp: 2703510.0000 - val_fp: 394771.0000 - val_tn: 11969160.0000 - val_fn: 661199.0000 - val_precision: 0.8726 - val_recall: 0.8035 - val_accuracy: 0.9329 - val_auc: 0.9538
Epoch 37/40
2100/2100 [==============================] - 2552s 1s/step - loss: 0.2788 - tp: 21802620.0000 - fp: 2101735.0000 - tn: 77067912.0000 - fn: 2246918.0000 - precision: 0.9121 - recall: 0.9066 - accuracy: 0.9579 - auc: 0.9805 - val_loss: 0.
4474 - val_tp: 2806677.0000 - val_fp: 219556.0000 - val_tn: 11887825.0000 - val_fn: 814582.0000 - val_precision: 0.9274 - val_recall: 0.7751 - val_accuracy: 0.9343 - val_auc: 0.9537
Epoch 38/40
2100/2100 [==============================] - 2545s 1s/step - loss: 0.2769 - tp: 21191620.0000 - fp: 2046041.0000 - tn: 77717744.0000 - fn: 2263741.0000 - precision: 0.9120 - recall: 0.9035 - accuracy: 0.9582 - auc: 0.9801 - val_loss: 0.
4414 - val_tp: 2927919.0000 - val_fp: 286995.0000 - val_tn: 11783958.0000 - val_fn: 729768.0000 - val_precision: 0.9107 - val_recall: 0.8005 - val_accuracy: 0.9354 - val_auc: 0.9544
Epoch 39/40
2100/2100 [==============================] - 2545s 1s/step - loss: 0.2785 - tp: 21171298.0000 - fp: 2047544.0000 - tn: 77738952.0000 - fn: 2261357.0000 - precision: 0.9118 - recall: 0.9035 - accuracy: 0.9583 - auc: 0.9798 - val_loss: 0.
4576 - val_tp: 2779792.0000 - val_fp: 346642.0000 - val_tn: 11869174.0000 - val_fn: 733032.0000 - val_precision: 0.8891 - val_recall: 0.7913 - val_accuracy: 0.9314 - val_auc: 0.9517
Epoch 40/40
2100/2100 [==============================] - 2538s 1s/step - loss: 0.2811 - tp: 21804190.0000 - fp: 2110823.0000 - tn: 77014800.0000 - fn: 2289448.0000 - precision: 0.9117 - recall: 0.9050 - accuracy: 0.9574 - auc: 0.9803 - val_loss: 0.
4445 - val_tp: 2933937.0000 - val_fp: 327429.0000 - val_tn: 11730665.0000 - val_fn: 736609.0000 - val_precision: 0.8996 - val_recall: 0.7993 - val_accuracy: 0.9324 - val_auc: 0.9543
667/667 [==============================] - 163s 244ms/step - loss: 0.5248 - tp: 6207113.0000 - fp: 1521051.0000 - tn: 23569214.0000 - fn: 1470623.0000 - precision: 0.8032 - recall: 0.8085 - accuracy: 0.9087 - auc: 0.9439
2020/06/21 05:32:13 INFO mlflow.projects: === Run (ID '1e98b3ed2e1d421da9592058bd5587a8') succeeded ===

2.1.15 git exp 4

git status
git log -1
(tensorflow_nightly) [ye53nis@node161 drmed-git]$ git status
git log -1
# On branch exp-310520-unet
# Untracked files:
#   (use "git add <file>..." to include in what will be committed)
#   ...
nothing added to commit but untracked files present (use "git add" to track)

(tensorflow_nightly) [ye53nis@node161 drmed-git]$ git log -1
commit 8adaca82d8e092997828338bc2b730568c3ff74b
Author: Alex Seltmann <seltmann@posteo.de>
Date:   Mon Jun 22 00:45:48 2020 +0200

    exp-310520-unet run 3 bs=3

2.1.16 experimental run 4 - bs=7

mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src -P batch_size=7 -P epochs=40 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=910 -P validation_steps=225
2020/06/22 01:46:18 INFO mlflow.projects: === Created directory /tmp/tmpbqom5l09 for downloading remote URIs passed to arguments of type 'path' ===
2020/06/22 01:46:18 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/fluotracify/training/train.py /
beegfs/ye53nis/drmed-git/src 7 0.2 16384 None 40 /beegfs/ye53nis/saves/firstartefact_Sep2019 910 225' in run with ID '306234c75c9c48058cbd694579eff31b' ===
2020-06-22 01:46:38.397450: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory
2020-06-22 01:46:38.397497: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favour of importlib; see the modul
e's documentation for alternative uses
  import imp
2.3.0-dev20200527
2020-06-22 01:47:08.147584: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
2020-06-22 01:47:08.147650: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
2020-06-22 01:47:08.147696: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node161): /proc/driver/nvidia/version does not exist
GPUs:  []
train 0 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set027.csv
train 1 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set087.csv
train 2 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set003.csv
train 3 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set056.csv
train 4 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set076.csv
train 5 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set094.csv
train 6 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set017.csv
train 7 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set074.csv
train 8 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set055.csv
train 9 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set096.csv
train 10 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set054.csv
train 11 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set093.csv
train 12 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set079.csv
train 13 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set014.csv
train 14 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set008.csv
train 15 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set031.csv
train 16 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set023.csv
train 17 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set025.csv
train 18 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set034.csv
train 19 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set009.csv
train 20 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set044.csv
train 21 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set063.csv
train 22 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set004.csv
train 23 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set072.csv
train 24 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set046.csv
train 25 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set049.csv
train 26 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set007.csv
train 27 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set100.csv
train 28 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set083.csv
train 29 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set077.csv
train 30 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set061.csv
train 31 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set081.csv
train 32 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set091.csv
train 33 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set069.csv
train 34 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set052.csv
train 35 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set028.csv
train 36 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set019.csv
train 37 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set057.csv
train 38 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set064.csv
train 39 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set075.csv
train 40 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set002.csv
train 41 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set062.csv
train 42 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set043.csv
train 43 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set042.csv
train 44 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set005.csv
train 45 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set016.csv
train 46 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set018.csv
train 47 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set041.csv
train 48 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set039.csv
train 49 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set006.csv
train 50 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set092.csv
train 51 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set060.csv
train 52 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set001.csv
train 53 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set035.csv
train 54 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set029.csv
train 55 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set051.csv
train 56 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set012.csv
train 57 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set036.csv
train 58 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set024.csv
train 59 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set053.csv
train 60 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set011.csv
train 61 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set032.csv
train 62 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set067.csv
train 63 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set058.csv
train 64 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set080.csv
train 65 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set086.csv
train 66 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set033.csv
train 67 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set085.csv
train 68 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set015.csv
train 69 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set090.csv
train 70 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set020.csv
train 71 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set030.csv
train 72 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set050.csv
train 73 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set098.csv
train 74 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set099.csv
train 75 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set070.csv
train 76 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set021.csv
train 77 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set095.csv
train 78 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set073.csv
train 79 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set078.csv
test 80 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set026.csv
test 81 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set038.csv
test 82 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set082.csv
test 83 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set047.csv
test 84 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set040.csv
test 85 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set066.csv
test 86 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set059.csv
test 87 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set013.csv
test 88 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set089.csv
test 89 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set071.csv
test 90 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set088.csv
test 91 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set037.csv
test 92 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set022.csv
test 93 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set084.csv
test 94 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set010.csv
test 95 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set097.csv
test 96 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set068.csv
test 97 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set065.csv
test 98 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set048.csv
test 99 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set045.csv
shapes of feature dataframe: (20000, 8000) and label dataframe: (20000, 8000)
shapes of feature dataframe: (20000, 2000) and label dataframe: (20000, 2000)

for each 20,000 timestap trace there are the following numbers of corrupted timesteps:
 label001_1    6286
label001_1    2568
label001_1    4495
label001_1    4414
label001_1    1105
dtype: int64
2020-06-22 01:52:37.438938: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2020-06-22 01:52:37.449993: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2300000000 Hz
2020-06-22 01:52:37.451959: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5592ec827380 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-06-22 01:52:37.451991: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
number of training examples: 6400, number of validation examples: 1600

------------------------
number of test examples: 2000

input - shape:   (None, 16384, 1)
output - shape:  (None, 16384, 1)
2020-06-22 01:52:41.793790: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the ABCs from 'collections' instead
 of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
  if not isinstance(wrapped_dict, collections.Mapping):
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Python 3.0, use inspect.signature()
 or inspect.getfullargspec()
  all_param_names, _, _, all_default_values = inspect.getargspec(fn)  # pylint: disable=W1505
Epoch 1/40
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from
'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
  if not isinstance(values, collections.Sequence):
  1/910 [..............................] - ETA: 0s - loss: 1.5123 - tp: 3489.0000 - fp: 12945.0000 - tn: 73461.0000 - fn: 24793.0000 - precision: 0.2123 - recall: 0.1234 - accuracy: 0.6710 - auc: 0.49312020-06-22 01:52:55.410673: I tens
orflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and w
ill be removed after 2020-07-01.
Instructions for updating:
use `tf.profiler.experimental.stop` instead.
2020-06-22 01:52:57.883904: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_22_01_52_57
2020-06-22 01:52:57.900920: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.trace.json.gz
2020-06-22 01:52:57.938257: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_06_22_01_52_57
2020-06-22 01:52:57.938413: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.memory_profile.json.gz
2020-06-22 01:52:57.941154: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_06_22_01_52_57Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2020_06_22_0
1_52_57/node161.xplane.pb
Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.overview_page.pb
Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.input_pipeline.pb
Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.tensorflow_stats.pb
Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_06_22_01_52_57/node161.kernel_stats.pb

910/910 [==============================] - 2234s 2s/step - loss: 1.1284 - tp: 16644571.0000 - fp: 5060115.0000 - tn: 75211888.0000 - fn: 7449514.0000 - precision: 0.7669 - recall: 0.6908 - accuracy: 0.8801 - auc: 0.9092 - val_loss: 44.1
496 - val_tp: 5991771.0000 - val_fp: 19810554.0000 - val_tn: 2354.0000 - val_fn: 117.0000 - val_precision: 0.2322 - val_recall: 1.0000 - val_accuracy: 0.2323 - val_auc: 0.5235
Epoch 2/40
910/910 [==============================] - 2228s 2s/step - loss: 0.6506 - tp: 18676100.0000 - fp: 3725706.0000 - tn: 76768256.0000 - fn: 5196001.0000 - precision: 0.8337 - recall: 0.7823 - accuracy: 0.9145 - auc: 0.9421 - val_loss: 4.02
94 - val_tp: 5567715.0000 - val_fp: 7766004.0000 - val_tn: 12285671.0000 - val_fn: 185410.0000 - val_precision: 0.4176 - val_recall: 0.9678 - val_accuracy: 0.6919 - val_auc: 0.8550
Epoch 3/40
910/910 [==============================] - 2209s 2s/step - loss: 0.4869 - tp: 19773668.0000 - fp: 3339711.0000 - tn: 77156064.0000 - fn: 4096586.0000 - precision: 0.8555 - recall: 0.8284 - accuracy: 0.9287 - auc: 0.9571 - val_loss: 15.0
428 - val_tp: 5964847.0000 - val_fp: 16182339.0000 - val_tn: 3635866.0000 - val_fn: 21748.0000 - val_precision: 0.2693 - val_recall: 0.9964 - val_accuracy: 0.3721 - val_auc: 0.6686
Epoch 4/40
910/910 [==============================] - 2196s 2s/step - loss: 0.4160 - tp: 20489738.0000 - fp: 2947256.0000 - tn: 77507616.0000 - fn: 3421442.0000 - precision: 0.8742 - recall: 0.8569 - accuracy: 0.9390 - auc: 0.9659 - val_loss: 1.94
92 - val_tp: 5844006.0000 - val_fp: 12298817.0000 - val_tn: 7631163.0000 - val_fn: 30814.0000 - val_precision: 0.3221 - val_recall: 0.9948 - val_accuracy: 0.5222 - val_auc: 0.9445
Epoch 5/40
910/910 [==============================] - 2197s 2s/step - loss: 0.3808 - tp: 20651254.0000 - fp: 2753622.0000 - tn: 77775072.0000 - fn: 3186176.0000 - precision: 0.8823 - recall: 0.8663 - accuracy: 0.9431 - auc: 0.9697 - val_loss: 0.48
60 - val_tp: 5068080.0000 - val_fp: 972440.0000 - val_tn: 19094874.0000 - val_fn: 669407.0000 - val_precision: 0.8390 - val_recall: 0.8833 - val_accuracy: 0.9364 - val_auc: 0.9722
Epoch 6/40
910/910 [==============================] - 2186s 2s/step - loss: 0.3788 - tp: 20770170.0000 - fp: 2708911.0000 - tn: 77787896.0000 - fn: 3099100.0000 - precision: 0.8846 - recall: 0.8702 - accuracy: 0.9444 - auc: 0.9703 - val_loss: 0.86
28 - val_tp: 5389513.0000 - val_fp: 2524440.0000 - val_tn: 17394656.0000 - val_fn: 496188.0000 - val_precision: 0.6810 - val_recall: 0.9157 - val_accuracy: 0.8829 - val_auc: 0.9492
Epoch 7/40
910/910 [==============================] - 2187s 2s/step - loss: 0.3621 - tp: 21038052.0000 - fp: 2650316.0000 - tn: 77692112.0000 - fn: 2985530.0000 - precision: 0.8881 - recall: 0.8757 - accuracy: 0.9460 - auc: 0.9724 - val_loss: 0.90
81 - val_tp: 5562172.0000 - val_fp: 3465595.0000 - val_tn: 16430461.0000 - val_fn: 346572.0000 - val_precision: 0.6161 - val_recall: 0.9413 - val_accuracy: 0.8523 - val_auc: 0.9356
Epoch 8/40
910/910 [==============================] - 2193s 2s/step - loss: 0.3553 - tp: 20964808.0000 - fp: 2536411.0000 - tn: 77880080.0000 - fn: 2984777.0000 - precision: 0.8921 - recall: 0.8754 - accuracy: 0.9471 - auc: 0.9726 - val_loss: 1.75
52 - val_tp: 5773672.0000 - val_fp: 6575655.0000 - val_tn: 13365159.0000 - val_fn: 90314.0000 - val_precision: 0.4675 - val_recall: 0.9846 - val_accuracy: 0.7417 - val_auc: 0.9457
Epoch 9/40
910/910 [==============================] - 2191s 2s/step - loss: 0.3477 - tp: 20855856.0000 - fp: 2530233.0000 - tn: 78070912.0000 - fn: 2908993.0000 - precision: 0.8918 - recall: 0.8776 - accuracy: 0.9479 - auc: 0.9732 - val_loss: 5.37
18 - val_tp: 5639818.0000 - val_fp: 10545935.0000 - val_tn: 9573186.0000 - val_fn: 45861.0000 - val_precision: 0.3484 - val_recall: 0.9919 - val_accuracy: 0.5895 - val_auc: 0.8627
Epoch 10/40
910/910 [==============================] - 2198s 2s/step - loss: 0.3453 - tp: 20967864.0000 - fp: 2537372.0000 - tn: 77932464.0000 - fn: 2928327.0000 - precision: 0.8921 - recall: 0.8775 - accuracy: 0.9476 - auc: 0.9739 - val_loss: 6.18
03 - val_tp: 5843714.0000 - val_fp: 6972956.0000 - val_tn: 12840040.0000 - val_fn: 148090.0000 - val_precision: 0.4559 - val_recall: 0.9753 - val_accuracy: 0.7240 - val_auc: 0.8662
Epoch 11/40
910/910 [==============================] - 2199s 2s/step - loss: 0.3386 - tp: 21061526.0000 - fp: 2493371.0000 - tn: 77979232.0000 - fn: 2831932.0000 - precision: 0.8941 - recall: 0.8815 - accuracy: 0.9490 - auc: 0.9744 - val_loss: 1.93
77 - val_tp: 5141006.0000 - val_fp: 5024287.0000 - val_tn: 14889905.0000 - val_fn: 749602.0000 - val_precision: 0.5057 - val_recall: 0.8727 - val_accuracy: 0.7762 - val_auc: 0.8851
Epoch 12/40
910/910 [==============================] - 2189s 2s/step - loss: 0.3032 - tp: 21443394.0000 - fp: 2244059.0000 - tn: 78197192.0000 - fn: 2481465.0000 - precision: 0.9053 - recall: 0.8963 - accuracy: 0.9547 - auc: 0.9782 - val_loss: 0.41
02 - val_tp: 4447303.0000 - val_fp: 81983.0000 - val_tn: 19938508.0000 - val_fn: 1337008.0000 - val_precision: 0.9819 - val_recall: 0.7689 - val_accuracy: 0.9450 - val_auc: 0.9689
Epoch 13/40
910/910 [==============================] - 2190s 2s/step - loss: 0.2934 - tp: 21384318.0000 - fp: 2224470.0000 - tn: 78382704.0000 - fn: 2374534.0000 - precision: 0.9058 - recall: 0.9001 - accuracy: 0.9559 - auc: 0.9790 - val_loss: 0.39
33 - val_tp: 4709935.0000 - val_fp: 185454.0000 - val_tn: 19874024.0000 - val_fn: 1035376.0000 - val_precision: 0.9621 - val_recall: 0.8198 - val_accuracy: 0.9527 - val_auc: 0.9764
Epoch 14/40
910/910 [==============================] - 2191s 2s/step - loss: 0.2891 - tp: 21659198.0000 - fp: 2221361.0000 - tn: 78137264.0000 - fn: 2348280.0000 - precision: 0.9070 - recall: 0.9022 - accuracy: 0.9562 - auc: 0.9795 - val_loss: 0.34
77 - val_tp: 4962272.0000 - val_fp: 238349.0000 - val_tn: 19698052.0000 - val_fn: 906131.0000 - val_precision: 0.9542 - val_recall: 0.8456 - val_accuracy: 0.9556 - val_auc: 0.9784
Epoch 15/40
910/910 [==============================] - 2190s 2s/step - loss: 0.2855 - tp: 21305984.0000 - fp: 2168209.0000 - tn: 78570984.0000 - fn: 2320894.0000 - precision: 0.9076 - recall: 0.9018 - accuracy: 0.9570 - auc: 0.9794 - val_loss: 0.42
92 - val_tp: 5448927.0000 - val_fp: 691788.0000 - val_tn: 19190140.0000 - val_fn: 473948.0000 - val_precision: 0.8873 - val_recall: 0.9200 - val_accuracy: 0.9548 - val_auc: 0.9843
Epoch 16/40
910/910 [==============================] - 2206s 2s/step - loss: 0.2860 - tp: 21768336.0000 - fp: 2197317.0000 - tn: 78071472.0000 - fn: 2328913.0000 - precision: 0.9083 - recall: 0.9034 - accuracy: 0.9566 - auc: 0.9798 - val_loss: 0.38
76 - val_tp: 5178300.0000 - val_fp: 782337.0000 - val_tn: 19316320.0000 - val_fn: 527843.0000 - val_precision: 0.8687 - val_recall: 0.9075 - val_accuracy: 0.9492 - val_auc: 0.9825
Epoch 17/40
910/910 [==============================] - 2195s 2s/step - loss: 0.2846 - tp: 21434488.0000 - fp: 2169029.0000 - tn: 78438552.0000 - fn: 2324017.0000 - precision: 0.9081 - recall: 0.9022 - accuracy: 0.9570 - auc: 0.9797 - val_loss: 0.30
14 - val_tp: 5075497.0000 - val_fp: 245322.0000 - val_tn: 19617398.0000 - val_fn: 866585.0000 - val_precision: 0.9539 - val_recall: 0.8542 - val_accuracy: 0.9569 - val_auc: 0.9784
Epoch 18/40
910/910 [==============================] - 2194s 2s/step - loss: 0.2779 - tp: 21615928.0000 - fp: 2131081.0000 - tn: 78362064.0000 - fn: 2257103.0000 - precision: 0.9103 - recall: 0.9055 - accuracy: 0.9580 - auc: 0.9802 - val_loss: 0.35
91 - val_tp: 5315886.0000 - val_fp: 630662.0000 - val_tn: 19377184.0000 - val_fn: 481064.0000 - val_precision: 0.8939 - val_recall: 0.9170 - val_accuracy: 0.9569 - val_auc: 0.9853
Epoch 19/40
910/910 [==============================] - 2199s 2s/step - loss: 0.2810 - tp: 21823838.0000 - fp: 2154952.0000 - tn: 78086368.0000 - fn: 2300819.0000 - precision: 0.9101 - recall: 0.9046 - accuracy: 0.9573 - auc: 0.9804 - val_loss: 0.29
36 - val_tp: 5247304.0000 - val_fp: 327869.0000 - val_tn: 19475176.0000 - val_fn: 754455.0000 - val_precision: 0.9412 - val_recall: 0.8743 - val_accuracy: 0.9581 - val_auc: 0.9805
Epoch 20/40
910/910 [==============================] - 2192s 2s/step - loss: 0.2764 - tp: 21738176.0000 - fp: 2123769.0000 - tn: 78235688.0000 - fn: 2268399.0000 - precision: 0.9110 - recall: 0.9055 - accuracy: 0.9579 - auc: 0.9807 - val_loss: 0.31
80 - val_tp: 5172404.0000 - val_fp: 301019.0000 - val_tn: 19568382.0000 - val_fn: 762993.0000 - val_precision: 0.9450 - val_recall: 0.8715 - val_accuracy: 0.9588 - val_auc: 0.9816
Epoch 21/40
910/910 [==============================] - 2198s 2s/step - loss: 0.2753 - tp: 21565306.0000 - fp: 2109464.0000 - tn: 78441872.0000 - fn: 2249478.0000 - precision: 0.9109 - recall: 0.9055 - accuracy: 0.9582 - auc: 0.9805 - val_loss: 0.32
99 - val_tp: 4898108.0000 - val_fp: 133276.0000 - val_tn: 19742242.0000 - val_fn: 1031169.0000 - val_precision: 0.9735 - val_recall: 0.8261 - val_accuracy: 0.9549 - val_auc: 0.9758
Epoch 22/40
910/910 [==============================] - 2194s 2s/step - loss: 0.2705 - tp: 21872064.0000 - fp: 2096978.0000 - tn: 78186784.0000 - fn: 2210292.0000 - precision: 0.9125 - recall: 0.9082 - accuracy: 0.9587 - auc: 0.9812 - val_loss: 0.32
48 - val_tp: 5379907.0000 - val_fp: 361207.0000 - val_tn: 19421612.0000 - val_fn: 642071.0000 - val_precision: 0.9371 - val_recall: 0.8934 - val_accuracy: 0.9611 - val_auc: 0.9833
Epoch 23/40
910/910 [==============================] - 2192s 2s/step - loss: 0.2693 - tp: 21757518.0000 - fp: 2089232.0000 - tn: 78320768.0000 - fn: 2198508.0000 - precision: 0.9124 - recall: 0.9082 - accuracy: 0.9589 - auc: 0.9810 - val_loss: 0.29
60 - val_tp: 5305212.0000 - val_fp: 364327.0000 - val_tn: 19508656.0000 - val_fn: 626605.0000 - val_precision: 0.9357 - val_recall: 0.8944 - val_accuracy: 0.9616 - val_auc: 0.9831
Epoch 24/40
910/910 [==============================] - 2182s 2s/step - loss: 0.2644 - tp: 21582250.0000 - fp: 2055042.0000 - tn: 78581192.0000 - fn: 2147551.0000 - precision: 0.9131 - recall: 0.9095 - accuracy: 0.9597 - auc: 0.9816 - val_loss: 0.31
56 - val_tp: 5259415.0000 - val_fp: 362064.0000 - val_tn: 19527056.0000 - val_fn: 656259.0000 - val_precision: 0.9356 - val_recall: 0.8891 - val_accuracy: 0.9605 - val_auc: 0.9826
Epoch 25/40
910/910 [==============================] - 2182s 2s/step - loss: 0.2646 - tp: 21752094.0000 - fp: 2060925.0000 - tn: 78391832.0000 - fn: 2161242.0000 - precision: 0.9135 - recall: 0.9096 - accuracy: 0.9595 - auc: 0.9816 - val_loss: 0.30
17 - val_tp: 5312792.0000 - val_fp: 398301.0000 - val_tn: 19491284.0000 - val_fn: 602422.0000 - val_precision: 0.9303 - val_recall: 0.8982 - val_accuracy: 0.9612 - val_auc: 0.9832
Epoch 26/40
910/910 [==============================] - 2111s 2s/step - loss: 0.2703 - tp: 21731022.0000 - fp: 2103277.0000 - tn: 78346144.0000 - fn: 2185602.0000 - precision: 0.9118 - recall: 0.9086 - accuracy: 0.9589 - auc: 0.9811 - val_loss: 0.31
48 - val_tp: 5491565.0000 - val_fp: 401219.0000 - val_tn: 19289576.0000 - val_fn: 622446.0000 - val_precision: 0.9319 - val_recall: 0.8982 - val_accuracy: 0.9603 - val_auc: 0.9844
Epoch 27/40
910/910 [==============================] - 2066s 2s/step - loss: 0.2638 - tp: 21622916.0000 - fp: 2036434.0000 - tn: 78564656.0000 - fn: 2142006.0000 - precision: 0.9139 - recall: 0.9099 - accuracy: 0.9600 - auc: 0.9815 - val_loss: 0.28
12 - val_tp: 5310123.0000 - val_fp: 347345.0000 - val_tn: 19514636.0000 - val_fn: 632692.0000 - val_precision: 0.9386 - val_recall: 0.8935 - val_accuracy: 0.9620 - val_auc: 0.9826
Epoch 28/40
910/910 [==============================] - 2084s 2s/step - loss: 0.2644 - tp: 21746928.0000 - fp: 2054824.0000 - tn: 78423840.0000 - fn: 2140490.0000 - precision: 0.9137 - recall: 0.9104 - accuracy: 0.9598 - auc: 0.9815 - val_loss: 0.29
02 - val_tp: 5105988.0000 - val_fp: 301224.0000 - val_tn: 19705344.0000 - val_fn: 692246.0000 - val_precision: 0.9443 - val_recall: 0.8806 - val_accuracy: 0.9615 - val_auc: 0.9816
Epoch 29/40
910/910 [==============================] - 2091s 2s/step - loss: 0.2657 - tp: 21903456.0000 - fp: 2055350.0000 - tn: 78244200.0000 - fn: 2163118.0000 - precision: 0.9142 - recall: 0.9101 - accuracy: 0.9596 - auc: 0.9816 - val_loss: 0.29
28 - val_tp: 5111563.0000 - val_fp: 355341.0000 - val_tn: 19707988.0000 - val_fn: 629909.0000 - val_precision: 0.9350 - val_recall: 0.8903 - val_accuracy: 0.9618 - val_auc: 0.9825
Epoch 30/40
910/910 [==============================] - 2097s 2s/step - loss: 0.2663 - tp: 22007504.0000 - fp: 2072930.0000 - tn: 78112200.0000 - fn: 2173470.0000 - precision: 0.9139 - recall: 0.9101 - accuracy: 0.9593 - auc: 0.9816 - val_loss: 0.30
39 - val_tp: 5361046.0000 - val_fp: 369167.0000 - val_tn: 19426364.0000 - val_fn: 648220.0000 - val_precision: 0.9356 - val_recall: 0.8921 - val_accuracy: 0.9606 - val_auc: 0.9831
Epoch 31/40
910/910 [==============================] - 2092s 2s/step - loss: 0.2670 - tp: 21883968.0000 - fp: 2114417.0000 - tn: 78182464.0000 - fn: 2185257.0000 - precision: 0.9119 - recall: 0.9092 - accuracy: 0.9588 - auc: 0.9816 - val_loss: 0.29
74 - val_tp: 5307833.0000 - val_fp: 308903.0000 - val_tn: 19507264.0000 - val_fn: 680801.0000 - val_precision: 0.9450 - val_recall: 0.8863 - val_accuracy: 0.9616 - val_auc: 0.9830
Epoch 32/40
910/910 [==============================] - 2168s 2s/step - loss: 0.2678 - tp: 21697564.0000 - fp: 2002839.0000 - tn: 78462496.0000 - fn: 2203202.0000 - precision: 0.9155 - recall: 0.9078 - accuracy: 0.9597 - auc: 0.9811 - val_loss: 0.29
81 - val_tp: 4991380.0000 - val_fp: 318033.0000 - val_tn: 19848366.0000 - val_fn: 647024.0000 - val_precision: 0.9401 - val_recall: 0.8852 - val_accuracy: 0.9626 - val_auc: 0.9819
Epoch 33/40
910/910 [==============================] - 2143s 2s/step - loss: 0.2641 - tp: 21608556.0000 - fp: 2029292.0000 - tn: 78569336.0000 - fn: 2158886.0000 - precision: 0.9142 - recall: 0.9092 - accuracy: 0.9599 - auc: 0.9815 - val_loss: 0.30
89 - val_tp: 5377773.0000 - val_fp: 383774.0000 - val_tn: 19419054.0000 - val_fn: 624197.0000 - val_precision: 0.9334 - val_recall: 0.8960 - val_accuracy: 0.9609 - val_auc: 0.9835
Epoch 34/40
910/910 [==============================] - 2148s 2s/step - loss: 0.2636 - tp: 21989192.0000 - fp: 2079253.0000 - tn: 78164408.0000 - fn: 2133219.0000 - precision: 0.9136 - recall: 0.9116 - accuracy: 0.9596 - auc: 0.9818 - val_loss: 0.28
72 - val_tp: 5242507.0000 - val_fp: 383622.0000 - val_tn: 19573328.0000 - val_fn: 605341.0000 - val_precision: 0.9318 - val_recall: 0.8965 - val_accuracy: 0.9617 - val_auc: 0.9836
Epoch 35/40
910/910 [==============================] - 2156s 2s/step - loss: 0.2642 - tp: 21771006.0000 - fp: 2059886.0000 - tn: 78393632.0000 - fn: 2141526.0000 - precision: 0.9136 - recall: 0.9104 - accuracy: 0.9597 - auc: 0.9816 - val_loss: 0.30
80 - val_tp: 5192984.0000 - val_fp: 352885.0000 - val_tn: 19633610.0000 - val_fn: 625321.0000 - val_precision: 0.9364 - val_recall: 0.8925 - val_accuracy: 0.9621 - val_auc: 0.9832
Epoch 36/40
910/910 [==============================] - 2114s 2s/step - loss: 0.2641 - tp: 21936120.0000 - fp: 2076747.0000 - tn: 78200080.0000 - fn: 2153085.0000 - precision: 0.9135 - recall: 0.9106 - accuracy: 0.9595 - auc: 0.9818 - val_loss: 0.29
62 - val_tp: 5151439.0000 - val_fp: 372261.0000 - val_tn: 19674524.0000 - val_fn: 606575.0000 - val_precision: 0.9326 - val_recall: 0.8947 - val_accuracy: 0.9621 - val_auc: 0.9835
Epoch 37/40
910/910 [==============================] - 2083s 2s/step - loss: 0.2591 - tp: 21745408.0000 - fp: 2014129.0000 - tn: 78506376.0000 - fn: 2100146.0000 - precision: 0.9152 - recall: 0.9119 - accuracy: 0.9606 - auc: 0.9821 - val_loss: 0.28
98 - val_tp: 5332435.0000 - val_fp: 349131.0000 - val_tn: 19493176.0000 - val_fn: 630050.0000 - val_precision: 0.9386 - val_recall: 0.8943 - val_accuracy: 0.9621 - val_auc: 0.9841
Epoch 38/40
910/910 [==============================] - 2067s 2s/step - loss: 0.2677 - tp: 22040308.0000 - fp: 2034232.0000 - tn: 78099864.0000 - fn: 2191664.0000 - precision: 0.9155 - recall: 0.9096 - accuracy: 0.9595 - auc: 0.9813 - val_loss: 0.30
58 - val_tp: 5293916.0000 - val_fp: 364251.0000 - val_tn: 19503016.0000 - val_fn: 643618.0000 - val_precision: 0.9356 - val_recall: 0.8916 - val_accuracy: 0.9609 - val_auc: 0.9818
Epoch 39/40
910/910 [==============================] - 2088s 2s/step - loss: 0.2665 - tp: 21782964.0000 - fp: 2071501.0000 - tn: 78364600.0000 - fn: 2146992.0000 - precision: 0.9132 - recall: 0.9103 - accuracy: 0.9596 - auc: 0.9812 - val_loss: 0.28
94 - val_tp: 5190450.0000 - val_fp: 358739.0000 - val_tn: 19624484.0000 - val_fn: 631125.0000 - val_precision: 0.9354 - val_recall: 0.8916 - val_accuracy: 0.9616 - val_auc: 0.9823
Epoch 40/40
910/910 [==============================] - 2093s 2s/step - loss: 0.2610 - tp: 21703476.0000 - fp: 2048057.0000 - tn: 78489664.0000 - fn: 2124881.0000 - precision: 0.9138 - recall: 0.9108 - accuracy: 0.9600 - auc: 0.9819 - val_loss: 0.28
97 - val_tp: 5014376.0000 - val_fp: 339650.0000 - val_tn: 19831600.0000 - val_fn: 619172.0000 - val_precision: 0.9366 - val_recall: 0.8901 - val_accuracy: 0.9628 - val_auc: 0.9828
286/286 [==============================] - 134s 469ms/step - loss: 0.3156 - tp: 6887079.0000 - fp: 534559.0000 - tn: 24555692.0000 - fn: 790657.0000 - precision: 0.9280 - recall: 0.8970 - accuracy: 0.9596 - auc: 0.9821
2020/06/23 01:58:39 INFO mlflow.projects: === Run (ID '306234c75c9c48058cbd694579eff31b') succeeded ===




2.1.17 git exp 5

git status
git log -1
(base) [ye53nis@node011 drmed-git]$ git status
git log -1
# On branch exp-310520-unet
# ...
no changes added to commit (use "git add" and/or "git commit -a")

(base) [ye53nis@node011 drmed-git]$ git log -1
commit 8811f54920c7089b8a27d7f39a50acede5be64c9
Author: Apoplex <oligolex@vivaldi.net>
Date:   Fri Jul 3 00:51:59 2020 +0200

    Incorporate unet prediction in plotting function

2.1.18 experimental run 5 - full dataset, length=2**13=8192

mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src -P batch_size=5 -P length_delimiter=8192 -P epochs=40 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact_Sep2019 -P steps_per_epoch=1280 -P validation_steps=320
(tensorflow_nightly) [ye53nis@node011 drmed-git]$ mlflow run . -P fluotracify_path=/beegfs/ye53nis/drmed-git/src -P batch_size=5 -P length_delimiter=8192 -P epochs=40 -P learning_rate=None -P csv_path=/beegfs/ye53nis/saves/firstartefact
_Sep2019 -P steps_per_epoch=1280 -P validation_steps=320
2020/07/03 13:45:30 INFO mlflow.projects: === Created directory /tmp/tmpqf8ewz0u for downloading remote URIs passed to arguments of type 'path' ===
2020/07/03 13:45:30 INFO mlflow.projects: === Running command 'source /cluster/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b 1>&2 && python src/fluotracify/training/train.py /
beegfs/ye53nis/drmed-git/src 5 0.2 8192 None 40 /beegfs/ye53nis/saves/firstartefact_Sep2019 1280 320' in run with ID 'd9b44dc2e3d44ea1a71129808b642af6' ===
2020-07-03 13:45:57.151501: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory
2020-07-03 13:45:57.151600: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py:23: DeprecationWarning: the imp module is deprecated in favour of importlib; see the modul
e's documentation for alternative uses
  import imp
2.3.0-dev20200527
2020-07-03 13:46:34.363762: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
2020-07-03 13:46:34.363823: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
2020-07-03 13:46:34.363865: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (node011): /proc/driver/nvidia/version does not exist
GPUs:  []
train 0 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set027.csv
train 1 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set087.csv
train 2 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set003.csv
train 3 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set056.csv
train 4 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set076.csv
train 5 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set094.csv
train 6 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set017.csv
train 7 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set074.csv
train 8 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set055.csv
train 9 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set096.csv
train 10 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set054.csv
train 11 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set093.csv
train 12 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set079.csv
train 13 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set014.csv
train 14 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set008.csv
train 15 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set031.csv
train 16 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set023.csv
train 17 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set025.csv
train 18 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set034.csv
train 19 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set009.csv
train 20 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set044.csv
train 21 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set063.csv
train 22 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set004.csv
train 23 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set072.csv
train 24 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set046.csv
train 25 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set049.csv
train 26 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set007.csv
train 27 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set100.csv
train 28 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set083.csv
train 29 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set077.csv
train 30 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set061.csv
train 31 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set081.csv
train 32 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set091.csv
train 33 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set069.csv
train 34 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set052.csv
train 35 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set028.csv
train 36 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set019.csv
train 37 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set057.csv
train 38 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set064.csv
train 39 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set075.csv
train 40 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set002.csv
train 41 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set062.csv
train 42 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set043.csv
train 43 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set042.csv
train 44 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set005.csv
train 45 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set016.csv
train 46 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set018.csv
train 47 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set041.csv
train 48 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set039.csv
train 49 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set006.csv
train 50 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set092.csv
train 51 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set060.csv
train 52 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set001.csv
train 53 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set035.csv
train 54 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set029.csv
train 55 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set051.csv
train 56 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set012.csv
train 57 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set036.csv
train 58 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set024.csv
train 59 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set053.csv
train 60 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set011.csv
train 61 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set032.csv
train 62 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set067.csv
train 63 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set058.csv
train 64 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set080.csv
train 65 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set086.csv
train 66 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set033.csv
train 67 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set085.csv
train 68 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set015.csv
train 69 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set090.csv
train 70 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set020.csv
train 71 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set030.csv
train 72 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set050.csv
train 73 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set098.csv
train 74 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set099.csv
train 75 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set070.csv
train 76 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set021.csv
train 77 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set095.csv
train 78 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set073.csv
train 79 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set078.csv
test 80 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set026.csv
test 81 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set038.csv
test 82 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set082.csv
test 83 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set047.csv
test 84 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set040.csv
test 85 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set066.csv
test 86 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set059.csv
test 87 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set013.csv
test 88 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set089.csv
test 89 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set071.csv
test 90 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set088.csv
test 91 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set037.csv
test 92 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set022.csv
test 93 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set084.csv
test 94 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set010.csv
test 95 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set097.csv
test 96 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set068.csv
test 97 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set065.csv
test 98 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set048.csv
test 99 /beegfs/ye53nis/saves/firstartefact_Sep2019/traces_cluster_rand_Sep2019_set045.csv
shapes of feature dataframe: (20000, 8000) and label dataframe: (20000, 8000)
shapes of feature dataframe: (20000, 2000) and label dataframe: (20000, 2000)

for each 20,000 timestap trace there are the following numbers of corrupted timesteps:
 label001_1    6286
label001_1    2568
label001_1    4495
label001_1    4414
label001_1    1105
dtype: int64
2020-07-03 13:52:37.767508: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance-critical operations:  AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2020-07-03 13:52:37.782937: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2194930000 Hz
2020-07-03 13:52:37.784247: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55e467051fe0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-07-03 13:52:37.784290: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
number of training examples: 6400, number of validation examples: 1600

------------------------
number of test examples: 2000

input - shape:   (None, 8192, 1)
output - shape:  (None, 8192, 1)
2020-07-03 13:52:43.215627: I tensorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/training/tracking/data_structures.py:739: DeprecationWarning: Using or importing the ABCs from 'collections' instead
 of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
  if not isinstance(wrapped_dict, collections.Mapping):
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/mlflow/utils/autologging_utils.py:60: DeprecationWarning: inspect.getargspec() is deprecated since Python 3.0, use inspect.signature()
 or inspect.getfullargspec()
  all_param_names, _, _, all_default_values = inspect.getargspec(fn)  # pylint: disable=W1505
Epoch 1/40
/home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:347: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from
'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
  if not isinstance(values, collections.Sequence):
   1/1280 [..............................] - ETA: 0s - loss: 1.2862 - tp: 16168.0000 - fp: 12373.0000 - tn: 7437.0000 - fn: 4982.0000 - precision: 0.5665 - recall: 0.7644 - accuracy: 0.5763 - auc: 0.63882020-07-03 13:52:58.138783: I ten
sorflow/core/profiler/lib/profiler_session.cc:163] Profiler session started.
WARNING:tensorflow:From /home/ye53nis/.conda/envs/mlflow-c61a56dd06e99e6740b7159c7af9d54a736a4e4b/lib/python3.8/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and w
ill be removed after 2020-07-01.
Instructions for updating:
use `tf.profiler.experimental.stop` instead.
2020-07-03 13:52:59.481566: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_07_03_13_52_59
2020-07-03 13:52:59.501564: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for trace.json.gz to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.trace.json.gz
2020-07-03 13:52:59.538369: I tensorflow/core/profiler/rpc/client/save_profile.cc:176] Creating directory: /tmp/tb/train/plugins/profile/2020_07_03_13_52_59
2020-07-03 13:52:59.538526: I tensorflow/core/profiler/rpc/client/save_profile.cc:182] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.memory_profile.json.gz
2020-07-03 13:52:59.541206: I tensorflow/python/profiler/internal/profiler_wrapper.cc:111] Creating directory: /tmp/tb/train/plugins/profile/2020_07_03_13_52_59Dumped tool data for xplane.pb to /tmp/tb/train/plugins/profile/2020_07_03_1
3_52_59/node011.xplane.pb
Dumped tool data for overview_page.pb to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.overview_page.pb
Dumped tool data for input_pipeline.pb to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.input_pipeline.pb
Dumped tool data for tensorflow_stats.pb to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.tensorflow_stats.pb
Dumped tool data for kernel_stats.pb to /tmp/tb/train/plugins/profile/2020_07_03_13_52_59/node011.kernel_stats.pb

1280/1280 [==============================] - 1780s 1s/step - loss: 1.1858 - tp: 7339984.0000 - fp: 2874113.0000 - tn: 37719448.0000 - fn: 4495237.0000 - precision: 0.7186 - recall: 0.6202 - accuracy: 0.8594 - auc: 0.8832 - val_loss: 2.1
472 - val_tp: 2536431.0000 - val_fp: 7204421.0000 - val_tn: 3012796.0000 - val_fn: 353552.0000 - val_precision: 0.2604 - val_recall: 0.8777 - val_accuracy: 0.4234 - val_auc: 0.7624
Epoch 2/40
1280/1280 [==============================] - 1779s 1s/step - loss: 1.0617 - tp: 7423177.0000 - fp: 2931677.0000 - tn: 37621800.0000 - fn: 4452150.0000 - precision: 0.7169 - recall: 0.6251 - accuracy: 0.8592 - auc: 0.8778 - val_loss: 3.9
428 - val_tp: 2825884.0000 - val_fp: 7982935.0000 - val_tn: 2238761.0000 - val_fn: 59620.0000 - val_precision: 0.2614 - val_recall: 0.9793 - val_accuracy: 0.3864 - val_auc: 0.8231
Epoch 3/40
1280/1280 [==============================] - 1777s 1s/step - loss: 0.7857 - tp: 8301792.0000 - fp: 2630361.0000 - tn: 37976972.0000 - fn: 3519672.0000 - precision: 0.7594 - recall: 0.7023 - accuracy: 0.8827 - auc: 0.9097 - val_loss: 66.
2140 - val_tp: 3034899.0000 - val_fp: 9956908.0000 - val_tn: 115041.0000 - val_fn: 352.0000 - val_precision: 0.2336 - val_recall: 0.9999 - val_accuracy: 0.2403 - val_auc: 0.5115
Epoch 4/40
1280/1280 [==============================] - 1760s 1s/step - loss: 0.6022 - tp: 9369523.0000 - fp: 2098170.0000 - tn: 38477736.0000 - fn: 2483339.0000 - precision: 0.8170 - recall: 0.7905 - accuracy: 0.9126 - auc: 0.9419 - val_loss: 1.4
866 - val_tp: 2661698.0000 - val_fp: 4816937.0000 - val_tn: 5366742.0000 - val_fn: 261823.0000 - val_precision: 0.3559 - val_recall: 0.9104 - val_accuracy: 0.6125 - val_auc: 0.8933
Epoch 5/40
1280/1280 [==============================] - 1771s 1s/step - loss: 0.5592 - tp: 9674903.0000 - fp: 1962418.0000 - tn: 38513608.0000 - fn: 2277853.0000 - precision: 0.8314 - recall: 0.8094 - accuracy: 0.9191 - auc: 0.9488 - val_loss: 1.0
996 - val_tp: 565756.0000 - val_fp: 6305.0000 - val_tn: 10145255.0000 - val_fn: 2389884.0000 - val_precision: 0.9890 - val_recall: 0.1914 - val_accuracy: 0.8172 - val_auc: 0.9230
Epoch 6/40
1280/1280 [==============================] - 1774s 1s/step - loss: 0.5210 - tp: 9808780.0000 - fp: 1924251.0000 - tn: 38545780.0000 - fn: 2149975.0000 - precision: 0.8360 - recall: 0.8202 - accuracy: 0.9223 - auc: 0.9528 - val_loss: 1.9
950 - val_tp: 2773239.0000 - val_fp: 6335919.0000 - val_tn: 3933010.0000 - val_fn: 65032.0000 - val_precision: 0.3044 - val_recall: 0.9771 - val_accuracy: 0.5116 - val_auc: 0.9026
Epoch 7/40
1280/1280 [==============================] - 1767s 1s/step - loss: 0.4799 - tp: 9927548.0000 - fp: 1743956.0000 - tn: 38779680.0000 - fn: 1977563.0000 - precision: 0.8506 - recall: 0.8339 - accuracy: 0.9290 - auc: 0.9587 - val_loss: 0.4
051 - val_tp: 2537115.0000 - val_fp: 260830.0000 - val_tn: 9808854.0000 - val_fn: 500401.0000 - val_precision: 0.9068 - val_recall: 0.8353 - val_accuracy: 0.9419 - val_auc: 0.9654
Epoch 8/40
1280/1280 [==============================] - 1771s 1s/step - loss: 0.4655 - tp: 9972310.0000 - fp: 1610651.0000 - tn: 38928064.0000 - fn: 1917779.0000 - precision: 0.8609 - recall: 0.8387 - accuracy: 0.9327 - auc: 0.9611 - val_loss: 1.6
014 - val_tp: 1146828.0000 - val_fp: 2196.0000 - val_tn: 10286639.0000 - val_fn: 1671537.0000 - val_precision: 0.9981 - val_recall: 0.4069 - val_accuracy: 0.8723 - val_auc: 0.7663
Epoch 9/40
1280/1280 [==============================] - 1770s 1s/step - loss: 0.4410 - tp: 9975626.0000 - fp: 1547724.0000 - tn: 39046088.0000 - fn: 1859375.0000 - precision: 0.8657 - recall: 0.8429 - accuracy: 0.9350 - auc: 0.9628 - val_loss: 0.6
413 - val_tp: 2584588.0000 - val_fp: 554056.0000 - val_tn: 9603651.0000 - val_fn: 364905.0000 - val_precision: 0.8235 - val_recall: 0.8763 - val_accuracy: 0.9299 - val_auc: 0.9693
Epoch 10/40
1280/1280 [==============================] - 1761s 1s/step - loss: 0.4217 - tp: 10018262.0000 - fp: 1432905.0000 - tn: 39172740.0000 - fn: 1804910.0000 - precision: 0.8749 - recall: 0.8473 - accuracy: 0.9382 - auc: 0.9649 - val_loss: 0.
6441 - val_tp: 1928738.0000 - val_fp: 27586.0000 - val_tn: 10052344.0000 - val_fn: 1098532.0000 - val_precision: 0.9859 - val_recall: 0.6371 - val_accuracy: 0.9141 - val_auc: 0.9337
Epoch 11/40
1280/1280 [==============================] - 1767s 1s/step - loss: 0.4095 - tp: 10121675.0000 - fp: 1466373.0000 - tn: 39131704.0000 - fn: 1709053.0000 - precision: 0.8735 - recall: 0.8555 - accuracy: 0.9394 - auc: 0.9669 - val_loss: 1.
0952 - val_tp: 2779103.0000 - val_fp: 2929574.0000 - val_tn: 7332225.0000 - val_fn: 66298.0000 - val_precision: 0.4868 - val_recall: 0.9767 - val_accuracy: 0.7714 - val_auc: 0.9444
Epoch 12/40
1280/1280 [==============================] - 1766s 1s/step - loss: 0.3508 - tp: 10558538.0000 - fp: 1308014.0000 - tn: 39148768.0000 - fn: 1413463.0000 - precision: 0.8898 - recall: 0.8819 - accuracy: 0.9481 - auc: 0.9727 - val_loss: 0.
4481 - val_tp: 2197978.0000 - val_fp: 77726.0000 - val_tn: 10018559.0000 - val_fn: 812937.0000 - val_precision: 0.9658 - val_recall: 0.7300 - val_accuracy: 0.9320 - val_auc: 0.9684
Epoch 13/40
1280/1280 [==============================] - 1768s 1s/step - loss: 0.3459 - tp: 10634920.0000 - fp: 1277214.0000 - tn: 39126304.0000 - fn: 1390329.0000 - precision: 0.8928 - recall: 0.8844 - accuracy: 0.9491 - auc: 0.9732 - val_loss: 0.
4022 - val_tp: 2391272.0000 - val_fp: 184993.0000 - val_tn: 9955529.0000 - val_fn: 575406.0000 - val_precision: 0.9282 - val_recall: 0.8060 - val_accuracy: 0.9420 - val_auc: 0.9744
Epoch 14/40
1280/1280 [==============================] - 1771s 1s/step - loss: 0.3308 - tp: 10495827.0000 - fp: 1232895.0000 - tn: 39364996.0000 - fn: 1335085.0000 - precision: 0.8949 - recall: 0.8872 - accuracy: 0.9510 - auc: 0.9745 - val_loss: 0.
3876 - val_tp: 2364208.0000 - val_fp: 159464.0000 - val_tn: 9940852.0000 - val_fn: 642676.0000 - val_precision: 0.9368 - val_recall: 0.7863 - val_accuracy: 0.9388 - val_auc: 0.9704
Epoch 15/40
1280/1280 [==============================] - 1778s 1s/step - loss: 0.3349 - tp: 10513378.0000 - fp: 1247874.0000 - tn: 39301756.0000 - fn: 1365808.0000 - precision: 0.8939 - recall: 0.8850 - accuracy: 0.9501 - auc: 0.9742 - val_loss: 0.
4307 - val_tp: 2108827.0000 - val_fp: 89619.0000 - val_tn: 10175358.0000 - val_fn: 733396.0000 - val_precision: 0.9592 - val_recall: 0.7420 - val_accuracy: 0.9372 - val_auc: 0.9676
Epoch 16/40
1280/1280 [==============================] - 1774s 1s/step - loss: 0.3307 - tp: 10595335.0000 - fp: 1236928.0000 - tn: 39255112.0000 - fn: 1341378.0000 - precision: 0.8955 - recall: 0.8876 - accuracy: 0.9508 - auc: 0.9744 - val_loss: 0.
4616 - val_tp: 2311103.0000 - val_fp: 115583.0000 - val_tn: 10000757.0000 - val_fn: 679757.0000 - val_precision: 0.9524 - val_recall: 0.7727 - val_accuracy: 0.9393 - val_auc: 0.9704
Epoch 17/40
1280/1280 [==============================] - 1767s 1s/step - loss: 0.3289 - tp: 10535633.0000 - fp: 1223924.0000 - tn: 39330720.0000 - fn: 1338507.0000 - precision: 0.8959 - recall: 0.8873 - accuracy: 0.9511 - auc: 0.9748 - val_loss: 0.
4047 - val_tp: 2225304.0000 - val_fp: 97248.0000 - val_tn: 10022325.0000 - val_fn: 762323.0000 - val_precision: 0.9581 - val_recall: 0.7448 - val_accuracy: 0.9344 - val_auc: 0.9659
Epoch 18/40
1280/1280 [==============================] - 1772s 1s/step - loss: 0.3248 - tp: 10613594.0000 - fp: 1201191.0000 - tn: 39285904.0000 - fn: 1328110.0000 - precision: 0.8983 - recall: 0.8888 - accuracy: 0.9518 - auc: 0.9753 - val_loss: 0.
5139 - val_tp: 2072016.0000 - val_fp: 36763.0000 - val_tn: 10080347.0000 - val_fn: 918074.0000 - val_precision: 0.9826 - val_recall: 0.6930 - val_accuracy: 0.9272 - val_auc: 0.9530
Epoch 19/40
1280/1280 [==============================] - 1774s 1s/step - loss: 0.3211 - tp: 10667086.0000 - fp: 1209967.0000 - tn: 39238632.0000 - fn: 1313139.0000 - precision: 0.8981 - recall: 0.8904 - accuracy: 0.9519 - auc: 0.9753 - val_loss: 0.
3749 - val_tp: 2493058.0000 - val_fp: 176033.0000 - val_tn: 9926603.0000 - val_fn: 511506.0000 - val_precision: 0.9340 - val_recall: 0.8298 - val_accuracy: 0.9475 - val_auc: 0.9723
Epoch 20/40
1280/1280 [==============================] - 1771s 1s/step - loss: 0.3176 - tp: 10604079.0000 - fp: 1175083.0000 - tn: 39349048.0000 - fn: 1300586.0000 - precision: 0.9002 - recall: 0.8907 - accuracy: 0.9528 - auc: 0.9758 - val_loss: 0.
4352 - val_tp: 2225431.0000 - val_fp: 169949.0000 - val_tn: 9987117.0000 - val_fn: 724703.0000 - val_precision: 0.9291 - val_recall: 0.7543 - val_accuracy: 0.9317 - val_auc: 0.9660
Epoch 21/40
1280/1280 [==============================] - 1777s 1s/step - loss: 0.3183 - tp: 10753725.0000 - fp: 1207924.0000 - tn: 39171120.0000 - fn: 1296058.0000 - precision: 0.8990 - recall: 0.8924 - accuracy: 0.9522 - auc: 0.9760 - val_loss: 0.
5143 - val_tp: 1923402.0000 - val_fp: 8402.0000 - val_tn: 10080301.0000 - val_fn: 1095095.0000 - val_precision: 0.9957 - val_recall: 0.6372 - val_accuracy: 0.9158 - val_auc: 0.9559
Epoch 22/40
1280/1280 [==============================] - 1772s 1s/step - loss: 0.3155 - tp: 10593298.0000 - fp: 1171798.0000 - tn: 39369164.0000 - fn: 1294568.0000 - precision: 0.9004 - recall: 0.8911 - accuracy: 0.9530 - auc: 0.9766 - val_loss: 0.
3698 - val_tp: 2362795.0000 - val_fp: 98123.0000 - val_tn: 10020849.0000 - val_fn: 625433.0000 - val_precision: 0.9601 - val_recall: 0.7907 - val_accuracy: 0.9448 - val_auc: 0.9722
Epoch 23/40
1280/1280 [==============================] - 1770s 1s/step - loss: 0.3081 - tp: 10733583.0000 - fp: 1175054.0000 - tn: 39255684.0000 - fn: 1264464.0000 - precision: 0.9013 - recall: 0.8946 - accuracy: 0.9535 - auc: 0.9772 - val_loss: 0.
4154 - val_tp: 2216921.0000 - val_fp: 66152.0000 - val_tn: 10061258.0000 - val_fn: 762869.0000 - val_precision: 0.9710 - val_recall: 0.7440 - val_accuracy: 0.9368 - val_auc: 0.9674
Epoch 24/40
1280/1280 [==============================] - 1773s 1s/step - loss: 0.3108 - tp: 10737070.0000 - fp: 1185865.0000 - tn: 39247804.0000 - fn: 1258035.0000 - precision: 0.9005 - recall: 0.8951 - accuracy: 0.9534 - auc: 0.9769 - val_loss: 0.
4095 - val_tp: 2189914.0000 - val_fp: 65716.0000 - val_tn: 10122627.0000 - val_fn: 728943.0000 - val_precision: 0.9709 - val_recall: 0.7503 - val_accuracy: 0.9394 - val_auc: 0.9691
Epoch 25/40
1280/1280 [==============================] - 1778s 1s/step - loss: 0.3092 - tp: 10574009.0000 - fp: 1168082.0000 - tn: 39411864.0000 - fn: 1274842.0000 - precision: 0.9005 - recall: 0.8924 - accuracy: 0.9534 - auc: 0.9769 - val_loss: 0.
3740 - val_tp: 2271238.0000 - val_fp: 99057.0000 - val_tn: 10104250.0000 - val_fn: 632655.0000 - val_precision: 0.9582 - val_recall: 0.7821 - val_accuracy: 0.9442 - val_auc: 0.9706
Epoch 26/40
1280/1280 [==============================] - 1772s 1s/step - loss: 0.3127 - tp: 10661534.0000 - fp: 1178414.0000 - tn: 39303136.0000 - fn: 1285691.0000 - precision: 0.9005 - recall: 0.8924 - accuracy: 0.9530 - auc: 0.9766 - val_loss: 0.
4100 - val_tp: 2160141.0000 - val_fp: 93000.0000 - val_tn: 10111722.0000 - val_fn: 742337.0000 - val_precision: 0.9587 - val_recall: 0.7442 - val_accuracy: 0.9363 - val_auc: 0.9656
Epoch 27/40
1280/1280 [==============================] - 1772s 1s/step - loss: 0.3054 - tp: 10663139.0000 - fp: 1174175.0000 - tn: 39348628.0000 - fn: 1242863.0000 - precision: 0.9008 - recall: 0.8956 - accuracy: 0.9539 - auc: 0.9770 - val_loss: 0.
3826 - val_tp: 2295025.0000 - val_fp: 98538.0000 - val_tn: 10045922.0000 - val_fn: 667715.0000 - val_precision: 0.9588 - val_recall: 0.7746 - val_accuracy: 0.9415 - val_auc: 0.9695
Epoch 28/40
1280/1280 [==============================] - 1766s 1s/step - loss: 0.3101 - tp: 10638913.0000 - fp: 1161985.0000 - tn: 39375784.0000 - fn: 1252135.0000 - precision: 0.9015 - recall: 0.8947 - accuracy: 0.9540 - auc: 0.9766 - val_loss: 0.
3907 - val_tp: 2166669.0000 - val_fp: 37875.0000 - val_tn: 10143155.0000 - val_fn: 759501.0000 - val_precision: 0.9828 - val_recall: 0.7404 - val_accuracy: 0.9392 - val_auc: 0.9686
Epoch 29/40
1280/1280 [==============================] - 1773s 1s/step - loss: 0.3063 - tp: 10554201.0000 - fp: 1162046.0000 - tn: 39456136.0000 - fn: 1256420.0000 - precision: 0.9008 - recall: 0.8936 - accuracy: 0.9539 - auc: 0.9767 - val_loss: 0.
3597 - val_tp: 2286152.0000 - val_fp: 91290.0000 - val_tn: 10085049.0000 - val_fn: 644709.0000 - val_precision: 0.9616 - val_recall: 0.7800 - val_accuracy: 0.9438 - val_auc: 0.9718
Epoch 30/40
1280/1280 [==============================] - 1777s 1s/step - loss: 0.3054 - tp: 10552880.0000 - fp: 1163086.0000 - tn: 39473676.0000 - fn: 1239134.0000 - precision: 0.9007 - recall: 0.8949 - accuracy: 0.9542 - auc: 0.9771 - val_loss: 0.
4182 - val_tp: 2195277.0000 - val_fp: 32841.0000 - val_tn: 10111337.0000 - val_fn: 767745.0000 - val_precision: 0.9853 - val_recall: 0.7409 - val_accuracy: 0.9389 - val_auc: 0.9704
Epoch 31/40
1280/1280 [==============================] - 1779s 1s/step - loss: 0.3083 - tp: 10553649.0000 - fp: 1149510.0000 - tn: 39466480.0000 - fn: 1259216.0000 - precision: 0.9018 - recall: 0.8934 - accuracy: 0.9541 - auc: 0.9765 - val_loss: 0.
4366 - val_tp: 2167915.0000 - val_fp: 58039.0000 - val_tn: 10066034.0000 - val_fn: 815212.0000 - val_precision: 0.9739 - val_recall: 0.7267 - val_accuracy: 0.9334 - val_auc: 0.9673
Epoch 32/40
1280/1280 [==============================] - 1768s 1s/step - loss: 0.3090 - tp: 10850631.0000 - fp: 1193472.0000 - tn: 39117152.0000 - fn: 1267532.0000 - precision: 0.9009 - recall: 0.8954 - accuracy: 0.9531 - auc: 0.9774 - val_loss: 0.
3760 - val_tp: 2399785.0000 - val_fp: 89881.0000 - val_tn: 9935425.0000 - val_fn: 682109.0000 - val_precision: 0.9639 - val_recall: 0.7787 - val_accuracy: 0.9411 - val_auc: 0.9706
Epoch 33/40
1280/1280 [==============================] - 1770s 1s/step - loss: 0.3075 - tp: 10591815.0000 - fp: 1173635.0000 - tn: 39401344.0000 - fn: 1261969.0000 - precision: 0.9002 - recall: 0.8935 - accuracy: 0.9535 - auc: 0.9770 - val_loss: 0.
3749 - val_tp: 2266851.0000 - val_fp: 113739.0000 - val_tn: 10069260.0000 - val_fn: 657350.0000 - val_precision: 0.9522 - val_recall: 0.7752 - val_accuracy: 0.9412 - val_auc: 0.9685
Epoch 34/40
1280/1280 [==============================] - 1774s 1s/step - loss: 0.3046 - tp: 10617309.0000 - fp: 1139098.0000 - tn: 39400540.0000 - fn: 1271864.0000 - precision: 0.9031 - recall: 0.8930 - accuracy: 0.9540 - auc: 0.9772 - val_loss: 0.
4175 - val_tp: 2241531.0000 - val_fp: 87208.0000 - val_tn: 10047153.0000 - val_fn: 731308.0000 - val_precision: 0.9626 - val_recall: 0.7540 - val_accuracy: 0.9376 - val_auc: 0.9662
Epoch 35/40
1280/1280 [==============================] - 1773s 1s/step - loss: 0.3112 - tp: 10604940.0000 - fp: 1177338.0000 - tn: 39382680.0000 - fn: 1263836.0000 - precision: 0.9001 - recall: 0.8935 - accuracy: 0.9534 - auc: 0.9763 - val_loss: 0.
3769 - val_tp: 2350085.0000 - val_fp: 99126.0000 - val_tn: 10001938.0000 - val_fn: 656051.0000 - val_precision: 0.9595 - val_recall: 0.7818 - val_accuracy: 0.9424 - val_auc: 0.9697
Epoch 36/40
1280/1280 [==============================] - 1782s 1s/step - loss: 0.3079 - tp: 10576699.0000 - fp: 1181888.0000 - tn: 39421312.0000 - fn: 1248879.0000 - precision: 0.8995 - recall: 0.8944 - accuracy: 0.9536 - auc: 0.9767 - val_loss: 0.
3834 - val_tp: 2322480.0000 - val_fp: 71956.0000 - val_tn: 10012406.0000 - val_fn: 700358.0000 - val_precision: 0.9699 - val_recall: 0.7683 - val_accuracy: 0.9411 - val_auc: 0.9705
Epoch 37/40
1280/1280 [==============================] - 1775s 1s/step - loss: 0.3129 - tp: 10722707.0000 - fp: 1163322.0000 - tn: 39255528.0000 - fn: 1287232.0000 - precision: 0.9021 - recall: 0.8928 - accuracy: 0.9533 - auc: 0.9765 - val_loss: 0.
4019 - val_tp: 2314261.0000 - val_fp: 62408.0000 - val_tn: 9985730.0000 - val_fn: 744801.0000 - val_precision: 0.9737 - val_recall: 0.7565 - val_accuracy: 0.9384 - val_auc: 0.9702
Epoch 38/40
1280/1280 [==============================] - 1783s 1s/step - loss: 0.3083 - tp: 10594205.0000 - fp: 1165411.0000 - tn: 39412032.0000 - fn: 1257165.0000 - precision: 0.9009 - recall: 0.8939 - accuracy: 0.9538 - auc: 0.9767 - val_loss: 0.
3835 - val_tp: 2223637.0000 - val_fp: 52165.0000 - val_tn: 10117258.0000 - val_fn: 714140.0000 - val_precision: 0.9771 - val_recall: 0.7569 - val_accuracy: 0.9415 - val_auc: 0.9715
Epoch 39/40
1280/1280 [==============================] - 1776s 1s/step - loss: 0.3073 - tp: 10690271.0000 - fp: 1156059.0000 - tn: 39323200.0000 - fn: 1259274.0000 - precision: 0.9024 - recall: 0.8946 - accuracy: 0.9539 - auc: 0.9769 - val_loss: 0.
3965 - val_tp: 2204023.0000 - val_fp: 67630.0000 - val_tn: 10139880.0000 - val_fn: 695667.0000 - val_precision: 0.9702 - val_recall: 0.7601 - val_accuracy: 0.9418 - val_auc: 0.9679
Epoch 40/40
1280/1280 [==============================] - 1771s 1s/step - loss: 0.3049 - tp: 10682842.0000 - fp: 1183309.0000 - tn: 39323412.0000 - fn: 1239227.0000 - precision: 0.9003 - recall: 0.8961 - accuracy: 0.9538 - auc: 0.9773 - val_loss: 0.
3758 - val_tp: 2309020.0000 - val_fp: 116124.0000 - val_tn: 10004803.0000 - val_fn: 677253.0000 - val_precision: 0.9521 - val_recall: 0.7732 - val_accuracy: 0.9395 - val_auc: 0.9702
400/400 [==============================] - 118s 296ms/step - loss: 0.4356 - tp: 2969562.0000 - fp: 289346.0000 - tn: 12303178.0000 - fn: 821914.0000 - precision: 0.9112 - recall: 0.7832 - accuracy: 0.9322 - auc: 0.9648
2020/07/04 09:37:42 INFO mlflow.projects: === Run (ID 'd9b44dc2e3d44ea1a71129808b642af6') succeeded ===